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Abstract
Tumour microenvironment is a complex ecosystem in which myeloid cells are the most abundant immune elements. This cell 
compartment is composed by different cell types, including neutrophils, macrophages, dendritic cells, and monocytes but also 
unexpected cell populations with immunosuppressive and pro-tumour roles. Indeed, the release of tumour-derived factors 
influences physiological haematopoiesis producing unconventional cells with immunosuppressive and tolerogenic functions 
such as myeloid-derived suppressor cells. These pro-tumour myeloid cell populations not only support immune escape 
directly but also assist tumour invasion trough non-immunological activities. It is therefore not surprising that these cell 
subsets considerably impact in tumour progression and cancer therapy resistance, including immunotherapy, and are being 
investigated as potential targets for developing a new era of cancer therapy. In this review, we discuss emerging strategies 
able to modulate the functional activity of these tumour-supporting myeloid cells subverting their accumulation, recruitment, 
survival, and functions. These innovative approaches will help develop innovative, or improve existing, cancer treatments.
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immunotherapy

Introduction

Advanced understanding of immune system regulation cir-
cuits and biological insights of tumour-immune system inter-
play completely revolutionised the concept of cancer ther-
apy. An example of this is the paramount success of immune 
checkpoint therapy (ICT) based on antibody-dependent 
targeting of T cell functional modulators like cytotoxic T 
lymphocyte antigen 4 (CTLA-4) and programmed cell death 
protein 1 (PD-1) that relies on cancer restriction through 
the activation of the host immune system and resulted in 
significant improved clinical benefits in many type of solid 

tumours [1–3]. However, ICT does not work yet as single 
agent in patients affected by tumours with specific histology 
and genetic features (e.g. in pancreatic cancer and glioblas-
toma) [4]. Moreover, even in tumour characterised by high 
mutation burden, such as melanoma and breast cancer, ICT 
improved the clinical outcome only in a small fraction of 
treated patients [1]. Numerous factors regulate the dynamic 
process of tumour immunity and response to immune check-
point blockade that can be broadly categorised in two main 
classes: tumour-intrinsic and tumour-extrinsic factors [2, 5].

Over the tumour evolution, cancer cells acquire several 
mutations leading the expression of proteins with an altered 
folding or mutated encoding gene sequences that allow to 
generate new immunogenic peptides able to activate a spe-
cific immune reaction. These neo-antigens are able to evoke 
a potential tumour-restricted response since they are distinct 
from self-antigens [6]. Conversely, genetic and epigenetic 
modifications leading alterations of both antigen presenta-
tion machinery [7] and signal transduction pathways, such 
as interferon (IFN)γ-signalling defects [8], negatively influ-
ence the responsiveness of ICT. Tumour-extrinsic factors of 
immune resistance are dependent on tumour-microenviron-
ment (TME) components. Indeed tumour can be considered 
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a complex tissue in which neoplastic cells, immune cells, 
vascular components (e.g. endothelial cells), fibroblasts, 
and matrix interplay defines the fate of ICT. For instance, 
the CD8+ T cell localisation at tumour margins and within 
the tumour prior to ICT correlated positively with a robust 
response to immunotherapy [9], whilst regulatory T lym-
phocytes (Tregs) blunting the effector immune functions 
contributed to the clinical failure of ICT [10]. However, the 
most pervasive mechanism activated by tumours to alter 
the immune response in TME is the induction of an emer-
gency haematopoiesis pushing the accumulation of myeloid 
cells with immunosuppressive functions and pro-inflamma-
tory properties, such as myeloid-derived suppressor cells 
(MDSCs) [11, 12]. Indeed, these tumour-reprogrammed 
myeloid cells have the ability to support tumour progression 
by assisting tumour cell survival, angiogenesis, and meta-
static process [13–15]. Collectively, tumour cells hijack both 
innate and adaptive immune resistance mechanisms to avoid 
immune-based clearance [16]. Accordingly, immune sup-
pression, inflammation, abnormal differentiation, and func-
tion of myeloid cells are enlisted as hallmarks of cancer [17].

Here we review evidences indicating that targeting 
tumour-reprogrammed myeloid cells may be beneficial 
in promoting response to ICT. To develop more effective 
myeloid cell-targeted therapies is indeed mandatory to com-
bine data of single-cell transcriptome, metabolic, and epi-
genetic profiles to pinpoint complex relationships between 
myeloid cells and other TME components. We think that 
immunotherapy should be considered an immune system 
rather than a cancer treatment and, therefore, any improve-
ment will depend on overcoming the gaps in understanding 
the biology of TME immune components with particular 
focus on myeloid cells.

Myeloid cells in tumour microenvironment

Immune cell heterogeneity entangles TME immune profiling 
[18]. In this context, myeloid cells represent the most abun-
dant and functionally plastic immune components promoting 
both tumour recognition and escape. Indeed, myeloid cells 
rapidly infiltrate early neoplastic lesions and may dictate 
the fate of tumours by supporting either T cell-mediated 
killing by acting as professional tumour antigen-presenting 
cells or promoting immune arrest and cancer progression 
by inhibiting both adaptive and innate immunity. Tumour-
associated macrophages (TAMs), MDSCs, tumour-associ-
ated neutrophils (TANs), and dendritic cells (DCs) are major 
tumour-infiltrating myeloid cells (TIMs) [19]. Myeloid cells 
identified in tumours have different ontogeny (i.e. bone mar-
row [BM]-derived or tissue resident cells) and are character-
ised by a plastic phenotype that can be shaped by cytokines 
and other soluble factors. Tumours support the emergency 

myelopoiesis favouring the generation of unconventional 
mature and immature myeloid cells endowed with tumour-
promoting activities [20, 21]. For instance, a significant 
portion of tumour-infiltrating myeloid cells are of erythroid 
origin [22], highlighting how tumour reprograms myeloid 
cell differentiation. In this scenario, TAMs and MDSCs 
represent the ultimate commitment of the tumour-depend-
ent myeloid-cell reprogramming [23, 24] and will be the 
focus of this review. For more detailed information on other 
tumour-infiltrating myeloid cells, please refer to the follow-
ing manuscripts [25–29].

TAMs can be polarised towards an inflammatory 
(M1-like) or anti-inflammatory (M2-like) phenotype which 
supports immune control or immune evasion of neoplas-
tic cells, respectively [30]. Notably, M1/M2 macrophage 
dichotomy is an oversimplification of the heterogeneity of 
macrophages that occurs in vivo [31]. TAMs can be polar-
ised towards an inflammatory (M1-like) or anti-inflamma-
tory (M2-like) phenotype which supports immune control 
or immune evasion of neoplastic cells, respectively. Nota-
bly, M1/M2 macrophage dichotomy is an oversimplifica-
tion of the heterogeneity of macrophages that occurs in vivo. 
Indeed, M1- and M2-polarised macrophages should be 
viewed as the extremes of macrophage plasticity since TAM 
with identifiable M1 or M2 polarisation do not really exist 
in the tumours, instead being represented by TAM with 
mixed characteristics. However, it is interesting that this M1/
M2 macrophage classification may explain the correlation 
between TME-infiltrating TAMs and patient outcome [32]. 
M1-TAMs are characterised by sustained phagocytosis and 
enhanced anti-tumour inflammatory reactions. This cell sub-
set supports T cell activation by expressing co-stimulatory 
molecules (i.e. CD80, CD86) and high levels of major histo-
compatibility complex class II (MHCII) molecules. Instead, 
alternatively activated M2-TAMs support tumour cell sur-
vival, angiogenesis, and invasion [21]. These macrophages 
are characterised by higher expression of CD163 and CD206 
both in humans and mice [33]. M2-TAMs can promote 
tumour progression by both soluble mediators (e.g. Argin-
ase [Arg]1-derived products and transforming growth factor 
beta [TGFβ] release) and surface receptors (e.g. expression 
of programmed death-ligand 1 [PD-L1]), resulting in sup-
pression of anti-tumour response [21]. Moreover, these cells 
actively support metastatic process by remodelling the extra-
cellular matrix. Indeed, we recently showed that disabled 
homolog 2 mitogen-responsive phosphoprotein (DAB2)-
expressing M2-TAMs play central role in lung metastasis 
formation by remodelling tissue matrix components [34]. 
Clinically, patients with tumour enriched in macrophages, 
especially the ones with pro-angiogenic features, have a 
poor prognosis and reduced overall survival [26, 31, 35–37]. 
TAMs were also reported to mediate chemotherapy resist-
ance in different cancer settings by activating anti-apoptotic 
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pathways [38]. Furthermore, TAMs play a negative role in 
ICT such as by preventing cytotoxic T cells from reaching 
tumour cells [39] as well as by promoting antibody clear-
ance activity through Fc-Fcγ receptor binding [40]. For 
all these reasons, emerging macrophage-related therapeu-
tic approaches aiming to deplete and/or shift macrophage 
polarisation are now promising therapeutic strategies for 
cancer patients.

