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abstract

During the last decade ontologies have become a fundamental part of the life sci-

ences to build organised computational knowledge. Currently, there are more than

800 biomedical ontologies hosted by the NCBO BioPortal repository. However, the

proliferation of ontologies in the biomedical and biological domains has highlighted

a number of problems. As ontologies become large, their development and mainte-

nance becomes more challenging and time-consuming. Therefore, the scalability of

ontology development has become problematic. In this thesis, we examine two new

approaches that can help address this challenge.

First, we consider a new approach to identifiers that could significantly facilitate the

scalability of ontologies and overcome some related issues with monotonic, numeric

identifiers while remaining semantics-free. Our solutions are described, along with

the Identitas library, which allows concurrent development, pronounceability and

error checking. The library integrated into two ontology development environments,

Protégé and Tawny-OWL. This thesis also discusses the ways in which current on-

tological practices could be migrated towards the use of this scheme.

Second, we investigate the usage of the hypernormalisation, patternisation and pro-

gramatic approaches by asking how we could use this approach to rebuild the Gene

Ontology (GO). The aim of the hypernormalisation and patternisation techniques

is to allow the ontology developer to manage its maintainability and evolution. To

apply this approach we had to analyse the ontology structure, starting with the

Molecular Function Ontology (MFO). The MFO is formed from several large and

tangled hierarchies of classes, each of which describe a broad molecular activity.

The exploitation of the hypernormalisation approach resulted in the creation of a

hypernormalised form of the Transporter Activity (TA) and Catalytic Activity (CA)

hierarchies, together they constitute 78% of all classes in MFO. The hypernormalised

structure of the TA and CA are generated based on developed higher-level patterns

and novel content-specific patterns, and exploit ontology logical reasoners. The gen-
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erated ontologies are robust, easy to maintain and can be developed and extended

freely. Although, there are a variety of ontologies development tools, Tawny-OWL is

a programmatic interactive tool for ontology creation and management and provides

a set of patterns that explicitly support the creation of a hypernormalised ontology.

Finally, the investigation of the hypernormalisation highlighted inconsistent classi-

fications and identification of significant semantic mismatch between GO and the

Chemical Entities of Biological Interest (ChEBI). Although both ontologies describe

the same real entities, GO often refers to the form most common in biology, while

ChEBI is more specific and precise. The use of hypernormalisation forces us to

deal with this mismatch, we used the equivalence axioms created by the GO-Plus

ontology.

To sum up, to address the scalability and ease development of ontologies we propose a

new identifier scheme and investigate the use of the hypernormalisation methodology.

Together, the Identitas and the hypernormalisation technique should enable the

construction of large-scale ontologies in the future.
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Chapter 1: Introduction

1.1 Introduction

In recent years, biological and medical research has relied heavily on building stan-

dardised computational knowledge for many reasons. The goal is to be able to store,

share, query, retrieve and analyse biological/biomedical data that often comes from

complex experiments. Ontology as a computational modelling technique became a

standard part of many scientific domains, including biological and biomedical do-

mains, as it provides a common understanding of the fields through a semantic

network of related concepts. As a result, many bio-ontologies have been developed

and have become trusted source of information, such as Systematised Nomencla-

ture of Medicine Clinical Terms (SNOMED CT) [106], International Classification

of Diseases (ICD) [71] and the Gene Ontology (GO) [43]. In the meantime, ontolo-

gies development and management processes have become more complicated and

challenging, especially with terminologies and ontologies of large-scale and complex

domain of knowledge.

As ontologies become large, for instance, to reference concepts in the ontology be-

comes more challenging; the identifier scheme must scale, while maintaining ease of

use. For example, GO and associated ontologies have adopted numeric identifiers,

embedded in URLs that are made persistent through the use of PURL, a double-

resolution mechanism. However, some ontological standards have raised concerns

such as the use of numeric identifiers to uniquely identify ontology classes. Being

able to address these issues by simplifying, clarifying or facilitating the processes of

ontology development has been the goal of several methodologies and tools.

Scaling produces other challenges: after many years of development, hierarchies can

become highly tangled and the possibility of errors (e.g., duplicate terms, incorrect

classification) can increase. For instance, between July 2017 and July 2020, more

than 14,700 new concepts were added to the international edition of SNOMED

CT 1, and around 130,000 concepts have changed. This is mainly because of the fast

growth in the biomedical domain. Any required development and maintenance to the

SNOMED CT hierarchy required maintaining multiple classifications. As a result,

1https://www.snomed.org
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Chapter 1: Introduction

a considerable number of methodologies and tools have been introduced to support

the development and maintenance of the SNOMED CT structure, costing more

than 9 million USD each year [31]. One effort made by the SNOMED community

is reformulating the content of SNOMED CT into a more expressive language that

enables consistency checks, that is Web Ontology Language (OWL) [88]. However,

the size and complexity of SNOMED made the resultant OWL version of SNOMED

inaccessible in ontology editors due to its size that causes memory problems [38].

Similarly, the scale and size of GO has increased, and its hierarchical structure has

become more tangled, which has negatively affected the maintenance and develop-

ment processes of GO. The GO project provides a comprehensive computational

representation of biological systems in three respects: the molecular functions per-

formed by genes and gene products, the cellular locations where the functions occur

and the biological program carried out by multiple molecular functions. It is a widely

used model and a valuable source of references, as judged by the number of people

and organisation that use it and published papers that cite it. Currently, GO has

more than 45,000 classes [118] describing the different biological functions of gene

products over three large sub-ontologies. The changes in GO occur on a daily basis.

This mostly involves creating new classes and new relationships and removing incor-

rect classes and inconsistent relationships. Statistically, between Oct 2018 and Dec

2020, 790 new classes were created, more than 911 classes were merged, and more

than 791 classes were deleted (see Figure 1.1). The Gene Ontology Next Genera-

tion (GONG) [120] project was an early attempt that translated the hand-crafted

taxonomies of GO into formal and logic-based taxonomies using the DAML+OIL [60]

ontology language and DL-based reasoners. Another effort to enhance the represen-

tation of GO was made by Mungall [84], who converted the textual definitions of

the GO classes into computable logical definitions using classes from related ex-

ternal ontologies, mostly from the Open Biomedical Ontologies (OBO) Foundry

ontologies (e.g., PRotein Ontology (PRO) [100] and Chemical Entities of Biological

Interest (ChEBI)). Within the Gene Ontology Consortium (GOC) the development

of tools that facilitate the construction and maintenance of GO have increased to

achieve several objectives, such as increasing expressivity, facilitating development
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Figure 1.1: The changes in GO terms during the last two years.Figure taken from http:

//geneontology.org/stats.html, used under CC-BY 4.0 license.

and maintenance processes, and strengthening robustness.

In this thesis, we investigate the use of the hypernormalisation methodology [77]

by reconstructing the Molecular Function Ontology (MFO), a sub-ontology of GO.

Hypernormalisation is an extension of normalisation methodology [93]. Ontology

normalisation aims to facilitate the development, reusability and maintenance of

ontologies by creating explicit and modular ontologies. The methodology is di-

vided into two independent stages: ”ontological normalisation” refers to the basic

knowledge structure of ontology concepts that are to be defined cleanly using some

technique such as OntoClean. The second part is the normalisation of ontology

implementation that can be achieved by disentangling the structure of an ontology

into disjoint taxonomies: self-standing classes and refining classes. The self-standing
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classes refer to the core concepts of a domain, that is, the physical and conceptual

things in the world (e.g., “people”,“phone”) that may or may not be defined using

other descriptive concepts and conditions. The second taxonomy is about the refin-

ing classes (e.g., “small, medium, large”) that are used to define the classes in the first

taxonomy, the self-standing classes. The relationships between the two taxonomies

are determined using definitions, axioms and reasoners. The Galen Ontology is one

of the biomedical ontologies that was built using the normalisation principles [92].

The hypernormalisation technique can be distinguished from the normalisation tech-

nique in the way that it makes the asserted hierarchy nearly or completely a flatten

hierarchy among self-standing classes. Moreover, it relies heavily on the use of

ontology designed patterns (ODPs) and ontological reasoners to facilitate the devel-

opment and creation of the ontological hierarchies. In order to be able to implement

this type of ontology development, it is helpful to have an ontology development

environment that supports and provides higher-level patterns; for example, Tawny-

OWL [76]; a fully programmatic interactive environment for ontology creation and

management and provides a set of patterns that explicitly support the creation of

a hypernormalised ontology. The amino acid ontology [107] was built using the hy-

pernormalisation technique. By contrast, representing the Karyotype Ontology in

hypernormalised form was not possible [112]. So far, the ontologies that were built

using the hypernormalisation principles are relatively small ontologies with 500 or

fewer ontological classes.

In this thesis, we investigate two issues that address the scalability and ease of

development of large ontologies.

First, we describe a new identifier scheme for generating local identifiers. This raises

our first research question:

RQ1 What is the advantages of this approach to ontology development?

Second, we investigate the usage of hypernormalisation, patternisation and progra-

matic approaches by asking how we could use this approach to rebuild the Gene

Ontology, specifically the MFO.
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The research questions that we are trying to answer, using the hypernormalisation,

pattern-driven development approach is:

RQ2 Is it possible to apply this approach and what we do learn from exploiting

the hypernormalisation and patternisation methodologies for a large ontology,

using the MFO as a case study?

After applying the hypernormalisation and patternisation methodologies, three ques-

tions will be raised:

RQ2.1 How is the shape of the ontology changed from a denormalised ontology?

RQ2.2 Does the process of hypernormalisation teach us anything about the seman-

tics and representation of the existing ontology.

RQ2.3 What kind of query capability do we get from a large hypernormalised

ontology which is not possible with non-normalised ontology?

Finally, considering both hypernormalisation and identification:

RQ3 In using this methodology for an ontology of this size, do we ease the devel-

opment and maintenance?

1.2 Contributions of this thesis

This thesis aims to address the challenges of scalability and to ease of development

of large ontologies. Firstly, we implemented a new scheme for generating local iden-

tifiers, which enables the development of identifiers that are semantics-free, can be

read by humans and checksummable. Secondly, we explored the usage of hypernor-

malisation and pattern-driven development approach by rebuilding the MFO. The

investigation of the hypernormalisation approach resulted in the development of a

hypernormalised form of the Transporter Activity (TA) and the Catalytic Activ-

ity (CA) hierarchies. Moreover, the investigation led to identification of significant

semantic mismatch between GO and ChEBI.
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The first contribution, which addresses RQ1, is represented in the Identitas library,

a new approach to identifiers that could significantly improve the management of

ontologies and overcome some related issues with monotonic, numeric identifiers,

while remaining semantics-free. In our project, we have implemented a new scheme,

which enables the development of identifiers that are semantics-free and can be

read by humans. In this contribution, we have demonstrated that the scheme is

applicable and scales easily to befit the size of current ontologies. We have also

considered ways in which current ontological practices could be migrated towards

the use of this scheme. Finally, Identitas has been integrated into environments for

ontology development such as Tawny-OWL and Protégé.

To answer the RQ2, we rebuild the MFO using the strategy we describe in Chapter 5,

starting with transporter activity and then catalytic activity.

During the reformation of the transporter activity structure, we identified three main

categories that comprise the hierarchy of TA, that is, general transporter classifica-

tion classes, active transporter classes and facilitated diffusion classes. We developed

these classes using content-specific patterns(CPs) [41], that were built with a set of

biological properties to describe each specific transporter category. Like in software

engineering, Ontology Design Patterns (ODPs) have become a key component of

ontologies development lifecycle as they allow the creation of a rich and replicable

representation of an ontology, reducing the effort and time spent during an ontol-

ogy design process and easing communication between ontology developers [42]. In

this contribution, we demonstrate that it is possible to represent the GO trans-

porter activity in a hypernormalised form by disentangling its structure into the two

independent disjoint taxonomies self-standing classes and refining classes that we

introduced earlier. Using the high-level patterns provided by [77] allow the explicit

and accurate construction of TA hierarchies.

Similarly, we have also applied the methodology on the catalytic activity, the broad-

est grouping class in MFO because it includes the largest number of classes. The

investigation shows that 75 percent of the CA classes describe chemical reactions

catalysed by different enzymes using a chemical equation. Therefore, we discuss

different modelling solutions that enable the creation of chemical equations using
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computable logical definition, which need to address several challenges such as: direc-

tionality of reactions; reactions stoichiometries; and support the automatic inference

of relationships. The designed logical definitions support the automatic inference of

memberships by relying greatly on the ChEBI classification of chemical entities with

the assistance of the Rhea database as an intermediary.

Regarding the RQ2.1, RQ2.2 and RQ2.3, we show that it is possible to represent

the GO transporter activity and catalytic activity in a hypernormalised form, the

developed classification is robust, easy to maintain and can be developed and ex-

tended smoothly. As with the Gene Ontology, the hypernormalised hierarchy will

have incorrect classification, however, we find them to be less error-prone for a num-

ber of reasons. In the hypernormalisation of TA classes and CA equation classes we

did not assert subsumption relationships among the self-standing classes, instead

we built domain-specific logical patterns and exploited logical reasoners to build the

relationships among the classes using Hyper-GO refining classes and equivalent

classes from external ontologies and their ontological classification. As a result, the

hypernormalised hierarchies inferred a lot of the same classifications that exist in the

denormalised hierarchies, but also showed a number of differences. The two reasons

for these differences are: the mismatch in semantics between GO and ChEBI; a new

relationships that have been inferred that were not captured in the denormalised

hierarchies. Lastly, by converting the textual definitions of the GO classes into

computable logical definitions we have increased the ability to query expressively.

We believe that the wide use of random identifiers would enable concurrent develop-

ment of ontologies, especially when using large enough identifier space. With Iden-

titas we have combined this readability and checksummability. Similarly, we have

shown that the exploitation of our hypernormalisation methodology resulted in the

construction of explicit, manageable and robust TA and CA ontologies using higher-

level patterns and logical reasoners. Taken together we believe this addresses RQ3,

which should enable the large-scale construction of ontologies in the future.

1.3 Thesis structure

This thesis consists of the following chapters:
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‚ In Chapter 2 we answer essential questions related to ontologies: the moti-

vation for using ontologies; the definition of an ontology; the set of formal

languages in which ontologies can be expressed; the most successful ontolo-

gies; the different technologies that have been used to create ontologies; and

the applications that have been made, which is mostly taking place in the

domain of bio-medicine. This chapter ends with specifying the terminologies

that we will use throughout this thesis.

‚ The Tawny-OWL library is presented in Chapter 3. It is the main tool that

was used to develop our Hyper-GO ontology. We describe the core functions

of Tawny-OWL, its advantages over traditional tools and emphasise the im-

portance of higher-level patterns for building a hypernormalised ontology. As

Tawny-OWL is built on Clojure, we briefly introduce Clojure. We use exam-

ples from the rewritten Family Ontology2 to show the way that OWL entities

and axioms are defined in Tawny-OWL.

‚ In Chapter 4 we introduce the Identitas library, a new style of identifiers

dedicated to the notion of semantic-free IDs and implements the following

features: concurrent development, pronounceability and check for errors. We

also show that the scheme is applicable and can scale easily to the size of

current ontologies, including the Gene Ontology, as well as considering ways

in which current ontology practices could be migrated toward the use of this

scheme. A version of this chapter has recently been accepted for publication

in the Applied Ontology Journal [7].

‚ In Chapter 5, we investigate the ontological representation of the molecular

functions defined in the MFO. In that chapter, we discuss the steps to hyper-

normalise the molecular activities, and we identify inconsistent classifications.

‚ In Chapter 6, we show how transporter activity classes are currently structured

in GO, and how they can be hypernormalised using content-specific and higher-

level patterns, which support the creation of a hypernormalised ontologies.

2Family Ontology is an OWL Prime ontology rewritten in Tawny-OWL, available at https:

//github.com/phillord/owl-primer
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‚ In Chapter 7 we show how catalytic activity classes are currently structured

in GO, and we discuss how to redefine these classes using logical definitions.

In addition, we discuss alternative solutions that are often simpler but are less

meaningful and probably do not support the correct and automatic inference

of relationships.

‚ In Chapter 8 we discuss the outcomes of this thesis and how using Identitas,

hypernormalisation and patternisation techniques helps to address the scala-

bility and ease of development of large ontologies.
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2
Background and Related Work
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2.1 Ontology

This section is largely intend to answer essential questions related to ontologies: the

motivation for using ontologies; the definition of an ontology; the different technolo-

gies that have been used to create ontologies; and, the applications that have been

made which is mostly taking place in the domain of bio-medicine.

2.1.1 Why Ontology?

Ontologies have gained popularity in the fields of computer science and informa-

tion science because of the need for a mechanism to identify and represent com-

plex structured knowledge, which is a necessary step towards making intelligent

systems [24]. Although, there are several kinds of modelling techniques, such as re-

lational databases, ontologies provide a rich classification and description of reality.

Some of the key characteristics of ontologies include the provision of a common ter-

minology, which facilitates better understanding of a domain’s content, knowledge

re-usability, and shareability. Together, these factors increase the level of inter-

operability among different systems or databases [8]. Originally, the vision of the

Artificial Intelligence (AI) community was to produce a generalised description of

the world; however, this was not achieved as the world is extremely complicated.

Knowledge of the world comes from various sources (often from different fields),

which may not have the same classification of the universe.

A narrower ambition was representing knowledge in complex domains with rich con-

tent, like biology and medicine, where ontologies have now become widely used and

a very common model for how to structure data. Accordingly, many ontologies

have since been developed and become trusted sources of information across several

scientific domains. For instance, the Systematised Nomenclature of Medicine Clin-

ical Terms (SNOMED CT) [106] and International Classification of Diseases (ICD)

are two widely accepted classification systems which provide a comprehensive and

standardised health terminologies that cover most areas of medicine.

2.1.2 What is an Ontology?

The term “ontology” was originally introduced as a related subfield of the meta-

physics branch (known as general metaphysics) of philosophy, which concerns the
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study of the entities that exist in the universe, or are posited to exist, and their

categories [19].

The difference between ontologies and metaphysics is that the former is intended

to answer questions about things that exist in the world, while the latter attempts

to answer questions about how do things exist. In the 1970s, researchers in the

AI community recognised that the way to build and maintain strong intelligent in-

formation systems is using ontologies as computational knowledge models. In the

early 1990s, ontologies gained momentum in computer science because of the widely

discussed paper of Tom Gruber, which defined an “ontology” as “an explicit speci-

fication of a conceptualization 1” [46]. As the use of ontologies became widespread

in the computer science community, the definition transformed to include more ad-

jectives describing specification and conceptualization (such as ”formal”, ”shared”).

A well-known modern description for an ontology is ”an explicit and formal speci-

fication of a shared conceptualization in the area of interest” [79]. That is to say,

for ontologies to provide a representational machinery model for domain knowledge,

they need to be specified formally, just as a computer program is formally encoded

by programming language. Moreover, to enable knowledge sharing and reuse, there

should be a level of agreement on the usage of vocabulary in the domain of discourse.

In this thesis, first, we clarify the difference between an ontology and other types

of conceptual specification schemes, and give a brief history of formal ontology lan-

guages. Ontologies are more complex than other existing techniques that use formal

specifications to represent knowledge such as taxonomies, thesaurus, and controlled

vocabularies. A controlled vocabulary is a restricted list of terms that do not neces-

sarily have relationships to each other or possess a specific structure. A taxonomy

is a specific kind of controlled vocabulary, and the simplest technique with which

to organise terms into a hierarchical structure using limited types of relationships.

A taxonomy is usually displayed in the form of a tree structure, while a thesaurus

includes additional relationships between terms (e.g., “see also” relationship) in a

standard structure. Despite the fact that a taxonomy is the backbone of an on-

1Gruber identified conceptualization as ”an abstract, simplified view of the world that we want
to represent for some purpose.”
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tology, an ontology can have more meaningful relationships among domain entities,

and relationships specific to the content, not only a parent-child relationship. In

other words, the relationships among entities are multidimensional relationships,

which are reflected on the overall representation of the domain of interest. As such,

they are suited to representing more complex domains like medicine, and add new

knowledge using restrictions, rules, and axioms. Yet, though ontologies are not

limited to pre-specified types of relationships, this does not necessarily imply that

everything can be represented by an ontology. For a domain knowledge to have

a concrete representation and processed automatically in computers, it has to be

represented using an ontology or formal knowledge representation (KR) languages.

There are a number of formal languages designed to express ontologies for a partic-

ular domain, such as Ontology Interface Language (OIL), Simple HTML Ontology

Extensions (SHOE), Knowledge Interchange Format (KIF), Frame Logic (F-logic)

and Web Ontology Language (OWL). Ontology languages classified to several dif-

ferent categories: frame-based languages (such as F-logic and Open Knowledge Base

Connectivity (OKBC)), description logics-based languages (DLs) (such as KL-ONE

and OWL), First-order logic-based languages (FOL) (such as KIF and CycL) and

web-based languages (such as eXtensible Markup Language (XML) Resource De-

scription Framework (RDF), RDF Schema, OWL) [30]. However, there are some

languages which belong to more than one categories. For instance, the OWL [88] is

a web standard language which extends the semantic interpretation of the RDF syn-

tax and based on a low level knowledge representation technique that is description

logic (DL).

Although, there are several languages in which ontologies can be expressed, most

modern ontologies share common elements to define the knowledge in a domain of

discourse [75]:

1. Classes (also called: ’concepts’): primary components of an ontology structure;

they represent sets of collections of entities within a domain, which share

common attributes. For example, Deoxyribonucleic Acid (DNA) is a concept

in the scientific domain of molecular biology.
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2. Relation: the way to link related individuals of a domain to each others. For

example, DNA is composed of smaller molecules called nucleotides.

3. Instances (also called ’individuals’, ’particulars’): the base components of an

ontology; they represent the entities which belong to a class in the domain

of interest. For example, a particular piece of Nuclear DNA located in the

nucleus of a eukaryotic cell. Although instances are the base components of

an ontology, they are often not represented explicitly in an ontology.

4. Attributes (also called ’properties’, ’slots’): refer to the characteristics or prop-

erties that an entity may have. For example, most DNA molecules have the

shape of a double helix and some are 2m in length.

Next, we consider the advantages of OWL and DL based languages. The use of

DLs originated from the need to add formal and logic-based semantics to the ex-

isting semantic networks and frame-based approaches. DLs comprise a successful

family of KR formalisms, which provide a set of formal and logic-based language

constructs that can be used to describe domain knowledge concepts in terms of

their properties and relationships with other concepts. DLs’ basic building blocks

are atomic concepts (e.g., Human, Male, Female), atomic roles (e.g., marriedTo,

hasChild), and individuals’ names (e.g., JOHN). However, more complex concepts

can be defined using language constructors. Therefore, the expressivity of the DLs

languages depends on the enabling of different constructs in their languages, such as

conjunction ([), disjunction (\), negation ( ) and quantifiers (D, @). For example,

the description logic Attributive Language with Complements (ALC) provides the

basic language constructors which later being extended by other languages of the

DL family, such as SHIQ that added more constructors to express transitive, inverse

roles, and cardinality restrictions. Another key feature of DLs is their amenability

to automated reasoning. A description logic reasoner (also known as classifier) is

software tool which interprets the description logic rules to a set of axioms (true

statements) to deduce indirect relationships between domain concepts. It is an

important and valuable tool for the purpose of checking an ontology consistency,

inferring any implicit relationship between specific domain concepts from explicit
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defined relationships, and ensuring correctness of classification outcomes. However,

as expressive languages become very popular the computational reasoning with such

languages become a challenging task. One of the most expressive languages is OWL

which uses description logics as its underlying logic foundation.

The Web Ontology Language (OWL) is a Semantic Web (SW) technology designed

by the World Wide Web Consortium (W3C) as a formal language for encoding

knowledge on the Web. The W3C vision of the SW is to make information on the

Web computationally processable by computers instead of only displaying informa-

tion interpretable by people. To facilitate this process, ontology languages have

played a vital role in linking data on the Web by precisely defining the structures

of knowledge for various domains using formal syntax and semantics. The OWL

language has become a standardised and broadly accepted ontology language as it

provides far richer and logic-based semantics than those of the earlier Semantic Web

languages initiatives XML, RDF, and RDFS. These languages or technologies form

the SW architecture and are built on top of each other, as shown in the SW layer

cake diagram (also known as the SW stack) of Figure 2.1. At the bottom of the SW

stack are the URI/IRI technologies, adopted from the hypertext Web to uniquely

identify resources on the SW. The XML language provides a standard syntax to

enable the creation of documents of structured data. At present, XML is not the

only syntax as there are alternative syntax with different features. RDF is the first

language developed to semantically describe resources on the Web, which it does by

relying on Uniform Resource Identifiers (URIs) and using a triple-based format (i.e.,

subject-predicate-object). SPARQL is a data query language developed to query

over RDF and any RDF-based data. For relationships that cannot be directly de-

scribed using description logic, logical rules can assist with this, as long as they are

defined using Rule Interchange Format (RIF). RDFS extends the basic RDF vocab-

ularies to allow resources to be classified into classes and subclasses, and imposes

restrictions on properties using vocabulary such as rdfs:class, rdfs:subClassOf,

rdfs:subPropertyOf, rdfs:domain, and rdfs:range, which allow the creation of sim-

ple ontologies. However, RDFS is still not greatly expressive; it lacks a sufficient

number of sets of vocabularies to represent the essential relationships between the
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Figure 2.1: Latest Semantic Web Layer cake diagram, from https://www.w3.org/

2001/sw/

classes of complex domain knowledge. In this regard, OWL offers the ontology

builder an additional rich vocabulary for expressing important domain classes and

properties, and adds constraints on the use of this vocabulary. On the top of the

ontology layer, there is the unifying logic layer, which is responsible for assuring

the consistency and correctness of the interchanged data. Once their unified logic is

assured, the proof and trust layers then evaluate the quality of the data and ensure

their trustworthiness, before transferring the final results to a user interface and

applications.

To introduce some of the key language features that OWL offers, we provide ex-

amples from OWL Primer2, which can be encoded using several syntactic for-

mats, though here, we use the standard OWL2 syntax RDF/XML [40]. In ad-

dition to RDFS vocabularies, OWL has introduced other advanced language con-

structors to specify the relationships between classes, such as DisjointClasses and

EquivalentClasses. For instance, though they can identify as neither, an indi-

vidual cannot identify as both a man and woman. This can be encoded using

DisjointClasses (see Listing 2.1) to allow OWL reasoners to check if developers

have mistakenly classified an individual to be a member of (or more technically ”an

2https://www.w3.org/TR/owl2-primer/
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instance of”) both classes, Man and Woman.

<owl:AllDisjointClasses >

<owl:members rdf:parseType="Collection">

<owl:Class rdf:about="Woman"/>

<owl:Class rdf:about="Man"/>

</owl:members >

</owl:AllDisjointClasses >

Listing 2.1: An example of using the OWL DisjointClasses feature.

Conversely, there are things in world that refer to the same groups and they are

semantically equivalent, as in the case of person and human. Every individual that

is classified as a person, is also a human, and vice versa (see Listing 2.2).

<owl:Class rdf:about="Person">

<owl:equivalentClass rdf:resource="Human"/>

</owl:Class >

Listing 2.2: An example of using the OWL EquivalentClasses feature.

In addition, OWL allows you to apply restrictions on the use properties in order

to describe a group of individuals which satisfy those restrictions. The following

example states that a woman may have at most one husband using the cardinality

constraint maxCardinality (see Listing 2.3).

<owl:Class rdf:about="Woman">

<rdfs:subClassOf >

<owl:Restriction >

<owl:onProperty rdf:resource="#hasHusband" />

<owl:maxCardinality rdf:datatype=

"&xsd;nonNegativeInteger" >1</owl:maxCardinality >

</owl:Restriction >

</rdfs:subClassOf >

</owl:Class >

Listing 2.3: An example of using the OWL property cardinality restrictions feature.

Other advanced modelling capabilities of OWL that increase the language expres-

sivity are the logical characteristics of properties, namely, transitive, functional,

inverse functional, reflexive, irreflexive, disjoint, symmetric, asymmetric and inverse

properties. These add more semantics to the use of properties and enable reason-

ers conformant with OWL to infer further information about resources. In case

a property stated to be a transitive, and the property such as hasAncestor linked

individual A to another individual B, which has the same relation to individual C,

then the transitive property would enable a reasoner to infer that A hasAncestor C.
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While, a symmetric property can only specify a relationship in one direction, and

rely on a reasoner to infer the opposite direction of the relationship, for instance,

isMarriedTo (in Listing 2.5). Conversely, a reasoner cannot infer the inverse rela-

tionship of the property of asymmetric type, as in the case of hasChild property

which cannot be applied on both direction of individuals. Moreover, the same no-

tion of classes disjointness can also be applied on properties in order to represent

some common law in relationships. For example, an individual cannot have both

relationships hasParent and hasSpouse to another individual. In Listings 2.4 to 2.6

we show some of the OWL property characteristics syntax. For a more detailed on

property characteristics please refer to the OWL Prime web page3.

<owl:TransitiveProperty rdf:about="hasAncestor"/>

Listing 2.4: An example of transitive property.

<owl:SymmetricProperty rdf:about="isMarriedTo"/>

Listing 2.5: An example of symmetric property.

<owl:AsymmetricProperty rdf:about="hasChild"/>

Listing 2.6: An example of asymmetric property.

<rdf:Description rdf:about="hasParent">

<owl:propertyDisjointWith rdf:resource="hasSpouse"/>

</rdf:Description >

Listing 2.7: An example of disjoint property.

In general, the degree of expressivity and computational complexity of the OWL

language varies among the three sublanguages of OWL: OWL Lite, OWL DL (De-

scription Logic), OWL Full which are intended to fulfil the different needs of ontology

developers.

1. OWL Lite: the simplest semantics version (compared to other versions of

OWL) which is more suitable for domains with straightforward knowledge

representation and limited cardinality restrictions. It is used to convert simple

classification hierarchies, such as taxonomies into ontology format. OWL lite

3https://www.w3.org/TR/owl2-primer/
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is a light version of the OWL DL and has semantic equivalent to description

logic SHIF.

2. OWL DL: this specific language of OWL provides a high degree of expression

in parallel with a guarantee to maintain computational completeness. The

OWL DL syntax is mapped to the formal semantics of the description logic

SHOIN(D). These semantics are fully decidable, but with a higher computa-

tional complexity than the semantics of OWL Lite. Table 2.1 shows the main

language constructors integrated in OWL DL with the equivalent SHOIN(D)

syntax.

3. OWL Full: although it uses the same set of language constructs as the OWL

DL, OWL Full has few constraints in the way that these constructs can be

used; as a result it does not map to a DL; this means that the automated

reasoning over OWL Full is much less defined than for the other levels of

OWL and would not necessarily be decidable.

The current version of OWL is the second edition (OWL2) [56] which was released

in 2012 with the official RDF/XML syntax. In fact, the OWL language is specified

in a high level structural specification that is then translated into several concrete

syntaxes [121]. There are a number of syntaxes in which OWL ontologies can be

expressed and shared, namely, RDF/XML, OWL/XML [57], the Functional-Style

Syntax and Manchester Syntax [59]. Next, we provide a brief description of each

syntax, their design purposes and any advantages or drawbacks associated with each

syntax. Moreover, an example for each syntax is provided in Listings 2.8 to 2.11

with simple ontology name and class Thesis.

