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Abstract: Several signaling pathways are aberrantly activated in T-ALL due to genetic alterations
of their components and in response to external microenvironmental cues. To functionally charac-
terize elements of the signaling network in T-ALL, here we analyzed ten signaling proteins that are
frequently altered in T-ALL -namely Akt, Erk1/2, JNK, Lck, NF-κB p65, p38, STAT3, STAT5, ZAP70,
Rb- in Jurkat, CEM and MOLT4 cell lines, using phospho-specific flow cytometry. Phosphorylation
statuses of signaling proteins were measured in the basal condition or under modulation with H2O2,
PMA, CXCL12 or IL7. Signaling profiles are characterized by a high variability across the analyzed
T-ALL cell lines. Hierarchical clustering analysis documents that higher intrinsic phosphorylation of
Erk1/2, Lck, ZAP70, and Akt, together with ZAP70 phosphorylation induced by H2O2, identifies
Jurkat cells. In contrast, CEM are characterized by higher intrinsic phosphorylation of JNK and
Rb and higher responsiveness of Akt to external stimuli. MOLT4 cells are characterized by higher
basal STAT3 phosphorylation. These data document that phospho-specific flow cytometry reveals
a high variability in intrinsic as well as modulated signaling networks across different T-ALL cell
lines. Characterizing signaling network profiles across individual leukemia could provide the basis
to identify molecular targets for personalized T-ALL therapy.

Keywords: cell signaling; leukemia; flow cytometry

1. Introduction

T-cell acute lymphoblastic leukemia (T-ALL) is a malignancy of immature T cells at
defined stages of intrathymic T-cell differentiation [1]. T-ALL accounts for about 15% of
pediatric and 25% of adult ALL cases [2,3]. Over the past last decades, survival rates of
patients with T-ALL have remarkably improved thanks to advances in combined chemother-
apy protocols [4]. However, primary resistance to treatment and relapse are observed in a
significant number of patients [5]. The poor outcome of T-ALL patients has been related to
disease complexity, where genetic and microenvironmental factors interact in supporting
leukemia progression and resistance [6]. Therefore, for a comprehensive classification of
the disease and for developing personalized therapeutic strategies, it is challenging to gain
an integrated, overall picture of changes of the entire leukemia cell signaling.

Immunophenotyping allows the classification of T-ALL in different subgroups based
on the corresponding stage of T-cell ontogenesis [7]. The prognostic value of different
immunophenotypic groups differs between the studies, also in the case of early T-cell
precursor ALL (ETP-ALL), which is a very unique subgroup in T-ALL [8–10]. At the
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molecular level, T-ALL is a heterogenous disease characterized by a wide spectrum of
genetic lesions [11] as well as by altered interpretation of external cues deriving from the
microenvironment [6]. Both cell-intrinsic defects and microenvironmental stimuli converge
on the activation of regulatory signaling pathways involved in processes enhancing the ca-
pacity of self-renewal, overturning the control of cell proliferation, blocking differentiation,
and promoting resistance to apoptosis. Signaling pathways that are aberrantly activated
in T-ALL include phosphatidylinositol-3OH-kinase (PI3K)/Akt, mitogen-activated pro-
tein kinases (MAPKs), and Janus kinases/signal transducer activator of transcription
Jak/STAT [12,13]. These signaling pathways can be activated due to genetic alterations of
their components as well as in response to external microenvironmental cues. Amongst
cell-extrinsic modulators, the chemokine CXCL12 and interleukin 7 (IL7) play a key role in
promoting tumor growth [14–18].

CXCL12 is a homeostatic chemokine secreted by stromal cells, fibroblasts and epithelial
cells within tissue microenvironments, including lymph nodes and bone marrow (BM) [19–21].
CXCL12 binds the CXC-chemokine receptors 4 (CXCR4) and 7 (CXCR7) [22]. Interaction of
CXCL12 with CXCR4 triggers complex signaling pathways, which include PI3K/Akt, the
MAPK extracellular signal-regulated kinase (Erk)1/2 and p38, and Jak/STAT, regulating
intracellular calcium flux, chemotaxis, transcription and cell survival [23–25]. Evidence indi-
cates that the CXCL12/CXCR4 signaling axis plays a role in cancer biology, in solid tumors
as well as in hematological malignancies such as T-ALL, where the CXCL12/CXCR4 signal-
ing regulates the maintenance and progression of leukemia [18,26–29]. The CXCL12/CXCR7
binding induces intracellular signaling pathways, such as PI3K/Akt, MAPK, Jak/STAT3 [22].
However, the role of CXCR7 in cancer progression is controversial, as some reports suggest
pro-metastatic responses, while others indicate inhibition of metastasis [19]. In T-ALL,
CXCR7 has been suggested to contribute to leukemic-cell migration, potentiating the
CXCL12/CXCR4 axis [30].