MDSCs, a heterogeneous population of inflammation-
biased monocytic (M-MDSCs) and polymorphonuclear 
(PMN-MDSCs) cells with immune suppressive features, 
share with TAMs several pro-tumour functions [23]. 
Whether MDSCs have a different ontogeny or represent an 
alternative polarisation/differentiation status of monocytes 
and neutrophils is still debated, yet, M- and PMN- MDSCs 
share many surface antigens with monocytes and neutrophils, 
respectively. Nonetheless, some specific markers have been 
recently recognised. For example, human PMN-MDSCs 
expressing lectin-type oxidised LDL receptor 1 (Lox1) are 
encountered in both blood and tumours of cancer patients 
and their presence is associated with worse clinical outcome 
[41, 42]. Moreover, CD84 protein has been identified as a 
specific PMN-MDSC marker in both genetically engineered 
mouse models (GEMM) and breast cancer patients [43]. 
Indeed, many investigators reported the accumulation in the 
PBMC fraction of low-density neutrophils (LDN) express-
ing CD15 and CD66b (markers shared between PMNs and 
PMN-MDSCs) and endowed with immune suppressive fea-
tures, reminiscent of PMN-MDSCs, in individuals affected 
by different diseases, as cancer [44], bacterial sepsis [45], 
and COVID-19 [46, 47]. Despite being associated with dis-
eases, PMN-MDSCs can also increase under physiological 
conditions (e.g. pregnancy [48]) or pharmacological treat-
ments [49]. We demonstrated that both the expansion and 
the immunosuppressive function of MDSCs are abrogated 
in the absence of CCAAT/enhancer binding protein (c/EBP) 
β, in tumour-bearing mice, confirming the crucial role of 
this transcriptional factor in tumour-reprogrammed myeloid 
cells [50]. Notably, macrophages that are differentiated from 
M-MDSCs, but not from monocytes, are immune suppres-
sive showing a restricted M-MDSC-associated genomic pro-
file and characterised by the persistent expression of S100A9 
[51]. Finally, immunosuppressive functions of MDSCs and 
TAMs in TME are also enforced by environmental meta-
bolic switches such as nonderepressible-2 kinase (GCN2), 
confirming the intrinsic plasticity of these myeloid cell 
subsets [52]. In humans, M-MDSCs can be distinguished 
from monocytes based on low expression levels of HLA-
DR [53] and activation of signal transducer and activator of 
transcription 3 (STAT3)-dependent signalling pathway [54, 
55]. M-MDSC generation, differentiation, and function are 
strictly controlled by several signalling pathways which are 
controlled by key transcriptional factors as c/EBPβ, STAT3, 

and nuclear factor kappa-light chain enhancer of activated 
B cell (NF-κB). Recently, the compromised translocation 
of NF-κB p50 protein was reported to arrest the release of 
protein acidic and rich in cysteine (SPARC), thus abrogating 
reactive oxygen species (ROS)-dependent MDSC-associated 
immunosuppression. Indeed, the blockade of p50 translo-
cation into the nucleus impairs the generation of immuno-
suppressive p50:p50 homodimers in favour of the p65:p50 
inflammatory heterodimers [56]. The critical role of NF-κB 
p50 protein in driving MDSC differentiation has been also 
confirmed by the nuclear translocation of a protein complex 
formed by p50 in association with cellular FLICE (FADD-
like IL-1β-converting enzyme)-inhibitory proteins (c-FLIP) 
[57]. Indeed, c-FLIP in tumour-reprogrammed monocytes 
does not only act as anti-apoptotic protein but also drives a 
marked regulation of genes encoding for immunosuppres-
sion-associated factors, like PD-L1, PD-L2, and IL-10 [57, 
58]. On the other hand, aberrant FLIP expression in mono-
cytes orchestrates pro-inflammatory pathways, leading to 
an unusual cytokine production fuelling massive cytokine 
release, feature of the cytokine release syndrome (CRS) 
[59]. Conversely, FLIP genetic deletion completely abro-
gates the generation of M-MDSCs [60], highlighting FLIP 
as a key regulator of this cell subset. These findings point to 
FLIP as a key functional-fate determinant of MDSCs, and 
as a novel targeting candidate to control cancer-associated 
immune dysfunctions.

Last-generation technologies (such as sc-RNA-seq and 
CYTOF) dramatically improved our current understanding 
of myeloid cell ontogeny and functional polarisation in can-
cer [61, 62] and other pathologies. To solve the myeloid-
cell puzzle, Sanin and colleagues established a predictive 
macrophage activation model across 12 tissues and 25 bio-
logical conditions, in mice, and identified shared and unique 
functional pathways [63]. Moreover, TME deconvolution 
of about 210 patients across 15 human cancers identified 
many different subsets of TAMs with mixed M1/M2 sig-
natures [64]. By taking advantage of pro-inflammatory and 
pro-angiogenic molecular signatures to address functional 
properties of different TAM subsets, the authors identified 
interferon-stimulated gene 15 (ISG15) and secreted phos-
phoprotein 1 (SPP1) gene signatures as TAMs prototypes 
of anti-tumour and pro-tumour macrophages, respectively. 
Notably, (SPP1)+/− cells synergise with tumour-specific 
fibroblast activation protein (FAP)+ fibroblasts to establish 
a desmoplastic reaction, which limits the infiltration of cyto-
toxic T cells, thus restricting efficacy of checkpoint inhibi-
tor therapy [65]. A similar macrophage’s heterogeneity has 
been identified in mouse models of colorectal cancer. In 
this context, the antibody-dependent blockade of the col-
ony-stimulating factor-1 receptor (CSF1R) depleted TAMs 
with an inflammatory signature, sparing the pro-angiogenic 
ones [66], suggesting the use of alternative therapeutic 
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approaches that re-educate in spite of deplete TAMs [67]. 
Taking together, newly available high-throughput datasets 
can be interrogated to expand the understanding of myeloid 
cell biology and define their contribution to tumour progres-
sion. Implementation of single-cell omic technology to both 
GEMMs and human specimens represent the new avenue to 
evaluate new approaches re-educating TIMs towards an anti-
tumour role and for predicting patient response to therapy.

Targeting tumour‑reprogrammed myeloid 
cells

Compelling evidence of immune system role in tumour evo-
lution revolutionised the development of therapies support-
ing immune system education to achieve a long-term control 
of tumour and eventually its complete debulking, other than 
targeting directly tumour cells. Improving immunological 
performances against cancer can be achieved by targeting 
immune-checkpoint inhibitors on adaptive immune cells 
for sustaining their survival and functions but also selec-
tive modulators on innate cells able to support efficiently T 
cell activation and limit their immunosuppressive functions. 
Developing effective myeloid cell-targeted approaches is a 
challenging research field since myeloid cells are elusive 
elements able to modulate their metabolism, cell-surface 
marker expression, and release a variety of soluble factors; 
therefore, the most effective strategy must aim to efficiently 
modulating myeloid cells’ plastic nature. Here we summa-
rise recent findings of key players orchestrating myeloid 
cell biology which can be exploited to turn foes in friends 
(Fig. 1).

Targeting MDSC‑dependent signalling pathways

Signalling and chronic-tumour dependent hematopoietic 
stimulation through the release of CSF-2, CSF-3, IL-6, 
and other cytokines are associated with the activation of 
STAT3 signalling and expression of c/EBPβ transcription 
factor [68] which sustain MDSC expansion and immune 
suppressive features [50]. In accordance, c-Rel-depend-
ent c/EBPβ upregulation orchestrates the generation of 
MDSCs with potent pro-tumour features [69]. Akt/mTOR-
dependent activation of phosphoinositol 3 kinase pathway 
(PI3Kγ) triggers through the expression of c/EBPβ an 
immunosuppressive transcriptional program in myeloid 
cells supporting tumour progression [70]. Tumour-biased 
monocytes upregulate c-FLIP, which in turn activates 
an immune suppressive program, partially by NF-κB 
activation, including IL-10, IDO-1, and PD-L1 expres-
sion [57]. Thus, targeting of either STAT3, or c-Rel, or 
PI3Kγ reprogram myeloid cells towards an anti-tumour 

phenotype resulting in the sculpting of a TME towards 
the support of cytotoxic T cell response and restricting 
tumour progression in preclinical models of solid cancers 
[69–73]. Notably, some of these targeting strategies will 
enter soon the clinical phase, alone, or in combination 
with immunotherapy (Table 1). Given the antithetical role 
of c/EBPα (pro-inflammatory) and c/EBPβ (anti-inflam-
matory), and preclinical data supporting the hypothesis of 
c/EBPα triggering could empower anti-tumour immunity, 
MTL-CEBPA (an RNA-based agonist of c/EBPα) has been 
recently proposed in combination with anti-PD1 for the 
treatments of solid tumours (Table 1). However, given the 
broad cellular expression of several pathways and their 
role for physiologic regulation of tissue homeostasis and 
body functions, on-target and pathway-related side effects 
must be taken into account. c/EBP homologous protein 
(CHOP), which is an apoptosis-related transcription factor 
induced by endoplasmic reticulum (ER) stress, is essen-
tial for MDSC’s immune regulatory function [74]. CHOP 
expression in MDSCs was induced by tumour-linked ROS 
and RNS and it was regulated by the activating-transcrip-
tion factor-4 (ATF4). CHOP-deficient MDSCs displayed 
reduced signalling through c/EBPβ, leading to a decreased 
production of IL-6 and low expression of phospho-STAT3 
[74]. Therefore, these data highlight Chop/c/EBPβ axes 
as main driver of tumour-induced tolerance and targeting 
CHOP might represent a new valuable way to improve 
current cancer immunotherapies. STAT3 phosphorylated 
by the Janus-activated kinase (JAK) family is considered a 
hallmark of MDSCs [14]. STAT3 prevents MDSC apopto-
sis and promotes their expansion by mediating the expres-
sion of apoptosis inhibitors, including Bcl-XL, cyclin D, 
and cMyc. In addition, activation of STAT3 drives the 
production of the calcium-binding inflammatory protein, 
S100A8/9, and increases the accumulation of MDSCs by 
limiting DC differentiation and expansion [75]. ARG1 is also 
a downstream target of STAT3 in circulating and infiltrating 
MDSCs. Similarly, NADPH oxidase 2 (NOX2), induced by 
STAT3 in MDSCs, generates ROS that can prevent DC dif-
ferentiation and antigen presentation. Finally, STAT3 blocks 
myeloid cell differentiation by downregulating the expres-
sion of IRF8, a transcription factor driving the development 
of monocytes and DCs whilst limiting granulocyte develop-
ment [76]. As shown by genetic studies in mice, IRF8 inhi-
bition is indeed responsible for halting of the PMN-MDSC 
differentiation and expansion [77]. Conversely, a decrease 
in STAT3 signalling can enable MDSC differentiation into 
TAMs, which often becomes the dominant tumour-infiltrat-
ing myeloid cell population [78]. Therefore, targeting STAT3 
is an attractive strategy to alleviate MDSC-mediated immu-
nosuppression in the tumour microenvironment without the 
need for myeloid cell depletion.
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Targeting epigenetic modifications