1. RDF/XML Syntax: defined by the W3C to be the standardised and default

syntax for storing OWL2 ontologies by most OWL compliant tools. As the

name implies, this syntax allow the encoding of RDF graphs in XML for-

mat. However, the syntax is extremely verbose and hard to read especially for

complex knowledge representation (see Listing 2.8).
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Table 2.1: Table summarises the basic building blocks and axioms that are used in
constructing an ontology using OWL DL with the corresponding SHOIN(D). The A
and B denote either atomic or complex concepts (refer to as a class in OWL), c and
d refer to individuals, and R and S are roles (refer to as a property in OWL) [104]

Constructor Name OWL-DL SHOIN(D) DL syntax

Conjunction intersectionOf(A,B) A [ B
Disjunction unionOf(A,B) A \ B
Negation complementOf(A)  A
OneOf oneOf(c,d,....) {c,d,.....}
Universal value restriction allValuesFrom(A) @R.A
Existential value restriction someValuesFrom(A) DR.A
Number (atleast) restriction minCardinality(n) ě nR
Number (atmost) restriction maxCardinality(n) ď nR
Number (exact) restriction cardinality(n) = nR
Concept inclusion rdfs:subClassOf(A,B) AĎB
Concept equivalence equivalentClass(A,B) A”B
Property inclusion rdfs:subPropertyOf(R,S) RĎS
Property equivalence equivalentProperty(R,S) R”S
Individual equivalence sameAs(c,d) c = d
Concept disjointness disjointWith(A,B) AĎ B
Individual disjointness differentFrom(c,d) c‰d
Transitive property TransitiveProperty(R) R`ĎR
Symmetric property SymmetricProperty(R) R”R´

Functional property FunctionalProperty(R) ď 1R
Inverse property inverseOf(R) R´

Inverse Functional property InverseFunctionalProperty(R) ďR´
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2. Functional-Style Syntax: this syntax is a text-based syntax and represents the

link between a high level structural specification and various concrete syntaxes.

Functional-Style syntax is used to define the semantics of the OWL2 ontologies

and enable the mappings from and into exchange syntaxes, such RDF/XML

syntax [88]. Although it is more human-readable syntax than RDF/XML, it

is still verbose (see Listings 2.9).

3. OWL/XML Syntax: the primary advantage of using XML syntax to represent

OWL ontologies is the use of XML processing and querying tools that are not

compatible with RDF/XML, such as XPath and XSLT (see Listings 2.10).

4. Manchester Syntax: it is more human readable syntax, frame-based and being

used in various ontology development tools, such as Protégé.

<rdf:RDF ... >

<owl:Ontology rdf:about="http :// www.example.com/ontology"/>

<owl:Class rdf:about="...ontology.owl#Thesis">

</rdf:RDF >

Listing 2.8: RDF/XML Syntax.

Ontology(<http :// www.example.com/ontology >

Declaration(Class(<http :// www.example.com/ontology.owl#Thesis >))

)

Listing 2.9: Functional-Style Syntax.

<Ontology .... >

<Declaration >

<Class IRI="http :// www.example.com/ontology.owl#Thesis"/>

</Declaration >

</Ontology >

Listing 2.10: OWL/XML Syntax.

Ontology: <http :// www.example.com/ontology >

Class: <http :// www.example.com/ontology.owl#Thesis >

Listing 2.11: Manchester Syntax.
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2.2 SNOMED-CT and ICD-11 Ontologies

Here, we introduce some of the most successful ontologies, which have developed

based on description logics and using OWL languages. The features offered by De-

scription Logics and OWL (i.e., well-defined semantics and automated reasoning)

facilitate the construction of large and complex ontologies, and enable consistent rep-

resentation of knowledge of many real-life application domains, such as biomedical

and biological domains. For example, the early development of the medical model

SNOMED-CT (abbreviated as SCT) depended mainly on the use of description

logics and reasoning services to describe complex concepts related to clinical proce-

dures, diseases, and treatments in classification hierarchies. This enabled the SCT

community to implement more useful analytical operations, thus verifying the logical

integrity of the model and subsequently improving the quality of clinical informa-

tion. Currently, SNOMED-CT includes more than 355,000 classes, and has become

the national standard in several healthcare institutions of various countries, such as

the United Kingdom, United States of America, and Canada [103]. The SCT has

concepts like Procedure (with a unique numeric identifier (ID: 71388002), which

subsumes all the activities made to provide a health care, such as Laboratory pro-

cedure (with an ID: 108252007) and attributes, such as Has focus (ID:363702006)

to specifies the focus of a specific procedure. The number of classes increases ev-

ery year which make the processes of development and maintenance expensive and

time-consuming. Moreover, the original formulation of SNOMED-CT has many

limitations in terms of expressiveness such as the inability to state transitivity of

properties or to determine the equivalence of concepts. The SNOMED-CT commu-

nity considered reformulating the content of SCT into a more expressive language

with consistent representation which was OWL. The transformation of SCT into an

OWL ontology requires a Perl script provided by the SCT community to convert the

RF2 files into OWL file [91]. The key advantages of this reformulation are: firstly,

the current development of the SCT OWL version involves a large number of in-

ternational medical experts who update the ontology using web-based collaborative

platform, such as WebProtégé; secondly, improving the accuracy and expressivity

of the classification; and thirdly, the large number of tools which support the cre-
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ation, automated classification and visualisation of ontologies formalised using OWL

syntax. It was not only SNOMED who made that decision, but also the 11th Interna-

tional Classification of Diseases (ICD-11) uses OWL to formalise the classification of

patients diseases and health care conditions developed by the World Health Organ-

isation (WHO). In fact, the SNOMED classifications have been used in the textual

content of Electronic Healthcare Records (EHRs) to annotate these records which

are then used to create the ICD-11 ontology. The reformulation enables ICD-11

to function in any health information systems, mostly EHRs and to link its con-

cepts to other healthcare ontologies concepts such as SNOMED-CT. Representing

SNOMED-CT and ICD-11 in OWL format supports semantic interoperability in

health information systems because both ontologies use a common language in the

description of same domain entities. However, ontologies have been used intensively

over the last two decades, specifically in biomedical and biological research for dif-

ferent reasons which raises several issues such as the overlap of ontologies terms and

reuse.

In the section that follows, we will discuss the substantial effort that has been made

by the Open Biological and Biomedical Ontologies (OBO) Foundry [101] to manage

issues associated with ontology development by providing a number of services and

guidelines.

2.3 Open Biological and Biomedical Ontologies

(OBO)

Open Biological and Biomedical Ontology (OBO, previously Open Biomedical On-

tologies) consortium is a considerable effort that has been made to design a variety

of reference ontologies which covers all areas in the biological and biomedical sci-

ences. To achieve this goal, the OBO foundry provides a set of regularly updated

principles, guidelines and best practices to be considered during ontology develop-

ment by those who intend to submit their ontologies to the consortium. Several

principles for ontology development, available at 4, include, ontologies are open, free

and available to be used, ontologies authoring using common formal language (e.g.,

4http://www.obofoundry.org/principles/fp-000-summary.html
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OWL, OBO format), orthogonal (i.e., each term is defined only in one ontology),

ontologies have a unique space of identifiers (such as GO, OBI, CL) and have a con-

tent that is bounded to the stated scope. They use few capitalised words (such as

MUST and SHOULD) to indicate when the principles are applied. For example, the

principle Commitment To Collaboration means: ontology developers must provide

a brief description about the submitted ontology and their assurances that there

are no other ontologies cover the same domain. The claimed advantages of commit-

ting to the collaboration principle are: ensure reuse of ontologies terms (avoiding

overlap), improving interoperability between different knowledge systems and built

ontologies that are scientifically accurate and well-formed [101]. There are over 60

ontologies which have been retrofitted or built on the basis of OBO principles, such

as the Ontology for Biomedical Investigations (OBI) [11]. OBI reuses terms from

large number of OBO ontologies, specifically of biomedical knowledge representation,

such as the Gene Ontology (GO) [43], The Phenotype And Trait Ontology (PATO)

and Chemical Entities of Biological Interest (ChEBI) [52]. OBI includes more than

3,400 terms which describe the various elements involved in all phases of biomed-

ical investigations, including design of experiments, procedures and devices used,

biological material and the list of analysis performed on the acquired data.

In order to make better use of the principles, the OBO foundry built its own language

along with the popular GUI-based ontology OBO-Edit software [32] for building

biomedical ontologies. Originally [108] the OBO-format was less logically expres-

sive than OWL, because it did not include all the constructs (e.g., restrictions on

classes) which OWL has. However, the OBO format did include other standard

syntax, which OWL only support as generic annotations, including synonyms (e.g.,

broad, exact, related, narrow), local identifiers and ’subset’ construct (subset is a

collection of terms only, and specified as part of an ontology). More recent ver-

sions of OBO format support all OWL constructs via extension mechanism using

OWL functional syntax. Because the OBO guidelines gave developers the freedom

to use whatever formats and technologies to build their ontologies, a number of

OBO ontologies were developed using OWL. Conversely, several methodologies and

tools have been reported to implement bidirectional OBO–OWL conversion, and
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subsequently to enable semantic interoperability between Semantic Web and OBO

systems. Recently, the OBO community support the use of ROBOT (OBO Tool) [62]

that is a free and open source software, compatible with several ontology syntaxes

(e.g., OBO format, OWL Manchester Syntax) and offers wide range of ontology

development tasks, such as updating, testing, reasoning and format conversion.

The section below introduces the Gene Ontology (GO) [28], one of the most suc-

cessful ontologies and its success that has inspired the development of a significant

number of bio-ontologies and the creation of the OBO foundry. It is the focus of

this thesis.

2.4 Gene Ontology (GO)

The Gene Ontology (GO) is the result of an intensive collaborative effort to provide

a formal and computational representation of biological systems, including the func-

tions of genes and genes products (e.g., proteins, RNA) from different organisms.

One of the major goals of biomedical research is to understand the biological roles

of the genes and their products at different molecular, cellular and organism levels.

The benefit of studying the functional genomics of an organism is to gain enough ex-

perimental knowledge that can be applied to other organisms because a large set of

the genes are shared among eukaryotic organisms [18]. There were several attempts

aimed to interpret and annotate the function of genes, such as the use of natural

language to describe data in biological databases which were found to be insufficient

to accurately interpret the role of genes and to enable data integration [35]. Further-

more, there were several obstacles toward unifying the description of the function of

genes, including the complexity of the domain knowledge, the significant growth of

biological data that to be analysed and the diversity of molecular information about

genes and their products in biological databases from different sources.

The Gene Ontology Consortium (GOC) addressees these challenges by providing

formal, structured and consistent descriptions of the theory and practice of experi-

mental biological knowledge concerning the function of genes [55]. The contribution

of the GOC has been divided into three major efforts. The first contribution is the

logical classification of the biological roles of genes and their relationships to other
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functions, represented by the Gene Ontology (GO). GO is structured as a Directed

Acyclic Graph (DAG), where each term (i.e., represent a gene function) placed in

the DAG has a relationship, such as is_a or part_of to other terms in a related

domain or different domains. Figure 2.2 shows part of the GO structure, where

each GO term as node and the arcs represent the relationships among the terms

across three ontologies. That is, the Gene Ontology composed of three large and

non-overlapping sub-ontologies, namely Biological Process Ontology (BPO), Cellular

Component Ontology (CCO) and Molecular Function Ontology (MFO). Each of the

three independent ontologies covers key areas of the biological domain in which the

functions of gene products take place.

• MFO: provides the set of terms that describe the different activities of gene

products at the molecular level. Examples of a molecular-level activities are

catalytic activity, transport activity and binding activity.

• BPO: contains a class of terms which describe a series of events which are

achieved by one ore multiple ordered molecular activities. Example of biolog-

ical process is response to stimulus which include more specific biological

processes such as cellular response to stimulus.

• CCO: It contains the set of the terms that describe the parts of the cell,

where the gene products reside. Example of cellular locations are: nucleus,

nucleolus and mitochondrion.

The aim of the Gene Ontology is to represent the most current state of biological

knowledge based on latest discoveries from published articles, methods and exper-

iments [28]. Each month there is a new release of GO which includes significant

improvements in the quantity and quality of the ontology. This includes defining

new terms, adding additional relationships, rearranging ontology classification and

linking gene products with the recent added terms that represent their functions.

The second contribution refers to the Gene Ontology Annotation (GOA) project

that is an evidence-based collection of biological information created by defining a

connection between a gene product and the related set of terms in GO based on
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an evidence supporting that annotation [27]. These annotations are contributions

from several model organism databases and biological research communities. In fact,

the initial development of GO (in 1998) was a collaboration between three different

models organism databases to interpret and annotate the biological functionality

which genes and gene products contribute to the biological systems in only three

organisms, namely, Mouse Genome Information(MGI) [16], Saccharomyces Genome

Database(SGD) [26] and FlyBase [47]. Recently, the GOC has grown to include sev-

eral other resources (available at 5), such as the plant repository, animal repository

and microbial genomes. Moreover, the GO Consortium improves the GO classifi-

cation by importing relevant terms from external bio-ontologies into the updated

version of GO that is GO-PLUS [54]. The GO-PLUS defined a new relationship

which links a GO term with the corresponding term from other ontologies, mainly

with three ontologies: Cell Ontology (CL) [12], the Chemical Entity of Biological

Interest (ChEBI) and Uber Anatomy Ontology (Uberon) [85]. A Large fraction

of these mapping are to the ChEBI ontology. ChEBI ontology provides the most

comprehensive standardised and structured chemical terminology of biological inter-

est. The GO also includes other cross-references between the GO terms and several

widely-used related systems, such as Enzyme Commission (EC)6, Kyoto Encyclope-

dia of Genes and Genomes (KEGG) [68] and Rhea databases [4]. However, there

are a large number of GO terms that are not yet cross-referenced.

The third contribution of the GOC is the provision of a set of tools that facilitate the

browsing, visualising, querying, analysis and downloading of the GO ontologies and

annotations. In recent years, many types of tools have been developed with different

capabilities to enable researchers to access information about the GO terms and their

relationships and related gene products either manually or computationally. A large

number of these tools have been designed by other biological research communities

outside the GOC community [83]. Here, we provide a brief description of the current

widely used tools which have been used extensively during our ontology development:

1. AmiGO [21]

5http://geneontology.org/docs/annotation-contributors/
6http://www.sbcs.qmul.ac.uk/iubmb/enzyme/
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Figure 2.2: Gene Ontology sub-hierarchy, from http://www-legacy.

geneontology.org/GO.ontology.structure.shtml

The current official web-based application developed and maintained by the

GOC to allow for searching, browsing, and visualising the structure of GO and

its annotations. AmiGO includes a set of features and tools:

‚ An interactive ontology browser: enabling GO users to navigate through

the ontology structure.

‚ BLAST search engine: for querying against the gene products sequences

annotated with the GO terms.

‚ Term Enrichment: to find the common functions among a set of genes

using GO annotations.

‚ GO Slimmer: used to have a mapping between annotations of a set of

genes and GO terms.

‚ GO Online SQL Environment (GOOSE): an interface that enables users

to run queries against the GO database using SQL and download the

result of query in different formats.

2. QuickGO [15]

One of the most popular web-based tools that facilitate the browsing of

GO ontologies and their associated annotations. QuickGO is a product of
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the European Molecular Biology Laboratory’s European Bioinformatics Insti-

tute (EMBL-EBI) developed to provide the users of GO a weekly updated

version of the GO ontologies allowing the search and display of information

about GO terms and their relationships. In general, QuickGO includes the

same information about GO terms and their relationships as AmiGO, but in a

different display format. The benefit of using QuickGO is the ability to search

and use multiple filtering options on both electronic and manual annotations.

In the section that follows, we will discuss several attempts aiming to enhance the

Gene Ontology representation and to overcome the difficulties related to the ontology

development and maintenance.

2.4.1 Previous efforts to improve GO

It has been more than two decades since the establishment of GO, meanwhile, the

ontology representation has evolved in response to the development of ontological

languages and techniques that facilitate ontology building and management.

An early attempt to change the informal and hand-crafted description of GO to

a formal representation and logic-based description was carried out by Wroe [120]

in cooperation with the GOC team. They exploited the features of the knowledge

representation language DAML+OIL [60] and DL-based reasoners to provide rich,

formal representation and automatic classification of GO in the Gene Ontology Next

Generation (GONG) project. The use of the DAML+OIL language considerably

simplified the GO development and maintenance processes.

Another effort conducted by Mungall [84] who attempted to normalise GO by trans-

forming the textual definitions of the GO classes into computable logical definitions

to be exploited by reasoners. The created logical definitions partitioned into cross-

product mappings to describe the biological functions using internal and external

classes from related OBO Foundry ontologies, such as proteins from PRotein On-

tology (PRO) [100], chemical entities from ChEBI, CL, Sequence Ontology (SO),

and using relations from the Relation Ontology (RO) [102]. For example, the MF

x ChEBI cross-product class aimed to define all the molecular functions that have

chemical entities as input, output or both from the ChEBI. They claimed that these
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logical definitions have enhanced the GO in different aspects. Firstly, by enabling se-

mantic interoperability between GO and other OBO ontologies. Secondly, facilitate

the integration of GO data with other OBO ontologies. Finally, logical definitions

can be used by reasoners which would facilitate the reconstruction and validation

of the ontology automatically. However, there were no reasoner that can reasons

over all the elements: GO, the cross-product set and all the referenced candidate

ontologies. Alternatively, the reasoning applied on separate cross-product sets along

with the associated ontologies.

In the following sections, we will investigate the most well-known methodologies and

technologies that have been used for ontology engineering.

2.5 Ontology development methodologies

Ontology engineering is the set of ontology development tasks that are performed

by ontology developers to construct consistent and useful ontologies. These domain-

independent tasks are based on a variety of elements: methods and methodologies,

principles, tools and languages which support the initiation, development and main-

tenance of ontologies. An ontology building methodology provides a set of guidelines

and design principle which explain the decisions that need to be made in every stage

of the ontology building life cycle. In the last two decades, several methodologies

and best practice has been proposed either as a result of upfront design, or stem-

ming from practical experience of a development process of multiple ontologies [61].

Although, most of the proposed methodologies were designed for the construction of

ontologies from scratch, there were other approaches and methodologies developed

to facilitate other development processes, such as ontology evaluation, ontology re-

engineering and ontology evolution. In fact, there is no single standardised ontology

design methodology that is widely used and covers all aspects of ontology devel-

opment regardless of the application domain [50]. However, most methodologies

share common stages: requirement specification, conceptualisation, formalisation,

structure implementation and evaluation. Next, we consider the most well-known

methodologies for building ontologies.
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2.5.1 OntoClean

OntoClean [48] is one of the leading methodologies that was developed to ensure

the correctness and consistency of the taxonomic hierarchies of an ontology. It

consists of a set of formal and domain-independent meta-properties that are used

for annotating the intended meaning of concepts, properties and relations defined

in an ontology of any application domain. Moreover, it includes constraints on the

use of the meta-properties to ensure the integrity of the created ontology taxonomy.

That is, the idea of OntoClean methodology is to validate an ontology taxonomy by

highlighting not appropriate and incoherent classification insights in the taxonomy

so that the ontologist can correct it based on a group of general meta-properties.

These meta-properties, or referred to as highly general ontological notions, adopted

from philosophical ontological notions which are identity, dependence, unity, and

rigidity. Later, the OntoClean meta-properties were extended by two more meta-

properties that is permanence and actuality to describe the behaviour of properties in

term of time and existence [117]. All entities with an ontology are associated with

these meta-properties to describe the entities characteristics using three different

labels for each of the meta-properties. The property rigidity is one of the important

notions that describe how a property of an entity being essential to the instances of

that entity by label it as rigid, non-rigid, or anti-rigid. For example, the property

of having a brain is essential to a person, so every instance of a person must have

a brain in every possible world. Another property can be labeled as a semi-rigid

if there are some instances that cannot exhibit the property. Constraints can be

applied on the use of these properties, such that if a property A subsumes property

B and A classified as anti-rigid, then property B must be classified as anti-rigid.

2.5.2 Ontology Normalisation

The primary objective of the ontology normalisation methodology is to enable the

creation of explicit and modular ontology that will overcome several issues related

to ontology development via a reduction of manual maintenance, re-use of ontology

classification, and facilitation of ontology evolution. The methodology is divided

into two independent stages: i.e., “ontological normalisation” refers to the clean

definition of the basic knowledge structure of ontology concepts using a technique
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such as OntoClean. The second part is the normalisation approach to ontology

implementation [93], which requires two steps: first, disentangling the structure of

an ontology into two independent, disjointed taxonomies, i.e., self-standing concepts

and refining concepts. The self-standing concepts refer to the core concepts of a

particular domain (the physical and conceptual things in the world, e.g., “people”,

“animal”, “phone”) that may or may not be defined using other descriptive concepts

and conditions. The self-standing concepts should be disjoint from their siblings,

and the children need not cover their parents. The second taxonomy, the refining

concepts (e.g., ”small, medium, large”), are used to define self-standing concepts.

In contrast to the self-standing taxonomy, the children of each refining concept

should be made exhaustive (covering the parent concept), though they still need

to be disjoint. Then, decomposed taxonomies are recombined based on a list of

definitions, formal descriptions, axioms, and a reasoner.

By classifying ontology entities in this way, the ontologies of complex domains can

be constructed from small ontologies. This mechanism allows ontologies to be con-

structed from several modules that can be reused, maintained, and independently

developed with minimal effort [94]. As the approach relies on logical reasoners to

create subsumption hierarchies by linking related modules, to allow a reasoner to

build an accurate and normalised ontology, all definitions and formal description

of concepts should be accurate and complete, with a clear distinction between self-

standing and refining hierarchies. To this end, top-level ontologies provide basic

categories and distinctions that can be used to improve the expression and accuracy

of the modules in a given domain. Figure 2.3 provides an example of an ontology

before and after normalisation. The original hierarchy is given on the left and the

normalised skeleton taxonomies and sets of definitions and axioms can be seen on the

right. Based on the lists of definitions, axioms, and restrictions, the two separated

hierarchical taxonomies are recombined.

2.5.3 Ontology Hypernormalisation

A more recent approach developed as an extension of the ontology normalisation

methodology is hypernormalisation [77]. In the normalisation approach, the deci-

sions on which the different taxonomies are formed are to some degree arbitrary.

- 34 -



Chapter 2: Background and Related Work

Figure 2.3: Normalised ontology of biological substances and roles, from [94]

However, this considered to be unnecessary because it can be achieved through the

use of reasoning especially for the self-standing hierarchy. In this regard, the hy-

pernormalisation technique can be distinguished from the normalisation technique

in that the asserted hierarchy of an ontology is nearly or completely a flattened

hierarchy among self-standing classes. Figure 2.4 shows part of the amino acid on-

tology [107] represented in a normalised form where the self-standing hierarchy is

created, arbitrarily, from the aromaticity of the amino acids. The same ontology rep-

resented in the hypernormalised form, where the self-standing hierarchy is flattened,

as show in Figure 2.5. This type of normalisation exploits logical reasoners to build

the different hierarchies, instead of manually creating and editing them. For exam-

ple, the concept of small positive non-polar hydrophobic amino acid has five parents,

namely, small amino acid, positive amino acid, non-polar amino acid, hydrophobic

amino acid and amino acid. With the right axiom patterns, the reasoner will infer

the right hierarchy without the need for the developer to re-build the polyhierarchy.

That is to say, the only task of the developer is to define the self-standing classes

in terms of their properties, with no specific classification required. Conversely, the

refining types should be correctly built.

The hypernormalisation technique is of an incremental nature, i.e., increasing the

effort made during the hypernormalisation process results in greater inferred links
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in the final reasoning stage. More specifically, describing every detail about the

core concepts of a given domain in the refining taxonomies increases the number of

relationships then inferred by the logical reasoner. As such, the hypernormalisation

process depends on how much detail an ontology developer wants to model and

how much they want to simplify. Moreover, hypernormalisation is not an ontology

development technique that must be completely implemented, or else cannot be used

at all. On the contrary, it is possible to come across some relationships that could

not be captured using the hypernormalisation approach (i.e., inferred) but to be

manually asserted.

Ontologies of partonomic structures are not amenable to this type of classification

as their hierarchies are formed mainly using part-of relationships. For example, in

anatomical ontologies, classes are structured using the two common relationships,

part-of and type-of [9]. One of the main principles of creating a normalised ontol-

ogy is having subsumption relationships between the primitive concepts of a domain

knowledge (i.e., not a partonomy) [93], to allows a logical reasoner to infer the right

classification and check the ontology’s consistency. Hypernormalisation is only ben-

eficial when ontology classes can be represented in a taxonomic tree with multiple

inheritance subsumption relationships. That is to say, the purpose of hypernormal-

isation is to handle a complex multiple-inheritance hierarchies.

Lastly, to be able to implement this type of ontology development, OWL or other

DL based formalisms are required. Within the OWL languages, OWL-DL is the

sub-language of OWL required for hypernormalisation, as the process depends on

the modelling constructs (e.g., owl:disjointWith) and features available with the

OWL-DL. As well as this, OWL-DL provides a high degree of expression in parallel

with a guarantee to maintain computational completeness. Tawny-OWL [76] (de-

scribed in detail in Chapter 3) is a programmatic environment for OWL2 ontologies

development, OWL2 encompasses: OWL-Lite, OWL-DL and some components of

OWL-Full. In addition, Tawny-OWL provides higher-level patterns that explicitly

supports the creation of a hypernormalised ontology.
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Figure 2.4: A normalised ontology for Amino Acid Ontology. Some labels have been
abbreviated

Figure 2.5: A hypernormalized ontology for amino-acid ontology slightly modified
from [77]
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2.6 Ontology development technologies

2.6.1 Ontology Design Patterns (ODPs)

ODPs have become a key component of ontologies development lifecycle which in-

volves solving ontology modelling problems with acknowledged solutions. Like in

software engineering, ODPs are domain-independent ontology design patterns. By

applying common solutions to most recurrent problems, this allow the creation of

rich and strong representation of an ontology, reduced the effort and time spent

during an ontology design process and ease communication between ontology de-

velopers [42]. The most challenging and critical areas of ontology modelling is the

ability to make them reusable, maintainable and easily extendable which are rela-

tively common with complex and large ontologies. Ontology patterns can be used

to support the process of ontology engineering and improving existing ontologies by

encouraging the reuse of best practice and well-proven ontology code. There are

several types of ODPs which have being grouped into six families; Presentation,

Structural, Correspondence, Reasoning, Lexico-Syntactic, and Content ODPs [105].

A brief explanation of each ODPs are in the following:

1. Presentation OPs concern with improving ontologies readability and usability

based on a user point of view. Examples of presentation OPs are Naming and

Annotation OPs.

2. Structural OPs: cover Logical and Architectural ODPs.

‚ Logical OPs provides solutions for problems related to ontology language

inadequacy and limitations to increase the language expressivity. For

example, in OWL a property is a binary relation, in order to represent a

relation between more than two concepts, we need a Logical OP to enable

this feature.

‚ Architectural OPs specify the overall ontological structure and design

internally or externally.

3. Correspondence OPs can be either Reengineering or Mapping OPs.
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‚ Reengineering OPs consist of a set of transformation rules that can be

used to generate ontologies from different source (ontological and non-

ontological sources).

‚ Mapping OPs, as the name suggests, allow related ontologies (i.e., in a

similar domain) to be linked based on some semantic relations, such as

equivalence, overlap and containment.

4. Reasoning OPs aim to provide effective reasoning services related to classifica-

tion, inheritance, materialisation, subsumption and de-anonymising to achieve

better reasoning results on some ontologies. A reasoning pattern called Nor-

malisation [110] is one of the well-known Reasoning OPs.

5. Lexico-Syntactic OPs (LSPs) consist of a set of syntactic structured words

that can be used for extracting semantic relations (e.g., is_a part_of) from

unstructured text which are then used in creating ontologies. For example the

patterns of identifying hyponym/hypernym relations developed by Hearst [53]

aimed to find hyponyms and hypernyms in text (see Table 2.2).

6. Content OPs (CPs) aim to address the design problems related to the content

of a domain by providing solutions to define the domain classes and properties

in a small ontologies (building blocks). They can be reused to solve design

problems in related domains either directly or by making necessary modifica-

tions and extensions. CPs can be encoded using a representation language,

however, in order to reuse them over the Semantic Web CPs need to be encoded

in OWL [41].

The project of GONG proposed a number of ODPs that facilitate the migration

of large biological ontologies to more formal and richer ontology language, such as

OWL DL [64]. In this thesis, we investigate GO and attempt to build content

patterns (CPs) that provide solutions to recurrent modelling issues that are more

specific to the GO ontology.
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Table 2.2: The Hearst Lexico-Syntactic OPs for finding hyponyms and hypernym
relations. The NP refers to a noun phrase

No Patterns Example

1 NP0 such as {NP1, NP2,
NP3..., (and or) } NPn

Popular biological ontologies, such as GO
and ChEBI.

2 Such NP0 as {NP1,} * {or
and} NPn

Such membrane proteins as Histones and
C-myc play various roles . . .

3 NP1 {,NPN} * {,} (and
or) other NP0

. . . atoms, ions and molecules or other
chemical entities . .

4 NP0 {,} including {NP1,}
* {or and} NP2

BioPortal contains a large set of
bio-ontologies including GO and CL.

5 NP0 {,} especially {NP1,}
* {or and} NP2

..ontologies are hard to maintain especially
large-scale ontologies

2.6.2 Ontology reasoners

An ontology reasoner is a software application that is designed to discover indirect

and implicit knowledge from a set of explicit defined facts in ontologies and knowl-

edge bases systems. The explicit facts are expressed in an ontology language, such as

the OWL a description logic-based language which make the automated reasoning is

possible. Reasoners plays a significant role in ontology development, as they assist in

determine ontology consistency and infer the subsumption relationship between the

classes described in an ontology. Many reasoners nowadays support the main set of

reasoning tasks, such as ontology consistency, classification, instance checking and

query answering. The GOC uses the OWL reasoners, ELK [70] and Arachne [10]

reasoners. Arachne is an OWL RL reasoner, was developed to support reasoning

with the GOC modelling tool Noctua Stack while developing GO ”Causal Activity

Models” (GO-CAM). GO-CAMs designed to show the contribution of gene products

towards the implementation of biological processes.

Next, we introduce the most used ontology editors in the last few years.

2.7 Ontology editors

2.7.1 Protégé

Protégé is the most popular tool for ontology development because it provides both

web-based and graphical user interface with a very rich environment. There are
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more than 360.000 registered users who are using the Protégé platform to build

their ontologies. Protégé developed by Stanford Medical Informatics and it is a free

open-source application which allows the definition of ontology elements such as

classes, properties, relationships between classes, variables, value restrictions, and

many other features. One of the biggest value of Protégé is the ability to extended the

core functionalities and architecture of Protégé platform with very useful features

which would increase the system capabilities, developed by either Protégé official

developers or contributors from all over the world.

2.7.2 ROBOT

ROBOT (OBO Tool) [62] is one of the latest ontology development tools that aims

to automate ontology development tasks, with consideration of OBO conventions.

ROBOT is divided into two main parts: “robot-core” that is a library consists of a

set of core high-level functions that are based on low-level functionality from OWL

API [58] and Apache Jena [22]. The library can be imported in any programming

language runs on the Java Virtual Machine (JVM). The other part of ROBOT

is “robot-command” a command-line interface that includes several different com-

mands each of which performs a particular function some commands correspond to

functions from the “robot-core” library. For example, ROBOT includes commands

for running reasoner, add annotations, converting formats, module extraction and

axioms filtering. Because ROBOT builds on OWLAPI, this make it compatible with

several ontology syntaxes (e.g., OBO format, OWL Manchester Syntax). ROBOT

is designed to be a successful substitute to previous tools, specifically OWLTools

and its command-line tool the OBO Ontology Release Tool (OORT). OWLTools

used by various OBO ontology projects as it provides a set of practical methods

for implementing OBO-style, as well as enabling the full features of OWL API and

OWL reasoner API. The conversion between OBO and OWL format is implemented

using the command-line tool OORT.

2.7.3 Tawny-OWL

Tawny-OWL environment enable ontologies to be built, evaluated, tested program-

matically and provides a pattern development methods. Patterns can facilitate the
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development, because it eliminates the need to think about complicated subsump-

tion relationships. Tawny-OWL allows patterns to be developed in the same place

where classes and properties created, and defined as easy as classes, properties and

relations being defined. Recently, a number of ontologies were developed success-

fully in the Tawny-OWL environment, such as the Karyotype Ontology [113] and

Mitochondrial Disease Ontology [114].

2.8 Thesis terminology management

In this next section, we consider the philosophical background that helps us to

understand the relationship between the world, knowledge and how we represent

this knowledge. We use this discussion to develop and describe the terminology

shown in Table 2.3 which we will use throughout this thesis.

