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A shift in radiology to a data-driven specialty has been unlocked by synergistic
developments in imaging biomarkers (IB) and computational science. This is advancing
the capability to deliver “virtual biopsies” within oncology. The ability to non-invasively
probe tumour biology both spatially and temporally would fulfil the potential of imaging to
inform management of complex tumours; improving diagnostic accuracy, providing new
insights into inter- and intra-tumoral heterogeneity and individualised treatment planning
and monitoring. Soft tissue sarcomas (STS) are rare tumours of mesenchymal origin with
over 150 histological subtypes and notorious heterogeneity. The combination of inter- and
intra-tumoural heterogeneity and the rarity of the disease remain major barriers to effective
treatments. We provide an overview of the process of successful IB development, the key
imaging and computational advancements in STS including quantitative magnetic
resonance imaging, radiomics and artificial intelligence, and the studies to date that
have explored the potential biological surrogates to imaging metrics. We discuss the
promising future directions of IBs in STS and illustrate how the routine clinical
implementation of a virtual biopsy has the potential to revolutionise the management of
this group of complex cancers and improve clinical outcomes.

Keywords: sarcoma, MRI, radiomics, virtual biopsy, quantitative MRI (qMRI), radiology pathology correlation, soft
tissue sarcoma (STS), imaging biomarker
INTRODUCTION

The paradigm shift in radiology from an imaging-based to a data-driven specialty has been
unlocked by synergistic developments in imaging biomarkers (IB) and computational science
including artificial intelligence (AI) (1). This is propelling imaging to the forefront of oncology and
advancing the capability to deliver “virtual biopsies” (2). Virtual biopsies are defined in this review
as an imaging method, or collection of imaging methods, which provide similar information about
the structure, function and pathology of a tissue to that obtained from histopathology. The ability to
non-invasively probe tumour biology both spatially and temporally would fulfil the potential of imaging
to informmanagement of complex tumours; improving diagnostic accuracy, providing new insights into
inter- and intra-tumoral heterogeneity and individualised treatment planning and monitoring (3).

Neuroimaging has long served as the test bed for imaging innovation, afforded by the size and
immobility of the brain, which allows for repeated acquisition of high quality images. These
characteristics are shared with soft tissue sarcomas (STS). STS are often large masses located in the
extremities and imaging is therefore not prone to motion and respiratory artefacts encountered in
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thoraco-abdominal imaging. Further, image-guided biopsy of
STS of the peripheries is usually straightforward with low
morbidity and can therefore serve as biological validation for
IB studies. The primary treatment for local disease is surgery
which also provides opportunities for radiology-pathology
correlation, which is a crucial component of IB development as
non-invasive surrogates for tumour biology (4, 5). Leveraging on
these features, we should be recruiting the best innovators and
technology to STS research. These tumours provide an ideal
testing ground for translational research which can then be
transferred to other cancer types but also present a significant
clinical need for better diagnostics and treatments. STS are rare
tumours of mesenchymal origin that account for 1% of all adult
cancers with over 150 histological subtypes and notorious
heterogeneity, both between patients and within a tumour
itself (6). The combination of inter- and intra-tumoural
heterogeneity and the rarity of the disease remain major
barriers to effective treatments (7–10). Whilst initial local
control is often achieved, distant recurrence is frequent and
associated with a generally poor prognosis, with a median
survival reported between 12 and 20 months (11–17). Without
methods to tackle the vast heterogeneity, we fail to confidently
stratify patient risk and identify patients most likely to benefit
from treatment and in turn, continue to apply a “one size fits all”
approach to therapy. As we advance our biological
understanding of these sarcomas, combining this with
innovative imaging tools and reliable IBs could dramatically
alter the landscape of such a devastating disease.

Herein, we provide an overview of the long-standing
challenges facing our ambition to advance treatment and
improve clinical outcome for STS patients. We describe the
advances in IBs and computational imaging in STS that can
help overcome these challenges and the realising promise of
“virtual biopsies”. We focus on the studies that have sought to
correlate imaging with biology, the development of quantitative
MRI parameters in STS and radiomics that has been applied to
this group of cancers. We then discuss the challenges and future
work that is required to discover, validate and translate IBs into
the clinical setting for these patients.
IMAGING BIOMARKERS IN STS

With the rapid growth of IBs and computational image analysis
capabilties in the past decade, radiological images are now
increasingly recognised as valuable datasets that can provide
complementary information to aid the diagnosis and
management of patients with STS.

Improved imaging tools are required for STS tumours as is a
detailed understanding of their relationship with histological
changes which is vital for IB development. An IB is defined by
the National Institutes of Health (NIH) as “characteristics that are
objectively measured and evaluated as an indicator of normal
biological processes, pathogenic process or biological responses to
therapeutic intervention” (18, 19). IBs can be numerical
(quantitative) or categorical (quantitative value or qualitative). An
Frontiers in Oncology | www.frontiersin.org 2
IB roadmap has been produced to accelerate the translation of IBs
from conception into useful clinical tools (5). This includes two
translational gaps that must be crossed. The first is to become
medical research tools if the IB is confirmed to reliably test medical
hypotheses, and the second as clinical decision-making tools if the
IB is confirmed to be clinically useful and has been clinically
validated (20). In order to bridge these translational gaps, IBs
need to pass through a series of domains: discovery (Domain 1),
validation (Domain 2) and qualification with ongoing technical
validation (Domain 3), including technical validation (e.g.
repeatability, reproducibility and availability) and biological and
clinical validation (e.g. relationship with disease state, diagnostic,
prognostic and predictive capabilities) (5).

In STS, IBs have the potential to provide non-invasive
insights into tumour biology over time without sampling bias,
including in relation to intra–tumoural heterogeneity (21, 22).
Furthermore, they bypass any technical and clinical difficulties of
biopsy for diagnosis and treatment monitoring, allowing
improved patient risk stratification and treatment planning.
The capabilities of multiparametric magnetic resonance
imaging (MRI) present an attractive tool for quantitative IB
development for clinical adoption (23). The ability to capture
multiple parameters in a single scan, with the potential to explore
multiple biological properties which contribute to intratumoural
heterogeneity is highly appealing (3).

Quantitative MRI
Quantitative MRI is a multi-step process that requires image
acquisition, reconstruction, segmentation and often mathematical
modelling of parameters prior to feature extraction (Figure 1) (2). A
semi-quantitative MRI parameter already in use in clinical practice
is contrast-enhanced (CE-)MRI, where the difference in signal after
intravenous injection of a gadolinium-based contrast agent is used
as a surrogate for tumour vascular perfusion (22). Examples of fully
quantitative parameters are DixonMRI which enables fat content in
tumours to be visualised and quantified and apparent diffusion
coefficient (ADC) measurements from diffusion-weighted (DW)-
MRI which maps tissue cellularity (22, 25–27). ADC is rapidly
growing in use in oncology because of the widespread availability of
DW-MRI on clinical scanners, ease of acquisition (not requiring
additional equipment or injection of contrast agents), excellent
repeatability and large number of biological and clinical validation
studies (22, 27, 28). These factors make it an attractive IB, and as
such, ADC has emerged as a useful quantitative IB in STS which has
led to its incorporation in the European Organisation of Research
and Treatment of Cancer (EORTC) guidance on standard of care
MRI in STS (29–31).