DNA methylation and histone acetylation/deacetyla-
tion catalysed, respectively, by DNA methyl-transferases 
(DNMTs) and histone acetyltransferases (HATs) and 

deacetylases (HDACs) are often altered in tumour-repro-
grammed myeloid cells. Indeed, many epigenetic mecha-
nisms influence MDSC differentiation and functions, thus 
remodelling TME [79]. Hence, a pharmacological target-
ing of epigenetic modifiers can be potentially considered 

Fig. 1   Strategies for myeloid cell reprogramming towards an anti-
tumor phenotype. Myeloid cells are reprogrammed at epigenetic, 
transcriptional, and functional levels by tumor cells to support cancer 
outgrowth. Use of specific inhibitors (red) can deplete them, or avoid 
their recruitment in tumor. Alternatively, blocking immune suppres-
sive switches (red Ͱ) and activating (green arrow) pro-inflammatory 
sensors can re-educate myeloid cells to support anti-tumor immunity. 
ARG1—arginase 1, ATP—adenosine triphosphate, c-FLIP—cellular 
FLICE (FADD-like IL-1β-converting enzyme)-inhibitory protein, 
cGAS—cGAMP synthase, CLEVER—common lymphatic endothe-
lial and vascular endothelial receptor, CCR2—C–C motif chemokine 
receptor 2, cEBP-β—CCAAT/enhancer-binding protein beta, 
CSF1R—colony-stimulating factor 1 receptor, DNMT3A—DNA 
cytosine-5-methyltransferase 3, EZH2—enhancer of zeste homolog 

2, GPCR—G protein-coupled receptors, HIF—hypoxia-inducible fac-
tor, HDAC—histone deacetylase, IDO1—indoleamine 2,3-dioxyge-
nase 1, IL—interleukin, JAK—Janus kinase, MARCO—macrophage 
receptor, mTOR—mammalian target of rapamycin, NF-κB—nuclear 
factor kappa-light chain enhancer of activated B cells, NOS2—nitric 
oxide synthase 2, NOX2—NADPH oxidase, PI3K—phosphoinositide 
3-kinases, RNS—reactive nitrogen species, ROS—reactive oxygen 
species, PDL1—programmed death-ligand 1, SIGLEC—the sialic 
acid-binding immunoglobulin-like lectin, STAT—signal transduc-
ers and activator of transcription, STING—stimulator of interferon 
genes, TGF—transforming growth factor, TLR – toll-like receptor, 
TNF—tumor necrosis factor, TREM—triggering receptor expressed 
on myeloid cells, TYK—tyrosine protein kinase, VEGF—Vascular 
endothelial growth factor
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Table 1   Clinical trial targeting myeloid cell transcription factors, signalling pathways, epigenetic, and recruitment in association with ICT

NCT Phase Drug Target Tumor and stage ICT

NCT04105335 I MTL-CEBPA Transcription factors and 
signaling pathways

Solid tumor Pembrolizumab
NCT03980041 II IPI-549 (PI3Kγ) Solid tumors, advanced cancer Nivolumab
NCT03961698 II IPI-549 (PI3Kγ) BC, RCC​ Atezolizumab
NCT03334617 II AZD9150 (STAT3) NSCLC Durvalumab
NCT02983578 II AZD9150 (STAT3) II–IV PDAC, CRC, NSCLC Durvalumab
NCT02499328 I/II AZD9150 (STAT3) Advanced tumors and metastatic 

HNSCC
Tremelimumab

NCT03647839 II BBI608 (STAT3) MSI stable unresectable CRC​ Nivolumab
NCT03250273 II Entinostat Epigenetic Unresectable cholangiocarcinoma and 

pancreatic cancer
Nivolumab

NCT03765229 II Entinostat Melanoma Pembrolizumab
NCT04631029 I Entinostat Malignant solid tumors Atezolizumab
NCT03552380 II Entinostat RCC​ Nivolumab, ipilimumab
NCT03978624 II Entinostat Bladder Pembrolizumab
NCT01928576 II Entinostat, azacitidine NSCLC Nivolumab
NCT04123379 II BMS-813160, BMS-986253 

(CCR2-CCR5, IL8)
Recruitment NSCLC, HCC Nivolumab

NCT03184870 I/II BMS-813160 (CCR2-CCR5) CRC, PDAC Nivolumab
NCT03767582 I/II BMS-813160 (CCR2-CCR5) PDAC GVAX + nivolumab
NCT03496662 I/II BMS-813160 (CCR2-CCR5) PDAC Nivolumab
NCT02996110 II BMS-813160 (CCR2-CCR5) Advanced tumors Nivolumab
NCT03631407 II Vicriviroc (CCR5) CRC​ Pembrolizumab
NCT04721301 I Maraviroc (CCR5) CRC, PDAC Nivolumab, ipilimumab
NCT03274804 I Maraviroc (CCR5) Metastatic MSS CRC​ Pembrolizumab
NCT04574583 I/II SX-682 (CXCR1-CXCR2) Metastatic cancer, solid tumors Bintrafusp alfa, M7824 (TGFβ 

PD-L1), CV301 TRICOM
NCT04599140 I/II SX-682 (CXCR1-CXCR2) III/IV and unresectable CRC​ Nivolumab
NCT04477343 I SX-682 (CXCR1-CXCR2) IV PDAC Nivolumab
NCT03161431 I SX-682 (CXCR1-CXCR2) III/IV melanoma Pembrolizumab
NCT03473925 II Navarixin (CXCR1-CXCR2) NSCLC, CRC, prostate cancer, solid 

tumors
Pembrolizumab

NCT02499328 I/II AZD5069 (CXCR2) Advanced solid tumors, metastatic 
HNSCC

Tremelimumab

NCT03689699 I/II BMS-986253 (IL8) Prostate cancer Nivolumab
NCT03400332 I/II BMS-986253 (IL8) Cancer, melanoma Nivolumab, ipilimumab
NCT04572451 I BMS-986253 (IL8) Melanoma, RCC, unresectable solid 

tumors
Nivolumab

NCT02451982 II BMS-986253 (IL8) PDAC Nivolumab, urelumab, GVAX
NCT04848116 II BMS-986253 (IL8) HNSCC Nivolumab, cabiralizumab
NCT04050462 II BMS-986253 (IL8) HCC Nivolumab, cabiralizumab
NCT03599362 II Cabiralizumab (CSF1R) PDAC Nivolumab
NCT04331067 I/II Cabiralizumab (CSF1R) TNBC Nivolumab
NCT03336216 II Cabiralizumab (CSF1R) PDAC Nivolumab
NCT03158272 I Cabiralizumab (CSF1R) Advanced tumors Nivolumab
NCT03502330 I Cabiralizumab (CSF1R) Advanced melanoma, RCC, NSCLC Nivolumab, APX005M
NCT02452424 I/II Pexidartinib (CSF1R) Melanoma, NSCLC, HNSCC, GIST, 

ovarian cancer
Pembrolizumab

NCT02777710 I Pexidartinib (CSF1R) CRC, PDAC, advanced and metastatic 
tumors

Durvalumab

NCT03886311 II Trabectedin (CSF1R) Sarcoma Nivolumab
NCT03138161 I/II Trabectedin (CSF1R) Advanced and metastatic sarcoma Nivolumab, ipilimumab
NCT03085225 I Trabectedin (CSF1R) Ovarian cancer and soft tissue 