The purpose of ontologies in both information sciences and philosophy fields is to

represent or model things exist in reality including entities, processes, events, ideas,

properties and relations with respect to their nature and structure [45]. In informa-

tion science, an ontology is defined by its use, a computational artifact (i.e., both

human and machine understandable) created to formally model the different cat-

egories of entities in a given domain of discourse based on the ontology creators

view. However, in order to facilitate the exchange of formally modelled knowledge

between software applications and users in different communities, the definitions of

knowledge entities need to be expressed adequately with a clear and unambiguous

meaning. One of the key situations that undermine the ability of communication

and exchange of knowledge is the use of inconsistent terminology specified in the

ontologies both within and outside specific communities. The absence of an agreed

terminology that are used by a community to describe things exist in reality, causes

a confusion about the prescribed meaning of concepts and ambiguous foundations

to build ontologies from. The terms used within a community need to have the same

meaning that associated with specific concepts.

Fundamentally, words are one of the primary ways to signify the thoughts in our

minds about things that exist either as real-world entities (e.g., apple) or abstract

entities (e.g., thinking). Nevertheless, it is hard to demonstrates the relationships
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between the words we use (both spoken and written), the thoughts that in our mind

and the things that our words and thoughts are refer to. It is because of various

reasons: (a) words change over time and all time (b) a word in different situations

or places means different things to different people (c) many new words added (al-

most daily) to language dictionaries. The formalisation of knowledge in information

science has adopted the notion of “semiotic triangle” introduced by Richards and

Ogden [86] to illustrate the relationships between three aspects: concepts which are

abstract thoughts in the minds of people that refer to objects in real worlds that are

represented using terms, signs or symbols(see Figure 2.6). The use of the triangle of

meaning (another name for semiotic triangle) is implicit and informal and used by

knowledge engineers to avoid ambiguity and justify the meaning of concepts based

on their personal interpretation of either real-world objects or abstract objects.

Representation Reference pobjectsq

Concept pabstract thoughtq

stands for

signifies refers to

pTerm Symbol Signq

Figure 2.6: The semiotic triangle

In this thesis, we have extend the “semiotic triangle” to be specific about what the

symbol is and avoid inconsistent use of terms for ontology’s components and the

corresponding references.

‚ Concept –> thought, not explicitly shared,

‚ Class –> symbol – decomposed into (id, label, definition)

‚ Referent –> individual or type
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In ontology engineering, despite the different type of ontology languages, most on-

tologies share basic elements which are classes, instances and relations between them.

Classes in an ontology represent knowledge concepts or categories. Most ontologists

use the term “concept” and “class” interchangeably as synonyms, although there

should be a clear distinction between the two terms. A class is a concrete represen-

tation of the underlying concept that can be defined in an ontology language using

data-modelling vocabularies, such as OWLClass, rdfs:label and other class descrip-

tions. While, a concept could be the thing that we referring to, the abstract idea.

For example, two different ontologies could represent the same concept as different

classes. The Gene Ontology and ChEBI have different representation of classes for

same concepts. The word “term” is used inconsistently within the ontology develop-

ment community: in some cases, it is used as another synonym for class or concept

(the Gene Ontology uses it in this way); however, it can also be used to refer to

the lexical representation of a concept, also called a label. Here, we prefer the word

“label” but “term” on it’s own is near synonym, term is more general – only a label

when it is part of the ontology class.

In the example below we explain the issue of using same terms for different concepts

and the ontological confusion that would occur because of not being precise about

the meaning of concepts.

* Human is label for individual member of Homo sapiens

* Man is label for concept male human

Listing 2.12: Ontology 1

* Human is label for individual member of Homo sapiens

* Man is label for concept adult male human

* Boy is label for concept child male human

Listing 2.13: Ontology 2

Based on our definition:

Concept: is “Thought or reference” (same as in semiotic triangle)

Class: is Symbol, composed of “label”, “identifier (url)” and logical definition.

From the statements that illustrated in both ontologies, it can be concluded that:

• Human is thought, shared by both ontologies.

• Male is thought shared by both ontologies.
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• Man is label shared by both ontologies, but mapping to different, but related,

thoughts or concepts, where Man in Ontology 1 is superset of Man in Ontology

2.

• Thought Man and Boy in Ontology 2 is not represented directly in Ontology

1.

• Thought Man in Ontology 2 is not represented in Ontology 1, but can be

stated as “man or boy”

In our hypernormalisation ontology we are not changing the entities that exist in

reality and represented by the GO classes. The GO labels we are trying to keep,

we are changing the logical representation of the GO classes that we use to link

together the labels to the underlying notion (the part of reality). Throughout this

thesis, to overcome any confusions and to make clear distinction between a thought,

or a class from specific ontology (e.g., GO and ChEBI), we use a different font style

for each terminology, see Table 2.3. When referring to a class from an ontology, we

include the ontology namespace (e.g., GO, MFO, ChEBI) and the class identifier

(e.g., (GO:xxxxxx), (ChEBI:xxxx)).

Table 2.3: Thesis terminology

No Terminology definition Font styles

1 Concept a concept is the thing that we referring to, the
abstract idea.

all
concepts

are written
in Italic
Shape

2 Class a class is a concrete representation of the
underlying concept that can be defined in an

ontology language using data-modelling
vocabularies, such as OWLClass, rdfs:label and

other class descriptions.

all classes
are written

in
teletype-

font

3 Term a term is the lexical representation of a concept. normal
font

4 Label a“label” is a term only when it is part of an
ontology.

written in
slanted

shape and
between
double
quotes
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Example, the iron(III) refers to the element iron in its +3 oxidation state, repre-

sented in both GO (ferric iron binding (GO:0008199)) and ChEBI (iron(3+)

(CHEBI:29034)), although they use different labels – in GO is“ferric iron”and Chebi

“iron(3+)”)

2.9 Summary

In this chapter, to summarise the issues related to ontology development, we first

had to answer fundamental questions related to ontologies. First, we discussed the

importance of ontologies in the fields of computer science and information science,

and described how an ontology as a modelling technique first became widely used in

the biological and medicinal domains. Second, we explained the transformation of

the definition of an ontology in the context of computer science, and highlighted the

difference between an ontology and other types of conceptual specification schemes.

Moreover, we investigated the set of formal languages in which ontologies can be

expressed, and noted the common elements that these languages offer, with which

we can represent knowledge in a domain of discourse. From there, we concentrated

on one of the most expressive languages, the OWL language, which has become a

standardised and broadly accepted ontology language as it provides far richer and

more logic-based semantics than the earlier SW language initiatives XML, RDF,

and RDFS. Yet, we described how as expressive languages become very popular the

computational reasoning with such languages become a challenging task.

In Section 2.2, we introduced some of the most successful ontologies, SNOMED-

CT and ICD. From these, we learned about the development processes for, and

challenges associated with, improving the quality and structure of these ontolo-

gies. In addition, we discussed the attempts that have been made to reformulate

SNOMED-CT and ICD-11 into the OWL format, highlighting the shortcomings of

these attempts.

In Section 2.3, we discussed the considerable effort that has been made by the Open

Biomedical Ontologies (OBO) Foundry to address the issues associated with ontolo-

gies’ development, maintenance and identification. From this, we learned about the

identification policy of using monotonically increasing numbers to identify ontolog-
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ical resources that are submitted to the OBO Foundry. However, these monotonic

numeric identifiers, if misread or misheard, are likely to be accidentally replaced

with another numbers, which can cause a race condition if two developers build a

single ontology in parallel. Recognising that, we sought to contribute to overcoming

the causal issue by developing a new approach to identifiers, thereby producing ones

that are semantics-free, can be read by humans, and are check-summable. Hence,

our first research question emerged as: “What is the advantages of this approach to

ontology development?” RQ1.

In Section 2.4, we explored the Gene Ontology, one of the most successful biological

ontologies. From our research, we gained an understanding of the biological knowl-

edge represented in the ontology, and how it is structured. Moreover, we uncovered

difficulties with the ontology’s development and maintenance processes.

In Section 2.5, we discussed the most well-known methodologies for building and

easing the development of ontologies. That led us to focus on the normalisation,

hypernormalisation, and pattern-driven development methodologies. We noted how

hypernormalisation has been utilised to ease the development of relatively small

ontologies, which led us to raise our second research question: “Is it possible to

apply this approach to a large ontology, and what we do learn from exploiting

the hypernormalisation and patternisation methodologies to this end?” RQ2. We

adopted the Gene Ontology as a case study with which to explore this further, and

by taking this approach, raised the secondary questions: “How is the shape of the

hypernormalised ontology different from the original ontology?”RQ2.1, “Do we learn

anything from applying this approach”? RQ2.2, and “What type of query capability

we can achieve when implementing this approach?” RQ2.3.

As mentioned in Section 2.5.3, the implementation of the hypernormalisation

methodology depends on designing ontology patterns and using logical reasoners.

Moreover, to be able to implement this type of ontology development methodology,

it is helpful to have an ontology development environment that supports and pro-

vides higher-level patterns. Accordingly, Tawny-OWL [76] (described in Chapter 3)

provides a set of patterns that explicitly supports the creation of a hypernormalised

ontology.
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In the next chapter, we introduce Tawny-OWL as it is the primary tool that we

used to develop our Hyper-GO ontology with the assistance of higher-level patterns

that explicitly support the creation of a hypernormalised ontology.
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3.1 Introduction

In this chapter, we introduce Tawny-OWL [76], the main ontology development tool

that we have used in this research. We provide examples of how an OWL ontology

and its entities can be created in the Tawny-OWL format, which has a syntax

designed after the Manchester OWL Syntax [59]. The Manchester Syntax Syntax

is a human-readable, frame-based syntax that has been used in various ontology

development tools. Accordingly, we assert that the Tawny-OWL syntax is relatively

easy to understand. In addition to this, we discuss the higher-level patterns that

explicitly support the creation of a hypernormalised ontology [77]. This chapter

includes no further investigation but provides additional thesis background.

Tawny-OWL1 is a fully programmatic interactive environment for OWL ontology

creation and management. It provides a rich environment where ontology-related

classes, properties, and relationships between classes are created with the assistance

of patterns that can be easily and accurately built. Tawny-OWL is built in the pro-

gramming language Clojure (a dialect of the Lisp language) and exploits many of

its programming features to move ontological development into a form of program-

matic source code. Tawny-OWL utilises Clojure functions and keywords to create

a frame-based syntax. Furthermore, Tawny-OWL is a fully-extensible language,

whereby new syntax and features (either general or ontology-specific) can be easily

added to the environment. Reasoning services are supported within Tawny-OWL

via testing environments to check ontologies’ consistency and enable ontologies to

be queried.

Next, we will describe the core functions of Tawny-OWL, its advantages over tra-

ditional tools and emphasise the importance of higher-level patterns for building a

hyper-normalised ontology. The Tawny-OWL version of the Family Ontology is used

to demonstrate how OWL classes, properties and axioms are defined in Tawny-OWL.

However, this work should not be considered as a user documentation of Tawny-

OWL. As the Tawny-OWL repository2 provides a comprehensive description of the

tool, how to use it and the necessary tools for using Tawny-OWL. For instance, the

1Developed by Dr Phillip Lord, Newcastle University.
2https://github.com/phillord/tawny-owl
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Tawny-OWL documentation recommended a user to have sufficient knowledge of

OWL and ontologies in general and the Clojure language in particular.

3.2 Tawny-OWL summary

Typically, the fundamental syntax of Tawny-OWL is a Clojure expansion that mixes

frame-focused Manchester Syntax with Clojure entities, meaning that an entity is

governed by a Clojure function, a frame by a keyword, and finally a value by an

element or expression of Clojure. Using examples from our exemplar family ontology,

the expression that define the ontology in Tawny-OWL is illustrated in Listing 3.1.

Any expression is a list that is (parenthesis delimited).

(defontology family

:iri "http:// example.com/owl/families/"

:prefix "fam:")

Listing 3.1: Define family ontology in Tawny-OWL.

The entity functions labelled as “def” are functions of Tawny-OWL syntax that

yield a novice symbol that enables the user to refer to the relevant OWL entities

at a later point. To be more precise, the defontology function is developed upon

the ontology function. The first generates the OWL API OWLOntology object and

the second yields a symbol e.g., “family”. Usually, each Clojure namespace has a

maximum of one ontology determined by it, however, more ontologies may exist in

some cases. Concurrent usage of the defontology function with the same symbol

title and namespace, makes the new ontology overwrite the previous one.

In the example above, we included the ontology frames; :iri and :prefix. The first

keyword frame is aimed at determining the Internationalized Resource Identifier

(IRI) of the ontology. The IRI is then kept and used as a fundamental IRI for all

ontological entities. The value of the frame must be entered or else, the Tawny-OWL

syntax will produce a random IRI. Likewise the :prefix keyword frame is applied to

determine the ontology’s prefix. The value of this frame should be entered as well

or else the prefix will be bound to the ontology’s name. Contrary to IRI, this prefix

bears no semantic value. By applying the above frames, we have determined the

IRI of the ontology to http://example.com/owl/families/ and the prefix, in this

case, is “fam:”. In Tawny-OWL syntax, the frames are not determined separately
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but are executed by the emergence of another frame or a closing parenthesis.

You can define an OWLClass object through the defclass function, see Listing 3.2

for a fundamental class definition. In the example the defclass function merges

an object of OWLClass with the Human symbol. The defclass function is developed

based on the owl-class function, more specifically the owl-class function generates

a no-name OWL API OWLClass object and “defclass” generates a symbol, here is

Human.

(defclass Human)

Listing 3.2: Example of a class definition in Tawny-OWL syntax.

The defclass function accepts a number of frames that further describe an OWL

class such as :annotation, :equivalent or :subclass. To introduce an annotation to the

entity object, we use the :annotation frame to yield an OWLAnnotationAxion object,

which utilises the produced owl-comment-property object respectively. In our case,

we just introduce an annotation with the comment that describe the Person class

(see Listing 3.3).

(defclass Person

:annotation

(annotation owl-comment-property "Represents the set of all

people."))

Listing 3.3: An example of class definition with comment annotation in Tawny-OWL
syntax.

In Tawny-OWL syntax, several developments apply to the same semantic and syntax

references. The defined class in Listing 3.3 can be simplified and shortened through

the shortcut owl-comment, (see Listing 3.5)

(defclass Person

:annotation

(owl-comment "Represents the set of all people."))

Listing 3.4: An example of class definition with owl-comment in Tawny-OWL syntax.

Likewise, the label shortcut action is applied to yield the respective label annota-

tion axiom through the annotation rdfs:label.
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(defclass Person

:annotation

(label "Person"))

Listing 3.5: An example of class definition with label frame in Tawny-OWL syntax.

Thus far, we have witnessed that the Manchester Syntax and Tawny-OWL have

the same frames. For instance, the :annotation of Tawny-OWL corresponds to the

Annotations: frame of Manchester Syntax. Likewise, the :equivalent of Tawny-

OWL frame corresponds to the frame EquivalentTo: of Manchester Syntax (see

Listing 3.6). Additionally, the frame :disjoint of Tawny-OWL corresponds to the

frame DisjointWith: of Manchester Syntax. But, there are some exclusions to this

general rule.

(defclass Person

:equivalent Human)

Listing 3.6: An example of class definition with :equivalent frame in Tawny-OWL
syntax.

The first exclusion is what has been referred to as shortcut frames. When developing

ontologies, it is generally considered a good practice for every entity to use a simple

syntax label and definition, constructed using the rdfs:comment annotation property

and the rdfs:label likewise. This is supported in Tawny-OWL by offering shortcut

frames to introduce and yield the most suitable OWLAnnotationAxiom to an entity. In

Listing 3.3 to Listing 3.5, the :annotation frame is utilised to introduce the label

and comment annotation axioms. This can be achieved using the frames :comment

and :label, which are described in the class definition counterpart in Listing 3.7.

(defclass Person

:label "Person"

:comment "Represents the set of all people.")

Listing 3.7: An example of class definition with :comment and :label frames in
Tawny-OWL syntax.

There is a second exclusion concerning OWLSubClassOfAxioms. In order to define

super-classes in Manchester Syntax, we use the SubClassOf: frame while Tawny-

OWL has more simpler syntax using the :super frame, and still have the same

the logical semantic as the Manchester Syntax frame (see Listing 3.8). The re-

verse of the :super frame is the :sub frame, it is developed to make one or more
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classes underneath the defined class. These frames can be employed to append

OWLSubClassOFAxioms to a class object or OWLSubPropertyofAxioms to a property or

more properties.

(defclass Man

:super Person)

Listing 3.8: Using a super frame in Tawny-OWL syntax.

You can define an ObjectProperty through the defoproperty function, see Listing 3.9

for an example of an object property definition. The object property hasWife defined

as a subproperty of the hasSpouse object property – this implies, when a man has a

wife, he also has a spouse. We can specify constraints on the object property such

that you can not use the hasWife property for any other class than Man (and its

subclasses) as a domain and for any other class than Woman as a range.

(defoproperty hasWife

:super hasSpouse

:domain Man :range Woman)

Listing 3.9: An example of object property definition in Tawny-OWL syntax.

In order to explicitly capture more specific knowledge, ontology developers use uni-

versal and existential restrictions. The universal restriction is expressed through

the only function. The simple example in Listing 3.10 defines someone as a happy

person only if all their children are happy persons. One thing to note is that Tawny-

OWL has a define before use semantics, define HappyPerson before use it. On the

other hand, the existential restriction is currently the most frequently used, which is

set through the function owl-some3, see Listing 3.11 for an example in Tawny-OWL

syntax. In the example, we define a class Parent, which is equivalent to someone

with a least one child.

(defclass HappyPerson)

(refine HappyPerson

:equivalent (only hasChild HappyPerson))

Listing 3.10: An example of a universal restriction definition in Tawny-OWL syntax.

3The use of some clashes with the clojure.core. The use of owl-some is longer but safer.
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(defclass Parent

:equivalent (owl-some hasChild Person))

Listing 3.11: An example of an existential restriction definition in Tawny-OWL
syntax.

The OWL Boolean operators: union, intersection and complement are also defined

in Tawny-OWL using the functions and, or and not respectively. The example in

Listing 3.12 to Listing 3.14 illustrate the usage of the boolean operator functions in

Tawny-OWL. The first example define a Mother class as a subclass of Woman and has

to be true that every Mother is a parent. In the second example the Parent class

extended using the refine function to also be a mother or father. Alternatively, this

can be defined using the as-subclasses function with :disjoint and :cover option

frames. Lastly, the ChildlessPerson class is defined to be equivalent to not Parent4.

(defclass Mother

:subclass Woman

:equivalent (and Woman Parent)))

Listing 3.12: An example of using and function in Tawny-OWL.

(refine Parent

:equivalent (or Mother Father))

Listing 3.13: An example of using or function in Tawny-OWL.

(defclass ChildlessPerson

:equivalent (and Person (not Parent)))

Listing 3.14: An example of using not function in Tawny-OWL.

Defining individuals in Tawny-OWL can be achieved through the defindividual

function, see Listing 3.15. In the example, the individual named Jack is defined

with two types, Person and Parent, and given a fact that he hasWife Mary.

(defindividual Jack

:type (and Person Parent)

:fact (is hasWife Mary))

Listing 3.15: An example of defining an individual in Tawny-OWL syntax.

There are a number def entities provided by Tawny-OWL to enable the definition

of OWL entities. Table 3.1 shows an overview of all given functions and their basic

OWL API objects that a Tawny-OWL user can use to build OWL ontologies. We

4The use of not clashes with the clojure.core, the use of owl-not is longer but safer.
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have given examples for most of these Tawny-OWL functions early in this section,

the rest can be easily found on the Tawny-OWL project repository5 or our exemplar

family ontology repository6.

Table 3.1: Tawny-OWL main functions, their def forms and their basis OWL API
objects.

Def form Tawny-OWL function OWL object
defontology ontology OWLOntology

defclass owl-class OWLClass

defindividual individual OWLIndividual

defoproperty object-property OWLObjectProperty

defaproperty annotation-property OWLAnnotationProperty

defdproperty data-property OWLDataProperty

3.3 Patterns in Tawny-OWL

Tawny-OWL enables the creation of OWL ontologies in a programmatic form

through a textual interface and simple and straightforward syntax. As we already

showed, a simple part of an ontology can be constructed using the default, readily

available Tawny-OWL syntax (using examples from the family ontology). However,

a number of ontologies have complex structures and repetitive components, such as

biomedical ontologies; these ontologies can be developed by adding arbitrary pat-

terns and additional syntax, which become a standard part of the ontologies’ devel-

opment. Patterns can be generic, reused among ontologies, or specifically developed

for a single ontology, known as content-specific patterns (CPs)(see Section 2.6.1).

Like the basic Tawny syntax, most patterns are developed using Clojure functions

(see Section 3.4). The first developed generic patterns are the closure and covering

patterns, designed to form a Closed-World Assumption (CWA) using the some-only

and :cover functions, respectively. Examples of the usage of these patterns can be

found, for instance, in the definitions of the Pizza Ontology (see the ontology repos-

itory7). One of the main advantages of Tawny-OWL is that it allows you to develop

ontological patterns and define classes and properties alongside each other in a single

5https://github.com/phillord/tawny-owl
6https://github.com/phillord/owl-primer
7https://github.com/phillord/tawny-pizza
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file. However, to use the Tawny-OWL basic functions and patterns, a number of

required namespaces such as tawny.owl and tawny.pattern must be added at the

beginning of a file and before an ontology definition.

In this thesis, we will focus on a set of higher-level patterns that enable the creation

of a normalised ontology. The patterns were described in detail in the hypernormali-

sation paper [77]. To illustrate the usage of these common patterns, we use examples

from two ontologies: the amino-acids ontology [107] and the pizza ontology.

The first pattern is the value partition, which was developed by [90] to address the

difficulties of modelling properties with continuous values by splitting the values

into discrete ranges, such as defining the seven colours of the rainbow. Tawny-

OWL implemented this pattern in a more simple and straightforward syntax using

the defpartition function. The usage example of a value partition pattern in the

amino-acids ontology is shown in Listing 3.16. Without using the defpartition

function, the value partition pattern still can be implemented, but with a lot more

definitions, and a relatively complex representation (see Listing 3.17). That is to say,

the defpartition function will produce the same axioms as in Listing 3.17 but with

fewer syntax. As such, the defpartition pattern is beneficial for building explicit

refining hierarchies for large ontologies with fewer ontological definitions.

(defpartition Charge

[Positive Neutral Negative]

:domain AminoAcid)

:super PhysioChemicalProperty)

Listing 3.16: An example of using defpartition pattern in Tawny-OWL syntax [77].

The tier pattern is more general pattern than the value partition pattern. It is

designed to allow the construction of non-continues ranges with more options such

as the ability to make the generated property functional or not functional and the

subclasses disjointness and covering. An example usage of the tier pattern in the

pizza ontology is shown in Listing 3.18 to define the set of toppings for a vegetable

pizza. It is very unlikely to define a vegetable pizza with only one topping and to

cover all the vegetable toppings in the world. To achieve this, we specify that the

characteristics functional and cover to be false to allow for all possible combination

of toppings and to be open for new toppings respectively.
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(class Charge

:super PhysicoChemicalProperty)

(class Charge

:equivalent

(or Positive Neutral Negative))

(object-property hasCharge

:domain AminoAcid

:range Charge

:characteristic :functional)

(class Positive

:super Charge

:disjoint Neutral Negative)

(class Neutral

:super Charge

:disjoint Positive Negative)

(class Negative

:super Charge

:disjoint Neutral Positive)

Listing 3.17: The expanded syntax of the defpartition pattern represented in
Listing 3.16 [77].

(deftier VegetableTopping

[Mushroom Artichoke Onion Tomato]

:domain Pizza

:functional false

:cover false

:superproperty hasTopping)

Listing 3.18: An example of using the deftier pattern in the pizza ontology.

Facet is another higher-level pattern implemented in Tawny-OWL to enable the

explicit association of classes and an object property. For instance, we can de-

clare that the classes Polar NonPolar as facet of the object property hasPolarity,

see Listing 3.19. Faceted classification is widely known technique has been used

in library science and commercial websites to classify resources. In our example,

using the facet pattern, a class such as Polar will only be used with its declared

property, this would minimise the number of errors. In fact, the previous patterns

(i.e., deftier and defpartition) generate new object properties that are typically

restricted to the classes of the defined pattern and have the same patterns name

preceded by the “has” word. That is, these patterns declare their classes as facets of

their properties. Moreover, we can use the facet function instead of the owl-some

function, that is, (facet NonPolar) instead of (owl-some hasPolarity NonPolar), as
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shown in Listing 3.20. The facet function has a broadcasts characteristic, that is, it

can take many classes and associate each class with its correct property.

(as-facet

hasPolarity

Polar NonPolar)

Listing 3.19: An example of using the facet pattern.

(class Alanine

:super (facet NonPolar Neutral))

(class Arginine

:super (facet Polar Positive))

Listing 3.20: An example of using the facet pattern.

Lastly, the gem pattern was developed to provide more abstract syntax of a class

definition that would ease the construction of core classes of an ontology. It is built

on the facet function, for instance, an amino acid such as Asparagine can be defined

using the defgem function, which accepts a set of facets through a facet frame, see

Listing 3.21. The defgem function is different from the defclass and class functions

as it includes the facet function frame.

(defgem Asparagine

:comment "An amino acid used in the biosynthesis of

proteins"

:facet Neutral Hydrophilic Polar Aliphatic Small)

Listing 3.21: An example of using the gem pattern.

3.4 Clojure summary

By now, we already realise that Tawny-OWL is developed upon the Clojure lan-

guage. Clojure is not widespread language as C++ and Java, but is one of the

top 100 coding languages, based on the TIOBE index8. In this section we provide

only a summary of Clojure basics including fundamental Clojure functions and the

principles that are necessary to comprehend the Tawny-OWL examples. For a more

extensive outline of the Clojure principles and development services, please head to

Clojure’s official page9.

8TIOBE index is an indicator of the most used programming language
9https://clojure.org
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Rich Hickey designed Clojure to meet his requirements for a Lisp language that

employed immutable data structures as its default, that had concurrency built into

its design, and that had compatibility with the widely used Java Virtual Machine

(JVM) platform. Clojure is a primarily functional program language that forms part

of the Lisp group of languages; it has a wide range of applications and is dynamic

and compiled. Amongst the many significant organisations that employers as part

of their technology stacks are Walmart, Staples, and Amazon. Clojure is frequently

referred to by its producers as a “functional Lisp for the JVM”. As one of Lisp’s

modern dialects, Clojure provides support for various features:

§ Individual Lisp-like syntax: the language uses a prefix syntax with parentheses

being widely used.

§ Clojure REPL (Read-Eval-Print-Loop) environment, which has tight integra-

tion with widely used integrated development environments (IDEs). REPL

offers programmers the satisfaction of being able to obtain instant views of

the outcome of the code as it is created, which encourages them to experiment

and makes them more productive.

§ Code as data: as with Lisp, Clojure source code is referred to as an abstract

syntax tree, a valid data structure that allows for access and manipulation.

§ Robust macro system that leverages code as data, which allows for metapro-

gramming, i.e., the ability to write code, which can then generate additional

code.

The data structure allowing Clojure and fellow Lisp languages to deal with source

code as data, which involves the language with its capacity for metaprogramming,

are linked lists. That’s why there are so many parentheses; the source code is known

as an s-expression, a data structure made up of parenthesised lists.

Clojure employs functional programming (FP). Functions are regarded as the pri-

mary class, and by default data is immutable. If vectors, maps, lists, etc., are

created, by definition they are immutable. Although the majority of functional lan-

guages, e.g., Scala and Haskell, lean in the direction of static types, Clojure favours
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dynamism. With REPL, catching errors during the coding process is more sim-

ple, and the dynamism provides the code with greater flexibility and extensibility.

Lastly, Clojure offer significant support for concurrency, i.e., the capacity of dealing

with many tasks simultaneously, e.g. exploiting the capacities of multicore CPUs.

It is easy to share immutable data structures across a multitude of threads.

In terms of Tawny-OWL, the patterns (described in Section 3.3) are created using

Clojure functions with passed parameters. For Clojure, we can define functions by

employing the defn function and we define its related parameters using a vector

within square brackets ([]). In Listing 3.22 we can see an exemplar definition of the

max function in Clojure, which returns the greatest of the numbers. Similarly, we

can define a new function using other built-in functions, see example in Listing 3.23.

user=> (max 1 2 3 4 5)

5

Listing 3.22: An example of using the built-in max function.

(defn power

[x n]

(reduce * (repeat n x)))

user=> (power 4 2)

16

Listing 3.23: An example of defining a power function.

3.5 Summary

As the fundamental tool for this thesis, we here describe here the Tawny-OWL

library, Clojure, and the concept of using a coding interface to develop ontologies,

by concentrating on examples from the “family ontology”. Moreover, we show how

higher-level patterns can be used to facilitate the development of ontologies with

complex structures and repetitive components. The benefits of introducing these

topics set the foundation upon which a hypernormalised ontology can be constructed.

Tawny-OWL is a programmatic interface that was developed by Phillip Lord and

inspired by the work on the karyotype ontology [115]. With many advantages over

traditional tools, Tawny-OWL exploits the richness and robustness of a software en-
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gineering environment that allows the construction of ontologies with simple syntax

that non-programmers can use in a relatively easy way. More specifically, Tawny-

OWL, built in the programming language Clojure, exploits many of its programming

features to move ontological development into a form of programmatic source code.

The library is continually evaluated and developed, this paper [77] describes the

latest update of Tawny-OWL and introduces the higher-level patterns that support

the creation of a hypernormalised ontology.

All the features of Tawny-OWL described in thesis are available in the 2.0 version of

the library. The library itself is still in its early years, with the first release of Tawny-

OWL less than a decade ago in November 2012. The majority of the code written

in this thesis will be included in the Tawny-OWL syntax, and can be expected to

be included unless we mention otherwise.

The implementation of the hypernormalisation technique can be achieved in a non-

Tawny-OWL environment but with additional ontological definitions, effort, and

complex representation compared to Tawny-OWL. For instance, performing the hy-

pernormalisation technique in a tool like Protégé will involve a lot of clicking to

create classes with related characteristics, thus requiring greater time and effort. In

Listing 3.17, we showed a simplified Tawny-OWL representation of the value parti-

tion, and how it can be represented in a different ontological environment with many

more axioms (see Listing 3.17). As examples such as that one demonstrate, applying

hypernormalisation within the Tawny-OWL space makes ontology developers’ work

easier and less time-consuming and error-prone, especially with large ontologies.

In the next chapter, we present the work of Identitas, a new approach to identifiers

that aims to improve the management of ontologies.
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4.1 Introduction

The Semantic Web (SW) builds on the W3C Resource Description Framework

(RDF) [87], which is a standard framework for describing real-world concepts (e.g.,

physical objects or people) or representing abstract concepts (e.g., web documents).

It makes use of standard web identifiers, that is the Uniform Resource Identifier

(URI) [13] or, more lately, its internationalized equivalent, the IRI [36]. Entities

within RDF have identifiers as a reference, which can be referred to in any linked

dataset. This is a fundamental component of the SW because it enables information

to be published about the resources and links to be made between different entities

on the web. The URI remains a standard mechanism for identifying concepts on

the SW in the semantically-extended versions of the RDF, that is, the RDF Schema

(RDFS) and, recently, in the Web Ontology Language (OWL) [88], which is utilised

for ontology authorship.

In the last few years, there has been a rapid increase in the number of ontologies em-

ployed to describe different scientific domains. Meanwhile, a set of standard practices

has been built up; this enables improved representation, identification, and accessi-

bility. For example, with the Open Biological and Biomedical Ontologies Foundry

(OBO Foundry) [101], there is a standard usage of metadata for each ontological

element, including labels, identifiers, definitions, the editorial status, and so forth.

For ontologies to be reusable and accessible, the ontological components, including

the ontology itself, must be able to be identified using an IRI. The IRI is a string of

characters from the Universal Character Set (UCS); it can be split into global and

local parts when it comes to identifying ontological resources. However, there are

various incarnations of IRIs depending on the IRI scheme, such as http, https, ftp,

mailto, and so forth. In this context, we concentrate on http and https, which are

the most commonly used. When it comes to ontological identifiers, IRIs are nor-

mally split into two parts. The first part is the IRI protocol and authority, that is,

the domain name, which is a global ID used to facilitate uniqueness the world over.

The second part is then utilised for the uniqueness of the entities within an ontology.