Radiomics
The emerging field of “radiomics”may also serve to identify IBs for
use in STS. Radiomics describes the extraction of features from
radiological images, converting them to mineable high-dimensional
data and searching for correlations with defined clinical variables. It
relies on the extraction of both semantic (radiology lexicon such as
size and shape) and agnostic (quantitative descriptors such as
texture and histogram) features, interrogating tumour
morphology and behaviour on a deeper scale (32, 33). Correlative
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assessment of these features with clinical variables may drive
generation of diagnostic, prognostic or predictive models for
variables of interest, to act as complimentary non-invasive
decision support tools (Figure 1) (24). Radiomics may identify an
individual feature or set of features (a signature) that could be
utilised as an IB. Radiomics is particularly attractive as it can explore
and discover clinically relevant IBs without the need for new or
complex imaging systems.

A typical radiomics workflow consists of multiple steps: high
quality image acquisition, preprocessing of the images to ensure
uniformity of scans, tumour segmentation and feature
extraction. Extracted features are combined with other
mineable data and correlations for clinical outcomes of interest
are explored (24). Cancer types where radiomics has shown
promise include lung cancer, glioblastoma and prostate cancer
where radiomics has been used to distinguish benign from
malignant tissue, measure the aggressiveness of tumours, aid
diagnosis and selection of biopsy sites (24, 34–39). In addition,
radiomics has identified imaging phenotypes suggestive of
patient prognosis and predictions of treatment response (24,
Frontiers in Oncology | www.frontiersin.org 3
34, 36–42). The use of radiomics in a highly heterogeneous
malignancy like STS could deepen our understanding of the
biology across the entire tumour volume, and its correlation with
clinical outcomes. To date, preliminary radiomic studies in STS
have focused on correlation of radiomic features with
pathological grading and prognosis (43–47). Multiple studies
have demonstrated an association offinal histopathological grade
in the surgical specimen on tissue examination with extractable
radiomic features, including the ability to discriminate between
tumours of low and high grade (43, 44, 47). In addition, radiomic
features were predictive of distant metastases, early response to
neoadjuvant chemotherapy and clinical outcome (46–50). The
studies performed in STS remain limited to single centre cohorts
with small patient numbers and imaging performed on single
scanners. Radiomics requires large datasets to allow confident
training of models and for robust conclusions to be drawn, and
therefore, the rarity of STS and resultant small datasets has
significantly hindered the progress of applying radiomics to “real
life” clinical practice. Solutions for dealing with smaller datasets
are emerging, such as using internal cross-validation to test
A

B

FIGURE 1 | Exemplars of typical quantitative imaging in (A) and radiomic workflows in (B) taken from Blackledge et al. (22) and Gillies et al. (24) respectively. (A)
Quantitative imaging Involves a detailed process of steps. Following image acquisition and image reconstruction, quantitative maps are developed either by the
scanner or offline and these maps differ from the parent images as each voxel has an unit of measurement. Multiple regions of interest are often selected, features
extracted accordingly to aid clinical decisions. (B) Radiomics involves a multi-step process. Following acquisition of high quality images, regions of interest and/or
habitats are defined. These are reconstructed into 3D. Radiomic features are extracted and models are developed with correlation of these extracted features and
pre-defined clinical outcomes of interest.
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radiomic models removing a dependence on large independent
datasets (51). Overcoming this challenge would pave a bright
future for radiomics in STS and its potential to supply
unparalleled information about tumour heterogeneity and its
impact on tumour behaviour and clinical outcome.

Unlocking the Potential of IBs With
Computational Imaging
Quantitative MRI and radiomics require time-consuming
processing and analysis and produce a vast amount of complex
data which make interpretation challenging and prohibit
translation as clinical decision making tools. Recently, AI is
gaining traction within oncology as offering a complementary
suite of technologies to drive uptake of IBs in clinical practice.
Defined as the “development of computer systems able to
perform tasks normally requiring human intelligence”, AI
offers a solution to the time-consuming and complex image
processing analyses required for some MRI parameters and for
radiomics. It encompasses machine learning and its subset deep
learning, each with multiple algorithms, and may prove an
indispensable tool for complex data analysis (2, 52, 53). The
integral radiomics workflow step of image delineation requires
expert radiological input and is time consuming, particularly in
the context of multiple tumour lesions or large, complex
tumours. Deep learning can train and use algorithms for
automated segmentation of tumours without the requirement
for human intervention (54). In addition, it can analyse numeric
data from predefined radiomic features as well as designing its
own radiomics features from the direct analysis of images (55).
This holds potential as a attractive tool, maximising the amount
of “hidden data” that can be automatically extracted from
radiological images, whilst addressing the real life constraints
of time consuming segmentation and post processing.
DIAGNOSIS

The current gold standard for diagnosis in STS remains
histopathological examination of biopsy or surgical specimen
tissue. Routinely, a pathologist will determine histological
subtype, histological grading based on the three-tiered
histopathological grading system of the French Federation of
Cancer Centers Sarcoma Group (FNCLCC) and therapeutic
response demonstated by percentage of remaining viable cells
when required. If applicable to the suspected histological
subtype, the pathologist will also routinely request ancillary
tests to aid diagnosis. This includes immunohistochemistry
(for example for proliferation index Ki67, specific proteins and
immune cell staining), cytogenetics and molecular analysis for
relevant alterations (56, 57). In addition to tumour size, grade by
FNCLCC is the most important prognostic factor in STS
(58–60). However, whilst core biopsy is the usual modality for
obtaining tissue for diagnosis, it is unable to capture the full
extent of heterogeneity due to sampling error, and therefore can
have the potential to misrepresent histopathological grade
(44, 61, 62). In particular, under-grading of STS on core biopsy
is recognised (62). Furthermore, given the disease rarity and
Frontiers in Oncology | www.frontiersin.org 4
degree of heterogeneity, accurate diagnosis by non-specialist
pathologists can be difficult. In fact, a previous study
conducted across 3 European regions confirmed a concordance
of only 56% in histopathological tissue examination by primary
diagnosis and secondary opinion (63). The main discrepanices
were namely histological grade (43%), histological type (24%),
subtype (3%) and grade plus subtype or grade plus histological
type (29%). A similar finding was reported in a further study
which found a 71% concordance in diagnosis between primary
and referral centres, with 16.4% major discrepancies and 11.8%
minor discrepancies (64).This is complicated by the qualitative
nature of histopathological measures used for diagnosis, where
inter-observer discrepancies may lead to poor reproducibility
and carries the potential to impact patient treatment planning.
These findings support the drive to centralise sarcoma care into
specialist centres.