sarcoma
Durvalumab

NCT03590210 II Trabectedin (CSF1R) Metastatic soft tissue sarcoma Nivolumab
NCT02323191 I Emactuzumab (CSF1R) Solid cancer Atezolizumab
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for combinatorial immunotherapy approaches aiming at 
both triggering an immuno-mediated tumour cell recog-
nition and, simultaneously, reducing MDSC-dependent 
immune suppression. EZH2 inhibition, a histone-lysine 
N-methyltransferase, has reported to suppress anti-tumour 
immunity by driving MDSC differentiation from primitive 
hematopoietic progenitors reducing CD4+ and IFNγ+CD8+ 
T cells in lung and colon carcinoma models [80]. On the 
other hand, a pan-HDAC inhibition decreased MDSC accu-
mulation in a mammary tumour model by promoting the 
apoptosis of MDSC-differentiating Gr-1+ cells. This selec-
tive depletion was partially due to increased intra-cellular 
reactive oxygen species that, consequently, was associated 
to an increased proportion of IFNγ- or perforin-producing 
CD8+ T cells [81]. Recently, histone (de)acetylation has 
shown to be involved in the polarisation of M-MDSCs in 
PMN-MDSCs [82]. In detail, Youn and colleagues have 
reported that a large proportion of M-MDSCs in tumour-
bearing mice could acquire phenotypic, morphological, and 
functional features of PMN-MDSCs, rather than DCs or 
macrophages. This process is governed by epigenetic tran-
scriptional silencing of the retinoblastoma gene controlled 
by HDAC-2. HDAC inhibition re-directs M-MDSC differ-
entiation towards macrophages and DCs [82]. Furthermore, 
HDAC11 has emerged as a negative regulator of MDSC 
expansion and function in a lymphoma model by control-
ling IL-10 gene expression [83]. Indeed, immature myeloid 
cells to MDSC transition require a decreased expression of 
HDAC11 [83]. Conversely, the bromodomain of the HAT 
CBP/EP300 is a critical regulator of H3K27 acetylation 
in MDSC promoters and enhancers of pro-tumourigenic 
genes [84]. CBP/EP300-BRD inhibition redirects tumour-
associated MDSCs from a suppressive to an inflammatory 
phenotype through STAT pathway-related gene downregu-
lation and ARG1 and iNOS inhibition, thus limiting tumour 
growth in a model of colon carcinoma [84]. Interestingly, 
the epigenetic-associated component p66a, a subunit of the 
Mi2/NuRD HDAC complex, has shown to suppress STAT3 
phosphorylation and ubiquitination by directly interacting 
with STAT3 protein, providing novel insights in control-
ling STAT3 activation in myeloid cell differentiation and 
activation [85]. On the other hand, class I HDAC inhibi-
tion has been reported to support anti-tumour response by 
dampening ARG-1, iNOS, and COX-2 levels in MDSCs as 
well as altering the release of cytokines/chemokines [86]. 
Interestingly, the inhibition of class I HDAC with entinostat 
selectively reduces the immunosuppressive activity medi-
ated by PMN-MDSC, without any effect on M-MDSCs or 
macrophages [87]. Indeed, M-MDSC displayed higher lev-
els of class II HDAC6, and its inhibition with ricolinostat 
reduces M-MDSC suppressive activity, without affecting 

PMN-MDSCs. However, only the combination of both mol-
ecules impacts on tumour progression [87].

MDSC properties are also influenced by specific changes 
in DNA methylation patterns. For instance, Durkin and col-
leagues demonstrated for the first time the ability of the 
demethylating agent decitabine to promote the differentia-
tion of tumour-infiltrated CD11b+ cells into mature F4/80/
CD11c/MHC class II-positive APCs [88]. Decitabine strongly 
reduces the release of immune suppressive and pro-inflam-
matory factors by tumour-derived myeloid cells, and, overall, 
naïve mice receiving ex vivo reprogrammed tumour-derived 
myeloid cells were protected from tumour outgrowth [88]. 
More recently, the downregulation of DNMT3A deletes 
MDSC-specific hypermethylation and abrogates their immu-
nosuppressive capacity [89]. Ovarian cancer patient-derived 
MDSCs showed a similar hypermethylation signature in asso-
ciation with a prostaglandin E2 (PGE2)-dependent DNMT3A 
overexpression [89]. Furthermore, decitabine employment 
reduces tumour cell proliferation and trigger T cell immune 
response by depleting M-MDSCs in different tumour models 
[90, 91]. Taken together, these data suggest the control of 
DNA methylation as promising scenario for clinical approach 
(Table 1). On the other hand, the use of combinatorial epige-
netic drugs not only could have an impact on tumour progres-
sion, but also might prevent the formation of the premetastatic 
niche [92]. In accordance, adjuvant epigenetic therapy with 
low-dose DNMT and HDAC inhibitors disrupts the premeta-
static niche by blocking the trafficking of MDSCs through 
the downregulation of CCR2 and CXCR2 and also favour-
ing MDSC differentiation into anti-tumour macrophage-like 
cells [92]. Collectively, these findings clearly reveal epigenetic 
drugs as potent tumour-reprogrammed myeloid cell-targeting 
agents that could be used to enhance the efficacy of ICT.

Targeting myeloid‑cell recruitment networks

The recruitment of M-MDSCs is mainly mediated by tumour-
expressing C–C motif chemokine ligand 2 (CCL2) in several 
tumour types, including breast, ovarian, gastric, and colorec-
tal cancer [93]. Indeed, tumour-associated myeloid cells from 
patients frequently express CCR2 [94, 95]. Hence, blocking 
the CCL2-CCR2 interaction could be an effective therapeutic 
approach to prevent the accumulation of pro-tumour myeloid 
cells within TME. Promising results have been reported in 
several preclinical tumour models [96–99]. The seminal work 
by Pollard’s laboratory demonstrated that the therapeutic 
blockade of CCL2-CCR2 axis interrupts the recruitment 
of inflammatory monocytes and inhibits metastasis in vivo, 
prolonging the survival of mice bearing breast cancer [95]. 
However, the interruption of CCL2 inhibition has shown to 
promote a rebound of pro-tumour myeloid cells inducing 
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mouse breast cancer metastasis [100]. Furthermore, pros-
tate cancer patients enrolled in a phase II clinical trial using 
an anti-CCL2 monoclonal antibody showed an increased 
CCL2 release following anti-CCL2 interruption [101], sug-
gesting that a continuous arrest of CCL2 is mandatory to 
control tumour progression. Several other cytokines and 
chemokine receptors have been reported to induce mono-
cyte and neutrophil recruitment, like CCL5 and CCL7 [102, 
103] and CCL3 [104]. Recently, a therapeutic approach by 
in vivo silencing of CCR1 and CCR5 on myeloid cells has 
shown to strongly inhibit tumour progression by converting 
PMN-MDSCs into anti-tumour neutrophils [105]. An inter-
esting report showed that metastatic tumours often over-
expressed CSF-3, leading to the expansion and mobilisa-
tion of Ly6G+Ly6C+ granulocytes, which in turn produced 
Bv8, a protein implicated in angiogenesis and mobilisation 
of myeloid cells. This process creates a positive feedback 
loop with the consequent accumulation of PMNs in organ-
specific metastatic sites resulting in an increased metastatic 
ability [106]. Of note, recent studies suggest that CD200-
CD200 receptor (CD200R) interaction might be essential 
in controlling the myeloid heterogeneity in tumours by a 
mechanism involving CD200-expressing endothelial cells 
[107, 108]. In addition, the expression of CD200 was found 
in human pancreatic cell lines and CD200R expression was 
found at high level on PDAC patient-derived MDSCs [108]. 
In vivo studies demonstrate that CD200 antibody blockade 
limits the percentage of tumour-infiltrating MDSCs, but 
the significance and the mechanisms underlying CD200-
CD200R interaction in tumour microenvironment remain 
to be clarified [108].

Targeting MDSC-released cytokine and immune 
mediators

Secretion of soluble factors able to fuel a pathological 
inflammation or inhibit immunological responses in TME 
is considered a key mechanistic pathway of MDSC’s biol-
ogy. Here we summarised the most relevant MDSC-released 
cytokines/growth factors able to sustain tumour progression.

Emergency myelopoiesis in BM is influenced by per-
sistent stimulation from tumors. These signals include 
cytokines, namely, CSF-1, -2, and -3, whose function is 
often overlapped and converging to signaling pathways of 
the JAK/STAT/ERK/PI3K axes [112]. In this contest, it was 
shown that mouse breast 4T1 cancer cells release CSF-2 and 
CSF-1, promoting BM output of MDSCs and preparing the 
premetastatic niche [106]. Once in the lung, MDSCs induce 
angiogenesis and sustain the metastatic spread by, in turn, 
releasing CSF-2. Chemotherapy significantly enhanced the 

production of CSF-2 from various tumors (e.g. pancreatic 
adenocarcinoma, PDAC) [113]. Further, CSF-2 and CSF-3 
were shown to induce the differentiation of monocytes into 
MDSCs and to stimulate myelopoiesis in BM of in mouse 
model of PDAC and glioblastoma [114].

The cytokine IL-6 was found to be a crucial regulator of 
MDSC accumulation, activation, and differentiation in vitro 
as well as a factor promoting tumour cell proliferation, sur-
vival, invasiveness, and metastasis. Accordingly, IL-6 can 
be used as a negative prognostic marker in cancer. Within 
the tumour microenvironment and in the periphery, IL-6 
promotes differentiation of myeloid precursors into MDSCs 
and reinforces their suppressive function by promoting and 
maintaining STAT3 phosphorylation [115]. For example, 
phosphorylated STAT3 levels in MDSCs isolated from 
head and neck squamous cell carcinoma (HNSCC) patients 
positively correlate with ARG1 expression and suppression 
of autologous T cell proliferation [54]. Since STAT3 is a 
downstream regulator of IL-6, which was found to be asso-
ciated with a worse survival in HNSCC patients [116], a 
correlation between IL-6 levels, STAT3 phosphorylation, 
and ARG1 expression could be proposed.