In this context, we refer to the second part as the identifier (for clarification, see

Section 4.2.1).
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This chapter is mainly about identifiers: how we generate and mint the local part

of an ontology IRI, what are the rules and criteria to produce a sensible identifier

to ontological entities?

Developers within the bioinformatics community recommend that identifiers are

semantics-free, or meaningless [78], since an identifier that is based on some seman-

tics associated with the term may need to be changed when that meaning changes,

even if the change does not reflect a change in the ontological semantics. For in-

stance, Apple Computers Inc became Apple to reflect the changing scope of the

company. On the other hand, humans prefer it if the local part of an identifier

created from natural language because then it will be easier to memorise, create,

understand, and pronounce. One solution is just to hide identifiers from people,

which is achievable in some environments such as Protégé. This only works, how-

ever, on the condition that we never leave these environments, which is not practical.

URLs [14], for instance, have always been visible in web browsers.

Over time, different processes or schemas have been employed to coin identi-

fiers1. In this chapter, we consider the advantages and disadvantages of these,

and introduce Identitas, a library that coins identifiers in such a way that it

overcomes some of the disadvantages we have witnessed. The software is available

from https://github.com/Nizal-Shammry/identitas-j. It has been integrated

into environments for ontology development such as Tawny-OWL (See Chapter 3)

and Protégé (see Section 2.7.3).

4.2 Background and related work

4.2.1 IRI syntax for ontology

Ontologies, databases, and their components can be globally identified using IRIs;

this extends the exiting URI scheme, which is limited to the ASCII set of characters.

As such, every URI or URL is an IRI, but not vice-versa. Though there are many

IRI protocols, http and https have become the standard protocols employed to

1Unfortunately, the use of terms like “identifier” and “local ID” is used so inconsistently across
the field, that we are unlikely to avoid confusion. In this chapter, we have defined the term
“identifier” carefully and distinguished it from “IRI”, and parts of an IRI such as “fragment”
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identify things on the Semantic Web. The generic syntax of a http IRI consists of

several components; those are the protocol, authority, path, query, and fragment.

An example of an ontological IRI, is shown below; it consists of a compact sequence

of characters that can be divided into two main parts, the global and local. The

purpose of the first part, on the left, is to provide access to a resource on the web

using a combination of the protocol, authority, and a path. In this example, the

scheme is https, the authority is purl.uniprot.org, and the path is uniprot. Then,

the global part is followed by a fragment. This last element of an IRI, the local

identifier, is unique within a database or an ontology. It can either can be generated

automatically (e.g., accession number such as 0000008 or an alphanumeric such as

A0A022YWF9) or can be typed manually as a lexical name. In this case, the local

identifier identifies a subordinate resource, which is mostly defined in or is a part

of a primary resource (e.g., an ontological document or a database). The local

identifier is separated from the rest of the IRI by (#) or (/) characters; in this case,

it follows the last (/) character. In the example P08100 identifies a resource, a type

of protein, that is defined in the UniProt Knowledge Base. The IRI does not need

to contain a local identifier; in the case, it refers to the primary resource (i.e., the

whole ontology).

https : {{
loooomoooon

protocol

purl.uniprot.org{
loooooooooomoooooooooon

authority

uniprot{
looomooon

path
looooooooooooooooooooooomooooooooooooooooooooooon

P08100
loomoon

fragment
loomoon

Global ID Local ID

The first, global section of an IRI (its base) is likely to be common across all entities

in a given ontology and requires data providers to interact with external bodies to

serve the ontology globally, which is mostly the authority. On the other hand, the

local identifier, which is mostly included in the last part of the syntax, is created

based on the preferences of a specific ontological creator.
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4.2.2 Existing identifiers schemes

In this section, we consider a number of common identifier schemes, and we use

this to pull out the general characteristics2 of these schemes, as are identified in

Table 4.1.

IDs schema semantic´ free speakable meaningful to humans global unique stability persistent interoperability resolvability Fee´ based

OBO Yes Yes No No Yes Yes Yes Yes No No

OBO (PURL) Yes Yes No Yes Yes Yes Yes Yes Yes No

LEI Yes Yes No Yes Yes Yes Yes Yes No Yes

DOI Yes No No No Yes Yes Yes Yes No Yes

DOI (doi.org) Yes No No Yes Yes Yes Yes Yes Yes Yes

LSID Yes Yes No Yes Yes Yes Yes Yes No No

LSRN Yes Yes No Yes Yes Yes Yes Yes Yes No

DCMI (PURL) No Yes Yes Yes Yes Yes Yes Yes Yes No

UUID Yes Yes No Yes Yes Yes Yes Yes No No

ISBN Yes Yes No Yes Yes Yes Yes Yes No No

Table 4.1: The list of desirable characteristics provided with identification schemas

The OBO Foundry is an intensive effort to provide shared, logical, well-formed,

and scientifically-valid knowledge in the biological and biomedical domains. Partic-

ipants in the OBO Foundry are defining a set of principles and methodologies to

facilitate interoperability of ontologies and enable data integration. There are over

60 ontologies that have been retrofitted or built on the basis of the principles of

the OBO Foundry, such as the Gene Ontology (GO) [43] and the Chemical Enti-

ties of Biological Interest (ChEBI) [52]. An ID policy has been established and is

recommended for ontologies that are submitted to the OBO Foundry. The syntax

of OBO Foundry IDs is constructed of a base URI, followed by an IDspace (also

known as a namespace) and a local identifier. The IDspaces, associated with a URI

as a prefix, are unique to the OBO Foundry (e.g., GO, CHEBI, CL) and are fol-

lowed by monotonically increasing numbers (e.g. 00000001). GO followed the OBO

Foundry policy to identify its terms with a unique seven-digit identifier prefixed by

GO, for instance, http://purl.obolibrary.org/obo/GO_0000016. In addition to

this, all ontologies hosted in the OBO Foundry library have a Persistent Uniform

Resource Locator (PURL), which always resolves to the OWL or OBO version of

the ontologies. PURLs are URLs utilised to permanently identify resources on the

Internet by redirecting the PURL link, using a resolution service, to reach the URL

target. The OBO Foundry policy illustrates that they are strongly committed to

the semantics-free identifier approach, dictating that their local identifier should not

2The words in italics
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consist of labels or mnemonics that are meaningful to humans; a meaningless iden-

tifier with a meaningful label (provided through rdfs:label) is employed to describe

the characteristics of the entity.

A Legal Entity Identifier (LEI)3 is an alphanumeric global identifier developed by

the International Organisation for Standardisation (ISO) to identify the legal enti-

ties participating in financial transactions. The LEI identifier consists of 20 charac-

ters, starting with four numeric characters referring to the LEI-issuing organisation,

known as a Local Operating Unit (LOU), followed by 14 alphanumeric characters

that are unique to a particular LOU. In addition, two checksum digits are added for

the purpose of detecting errors. As a result of the Global Financial Crisis (GFC)

in 2008, governments and private sector parties have come to support the develop-

ment of a Global LEI System (GLEIS) that provides an open, unique, and persistent

identifier for each transaction. Currently, all financial institutions worldwide that

are involved in financial transactions are required to have an LEI identifier.

Another ISO standard identifier system is the Digital Object Identifier (DOI) [89],

which was approved in 2010. So far over 100 million DOI identifiers that have been

assigned a DOI, mostly academic publications. The DOI syntax consists of two main

parts separated by a forward slash: a prefix, which identifies the naming authority

(such as DataCite or CrossRef) and a suffix, the local part, that denotes a unique

DOI for a specific data object; this can be chosen by a registrar and is unique to

a given prefix. The prefix consists of two components, the ”Directory” and ”Reg-

istrant” codes, separated by a full stop (period), for instance, 10.1000, where the

authority is the DOI Foundation itself. The (local) suffix, on the other hand, has

no limitation on its length and can be a numeric or alphanumeric string. For exam-

ple, in following DOI, https://doi.org/10.1038/nphys1170, 10.1038 denotes the

registration agency (CrossRef) that manages the assignment of DOIs, nphys1170 is

the meaningless object identifier, and https://doi.org/ is the resolver [66]. For

each DOI assigned to an object to make it (resolvable) on the Internet, there must

be metadata and a URL that automatically redirects a user to a useful online in-

3https://www.gleif.org/en
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formation about that ID. As is stated on the official DOI website4, any DOI used

to define a digital object will never change, that is, (persistent), even if the data

associated with the ID or the physical location has changed.

The Universal Unique Identifier (UUID) [72] is another widely employed identifica-

tion system, which generates a sequence of 36 characters (32 alphanumeric characters

and 4 hyphens) with no centralised authority using an algorithm, in such a way that

there is a low probability of another object having the same identifier. The most

common version of UUID consists of three combined components; a network ad-

dress of the UUID-generating host, a timestamp and a set of random alphanumeric

characters. An example of a UUID is C68EB119-46D5-46D0-B79D-77C2D897C19F.

However, the UUIDs are not globally resolvable, which means a resolution service is

required to make the information about an entity available on the web.

The same issue of resolvability occurs with the Life Science Identifiers (LSID)5 that

are used to describe biological data. The LSID syntax consists of a URN label,

schema name, authority identifier, namespace, and entity identifier. It is not di-

rectly resolvable unless a web service provides a specific location for a resource; For

example, urn:lsid:ubio.org:namebank:11815 [66]. On the contrary, a Life Science

Record Name (LSRN)6 offers entry into a centralised repository of resources from

existed databases and provides a physical location (URL) for each resource within

a specific database, such as PubMed, GO, or INSD (GenBank, EMBL, DDBJ); For

example, http://lsrn.org/PMID:18077722.

Obviously, the OBO Foundry, LEI, DOI, UUID, and LSID identification systems do

not try to make their IDs meaningful to humans; the main purpose of their identifiers

is the stability of their IDs. To enable humans to understand and use them, there

is additional metadata, such as that offered by the Dublin Core Metadata Initiative

(DCMI) [116], which promotes interoperability and global semantic understanding

by providing a set of elements that can be used to improve ontologies’ meaningful

names. The DCMI offers a set of metadata as a standard across different domains

with fifteen vocabulary terms such as Title, Publisher, Subject, and so forth.

4https://www.doi.org/index.html
5http://www.lsid.info
6http://lsrn.org/
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However, there are ontologies and similar resources that have been developed using

meaningful names as part of the IRI fragment. The meaningful part is normally

encoded in a common lexical encoding format choosing from Single word, Camel-

CaseStyle, Underscore style, or Hyphen-style or a combination of the last three

styles [80]. For example, if we consider a class with this IRI, http://www.co-

ode.org/ontologies/pizza/pizza.owl#VegetarianPizza from the pizza ontol-

ogy7 the class name VegetarianPizza is the human-readable identifier. This can

have several desirable effects: people can remember such classes easily and the need

for additional descriptive information is avoided; as a result, some ontologies with

meaningful identifiers do not have labels. However, there is no doubt that there are

some drawbacks associated with meaningful identifiers. For instance, they can be

misspelled or mistyped and there is inherent instability as the meaning associated

with the identifier may change over time.

One final possibility would be to use a semi-readable identifier; although not common

in ontology development, these are widely seen elsewhere: for example, UniProt has

in their terminology “identifiers” that supplement “accession numbers”; so P08100

is also known as OPSD HUMAN, which derives from the name “Rhodopsin” and

species. Another example is What3words, which uses three words to identify geo-

graphical areas that would otherwise need numeric longitude and latitudes [65].

4.3 Motivation

There has been a lot of discussion about the best practices for using and styling iden-

tifiers to identify ontology resources. The perceived wisdom is that identifiers should

be semantics-free or meaningless [78]. Semantics-free identifiers have their advan-

tages but there are a number of distinct disadvantages too, especially for humans.

They are, for instance, poorly mnemonic, hard to differentiate from each other,

and relatively difficult to read. For this reason, many bioinformatics databases pro-

vide both semantics-free accession numbers, which are essentially the same thing

as an identifier in ontology terminology, and an identifier, which is rather like a

compressed, syntactically predictable label. For example, UUID is a useful identifi-

7Developed by the University of Manchester
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cation scheme but not beneficial in situations where identifiers need to be readable,

spell-able, memorable or entered manually by hand [49][25]. The motivation behind

this work is to provide a new approach to semantics-free identifiers that keeps the

power of meaningless identifiers, maintains the capacity of humans to read them,

reduces the chance of error, and enables concurrent development of ontologies.

4.4 Identitas

Identitas library provides a new approach to identifiers that has the potential to

improve the management of ontologies and overcome some related issues with mono-

tonic, numeric identifiers, while remaining semantics-free. We describe our solutions,

and present the Identitas library, which implements the following features: concur-

rent development, pronounceability and checks for errors.

4.4.1 Concurrent Development

Some ontological identifiers, such as those used by OBO Foundry, increase mono-

tonically. This causes a significant race condition if two developers build a single

ontology in parallel. If both attempt to add a new term, they must both coin a new

identifier, which must be unique. This is impossible to achieve without some degree

of coordination. One typical strategy is for developers to pre-coordinate using pre-

allocation schema. For example, one developer would be allocated the IDs from 1

to 1,000, another would get 1,000 to 2,000, and so on.

This approach is effective but requires developers to manage the IDspace accu-

rately, as well as reducing the overall IDspace since preallocated IDs cannot be used

elsewhere. Another approach is just-in-time coordination; for example, the URI-

Gen [37] server enables this approach in some projects, such as the Experimental

Factor Ontology (EFO) and Software Ontology (SWO), allowing them to manage

their namespaces. It is based on the use of a centralised server to manage the cre-

ation of identifiers. However, this requires the developers to set up a connection to

the URIGen server, therefore, it is sensitive to network issues or a lack of availability

of the URIGen server. A final approach is to use temporary IDs, and then allocate

final IDs at a single, coordinated point in the development process; URIGen also

supports this approach and uses it to enable offline development.
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We propose a much simpler approach, which is to simply use random IDs not just

as temporary identifiers. While randomness does not a priori completely remove

the potential race condition, given a large enough identifier space, the chances of

collision can be reduced to provide world (or universe) uniqueness. This approach

is commonly used with random Universal Unique Identifiers (UUIDs), mentioned in

section 4.2.2, being perhaps the most common example. Therefore, using random

IDs while developing an ontology allows the removal of the requirement for co-

ordination either live, with temporary identifiers, or with pre-allocation of blocks.

4.4.2 Pronounceability

The use of randomness raises a secondary issue. These identifiers are likely to be rel-

atively long, exacerbating the problems around memorability and pronounceability.

One solution to this problem is not to show the identifiers to humans. With tools

like Protégé, this is possible, of course, because it has a view, which may be different

from the underlying model. With text file-formats, including an OBO format, the

various OWL serialisations, and the Tawny-OWL [76] programmatic representation,

this is rather harder (although the latter does provide a mechanism for achieving

this). This is also difficult for the programmers developing tools like Protégé itself,

who are themselves using general tools such as IDEs, debuggers, and version control

systems.

We have considered using a dictionary-based approach, to replace numeric identifiers

with English words. However, this approach increases the probability of selecting

a word that is inappropriate or unfortunate, such as the Sonic Hedgehog gene mu-

tations that cause holoprosencephaly in humans. Instead, we are investigating a

solution in the form of proquints [119]. Taking this approach, a library is built to

encode numbers as a set of strings of alternating consonants and vowels. Each con-

sonant provides four bits of information and each vowel only two bits, as shown in

Figure 4.1. Thus, sixteen bits can be represented using five letters, that is, three

consonants and two vowels.

For example, a numeric identifier 10 associated with some term in a given ontology

would be translated using the proquint function to babab-babap, while 1000 would

be translated to babab-bazom, which is a fairly readable, spell-able and pronounce-
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Four´b i t s as a consonant :
´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´

0 1 2 3 4 5 6 7 8 9 A B C D E F
b d f g h j k l m n p r s t v z

Twó b i t s as a vowel :
´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´́ ´

0 1 2 3
a i o u

Figure 4.1: Encoding a 16-bit string proquint of alternating consonants and vowels

able string. In practice, if used to represent random numbers, proquints would rarely

be so close in alphabetic space. It should be noted that proquints map directly to a

single number, so they can be freely converted in either direction, and order alpha-

betically in the same way as the numbers that they map to.

As an extension of the original algorithm, we also provided conversions from the

Java short and long data types, which provides for either a larger identifier space

or less typing. Table 4.2 demonstrates the conversions from Java short, integer, and

long random numbers to the equivalent strings of alternating consonants and vowels.

Short-Integer-Long numb ProShort ProInt ProLong

0 babab babab-babab babab-babab-babab-babab

1 babad babab-babad babab-babab-babab-babad

2 babaf babab-babaf babab-babab-babab-babaf

3 babag babab-babag babab-babab-babab-babag

MIN VALUE mabab mabab-babab mabab-babab-babab-babab

MAX VALUE luzuz luzuz-zuzuz luzuz-zuzuz-zuzuz-zuzuz

Table 4.2: The conversions from Java short, integer and long random numbers to
ProShort, ProInt, and ProLong strings

We must note that the short-range, at 216 numbers, is large enough for most ontolo-

gies that are currently in operation. However, it is far too small when combined with

randomness as, due to the birthday problem, it is likely to result in collisions even

for small ontologies [111]. The long-range, meanwhile, at 264 numbers, is likely to

cope with all ontological applications where the identifiers are allocated as a result

of human action; it has half the bit-length of a UUID, which has a 2128 range.

- 73 -



Chapter 4: Identitas Project

4.4.3 Error checking

We would like to note here that the monotonic numeric identifiers suffer from a

final problem. As well as not being mnemonic, if a numeric ID is misunderstood,

then it is very likely that the incorrect ID is still actually a valid one; for instance,

GO:1903424 and GO:1904324 are IDs that differ by one number. A solution to this

problem is well-understood with the use of a checksum. The use of a checksum digit

allows straightforward error detection and it is an industry standard for ensuring

numbers are actively transcribed. For the Identitas library, we employ the Damm

algorithm [81]. This algorithm is designed to operate on numbers, but it will work

on proquints too, as they can be converted to numbers. Examples of valid or invalid

random numbers are shown in Table 4.3.

Random number V alidationStatus

327890 valid
328790 invalid
328792 valid
327892 invalid

Table 4.3: Example of random IDs and their validity

4.5 Results

The result of this effort is a new style of identifiers dedicated to the notion of

semantics-free IDs, and equipped with a set of desirable characteristics. The Iden-

titas IDs, which can be read by humans, are formed from a set of characters with

alternating constants and vowels, which can be generated randomly; this facilitates

the process of concurrently building and developing ontologies. Furthermore, errors

between similar identifiers are detected in this style using the Damm algorithm [81].

We provide an implementation of these features that can be freely combined. All of

the features are implemented in our library, Identitas-j, which is developed in Java

and is available in Clojure as well. We have integrated the style into two ontology

development environments, Protégé and Tawny-OWL [76], and might later provide

an implementations for other ontology development environments. This form of

identifier space has the potential to improve the management of ontologies at little
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cost.

A preliminary result of Identitas has been presented and accepted as an abstract

paper in our work [6]. This work is extended by the integration of Identitas into

two existing ontology development environments. Figure 4.2 is a screenshot from the

Protégé interface where Identitas, particularly the random ProLong IDs, is employed

in the Protégé software environment, while Figure 4.3 presents a simple example of

a class created and identified with an Identitas ID. In addition, we have built and

distributed a Maven [82] artifact for Identitas8, which is available for users who want

to utilise Identitas as a library in their own project.

Figure 4.2: Identitas as part of the Protégé environment

4.6 Evaluation

4.6.1 Let’s port GO! How easy would it be?

GO is one of the most successful ontologies, due to its consistent description of gene

products across databases. Currently, it consists of more than 45,000 classes [118] de-

scribing the different biological functions of gene products over three sub-ontologies.

8https://mvnrepository.com/artifact/uk.org.russet/identitas-j
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Figure 4.3: Example of a class (Newcastle University) created in Protégé and iden-
tified with identitas ID

GO adopted the OBO Foundry ID format (i.e IDSpace:accession_number, ex-

plained in 4.2.2) as it is designed to be easier to read for humans than other formats.

Every term within GO has a name that can be read by humans (e.g., transcytosis)

and a semantically meaningless GO ID (seven unique, increasing numbers prefixed

by GO, e.g., GO:0045056). These characteristics make it useful as an exemplar when

we consider the applicability of Identitas; would it be possible in principle to port

GO to use Identitas?

From the ground up, GO could be built using our technology, taking into account the

current size and growth rate of the ontology over the past ten years. GO has been

growing linearly as it involved a certain number of people during its development

process, as can be seen Figure 4.4. The size of GO grows by 4.39 percent each year,

which gives us a potential total number of terms of around 70,000 terms after ten

years and over three million terms 100 years from now. The graph in Figure 4.5

illustrates the probability of a collision when using the proInt (i.e., 232) and proLong

(i.e., 264) spaces. As the size of the ontology increases, the risk of generating a
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Figure 4.4: The size of GO over the last 10 years, from [63]

random duplicate ID and assigning it to different terms goes up. The number of

random proInt IDs to be generated for a 50 percent chance of collision without the

error-correction scheme is roughly 78,000 IDs. That is expected to be the number

of terms after nearly 35 years after the establishment of GO. Using the checksum

scheme with proInt will reduce the space and increase the probability of collisions

at an early stage.

However, by using the random allocation technique, GO will be secure from gener-

ating an ID more than once. The proLong space will be broad enough to maintain

both the checksum and randomness schemes, not only for GO, but for all ontologies.

In practice, it is entirely acceptable to start using the proInt and, when the proba-

bility becomes higher and irritating, proLong can be used thereafter with no need

to change the proInt IDs that have already been given. The chance of creating one

duplicate ID, with the current size of GO and using proLong with an error detection

scheme, is 10´10; without the error-detection scheme, it is 10´11. When the number

of GO terms exceeds three million sometime in the next hundred years, on the other

hand, the probability of a collision including the checksum is 10´6. Although, the

proLong might be harder to use, it scales to all of the BioPortal ontologies and tax-
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onomies9 with a probability of a clash of 10´5. Because the probabilities of collisions

for random proLong IDs are considerably small, they can hardly be seen on the chart

in Figure 4.5; therefore, they are illustrated on a different graph in Figure 4.6.

Figure 4.5: The computed probability that at least one collision occurs versus ran-
dom numbers within the range of proInt 232 and proLong 264

Another suggestion is to use our scheme to define GO concepts for the current state

in a non-destructive way. This is possible by leaving GO IDs as they stand now,

in the OBO Foundry style, and identifying any new term with an ID from the

Identitas library. That is, we keep the old style for GO IDs until a term becomes

obsolete, and then define the replacement term with our scheme, without changing

the IDspace as it becomes intensively populated. However, before deploying the

Identitas identifiers, we need to decide which proquint is acceptable (i.e., proShort,

proInt or proLong). In the case of using the random allocation schema and error

correction features, proLong identifiers are more acceptable in the long-term. On

the other hand, proShort and proInt spaces are relatively small for covering all of the

9The world’s most comprehensive repository of biomedical ontologies, having 821 ontologies and
more than 10 million classes
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Figure 4.6: The computed probability that at least one collision occurs versus ran-
dom numbers within the range of 264

GO terms and maintaining randomness and the checksum schemes simultaneously.

However, there are various ontologies where proShort and proInt, including checksum

and randomness features, would be large enough to cover their classes.

4.7 Discussion

URIs and their various incarnations (i.e., IRIs and URLs) are our way of identifying

data records and resources on the web and providing a standard mechanism for their

access. This allows ontologies and their elements to be reusable and shared across

different domains. However, while the IRI recommendation provides a syntax, it

does not specify how to use all the parts of that syntax. As a result, there are

several common identification schemes, such as OBO, UUID, DOI, LEI, and LSID,

each of which has its own format for local identifiers (i.e., the latter, localised part of

an IRI) with different characteristics and limitations. Table 4.1 provides a summary

of those identification schemes and the key characteristics that define them. An

identification scheme should meet basic requirements:that is, to be unique, stable,
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persistent and resolvable [66]. Most identification schemas provide these desirable

characteristics, either directly by themselves or using supported systems. However,

the style of the identifiers generated by most schemas either consists of numeric

or alphanumeric characters, which introduces a number of problems for end-users.

These can be, for instance, hard to read, memorise, and pronounce, and it is easy to

make mistakes. Although these issues can be resolved with meaningful IDs, there are

serious drawbacks associated with them. For a start, meaningful IDs can be spelled

incorrectly or mistyped, and they are unstable as the meaning related to an ID may

change over time. Another challenge with some identification systems is that require

a degree of coordination between ontology developers to obtain new IDs; this can

hamper or delay development work significantly. Lastly, monotonically increasing

numbers, if misread or misheard, are likely to be accidentally replaced with another

number that is also a valid ID.

In our project, we have implemented a new scheme for generating local identifiers,

which enables the development of identifiers that are semantics-free and can be read

by humans. We have avoided the issues associated with employing sequential or

semi-sequential numbers by utilising random numbers and a checksum technique

respectively. This will increase developers’ productivity, reduce the need for coor-

dination, and increase the power that we have to detect errors, especially when IDs

are transmitted by people, a practice that is common for scientific ontologies.

In this contribution, we have presented details of the scalability of Identitas, showing

that it can easily scale to an ontology the size of GO. We have, in fact, added

Identitas to a refactored version of GO that we have written as part of our research

– in this case Identitas IDs were added as a standard annotation property, effectively

adding a secondary identifier to the main IRI. While it is clearly possible therefore,

to do this, we note that we do not address the question of whether it is practical;

the form of GO IDs is assumed by many pieces of software, and porting GO IDs

would be a significant effort.

Although we use proquints in this scheme to avoid use of numeric IDs, neither we nor

the original author have tested their readability through users studies; this would

be valuable work to do, but is outside the scope of the current research. We do note
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that Identitas is composable; it would be possible to add a different pronounceability

layer perhaps akin to WhatThreeWords should proquints prove problematic.

We believe that the Identitas scheme is a solution that represents a good compromise

between data providers who prefer IDs constructed from natural language (with

identifiers that are meaningful to humans) and the need that we have for meaningless

IDs, which need never be changed. In this paper, we have demonstrated that the

scheme is applicable and scales easily to befit the size of current ontologies. We

have also considered ways in which current ontological practices could be migrated

towards the use of this scheme. We have implemented a library that generates

these IDs and integrated them into existing ontology development tools. Obviously,

any change has a significant barrier to adoption in a pre-existing ontology; we offer

Identitas as a possibility for the future.

4.8 Summary

In this contribution, we present a new approach to identifiers, one that aims to im-

prove the management of ontologies. This approach overcomes some of the main

flaws associated with the existing approaches, providing alternative solutions. On-

tology identifiers are the key for each entity defined in an ontology, and enable a

unique and persistent reference to each term. The form of identifiers has been the

subject of discussion, which has resulted in a number of different schemes. It is

often recommended that identifiers for ontology terms should be semantics-free or

meaningless. One practice, is to use numeric identifiers, starting at one and work-

ing upwards. However, this has a number of disadvantages: it does not allow for

concurrent development; is relatively hard to read; and it is difficult to detect errors

when an identifier is misused. From the perspective of ontology development solv-

ing these issues could significantly facilitate the process of building and managing

ontologies. Here, we suggest random identifiers to enable concurrent development,

while exploiting the proquint library to overcome the problems of memorability and

pronounceability. Finally, a checksum is implemented to prevent the occurrence of

errors while accessing relatively similar identifiers.

In the next chapter, we will investigate the Molecular Function Ontology (MFO)
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structure and the possibility of rebuilding the ontology using the hypernormalisa-

tion technique. patterns that explicitly support the creation of a hypernormalised

ontology.
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5.1 Introduction

The Gene Ontology (GO) project provides a common, structured and controlled

vocabulary to describe three aspects of gene and gene products in living organisms.

It consists of three non-overlapping sub-ontologies, namely Biological Process On-

tology (BPO), Cellular Component Ontology (CCO) and MFO (see Section 2.4).

Each of the three independent ontologies covers a key area of the biological domain.

Briefly, the classes of the BPO represent the biological targets for multiple molecular

activities performed by a gene. The cellular component classes refer to the locations

in a cell where the molecular activities take place. Lastly, the molecular function

classes defines the set of activities carried out by individual gene products. For ex-

ample, the MFO binding activity (GO:0005488) is a broad molecular functional

class and includes a set of more specific functional classes, such as bent DNA bind-

ing, which represent narrower function, class information shown in Definition(1)

Definition: 1. a molecular function by which a gene product interacts with DNA
in a bent conformation 1.
bent DNA binding (GO:0003681)

These three ontologies are large, comprehensive and are used by many downstream

databases describing biology. However, the size and scale of the Gene Ontology is

associated with a number of issues: GO is difficult to develop, re-use and main-

tain. Currently, it consists of more than 45,000 classes [118] describing the different

functions of gene products distributed over three sub-ontologies. Table 5.1 shows

the GO ontologies with the total number of classes and instances relationships that

each ontology has, according to the GO Online SQL Environment (GOOSE) (see

Section 2.4). The reputation and importance of the ontology and the realisation

of issues have motivated restructuring initiatives. As a result, several efforts high-

lighted the GO issues and offered their suggestions to improve the GO representation

addressed in section 2.4.1, starting from the most notably the Gene Ontology Next

Generation (GONG) project [120].

In this thesis, we investigate the usage of the hypernormalisation, patternisation and

programmatic approaches by asking how we could use this approach to rebuild the

1We use different font style for a concept, a class and label, see Section 2.8
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Gene Ontology, specifically the MFO. Hypernormalisation and patternisation are

techniques, which support managing the development and maintenance of ontolo-

gies. The hypernormalisation (explained in details in Section 2.5.3) process can be

summarised into two main steps: disintegrate the current skeleton of the ontology

into independent classification, self-standing classes and refining classes, and rely

on set of patterns and automated reasoner tool to build the polyhierarchical classi-

fication. However, due to the complexity and richness of the knowledge represented

in the ontology, preliminary steps need be carried out. First, we need to investigate

and study the hierarchy, biological and ontological nature, logical structure, and

number of classes and relations defined within the MFO.

Fundamentally, the representation of gene functions in GO is determined in the

following manner [33]. This allows us to understand the biological nature of the

MFO.

§ A gene (also called functional unit) is a demarcated sequence of

Deoxyribonucleic Acid (DNA), which includes instructions for the cell to create

large macromolecule or several macromolecules.

§ Gene products are the macromolecules that have been produced by the cell

based on gene instructions. Proteins are the most common functional macro-

molecules responsible for performing functions for the cell, which occur at the

molecular level. In GO, the functions performed by different proteins are called

activities, (e.g., catalysis or binding).

§ The interaction between (two or more) macromolecules from non-identical

genes result in a macromolecular complexes. Many essential cellular functions

are performed by macromolecular complexes.

§ The actions or activities of a gene product or complex are represented in MFO

as classes. That is, the MFO classes describe the activities instead of the

molecular entities (i.e., molecules, gene products or complexes), however, these

activities take place through physical interactions with the entities.

§ Although a gene is the source of the actions, gene products performs the

molecular activities in a specific location relative to the cell.
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GO ontologies GO ID Classes Relationships

Molecular Function (MF) GO:0003674 10781 14039

Biological Processes (BP) GO:0008150 29384 71372

Cellular Components (CC) GO:0005575 4044 7854

Total 44209 93265

Table 5.1: The number of classes and instances relationships recently comprising GO, as
of February 2018.

5.2 MFO overall analysis

Based on an initial analysis, the MFO is formed from 15 top-level classes. Each

of these classes describe a broad molecular activity, constructed in a hierarchy of

related activities using the fundamental is a relationship and segregated from other

broad molecular activities. For example, the MFO binding activity (GO:0005488)

is hierarchically isolated from other activities, such as antioxidant activity

(GO:0016209), transporter activity (GO:0005215) and catalytic activity

(GO:0003824). (Excepted are the antioxidant and catalytic activities, which

have many classes that belong to both categories). Therefore, we believe that

the hypernormalisation of the MFO would be achieved through hypernormalising

its high-level classes separately as a starting point. Although the MFO high-level

classes share attributes, they describe different tasks such as transporting chemical

entities, transmitting signals, combining molecules and converting one entity into

another. We start investigating the high-level classes independently to understand

their biological characteristics and ontological design. Then, we apply the hyper-

normalisation mechanism by disentangling the structure of the selected high-level

class into disjoint taxonomies: the self-standing classes and classifications of refining

classes. An overview of the workflow used for hypernormalising the MFO is shown

in Figure 5.1.