IL7 is a cytokine produced by stromal cells in the BM, thymus and other tissues. The
IL7 receptor (IL7R) is expressed mainly by lymphoid cells [31]. The IL7/IL7R interaction is
required for normal T-cell development and homeostasis of mature T-cells [31]. IL7/IL7R-
mediated binding activates three main signaling pathways: Jak/STAT, MAPK/Erk and
PI3K/Akt/mammalian target of rapamycin (mTOR) [32] in both T-ALL and healthy
T-cells [33,34]. However, while PI3K/Akt/mTOR signaling mediated by IL7 promotes
proliferation and survival of T-ALL cells by inducing downregulation of p27kip1 and
upregulation of Bcl-2 [35,36], in healthy T cells PI3K signaling activation by IL7 induces
cell cycle progression without influencing cell survival [37,38].

To gain overall picture of intrinsic and extrinsic signaling in T-ALL cells, in this study
we investigated signaling pathways in three T-ALL cell lines, namely CEM, MOLT4 and
Jurkat, using phospho-specific flow cytometry that simultaneously determines protein
expression and protein post-translational modifications (i.e., phosphorylation) at a single
cell level [39–42]. Our results show that single-cell signaling profiles measured by phospho-
specific flow cytometry allow us to reveal heterogeneous signaling profiles in the analyzed
T-ALL cell lines.

2. Materials and Methods
2.1. Cell Samples

The cryopreserved T-ALL cell lines CEM, MOLT4 and Jurkat (American Type Cul-
ture Collection, ATCC) were cultured in medium RPMI-1640 (GIBCO; Thermo Fisher
Scientific, Waltham, MA) with 10% fetal bovine serum (FBS, GIBCO) at 37 ◦C in a hu-
midified atmosphere containing 5% CO2. Peripheral mononuclear cells (PBMC) were
obtained from heparin-anticoagulated leukocyte concentrate samples collected as from
healthy donors (HDs) at the Transfusion Medicine Unit, Azienda Ospedaliera Universitaria
Integrata (AOUI), Verona, Italy. In accordance with the Declaration of Helsinki, all blood
donors provided written informed consent for the anonymous collection and use of their
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leukocyte concentrate samples—as byproduct of the manufacturing of blood donation- for
research purposes.

PBMCs were isolated by Ficoll-hypaque centrifugation (Lymphoprep; Nicomed, Oslo,
Norway) and cryopreserved in liquid nitrogen. Thawing of T-ALL cell lines and PBMC
from HDs was performed at 37 ◦C and transferred in a 1:1 solution of RPMI-1640 complete
medium and heat inactivated FBS. Cells were pelleted at 400 g for 5 min and resuspended
in prewarmed (37 ◦C) complete RPMI-1640 medium. Before use, viability of the cells was
over 90%, as assessed by flow cytometry analysis after staining with 7-amino-actinomycin
D (7-AAD; BD Biosciences, BD Biosciences, San Jose, CA, USA).

2.2. Immunophenotype Characterization

Immunophenotype characterization of CEM, MOLT4, and Jurkat cell lines was per-
formed as previously described [43]. T-ALL cell lines were classified according to their matu-
ration stage using the criteria defined by the European Group for Immunological Character-
ization of Leukemias (EGIL) [7]. Cell surface expression of CD127 and CD184 was detected
by staining cells with fluorochrome-conjugated antibodies in the dark at room temperature
for 15 min. The complete list of antibodies used is reported in Supplementary Table S1.
Autofluorescence controls were used to set background signals. Samples were then washed
and analyzed on a FACSCanto cytometer (Becton Dickinson, Franklin Lakes, NJ, USA).
Approximately 10,000 gated events were acquired for each sample.