The cytokine IL-1β drives MDSC expansion and migra-
tion [117]. IL-1β concentration was positively correlated with 
M-MDSC subset [118] in the peripheral blood of advanced 
melanoma patients. Moreover, M-MDSC produces IL-1β, 
which in turn upregulates E-selectin expression, favouring 
tumour cell arrest on endothelial cells, in preclinical can-
cer models [119]. In other studies, tumour-derived NLRP3 
increases the expression and secretion of IL-1β by MDSCs 
[120]. Currently, several agents are available to inhibit 
IL-1β, including IL-1Ra (anakinra), IL-1β-specific antibod-
ies (canakinumab), and inflammasome inhibitors [121, 122]. 
Notably, multiple cancer therapeutic agents such as chemo-
therapeutic drugs, MAPK inhibitors, and BRAF V600E 
inhibitor (BRAFi) have been reported to either increase the 
expression of IL-1β or activate inflammasomes in myeloid 
cells causing unwanted side effects. In this regard, IL-1β 
blockade may generate adjunctive effects when combined 
with chemotherapies or other treatments in cancer.

TGF-β is a well-documented immunosuppressive 
cytokine secreted by MDSCs in tumour-bearing host [123]. 
How MDSC-derived TGF-β is released and regulated 
remains elusive. It was shown that MDSC-derived TGF-β 
is induced by IL-13 and CD1d-restricted T cells, most likely 
natural killer T (NKT) cells, in vivo [124]. Recent studies 
have shown that TGF-β production by MDSCs is regulated 
by TNF-α and semaphorin 4D, in vitro [125, 126]. In con-
trast, CD14+HLA-DR−/low MDSCs from patients with liver 
cancer show no TGF-β secretion [127], suggesting that 
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TGF-β production by MDSCs may be context-dependent. 
MDSC-derived TGF-β contributes to T cell suppression. 
Song et al. have shown that tumour-derived MDSC trans-
fer to asthmatic mice leads to reduced pulmonary recruit-
ment of inflammatory cells, suppressed Th2 response, and 
decreased IgE production in a TGF-β1-dependent manner 
[128]. Furthermore, TGF-β is essential in Treg induction 
by MDSCs. In addition to immune suppression, TGF-β 
has been implicated in the regulation of tumour metastasis 
facilitated by MDSCs. A portion of tumour cells undergoes 
epithelial-mesenchymal transition (EMT) to disseminate, 
invade surrounding tissue, and metastasize. In a spontane-
ous murine model of melanoma, Toh and colleagues have 
shown for the first time that MDSCs use TGF-β, epidermal 
growth factor, and hepatocyte growth factor to induce EMT 
and to support metastasis and that MDSC depletion reverts 
this phenotype [125], confirming TGF-β as a critical target 
to abolish MDSC’s pro-tumour features.

Tumour-reprogrammed myeloid cells also actively influ-
ence angiogenesis, which represents a hallmark of cancer 
progression [17]. Anti-angiogenic therapies targeting vascu-
lar-endothelial growth factor (VEGF) and cognate receptors 
provided clinical benefits in different kind of solid tumours 
(including colorectal, kidney, lung, ovarian, brain tumours) 
[129], although often, response to therapy was limited in 
time and in a fraction of treated patients. In part this is medi-
ated by compensatory circuits of sustained angiogenesis 
mediated by tumour-infiltrating myeloid cells [130–132]. 
In accordance, single-cell-mediated TIM deconvolution 
underscores the association of pro-angiogenic TAMs with 
worse overall survival in different solid tumour contexts 
[64]. Thus, repolarisation of TIMs from pro-angiogenic to 
anti-tumour phenotype can synergise with anti-angiogenic 
therapy to support long-term control of tumour progression. 
Clinical trials targeting VEGF and other soluble mediators 
are listed in Table 2.

Table 2   Clinical trial targeting myeloid cell soluble mediators in association with ICT

NCT Phase Drug Target Tumor and stage ICT

NCT05180006 II Bevacizumab (VEGFR) Soluble mediators BC Atezolizumab
NCT02997228 III Bevacizumab (VEGFR) Metastatic CRC​ Atezolizumab
NCT04262687 II Bevacizumab (VEGFR) Metastatic CRC​ Pembrolizumab
NCT04524871 I/II Bevacizumab (VEGFR) HCC Atezolizumab, tocilizumab
NCT03434379 III Bevacizumab (VEGFR) Unresectable HCC Atezolizumab
NCT03955354 II Apatinib (VEGFR) Melanoma SHR1210 (PD1)
NCT04691817 I/II Tocilizumab (IL6R) NSCLC Atezolizumab
NCT04258150 II Tocilizumab (IL6R) PDAC Nivolumab, ipilimumab
NCT03821246 II Tocilizumab (IL6R) Prostate cancer Atezolizumab
NCT04940299 II Tocilizumab (IL6R) III/IV solid tumors Nivolumab, ipilimumab
NCT03012230 I Ruxolitinib (JAK) TNBC, metastatic stage IV BC Pembrolizumab
NCT03026140 II Celecoxib (COX-2) Colon carcinoma Nivolumab, ipilimumab
NCT03728179 I Celecoxib (COX-2) Solid tumors Nivolumab Ipilimumab
NCT03926338 I/II Celecoxib (COX-2) CRC MSI-H Toripalimab
NCT02959437 I/II Epacadostat (IDO-1) Advanced and metastatic tumors Pembrolizumab
NCT03006302 II Epacadostat (IDO-1) Metastatic PDAC Pembrolizumab GVAX
NCT03463161 II Epacadostat (IDO-1) HNSCC Pembrolizumab
NCT02752074 III Epacadostat (IDO-1) Melanoma Pembrolizumab
NCT04200963 I IK-175 (AhR) Locally advanced or metastatic 

solid tumors and urothelial 
carcinoma

Nivolumab

NCT02903914 I/II INCB001158 (ARG1) Advanced/metastatic solid tumors Pembrolizumab
NCT03361228 I/II INCB001158 (ARG1) Advanced solid tumors Pembrolizumab
NCT03236935 I L-NMMA (NOS) NSLC, HNSCC, IV melanoma, 

bladder carcinoma, Hodgkin’s 
lymphoma

Pembrolizumab

NCT04265534 II CB-839 (glutaminase) NSLC Pembrolizumab
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Targeting metabolic pathways related to immune 
suppression

Myeloid cells can affect T cell recruitment and activity 
in TME by employing an arsenal of soluble mediators, 
including metabolites (i.e. NO, ROS, RNS, adenosine, 
α-ketoglutarate, prostaglandin, kynurenine, lactate) able to 
alter T cell function and survival [133, 134]. MDSCs sense 
and adapt to nutrient changes by acquiring the most effec-
tive pathways to maintain their immunosuppressive and pro-
tumour functions. We detail below the most recent updates 
on major metabolic pathways.
Amino acid  Increased amino acid metabolism in MDSCs 
impairs anti-tumour T cell activity [135]. Especially, argi-
nine, glutamine, and tryptophan have been shown to control 
viability, polarisation, and motility as well as effector func-
tion of anti-tumour T cells [42, 136]. Increased consumption 
of L-arginine by ARG1 is one of the known immunosuppres-
sive mechanisms set in place by MDSCs to enhance tumour-
immune escape. In fact, depletion of arginine down-modu-
lates the expression of CD3ζ chain and alters GCN2 in T 
cells, resulting in TCR loss of function and cell cycle arrest, 
respectively [137–139]. Alongside, products derived from 
ARG1 metabolism, as ornithine, putrescine, and spermi-
dine broadly promote MDSC immunosuppressive function, 
particularly in brain tumours [140, 141]. iNOS also con-
tributes to fine tune the amount of L-arginine in the TME. 
The metabolic product derived from L-arginine degrada-
tion, NO, is known to increase T cell apoptosis by impairing 
IL-2R signalling trough JAK-3, STAT5, ERK, and Akt [142, 
143]. In fact, NO directly increases DNA damage response, 
mitochondrial ROS generation, and produces peroxyni-
trites (PNT) in a NADPH-dependent manner, by reacting 
with superoxide anion [144, 145]. In addition, PNT favours 
post-translational modification of specific chemokines and 
cytokines (e.g. CCL2 and CSF-2) which have been shown to 
favour the recruitment and infiltration of anti-tumour T cells 
as well as they critically alter MHC-peptide complex inhibit-
ing T cell activation [146–148]. Moreover, sustained type I 
interferon signalling exacerbate NO production by aberrant 
iNOS expression inducing anti-PD1 resistance [149]. On 
the other hand, NO produced by a subset of myeloid cells 
infiltrating the tumour, Tip-DCs, sustain the anti-tumour 
activity of adoptively transferred tumour-specific CD8+ T 
cells [150]. These data suggest that the outcome of amino 
acid depletion in the TME is cell dependent and future novel 
therapeutic strategies will have to consider.

Glutamine is one of the most abundant amino acids pre-
sent in the blood. In cancer, glutamine is converted in glu-
tamate and α-ketoglutarate, to support nucleoside and lipid 
biosynthesis, and to sustain protein glycosylation [151, 152]. 
Oncogenes, such as c-MYC and KRAS, greatly increase the 
uptake and catabolism of glutamine in cancer cells [153, 

154], further enhancing the paucity of glutamine available 
in the TME for both tumour-promoting or -killing mecha-
nisms. In MDSCs, L-glutamine fuels the tricarboxylic acid 
(TCA) cycle providing the intermediates and energy for the 
development and effector functions. Besides competing with 
tumour cells for glutamine, MDSCs oxidise L-glutamine in 
an AMPK-dependent manner, which increases and sustains 
their immunosuppression function [155]. In line with this 
observation, MDSCs were shown to increase glutamine bio-
synthesis and transglutaminase (TGM) activity in a murine 
model of metastatic mammary tumours [156] and TGM 
expression in MDSCs was correlated to the metastasis and 
multi-drug resistance of breast cancer [157].