The ontology of molecular function refers mainly to activities that occur at a molec-

ular level as a result of the functions performed by genes or gene complexes, such

as transport, catalyse, regulate, modulate and bind. Within the MFO the top-level

classes catalytic activity, binding activity and transporter activity are
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Figure 5.1: Overview of the MFO hypernormalisation workflow.

the broadest, together constituting approximately 94% of all classes in the MFO.

Binding activity signifies the linking between ligands (signalling molecules) and

receptors (either intracellular or cell surface receptors). Transporter activity sig-

nifies the movement of substrates such as macromolecules, small molecules and ions

between cells, within a cell, and into or out of a cellular component. Catalytic

activity (known as enzyme activity) signifies the catalysis of biochemical reactions

at physiological temperatures using common types of catalysts such as enzymes.

The MFO high-level classes are presented in Table 5.2, including the total num-

ber of classes each top-level class has. They are descriptive classes (i.e., they do

not represent a specific activity) but include large number of sub-classes, which are

more specific in representing molecular activities that typically require a physical

interaction with biological/chemical entities to perform their actions. The molec-

ular activities described through the MFO classes, like all GO classes, are defined

with a human-readable name (i.e., a label), GO ID, textual description of the po-

tential activity and relationships to other classes that represent related activities.
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For example, consider the class light transducer activity, (GO:0031993) and

its definition in Definition(2), which is classified as a subclass-of the general classes

energy transducer activity.

Definition: 2. absorbing of energy from one or more photons and transferring their
energy to another molecule, usually a protein, within the cell.
light transducer activity (GO:0031993)

Each of the MFO classes is structured into a hierarchy, using only a is_a relationship

to classes represent broad activities and often more specific activities. Moreover, a

molecular activity can be part_of other activities that are classified as biological

processes from BPO or occurs_in a specified location in some cellular components

form CCO where the function is active. Not only that, recently there has been a

collaborative effort to link GO classes to corresponding classes and resources from

external ontologies and classification systems, such as Chemical Entities of Biological

Interest (ChEBI) ontology [54], Cell Ontology (CL) and Rhea (Annotated Reactions

Database and Enzyme nomenclature database). This has resulted in the creation

of cross-references and cross-Ontology relations. For instance, the chemical

in the MFO class carbohydrate derivative transmembrane transporter ac-

tivity (GO:1901505) is cross-referenced to the ChEBI carbohydrate deriva-

tive (CHEBI:63299) and the biochemical reaction defined within the catalytic

activity 2-aminoadipate transaminase activity (GO:0047536) is mapped to

the RHEA entry (RHEA:12601). However, the mapping is made manually and there

are a large number of GO classes have not yet been cross-referenced.

We documented all information about GO: statistics, issues and solutions and

comments on GO classes, and illogical classification and modelling differences be-

tween GO and related ontologies during the project development; all available at

https://github.com/phillord/hyper-go/blob/master/nizal_notes.org.

In the next section, we investigate further into the structure of some of the MFO top-

level classes and describe our methodology for hypernormalising their hierarchies.
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GO ID GO MF Top-Level classes No.descendants Percentage

GO:0016209 antioxidant activity 25 0.2%
GO:0005488 binding 1856 17.2%
GO:0038024 cargo receptor activity 12 0.1%
GO:0003824 catalytic activity 7001 66.4 %
GO:0140104 molecular carrier activity 13 0.1%
GO:0098772 molecular function regulator 201 1.8 %
GO:0060089 molecular transducer activity 413 3.8%
GO:0045735 nutrient reservoir activity 0 0.0%
GO:0044183 protein folding chaperone 0 0.0%
GO:0031386 protein tag 0 0.0%
GO:0005198 structural molecule activity 41 0.3%
GO:0090729 toxin activity 0 0.0%
GO:0140110 transcription regulator activity 94 0.8%
GO:0045182 translation regulator activity 7 0.06%
GO:0005215 transporter activity 1118 10.3 %

Total 10781 100%

Table 5.2: The top-level classes of the MFO, as of February 2018.

5.3 Top-level classes Hypernormalisation

As mentioned above, we intend to hypernormalise the hierarchy of the molecular

function ontology via the individual hypernormalisation of each ontology high-level

class, because the top-ranked MFO-activities (i.e., the activities that have the largest

number of classes (see Table 5.2)) are largely hierarchically segregated. Figure 5.2

shows part of the hierarchical classifications for the high-level classes. During this

stage we describe the procedures we follow towards producing a hypernormalised

ontology (Hyper-GO). Firstly, we begin by developing our biological knowledge

about the selected activity using GO documentation, references and related arti-

cles. Secondly, we study the logical representation of the defined notions, and more

importantly analyse the textual descriptions associated with each class, because

definitions illustrate the classes’ molecular functions and include reference(s) to the

source of the information. Then, as a result of the first step and further inspection

we should identify the scope of the analysed activity, and recognise the ontolog-

ical nature of the entities (i.e., small molecules, proteins or cellular components)

associated mainly with the molecular function we investigate. In the last step, we
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Figure 5.2: Part of the top-level MFO classes hierarchical classifications.

restructure the hierarchy of the top-level activity into disjoint trees: self-standing

classes and refining classes, with the assistance of a set of designed patterns and

logical reasoners to build the different hierarchies. We use part of the current state

of the GO hierarchy to demonstrate how we can disentangle the ontology structure

into two disjoint taxonomies: self-standing classes and refining classes.

The process of top-level class hypernormalisation can be divided into several stages,

as described in the following subsections.

5.3.1 Develop biological knowledge

An essential step towards refactoring large ontologies such as GO is acquiring suf-

ficient knowledge in each area comprising the ontology. GO has been developed by

a small group of expert biologists to include large-scale biomedical and biological

information, which has become comprehensive over the course of 20 years. There-

fore, in the early stage of our research, it was crucial to strengthen our knowledge

using internal and external resources such as the Gene Ontology Handbook [33],

official online websites (http://geneontology.org) and related publications. This
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would allows us to understand the current classification of the MFO activities and,

eventually, to be able to classify the ontology classes into the two hypernormalised

hierarchies. Moreover, by gaining sufficient knowledge about that specific activity,

we would avoid any existing illogical classification and improve the overall repre-

sentation with accurate information. Each high-level class related to the molecular

function ontology demonstrates a biochemical activity in a broad sense and includes

various distinct biological and chemical aspects, such as chemical entities, chemical

reactions, enzymes, concentration gradient, ligands, voltage-gated channels and so

on. Within the Catalytic Activity (GO:0003824) hierarchy, the set of enzymes

classes, such as hydrolases and ligases, play key roles in catalysing biochemical re-

actions. Without knowing the enzymes’ categories, their biological functions, types

of reaction participants (reactants and products) and reaction directionality, the

development of the catalytic activity class would be difficult and error-prone. The

study of the field not only improves our knowledge but also reflects on the overall

representation of the classes in the Hyper-GO ontology.

The outcome of this effort is:

• Gaining enough biological knowledge in the area of the selected MFO high-level

class.

• Identify all the different terminologies used in the ontology and their biological

functions.

• Having an overall picture of possible patterns in the domain of interest.

5.3.2 Classes textual definitions analysis

In GO, the class name (or using the terminology described earlier, the label) are

human-readable but only provide a brief description of the molecular activity that

a class represent. Frequently, a class label includes the type of an activity e.g.,

binding and the participant molecule e.g., histone that engaged in that specific

activity in a biochemical context. Additionally, there is much knowledge expressed

within the MFO class definition that is not possible to capture without analysing

the class textual descriptions. For instance, consider the GO class GO:0015126 in

Definition(3).
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Definition: 3. The directed movement of bile acid and bile salts out of a hepatocyte
and into the bile canaliculus by means of an agent such as a transporter or pore.
canalicular bile acid transmembrane transporter activity (GO:0015126)

This specifies the starting location hepatocyte of the molecule bile salts and the des-

tination canaliculus. Therefore, in order to discover the different biological aspects,

we must apply text analysis on the entire class’s textual descriptions within a spe-

cific high-level class hierarchy. Based on an initial analysis, we found many classes

have almost identical definitions, only differing in the molecular entities. This is

because MFO uses standard definitions for each of the top-level activities and their

sub-activities (see Listings 5.1 to 5.5). Understanding the standard definition for a

high-level activity only allows us to identify the general functional patterns, whereas

more sub-patterns exist with narrower grouping classes that require further analy-

sis. Moreover, there is nothing in the class name or definition to indicate their

relationship with other classes. In a number of cases, class definitions are opaque

and meaningless, which necessitates an additional effort to clarify the molecular

functions associated with these classes. As in the case of the classes that describe a

specific type of transporter, such as active transporter, definitions specify the type of

energy by which molecules are moved against their concentration gradient. In our

work, the aim is to have computable definitions for all classes in GO, especially the

definitions that include semantic relationships to external ontological entities, such

as cellular components and chemical entities.

The outcome of this analysis is:

• Recognise the distinct biological properties in order for them to be defined in

the refining skeleton as descriptors of the core classes.

• Discover the set of patterns (i.e., both general and specific patterns), mostly

from the class textual descriptions.

Interacting selectively and non -covalently with a X, (brief

description of the activity and X]).

Listing 5.1: Binding activity classes standard definition.

Catalysis of the reaction:

[reactants = products], (reaction catalysed
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by a specific enzyme)

Listing 5.2: Catalytic activity classes standard definition.

Combining with X, to initiate a change in cell activity.

(brief description of X]).

Listing 5.3: Template for X Receptor activity (Large part of Molecular transducer
activity).

Enables the transfer of X, into , out of or within a cell ,

or between cells.

Listing 5.4: Transporter activity classes standard definition.

Modulates the activity of a X, [brief description of X].

Listing 5.5: Molecular function regulator activity classes standard definition.

5.3.3 Identify broad categories within a high-level class

In MFO, there are two elements specifying the molecular function represented by

a class: the class’s definition and its relationships to other classes of broad classifi-

cations. This is because the GO classes are represented in a directed acyclic graph

(DAG), which means any class with some molecular function will also inherit all

the functions that its parents have and appear in the DAG [33]. During this stage,

we review any subsumption hierarchy that includes a large number of classes with

a general description within the hierarchy of a specific high-level class. This allows

us to understand the scope to which high-level classes limits their subclasses. For

instance, most of the classes created within the top-level class of molecular trans-

ducer activity (GO:0060089) are subsumed under the grouping class signaling

receptor activity, see its definition in Definition(4)

Definition: 4. combining with molecules to receive and transmit signals from and
to different places within a cell to initiate a change in cell activity.
signaling receptor activity (GO:0038023)

The purpose of this review is:

• To identify any biological qualities, which have not being captured with pre-

vious steps.

• To understand the depth of knowledge represented in that particular high-level

class.
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5.3.4 Identify the ontological nature of classes

The next step is to rebuild the ontology structure with relevant and consistent rep-

resentations of entities. One of the main objectives of the Open Biomedical Ontolo-

gies (OBO) Foundry is to encourage the reuse of ontology classes that others have

already represented, in order to increase orthogonality between these ontologies [44].

Our analysis shows that a large number of the GO classes have references to other

candidate OBO ontologies and related classification systems, including ChEBI ontol-

ogy, CL, KEGG, Rhea and the Enzyme Nomenclature Database. Within MFO the

molecular activities involve physical interaction with chemical entities, with some

playing chemical, application or biological roles. For example:

biotin is an organic heterobicyclic compound that has the biological role of B vi-

tamin, which plays important roles in cell metabolism.

ligand is any molecule or ion that capable of chemically binding to a cellular protein

called receptor to initiate a change in cell activity.

amiloride is known for its application role as antikaliuretic-diuretic agent.

GO-PLUS [54] is considered to be the most expressive edition of GO, because it

links the GO classes with equivalent classes from domain-related ontologies, mostly

the ChEBI classes. This has resulted in the creation of cross-references and

cross-Ontology Relations relations. ChEBI is a reference for chemical entities,

specifically small chemical compounds classified according to their molecular struc-

ture, base role within a biological environment and as subatomic particles. However,

the work of GO-PLUS is still incomplete and there are many classes in GO that have

not yet been cross-referenced, for several reasons.

1. The alignment between GO and ChEBI was based on string-matching and

manual revision.

2. GO and ChEBI ontologies use different labels for same concepts.

3. Some GO classes represent general grouping classes (e.g., basic amino acids

and sugar), while ChEBI is more specific in defining classes (e.g., lysine, argi-

nine, histidine and monosaccharide.
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4. Outside the scope of the ChEBI (e.g., lactoferrin and transferrin),

5. Not yet defined in ChEBI, missing chemical entities need to be submitted to

the ChEBI web application.

Our aim is to integrate the ChEBI structural hierarchy into our development envi-

ronment and reference any chemical entities within the MFO classes to their corre-

sponding chemical entities in the ChEBI ontology. Then, we aim to use an auto-

mated reasoner to classify the created classes based on their ChEBI classification,

infer additional relationships, and check for any inconsistencies in the generated hi-

erarchies. It is possible to build our ontology without using ChEBI; in this case, we

will need to create an ontology of chemical entities. However, this requires enormous

effort, experience, and time, which prevent us from progressing to applying the hy-

pernormalisation approach to GO. By relying on high-quality ChEBI classifications

of chemical terminologies, we overcome the challenge of dealing with the complexity

of the biological relations between the chemical entities.

However, our analysis shows that there are some areas of semantic disagreement

between the GO and ChEBI ontologies. One significant difference between GO and

ChEBI is in the representation of acids and their conjugate bases. An acid becomes

a conjugate base when loosing a proton, while a base turns into conjugate acid by

accepting a proton. ChEBI uses the pair of relationships is conjugate acid of and is

conjugate base of to link acid molecules with their conjugate bases and vice versa.

Conversely, GO does not distinguish between the acid and the base, which from a

chemical perspective, is wrong. The reason for this lack of distinction is probably

that GO is describing a biological situation, where all the chemicals in question are in

solution where this distinction is less meaningful. This has led to inconsistent repre-

sentations of chemical entities in some GO classes’ names, their definitions and their

cross-ontology relations. For instance, consider the definition(5) of the GO class L-

ascorbic acid transmembrane transporter activity, GO:0015229, where the

class name refers to the acid L-ascorbic acid and the class definition, exact syn-

onym and cross-ontology relation refer to the base form L-ascorbate.

Definition: 5. Enables the transfer of L-ascorbate from one side of a membrane
to the other.
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Class name: L-ascorbic acid transmembrane transporter activity (GO:0015229)
Exact synonym: L-ascorbate transporter activity
Exact synonym: vitamin C transporter activity
Cross-Ontology Relations: CHEBI:38290, L-ascorbate

The L-ascorbate is not the same as L-ascorbic acid, but is a conjugate base of L-

ascorbic acid ; in ChEBI this distinctions is represented explicitly as L-ascorbate

(CHEBI:38290) is conjugate base of L-ascorbic acid (CHEBI:29073), which in

turn is conjugate acid of the L-ascorbate (CHEBI:38290).

In GO the L-ascorbic acid transmembrane transporter activity

(GO:0015229) has the relationship is a to the following classes as its direct

superclasses2:

1. vitamin transmembrane transporter activity (GO:0090482)]

2. carboxylic acid transmembrane transporter activity(GO:0046943)

3. monosaccharide transmembrane transporter activity (GO:0015145)

4. organic anion transmembrane transporter activity (GO:0008514)

This classification did not match with specific L-ascorb* molecule, but to the union

of the L-ascorbic acid and L-ascorbate. One solution discussed before [54] would be

to expand these classes into large disjunctions, through the use of general concept

inclusions (GCIs). So any transporter transporting GO L-ascorbic acid would be

transporting ChEBI (L-ascorbic acid or L-ascorbate or D-ascorbic acid etc).

This makes the axiom space larger when reasoning, and is also not necessarily correct

– for example, transporters probably either have the capacity or in practice transport

the D- Form, which is not found in biological systems. Another solution to this

conflict is just to make the different states of a molecule all equivalent in Hyper-GO.

This would work, as there are no disjoint statements between the ChEBI classes,

because chemical classification is compositional [51]. However, it makes some of the

semantics wrong – acid would become a conjugate-base of itself, although it would

now match the GO chemical classification. Similarly, GO also does not differentiate

between a molecular entity and its naturally occurring forms, for instance, the cobalt

2https://www.ebi.ac.uk/QuickGO/term/GO:0015229
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ion and its three common oxidation states: cobalt(1+), cobalt(2+), cobalt(3+) are

considered as synonyms in GO. In Table 5.3 we summaries some of the chemical

entities that have been used inconsistently in GO classes.

It would appear that GO is largely using a simplified representation: in the context

of GO, we do not need to distinguish between the L-, D- nor generalised form of

a molecule; likewise, the distinction between the acid and conjugate base are less

relevant when, biologically, these molecules are always in solution. Therefore, a valid

solution is to rely on the cross-Ontology Relations relation when the GO class

label and definition have different chemical entities.

Table 5.3: Table showing some of the chemical entities that are used inconsistently
within GO classes.

No Molecule No of
classes in

GO

Molecule states in
ChEBI

Example

1 L-ascorbic acid 14 L-ascorbic acid or
L-ascorbate or
D-ascorbic acid

L-ascorbic acid
metabolic

process(GO:0019852)
2 succinate 31 succinate or

succinate(2-) or
succinate(1-) or

succinic acid

succinate transport
trans-

porter(GO:0071422)

3 pantothenate 9 pantothenate or
pantothenic acid

pantothenate
metabolic process

4 uronic acid 4 uronic acid or uronate uronate
dehydrogenase

activity
5 hexuronic acid 4 hexuronic acid or

hexuronate
hexuronate
transporter

5.3.5 Build the hypernormalised hierarchies

The hypernormalisation methodology aims to ease the process of ontology building,

controlling its maintainability and increasing its expressiveness. To achieve this, the

structure of a hypernormalised ontology should consists of trees of classes, divided

into two main disjoint hierarchies. A set of self-standing classes represents the core

classes of the ontology, and a set of refining or partitioning classes represents the

biological qualities of those self-standing classes. The classes presented in a self-

standing hierarchy are disjoint, and their sub-classes do not cover the superclasses,
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whereas the hierarchy of the biological properties is expected to be comprehensive

without any overlap between the classes (the methodology is explained in detail in

Section 2.5.3). To enable a better understanding of the technique, it would be useful

to show an example of how we can disentangle part of the GO hierarchy into two dis-

joint taxonomies. Figure 5.3 shows the current representation of the grouping class

response to stimulus (GO:0050896), which includes all the biological processes

that describe a change in state or activity of a cell or an organism as a consequence

of different types of stimuli (See Definition(6)).

Definition: 6. Any process that results in a change in state or activity of a cell or
an organism (in terms of movement, secretion, enzyme production, gene expression,
etc.) as a result of an external stimulus.
response to external stimulus (GO:0009605)

First we investigate the grouping class hierarchy, separating the biological process

and non-biological process concepts and inspecting these concepts based on their

ontological nature. Then, we build the hierarchy of the non-process classes. In

this case, the set of stimuluses can be hierarchically represented as refining classes

according to their classification in GO, while self-standing classes refers to the bio-

logical processes that describe an entire process of detecting a stimulus, responding

to a stimulus type taking place in a cell or organism and the consequence of this

stimulation. These processes will be defined in terms of the different stimuluses

types in the refining hierarchy, as shown in Figure 5.4. Finally, the polyhierarchical

relationships between the self-standing classes will be decided using a reasoner.

5.3.6 Pattern-driven development

Ontology Design Patterns (ODPs) play a vital role in facilitating development and

enabling the accurate construction of ontologies by solving recurring design prob-

lems and producing a new style of ontology (discussed previously in section 2.6.1).

Taking into account the class of response to stimulus (GO:0050896) discussed

in the previous section. All the classes representing the processes of responding to

a stimulus uses a standard definition (see Listing 5.6), only differing in the stimulus

type. Therefore, we can speed up the development of the classes by designing a

single pattern that can generate the relationships between the two independent hi-

- 98 -



Chapter 5: GO Molecular Function Ontology (MFO) Analysis

Figure 5.3: The process of responding to a stimulus, from QuickGO [15].

Figure 5.4: The hypernormalised hierarchy of the process responding to a stimulus.

erarchies automatically. A possible pattern to define a response to stimulus class

is shown in Listing 5.7.

A change in state or activity of a cell or an organism

(in terms of movement , secretion , enzyme production , gene

expression , etc.) as a result of a stimulus type stimulus.

Listing 5.6: Response to stimulus (GO:0050896).

(defclass ResponsingToStress

:annotation (goid "GO:0006950")

:stimulus Stress

Listing 5.7: Response to stress.

5.3.7 Programmatic development

The idea of this project is to rebuild the ontology programmatically, so we can pull

the ontology when we need it in a relatively straightforward and reproducible way.

Many ontologies were developed using the Protégé editor, which has a rich visualisa-
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tion interface but it is time and effort consuming. Tawny-OWL [76] (see Chapter 3)

provides a set of patterns that explicitly support creation of a hypernormalised on-

tology.

5.4 Summary

In this chapter, we investigated the knowledge represented in the Molecular Function

Ontology (MFO) as a preliminary step towards “untangling” the ontology hierarchy

and then using the hypernormalisation approach to rebuild the ontology. Currently,

MFO is formed from several large and tangled hierarchies of classes, each of which

describe a broad molecular activity. The way to develop a hypernormalised hierarchy

is to implement the methodology on each of the large grouping classes that form

the MFO independently. We also discussed the set of steps we would take: starting

with developing our biological knowledge about each activity and studying the logical

representation of the activity classes, then analysing the textual definition associated

with each class, because a class definition often describes the molecular function type,

the biochemical entity that involved in the molecular function, and their biological

properties.

During the investigation of the MFO, questions have been raised regarding the rep-

resentations of classes in GO versus ChEBI. The main question is whether GO and

ChEBI have different representations of classes for the same concepts. Theoretically,

they describe the same entities, but actually GO often has a class, which represents

a concept that does not directly map to a concept in ChEBI, normally because

ChEBI is more specific and precise. The way to look at this is that as a meta-

class, GO often refers to a more abstract version of the concept (the most common

form), such as the dehydroascorbic acid, and considers its different naturally occur-

ring forms (i.e., L-dehydroascorbic acid, dehydroascorbide(1´) L-dehydroascorbate)

as equivalent classes. The class dehydroascorbic acid transmembrane trans-

porter, GO:0033300 in GO has a role vitamin; in ChEBI the role of vitamin is asso-

ciated with the L-dehydroascorbic acid, CHEBI:27956, not the dehydroascor-

bic acid, CHEBI:17242. We have discussed the different solutions to tackle this

issue, and their advantages and disadvantages. However, we found that the best
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choice is to utilised the cross-ontology relationships that made by the GO-PLUS.

Finally, we have shown an example of how we can hypernormalise part of GO,

specifically the grouping class response to stimulus. Moreover, we presented one

possible logical pattern that could speed up the development of the stimulus classes

using Tawny-OWL environment.

In the next chapter, we will apply the hypernormalisation and patternisation tech-

niques on the Transporter Activity (TA).
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6.1 Introduction

Transporter activity (GO:0005215) is one of the broadest and complex grouping

classes as it covers many cellular transporter systems by large number of ontology

classes, constituting approximately 10% of all classes in MFO. The TA classes are

grouped on the basis of functional similarity, which in general describe the molecu-

lar functions related to moving substances such as macromolecules, peptides, small

molecules, and ions between cells, within a cell, into and out of a cell. There are sev-

eral classified vital transport systems and mechanisms that are classified, by which

substances or cellular entities travel across the membrane of a cell. Cell membranes

are selectively permeable: each membrane of a cell has the ability to selectively

allow essential molecules to pass through the membrane freely, while preventing cer-

tain molecules from entering a cell without the assistance of a membrane protein,

cellular energy or both, for the purpose of regulating the cell’s internal environ-

ment. For example, very small and non-polar molecules (e.g., water, oxygen and

carbon dioxide) can move through a membrane’s lipid bilayer unaided, whereas,

water-soluble molecules (e.g., glucose, sodium (Na`) and chloride (Cl´)) are trans-

ported by means of membrane proteins, such as channel and carrier proteins. In

addition, we can classify transport systems into those that are passive transporters

and those that are active transporters. In GO, transporter systems are classified still

further, which results in a tangled ontological hierarchy; as such, any required de-

velopment or maintenance to the hierarchy will require the maintenance of multiple

classifications. Therefore, the development of a hypernormalised hierarchy of TA is

potentially useful for easing development and maintenance, and providing a strong

computational solution to recurrent modelling problems.

For our approach to hypernormalise the TA (GO:0005215) hierarchy, we follow the

steps illustrated in Chapter 5. We start by acquiring sufficient knowledge covering

the different membrane transport systems, the elements that influence the trans-

fer, the different cell types and the parts that maintain a specific set of transport

proteins and the physicochemical properties of the substances (e.g., hydrophilic,

charged, polar and large molecules) that being transported. Taking the structural

representation and the scope of the TA classes into account, we consider what this
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does and does not cover. Then, we analyse the textual description associated with

each TA class, as definitions include further explanations for the type of transport,

the initial location of a substance and the final position (this represents a simple

transport system, whereas, in more complicated transport systems, other biological

and chemical elements are essential to perform the function). Finally, we restruc-

ture the hierarchy of the transporter activity into disjoint trees, self-standing classes

and refining classes with the assistance of a set of designed patterns and logical

reasoners, to build the TA sub-hierarchies.

In the section that follows, we will introduce the range of membrane transport

systems and mechanisms represented in the TA classes, the set of essential elements

and characteristics associated with each type and the way in which they organised

the TA hierarchy.

6.2 Reviewing TA structure and classes

The total number of classes defined within the TA hierarchy is around 1,065 classes,

however, the number of classes change based on the changes made by the GOC

ontology team and scientists. Our analysis shows that almost all of the TA classes are

classified under the class transmembrane transporter activity (GO:0022857) 1

which is a grouping class (i.e., not a function itself) with a general definition (see

Definition(7)), though its subclasses are more specific. The subclasses are distributed

over three categories: general classifications for narrower transport classes, passive

transport and active transport.

Definition: 7. Enables the transfer of a substance, usually a specific substance or
a group of related substances, from one side of a membrane to the other.
transmembrane transporter activity (GO:0022857)

It is generally held among cellular biologists that there are two major ways in

which substances can move across a cell membrane: passive transport and active

transport [1]. Passive transport can be further classified into three transport meth-

ods: simple diffusion, osmosis and facilitated diffusion. Active transport is also

sub-divided into two types: primary active transport and secondary active trans-

1We use different font styles for a concept, a class and label, see Section 2.8
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port. In GO, the classes representing active transport functions are grouped us-

ing the active transmembrane transporter activity (GO:0022804) which has

the sub-groups classes: primary active transmembrane transporter activity

(GO:0015399), and secondary active transmembrane transporter activity

(GO:0015291). Whereas, the set of classes referring to the transport functions that

occur by means of the facilitated diffusion transport system are defined under the

grouping class of channel activity (GO:0015267), which in turn, is classified as a

passive transport. However, in regards to the simple diffusion transport system, this

is not within the scope of GO as it is not enabled by any membrane protein; it just

describes substances passing through the cell membrane. TA’s overall structure and

the main grouping classes that define the set of transport mechanisms are illustrated

in the list below 6.2. These are not the only grouping classes; there are narrower

and chemical type-based groups. For example, the grouping class macromolecule

transmembrane transporter activity (GO:0022884), is defined to represent any

large molecule, such as a protein or nucleic acid, but in Hyper-GO, this type of

grouping will be classified based on the ChEBI classification.

i) [GF] transporter activity (GO:0005215)

a) [GF] transmembrane transporter activity (GO:0022857)

1) [SF] lactone transporter activity (GO:0042971)

2) [SF] amide transporter activity (GO:0042887)

3) [SF] toxin transmembrane transporter activity (GO:0019534)

4) [GF] active transporter activity (GO:0022804)

(i) [GF] primary active transporter activity (GO:0015399)

(a) [GF] ATPase-coupled transmembrane transporter activity

(GO:0042626)

(b) [SF] light-driven active transmembrane transporter activity

(GO:0015454)

(c) [SF] decarboxylation-driven active transmembrane transporter

activity (GO:0015451)
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(d) [SF] P-P-bond-hydrolysis-driven protein transmembrane trans-

porter activity (GO:0015450)

(ii) [GF] secondary active transporter activity (GO:0015291)

(a) [GF] symporter activity (GO:0015293)

(b) [GF] uniporter activity (GO:0015292)

(c) [GF] antiporter activity (GO:0015297)

(d) [SF] proton-dependent peptide secondary active transmem-

brane transporter activity (GO:0022897)

5) [GF] passive transporter activity (GO:0022804)

(i) [GF] channel activity (GO:0015267)

b) [GF] lipid transporter activity (GO:0005319)

c) [SF] protein transporter activity (GO:0140318)

Top-level Structure 6.1: This is the top-level classes in the hierarchy of TA
which represent the major cellular transport systems. The GF refers to group
function, whereas SF refers to single function

In the following subsections, we will describe the major types of cellular transport

systems and the set of biological and electrochemical elements that influence each

category. It is an essential step if we are to divide the TA classes into two main

hierarchies: self-standing classes and refining classes.

6.3 Active transport

A large number of classes describe the active transport of solutes, approximately

418 of the total TA classes 2. Active transport is the movement of substances from

an area of low concentration to an area of higher concentration (i.e., against an elec-

trochemical gradient); that can be inside a cell, within a specific cellular component

or outside of a cell environment. The electrochemical gradient of a substance refers

to the differences in both the electrical and chemical concentration gradients of that

substance, for outside a cell versus inside. For the substances that move against its

concentration gradient and across the cell membrane, a cellular energy is required,

2We use the web-based open-source tool GOOSE to query and retrieve GO data see Section 2.4
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often coming from the assistance of special membrane carrier proteins. The energy is

usually either released by the hydrolysis of Adenosine Triphosphate (ATP) or from

stored in a substance gradient that was created as a result of using the ATP energy.

Therefore, the active transport classes are classified into two main types: primary

and secondary active transport.

6.3.1 Primary active transport

Primary active transport refers to the transport of molecules (such as sodium(Na`),

potassium(K`), magnesium(Mg2`) and calcium(Ca2`)) that are assisted by carrier

proteins (known as pumps) to cross the cell membrane against their concentration

gradients, with the help of free energy released from ATP hydrolysis. One of the

best-known example is the sodium-potassium pump, where cells utilise energy from

ATP to pump sodium ions out of the cell while bringing a potassium ion into the

cell. In both cases, the ions are pumped against a concentration gradient, with Na`

having a high concentration outside and K` having a high concentration inside the

cell (see Figure 6.1). The sodium ions transported out of the cell form a potential

energy that can later be exploited as an energy source for secondary active trans-

port. This does not mean that ATP hydrolysis is the only primary active transport;

there are other prime energy sources, such as the following chemical reactions: ox-

idoreduction, methyl transfer, decarboxylation and light absorption. However, these

types of energy are used only in certain organisms, whereas ATP-dependent trans-

porters are identified in all living organisms and a large portion of the primary active

transporter classes in TA are ATP-dependent.

6.3.2 Secondary active transport

The sodium-potassium pump is important not only for stabilising the resting mem-

brane potential of a cell and its volume, but also because of many secondary active

transporters. Secondary active transport, also known as ion-coupled transport, refers

to the utilisation of the energy held in the electrochemical gradient of a molecule or

an ion (created by primary active transport) to transfer other molecules against their

concentration gradient and across a cell membrane. In other words, specific carrier

proteins allow certain molecules, such as glucose or an amino acid, to move across
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Figure 6.1: An example of primary active transport, using ATP as an energy source
to implement the sodium-potassium pump cycle. Figure taken from https://en.wikipedia.org/wiki/

Active_transport#Primary_active_transport , used under CC-BY 4.0 license.

the cell membrane and up their concentration gradient only by coupling them with

another ion (typically sodium (Na`) or a proton (H`)), which moves down its elec-

trochemical gradient. An example of a secondary active transport is when a sodium

ion drives the transport of an amino acid out of a cell by binding to a carrier-specific

protein in a tightly coupled process (see Figure 6.2). The direction of translocated

substances depends on the type of the active membrane carrier protein; these are

classified as symporters, antiporters or uniporters.