2.3. Cell Treatments

Before treatments, cell lines and PBMC from HDs were stained with LIVE/DEAD Fix-
able Near-IR stain (Invitrogen; Thermo Fisher Scientific, Waltham, MA, USA) according to
the manufacturer’s instructions. Briefly, cells were collected, washed, counted, resuspended
in PBS at 1 × 106/mL and stained with the reactive dye in the dark at room temperature for
30 min. After two washes with PBS, cell lines and PBMC were resuspended in RPMI-1640
with 10% fetal bovine serum at 2 × 106/mL and 4 × 106/mL, respectively; divided in
5 tubes and rested at 37 ◦C in a humidified atmosphere containing 5% CO2 for 1 h. Each
tube was then treated with a different modulator for 15 min (Supplementary Table S2) for
phospho-specific flow cytometry. Unmodulated cells were used as control.

2.4. Phospho-Specific Flow Cytometry

Phospho-specific flow cytometry was performed as previously described [40]. Briefly,
after 15 min of treatment, cells were fixed with pre-warmed Fix Buffer I (Becton Dickinson)
at 37 ◦C for 10 min and permeabilized with ice-cold 50% methanol for 30 min on ice.
Permeabilized cells were washed with PBS containing 0.1% bovine serum albumin and
stained with fluorochrome-conjugated antibodies in the dark at room temperature for
40 min. The complete list of antibodies used, and the staining panels are reported in
Supplementary Table S3 and Supplementary Table S4, respectively. Isotype controls were
used to set background signals. Three independent experiments were performed for each
cell line and for HD T cells. Approximately 10,000 gated events were acquired for each
sample on a FACSCanto cytometer (Becton Dickinson).

2.5. Flow Cytometry Data Analysis

Flow cytometry data were processed, analyzed, and graphed using FlowJo software
(v10.8; TreeStar, Ashland, OR, USA). Dead cells, debris and doublets were excluded based
on forward-scatter, side-scatter, and LIVE/DEAD signals. All analyses were performed
on gated T cells, identified as CD45/CD3 co-expressing cells in HD samples and as cCD3
or CD7 positive in T-ALL cell lines. Median fluorescence intensity (MFI) was normalized
with respect to MFI of isotype control (RMFI) and, when indicated, transformed into
logBasal phosphorylation statuses of signaling proteins were considered activated when
RMFI >1. The response of cells to treatments was calculated as log2Fold change [log2(RMFI
modulated/RMFI unmodulated)], as previously described [40]. A log2 value equal to
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0 corresponds to ‘no change’ with respect to the unstimulated. The response to external
modulators was considered positive when log2Fold change > 0. We used the term “node”
to refer to a proteomic readout in the presence or absence of a specific modulator. For
example, the response to CXCL12 modulation can be measured using pErk1/2 as a readout.
That node is designated “CXCL12-pErk1/2” [40].

2.6. Statistical Analysis

The unsupervised hierarchical cluster analysis (HCA) was performed using webtool
ClustVis (v. 2.0, https://biit.cs.ut.ee/clustvis/; accessed on 21 September 2021) [44], calcu-
lating the Euclidean distances as the distance metric and the complete linkage as linkage
method of analysis. Comparison of phosphorylation levels among T-ALL cell lines and
healthy donor (HD) T cells were performed using the Kruskal–Wallis test and each p value
was corrected for multiple comparisons using the Dunn’s test. Differences were considered
statistically significant when p ≤ 0. Graphing and statistical analyses were performed
using GraphPad Prism software (v. 7.03, GraphPad Software Inc., San Diego, CA, USA;
accessed on 16 December 2021).

3. Results
3.1. Study Design

The phosphorylation levels of ten signaling proteins that are frequently altered in
T-ALL (namely Akt, MAPK Erk1/2, c-Jun NH2-terminal protein kinase (JNK), lymphocyte-
specific protein tyrosine kinase (Lck), nuclear factor kappa-light-chain-enhancer of activated
B cells (NF-κB) p65, p38, STAT3, STAT5, zeta-chain-associated protein kinase 70 (ZAP70),
and retinoblastoma protein (Rb)) were analyzed at the single-cell level in the T-ALL cell lines
CEM, MOLT4, and Jurkat, using phospho-specific flow cytometry (Figure 1). Based on EGIL
classification criteria [7], the T-ALL cell-lines were classified into categories corresponding
to three differentiation stages, i.e., CEM corresponds to the T-II (pre-T) stage, MOLT4 to
the T-III (cortical) stage, and Jurkat to the T-IV (mature) stage (Table 1). Phosphorylation
statuses of signaling proteins were measured in the basal condition (i.e., unmodulated) or
under modulation with H2O2, phorbol 12-myristate 13-acetate (PMA), CXCL12, or IL7.
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Table 1. T-ALL cell lines according to the EGIL classification.