Tryptophan catabolism is mediated in mammals by two 
closely related indoleamine-pyrrole 2,3 dioxygenase enzymes 
(indoleamine 2,3 dioxygenase [IDO]1 and IDO2) and the 
unrelated enzyme tryptophan 2,3 dioxygenase (TDO) [158]. 
IDO1 is primarily expressed by myeloid cells and stroma in 
response to inflammatory immune signals whereas IDO2 and 
TDO are largely unresponsive to immune stimuli and have 
a broader expression pattern [159]. Research examining the 
role of IDO1-mediated immune regulation has focused on the 
effect of amino acid consumption (i.e. amino acid starvation, 
stress) and the production of effector catabolites. IDO1-gen-
erated N-formyl-L-kynurenine is further catabolised by aryl 
formamidase to form L-kynurenine (L-Kyn). L-Kyn is a key 
product of IDO1 catabolism of tryptophan and, together with 
other downstream catabolic products (e.g. cinnabaric acid), is 
a regulator of immunity by direct binding to the aryl hydro-
carbon receptor (AhR) [160]. AhR is a cytoplasmic recep-
tor/transcription factor with a key role in immune function. 
AhR function in MDSCs has not been examined in detail. 
Nonetheless, AhR potently impacts hematopoietic progenitor 
development driving expansion of precursors [161] and AhR 
signalling may promote differentiation of leukemic stem cells 
in acute myeloid leukaemia. AhR signalling impacts MDSC 
expansion and differentiation by causing proliferation and 
differentiation of hematopoietic precursors and promoting 
the emergency granulopoiesis [50]. Together, these studies 
support the ability of AhR activation to induce highly immu-
nosuppressive cells of the myeloid lineage. Therefore, the 
ability to control AhR activation is becoming imperative to 
modulate immunosuppression and inflammation. Recently, 
nanoparticles (NPs) have been engineered to re-establish 
tolerance via AhR activation [162]. Together, the success 
of these studies would provide great promise for AhR as a 
therapeutic for immunomodulation.

Lipids  Lipid metabolism regulates both differentiation, 
expansion, and effector function of MDSCs. High-fat diet 
favours the differentiation of MDSCs from BM-derived pre-
cursors and potentiates the suppressive activity of these cells, 
in mice [163]. In tumour-bearing mice, obesity is associated 
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with an increased accumulation of MDSCs and a reduced 
CD8+ T cell to MDSC ratio and elevated adiposity is also 
associated with the accumulation of MDSCs in the spleens 
and lymph nodes of tumour-free mice. In MDSCs, lipids 
enter cells by the scavenger receptor CD36, and promote 
the switch from glycolysis to fatty acid oxidation (FAO), as 
a primary source of energy [164]. In accordance, the dele-
tion of CD36 or FAO inhibition deprives MDSCs of their 
immunosuppressive function, delaying tumour growth and 
enhancing the efficacy of chemotherapy and immunotherapy 
[165]. Recently, the fatty acid transport protein 2 (FATP2) 
was identified as a regulator of the suppressive functions of 
PMN-MDSCs. FATP2 is responsible for arachidonic acid 
uptake and subsequent PGE2 synthesis. FATP2 inhibition 
abrogates PMN-MDSC-suppressive functions and enhances 
cancer immunotherapy efficacy [166].

Glucose  MDSCs rely in glycolysis, the pentose phosphate, 
and TCA pathways to differentiate and fulfil their functions 
[15]. Indeed, MDSCs are endowed with a high glucose and 
glutamine uptake rates, a reduced oxygen consumption 
rate, and most of their synthesised ATP is obtained through 
glycolysis-dependent mechanisms [167, 168]. Thus, high 
glycolytic flux is required for MDSC maturation from bone 
marrow precursors suggesting an indirect immune suppres-
sive mechanism towards T cells mediated by carbon source 
consumption. Moreover, the upregulation of glycolytic 
pathways protects MDSCs from apoptosis and contributes 
to their survival by preventing ROS-mediated apoptosis 
via the anti-oxidant activity of the glycolytic intermediate 
phosphoenolpyruvate. Glycolysis rate is associated with sus-
tained ARG1 activity in MDSCs. Under hypoxic conditions, 
HIF1α activation triggers the oxidative phosphorylation to 
glycolysis switch in MDSCs [169]. HIF1α is a critical dif-
ferentiation and function regulator of MDSCs in the TME 
[170]. In fact, M-MDSCs show a dormant metabolic state, 
fail to metabolise glucose, and have a reduced cellular ATP 
content and low basal mitochondrial respiration [171]. This 
peculiar metabolic phenotype is regulated by methylglyoxal 
accumulation in MDSCs, which is then transferred to T lym-
phocytes. Methylglyoxal suppresses T cell function by the 
chemical depletion of L-arginine, as well as by rendering 
L-arginine-containing proteins non-functional through a 
glycation-dependent mechanism.

Notably, many of these immune suppressive circuits are 
interconnected and sustained in catalytic loops: for example, 
metabolic shift from glycolysis to oxidative phosphoryla-
tion in myeloid cells increases the production and release 
of ATP, which in turn acts on CD39, CD73, and adenosine 
receptors to support an immunosuppressive transcriptional 
program. According to this, recent clinical trials have been 
designed in order to evaluate the prominence and safety 
of specific inhibitors for many enzymes (i.e., IDO, ARG1, 

NOS2) alone or in combination with target therapy and 
checkpoint inhibitors (Table 2) [172, 173]. For example, 
epacadostat, that is a nanomolar inhibitor of IDO1, has 
been confirmed to be effective and safe when combined with 
immune checkpoint inhibitors in patients with melanoma 
(combined with ipilimumab) and those with non-small-cell 
lung cancer, squamous cell carcinoma of the head and neck, 
renal cell carcinoma, and urothelial carcinoma (combined 
with pembrolizumab) in phase I/II. However, a phase III 
study (NCT02752074) of epacadostat combined with pem-
brolizumab in patients with unresectable or metastatic mel-
anoma demonstrated that this compound did not enhance 
anti-PD-1 therapeutic effect [174]. The unexpected results 
may be the consequence of improper study design, insuf-
ficient drug exposure, and/or inappropriate combination 
strategy. Indeed, enrolled patients were not selected accord-
ing to the expression of IDO in TME. Guaranteeing suffi-
cient drug exposure, testing new combination protocols, and 
performing distinctive analysis of primary and secondary 
endpoints in both IDO positive and negative patients’ sub-
populations should be taken into consideration in the future 
phase III clinical trials. Furthermore, a more precise clari-
fication of the biology of enzyme targets in TME is manda-
tory to understand where and when these pathways have 
to be targeted. For instance, IDO1 contains two functional 
immunoreceptor tyrosine-based inhibitory motifs (ITIMs), 
which modulate the immune response of IDO1-expressing 
myeloid cells [175–177]. Moreover, IDO1 controls also a 
multi-pronged anti-ferroptotic death pathway, which plays 
a pivotal role in tumour suppression in TME [178]. Indeed, 
IDO1+ cells export kynurenines, which are imported by non-
IDO1-expressing cells via solute carrier transporters, and 
these tryptophan catabolites are converted in metabolites 
with anti-ferroptotic activity [179], supporting local immu-
nosuppression and cancer cell proliferation. To overcome 
these substantial limitations linked to the pleiotropic effects 
of the activity of these enzymes [58], a strategy based of 
active vaccination can be exploited. This active immuno-
therapeutic strategy has been also validated in a clinical trial, 
in which patients with metastatic melanoma were treated 
with a combinatorial IDO/PD-L1-targeting approach based 
on IDO1-peptide vaccine combined with nivolumab [180].