• Symporter (also known as cotransporter): The driving and the driven sub-

stances both move in the same direction.

• Antiporter (also known as counter-transport or exchanger): Moves substances

in opposite directions.

• Uniporters: Transports a single molecule or ion from one side of a cell mem-

brane to the other.

One limitation of the secondary active transporters’ representation in GO is that

the secondary energy-coupling source is not explicitly stated. In many cases, the

ontology definitions of secondary active transporters indicate that the movement of

secondary transporters is driven by “chemiosmotic sources of energy”. These are ion

gradients (i.e., an ion electrochemical gradient) that can be found on both sides of
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Figure 6.2: An example of secondary active transport: the transport of amino acid
driven by sodium ion. Figure taken from https://en.wikipedia.org/wiki/Active_transport#Secondary_active_transport , used
under CC-BY 4.0 license.

a cell membrane, such as Na`, K`, H` and Ca2` gradients, which are utilised by

membrane proteins to move ions or molecules out of or into a cell. In many differ-

ent cells and tissues, a sodium ion functions as the driving ion for many secondary

active transporters, while some other co-transporters use an existing proton elec-

trochemical gradient to drive the uphill transport of other solutes. An additional

limitation is that the representation of symporter and antiporter transport mech-

anisms can lead to confusion, as it does not make a clear distinction between the

solute being transported and the driving ion (i.e., which solute is driving and which

is driven). For instance, consider the symporter class anion:cation symporter

activity (GO:0015296) in Definition(8) and the antiporter class calcium:sodium

antiporter activity (GO:0005432) in Definition(9).

Definition: 8. Enables the transfer of a solute or solutes from one side of a mem-
brane to the other according to the reaction: anion(out) + cation(out) = anion(in)
+ cation(in).
anion:cation symporter activity (GO:0015296)

Definition: 9. Enables the transfer of a solute or solutes from one side of a mem-
brane to the other according to the reaction: Ca2+(in) + Na+(out) = Ca2+(out)
+ Na+(in). PMID:16371597
calcium:sodium antiporter activity (GO:0005432)

Another issue is consideration of the uniporter transporters as secondary active
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transporters, which is inaccurate. Uniporters are integral membrane proteins that

facilitate the diffusion of charged molecules using the electrical potential difference

across a cell membrane; they do not require direct cellular energy or a driving

substance to function, according to a paper by Milton Saier [98]. The paper is in-

cluded as a source of information in the definition of the class of secondary active

transport (GO:0015291) and considered to be a common reference for the trans-

membrane molecular transport systems. Also, the [122] and [74] state that uniporter

membrane proteins are facilitated transporters, not active transporters. More im-

portantly, the definition of the class of uniporter activity (GO:0015292), holds

the term facilitated diffusion carrier as an exact synonym.

6.4 Passive transport

Another substantial number of the TA classes describe the passive transport of

molecules through transmembrane channel and carrier proteins by facilitated diffu-

sion. In passive transport, solutes move across a cell membrane down their concen-

tration gradients with no expending of any cellular energy. Passive transporters are

divided into simple and facilitated diffusions:

6.4.1 Simple diffusion

It is the simplest and most direct transport system, by which hydrophobic, un-

charged, small and non-polar molecules are able to dissolve in the phospholipid

bilayer and pass through the cell membrane. The passage of these molecules will

continue into and out of the cell’s semi-permeable membrane until the concentration

gradient distribution of the solutes becomes even. A special case of simple diffusion

is osmosis, which is the free transport of water across the cell membrane and along

its concentration gradient. However, this type of transport is not in the scope of

GO as it does not involve transporter proteins.

6.4.2 Facilitated diffusion

For those substances that are not able to pass through the cell membrane as they are

repelled by the hydrophobic part of the phospholipid bilayer, membrane transport

proteins are required to facilitate their diffusion [3]. As such, facilitated transport
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enables hydrophilic, charged, polar and large molecules, such as glucose, amino acids

and ions, to move across the membrane using channel proteins and carrier proteins.

Channel Proteins

Channels are membrane-embedded proteins that form hydrophilic tunnels

through which polar, charged and a specific size of molecules can avoid the

hydrophobic tails and move from one side of a membrane to the other [29].

Channel proteins are dedicated to a specific solute or one group of similar

solutes, which they can transport through freely and rapidly. For instance,

water channel proteins (known as aquaporins) specifically allow the movement

of water. Many types of ion are transported across the cell membrane via dif-

ferent types of ion channel. However, not all channels are open all of the time;

there are channels known as gated channels that only open in response to a

stimulus. Gated channels allow cells, such as nerve and muscle cells, to control

the flow of electrical signals by regulating the opening and closing of their ion

channels. There are several stimuli that affect the opening and closing of gated

ion channels:

• Voltage-gated channels : The set of channels that open and allow the

transmembrane transfer of a substance in response to changes in the

electric potential across the cell membrane. These channels are often

ion-specific, such as voltage-gated chloride channels and voltage-gated

sodium channels.

• Ligand-gated channel : A class of ion channels that enable the transmem-

brane transfer of solutes only when chemical signals (i.e., ligands) binds

to the channels’ receptors to unlock their pores. There can be two types

of ligands: intracellular ligands (that bind to receptors inside the cell,

e.g., glutamate) or extracellular ligands (that bind to receptors outside

the cell, e.g., calcium ions (Ca2`) ).

• Mechanically-gated channels : A group of channels that open in response

to a physical pressure or stress.
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Figure 6.3: An example of a facilitated diffusion: the transport of materials using
channel proteins versus carrier proteins. Figure taken from https://en.wikipedia.org/wiki/Facilitated_diffusion

, used under CC-BY 4.0 license.

Moreover, special channel proteins allow the passage of substances between

adjacent cells through gap junctions, which can take the form of wide or narrow

pore channels.

Carrier Proteins

Carrier proteins are another type of cellular membrane-embedded protein that

require a binding process with other substances, to facilitate their selective

diffusion through a cell membrane. Each carrier protein goes through changes

in its conformation each time polar and charged molecules bind to the car-

rier binding site, which is specific. In fact, both passive and active transport

systems use structurally similar carrier proteins to transfer solutes across the

membrane, but with differences in the direction of the solutes’ concentration

gradients. The difference between channel and carrier proteins is that sub-

stances moves much more slowly using carrier proteins compared to channel

proteins. This is because channels do not change their shape in order to

transfer molecules. In addition, channels only transfer solutes passively via

facilitated diffusion, unlike carrier proteins, which transport solutes actively

and passively. Figure 6.3 shows the difference between channel and carrier

proteins in transporting materials.

Although carrier proteins are broadly recognised as membrane transporter
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Figure 6.4: The GO hierarchical representation of transporter activity and carrier
activity

proteins [2] and assist in performing active and passive transporter systems,

the GO developers draw a distinction between a “transporter” and a “carrier”.

A transporter forms a pore that allows molecules to move through, whereas a

carrier binds to substance and delivers it to a cellular location. As a result of

this distinction, the set of solutes that is transported using a carrier protein is

defined outside of the transporter activity (GO:0005215) hierarchy, in an

independent hierarchy of molecular carrier activity (GO:0140104) (see

Figure 6.4). Despite that, we find a number of carrier classes defined with the

TA hierarchy, such as ceramide transfer activity (GO:0120017).

6.5 Summary of the TA review

In the previous sections we covered the major classes of membrane transport pro-

teins, the mechanism by which each protein works, the physicochemical properties

of the substances that are allowed to be transported and the biological roles of

stimuli and energy sources. This allows us to understand the biological concepts

defined within the grouping class of transporter activity (GO:0005215). It is
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an essential step as the GO representation is developed by expert biologists with a

brief description of the cellular transporter activities. In Table 6.1, we summarise

the transmembrane molecular transport systems defined within the TA hierarchy, as

well as the proportion of each system. In addition, we have shown the differences in

the representations between GO and external resources for some of the transporter

systems such as secondary active transporters, uniporters and carriers.

Groups No.classes Percentage

General classification 417 39.15%
Energy-dependent transport: active transport 414 38.87%

Energy-independent transport: facilitated diffusion 218 20.46%
Others (Obsolete and duplicate terms) 16 1.5%

Total 1065 100%

Table 6.1: The three main transport categories that comprising the hierarchy of the
transporter activity

In the sections that follows, we will present our development of a hypernormalised

transporter activity in our ontology, Hyper-GO. The implementation is available

at https://github.com/phillord/hyper-go. Before we do that, we need to clar-

ify the difference between the biological process of transport (GO:0006810), and

the molecular function of transporter activity (GO:0006810) (see Figure 6.5).

In general, a biological process in GO refers to any biological objective (e.g., cell

growth or bone mineralization) that can be achieved by multiple molecular functions.

However, the definitions of the transport classes as biological processes include no

different description than their corresponding molecular function classes in the trans-

porter activity. For instance, consider the biological process of nucleoside trans-

membrane transport (GO:1901642), in Definition(10) and the molecular function

of nucleoside transmembrane transporter activity (GO:0005337), in Defini-

tion(11)

Definition: 10. The directed movement of nucleoside across a membrane.
nucleoside transmembrane transport (GO:1901642)

Definition: 11. Enables the transfer of a nucleoside, a nucleobase linked to
either beta-D-ribofuranose (ribonucleoside) or 2-deoxy-beta-D-ribofuranose, (a de-
oxyribonucleotide) from one side of a membrane to the other.
nucleoside transmembrane transporter activity (GO:0005337)

- 115 -

https://github.com/phillord/hyper-go


Chapter 6: Hypernormalisation of Transporter Activity (TA)

Figure 6.5: The GO representation of transporter activity MF and transport BP.

That is, the hypernormalisation of the biological transport process in current repre-

sentation would not be beneficial as the difference between the biological transport

process and the molecular function transporter activity is not obvious. Nevertheless,

to make explicit separation between a molecular function and a biological process,

we used the infinitive of transport with a prefix ’to’ to represent the function classes

(i.e., ToTransport) and a gerund to represent any future development of a biological

process classes (i.e., Transporting).

6.6 Hyper-TA development

The main tool we have used to develop our ontology is the Tawny-OWL [76] library,

which enables the construction of OWL ontologies and provides a set of patterns

that explicitly support the creation of a hypernormalised ontology (see Chapter 3).

We have extended the Tawny-OWL frame-based syntax by defining new entities

such as deftransport and defcatalyse to ease the creation of our ontology classes.

The deftransport entity is a new class with some property restrictions such as
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transports, transports-from and driven-by. That is to say, we extend the basic

Tawny-OWL frames with new frames that are restricted to the entities we developed

(i.e., deftransport or defcatalyse). In Table 6.2, we show the created frames and

their defined equivalent object properties. An example of a TA class created using

the deftransport pattern is shown in Listing 6.1.

(deftransport ToTransportPhospholipid

:annotation (goid "GO:0005548")

:cargo ch/phospholipid)

Listing 6.1: The definition of the phospholipid transporter activity

(GO:0005548).

Object property Frame

transports :cargo
transports-across :across
transports-from :from

transports-to :to
driven-by :driven

hasDirection :direction
hasTransporterAffinity :transporterAffinity

linked-to :linked
dependent-on :when

hasTransportSystem :system
hasIonTransportMechanism :ion-mechanism

involved in :involved
occurs in :occurs

hasMembraneTransportProtein :via
contributeTo :contribute
hasReactant :reactant
hasProduct :product

hasEnzymeClass :enzyme

Table 6.2: List of the created properties and their equivalent frames.

6.6.1 General classification

The first category of transport classes in Table 6.1 does not follow a common cellular

transport system. They are of a general classification, which describes the transport

of substances (typically chemical entities) from one side of a membrane to the other,

with no energy source or facilitator proteins required. Nearly half of the transporter

activity classes are of a general classification for narrower transport classes. As a

- 117 -



Chapter 6: Hypernormalisation of Transporter Activity (TA)

result, we designed a content-specific pattern, see Section 2.6.1), that can generate

these classes using Clojure functions. In Listing 6.2 we show the general transport

pattern that is designed to generate these classes, which need to be presented in an

organised list, is shown in Listing 6.3.

The minimum data for any transporter activity, regardless of the transport type,

are:

1. Substance: The GO name of the substance transported (e.g., macromolecules,

peptides, small molecules, or ions)

2. GO ID: The Gene Ontology ID for each class (e.g., GO:0000001)

3. Equivalent ChEBI class: The corresponding substance from the ChEBI ontol-

ogy.

The designed pattern reads transporter data from Listing 6.3, starting with the

transported solute’s name and GO ID from the class description in GO, the cellu-

lar component membrane (GO:0016020) that a solute transport-across (from the

CCO) and the equivalent ChEBI class, which can have zero, one or multiple prop-

erties. The reason for having the conditional statement (here cond) is to maintain

the correct definitions of classes, properties and their values, as solutes can have

different properties (i.e., biological, chemical and application) and for some solutes,

a property may have multiple values. For example, if we take the class, L-proline

transmembrane transporter (GO:0015193), it has an application role as a

drug, has acidity as a Natural and has enantiomerism as a L-enantiomer. The

L-proline class is generated from the developed pattern and the result is shown

in List 6.4. In the case that a class description is very complex, it will be defined

individually.
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(defn substance-transporting-transmembrane [lis]

‘(deftransport ~( symbol (str "ToTransport" (first lis) "

Transmembrane"))

:annotation (goid ~( second lis))

:across go/membrane

:cargo

~(cond

(= 3 (count lis)) (nth lis 2)

(= 5 (count lis)) ‘(owl-and ~(nth lis 2)

(owl-some ~(nth lis 3) ~(nth lis 4)))

(= 6 (count lis)) ‘(owl-and ~(nth lis 2)

(owl-some ~(nth lis 3) ~(nth lis 4) ~(nth lis 5)))

(= 7 (count lis)) ‘(owl-and ~(nth lis 2)

(owl-some ~(nth lis 3) ~(nth lis 4))

(owl-some ~(nth lis 5) ~(nth lis 6)))

(= 8 (count lis)) ‘(owl-and ~(nth lis 2)

(owl-some ~(nth lis 3) ~(nth lis 4))

(owl-some ~(nth lis 5) ~(nth lis 6) ~(nth lis 7)))

(= 9 (count lis)) ‘(owl-and ~(nth lis 2)

(owl-some ~(nth lis 3) ~(nth lis 4))

(owl-some ~(nth lis 5) ~(nth lis 6))

(owl-some ~(nth lis 7) ~(nth lis 8)))

(= 10 (count lis)) ‘(owl-and ~(nth lis 2)

(owl-some ~(nth lis 3) ~(nth lis 4))

(owl-some ~(nth lis 5) ~(nth lis 6))

(owl-some ~(nth lis 7) ~(nth lis 8)

~(nth lis 9)))

(= 11 (count lis))‘(owl-and ~(nth lis 2)

(owl-some ~(nth lis 3) ~(nth lis 4))

(owl-some ~(nth lis 5) ~(nth lis 6))

(owl-some ~(nth lis 7) ~(nth lis 8))

(owl-some ~(nth lis 9)~(nth lis 10)))

(= 12 (count lis))‘(owl-and ~(nth lis 2)

(owl-some ~(nth lis 3) ~(nth lis 4))

(owl-some ~(nth lis 5) ~(nth lis 6))

(owl-some ~(nth lis 7) ~(nth lis 8))

(owl-some ~(nth lis 9)~(nth lis 10)

~(nth lis 11)))

:else (println "Class data out of the range"))))

;; macro function to do the classes mapping

(defmacro deftransporters-transmembrane [& lis]

‘(do ~@(map substance-transporting-transmembrane lis)))

Listing 6.2: The general transmembrane transport of solutes pattern.
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(deftransporters-transmembrane

["Substance" "GO:0022857" ch/chemical_entity]

["Drug" "GO:0015238" ch/chemical_entity

has-application-role ch/drug]

["Vitamin" "GO:0090482" ch/chemical_entity

has-biological-role ch/vitamin]

["CarbonDioxide" "GO:0035379" ch/carbon_dioxide

has-application-role ch/drug]

["L-histidine" "GO:0005290" ch/L-histidine hasAcidity

Alkaline has-application-role ch/drug]

["Azole" "GO:1901474" ch/azole]

["Fluconazole" "GO:0015244" ch/fluconazole

has-biological-role ch/antimicrobial_drug ch/xenobiotic

]

["Acadesine" "GO:1903089" ch/acadesine

has-application-role ch/drug]

["ThiaminePyrophosphate" "GO:0090422" ch/thiamine_1+

__diphosphate_1-_ has-biological-role ch/

vitamin]

......

)

Listing 6.3: A TA class is defined in a list with all the properties that describe a
molecular transporter function.

(transports some

(L-proline

and (has-application-role some drug)

and (hasAcidity some Neutral)

and (hasEnantiomerism some L-Enantiomer)))

and (transports-across some membrane)

Listing 6.4: The class L-proline transmembrane transporter (GO:0015193)

generated from the pattern in Listing 6.2.

There are a number of transport classes that specify the starting cellular location

of the transport process and the final location. These classes are defined in a pat-

tern that does not differ greatly from the previous pattern, except it includes the

transports-from and transports-to object properties.

6.6.2 Energy-independent transport: Facilitated diffusion

Both simple and facilitated diffusion are passive transporters, however, the latter

requires the assistance of membrane-bound proteins to allow solutes with certain

physicochemical properties to pass through the cell membrane. Channel and carrier

proteins are the facilitator proteins, although the latter has not been classified as a
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means of passive transport in the TA hierarchy. The definitions of the facilitated

diffusion classes are not as simple as the first category as there are distinct elements

influencing the transport process. The simplest definition of a substance transported

through a channel, can be defined in the same way that methylammonium channel

activity (GO:0015264), is defined in Listing 6.5.

(deftransport ToTransportAmmoniumIonByChannel

:annotation (goid "GO:0015264")

:across go/membrane

:system FacilitatedDiffusion

:via Channel

:cargo (owl-and ch/methylammonium

(owl-some hasConcentration HighConcentration)))

Listing 6.5: The facilitated diffusion of methylammonium by channel.

For the set of classes that describes the movement of solutes through a gated channel

that opens in response to a specific stimulus, including the hasStimulus property

and the stimulus, see Listing 6.6. The set of stimuli defined using the defpartition

pattern (see Section 3.3) is considered as a refining type. Broadly speaking, the

transport classes are created with properties that are related to the transport system

(i.e., facilitated channels or active transport (primary or secondary)), in addition to

the properties(e.g., biological roles) of the transported solutes. When it comes to

the GO ID and Identitas ID, the latter will be generated randomly for all classes

defined in the Hyper-GO ontology.

(deftransport

ToTransportSoluteByGatedChannelInResponseToStimulus

:annotation (goid "GO:0022836")

:across go/membrane

:system FacilitatedDiffusion

:via (owl-and Channel

(owl-some hasStimulus

(owl-or Stimulus ch/chemical_entity)))

:cargo (owl-and ch/chemical_entity

(owl-some hasConcentration HighConcentration)))

Listing 6.6: The facilitated diffusion of a chemical entity through a channel in
response to a stimulus.
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(defpartition Stimulus

[Osmolarity MechanicalStress Voltage

IntermediateVoltage Light volume-sensitive Phosphorylation

Dephosphorylation inward-rectification temperature

EmptyingOfIntracellularCalciumStores]

:domain Channel

:super ChannelStimulus

:comment "Gated channel: enables the transmembrane

transfer of solute by a channel that opens in response

to a specific stimulus.")

Listing 6.7: The set of identified stimuli that open gated channels.

More specific classes of gated channels contribute to the regulation of a qual-

itative or quantitative trait of a biological quality. For example, consider the

class of stretch-activated, cation-selective, calcium channel activity

involved in the regulation of action potential (GO:0097364), in Defini-

tion(12), and its corresponding implementation in Listing 6.8. In our ontology,

we made use of the BPO and CCO classes by linking the channel classes that con-

tribute to the modulation of biological processes and/or that occur in some cellular

component.

Definition: 12. Enables the transmembrane transfer of a calcium ion by a channel
that opens in response to a mechanical stress in the form of stretching, and con-
tributing to the regulation of action potential.
stretch-activated, cation-selective, calcium channel activity involved in regulation of ac-
tion potential (GO:0097364)

(deftransport

ToTransportMechanicalSensitiveCalciumIonByChannel

InvolvedInRegulationOfActionPotential

:annotation (goid "GO:0097364")

:comment "Involved in regulation of action potential"

:across go/membrane

:system FacilitatedDiffusion

:involved go/regulation_of_action_potential

:via (owl-and Channel (owl-some hasStimulus

MechanicalStress))

:cargo (owl-and ch/calcium_ion (owl-some hasConcentration

HighConcentration)))

Listing 6.8: The facilitated diffusion of a calcium ion by a channel that opens in
response to a mechanical stress and involved in regulation of action potential.

Ligand-gated channel activity (GO:0022834), is a grouping class that de-

scribes the transmembrane transfer of solutes through channels that open/close in
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response to the binding of a ligand (also known as a chemical messenger). Lig-

ands are ions, molecules, or molecular groups that functions like keys for the gated

channels, opening and closing them by binding to the receptors located on the

plasma membrane. For instance, histamine-gated chloride channel activity

(GO:0019182) describes the transport of a chloride ion through a channel after the

ligand (i.e., here histamine) has attached to the receptor; this is defined in List-

ing 6.9.

(deftransport ToTransportChlorideByHistamineGatedChannel

:annotation (goid "GO:0019182")

:across go/membrane

:system FacilitatedDiffusion

:via (owl-and Channel (owl-some hasStimulus

(owl-and ch/histamine

(owl-some has-biological-role ch/neurotransmitter)

(owl-some bound-by go/membrane_receptor_complex))))

:cargo (owl-and ch/chloride (owl-some hasConcentration

HighConcentration)))

Listing 6.9: The facilitated diffusion of chloride ion by a channel that opens when
histamine has been bound by the channel complex or one of its constituent parts.

Glutamate receptor, nicotinic acetylcholine receptor and glycine receptor are some

of the well-known ligand-gated ion channel receptors that allow the binding of neu-

rotransmitters and the transmission of ions. For instance, consider the class AMPA

glutamate receptor activity (GO:0004971) in Definition (13); this is defined in

Listing 6.10 in our ontology.

Definition: 13. An ionotropic glutamate receptor activity that exhibits fast gating
by glutamate and acts by opening a cation channel permeable to sodium, potassium,
and, in the absence of a GluR2 subunit, calcium.
AMPA glutamate receptor activity (GO:0004971)
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(deftransport ToTransportCationByGlutamateAMPAGatedChannel

:annotation (goid "GO:0004971")

:across go/membrane

:system FacilitatedDiffusion

:via (owl-and Channel (owl-some hasStimulus

(owl-and ch/L-glutamic_acid

(owl-some has-biological-role ch/neurotransmitter)

(owl-some bound-by go/

AMPA_glutamate_receptor_complex))))

:cargo (owl-and ch/cation (owl-some hasConcentration

HighConcentration)))

Listing 6.10: The facilitated diffusion of cation by a channel that opens when L-
glutamic acid has been bound by the AMPA glutamate receptor complex.

A group of substances move across specific types of channels, such as wide and nar-

row pores, such as the potassium ion leak channel activity (GO:0022841),

wide pore channel activity (GO:0022829) and gap junction channel ac-

tivity (GO:0005243); they are defined in Listing 6.11, Listing 6.12 and Listing 6.13

respectively. In addition, porins [99] are another membrane proteins in bacterial cells

that allow the facilitated diffusion of small hydrophillic molecules with specific size

(e.g., <1000 Da or <600 Da) to pass through the cell membranes. Listing 6.14 shows

an example of a class definition in which the solute maltose has size less than 1000

Da from one side of a membrane to another.

(deftransport ToTransportPotassiumByNarrowPoreChannel

:annotation (goid "GO:0022841")

:across go/membrane

:system FacilitatedDiffusion

:via (owl-and Channel (owl-some hasChannelType

NarrowPoreChannel))

:cargo (owl-and ch/potassium_1+_ (owl-some hasConcentration

HighConcentration)))

Listing 6.11: The transport of a potassium ion across a membrane via a narrow pore
channel.
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(deftransport ToTransportSoluteByWidePoreChannel

:annotation (goid "GO:0022829")

:across go/membrane

:system FacilitatedDiffusion

:via (owl-and Channel

(owl-some hasChannelType WidePoreChannel))

:cargo (owl-and ch/chemical_entity

(owl-some hasConcentration HighConcentration)))

Listing 6.12: The transport of a solute across a membrane via large pore channel.

(deftransport

ToTransportSoluteByGapJunctionWidePoreChannelChannel

:annotation (goid "GO:0005243")

:across go/membrane

:system FacilitatedDiffusion

:from go/cell

:to go/cell

:via (owl-and Channel

(owl-some hasChannelType Gap-junction))

:cargo (owl-and ch/chemical_entity

(owl-some hasConcentration HighConcentration)))

Listing 6.13: The transport of solute through a gap junction.

(deftransport ToTransportMaltoseByPorinChannel

:annotation (goid "GO:0015481")

:across go/membrane

:system FacilitatedDiffusion

:via (owl-and Channel

(owl-some (owl-some hasChannelType Porins))

:cargo (owl-and ch/maltose

(owl-some hasDaSize [(span < 1000)])

(owl-some hasConcentration

HighConcentration)))

Listing 6.14: The transport of the molecule maltose through a porin.

Calcium Ca2`-activated potassium K` channels are another special types of chan-

nels that are stimulated by the internal increase of calcium ion concentration gra-

dient, which enable the passage of potassium ions across a lipid bilayer down a

concentration gradient [109]. The three channels have been categorised into small-

conductance(SK) intermediate-conductance (IK) and large-conductance (BK). The

classes which describe the facilitated diffusion of potassium through the three Ca2`-

activated channels is defined in Listings 6.15 to 6.17.
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(deftransport ToTransportPotassiumIonBySmallConductance

ChannelCalciumActivated

:annotation (goid "GO:0016286")

:across go/membrane

:system FacilitatedDiffusion

:via (owl-and Channel

(owl-some hasStimulus

(owl-and ch/calcium_2+_

(owl-some hasConcentration HighConcentration)

(owl-some occurs_in go/intracellular)))

(owl-some hasKCaTypeChannel small-conductance))

:cargo (owl-and ch/potassium_1+_ (owl-some hasConcentration

HighConcentration)))

Listing 6.15: The transport of potassium K` using small conductance channel.

(deftransport

ToTransportPotassiumIonByIntermediateConductanceChannel

CalciumActivated

:annotation (goid "GO:0022894")

:across go/membrane

:system FacilitatedDiffusion

:via (owl-and Channel

(owl-some hasStimulus

(owl-and ch/calcium_2+_

(owl-some hasConcentration HighConcentration)

(owl-some occurs_in go/intracellular)))

(owl-some hasKCaTypeChannel

intermediate-conductance))

:cargo (owl-and ch/potassium_1+_ (owl-some hasConcentration

HighConcentration)))

Listing 6.16: The transport of potassium K` using intermediate conductance
channel.
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(deftransport

ToTransportPotassiumIonByLargeConductanceChannel

CalciumActivated

:annotation (goid "GO:0060072")

:across go/membrane

:system FacilitatedDiffusion

:via (owl-and Channel

(owl-some hasStimulus

(owl-and ch/calcium_2+_

(owl-some hasConcentration HighConcentration)

(owl-some occurs_in go/intracellular)))

(owl-some hasKCaTypeChannel large-conductance))

:cargo (owl-and ch/potassium_1+_ (owl-some hasConcentration

HighConcentration)))

Listing 6.17: The transport of potassium K` using large conductance channel.

6.6.2.1 Uniporter activity

This is the transport of molecules down their concentration gradients across the

cell membrane via a facilitated diffusion transport system. In the uniport process,

integral membrane proteins do not require coupling energy for a solutes to move

from a high concentration to a lower concentration, These proteins are classified as

facilitated diffusion transporters; see Listing 6.18 for hexose uniporter activity

(GO:0008516) definition.

(deftransport ToTransportHexoseByFacilitatedDiffusionCarrier

:annotation (goid "GO:0008516")

:across go/membrane

:system FacilitatedDiffusion

:via Carrier

:cargo (owl-and ch/hexose (owl-some hasConcentration

HighConcentration)))

Listing 6.18: Hexose uniporter activity (GO:0008516).

6.6.2.2 Lipid transfer activity

A group of TA classes that describe the inter-membrane transfer of lipids via lipid

transfer proteins (LTPs) that are responsible for transporting solutes, such as fatty

acids, phospholipids, glycolipids or sterol from one region of a membrane to a dif-

ferent region on the same membrane. For instance, the class of phospholipid

transfer activity (GO:0120014), describes the transfer of a phospholipid from

the leaflet of a donor membrane using a specific carrier protein, which provides a
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hydrophobic environment for the phospholipid and delivers it to the leaflet of an

acceptor membrane. The definition of the class is shown in Listing 6.19.

(deftransport

ToTransportPhospholipidByFacilitatedDiffusionCarrier

:annotation (goid "GO:0120014")

:system FacilitatedDiffusion

:via Carrier

:from go/leaflet_of_membrane_bilayer

:to go/leaflet_of_membrane_bilayer

:cargo ch/phospholipid)

Listing 6.19: phospholipid transfer activity.

6.6.2.3 High- and low-affinity transporters

High-affinity transporter proteins are reported to function only when the electro-

chemical gradient for a transported solute is at a low level in the extracellular region.

For a substance to move against its concentration gradient, primary or secondary

energy is required. Conversely, low-affinity transporters can only bind to a solute

that has a high concentration gradient in the external environment, importing it

into the cell [17]. For a substance to move along its concentration gradient, a fa-

cilitated diffusion transporter is required. The reason for introducing these types

of membrane-embedded transporter proteins in this section is that there are several

TA classes that describe the transport function of solutes using high- or low-affinity

transporters. For instance, consider the definition of the class of high-affinity

oligopeptide transmembrane transporter activity (GO:0015334), in Defini-

tion(14). However, in GO, there is a limited representation of the transport system

(i.e., active or facilitated diffusion) by which high- and low-affinity transporters func-

tion. According to [97], the “high-affinity transporter” and low-affinity transporter”

terms do not indicate the transport system. One high affinity transporter can me-

diate an active transport process by exploiting the energy from an ion gradient,

whereas, another high-affinity transporter can facilitate the movement of a solute

through a channel. For example, in Neurospora crassa cells, a high-affinity potassium

K` uptake process occurs via the active K`-H` potassium-proton symporter [95]

[96]. On the other hand, a high-affinity channel can mediate the transport of K`

[20].

Definition: 14. Enables the transfer of oligopeptide from one side of a membrane
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to the other. In high-affinity transport the transporter is able to bind the solute even
if it is only present at very low concentrations..
high-affinity oligopeptide transmembrane transporter activity (GO:0015334)

Due to the absence of a clear explanation regarding the mechanism associated with

the classes that represent high and low-affinity transport functions, the classes are

classified as general classification classes, unless a class description stated that it

is an active. For example, the low affinity class low-affinity glucose:proton

symporter activity (GO:0005359) has stated that the transport function driven

by H` symporter, see class definition in Listing 6.20.

(deftransport ToTransportLowAffinityGlucoseProtonSymporter

:label "ToTransportLowAffinityGlucose:ProtonSymporter"

:annotation (goid "GO:0005359")

:across go/membrane

:system Active

:cargo (owl-and ch/glucose (owl-some hasConcentration

LowConcentration))

:driven (owl-and ch/proton (owl-some hasConcentration

HighConcentration))

:transports-with LowAffinity

:direction SameDirection)

Listing 6.20: Low-affinity glucose:proton symporter activity (GO:0005359).

6.6.3 Energy-dependent transporters: active transport

The hierarchy of the active transport is divided between two main transport systems:

primary active transport (see Section 6.3.1) and secondary active transports (see

Section 6.3.2). The grouping class active transmembrane transporter activity

(GO:0022804) in Listing 6.21 describes the movement of a molecular entity against

their concentration gradient, either using a primary energy source or from the energy

stored in a substance gradient.
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(deftransport ToTransportSoluteByActiveTransmembrane

:annotation (goid "GO:0022804")

:across go/membrane

:system Active

:cargo (owl-and ch/chemical_entity

(owl-some hasConcentration LowConcentration))

:driven (owl-or PrimaryEnergySource

(owl-and ch/chemical_entity

(owl-some hasConcentration HighConcentration))))

Listing 6.21: Active transmembrane transporter definition.