T-ALL
Cell Lines

EGIL
Classification Markers

CD7+/cCD3+

CD2 and/or CD5 and/or CD8 CD1a mCD3

Pro-T (T I) Neg Neg Neg
CEM Pre-T (T II) Pos Neg Neg

MOLT4 Cortical T (T III) Pos Pos Neg
Jurkat Mature T (T IV) Pos Neg Pos

cCD3: cytoplasmic CD3; mCD3: membrane CD3; Neg: negative; Pos: positive.

3.2. Phosphorylation Profiles in the Basal, H2O2-, and PMA-Modulated Conditions

The basal phosphorylation statuses of signaling proteins were highly heterogenous
among cell lines (σ2 across the phosphoproteins was 2.7 for CEM, 6.0 for MOLT4, 20.7 for
Jurkat; Figure 2A,B). All T-ALL cell lines showed basal phosphorylation (RMFI > 1.5) of
Erk1/2, Lck, NF-κB p65, STAT3, and ZAP70Y319, with higher levels of Erk1/2, Lck, and
ZAP70Y319 in Jurkat cells. JNK was phosphorylated in CEM and Jurkat cells. Rb was
constitutively phosphorylated in CEM and MOLT4. Basal phosphorylation of Akt was
detected in CEM and Jurkat cells, with higher levels in Jurkat. ZAP70Y292 was constitutively
phosphorylated in Jurkat cells. Pp38 and pSTAT5 levels were undetectable in all the
analyzed T-ALL cell populations (Figure 2A,B). Overall, the levels of phosphorylation—
expressed as the sum of phosphoprotein RMFI—were higher in Jurkat than in CEM and
MOLT4 (the sum of RMFI was 33.12 for CEM; 30.54 for MOLT4; and 56.88 for Jurkat).

Then, we investigated the responsiveness of T-ALL cell lines to H2O2, which reversibly
inhibits tyrosine phosphatases thereby shifting the equilibrium of phosphorylation reaction
in favor of kinase activation [45]. Responses to H2O2 were measured as the log2Fold
change in phosphorylation between H2O2-modulated and unmodulated conditions. As
shown in Figure 2C,D, H2O2 perturbed signaling profiles in all the analyzed leukemic cell
populations. Specifically, H2O2 induced increased phosphorylation of STAT3 in all T-ALL
cell lines, with a higher response of CEM compared with MOLT4 and Jurkat. Moreover,
H2O2 induced a clear-cut increase of pAkt in CEM and MOLT4; of pErk1/2 in CEM and
Jurkat cells; of NF-κB p65 in MOLT4 cells; of pZAP70Y319 and pZAP70Y292 in Jurkat cells.
Overall, the phosphorylation responses to H2O2—expressed as the sum of phosphoprotein
responses—were higher in Jurkat cells and lower in CEM and MOLT4 (the sum of log2Fold
change in phosphorylation between H2O2-modulated and unmodulated conditions was
1.86 for CEM; 3.98 for MOLT4; 5.89 for Jurkat).

Next, we stimulated T-ALL cell lines with PMA, which activates T cells through protein
kinase C (PKC) [46]. As shown in Figure 2E,F, PMA induced a clear-cut increase of pSTAT3
in all T-ALL cell lines, with higher phosphorylation levels in CEM cells. Moreover, PMA
induced augmented phosphorylation of Erk1/2 in CEM and Jurkat, and JNK in MOLT4.

Taken together, these data reveal high signaling variability across T-ALL cell lines with
distinct phosphorylation profiles for each cell population and specific signaling sensitivity
to phosphatase inhibition and to PKC activation.
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Figure 2. Phosphorylation profiles of T-ALL cell lines. (A,B) Pseudocolor heatmap (A) and flow
cytometry histograms (B) of all the analyzed phospho-proteins in basal condition (unstimulated)
in T-ALL cell lines. (C,D) Pseudocolor heatmap (C) and flow cytometry histograms (D) of the
phosphorylation profiles following modulation with 3.3 mM H2O2 for 15 min. (E,F) Pseudocolor
heatmap (E) and flow cytometry histograms (F) of the phosphorylation profiles following modulation
with 400 nM PMA for 15 min. Data are representative of three independent experiments.