Targeting cell‑to‑cell interaction

Physical interactions influence a bidirectional crosstalk 
between myeloid cells and different TME cell components, 
including tumour cells, stromal cells, and immune cells. 
Amongst cell-to-cell interactions leading to switch off T 
cell-mediated anti-tumour response, immune checkpoints are 
crucial inhibitory pathways responsible for cancer immune 
evasion. MDSCs express both PD-L1, interacting with PD-1 
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expressed on T cells, and CTLA-4. PD-1 prevents T-cell 
immune-reactivity via engaging with PD-L1 expressed on 
tumour/myeloid cells in the “canonical” PD-1/PD-L1 axis. 
Whilst the effect of the canonical PD-1/PD-L1 axis and its 
inhibition have been extensively described [181], several 
evidences regarding the presence of a myeloid-dependent 
“non-canonical” PD1/PD-L1 function could represent a 
clear turning point for a reconsideration of PD-1/PD-L1 
axis targeting. Indeed, different studies have confirmed PD-1 
expression on monocytes, macrophages, DCs, and MDSCs 
in tumour models and patients [182–187]. PD-L1 could be 
induced on activated T cells and interact with intra-tumoural 
PD-1 myeloid cells, resulting in various pro-tumour effects 
[188]. As an example, PD-1 suppressed STAT1- and NF-κB-
mediated M1 polarisation promoting M2 polarisation by 
increasing STAT6 phosphorylation [189, 190]. Recently, 
Gordon et al. demonstrate that PD-1 expression on TAMs 
strongly reduces the phagocytic activity against tumour 
cells [183]. Thus, considering the role of myeloid-PD-1 
during ICT, these findings could have important therapeu-
tic implications. The role of myeloid CTLA-4 remains par-
tially unclear. The cis CTLA-4 blockade on T cell has been 
reported by different authors, but its function in mediating 
T cell inhibition by MDSCs is still unclear and under inves-
tigation [191]. CTLA-4 ligands, such as B7 molecules, are 
highly expressed by TAMs and DCs in the tumour micro-
environment and their expression directly correlates with 
the reduction of anti-tumour T cell by inhibiting CD28 in 
several tumour models [192, 193]. Moreover, myeloid cells 
express as well inhibitory receptors promoting immune sup-
pressive functions, including scavenger receptors as mac-
rophage receptor with collagenous structure (MARCO) and 
triggering receptor expressed on myeloid cells 2 (TREM-
2), common lymphatic endothelial and vascular endothelial 
receptor 1 (CLEVER), and Ig-like receptors, such as sialic 
acid-binding immunoglobulin-like lectins (SIGLEC15) and 
V-domain Ig suppressor of T cell activation (VISTA). These 
receptors are associated with anti-inflammatory immune 
suppressive phenotype of myeloid cells which dampens T 
cell activation and function [194–197]. Antibodies block-
ing those receptors recently entered the clinical evaluation 
phase alone or in combination with ICT (Table 3) and they 
could open a new age of cancer immunotherapy in the near 
future. For instance, TREM-2 is an activating receptor of the 
Ig superfamily that binds lipids and transduces intra-cellular 
signals through the adaptor DAP12 [198]. DAP12 recruits 
the protein tyrosine kinase Syk, which initiates a cascade of 
tyrosine phosphorylation events which lead to the activation 
of PLCγ2, PI3K, mTOR, and MAPK, ultimately leading 
to cell activation, metabolic adaptation, and transcriptional 
rearrangement [199]. TREM-2 is expressed in TAMs and 

MDSCs [194, 200, 201]. To support its function, a subset of 
myeloid cells co-expressing ARG1 and TREM-2 were iden-
tified in several preclinical models of cancers and genetic 
ablation of TREM-2 in mice inhibited accumulation of intra-
tumour myeloid cells, leading to a decrease in dysfunctional 
CD8+ T cells and reduced tumour growth [194]. TREM-1 
and TREM-2 are expressed on MDSCs and TAMs and corre-
late with tumour increased volume in preclinical 4T1-breast 
cancer model. In accordance, high TREM2 expression on 
tumour myeloid cells is associated with a poor survival 
rate in patients with colorectal carcinoma or triple-negative 
breast cancer [201]. Recent reports highlight a novel role 
for the apolipoprotein E (APOE)-TREM-2 axis in cancer 
[194, 202], providing promising novel therapeutic targets. 
TREM-2-deficiency enhances the efficacy of the anti-PD-1 
treatment and antibody-dependent TREM-2 blockade is suf-
ficient to remodel the intra-tumour myeloid compartment 
and to slow tumour growth. On the other hand, expression 
of some APOE variants, like APOE4, is associated with an 
improved responsiveness of melanoma patients to anti-PD1 
ICT, suggesting that both APOE and TREM-2 expressions 
on myeloid cells can be used to stratify patients who might 
benefit from this therapeutic strategy.

Targeting pro‑tumour features by myeloid 
cell‑reprogramming

Myeloid cells play a critical role and promptly respond 
to infections and danger signals and in supporting activa-
tion of adaptive immune response towards foreign antigens 
and pathological conditions (cancer included). In order to 
finely tune immune system activation and relief, myeloid 
cells are endowed with both activation and inhibition recep-
tors. Pattern recognition receptors (PRR), such as toll-like 
receptors (TLR), nod-Like receptors (NLRs), and cytosolic 
sensors such as stimulator of interferon genes (STING) 
involved in the sensing of pathogen-associated molecular 
patterns (PAMPs) and danger-associated molecular patterns 
(DAMPs), are responsible for tuning both myeloid activation 
and further polarisation of immune response towards an anti-
tumour or pro-tumour phenotype [203]. In accordance, many 
TLRs agonists (imiquimod for TLR7 and CpG for TLR9) or 
cGAS-STING triggers were employed to activate anti-viral 
interferon-mediated immune responses with final aim to 
polarise myeloid cells towards an anti-tumour state, prime, 
and support T cell-mediated anti-tumour immunity [204, 
205]. For instance, monophosphoryl lipid A-mediated TLR4 
triggering synergises with IFN-γ to activate a pro-inflamma-
tory type 1 IFN conversion of macrophages isolated from 
metastatic pleural effusions of breast cancer patients confer-
ring them direct anti-tumour cytotoxic abilities. Moreover, 
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Table 3   Clinical trial targeting myeloid cells receptors and cytosolic sensors in association with ICT

NCT Phase Drug Target Tumor and stage ICT

NCT04799431 I Poly-ICLC (TLR3) Receptor sensors Metastatic PDAC and CRC​ Retifanlimab
NCT02826434 I Poly-ICLC (TLR3) BC Durvalumab
NCT03721679 I/II Poly-ICLC (TLR3) Solid tumors Atezolizumab, durvalumab
NCT02834052 I/II Poly-ICLC (TLR3) Metastatic CRC, solid tumors Pembrolizumab
NCT02643303 I/II Poly-ICLC (TLR3) Solid tumors Durvalumab, tremelimumab
NCT04508140 II BO-112 (TLR3) Oesophageal, gastric, colon cancer Pembrolizumab
NCT04777708 I BO-112 (TLR3) Advanced refractory HCC Pembrolizumab
NCT04420975 I BO-112 (TLR3) Sarcoma Nivolumab
NCT04134000 I BCG (TLR2-4) Invasive bladder cancer Atezolizumab
NCT03982121 I GLA-SE (TLR4) Metastatic CRC​ Nivolumab, ipilimumab
NCT02609984 II GLA-SE (TLR4) Sarcoma Atezolizumab
NCT02501473 I/II GLA-SE (TLR4) Lymphoma Pembrolizumab, rituximab
NCT03447314 I GSK1795091 (TLR4) Advanced solid tumors Pembrolizumab
NCT04072900 I Imiquimod (TLR7) Melanoma Toripalimab
NCT03982004 I Imiquimod (TLR7) Metastatic melanoma Pembrolizumab
NCT03276832 I Imiquimod (TLR7) Advanced and metastatic melanoma Pembrolizumab
NCT04101357 I/II BNT411 (TLR7) Solid tumors Atezolizumab
NCT02556463 I MEDI9197 (TLR7-8) Solid tumors Durvalumab
NCT04799054 I/II TransCon (TLR7-8) Advanced and metastatic tumors Pembrolizumab
NCT05081609 I/II TransCon (TLR7-8) Advanced and metastatic tumors Pembrolizumab
NCT04840394 I BDB018 (TLR7-8) Solid tumors Pembrolizumab
NCT03435640 I/II NKTR-262 (TLR7-8) TNBC, melanoma, RCC, CRC, HNSCC, 

sarcoma
Nivolumab

NCT04460456 I SBT6050 (TLR8) HER2 + tumors Pembrolizumab
NCT04612530 I CpG (TLR9) Advanced and metastatic PDAC Nivolumab
NCT03831295 I SD101 (TLR9) Advanced and metastatic solid tumors OX-40
NCT03007732 II SD101 (TLR9) Prostatic tumors Pembrolizumab
NCT04050085 I SD101 (TLR9) Metastatic PDAC Nivolumab
NCT02521870 I/II SD101 (TLR9) Metastatic melanoma, HNSCC Pembrolizumab
NCT05220722 I/II SD101 (TLR9) HCC, intra-hepatic cholangiocarcinoma Pembrolizumab, nivolumab, ipili-

mumab
NCT04401995 II CMP-001 (TLR9) Melanoma Nivolumab
NCT04708418 III CMP-001 (TLR9) III/IV melanoma Pembrolizumab
NCT03326752 I DV281 (TLR9) NSLC Nivolumab
NCT04220866 II MK-1454 (STING) HNSCC Pembrolizumab
NCT04708418 II GSK3745417 (STING) Advanced metastatic melanoma Pembrolizumab
NCT04609579 I SNX281 (STING) Advanced solid tumors Pembrolizumab
NCT03249792 I MK-2118 (STING) Advanced metastatic tumors Pembrolizumab
NCT03956680 I BMS-986301 (STING) Advanced solid tumors Nivolumab, ipilimumab
NCT04020185 I/II IMSA101 (STING) Solid tumors ICT
NCT03424005 I/II Selicrelumab (CD40) TNBC Atezolizumab, tocilizumab
NCT02706353 I/II Sotigalimab (CD40) Melanoma Pembrolizumab
NCT03597282 I Sotigalimab (CD40) Metastatic melanoma Nivolumab, ipilimumab
NCT03214250 I/II Sotigalimab (CD40) Metastatic PDAC Nivolumab
NCT04993677 II SEA-CD40 (CD40) Melanoma NSLC Pembrolizumab
NCT01103635 I CP-870893 (CD40) Recurrent/IV melanoma Tremelimumab
NCT04886271 II HX009 (CD47/PD1 bispe-