Ultimately, we frequently fail to capture the heterogeneity within
complex lesions like STS with tissue biopsy alone, and despite the
substantial strides made in our biological understanding and
management of these diseases, this remains incomplete for most
subtypes. Imaging can overcome these challenges either by guiding
precision biopsy of higher grade tissue, or by providing biological
information or correcting underestimation of grade with direct IBs
acting as a surrogate for underlying biological features.
Furthermore, efforts to standardise the acquisition of scans will
improve accuracy and consistency and could contribute to more
robust clinical decision making (65). Below we discuss the evolution
of IBs in STS over the past few years.

Conventional Imaging
The potential of biopsies to misrepresent grade in STS is well
established (62). With regards to grading tumours, the primary goal
of imaging has remained to achieve the equivalent of in vivo
microscopy, or provide a complimentary diagnostic aide. In order
to overcome the limitations of invasive core biopsies in STS, many
MRI studies have sought to test the correlative power of imaging
with tumour grade, comparing findings to histopathological
examination of specimens based on FNCLCC. In 2008, Liu et al.
correlated peripheral tumour growth pattern on MRI with
histopathological grade in 59 STS patients, and found poorly
defined margins in 60% of high grade tumours, versus well-
defined margins in 60% of low grade tumours (66). This has been
reinforced in a retrospective study by Zhao et al. where increased
intensity of peritumoural contrast enhancement on imaging in
higher grade tumours was the strongest independent indicator of
histopathologically confirmed high grade STS (67). In addition, a
study by Crombe et al. validated findings by Zhao et al. and
demonstrated that the three following features of peritumoural
enhancement, necrosis and heterogeneity in signal intensity on
MRI could allow up-grading of underestimated tumour grade (61).
This study also undertook survival analyses and determined that
two out of three of these criteria were independent prognosticators
of worse metastasis free survival and overall survival through uni-
and multi-variable analysis (61).

Computed tomography (CT) sensitivity to detect tissue necrosis
has also been utilised to demonstrate improved accuracy of grading
in leiomyosarcoma (LMS) when combined with histopathological
July 2022 | Volume 12 | Article 892620
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assessment of tissue, versus histopathology alone (68). Further to
tumour grade, studies have explored the CT features of STS that
could aid diagnosis, exploiting features such as fat content, margin
status and presence of septations. An example of successful
utilisation of these imaging parameters is in liposarcoma, a group
of STS which can be frequently distinguished radiologically, without
the requirement of a diagnostic biopsy (69). Contrast-enhanced CT,
which is generally the standard investigation for retroperitoneal
sarcomas, can be used for site confirmation and often tissue
composition, and can confidently delineate well-differentiated
liposarcoma (WDLPS) and angiomyolipoma (70, 71).

Positron Emission Tomography (PET)/CT
The value of PET/CT in assessing histological grade in STS has
been explored. Using 18

flurodeoxyglucose-positron emission
tomography (18FDG-PET)/CT, the maximun standardised
uptake value (SUVmax) of a lesion was demonstrated to
correlate with the FNCLCC. In two meta-analyses, SUVmax
was able to distinguish high-grade versus lower-grade STS such
that this imaging technique could improve the diagnostic
accuracy of core biopsies (72, 73). However, both meta-
analyses reported poor methodological quality and lack of
comparable parameters across studies, preventing confident
conclusions to be drawn.

Quantitative MRI
Advancements in MRI capabilities has allowed the derivement of
quantitative parameters that allow insight into biological features of
tumours for example fat, vascularity and cellularity, as well as the
spatial heterogeneity across an entire tumour. These parameters
may represent translatable IBs that could improve accurate
diagnosis. Although the multitude of potential parameters is
expanding, some remain in early stages of exploration (Table 1).
Exploiting MRI features of fat fraction and contrast sequences,
liposarcomas can be distinguished from other STS, and provide
informationabout themargin, shape, aswell as internal architecture
and properties (70, 75, 76). In a group of retroperitoneal sarcoma
patients,MRI fat fraction strongly correlatedwithhistopathological
fat content on the surgical excision sample (22).

Schnapauff et al. in 2009 prospectively undertook DW-MRI in
30 patients prior to histological evaluation of regions of interest
(ROIs), illustrating an inverse correlation of tumour cellularity and
ADC, with low ADCs generated for areas of higher cellularity (77).
This correlative relationship was not influenced by prior anti-cancer
treatment. This finding was reproduced in two further retrospective
studies, with lower mean ADC in higher grade sarcomas
representative of the increased cellularity on histological analysis
(78, 79). In a prospective study of 45 patients, the use of ADC to
discriminate between malignant and benign soft tissue lesions was
demonstrated. This study showed that malignant lesions had a
significantly lower mean ADC value, further supporting the
complimentary value of DW-MRI and ADC to soft tissue mass
imaging (80). In addition, whilst most studies exploring ADC focus
on the use of median or mean ADC values to objectively measure
cellularity, this can fail to reflect baseline or post-treatment
heterogeneity for any given tumour. Winfield et al. demonstrated
Frontiers in Oncology | www.frontiersin.org 5
ADC may be measured for various regions of interest on MRI,
providing a deeper insight into ITH both within a region and across
the entire tumour (22). An extension of DW-MRI is intravoxel
incoherent motion (IVIM) which allows separation of perfusion
from the true tissue diffusion. This allows calculation of quantitative
parameters that reflect true tissue diffusivity (D), perfusion-related
pseudodiffusion (D*) and perfusion fraction (f) which represents the
contribution of water in capillaries (81). This could improve the
accuracy of a quantitative parameter of diffusion by informing on
the contribution of the microvascular circulation. Wu et al.
demonstrated the combination of ADC and D were most useful
in differentiating malignant and benign STS than ADC alone, and
that the combination of ADC and f improved the differentiation
between benign, intermediate and malignant STS (82). However, in
Winfield et al’s study, the IVIM parameters exhibited poor
repeatability when compared with ADC (22). A modification of
DW-MRI is diffusion tensor imaging (DTI) and its advancement
diffusion kurtosis imaging (DKI) (83, 84). These techniques add a
quantitative assessment of the direction of diffusion of water
molecules and may provide further diagnostic value by providing
more structural information about lesions. DTI studies in
muscoskeletal imaging are still in early stages but have been used
to provide information about nerve fascicle visualisation for
peripheral nerve sheath tumours and the integrity of axons (85–
87). Similarly DKI studies remain evolutionary, however, have
shown value in helping differentiate sarcoma from benign lesions
and distinguishing recurrence from post surgical changes (88, 89).