6.6.3.1 Primary active transporters

The set of the primary energy sources listed in Listing 6.22 using the value par-

tition pattern(see Section 3.3) are used by the primary active transporters to

drive active transport of a solute. For example, in Listing 6.23 we show the

definition of the light-driven active transmembrane transporter activity

(GO:0015454) that describe the transport of a solute across a membrane, driven

by light.

(defpartition PrimaryEnergySource

[Light Decarboxylation Oxidoreduction

MethylTransferReaction ATP_Hydrolysis

Phosphoenolpyruvate]

:super ValuePartition

:comment "Active transporters use a primary source of

energy to lead the active transport of a substance or a

group of substances against a concentration gradient."

Listing 6.22: The primary energy sources that power the active transporters.

(deftransport ToTransportSoluteByPrimaryActiveTransmembrane

DrivenByLight

:annotation (goid "GO:0015454")

:across go/membrane

:system Active

:cargo (owl-and ch/chemical_entity (owl-some

hasConcentration LowConcentration))

:driven Light)

Listing 6.23: Ligh-driven primary active transmembrane transporter definition.

The vast majority of the primary active transporter classes in TA hierarchy are re-

lated to the transporters that uses the energy released by the ATP hydrolysis process.

These transporters have been defined within the grouping class ATPase-coupled

transmembrane transporter activity (GO:0042626) with a total number of 136
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classes. As a result, we developed a pattern that can generate the ATP-dependent

transporter classes, the pattern is shown in Listing 6.24 and include the ATP Hy-

drolysis energy as the driven mechanism for the transporters in Listing 6.25.

(defn substance-transporting-ATP_Hydrolysis [lis]

‘(deftransport ~( symbol (str "ToTransport" (first lis) "

TransmembraneDrivenWithATPase"))

:annotation (goid ~( second lis))

:across go/membrane

:system Active

:driven ATP_Hydrolysis

:cargo

~(cond

(= 3 (count lis))

‘(owl-and ~(nth lis 2) (owl-some hasConcentration

LowConcentration))

(= 5 (count lis))

‘(owl-and ~(nth lis 2) (owl-some hasConcentration

LowConcentration)

(owl-some ~(nth lis 3) ~(nth lis 4)))

(= 6 (count lis))

‘(owl-and ~(nth lis 2) (owl-some hasConcentration

LowConcentration)

(owl-some ~(nth lis 3) ~(nth lis 4) ~(nth lis 5)))

(= 7 (count lis))

‘(owl-and ~(nth lis 2) (owl-some hasConcentration

LowConcentration)

(owl-some ~(nth lis 3) ~(nth lis 4))

(owl-some ~(nth lis 5) ~(nth lis 6)))

(= 8 (count lis))

‘(owl-and ~(nth lis 2) (owl-some hasConcentration

LowConcentration)

(owl-some ~(nth lis 3) ~(nth lis 4))

(owl-some ~(nth lis 5) ~(nth lis 6) ~(nth lis 7)))

:else (println "Class data out of the range"))))

;; macro function to do the classes mapping

(defmacro deftransporters-driven-by-ATP_Hydrolysis [& lis]

‘(do ~@(map substance-transporting-ATP_Hydrolysis lis)))

Listing 6.24: ATP-dependent active transporters pattern.
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(deftransporters-driven-by-ATP_Hydrolysis

["Substance" "GO:0042626" ch/chemical_entity]

["Thiamine" "GO:0048502" ch/thiamine]

["Beta-glucan""GO:0015441" ch/beta-D-glucan]

["Ion" "GO:0042625" ch/ion]

["Cation" "GO:0019829" ch/cation]

["Ferric" "GO:0015408" ch/iron_3+_]

["Copper" "GO:0043682" ch/copper_2+_]

["Taurine" "GO:0015411" ch/taurine has-biological-role

ch/xenobiotic]

....

)

Listing 6.25: ATP-dependent active transporter classes.

In the case that an ATP-dependent class description specificities the start-

ing cellular location of the transport process and the end position. They

will be defined in the sub-pattern; that is quite similar to the original pat-

tern, except it contains the :from and :to object properties. For example,

L-arabinose-importing ATPase activity (GO:0015612), indicates that the di-

rection of the L-arabinose transport is from the external side of a cell mem-

brane to the internal side. However, not all ATP-dependent classes followed

the designed patterns. Exceptions that have been defined individually, such as

the ATPase coupled ion transmembrane transporter activity involved in

the regulation of presynaptic membrane potential (GO:0099521) (see the

class definition in Listing 6.26).

(deftransport ToTransportIonTransmembraneDrivenWithATPase

InvolvedInRegulationOfPresynapticMembranePotential

:annotation (goid "GO:0099521")

:comment "Involved in regulation of presynaptic membrane

potential"

:across go/membrane

:system Active

:driven ATP_Hydrolysis

:occurs go/presynaptic_membrane

:involved go/regulation_of_presynaptic_membrane_potential

:cargo (owl-and ch/ion (owl-some hasConcentration

LowConcentration)))

Listing 6.26: ATP-dependent ion transmembrane transporter occurs in the
presynaptic membrane.

The energy generated from the ATP hydrolysis process does not only drive solutes
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across the membrane of a cell, but also within and between intracellular mem-

branes. There are a number of classes describe the transport of lipids from one

membrane leaflet to the other (i.e., within a membrane region) via flippases and

floppases transporters that utilise the ATP hydrolysis energy. Consider the defini-

tion of the class phosphatidylserine flippase activity (GO:0140346) in Def-

inition(15) and itis implementation in Listing 6.27).

Definition: 15. Catalysis of the movement of phosphatidylserine from the exoplas-
mic to the cytosolic leaftlet of a membrane, using energy from the hydrolysis of ATP.
phosphatidylserine flippase activity (GO:0140346)

(deftransport ToTransportPhosphatidylserineIntramembrane

FlippaseDrivenWithATPase

:annotation (goid "GO:0140346")

:system Active

:driven ATP_Hydrolysis

:from go/ectoplasm

:to go/cytoplasmic_side_of_endosome_membrane

:cargo (owl-and ch/phosphatidyl-L-serine

(owl-some hasConcentration LowConcentration)))

Listing 6.27: Phosphatidylserine flippase activity (GO:0140346).

6.6.3.2 Secondary active transporters

These the energy held in the electrochemical gradient of a molecule or ion to transfer

other molecules against their concentration gradients and across cell membranes.

Besides the TA representation of secondary active classes and external related

databases, we relied on the significant effort that has been made by Milton Saier [98]

to build and improve active transporters, including secondary active transporters.

Milton Saier’s paper provides a detailed classification of transmembrane molecular

transport systems, including transported substances, primary-energy and energy-

coupling sources, transport systems, channel types and several biological and bio-

chemical aspects3. According to Milton Saier’s paper, secondary active transporters

are driven by either ions’ or solutes’ electrochemical gradients. The secondary ac-

tive pattern in Listing 6.28) is different to the earlier designed patterns as it must

include the driving ion or molecule and the direction of the transport process (i.e.,

symporter or antiporter).

3The characterised transporters are currently available at the Transporter Classification
Database (TCDB) http://www.tcdb.org
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(defn secondary-substance-transporters [lis]

‘(deftransport ~( symbol (str "ToTransport" (first lis) "

BySecondaryActiveTransport"))

:annotation (goid ~( second lis))

:across go/membrane

:system Active

:cargo

~(cond

(= 3 (count lis))

‘(owl-and ~(nth lis 2) (owl-some hasConcentration

LowConcentration))

(= 5 (count lis))

‘(owl-and ~(nth lis 2) (owl-some hasConcentration

LowConcentration)

(owl-some ~(nth lis 3) ~(nth lis 4)))

(= 6 (count lis))

‘(owl-and ~(nth lis 2) (owl-some hasConcentration

LowConcentration)

(owl-some ~(nth lis 3) ~(nth lis 4) ~(nth lis 5)))

(= 7 (count lis))

‘(owl-and ~(nth lis 2) (owl-some hasConcentration

LowConcentration)

(owl-some ~(nth lis 3) ~(nth lis 4))

(owl-some ~(nth lis 5) ~(nth lis 6)))

(= 8 (count lis))

‘(owl-and ~(nth lis 2) (owl-some hasConcentration

LowConcentration)

(owl-some ~(nth lis 3) ~(nth lis 4))

(owl-some ~(nth lis 5) ~(nth lis 6) ~(nth lis 7)))

:else (println "Class data out of the range"))))

:driven (owl-and (owl-or ch/ion ch/chemical_entity)

(owl-some hasConcentration HighConcentration)

)

:direction (owl-or SameDirection OppositeDirection)))

Listing 6.28: Secondary active transporters.

One limitation of the GO representation of the symporter and antiporter classes is

that it does not make a clear distinction between the solute being transported and

the driving ion (discussed earlier; see Section 6.3.2). During our development of the

symporter and antiporter classes, we refer to Table 11 in Milton Saier’s paper and

the TCDB (www.tcdb.org) to identify the solutes that are transported and their

energy source, represented in another solute. In addition, we investigate related

external databases such as Rhea, EC, KEGG, Reactome and MetaCyc, as well as

making reference(s) to the source of the information associated with each GO class.
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However, in some situations, the source of energy for a symporter or an antiporter

has been stated to be unknown or can be one of many possible solutes, such as an ion

(e.g., Na`, K`, H`) or other solutes. The patterns (see Listing 6.29) that generate

the symporter and antiporter classes are given as two solutes: the first value in the

list is the driven solute and the second is the driving solute. Then, there are the GO

IDs and the equivalent classes from the ChEBI ontology for the driven and driving

solutes, see Figure 6.6.

By drawing such distinctions, we are increasing the ontology expressivity and an-

swering questions that are hard to answer with the current version of GO, such as:

what solutes are driven by the Na` symporter?

(defn secondary-substance-symporter [lis]

‘(deftransport ~( symbol (str "ToTransport" (first lis) ":"(

second lis)"Symporter"))

:annotation (goid ~(nth lis 2))

:across go/membrane

:system Active

:driven (owl-and ~(nth lis 3)

(owl-some hasConcentration HighConcentration))

:cargo

~(cond

(= 5 (count lis))

‘(owl-and ~(nth lis 4) (owl-some hasConcentration

LowConcentration))

(= 7 (count lis))

‘(owl-and ~(nth lis 4) (owl-some hasConcentration

LowConcentration)

(owl-some ~(nth lis 5) ~(nth lis 6)))

(= 8 (count lis))

‘(owl-and ~(nth lis 4) (owl-some hasConcentration

LowConcentration)

(owl-some ~(nth lis 5) ~(nth lis 6) ~(nth lis 7)))

(= 9 (count lis))

‘(owl-and ~(nth lis 4) (owl-some hasConcentration

LowConcentration)

(owl-some ~(nth lis 5) ~(nth lis 6))

(owl-some ~(nth lis 7) ~(nth lis 8)))

:else (println "Class data out of the range"))))

:direction SameDirection))

;; macro function to do the classes mapping

(defmacro defsecondary-substance-symporter [& lis]

‘(do ~@(map secondary-substance-symporter lis)))

Listing 6.29: Symporter Secondary active transporters.
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Figure 6.6: A screenshot of the symporter Secondary active transporter classes, the
complete implementation available at https://github.com/phillord/hyper-go/blob/master/src/hyper_go/TA/active_transporter.clj

Most of the symporter classes are driven either by the concentrations of sodium or

proton ions, therefore, we designed patterns that are specific to the transporters

that use sodium and proton electrochemical gradients for energy for the transport

process. There are some classes that could not be defined through the sodium or

proton patterns. These classes together do not form a pattern, but their molecular

functions can be summarised in the following:

1. Transporters utilise a single ion electrochemical gradient to transport multiple

solutes with zero, one or multiple properties in a single transport process. An

example of such a transporter is the class of sodium:potassium:chloride

symporter activity (GO:0008511), which is defined in Listing 6.30. The

transporter exploits sodium (Na`) electrochemical gradient to drive the trans-

port of potassium (K`), and chloride (Cl´).

2. The opposite of (1), utilising multiple ions’ electrochemical gradients to drive

a single solute against its concentration gradient; see Listing 6.31.

3. High-affinity and low-affinity active transporters, see Listing 6.32.

4. A symporter or antiporter contributes to the regulation of a qualitative or

quantitative trait of a biological quality; see an antiporter example in Listing

6.33.
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(deftransport ToTransportChloride:Potassium:SodiumSymporter

:annotation (goid "GO:0008511")

:across go/membrane

:system Active

:cargo (owl-and ch/potassium_1+_

(owl-some hasConcentration LowConcentration))

(owl-and ch/chloride

(owl-some hasConcentration LowConcentration))

:driven (owl-and ch/sodium_1+_

(owl-some hasConcentration HighConcentration))

:direction SameDirection)

Listing 6.30: sodium:potassium:chloride symporter activity (GO:0008511).

(deftransport ToTransportDopamine:Chloride:SodiumSymporter

:annotation (goid "GO:0005330")

:across go/membrane

:system Active

:cargo (owl-and ch/dopamine

(owl-some hasConcentration LowConcentration)

(owl-some has-application-role ch/drug))

:driven (owl-and ch/sodium_1+_

(owl-some hasConcentration HighConcentration))

(owl-and ch/chloride

(owl-some hasConcentration HighConcentration))

:direction SameDirection)

Listing 6.31: dopamine:sodium:chloride symporter activity (GO:0005330).

(deftransport ToTransportLowAffinityGlucose:SodiumSymporter

:annotation (goid "GO:0005362")

:across go/membrane

:system Active

:cargo (owl-and ch/glucose (owl-some hasConcentration

LowConcentration))

:driven (owl-and ch/sodium_1+_ (owl-some hasConcentration

HighConcentration))

:transports-with LowAffinity

:direction SameDirection)

Listing 6.32: low-affinity glucose:sodium symporter activity (GO:0005362).
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(deftransport

ToTransportIonAntiporterInvolvedInRegulationOfpresynaptic

MembranePotentialAntiporter

:annotation (goid "GO:0099520")

:comment "Involved in regulation of presynaptic membrane

potential"

:across go/membrane

:system Active

:occurs go/presynaptic_membrane

:involved go/regulation_of_presynaptic_membrane_potential

:cargo (owl-and ch/ion (owl-some hasConcentration

LowConcentration))

:driven (owl-and ch/ion (owl-some hasConcentration

HighConcentration))

:direction OppositeDirection)

Listing 6.33: Ion antiporter activity involved in regulation of presynaptic membrane
potential (GO:0099520).

6.6.3.3 Phosphotransferase System

Phosphotransferase System (PTS) is a carbohydrate transport system occurs in

bacterial cells to allow the uptake of sugars by utilising the phosphate extracted

from the high-energy molecule phosphoenolpyruvate (PEP). The phosphorylation

process requires the existence of cysteine or histidine residues, which serves as an

acceptor for the transferred phosphoryl group in the targeted carrier proteins (e.g.,

HPr (histidine containing protein)). In addition, it involves several intracellular

enzymes (Enzyme I), which assist in the phosphoryl group transfer process in order

to eventually phosphorylate the sugar substrates upon entering the cell environment.

This type of transport is an active transport, but it is different from the primary

and secondary active transport by which the transported solutes, such as galactitol,

fructose and glucose are modified (i.e., phosphorylated) in a single biological process.

For example, the class protein-N(PI)-phosphohistidine-glucose phospho-

transferase system transporter activity (GO:0022855) describe the PEP-

dependent transport of glucose across the cell membrane according to the reac-

tion: protein N-phosphohistidine + glucose(out) = protein histidine +

glucose phosphate(in). The PTS is multifunctional because it provides energy for

the transported sugars and involves enzyme-catalytic functions. Therefore, the GO

representation of the PTS-dependent transporters are classified as active trans-
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porter from the TA hierarchy and as phosphotransferase activity, alcohol

group as acceptor from the catalytic activity hierarchy, see Figure 6.7.

At this point, our definition of the PTS-dependent transporter classes is only describ-

ing the transport process without specifying the involved enzymes. In Listing 6.34

we show the logical representation of the PEP-dependent transport of glucose. The

substance glucose is translocated from a region outside a cell, across the membrane

and modified to its phosphorylated form. The transport process driven by the en-

ergy from Phosphoenolpyruvate (PEP) that depends on the existence of cysteine or

histidine residues [5].

(deftransport ToTransportGlucoseDrivenByPhosphohistidine

Phosphoenolpyruvate

:annotation (goid "GO:0022855")

:across go/plasma_membrane

:cargo (owl-and ch/glucose

(owl-some hasConcentration LowConcentration)

(owl-some transports-from go/

extracellular_region )

(owl-some transports-to go/intracellular))

(owl-and ch/glucose_phosphate

(owl-some transports-from go/intracellular)

(owl-some transports-to go/intracellular))

:driven (owl-and Phosphoenolpyruvate

(owl-some dependent-on

ch/N_pros_-phospho-L-histidine_residue)))

Listing 6.34: protein-N(PI)-phosphohistidine-glucose phosphotransferase system
transporter activity (GO:0022855).

6.7 Evaluation

The goal of the normalisation methodology and its extension hypernormalisation is

to allow the creation of an explicit and modular ontology, with the aim of addressing

several difficulties related to ontology development, such as reducing manual mainte-

nance, reusing ontology classifications and facilitating ontology evolution. The steps

to build a hypernormalised ontology – in our case, it is the transporter activity sub-

ontology – can be summarised as follows (explained in detail in Sections 2.5.2 and

2.5.3):

1. Disentangling the structure of the TA into two independent disjointed tax-
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Figure 6.7: Example of a PTS-dependent class: the transport of glucose driven by
phosphoenolpyruvate.

onomies: self-standing classes and refining classes.

2. The taxonomy of the self-standing classes includes only the core classes of the

TA, which should be disjointed and most likely to be defined using refining

classes.

3. The taxonomy of the refining classes includes the biological qualities and en-

tities that are used to define self-standing classes, which are expected to be

comprehensive, with possible overlapping between these classes in the entire

refining hierarchy.

4. Relying heavily on designed patterns to build the self-standing classes and

logical reasoners, to create the polyhierarchical relationships among them.

As the TA self-standing classes were defined in terms of the refining classes, we will

begin by describing the hierarchical classification of the refining classes. In general,

the hierarchy of the refining classes consists of three main parts that are independent

of each other (see figure 6.8). .
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• Hyper-GO refining-classes: The set of classes that we created to represent

the biological qualities of the self-standing classes.

• ChEBI ontology: The ChEBI-structured classification of molecular entities is

used to determines relationships between the transport activity classes. The

ChEBI ontology is not directly linked to the refining hierarchy, but is imported

in the same development environment and its entire ontological classification

is considered as part of the refining hierarchy.

• CC and BP ontologies: The CCO and BPO classifications are also utilised to

determine subsumption relations.

Hyper (TA)

self-standing classes Refining Classes

HyperTA refining-classes ChEBI Ontology CC and BP Ontologies

Figure 6.8: The general structure of the refining classes hierarchy.

The complete hierarchy of the Hyper-GO TA refining classes is shown in figure 6.9.

Several elements have led to this hierarchy, starting with the original TA structure,

the GO documentation, related external ontologies and databases, and commonly

known biological references (mostly the work of Milton Saier [98]). We have used

the higher-level patterns, such as the value partition and the tier (see Section 3.3)

to build the refining properties in an easy and straightforward way. For example,

consider the definition of the class Acidity in Listing 6.35, which has split into three

categories: acidic, alkaline and neutral.

(defpartition Acidity

[Acidic Neutral Alkaline]

:comment "Amino acid, Basic, Acidic and Neutral amino-acid

have different PH scale"

:super RefiningTypes)

Listing 6.35: The tree of the Acidity class was generated from a single pattern.

According to the GO documentation [33], each activity (e.g. transport, catalysis

or binding) represent a single function performed by a gene product, which may

- 141 -



Chapter 6: Hypernormalisation of Transporter Activity (TA)

(a) Refining classes hierarchy, part(1). (b) Refining classes hierarchy, part(2).

Figure 6.9: The TA refining classes hierarchy

interact physically with other molecular entities to implement the task. Although

a gene product may have several biological functions, a GO class should only rep-

resent a single function 4. In transporter activity, each transport class describes a

single transport function, and that function can either perform an active or passive

transport based on the TA classification. During the development, there was no

overlap between the classes of active transport and passive transport ; similarly, the

children of the primary active and secondary active transporters were disjointed.

In hypernormalisation, we do not assert subsumption relationships among the TA

4http://www-legacy.geneontology.org/GO.function.guidelines.shtml
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self-standing classes. Instead, we exploit logical reasoners to build relationships

among the classes using imported external ontologies and Hyper-GO refining

classes and their ontological classification. In figure 6.10, we show part of the TA self-

standing classes forming one level of hierarchy before reasoning. We have used the

HermiT OWL reasoner (see Section 2.6.2) to infer the relationships among the hyper-

transporter activity classes. The classes generally fall into one of the two distinct

cellular transport systems: active or passive transport systems (see Figure 6.11).

Next, we will carry out an evaluation over the generated hyper transporter activity

and compare the outcome with the unnormalised hierarchy in term of structure,

statistics and maintainability.

6.7.1 structural evaluation

Initially, we thought that the hypernormalised polyhierarchical structure of the TA

will be similar to the original unnormalised structure. However, there are a num-

ber of reasons, why they have not remained the same. The main reason is the

difference in scope and semantics that the GO and ChEBI ontologies have. That

is, the generality in the representation of the chemical entities that are involved

in biological functions in GO versus the diversified and detailed description of the

chemical entities in ChEBI (discussed in Section 5.3.4). Another reason is the new

relationships have been inferred that were not created in the first place in the unnor-

malised hierarchy of the TA. For example, consider the class glycine transmem-

brane transporter activity (GO:0015187) that has been classified as a is_a

organic anion transmembrane transporter activity (GO:0008514) and is_a

cation transmembrane transporter activity (GO:0008324) in current TA rep-

resentation. Conversely, in the hypernormalised version neither of the relationships

exist, because in the ChEBI classification glycine (CHEBI:15428) is_a organic

acid (CHEBI:64709), but neither a organic anion (CHEBI:25696) nor cation

(CHEBI:36916). The reasoner inferred that the class ToTransportGlycineTrans-

membrane (GO:0015187) is subclass of the following classes:

1. ToTransportDrugTransmembrane

2. ToTransportL-AminoAcidTransmembrane

3. ToTransportNeurotransmitterTransmembrane
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Figure 6.10: Part of the Hyper-TA classes prior to using a reasoner.
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Figure 6.11: The Hyper-TA classes after running the HermiT OWL reasoner.
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4. ToTransportNeutralAminoAcidTransmembrane

The reason for this difference is the mismatch in semantics between GO and ChEBI.

Glycine as a substance is neither anion or cation, however, in solution which is its

normal state biologically, it can potentially be either depending on the acidity of

the solution. We have been unable to determine whether biologically, the state of

Glycine while it is being transported, and it appears likely that GO has not either;

as Glycine could be either an anion or a cation, so Glycine transporter activity could

be either. ChEBI is more precise.

That led us to a question, how many classes that are classified as an organic anion

transmembrane transporter activity (GO:0008514) and as a cation trans-

membrane transporter activity (GO:0008324) in the denormalised TA hierar-

chy and compare that with the hyper TA. There are 51 classes that have been

classified as a direct subclasses of both organic anion and cation classes in the

unnormalised hierarchy of TA, whereas in the hyper TA hierarchy there is no a sin-

gle class that has been inferred to be an organic anion and cation. We used the

“DL query tab” in the Protégé OWL editor to find out a class membership of other

classes (e.g., subclasses, direct subclasses and superclasses).

Another example of a classification mismatch is the classification of the methylam-

monium transmembrane transporter activity (GO:0015200) class. In GO, the

class is defined as an is a amine and a cation, whereas in the hypernormalised ontol-

ogy, the class is inferred only to be a cation (see Figure 6.12). As we defined the hy-

pernormalised class using the equivalent ChEBI methylammonium, (CHEBI:59338)

class, it appears that ChEBI defined methylammonium as an ammonium ion and

not an amine. Conversely, the hypernormalised hierarchy of TA shows similar clas-

sifications to the original hierarchy. For instance, in Figure 6.13, the subclasses

of the amide transmembrane transporter activity class are all inferred in the

hypernormalised hierarchy as they were in the original hierarchy.

To summarise, the inferred structural representation of the Hyper-TA shows similar

classifications to the original TA, but several differences as well. Due to the differ-

ences in scope and semantics that the GO and ChEBI ontologies have, not all of the

original TA relationships have been inferred.
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Figure 6.12: The Methylammonium transporter definition in GO TA versus Hyper-
TA.

Figure 6.13: Part of the current GO TA classes classifications that were identically
inferred in the Hyper-TA ontology
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Hyper Ontology Metrics total

Num of self-standing classes 1049
Num of refining classes 77

Num of used ChEBI classes 606
Total num of classes (before using a reasoner) 1735

Num of object properties 41
Num of data properties 1

Num of annotation properties 10
Num of classification 77

Num of inferred relations 1928

Table 6.3: The hyper TA ontology metrics.

6.7.2 Statistical evaluation

In this section we will highlight the hyper TA ontology statistics. In hypernormalised

TA, the total number of the defined classes is 1125 class, which include both the

self-standing classes and refining classes, but not the ChEBI classes. As mentioned

earlier, the asserted subsumption relations only occur between the classes in the

refining hierarchy. There are only 77 SubClassOf axioms in hyper TA, which define

the asserted is a relations. After the use of an ontology reasoner, the inferred

relationships between the classes are 1928 subsumption relations. So only 4 percent

of the hierarchical relationships have been explicitly defined, whereas the rest have

been inferred using the reasoner. In table 6.3 we provide a summary of the hyper

TA ontology statistics. The number of classes in the self-standing classes hierarchy

and the refining classes hierarchy, and the number of ChEBI classes that are used

in definitions. The number of classes in total and the number of object, data and

annotation properties defined. Finally, the number of the asserted and inferred

subsumption relationships.

The total number of classes in the denormalised TA hierarchy is around 1050 class,

however, the number changes based on everyday changes made by the GOC on-

tology team and scientists. Currently (as of Nov 2020), there are 1899 subsump-

tion relationships between the classes of transporter activity (GO:0005215).

The variation in the number of subsumption relationships between the GO TA and

Hyper-GO TA is due to the different classification of chemical compounds in GO

versus ChEBI and the daily changes on the TA hierarchy that have been made after
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we have created the hyper TA.

6.7.3 Evaluation of maintenance and evolution

The aim of the hypernormalisation and patternisation techniques is to allow an on-

tology developer to manage the maintenance and evolution. Changes to GO classes

occur on a daily basis, which mostly involves creating new classes or relationships

and removing incorrect classes or inconsistent relationships. The addition or ob-

soletion of a class/relationship also requires checking multiple classifications, for

example, moving the direct children of an obsoleted class to come under another

class or multiple classes. By relying on the ChEBI high-quality classification of

chemical terminologies and an automated reasoner, we overcome the issue of dealing

with the complexity of the biological relations between the chemical entities.

Moreover, during the development of the Hyper-TA ontology, we aimed to create an

ontology that could be evolved and extended smoothly, by designing ontological pat-

terns to define the different cellular transporter classes. The pattern of deftransport

is a content-specific pattern (see Section 2.6.1) that enables us to define the TA

classes in a modular design by specifying the set of properties restricted to a trans-

port function. A pattern-driven development approach eases the maintenance and

evolution tasks by reducing the time needed to make the necessary changes. For

instance, the class of solute:bicarbonate symporter activity (GO:0140410),

has been created recently. As we have designed the transporter-specific symporter

pattern that can generate the symporter classes in Listing 6.29, we only needed to

provide the class data from the definition in Listing 6.36 for the class to be created.

["zinc" "Bicarbonate" "GO:0140412" ch/hydrogencarbonate

ch/zinc_cation]

Listing 6.36: solute:bicarbonate symporter activity (GO:0140410).

6.8 Discussion

In this chapter, we have described how we have utilised the hypernormalisation and

patternisation approaches to rebuild transporter activity (TA) (GO:0005215).

TA is one of the broadest and most complex grouping classes as it covers many

cellular transporter systems using a large number of ontology classes, constituting
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approximately 10% of all classes in MFO. The generated hypernormalised TA is

more explicit, modular and developed with the minimum amount of effort. The

idea of hypernormalisation is to reduce the amount of knowledge that an ontology

developer has to hold in their mind at any one time; they only need to have enough

knowledge to build the list of definitions, and formal descriptions that allow an

automated reasoner to determine the relationships between ontology classes.

More specifically, we have shown how we disentangled the structure of the TA on-

tology, dividing it into two independent disjointed taxonomies: self-standing classes

and refining classes. Most of the refining classes are defined using the high-level pat-

terns provided by [77] that allow the easy and accurate construction of hierarchies

for classes and properties. This enables the utilised reasoner to infer the correct re-

lationships among the self-standing classes, as they are defined, with respect to the

classification of the refining classes. Because the TA classes define the functions of

transporter proteins that move chemical entities across a cell environment, ChEBI

is used. The ChEBI classification of chemical terminologies plays a vital role in

rearranging the relationships in the TA hierarchy. As such, the final structure of the

Hyper-TA is dependent on the refining classes and the ChEBI classifications.

In the current TA, the TA classes are distributed over three categories: general trans-

port classification classes, passive transport classes and active transport classes. In

general, the definitions and classifications of these classes and their children in GO

were expressed clearly. There was a clear distinction made between the active trans-

port classes and passive transport classes via disjointed hierarchies. Nevertheless,

there is insufficient information on the cellular transport system by which high-

and low-affinity transporters perform their functions. In high-affinity transport, the

transporter is able to bind the solute only if it is present at low concentrations.

For a substance to move against its concentration gradient, primary or secondary

energy is required. While in low-affinity transport, the transporter is able to bind

the solute only if it is present at very high concentrations. For a substance to move

along its concentration gradient, a facilitated diffusion transporter is needed. There

is evidence that the terms “high-affinity” and “low-affinity” are not associated with a

single transport system (see Section 6.6.2.3). Conversely, a recent study carried out
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by Dreyer and Michard [34] has indicated that the concept of “high- and low-affinity

transport systems” has no scientific grounds and is not a correct characterisation

of transporter proteins. In the study, different K` transport systems were exam-

ined via computer-aided dry laboratory experiments, proving that channel and co-

transporter proteins showed the same affinity towards the potassium concentration.

That means that the membrane proteins K` channel and K`/H` co-transporter

that have been characterised as “low-affinity” and “high-affinity”, respectively, were

shown in simulated experiments to be independent of the K` concentration gradi-

ents. Due to this lack of certainty, in the Hyper-TA, the classes that represent high-

and low-affinity transporters are defined either as general classifications or active

transport, dependent on their definitions in GO.

To summarise, we have shown that it is possible to represent GO transporter activity

in a hypernormalised form. We believe that this form of classification is robust5,

easy to maintain and can be developed and extended smoothly. This does not mean

that the Hyper-TA has no incorrect classifications, as the original TA, but we find

the Hyper-TA to be less error-prone.

In the next chapter, we will investigate the use of the hypernormalisation and pat-

ternisation techniques by rebuilding the Catalytic Activity (CA).

5The classification is robust because it was built using higher-level patterns and logical reasoners
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7.1 Introduction

Catalytic activity (CA) (GO:0003824) is the broadest grouping class as it in-

cludes the largest number of classes, with 7,029, constituting 63 percent of all classes

in MFO. The aim of the CA classes is to represent the molecular functions related to

the catalysis of biochemical reactions at physiological temperatures. A biochemical

reaction is a process of transforming a molecule (known as reactant) to a different

molecule (known as product), a process that is catalysed by enzymes. Enzymes

are proteins that act as biological catalysts, speeding up the rates of all different

types of reactions that take place inside our cells by reducing the activation energy of

these reactions. Every enzyme works by binding a substrate (reacting molecule) to a

special environment (called the active site) within the enzyme body, to stabilise not

only the reacting molecules but also the activation energy in that particular reaction.