cific antibody)
Advanced solid tumors

NCT02518958 I RRx-001 (CD47) Malignant solid tumors Nivolumab
NCT03558139 I Magrolimab (CD47) Ovarian cancer Avelumab
NCT04060342 I/II GB1275 (CD11b) Advanced solid tumors Pembrolizumab
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intra-peritoneal or intra-tumour injection of reprogrammed 
macrophages controls tumour progression and metastatic 
spreading of breast and ovarian tumours, in preclinical mod-
els [206]. Notably, the adoption of PRR agonists can sup-
port the infiltration of T lymphocytes in cold tumours, such 
as pancreatic cancer [204, 207], and synergise with ICT to 
revert immunotherapy resistance in different preclinical mod-
els of solid cancers [208, 209]. Another, non-redundant (PRR 
independent) strategy to activate myeloid cells to directly 
reshape TME contexture and sustain a tumour-specific T cell 
immune response is mediated by CD40 triggering, which 
is able to support immune response in tumours resistant to 
immunotherapy such as PDAC, in both mouse models and 
human patients [210, 211]. These data pave the way to phase 
1 clinical evaluation of CD40 agonist with chemotherapy 
and ICT combination in pancreatic cancer patients which 
showed clinical activity and deserve further investigation 
[212]. Nonetheless, the encouraging results, two aspects must 
be considered for further development of these combinatorial 
approaches. In first instance, type I and II interferon signal-
ling activates negative feedbacks restraining T cell functions 
(such as PD-L1 expression on myeloid and tumour cells, 
PD-1, and CTLA-4 expression on T cells); moreover, TLRs 
can be expressed by tumour cells as well and those agonists 
can support their proliferation potential [213, 214]. Accord-
ing to this, another opportunity to promote anti-tumour 
polarisation of myeloid cells is the employment of integrin 
agonists. CD11b (ITGAM), a marker shared within myeloid 
cells, associates with CD18 (ITGB2) to establish Mac-1 or 
complement receptor 3 (CR3) involved in myeloid traffick-
ing and phagocytosis of opsonised bacteria. Recent inves-
tigations proved that CD11b has a crucial role in myeloid 
activation towards an inflammatory phenotype promoting 
tumour control in preclinical models of murine and human 
cancer [215]. ADH-503, a CD11b agonist, is indeed able 
to repolarise TAM towards an anti-tumour phenotype and 
to enhance dendritic cell responses which in turn support T 
cell-mediated tumour restriction and synergism with ICT in 
pancreatic cancer, a tumour in which ICT does not show any 
benefit when employed as single agent [67]. Given the prom-
ising preclinical results, ADH-503 recently started clinical 
phase 1/2 evaluation in patients with advanced solid tumour 
types expected to be resistant to immunotherapy, including 
pancreatic, prostate, breast, and MS stable colorectal cancers 
(clinical trial: NCT04060342). Finally, the p53 activation has 
been reported to promote MDSC differentiation to cross-pre-
senting DCs. Indeed, the pharmacological activation of p53 
drives MDSC differentiation to Ly6C+CD103+ DCs, which 
are essential to enhance a CD8+ T cell anti-tumour immune 
response during ICT [216]. Taken together, these recent find-
ings pinpoint a novel therapeutic approach to induce immu-
nosuppressive TIM differentiation to antigen-presenting cells 
rather than causing their elimination.

Conclusion and future perspective

In this review, we have described our current knowledge 
on targets and strategies set in place to modulate the tumor-
promoting function of myeloid cells. However, despite these 
exciting new opportunities, it is mandatory to keep in mind 
that all these efforts are meaningful if successfully translated 
to humans. In this contest, it will be important to include 
analysis of BM niches in which to explore potential new tar-
gets regarding MDSC generation, regulation, and traffick-
ing. We think that targeting the BM niches presents not only 
an avenue to treat cancer but also inflammatory conditions, 
since emergency myelopoiesis is a highly regulated process 
in which HSC niche and external factors tilt the hematopoie-
sis balance towards an altered myeloid lineage. The pivotal 
work done by several research groups, on defining and under-
standing the regulatory elements sustaining HSC output, 
provides promising molecular targets that could potentially 
revert a “maladaptive” myelopoiesis into an educated one 
(Fig. 2). Today, single-cell omic technologies are improving 
the current understanding of myeloid cell biology and their 
contribution to tumour progression and tumour restriction. 
Preclinical and clinical studies highlight the importance of 
re-educating in spite of depleting specific myeloid cell sub-
sets within TME in order to sustain anti-tumour immunity. 
From this point of view, many strategies can be enrolled to 
build up a new concept of cancer immunotherapy.

Recently, myeloid cell engineering by gene-editing 
approaches has been proposed as well to sustain antigen 
presentation and tumour cytotoxic activities. The manipu-
lation of myeloid immunity has some advantages compared 
to T cell engineering. In first instance, myeloid cells can 
infiltrate TME more efficiently than lymphocytes. Sec-
ondly, engineered myeloid cells can shape TME towards a 
tumour restricting milieu, support priming of tumour-spe-
cific immune response, homing, and function of T lympho-
cytes in tumour core. For example, monocytes engineered 
to express a pp65 (CMV) protein fused to lysosomal-asso-
ciated membrane protein (LAMP) were adoptively trans-
ferred in glioblastoma patients in order to efficiently prime 
a tumour-specific T cell-based immune response (clinical 
trial: NCT04741984). IL-12 and type I and II IFNs pro-
mote myeloid cell skewing towards an inflammatory phe-
notype: genetically engineered myeloid cells expressing 
IL-12 reverted the immune suppressive program in the 
premetastatic niche supporting tumour antigen priming and 
resulting in reduced metastatic and primary tumour burden 
in tumour-bearing mice [217]. Similar results were achieved 
in preclinical breast cancer setting employing IFN-γ-loaded 
macrophages [218]. Finally, macrophages engineered with 
a epidermal growth factor receptor 2 (Her2)-specific chi-
meric-antigen receptor showed deepen abilities to phagocyte 
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cancer cells and secrete pro-inflammatory cytokines sup-
porting the M1-like polarisation of bystander myeloid cells, 
restricting tumour burden [219].

The specific and efficient delivery of modulators to 
tumour-reprogrammed myeloid cells can improve the 
efficacy of cancer therapy. Nanoparticles (NPs) are thus 
excellent candidates to modulate TME-infiltrating mye-
loid cells [220]. NPs are carriers of any shape which size 
ranges between 1 and 100 nm with distinctive features 
for immune cell targeting such as the ability to overcome 
biological barriers and to be engulfed by immune cells 
[221]. Multiple factors impact the effectiveness of the 
NP-based therapy, such as (i) route of administration, (ii) 
particle surface charge, and (iii) drug formulation. For 
instance, MDSC/TAM-targeted NPs are normally infused 
intravenously and can accumulate passively or as con-
sequence of myeloid cell uptake in tumours. However, 

systemic administration provides liver, kidney, and spleen 
accumulation that compromise a preferential uptake by 
tumour-infiltrated MDSCs/TAMs. To avoid this important 
limitation, several studies have developed NP-based tar-
geting systems employing surface markers to specifically 
target defined immune cell subsets [222]. For instance, 
polyethylene glycol (PEG)-sheddable, mannose-modified 
NPs were developed to target M2-like TAMs via mannose-
CD206 binding after pH-sensitive PEG dissociation in the 
acidic TME [223]. Poly-beta-amino-ester (PBAE) NPs as 
cargo of synthetic mRNA encoding interferon regula-
tory factor 5 (IRF5) was able to affect M2-like TAMs and 
increase the percentage of M1-like TAMs [224]. A similar 
TAM reprogramming is promoted also by IL-12-loaded 
poly-β-amino ester NPs [225]. Other NPs can be loaded 
with silencing molecules (i.e. shRNA, siRNA) to target 
crucial transcriptional factors in myeloid, reprogrammed 

Fig. 2   Cartoon depicting the dynamics of tumor-induced emergency 
myelopoiesis. Tumor microenvironment (TME)-derived soluble and 
bioactive factors (cytokines, growth factors, exosomes, nanoparticles, 
cells) condition the BM to output corrupted altered myeloid cells 
(emergency myelopoiesis) which promote primary cancer growth 
and metastatic spread (lung and lymph nodes). Hematopoietic stem 
cells (HSCs), in the so-called BM niche, interact with mesenchymal 

(MSCs) and endothelial cells that regulate HSC dormancy and differ-
entiation into altered progenitors through cytokines and cell contact-
dependent signals. Several mechanisms (depicted by dashed lines) 
will be the focus of future investigations. From these studies, new 
targets will be identified and exploited for alternative, more effective, 
and personalised therapeutic approaches for cancer disease
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cells such as STAT3. Indeed, the STAT3-silencing inhib-
ited MDSC-dependent immunosuppression at the tumour 
site in tumour-bearing mice [226] as well as normalised 
the immune response by repressing plasma concentration 
of several pro-inflammatory cytokines in mice undergo-
ing CRS [59]. Therefore, this approach may be tested in 
combination with ICT in tumour setting.

In conclusion, although we still do not completely under-
stand the mechanisms driving innate myeloid cell polari-
sation towards an anti-tumour phenotype, deciphering the 
myeloid cell functional stages associated with worse clini-
cal outcome and bad response to therapy will support clini-
cians to select the patients requiring TME reprogramming, 
increasing thus the therapeutic effectiveness of ICT. Strate-
gies harnessing T cell functions and myeloid cell reprogram-
ming will synergise in supporting immune system ability to 
restrict tumour progression in the next future.
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