Dynamic contrast-enhanced MRI (DCE-MRI) is being
increasingly applied to obtain temporal information about tumour
microvascularity and there have been a wealth of studies in the past
few decades (90–94). It is well recognised that the tumour vascular
system has an altered pathophysiology and role in tumourigenesis,
supporting the diagnostic clinical application of DCE-MRI (95, 96).
DCE-MRI utilises serial images capturing the arrival, duration and
exit of a contrast agent in a tissue of interest, generating a signal
intensity curve that may provide detailed information on both the
physical and physiological properties of tissue in response to the
agent (91, 97–99). The signal intensity curve and individual
quantitative parameters such as the transport constant of the
contrast agent from the blood plasma into the extracellular
extravascular space (Ktrans), and the extracellular extravascular
space volume (Ve) may inform on underlying tissue
microvasculature (99). For example tumour areas of higher
perfusion and permeability having a higher and quicker uptake of
contrast compared with tumours areas of necrosis (100). An early
study in STS has demonstrated that DCE-MRI can aid in
discriminating between low and high grade tumours, with Ktrans

differentiating grade I from grade III and grade II from grade III
tumours (101). Combining Ktrans with two semi-quantitative
parameters also derived from DCE-MRI, initial area under the
gadolinium concentration-time curve (iAUC) and time to peak
(TTP), had the highest diagnostic performance with an area under
the curve (AUC) of 0.841.

Magnetic Resonance Spectroscopy (MRS) is a technique which
can provide information about the biochemical processes without
the requirement for invasive intravenous contrast agents. By
July 2022 | Volume 12 | Article 892620
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detecting protons (1H-) containing metabolites in addition to water,
this can provide information about the micro-metabolic
environment within tissue. In STS, a prospective study used this
technique to leverage on the measurement of choline which is an
established marker for increased cell membrance turnover and can
indicate malignancy. The authors showed that this can be useful in
differentiating grade of muscoskeletal tumours (102). In addition, in
a heterogeneous lesion like STS tumours, it might highlight more
aggressive areas. However, this technique has poor sensitivity and
specificity in STS and can be technically challenging is some
anatomical sites such as extremities (103).

Radiomics
Recent efforts have centred on radiomic model development
prediction of tumour grade given the crucial role of grade in
preoperative diagnosis and treatment planning. Multiple studies
have focused on identification of MRI-based radiomic features
distinguishing low from high grade tumours (43, 45, 47, 78, 104).
Using T2-weighted MRI images, Zhang et al. tested 5 radiomic
features in a predictive model of STS grade in 35 patients with good
accuracy (44). This was further explored by studies training
machine learning algorithms based on radiomic features extracted
from T2-weighted and/or T1-weighted MRI sequences to identify
Frontiers in Oncology | www.frontiersin.org 6
the optimal model of tumour grade prediction (43, 45). These
studies used larger sample sizes (105 and 113 patients respectively)
to form their complete cohort for training, testing and validation of
their radiomic models, and achieved area under the curves (AUC)
of over 0.9, demonstrating both feasibility and utility in their models
for distinguishing grade (43, 45). In a study with the largest sample
size to date, Navarro et al. retrospectively collected a training cohort
of 148 patients to train a deep learning model comprising of features
extracted from contrast-enhanced fat-saturated T1 and fat saturated
T2 weighted images which was capable of distinguishing low from
high grade tumours (105). They went on to externally validate this
result in a cohort of 158 patients with AUCs of 0.75 and 0.76 for
their T1 and T2 weighted radiomics models respectively. Corino
et al. used DWI-MRI and it’s corresponding ADC maps in a group
of 19 histologically confirmed STS patients for retrospective
radiomic analysis to distinguish intermediate and high grade
tumours. This study concluded that using a maximum of three
features from first order statistics could achieve a model
distinguishing grade with relatively good accuracy (78). Texture
analysis tools can be applied to routineMR images to interrogate the
inter-pixel relationships and grey level pattern of a ROI to provide a
measure of heterogeneity (106, 107). This was utilised in a
retrospective study of 29 patients by Meyer et al. to match Ki-67
TABLE 1 | Summary of the quantitative imaging techniques described in this paper and that represent potential IBs.

MRI technique Exemplar images Exemplar parameters Proposed biological surrogate

Dixon Fat fraction (FF) Fat content

Diffusion-weighted Apparent diffusion coefficient (ADC) Cellularity

Dynamic contrast-enhanced Volume transfer constant
(Ktrans)
Initial area under the
gadolinium concentration curve
over 60 seconds (iAUGC60)

Microvasculature

Oxygen enhancing Longitudinal relaxation rate of protons (R1) Tissue oxygenation

Magnetic resonance elastography Complex shear modulus (G*) Mechanical properties of tissue
July 20
Each imaging modality is given with an exemplar image adapted from sources listed below, an example of a parameter measurable and its proposed biological surrogate Dixon: Pre-
contrast images taken of a retroperitoneal spindle cell sarcoma, showing separate in phase (water) and fat images left and right respectively which forms the basis for the calculation of fat
fraction, a surrogate for fat content of tumours.
Diffusion-weighted: Example of axial diffusion weighted image on the left with corresponding ADC map on the right of the same retroperitoneal spindle cell sarcoma.
Dynamic contrast-enhanced: Example of image with overlaid Ktrans map on the left and iAUGC60 on the right of a patient with a myxoid lioosarcoma of the thigh. Heterogeneity of the lesion
is seen throughout the lesion signifying perfusion heterogeneity.
Oxygen enhancing: Adapted from O'Connor et al. (74). A series of R1 maps in a xenograft tumour while the mouse breathed air (top row). 100% oxygen (middle row) and back to air
(bottom row) showing increase in R1 with 100% oxygen.
Magnetic resonance elastrography: Adapted fromMcGee et al. (23). Example of axial images of MREmagnitude on the left andmasked elastogram on the right of a patient with a malignant
mass in the liver, (image adapted from citation).
22 | Volume 12 | Article 892620
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index to discriminate between low and highly proliferating
sarcomas (108). Ki-67 proliferation index is a widely used
immunohistochemical test that reflects the activity of tumour
cells, aiding the discrimination between low and high grade
tumours, treatment response to neoadjuvant radiotherapy and
can act as a predictor of clinical outcome in several cancers.
Meyer et al. demonstrated several textural analyses correlated with
Ki-67 index, namely run length and grey-level non uniformity (run
length matrix features) had a positive correlation with Ki67 whilst
sum average (grey-level histogram feature) and grey-level kurtosis
(absolute gradient feature) had a negative correlation. Radiomics
may be a valuable non-invasive tool for supplementing histological
methods of distinguishing low and high grade STS, and may
improve rates of undergrading tumours. However, MRI-based
radiomic studies are usually retrospective, often limited to few
imaging sequences and rarely externally validated, and therefore
remain some way from constituting reliable and reproducible IBs.
Despite its inferiority to MRI in soft tissue contrast, CT-based
radiomics has also been explored in STS. Peeken et al. used three
retrospective, independent cohorts for training, testing and
validating (83, 87 and 51 patients respectively) a model to
demonstrate feasibility of using CT-radiomics for grading STS,
able to differentiate grade 3 from non-grade 3 tumours (47).
There remains occasions, particularly for STS located within the
retroperitoneum, when MRI is not conducted and therefore CT
radiomics remains a useful avenue to explore. Whilst this study
successfully validated its radiomics model, its AUC was 0.64, and
therefore does not perform well enough to be a confident tool
alongside the usual histopathological work-up for these patients.
Image Guided Biopsy Using Next
Generation Imaging
Image guided biopsy could circumvent many issues related to tissue
sampling, although this has undergone relatively little change for
over 30 years (109). Biopsy usually takes place under CT or
ultrasound (US) guidance alone, and whilst these modalities
benefit from low cost, speed, and familiarity, they do not convey
the same level of biological information as next generation imaging
techniques (e.g. quantitative MRI).