3.3. Phosphorylation Profiles Following Modulation with CXCL12 or IL7

We examined the responses of phosphoproteins to some physiological stimuli relevant
for T-ALL pathophysiology, i.e., CXCL12 and IL7, in T-ALL cell lines. All T-cell populations
expressed the CXCL12 receptor CXCR4 (CD184), with T-ALL cell lines showing higher
levels than HD T cells, used as control (Supplementary Figure S1A). Moreover, all T-ALL
populations expressed very low levels of IL7Rα chain (CD127) (Supplementary Figure S1B).
Responsiveness of T-ALL cell lines to external stimuli was measured as the log2Fold
change in phosphorylation between modulated and unmodulated conditions (Figure 3).
CXCL12 evoked a clear-cut increase of pAkt in CEM and MOLT4 and of pJNK in MOLT4
(Figure 3A,B). Engagement of IL7R with IL7 induced augmentation of pAkt in MOLT4 cells
(Figure 3C,D). In contrast, STAT5 was unresponsive to IL7 in T-ALL cell lines, but not in
HD T cells used as control (Figure 3C,D).
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Figure 3. Phosphorylation profiles following modulation with CXCL12 or IL7. (A) Pseudocolor
heatmap of the phosphorylation profiles following modulation with 100 ng/mL CXCL12 for 15 min.
(B) Flow cytometry histograms of pAkt and pJNK in basal condition (unstimulated) or after CXCL12
modulation in T-ALL cell lines and T cells from HDs, compared with isotype signals. (C) Pseudocolor
heatmap of the phosphorylation profiles following modulation with 10 ng/mL IL7 for 15 min.
(D) Flow cytometry histograms of pSTAT5 and pAkt in basal condition (unstimulated) or after IL7
modulation in T-ALL cell lines and T cells from HDs, compared with isotype signals. Data are
representative of three independent experiments.

3.4. Signaling Profiles Separate T-ALL Cell Lines in Distinct Clusters

Basal phosphorylation statuses of signaling proteins—measured as log2 RMFI—and re-
sponses to external stimuli—measured by the log2Fold change in phosphorylation between
modulated and unmodulated conditions—were subjected to unsupervised hierarchical
clustering analysis (HCA) within the three T-ALL cell populations. Unsupervised HCA of
all the analyzed nodes (n = 55) identified CEM/MOLT4 cells and Jurkat as separate clusters
(Supplementary Figure S2). To reduce the number of nodes that can discriminate T-ALL
cell populations, next we performed an unsupervised HCA on selected nodes showing the
greatest variation across samples (σ2 of log2 values > 0.5, n = 12). Remarkably, this cluster-
ing preserved the classification obtained analyzing all nodes and allowed us to identify
significant nodes characterizing the different T-ALL cell lines (Figure 4). Specifically, Jurkat
cells showed higher phosphorylation of basal-pErk1/2, basal-pLck, basal-pAkt, basal- and
H2O2-induced pZAP70 nodes. CEM cells were characterized by increased basal pJNK
and pRb, and Akt induced by CXCL12 and H2O2. MOLT4 cells exhibited higher STAT3
phosphorylation in the basal condition (Figure 4). These nodes were particularly important
for T-cell classification since the clustering of T-ALL cell lines was lost if they were excluded
from analysis (Supplementary Figure S3).
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Figure 4. Unsupervised hierarchical clustering analysis on selected nodes. Unsupervised hierar-
chical clustering analysis of nodes showing higher variation (σ2 of log2 values > 0.5; n = 12) across
samples within the T-ALL cell lines CEM, MOLT4, and Jurkat. Data are representative of three
independent experiments.

Results from independent experiments showed an overall consistency of basal and
induced phosphorylation measurements among experiments. Interestingly, comparison
of these data across T-ALL and HD T cells showed that Jurkat significantly contrasted
HD T cells by high levels of basal-pAkt, basal-pERK1/2, basal-pZAP70Y319, and basal-
pZAP70Y292 (Figure 5A). Moreover, H2O2 -induced pZAP70Y292 was significantly higher in
Jurkat when compared with CEM (Figure 5B). Compared with normal T cells, pRb in the
basal condition and CXCL12-induced pAkt were significantly higher in CEM (Figure 5). In
addition, pAkt induced by H2O2 was significantly higher in CEM when compared with
Jurkat cells (Figure 5B).
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Figure 5. Histograms of phosphorylation levels in T-ALL cell lines and HD T cells. (A) Comparison of
phosphorylation levels in the basal condition, relative to isotypic controls, among T-ALL cell lines and
healthy donor (HD) T cells. (B) Comparison of response to stimulation, relative to the unstimulated
condition, among T-ALL cell lines and HD T cells. Data are expressed as mean ± SEM from three,
independent experiments. Comparisons were performed using the Kruskal–Wallis test and each
p value was corrected for multiple comparisons using the Dunn’s test (* p ≤ 0.05).