In other tumour types including prostate cancer bone
metastases, lymphoma and neuroendocrine tumours, functional
imaging has been used to select the biopsy sites thought to be
most deterministic in terms of biological behaviour, response to
treatment and disease outcomes (110–112). Since tumour grade is
known to be an important prognostic indicator of recurrence in
sarcomas, this ‘precision biopsy’ approach could be adopted to
provide more accurate grading and better inform treatment
decisions e.g. alternative or adjuvant therapies (113). Practically
speaking, a precision MRI biopsy requires either a direct ‘in-gantry’
approach, or some form of image fusion to leverage the benefits of
the two imaging modalities - either ‘cognitive’ (visual estimation) or
actual (software), the latter leveraging the benefits of two imaging
modalities. Sampling tumours in multiple regions would afford the
ability to capture intratumoural heterogeneity and can provide an
accurate ground truth for imaging biomarker validation, with a view
to “virtual biopsy” in the future. For example, biopsy in a single
Frontiers in Oncology | www.frontiersin.org 7
region may not capture the necrotic or myxoid elements, which are
a key component of the FNCLCC grading scheme for adult
sarcomas (114). A recent example of multiregional fusion biopsy
has been reported by a group who sampled different regions of
ovarian tumours using CT/US fusion, guided by radiomic habitats
(115). Precision biopsy would also facilitate discovery of IBs with
radiogenomic study of co-localised tissue samples, integrating data-
rich radiological images with biological profiling inclusive of deeper
histological and molecular metrics. There is research applying
“-omics” approaches such as transcriptomics and proteomics to
comprehensively profile STS and their functional status, particularly
in the context of heterogeneity (116–118). Further, we are
increasingly understanding the importance of the role the
immune environment plays within these heterogeneous tumours,
and its potential to inform on behaviour and clinical outcome of
STS (119–122). Combining these powerful –omics platforms with
next generation imaging and biopsy techniques could accelerate the
discovery and validation of IBs in STS.
TREATMENT PLANNING AND
THERAPEUTIC MONITORING

Aside from the search for IBs of histopathological phenomena, there
is also a need for markers that surrogate biological features of
lesions, particularly those of prognostic value that can allow better
patient risk stratification. At present, the complexity of
heterogeneity within STS lesions confounds our ability to
individualise therapy for each patient. Upfront opportunities to
identify patients at risk of relapse or poor outcome through IBs
could lead to improved management strategies and clinical
outcome. Furthermore, when positioned with other emerging
tools such as dynamic prognostic nomograms, for example the
Sarculator App (123) and PERsonalised SARComa care
(PERSARC) (124), which model prognosis in STS patients using
a number of clinicopathological factors, a clinical IB may improve
the accuracy of these accessible and user-friendly applications for
treatment planning.

Currently, radiotherapy in STS is primarily utilised in the
neoadjuvant setting for tumours of the extremeties to reduce
post-surgical local recurrence rates (125). This is generally
preferred to radiation given in the adjuvant setting which can
have long-term morbidity associated with the radiotherapy
received (e.g. fractures, fibrosis and oedema) (126). A
retrospective study also demonstrated that neoadjuvant
radiotherapy achieved higher rates of negative surgical margins on
resection of the tumour when compared with adjuvant radiotherapy
and no radiotherapy (90% versus 75% and 80% respectively) (127).
Unfortunately intratumoural heterogeneity causes variable
treatment effect across a single tumour, wherein varying tissue
composition will govern therapeutic, and up-front radiotherapy
planning is difficult without improved biological information of the
lesion. For example, it is known that hypoxic areas within tumours
can result in chemo- and radioresistance (128, 129). Consequently a
single STS tumour containing a number of hypoxic regions will fail
to respond to radiotherapy in those hypoxic areas. Systemic agents
may be used as neoadjuvant therapy to reduce the potential for
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metastasis, or in the advanced setting to reduce metastases and
control symptoms (130). In high-risk STS, 50% of patients will
develop advanced disease and chemotherapy forms the mainstay of
management in the metastatic setting (131). The role of
neoadjuvant chemotherapy is well established in certain subtypes
such as rhabdomyosarcoma, however, its use in most sarcoma
subtypes remains controversial (132). Available data from
randomised controlled trials have significant limitations and the
evidence base is insufficient (130, 133–138). In fact, the only
randomised controlled trial investigating neoadjuvant
chemotherapy and surgery with or without radiotherapy versus
surgery with or without radiotherapy alone was not able to recruit
target accrual and had a negative result (138). The addition of
neoadjuvant chemotherapy was not proven to be more effective
than surgery alone, with a 5-year disease free survival of 56% versus
52% respectively. Furthermore, when a histotype specific approach
to neoadjuvant chemotherapy agent choice was investigated in a
phase 3 multi-centre randomised controlled trial, there was no
benefit observed over the standard chemotherapy regimen (133). In
this study, local failure free survival at 46 months was 86% in the
standard regimen group and 85% in the histotype-tailored
chemotherapy group. Moreover, distant metastases free survival at
46 months was 74% for the standard chemotherapy group versus
45% for the histotype-tailored chemotherapy group. This suggests
that therapeutic challenges in STS are in part related to disease
rarity, however, also likely to be related to intratumoural
heterogeneity. Without a greater understanding of the biology
underlying this heterogeneity and the manner in which tumours
may evolve in space and time, prediction of therapeutic response
is difficult.
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Furthermore, whilst serial biopsies theoretically serve to monitor
therapy, this requires multiple invasive and sometimes technically
challenging procedures, which remain prone to sampling error (125).
In contrast, imaging affords non-invasive, global, and temporal
assessment of tumours. However, radiological response to
treatment is not reliably characterised with conventional size-based
measurements on imaging in STS. At present, Response Evaluation
Criteria for Solid Tumours (RECIST 1.1) is used to measure
radiological response to therapy based on whether a tumour
demonstrates shrinkage, an increase in size or no change in overall
size on imaging scans (139, 140). In the neodjuvant setting there is a
disparity between the therapy response measured radiologically and
the histopathological response findings on tissue (141–143).
Treatment induced necrosis on tissue examination is an
independent marker of prognosis, and dimension-based imaging is
a crude predictor of this (144, 145). Numerous radiological patterns of
response can be seen and good responders following neoadjuvant
therapy as defined by RECIST 1.1 may be rare (Figure 2) (141). A
significant reduction in the volume of responding tumours following
radiotherapy has been reported as low as 0%, and instead tumours
may grow due to cystic transformation, haemorrhage and necrosis
(pseudoprogression) (141, 142, 146, 147). In the phase 3 randomised
controlled trial investigating the histotype approach to neoadjuvant
chemotherapy, no patients achieved complete response and only 14%
achieved a partial response with the rest being objectivelymeasured as
stable or progressive disease (133). A retrospective review conducted
on patients with advanced sarcoma demonstrated that good
responders (27% of the cohort defined as complete and partial
responders) following neoadjuvant chemotherapy had comparable
rates of relapse and overall survival to the non responders (148). A
FIGURE 2 | Examples of different radiological response following neoadjuvant therapy. Top: (A, B) demonstrate a hisloJogically confirmed myxofibrosarcoma in the
calf prior to neoadjuvant radiotherapy on post-contrast imaging and ADC maps, (C, D) demonstrate the mass following neoadjuvant radiotherapy which shows no
change in overall size, however a change in contrast signal and ADC can be seen. This would he stable by RECIST 1.1. Bottom: (A, B) demonstrate a biopsy
confirmed ewing's sarcoma of the thigh prior to neoadjuvant chemotherapy on post-contrast imaging and ADC maps, (C, D) demonstrate the mass following
neoadjuvant chemotherapy which has increased in size, however a change in ihe contrast signal and ADC within the mass can be seen. This mass would be
measured as progression by RECIST 1.1 criteria.
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study by Delaney et al. demonstrated that in a prospectively recruited
group of 48 STS patients treated with neoadjuvant chemotherapy and
radiotherapy prior to surgery, 6 patients had progression as measured
by RECIST 1.1 (149). However, on histological examination of the
surgical specimen, 4 of the 6 patients had prominent necrosis (more
than 90%) of the sample confirming good sensitivity to the
neoadjuvant therapy received. Further, a previous study observed
31% of STS tumours increasing in size by more than 10%, with no
association with a deterioration in clinical outcome (150). Efforts to
establish alternative response criteria have been undertaken. The Choi
criteriameasures radiological response to therapy based on changes in
tumour size and/or density (tumour attenuation measured in
Hounsfield units (HU)) on computed tomography (CT) (151).
Studies have demonstrated that density changes often preceed any
dimensional response to the tyrosine kinase inhibitor imatinib in
gastrointestinal stromal tumour, and therefore Choi criteria have a
higher sensitivity to tyrosine kinase inhibitor benefit in these patients
(151, 152). In other STS subtypes, Choi criteria have shown promise
as superior predictors of histopathological response to cytotoxic
chemotherapy, and a modified Choi criteria can allow assessment
on MRI scans (153, 154). However, these criteria require appropriate
software for postprocessing and the segmentations required impact
on radiologist time. This has hindered validation, including
reproducibility in larger prospective studies.

To overcome the limitations of current therapy response criteria,
the capacity to gain serial virtual biopsies by next generation imaging
received as part of a patient’s pathway could improve treatment
monitoring. If a robust IB can be developed, alternative and more
precise monitoring of therapy is possible. Not only could this allow
earlier alterations in therapeutic regimes for patients who are not
responding, it would also improve dosing options and reduce the
likelihood of severe adverse side effects. This IB may be used
independently or again in concurrence with other therapy
monitoring methods such as the use of tumour circulating-derived
DNA(ctDNA) and tumour cell free DNA(ftDNA) (155) as markers
of response as they translate into clinical practice. This in turn would
bring us closer to the goal of personalised medicine and allow clinical
decisions to be based of individualised tumour and patient
characteristics that are achievable in a non-invasive and dynamic way.

PET/CT and PET/MRI
Studies involving 18F-FDG PET/CT have shown value in using the
reduction in SUVmax following treatment to indicate possible
therapeutic response even when overall tumour volume has not
reduced (74, 156–158). Benz et al. demonstrated that a decrease in
SUVmax of ≥ 35% from baseline to post-treatment scans was a
sensitive predictor of histopathological response to neoadjuvant
therapy in a group of 50 patients with resectable high grade STS
(156). Schuetze et al. demonstrated a reduction in SUVmax of ≥
40% was an independent predictor of improved prognosis (disease
specific and overall survival) in 46 patients with high grade sarcoma
receiving neoadjuvant chemotherapy (157). However, these PET/
CT studies are limited to small patient numbers, single centres and
are usually retrospective and therefore, confidence in SUVmax as a
clinical IB will be dependent on ongoing prospective studies.

PET/MRI has also shown promise for monitoring of patients,
adding the excellent soft tissue contrast possible with MRI to
Frontiers in Oncology | www.frontiersin.org 9
information obtained through PET. A study by Erfanian et al.
reported improved accuracy in the detection of local recurrence of
STS of 90% when compared to conventional MRI alone at 83%
(159). Like PET/CT, progress for this imaging modality will rely on
robust prospective studies. A further exciting avenue for PET
research in STS is immuno-PET imaging as a potential non
invasive and serial tool to monitor pre-selected immune markers
or aid the selection of patients for immunotherapy. This remains in
early stages, however, a study demonstrated feasibility of using a
radiotracer and immuno-PET to detect and monitor programmed
cell death protein 1 (PD1, an immune checkpoint protein) in
humanised mouse models (160).

Quantitative MRI
Frequently ADC values change following radiotherapy signifying
possible treatment response, even when overall tumour volume
remains unchanged (22, 161–163). Winfield et al. also illustrated
that in the same group of retroperitoneal STS, patient MRIs following
radiotherapy demonstrated an increase in ADC, perhaps reflecting
biological changes to a less cellular tumour suggestive of response. In
this study, ADC was shown to have excellent repeatability, with a
coefficient of variation (CoV) of 2.5% for median ADC (22). The
repeatability of ADC adds to the confidence of its usage as a robust,
standardised IB. However, it is important to note that at present, there
remains no standardised method to measure ADC in STS,
particularly with relation to therapeutic response (164). This can
range from variations in the acquisition of diffusion-weighted images,
the ROI selection process (for example 2D ROIs versus 3D volume
ROIs) and the ADC parameter selected (for example minimumADC
versus mean ADC) (22, 77, 162). As such, this hinders our ability to
standardise study findings and like other IBs, it also suffers from lack
of reproducibility and validation efforts in prospectively
designed studies.

DCE-MRI has also been used to demonstrate changes following
therapy, suggestive of possible response (98, 165–168). Recently, in a
subset of 10 patients with myxoid liposarcoma from the Dose
Reduction in Preoperative Radiotherapy in Myxoid Liposarcomas
(DOREMY) multicentre clinical trial, a higher baseline Ktrans was
linked to response following neoadjuvant radiotherapy and may
allow prediction of early response to radiotherapy (169). Although
time consuming analysis and some limitations on anatomical
coverage preclude routine clinical use, DCE-MRI represents an
interesting avenue for further research into the STS vascular
microenvironment and its role in therapeutic response.