4. Discussion

Here, we apply phosphospecific flow cytometry to functionally characterize elements
of the T-ALL signaling network. We measured signaling properties in the T-ALL cell lines
CEM, MOLT4, and Jurkat in the basal condition and following cell modulation. Indeed,
we and others have previously shown that signaling readouts in response to external
modulators, rather than the basal levels of protein phosphorylation alone, are of clinical
relevance in leukemia [40,41,47]. Besides the physiologic modulators CXCL12 and IL7, we
used PMA to induce T-cell activation and H2O2 to inhibit protein tyrosine phosphatases
(PTPs), thus enabling amplification of signaling events. Indeed, previous studies have
shown that exposing cancer cells to potentiating inputs, such as H2O2, could allow us
to discern cancer network profiles that correlate with disease outcome [41,48,49]. Our
study shows that: (i) signaling profiles measured using phosphospecific flow cytometry
are characterized by a high variability across the analyzed T-ALL cell lines; (ii) each cell
line exhibits distinct intrinsic phosphorylation profiles and specific signaling sensitivity to
external stimuli; and (iii) hierarchical analysis of signaling properties allows us to group
T-ALL cell lines in two separate clusters.

Analysis of the phosphorylation status of signaling proteins in the unstimulated
condition—which captures intrinsic signaling alterations—documents constitutive phos-
phorylation of pErk1/2, pNF-κB p65, pLck, ZAP70Y319, and pSTAT3 in all T-ALL cell lines,
with a higher activation of Erk1/2, Lck, and ZAP70Y319 in Jurkat and higher levels of basal
pSTAT3 in MOLT4 cells. Interestingly, in the presence of tyrosine-phosphatase inhibition
as well as following PMA treatment, pErk1/2 further increases in CEM and Jurkat cells
while pSTAT3 increases in all cell lines, with a higher response in CEM cells that in contrast
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exhibit low pSTAT3 in the basal condition. Moreover, inhibition of tyrosine phosphatase by
H2O2 induces augmentation of pNF-κB p65 in MOLT4.

Erks are members of the MAPK family that play an important role in both regulation of
T-cell receptor (TCR) signaling [50] and functional responses [51] in T cells. The MAPK/Erk
signaling pathway is frequently aberrantly activated in T-ALL, as a result of IL7Rα, JAK1,
KRAS, NRAS, BRAF mutations [52,53]. Accordingly, the constitutive activation of Erk1/2
in T-ALL cell lines can account for mutations of KRAS in CEM; NRAS in MOLT4, and
BRAF in Jurkat [54]. The MAPK/Erk signaling pathway is central in T-ALL and it has
been recently shown to drive steroid resistance by phosphorylation and inactivation of
the pro-apoptotic BH3-only protein BIM [12]. Remarkably, MEK inhibitors abolishes
the inactivating phosphorylation of BIM and resensitizes steroid-resistant T-ALL cells in
preclinical models [12].

NF-κB family transcription factors are a common downstream target for inducible
transcription mediated by many different cell-surface receptors, especially those receptors
involved in inflammation and adaptive immunity [55]. In T cells, NF-κB can be activated
by a variety of immune signals and is involved in early thymocyte development and in
antigen-dependent T-cell selection [56,57]. Although mutations in NF-κB signaling genes
are rare in T-ALL, consistently with our data, constitutive activation of the pathway is often
observed in T-ALL [58,59]. NF-κB signaling can be activated by several pathways, including
PI3K/Akt and NOTCH1 [13]. The PI3K/Akt signaling pathway is frequently constitutively
activated in T-ALL, mainly because of the inactivation of phosphatase and tensin homolog
(PTEN), a phosphatase acting as negative regulator of the PI3K/Akt pathway [60,61].
Moreover, activating mutations in NOTCH1 have been identified in over 60% of T-ALL
cases [62]. Consistently, PTEN inactivating mutations as well as NOTCH1 mutations have
been documented in all the T-ALL cell lines analyzed in this study [54].