Oxygen enhanced (OE-)MRI is an emerging technique that may
offer insight into tumour hypoxia; a well-recognised negative
prognostic factor in cancer (170–172). To date, there remains an
unmet need to measure hypoxia through a biomarker, and MRI
offers an attractive non-invasive and serial option (173). OE-MRI is
capable of mapping and quantifying the spatial distribution of
tumour oxygen delivery. By measuring the longitudinal relaxation
rate of hydrogen nuclei (R1), which changes in relation to the
dissolved oxygen concentration in tissue or plasma, OE-MRI can
characterise well- and poorly-oxygenated tissue. Inhalation of
hyperoxic gas results in delivery of excess oxygen to well-
oxygenated tissue, however, given well- oxygenated tissue will
have saturation of haemoglobin molecules with oxygen, the excess
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oxygen remains within the plasma and interstitial tissue fluid,
increasing the tissue R1. Preclinical and clinical studies in renal
cell carcinoma, glioma, prostate cancer and lung cancer have
demonstrated the feasibility and accuracy of OE-MRI in mapping
hypoxic subregions, including changes following radiotherapy
(173–179). Whilst human studies in sarcoma are lacking, the
early work by Cao-Pham et al. in rhabdomyosarcoma xenograft
models showed that R1 as measured by OE-MRI is sensitive to
changes in oxygenation (180). Further exploration in STS is
required, however in a group of heterogeneous cancers, OE-MRI
could optimise our treatment planning for these patients.
Visualising areas of hypoxia across a tumour could aid
radiotherapy planning, stratifying patients accordingly.

Similarly, magnetic resonance elastography (MRE) is gaining
attention as a quantitative imaging method capable of assessing the
mechanical properties of tissue. MRE informs on the viscoelastic
properties of tissue by measuring the propagation of mechanical
waves through tissue (181). Already a well-established technique in
patients with chronic liver disease, there is a strong motivation to
explore the applicability of MRE to other pathologies (182, 183).
Preclinical studies have demonstrated that altered tissue “stiffness”
(quantified using the complex shear modulus (G*) and related
parameters) can be used to indicate malignant masses within brain
parenchyma, and that changes inmechanical properties of a tumour
may precede volume change following treatment indicative of
response in colon cancer and non-Hodgkin’s lymphoma (181,
184–186). There are currently limited studies within STS,
however, Pepin et al. demonstrated technical feasibility of MRE in
a pilot study of 13 sarcoma patients, and possible utility in
assessment of early response to radiation therapy (in 4 of these 13
patients) (187). Further studies are underway, and this may offer a
further non-invasive method to interrogate deep and complex
masses such as those within the retroperitoneum.

Radiomics
Much of the radiomic research in STS is focused on predicting
therapeutic response and clinical outcome. In an externally
validated study, Spraker et al. found that features extracted from
T1-weighted MRI were independently associated with overall
survival (OS), and a radiomics model combined with clinical
features (age and grade) performed best (46). In a further study,
the addition of T2-weighted MR radiomics to the clinical American
Joint Committee on Cancer (AJCC) staging system into a
nomogram improved the clinical net benefit for stratification of
patients for OS, and was superior to using AJCC system alone (188).
The same group went on to apply deep learning to the two cohorts
(that had been slightly expanded), concluding that the addition of
deep learning to their previous radiomic model yielded comparable
prediction performance for OS. This finding was supported by a
further nomogram constructed by Yan et al, demonstrating
successful patient risk stratification based on progression free
survival (PFS) when MR-based radiomics was used in addition to
clinical factors, with an increased benefit to using AJCC staging
system alone (189). In CT, the same study by Peeken et al. using
radiomics to distinguish tumour grade in STS explored the
predictive performance of radiomic features for OS, distant
progression free survival (DPFS) and local progression free
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survival (LPFS). This study concluded that again, despite CT’s
inferior soft tissue contrast, there was value in using a radiomics
model to stratify patient risk based on their survival outcomes. This
finding was successfully validated in an external cohort, and results
were more consistent than using a clinical model (47).

In the context of response to therapy, delta-radiomics, the
change in a given radiomics feature in a set of longitudinal
images is of particular interest. Gao et al. used longitudinal DW-
MRI images in 30 STS patients receiving neoadjuvant RT at three
time points, to develop a predictive model of pathological
therapeutic response (190). The model demonstrated that
radiomic features alone were not sufficient to predict response,
however, the inclusion of delta-radiomics features at mid- and post-
therapy time points optimised prediction of response to RT. Delta-
radiomics was also used for prediction of pathological response to
neoadjuvant chemotherapy in a retrospective cohort of 65 STS
patients. A radiomics model was developed based on longitudinal
MRI scans taken at baseline and following two cycles of
anthracycline-based therapy, prior to surgical excision from 50 of
the 65 patients. The findings were then validated in the remaining
15 patients. Using 3 STS features of shape, heterogeneity and
surrounding tissue, the study concluded an improved
performance of the radiomics model when compared to RECIST
1.1, and a promising tool for the evaluation of early response
following only two cycles of chemotherapy (50).
Multispectral Tissue Characterisation and
Habitat Mapping
Previous studies have utilised quantitative parameters derived from
diffusion weighted imaging, namely ADC, the transverse relaxation
time (T2) and proton density (M0) to objectively segment tumours
into distinct subregions and in relation to therapy (191–195). In a
xenograft mouse model of radiation-induced fibrosarcoma (RIF-1),
Henning et al. was able to segment tumours into regions based on
two viable tumour groups and two non viable (necrotic) tissue
groups which were confirmed on histopathological staining of a
hypoxia marker (192). The group also analysed the viable tissue
groups further and characterised them into well oxygenated
radiosensitive and hypoxia and radioresistant groups (193). This
is important ground work for methods of objectively characterising
tissue based on quantitative markers for underlying biological
properties. Building on this are habitat maps which incorporate
multiple quantitative parameters obtained from numerous MRI
sequences. These maps characterise tissue into distinct biological
habitats based on their combination of multiparametric MRI
parameters and provide insight into multiple aspects of biological
heterogeneity and their interaction with one another (21). In a
cohort of 30 retroperitoneal STS, automated segmentation of
tumours into tissue subtypes based on fat fraction (FF),
enhancement fraction (EF) and ADC, demonstrated distinct
habitat maps and changes following radiotherapy suggestive of
response, including when overall tumour volume remained the
same or increased (Figure 3). These techniques may improve our
understanding of the differing characteristics within this
heterogeneous cancer and how distinct regions respond variably
to the same treatment. In addition, it can illustrate results in a timely
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and clinician friendly manner that is not reliant on interpretation of
numerical values, easing its transition into practice.

Ongoing Challenges and Future Directions
The integration of powerful imaging technology to inform on the
biology of these heterogeneous tumours is needed in the clinical
setting for this complex disease. Indeed, there is potential to enable a
more personalised approach to patient management and uncover
candidate therapeutic options. However, there are a number of
challenges that need to be addressed prior to the successful
implementation of “virtual biopsy” methods into practice. If the
ultimate goal of quantitative and radiomic imaging techniques is the
development of an IB, consideration of the steps of biomarker
development is required (5). At present, despite a heavy investment
into the search for IB discovery, most sarcoma work has faltered at
the initial stage of technical (assay) validation (22).