T-ALL cell lines also exhibit the concurrent phosphorylation of Lck and ZAP70Y319,
with higher phosphorylation levels observed in Jurkat cells. Interestingly, inhibition of
tyrosine phosphatases further increases pZAP70Y319 in Jurkat. Lck is a central kinase in
T-cell precursors for the transition of CD4/CD8 double negative to double positive thy-
mocytes and proliferation of early T-cell precursors [63]. Moreover, mice transgenic for
active Lck develop thymic tumors, thus suggesting that Lck plays an important role in the
pathogenesis of T-ALL [64]. The Lck and ZAP70 tyrosine kinases are crucial for initiating
TCR signaling because TCR has no intrinsic enzymatic activity. Upon TCR stimulation, Lck
phosphorylates the TCR, thus leading to the recruitment, phosphorylation, and activation
of ZAP70 [65]. Moreover, the binding of the Lck SH2 domain to pZap70Y319 may sustain
Lck localization and the catalytic activities of both kinases, thereby providing positive feed-
back [66]. Therefore, our data suggest that the analyzed T-ALL cell lines show constitutive
activation of phosphoproteins on the pre-TCR/TCR pathway, with higher activation levels
detected in the more mature T-ALL cell line Jurkat. Interestingly, Jurkat cells also shows
the constitutive phosphorylation of Zap70Y292, which is increased following treatment with
H2O2. The Y292 residue of Zap70 is known to mediate inactivation of the TCR signal-
ing [67]. Taken together, these data are consistent with previous studies evidencing the
crucial role of the preTCR complex signaling in supporting T-ALL leukemogenesis [68,69].

In contrast to the phosphorylation pattern described for Erk1/2, Lck, and ZAP-70Y319

showing a higher intrinsic phosphorylation in Jurkat cells, we document a higher phospho-
rylation of STAT3 in MOLT4. The constitutive phosphorylation of STAT3 in all the T-ALL
cell lines analyzed is consistent with previous studies showing high levels of pSTAT3 in T-
ALL [70]. The apparent discordance with recent data from Bonaccorso et al. demonstrating
no constitutive STAT3 phosphorylation in CEM and Jurkat cells [71] could be explained by
the different STAT3 phospho-sites analyzed in the two studies (i.e., Y705 in the Bonaccorso’s
analysis and S727 in our study). Remarkably, our data are coherent with the crucial role of
persistently activated STAT3 in increasing tumor cell proliferation, survival and invasion
while suppressing anti-tumor immunity [72].
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Rb is constitutively phosphorylated in CEM and MOLT4, with CEM showing the
highest levels of pRb. The tumor suppressor Rb is a negative regulator of cell cycle and
Rb inactivation by deletion or hyperphosphorylation has been shown to induce cell-cycle
progression in various cancers [73]. Hyperphosphorylation of Rb we document in T-ALL
cell lines is in accordance with previous results demonstrating that Rb is hyperphosphory-
lated in most T-ALL primary samples [74] and supports the idea that deregulation of the
cell cycle pathway in T-ALL is central in the pathogenesis of this disease.

Akt and JNK are constitutively phosphorylated in CEM and Jurkat cells, with Jurkat
showing the higher intrinsic Akt phosphorylation. Moreover, in the presence of tyrosine
phosphatase inhibition, pAkt levels are increased in CEM and MOLT4. The PI3K/Akt
signaling pathway is frequently constitutively activated in T-ALL, mainly due to PTEN
inactivating mutations [60,61], which is coherent with PTEN mutations documented in
the analyzed T-ALL cell lines [54]. In normal T cells, the PI3K/Akt signaling pathway is a
common effector cascade downstream of NOTCH, IL7, and pre-TCR signaling promoting
survival and development of early T-cell precursors [75]. In T-ALL, the PI3K/Akt pathway
is commonly activated generating anti-apoptotic and proliferative signals [60,61,76] and,
accordingly, this signaling pathway has been explored as a novel therapeutic target in
T-ALL [77]. PI3K inhibitors have shown some promising effects in T-ALL preclinical
models [78]. Moreover, the Akt inhibitor triciribine induces cell cycle arrest and apoptosis
and synergizes with vincristine in T-ALL cell line [79].