Reproducibility and Complexiy of Data
Quantitative MRI sequences have a varying complexity of delivery,
particularly those which require intricate post-processing of images,
and therefore, make reliable and confident translation across
radiology departments challenging. This is mirrored in the
variation seen across different MRI scanners in image acquisition
and measurement output, usually requiring adaptations at every
centre and vendor. This weakens the reproducibility potential of
quantitative MRI techniques and may oblige different centres to
perform reproducibility/repeatability studies to conclude some
clinical capability. As a result, most studies remain limited to a
single centre using the same MRI machine. This hinders the
Frontiers in Oncology | www.frontiersin.org 11
progression of novel and promising quantitative MRI techniques
through imaging biomarker validation. Similarly, a crucial step in the
radiomics workflow is standardisation of acquired images to allow
reliable image delineation and radiomic feature extraction, and this
can pose significant challenges at multi-centre level. Each step in the
radiomics workflow can in fact affect results, and similar to
quantitative MRI, requires careful or expert processing of data. This
makes reproducibility efforts challenging. To date, few studies have
spanned multiple centres, and the majority of studies have not been
tested in an independent external cohort. Attempts to provide
standardised guidance for the translation of acquired imaging to
high-throughput IBs are underway. The Image Biomarkers
Standardization Initiative (IBSI), an independent international
collaboration aims to provide detailed guidance on the mandatory
steps for radiomic analyses, and Lambin et al. have defined the
Radiomics Quality Score (RQS) to provide an objective estimate of
the quality of the study (196, 197). Future studies may benefit from
these to aid transition from proof of concept to real life clinically
applicable tools.

Limited Cohort Size and External
Validation
STS is a disease of rarity, and it’s diverse histological subtype profile
confounds effort to accrue patient cohorts comparable to other cancer
types. This can make assessment of the quality of findings within
imaging studies challenging. In particular, radiomics is dependent on
large datasets for reliable feature extraction and robust conclusions to
be drawn from results. Furthermore, a crucial component of
translating an IB is it’s independent validation in an external
FIGURE 3 | Example of habitat imaging as demonstrated by a supplementary figure provided by Blackedge et al. (21). Axial MRI scan taken pre and post-radiotherapy
in a patient with a retropentoneal STS tumour. Habitat maps are overlaid on MRI scans acquired for this patient and volume renders shown. The different colours within
the mass on MRI scans represent the different sub compartments assigned according to the qMRI parameters EF. FF and ADC. Tissue sub compartments with high
ADC and low FF are represented in blue and may suggest necrotic or cystic tissue, low ADC and high EF in red and suggest cellular vascular tissue, and low ADC and
low EF in green and suggest poorly vasculansed tissue. Spie charts show the average ADC for each tissue sub compartment as the illustrated radius of each segment,
whilst the angular proportion represents the proportional volume of habitat class. Pre and post-treatment, the colours within the mass are shown to change, with loss of
the green sub compartment (poorly vasculansed tissue) and increase in the blue sub compartment (necrotic/cystic tissue), signifying a change in tissue characteristics
following therapy and possible response even when overall volume is unchanged. (Figure adapted from citation).
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cohort, which is a recognised challenge in the sarcoma community.
Whilst there are methods to deal with smaller datasets such as cross-
validation, these still remain limited to the individuals studied and
findings cannot be generalised to the rest of the population, not
overcoming the issues pertaining to external validation (198).

A solution to this may be data-sharing. A powerful drive through
the NIH’s Quantitative Imaging Network (QIN) and its leveraging
on The Cancer Imaging Archive (TCIA) has demonstrated
feasibility in data sharing of clinical images across various sites
(199). This partnership holds promise to overcome challenges
related to data-sharing, facilitating multi-site collaboration and
support the development of IBs through validation (200–202).
Builiding on this, there are efforts to harmonise quantitative MRI
data across centres and develop a robust infrastructure to allow this,
such as the National Cancer Imaging Translational Accelerator
(NCITA) consortium which includes 9 UK centres aiming to
develop a robust multicentre IB pipeline (65). This would provide
opportunities for bothmulti-centre data to increase the size of initial
datasets and external cohorts for the validation of discoverable IBs.

Retrospective Study Design
The challenges related to the low incidence and heterogeneity of the
disease can in turn make prospective collection of data difficult. It
can take multiple years to recruit a desired cohort size, and studies
may be closed early upon failing to reach target accrual. As such,
alongside the readily available retrospective data, many imaging
studies within STS remain retrospective in nature. This carries risk
of confounding and bias (such as selection or recall bias), and results
in an inferior level of evidence. Furthermore, retrospective designs
negate the ability to carry out repeatability tests for quantitativeMRI
and radiomic studies due to a lack of repeat scans performed around
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the time of the initial scan. Going forward, confident validation and
translation of IBs is heavily dependent on prospective studies.

Within STS, a Cancer Research United Kingdom (CRUK)
Sarcoma Accelerator consortium partnering centres across the
UK, Spain and Italy aims to develop a multicentre, expansive
data pipeline to develop clinical and biological models to further
our understanding of sarcoma biology in patients with high risk
STS undergoing perioperative management. This will involve
prospective collection of imaging data across 5 years and
spanning these multiple centres. This will greatly benefit IB
discovery and validation in sarcoma, where limited patient
numbers for studies will increasingly rely on close multi-centre
collaborations and data-sharing to propel their progress to
clinical translation.
CONCLUSION

The ambition to achieve non-invasive and global captures of
tumour biology remains a priority in complex and heterogeneous
malignancies such as STS. Whilst radiomics is promising, sub-
optimal datasets and a lack of external validation mean this is some
way from becoming a tool to direct patient care. However, we can
now offer virtual biopsies in the research setting following the
validation of a number of IBs in sarcomas, and which can be
assimilated as habitat maps (Figure 4). The clinical impact of
identifying these distinct imaging phenotypes is yet to be fully
explored and as further IBs including radiomic signatures mature,
they will also be incorporated into these models of heterogeneity.
The next step is prospective clinical trials exploring habitat map-
guided risk stratification, response assessment and adaptive
A B

FIGURE 4 | A summary of the potential applications of a virtual biopsy at the two crucial stages of a sarcoma patient's cane pathway (A) At diagnosis, a virtual
biopsy can offer quantitative imaging biomarkers to improve accuracy of grading, complimentary architectural information about the lesion and information about
diagnosis and grade when needle biopsy is not possible. It can also guide precision needle biopsy. (B) For treatment planning and monitoring, virtual biopsy offers
the opportunities for improved patient risk stratification and prediction of therapeutic response. It can provide information assimilated in habitat maps to capture
global and spatial heterogeneity for improved treatment planning, and provides the potential for serial quantitative, non invasive measures of response which are
independent of tumour size.
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therapies on patient outcomes. Translation to routine clinical care
will also be ultimately reliant on improved proficiencies within
radiology departments to seamlessly incorporate the necessary post-
processing and data visualisation tools into routine workflow.
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