JNK, a member of MAPK superfamily, plays an oncogenic role in several cancers,
especially in malignant lymphocytes [80–82]. Although the role of JNK activity in T-ALL
remains largely unknown, we have previously shown that JNK activation is required for
upregulating interleukin 8 expression induced by CXCL12 in primary T-ALL cells [18].
Moreover, inhibition of JNK activity has been shown to lead to cell cycle arrest and apopto-
sis [83,84]. Our data showing hyperphosphorylation of JNK in T-ALL cell lines suggests a
role for JNK in sustaining leukemia.

Basal pSTAT5 and pp38 are both undetectable in the studied T-ALL cell lines, also
in the presence of tyrosine-phosphatase inhibition and following treatment with PMA,
CXCL12, or IL7.

All the analyzed T-ALL cell lines are unresponsive to IL7, probably due to the very
low levels of CD127 expressed on the cell surface of these cells. Our data are in accordance
with results from Bonaccorso et al., showing that basal STAT5 activation was low and
nonresponsive to IL7 in PTEN-mutated T-ALL [71].

CXCL12 stimulation evokes a clear-cut increase of pAkt in CEM and MOLT4, and
pJNK in MOLT4. Interestingly, Akt in CEM and MOLT4, and JNK in MOLT4 show low
intrinsic phosphorylation levels. In contrast, Akt in Jurkat and JNK in CEM and Jurkat are
highly phosphorylated in the basal condition. This phosphorylation pattern suggests that
CXCL12 evokes Akt and JNK phosphorylation responses when these phosphoproteins are
intrinsically inactive, whereas it is unable to further induce phosphorylation of Akt and
JNK when they display high intrinsic activation status.

Hierarchical clustering analysis documents that higher intrinsic phosphorylation of
Erk1/2, Lck, ZAP70, and Akt, together with ZAP70 phosphorylation in the presence of
tyrosine-phosphatase inhibition, identifies Jurkat. Moreover, Jurkat cells exhibit higher
phosphorylation levels of these nodes compared with normal T cells. In contrast, CEM are
characterized by higher intrinsic phosphorylation of JNK and Rb and higher responsiveness
of Akt to external stimuli, which are significantly higher in comparison with normal T cells.
MOLT4 cells are characterized by higher STAT3 phosphorylation in the basal condition.

Our study originally shows that phosphospecific flow cytometry allows us to capture
signaling network variability across different T-ALL cell lines. Although the use of cell lines
does not allow us to relate signaling properties with disease characteristics, the ability to
detect signaling heterogeneity among T-ALL cell lines—which can reflect biological hetero-
geneity of primary cells from which they derive—provides an important “proof of concept”
for future studies aimed at characterizing signaling heterogeneity across primary leukemic
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cell samples. Moreover, these results corroborate genetic landscape data, suggesting that
distinct signaling pathways are activated in subtypes of T-ALL [85].

Overall, the T-ALL cell populations we characterize in this study exhibit homogeneous
phenotypes and monomodal distributions of the analyzed phosphoproteins. Therefore,
herein we could not characterize heterogeneity at the single cell level within cell-line
populations. However, phospho-specific flow cytometry is an especially useful tool for
interrogating the physiology of signaling pathways by measuring network properties
at the single-cell level, thus understanding the biology of heterogeneous populations of
cells, such as those found in tumor samples from patients. Indeed, the signaling profile
of any given leukemic cell is the sum of numerous influences—epigenetic, genetic and
microenvironmental—and the heterogeneity of cancer cell behavior can be thought of
reflecting the signaling differences that have arisen during the evolution of leukemic cell
population. Therefore, integration of genomic and epigenetic studies with functional
proteomic approaches at the single-cell level is fundamental to identify potential drug
targets or biomarkers.

The functional flow cytometry approach we describe in this study provides a pow-
erful tool for characterizing T-ALL heterogeneity across samples and has the potentiality
to characterize signaling heterogeneity at the single level within primary leukemic cell
populations. Therefore, it could represent an important tool for future studies on T-ALL
primary cells aimed at identifying signaling elements as potential precision drug targets
or biomarkers.

5. Conclusions

In this study, we demonstrated that phospho-specific flow cytometry can identify
intrinsic and extrinsic signaling pathway activities and capture signaling network vari-
ability across different T-ALL cell lines. Overall, our study can contribute to a deeper
understanding of the complex signaling network altered in T-ALL. Moreover, our data can
form the basis for future studies on primary T-ALL cells connecting signaling properties
with clinical behaviors and aimed at developing precision medicine tools, particularly for
resistant and high-risk T-ALL patients.
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