In some reactions, an enzyme binds to one reactant molecule, which creates several

products, whereas, in other reactions, multiple substrates react together to produce

one larger molecule. According to the International Union of Biochemistry (IUB),

enzymes are classified into different categories: oxidoreductases, transferases, hydro-

lases, lyases, isomerases and ligases. Each category of enzyme is further classified

into classes of enzymes, each of which has a specific task to perform upon a set of

molecules in a particular chemical reaction. For instance, oxidase and dehydrogenase

are enzymes in the group of oxidoreductases enzymes that aim to catalyse oxidation-

reduction (redox) reactions. In other words, they catalyse the transfer of electrons

from one reacting molecule (known as an electron donor) to another molecule (the

electron acceptor).

In the section that follows, we provide further details about the CA ontology’s

classifications and statistics.

7.2 CA classes’ representation and statistics

In the hierarchy of CA, there are eight categories of enzymes represented as high-

level or grouping classes (i.e., not functions themselves). In Figure 7.1, we show

these enzymatic classes and the total number of subclasses for each individual cat-
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Figure 7.1: The classes of enzymes that comprising the catalytic activity, as of
January 2020.

egory. The transferases, oxidoreductases and hydrolases categories of enzymes are

the largest sub-hierarchies. In fact, each category of enzyme can be considered as a

sub-ontology as they are almost entirely independent hierarchies. For instance, only

four classes are subclasses of both the oxidoreductase activity and transferase

activity, while no classes are shared between the hierarchies of oxidoreductase

activity and hydrolase activity.

The majority of CA (also known as enzyme activity) classes describe chemical re-

actions using a chemical equation; this symbolic representation consists of reactant

entities written on the left-hand side, product entities written on the right-hand side

and a direction symbol to separate these (e.g., bidirectional (<=>) or left-to-right

(=>)). In fact, almost all the biochemical reactions in the CA classes are defined

with the = symbol, which means the net flux of a reaction is undefined. This form

of definition is used as a standard definition for most of the CA classes; it is shown

in Listings 7.1. Out of the total number of CA classes (i.e., 6,804 classes), 5,143

(75.5%) classes are defined using the formula in Listings 7.1. However, the number

of substances before and after a chemical transformation process is variable and in

some cases unknown.

Catalysis of the reaction :[reactants Ø products]

Listing 7.1: Catalytic activity classes standard definition.
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The ontology of CA also has “generic” reactions classes (known in GO as group-

ing classes) that do not represent functions themselves but are defined so as to

group and classify classes with similar functions. These classes constitute approxi-

mately 24.4% of the total number of CA classes. For instance, consider the defini-

tion of the class transferase activity, transferring alkyl or aryl (other

than methyl) groups (GO:0016765) in Definition(16).

Definition: 16. Catalysis of the transfer of an alkyl or aryl (but not methyl) group
from one compound (donor) to another (acceptor).
transferase activity, transferring alkyl or aryl (other than methyl) groups, (GO:0016765).

In brief, the ontology of CA consists of grouping classes, with definitions that de-

scribe the overall function of an enzyme, and narrower functional classes that often

represent the actual chemical reactions catalysed by the enzyme using a chemical

equation.

7.3 Databases of chemical reactions

There are several online resources to describe enzymatic reactions, such as Meta-

Cyc [23], KEGG [69], EC [39] and Rhea [4], with a different focus of each resource.

Many of the GO CA classes have been cross-referenced to these databases and other

resources. However, the GO guideline for ontology editors illustrates that the future

goal is to automatically populate the definitions of GO enzymatic reactions using

the reactions from Rhea. Rhea is an extensive resource of biochemical reactions, in

which the reactions’ participants are defined using ChEBI entities along with their

chemical structures. Therefore, we have utilised Rhea reactions to facilitate the ac-

curate creation of CA chemical reactions, with assistance from the mapping files,

rhea2go1, and by manually searching for yet unmapped classes using Rhea and other

related databases.

There are several problems that prevent the automatic creation of CA classes using

the GO-Rhea mapping file, rhea2go:

1. The GO-Rhea mapping file does not cover all of the CA classes.

1The rhea2go file is available at the GO official website http://geneontology.org/docs/

download-mappings/
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2. The grouping classes of CA do not have references to Rhea so they need to be

handled separately.

3. The mapping file includes classes that are not only related to the CA, but to

other GO classes.

4. We need to maintain the CA grouping classes’ classifications, i.e., the set of re-

actions catalysed by the hydrolases activity need to be created separately

to those for the transferases activity reactions.

5. The matches in the rhea2go file have the two following problems of:

(a) One GO class mapped to many Rhea classes (e.g., GO:0120204 mapped

to Rhea:60132 and Rhea:60136).

(b) Many GO classes mapped to one Rhea class (e.g., GO:0102353 and

GO:0062205 mapped to Rhea:33983).

In the section that follows, we present our strategy for disentangling CA structure

and design ontology patterns, thus enabling us to define Hyper-CA classes.

7.4 Hyper-CA development strategy

As mentioned earlier, the CA hierarchy can be divided into several sub-hierarchies

(i.e., based on the category of an enzyme) and these can be developed independently

as they are almost independent. Therefore, in this study, we decided to start our

implementation with the transferase activity (GO:0016740), by retrieving all

of its subclasses’ labels, GO IDs and textual definitions. As the majority of the

classes were chemical equation classes, we began the development work by separating

them from their grouping classes. This allowed us to create the equation classes

more rapidly and in a semi-automated way, especially for those that had references

to Rhea. We defined each reaction class by replacing the reaction participants with

their equivalent ChEBI chemical compound using the data from the GO-Rhea and

Rhea-ChEBI mapping files. In the case that a CA class had no reference to Rhea,

we investigated other cross-references (e.g., MetaCyc and KEGG) that mostly have

links to Rhea, or we directly searched the Rhea database and replaced the reaction
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Figure 7.2: Overview of the CA classes development workflow.

participants with equivalent ChEBI compounds. Then, we relied on a reasoner to

place classes automatically in the transferase hierarchy. In terms of the grouping

classes, most of the transferase activity grouping classes’ definitions describe

the overall outcome of their equation subclasses using textual representation, and

they often include meta-classes, that is, classes that do not map directly to chemical

compounds in ChEBI. Therefore, we decided to start the development work with

the chemical equation classes as generic classes require plentiful manual investigation

and cannot necessarily be defined using logical definition if the reaction participants

are not actual chemical compounds. An overview of the workflow used to create the

CA classes is illustrated in Figure 7.2.

In Table 7.1, we provide an overview of the transferase activity classes, the number

of generic classes, the chemical equation classes and the classes that also have rela-

tionships to other MFO activity, which are divided between transporter activity

and molecular transducer activity.
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Table 7.1: The classes comprising the transferase activity, as of January 2020.

Activity No. of Generic
Classes

No. of Equation
Classes

No. of classes
linked to other

MF activity

Total

Transferase
activity

328 1847 68 2243

Next, we will illustrate a number of challenges that need to be addressed related to

the CA chemical equations classes development.

7.5 CA development challenges

1. Challenge: Reaction participants

The plan is for every chemical entity that participates in a CA chemical reac-

tion to be replaced with its equivalent ChEBI compound using the mapping

relations between GO and Rhea, and between Rhea and ChEBI. However,

there are a number of difficulties associated with GO-ChEBI alignment:

1. Not all CA chemical reaction participants can be found in ChEBI. Miss-

ing chemical entities need to be submitted to the ChEBI web application

and reviewed by ontology curators. Accepted requests are not directly

available, but are made available in a monthly release update. We sub-

mitted more 30 pull requests to the ontology repository on GitHub to

add new chemical entities.

2. “Generic” participants: GO and Rhea have generic compounds that are

not represented in ChEBI.

3. Reaction participant names do not always match between GO and

ChEBI; GO is more generic in the representation of chemical entities,

whereas ChEBI is more specific and precise. Even within GO itself, the

same entities appear with different representations, for example:

• CO2 - carbon dioxide

• FADH2 - FADH(2)

• H2O - H(2)O
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• H+ - H(+) - hydrogen

• NADP+ - NAD(P)+

• coumaroyl-CoA - 4-coumaroyl-CoA

2. Challenge: Reaction direction

There are four existing reaction directions: left-to-right direction(=>), right-

to-left direction(<=), bidirectional (<=>) and undefined direction (=). The

Gene Ontology Consortium (GOC) decided to use the non-directed (=) option

for most of the classes where the net flux of a reaction was undefined. In the

case of a reaction defined with a left-to-right direction or right-to-left direc-

tion, this can be represented relatively easily in the OWL format by defining

object properties, for example – input and output (or reactant and product)

to denote the direction. Conversely, the bidirectional and undefined direction

implementations are much more complex as, in the case of an undirected re-

action, we need to use the union-based approach to capture the meaning of

the undefined reaction’s direction (forward or backward). The representation

of an undirected reaction is simplified in Listing 7.2.

(catalytic activity class

(has reaction some

and (hasReactant some ChEBI:X)

and (hasReactant some ChEBI:Y)

and (hasProduct some ChEBI:A)

and (hasProduct some ChEBI:B)

or

and (hasReactant some ChEBI:A)

and (hasReactant some ChEBI:B)

and (hasProduct some ChEBI:X)

and (hasProduct some ChEBI:Y))

and (hasEnzymeClass some Transferase))

Listing 7.2: A simplified representation of a reaction with undirected chemical
reaction.

3. Challenge: Stoichiometry

A reaction stoichiometry is made up of the numerical relationships between

reaction participants that are usually represented using numbers. This can be

represented in the Web Ontology Language (OWL) format using a datatype
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property (i.e., owl:DatatypeProperty). Alternatively, whenever the partici-

pants’ amounts are determined in a CA class, we can repeat the definition

of a reactant/product according to its quantity in a reaction. For instance,

the definition of the CA class all-trans-nonaprenyl-diphosphate syn-

thase (GO:0052923) indicates that the amounts of isopentenyl diphosphate

and diphosphate molecules that are consumed and produced during the chem-

ical reaction (see Definition(17)).

Definition: 17. Catalysis of the reaction: geranyl diphosphate + 7 isopentenyl
diphosphate = 7 diphosphate + all-trans-nonaprenyl diphosphate.
all-trans-nonaprenyl-diphosphate synthase (geranyl-diphosphate specific) activity
(GO:0052923)

7.6 Pattern-driven development

The main tool we have used to develop our ontology is the Tawny-OWL [76] li-

brary, which enables the construction of OWL ontologies and provides a set of

patterns that explicitly support the creation of a hypernormalised ontology (see

Chapter 3). We have extended the Tawny-OWL entities by defining a new entity,

defcatalyse, to ease the creation of the CA classes. The defcatalyse entity is a new

class with some property restrictions such as hasReaction, hasReactant, hasProduct

and hasEnzymeClass. That is, we extend the basic Tawny-OWL frames with new

frames that are restricted to the entity we developed, the defcatalyse. An example

of a CA class created using the defcatalyse pattern is shown in Listing 7.3.

(defcatalyse ToCatalyseProteinSerineKinaseActivity

:annotation (goid "GO:0004674")

:annotation (database "RHEA:17989")

:reaction

(owl-or

(owl-and

(owl-some hasReactant ch/ATP_4-_ ch/L-serine_residue)

(owl-some hasProduct ch/O-phospho-L-serine_2-__residue ch/

ADP_3-_ ch/hydron))

(owl-and

(owl-some hasReactant ch/ADP_3-_ ch/

O-phospho-L-serine_2-__residue ch/hydron)

(owl-some hasProduct ch/ATP_4-_ch/L-serine_residue)))

:enzyme Transferase)

Listing 7.3: The definition of the Protein serine kinase activity

(GO:0004674).
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On the other side, the “generic” reaction classes in the transferase activity hier-

archy often describe the chemical transformation of functional groups (e.g., methyl

group, acyl group or glycosyl group) from one substance (referred to as the donor)

to another substance (refers to as the acceptor), but take a free-text format. As

such, we found it challenging to change the generic definitions into logical defini-

tion patterns that allowed a logical reasoner to infer the relationships between these

“generic” classes and their subclasses of equation classes. Moreover, in ChEBI, the

classes of groups (e.g., methyl group, glycosyl group and so on) are defined in

a separate hierarchy under the high-level class group (CHEBI:24433) and linked

with their parent molecular entities using the relationship’s is substituent group

from, as stated in the ChEBI documentation. For example, in GO, the equation

class, methylamine-glutamate N-methyltransferase activity, (GO:0047148)

define the chemical equation shown in Definition 18. This was classified as a Sub-

Class Of of the grouping class, N-methyltransferase activity (GO:0008170),

which describes the transfer of a methyl group from one molecule to another. Yet,

in ChEBI, there is no relationship between the methyl group (CHEBI:32875), and

the molecular entity, methylammonium.

Definition: 18. Catalysis of the reaction: L-glutamate + methylammonium = N-
methyl-L-glutamate + NH(4)(+).
methylamine-glutamate N-methyltransferase activity (GO:0047148)
Cross-References: RHEA:15837

Currently, there are two solutions to this modelling issue: one is to ignore the group-

ing classes, while another solution is to define them only with their GO definitions

and IDs, and then manually assert the subsumption relations (i.e., is-a-superclass-

of...) between “generic” reaction classes and equation classes, according to the GO

classification. Although the latter solution requires a great deal of work and fails to

observe the hypernormalisation [77] principle (i.e., to have a flatted hierarchy), it

is used to maintain the GO classification of generic reactions with the Rhea-based

equation reactions and the hierarchy is still normalised [93].

The development of grouping classes was divided into two steps: in the first step,

we retrieved all the transferase activity grouping classes, with their names,

definitions and IDs to be created using annotation properties; see an example in
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Listing 7.4. In the second step, we asserted the relationships between every grouping

class and its subclasses of equation classes, as demonstrated in Listing 7.5. This

approach allowed for any future developments, such as changing the definitions of the

grouping classes into logical definitions, as the subsumption relations were created

separately.

(defclass ToCatalyseO-HydroxycinnamoyltransferaseActivity

:annotation (goid "GO:0050737")

:annotation (Def "Catalysis of the transfer of a

hydroxycinnamoyl group to an oxygen atom on the

acceptor molecule."))

Listing 7.4: The definition of the grouping class O-hydroxycinnamoyltransferase
activity (GO:0050737).

(as-subclasses

ToCatalyseO-HydroxycinnamoyltransferaseActivity

:disjoint

(declare-classes

ToCatalyseGlucarateO-HydroxycinnamoyltransferaseActivity

ToCatalyseGalactarateO-HydroxycinnamoyltransferaseActivity

ToCatalyseTartronateO-HydroxycinnamoyltransferaseActivity

ToCatalyseShikimateO-HydroxycinnamoyltransferaseActivity

ToCatalyseGlucarolactoneO-HydroxycinnamoyltransferaseActivity

ToCatalyseQuinateO-HydroxycinnamoyltransferaseActivity

ToCatalyseChlorogenate-GlucarateO-Hydroxycinnamoyltransferase

Activity))

Listing 7.5: Manually asserting the relationship between the class O-

hydroxycinnamoyltransferase activity (GO:0050737) and its subclasses.

7.7 Evaluation

In this section, we will carry out an evaluation of the generated classes of Hyper-CA

by comparing the hierarchical relationships in the new hierarchy with those of the

current GO CA hierarchy. This evaluation approach is known as “gold standard-

based” for using the existing gold ontology (also known as the core ontology) to

evaluate the target-related ontology. The comparison will mainly concern the re-

lationships among the equation reaction classes, as the relationships between the

“generic” reaction classes and the equation classes were asserted manually, as stated

by GO. Conversely, the definitions of the CA equation reaction classes have changed

into computable logical definitions that support the automatic inference of member-
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Figure 7.3: Overview of the workflow used to evaluate the Hyper-CA hierarchy.

ships by relying greatly on the ChEBI classification of chemical entities, with the

assistance of Rhea as an intermediary. That means, the relationship between one

equation class and another will be determined based on the relations between the

chemical entities that participate in each reaction, according to their ChEBI clas-

sifications. In the implementation of logical definition patterns for the equation’s

chemical reactions, we aimed to design a logical definition that captured the meaning

of undirected reactions, although there were simpler, logical definitions. In fact, the

designed pattern for defining CA equation classes was derived from the discussions

held by the developers of GO on the ontology repository on GitHUB 2. There was

a general consensus on the use of Rhea biochemical reactions, which we have ex-

ploited to populate the logical definitions of reactions using existing mappings (i.e.,

GO-to-Rhea and Rhea-to-ChEBI) and manual searching.

The aim of the hierarchical comparison was to check whether the relationships be-

tween the equation classes changed or remained the same after the use of logical

definitions and equivalent Rhea biochemical reactions. The created classes only

constitute 16% of the total number of CA classes due to the challenges mentioned

earlier and the limited time available to create these classes. However, the rest of

the CA classes are definable as they fall into the same identified categories: “generic”

reaction classes or equation reaction classes. As we have not yet covered all of the

CA classes, we are not able to assess the CA ontology as a whole. We performed

the comparison manually by concentrating mainly on the inferred relationships. An

overview of the workflow used to evaluate the generated hierarchy is presented in

Figure 7.3.

Firstly, we specified all of the inferred relationships among the equation classes; then,

we identified the similarities and differences between the hierarchies, before going

2https://github.com/geneontology/go-ontology/issues/14984
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on to study the reasons for any differences. The total number of equation classes

that we created using the pattern in Listing 7.3 is 760, all of which belong to the hi-

erarchy of transferase activity. After the use of an OWL reasoner (specifically,

the HermiT OWL) there were 30 inferred SubClass Of relationships. Out of the 30

inferred relationships, 22 (69%) subclass inferences matched the GO classification.

The eight (28%) new relationships were generated based on the ChEBI relation-

ships between the reaction’s participants. For instance, the classes shown in Defini-

tions 19, 20 and 21 are defined as siblings (having the same superclass) in current GO

representations; see Figure 7.4. In Hyper-GO, new relationships were inferred to

make the glycine N-acyltransferase activity (GO:0047961), as a superclass

for the other two classes. This is because the reaction participants choloyl-CoA(4-

)(CHEBI:57373) and benzoyl-CoA(4-)(CHEBI:57369) in ChEBI are SubClass Of

the class acyl-CoA(4-)(CHEBI:58342). In addition, on the right hand side of the

equation reactions the class of N-acylglycinate(CHEBI:57670) is the parent class

for both glycocholate(CHEBI:29746) and N-benzoylglycinate(CHEBI:606565).

Definition: 19. Catalysis of the reaction: acyl-CoA + glycine = CoA + N-
acylglycine.
glycine N-acyltransferase activity (GO:0047961)
Cross-References: RHEA:19869

Definition: 20. Catalysis of the reaction: benzoyl-CoA + glycine = N-
benzoylglycine + CoA + H(+).
glycine N-benzoyltransferase activity (GO:0047962)
Cross-References: RHEA:14001

Definition: 21. Catalysis of the reaction: choloyl-CoA + glycine = CoA + glyco-
cholate.
glycine N-choloyltransferase activity (GO:0047963)
Cross-References: RHEA:18498

The result was discussed with the GO developers on the ontology GitHub reposi-

tory3; the proposed relationships were checked and shown to be correct. The GO

repository contains the source code of the ontology, which is edited only by its de-

velopers. Our plan is to compare the hyper CA with the denormalised CA once

we reach a state of completion. In Table 7.2, we present the reminder of the new

inferred relationships.

3https://github.com/geneontology/
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Figure 7.4: The GO classification of the CA classes glycine N-acyltransferase, glycine
N-benzoyltransferase and glycine N-choloyltransferase.

Table 7.2: The difference between GO classification and the Hyper-GO classifica-
tion.

No In GO Hyper-GO

1 GO:0003956 and GO:0030701
are siblings

GO:0030701 SubClassOf
GO:0003956

2 GO:0047507, GO:0047506,
GO:0036431 and GO:0004127

are siblings

GO:0047507 SuperclassOf the
rest

3 GO:0047178 and GO:0047177
are siblings

GO:0047177 SubClassOf
GO:0047178

4 GO:0050369 and GO:0034211
are siblings

GO:0034211 SubClassOf
GO:0050369

Lastly, due to the large numbers of CA classes and the challenges mentioned earlier

(see Section 7.5), we were unable to reformulate all the CA classes in a hypernor-

malised form. In addition, the project involved communication with external related

parties (i.e., GO, ChEBI, and Rhea) to clarify unclear class descriptions, adding

missing reactions participants, and reporting incorrect classifications. As a result,

to redefine all CA classes, additional time and multiple team members are required.

Once we reach a state of completion, the ideal evaluation process is to compare

the completed Hyper-CA with the GO CA and related standardised databases of
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chemical reactions, such as Rhea and KEGG.

7.8 Discussion

In GO, as it stands, the representation of the Catalytic activity classes is based

on textual definitions and manually asserted relationships. In general, the ontology

of CA consists of “generic” reaction classes, with definitions that describe the overall

function of an enzyme, and more narrower functional classes that often represent

the actual chemical reactions catalysed by the enzyme using a chemical equation.

In this chapter, we have described the steps taken to change the representations

of the CA classes into Rhea-based logical definition patterns. As the hierarchy

of CA comprises several large sub-hierarchies, each of which represents a category

of an enzyme, the initial step of the process involved selecting an enzyme class,

disentangling its ontological structure and retrieving all of its subclasses. Then,

separating the “generic” reaction classes from the equation reaction classes, and

designing logical patterns that enabled the creation of classes and the automatic

inferences of relationships. Lastly, we evaluated the newly generated hierarchy by

making comparisons with the original hierarchy.

There have been many discussions about how to model and patternise the definitions

of the equation classes. There is a need to address several challenges, such as the

directionality of reactions and reactions’ stoichiometries, and support the automatic

inference of relationships. Within the GOC community, non-direction of reactions

is the most adopted and used format, unlike with the Rhea database, which uses all

four options for directionality. The logical patterns that we have designed for the

non-direction of reactions require additional work, as more axioms must be defined

and a union-based approach is used to capture the meaning of an undefined reaction’s

direction (forward or backward). However, this approach limits the number of classes

to be defined by avoiding the need to create a class for each direction of a reaction,

which would increase the size of the ontology. Of course, there are alternative

computable patterns for defining equation classes, which are, in general, more simple

than the union approach. For instance, a simple modelling solution to define an

undirected reaction is shown in the example in Listing 7.6, using has-reactant-left,

- 167 -



Chapter 7: Hypernormalisation of Catalytic Activity

has-reactant-right and direction properties.

(defcatalyse ToCatalyseProteinThreonineKinaseActivity

:annotation (goid "GO:0004674")

:annotation (database "RHEA:46608")

:reactant-left ch/ATP_4-_ ch/L-threonine_residue

:reactant-right ch/ADP_3-_ ch/

O-phosphonato-L-threonine_2-__residue ch/hydron

:direction undefined

:enzyme Transferase)

Listing 7.6: Alternative pattern to define the class protein threonine kinase

activity (GO:0004674).

It appears that OWL is not the best framework for representing chemical reactions,

especially non-directed reactions. However, we contend that the logical definitions

that we have designed are the best possible modelling solutions for defining chemical

equations in OWL.

Lastly in this chapter, we have shown how we defined equation classes using logical

patterns, but we were unable to change the definitions of the “generic” reactions

into logical definition patterns. Therefore, we decided that the best decision would

be to manually assert the relationships between equation reactions and “generic”

reactions using the subsumption relations (i.e., is-a-superclass-of ) from GO. These

subsumption relations were created separately from the definitions of the “generic”

reaction classes to ease, in the future, the development of any logical patterns.

In the next chapter, we will summarise the outcomes of this thesis and discuss how

the use of the hypernormalisation and patternisation techniques affects the overall

structure of the implemented part of GO.
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8.1 Introduction

The usage of ontologies in many scientific disciplines has increased to represent the

variety and fast growth of scientific data. At present, the number of biomedical

ontologies hosted in the NCBO BioPortal is more than 820, with nearly 10 million

classes. Ontologies continue to grow in response to new scientific results and quality

enhancements. However, as ontologies become larger and highly tangled, the need

for initiatives to manage their scalability, maintainability and expressivity becomes

essential. As a consequence, the number of methodologies and techniques has grown

to address these concerns and other ontological engineering issues. Nevertheless, to

our knowledge, there is no single standardised methodology that is widely used and

covers all aspects of ontology development, regardless of the application domain.

The purpose of this research has been to address the scalability and ease of develop-

ment of large ontologies by, firstly, suggesting a new identifier scheme for generating

ontology identifiers, and secondly, investigating the hypernormalisation, pattern-

driven development and programmatic approach by rebuilding the MFO.

The motivation for developing a new identifier scheme has been to facilitate scala-

bility and overcome the concerns associated with some of the ontological standards,

such as the use of numeric identifiers. In our scheme, Identitas, we have used ran-

dom identifiers to enable concurrent development, and we exploited the proquint

library to overcome problems with memorability and pronounceability. Moreover,

we enabled the use of checksum to prevent the occurrence of errors while accessing

relatively similar identifiers. In this chapter, we discuss the advantages, limitations

and any possible improvements to this identifier scheme.

To overcome issues associated with ontology development and maintenance, we con-

sidered using the hypernormalisation approach. As a result, we have rebuilt the

transporter activity hierarchy and some parts of the catalytic activity hierarchy us-

ing high-level patterns that explicitly support the creation of a hypernormalised

ontology using the Tawny-OWL environment, with the assistance of related ontolo-

gies and logical reasoners. In this chapter, we discuss how this approach facilitated

the development of the GO classes, along with the limitations of the approach and
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possible improvements that could be taken into consideration.

In addition, while rebuilding the ontologies using the hypernormalisation approach,

we were able to highlight inconsistent classifications and identify semantic mis-

matches between GO and ChEBI ontologies that have arisen as the ChEBI ontology

has a higher level of specificity than GO. In this chapter, we discuss the outcomes

of our investigation of the hypernormalisation technique.

8.2 The Identitas library

Ontology identifiers are the key for each entity defined in an ontology, and enable

a unique and persistent reference to each term. There is clearly a wide consensus

in favour of using semantics-free local IDs (identifiers that are unique within a

database or an ontology), as an identifier that is based on some semantics associated

with the term may need to be changed when that meaning changes. The style of

the identifiers generated by most identification schemes either consists of numeric

or alphanumeric characters, which introduces a number of problems for end-users.

These can be, for instance, hard to read, memorise and pronounce, and it becomes

easy to make mistakes. In addition, monotonically increasing numbers require a

degree of coordination between ontology developers to obtain new IDs; this can

significantly hamper or delay ontologies’ development.

In Identitas, we enabled the concurrent development of ontologies by simply gener-

ating identifiers in a random manner, and utilised the proquint library to overcome

problems with memorability and pronounceability. In addition, a checksum was

implemented to prevent the occurrence of errors while accessing relatively similar

identifiers. Finally, Identitas was integrated into two ontology development environ-

ments, Protégé and Tawny-OWL [76].

There are existing, accepted ways of overcoming the challenges with distributed

development, such as using blocks of identifiers or centrally generating new IDs

on-demand. Although these approaches are effective, they require developers to

manage the IDspace accurately, since preallocated IDs cannot be used elsewhere. A

centralised server requires developers to set up a connection to the server, therefore,

it is sensitive to network issues or a lack of availability of the server. Decentralised
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IDs such as UUIDs are unique worldwide but not checksummable.

Some limitations of the Identitas scheme should be noted. Firstly, we have not

evaluated the readability of our IDs, nor has any prior researcher done this with

proquints. We note, however, that Identitas IDs have three key advantages which

are composable (i.e. they can be random or not, they can use checksums or not,

they can use proquints or not). We did search extensively for an alternative scheme

to proquints, but could not find one. Yet, it would be possible to incorporate alter-

natives within future versions of Identitas, perhaps similar to what3words. Secondly,

we did not address the question of whether or not it is practical to move an existing

ontology to this style of identifier. It might be hard work and the costs might be

greater than benefits of moving ontologies to utilise Identitas. However, we have

presented details of the scalability of Identitas, showing that it can easily scale to

an ontology the size of GO. That is because GO IDs are assumed by many pieces

of software, and porting GO IDs would be a significant effort. Finally, we did not

give a practical evaluation. Clearly, the ideal test of Identitas would be to build

a large ontology from scratch using Identitas; this is obviously impractical within

the confines of this PhD research. Moreover, to our knowledge there has not been

a formal evaluation of many existing identifier schemes, including those that have

long been in use; in practice, once an identifier scheme has been established it is very

often difficult to change. However, as a partial attempt at this form of evaluation,

we have added Identitas IDs as a standard annotation property to the classes of our

Hyper-GO ontology; this offers a migratory path for the use of Identitas without

wholescale replacement of the existing scheme.

In summary, with Identitas, we have provided a number of features that address the

scalability and ease development of ontologies (which fulfils RQ1). Moreover, we

have discussed the limitations, and the future work required to improve Identitas.

8.3 Hypernormalisation of Transporter activity

and Catalytic activity

In this thesis, we have utilised the hypernormalisation approach to rebuilding two hi-

erarchies of transporter and catalytic activities, together constituting approximately
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78% of all classes in the MFO. Firstly, acquired sufficient biological knowledge to

understand the GO classification and determine the way in which we would apply

the hypernormalisation technique. Although the MFO classes share attributes, they

describe different molecular activities, such as transporting chemical entities or con-

verting one entity to another. Therefore, we decided to apply our approach to each

molecular activity independently, starting with transporter activity and moving on

to catalytic activity.

In the process of hypernormalising the transporter activity (TA), we utilised the

higher-level patterns described in [77], which assist with building explicit and accu-

rate hierarchies of TA. Moreover, we designed content-specific patterns that aided in

the classes’ construction. We found that the TA classes are distributed over three

categories: general transport classification classes, passive transport classes and ac-

tive transport classes. However, there were challenges with defining more specific

transporter classes that involved multiple biological/chemical entities and roles. For

instance, there were difficulties with determining the types of high- and low-affinity

transporters as there was insufficient information within the GO representation. The

hyper-TA representation was based on the GO representation and related, reliable

resources that are used by GO, such as the Transporter Classification Database [98].

Catalytic activity (CA) was the second part of the MFO that we investigated to

apply our hypernormalisation approach. The investigation showed that the CA

hierarchy consists of several large sub-hierarchies, each of which represents a category

of an enzyme. As such, we found it easier to apply our approach by, firstly, selecting

an enzyme class, then disentangling its structure, retrieving all of its subclasses and

rebuilding them. In addition, we found that a CA class is either one of two types: a

“generic” reaction class or chemical equation class. So, we designed a logical pattern

that enables the definition of the non-direction equation reactions and supports the

automatic inference of memberships, relying on the ChEBI classification of chemical

entities. Cross-references between GO and Rhea facilitate the reactions’ creation, as

Rhea uses ChEBI classes to describe the chemical compounds that take part in the

reactions. However, not all the CA classes have been referenced; therefore, we had

to make an effort to find the equivalent entries from Rhea. See Chapter B for the
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list of CA classes that we have mapped to their equivalent in Rhea1. Meanwhile,

there were difficulties in changing the representations of “generic” reactions into

logical definition patterns as the relationships between the “generic” classes and

equation classes could not be inferred using the equivalent chemical entities from

the ChEBI ontology. The “generic” classes describe the chemical transformation

of functional groups (e.g., methyl group), in ChEBI the functional groups defined

in a separate hierarchy and have no direct relationships with equation substances.

We found that the best way to model these “generic” classes was to assert the

relationships between the equation reactions and “generic” reactions manually, using

the subsumption relations.

While rebuilding GO using the hypernormalisation approach, we identified semantic

disagreement between GO and ChEBI. Although the two ontologies describe the

same chemical entities, GO uses a class representing a concept that does not directly

map to a concept in ChEBI. ChEBI provides a detailed representation of molecular

entities; for instance, it distinguishes between the L-, D- and generalised forms

of a molecule. GO, meanwhile, describes a biological situation, where all of the

biological states of a chemical entity in question are in solution, where the distinction

is less meaningful. We were unable to determine whether biologically, the state of a

molecule while it is being involved in an activity, and it appears likely that GO has

not either. Therefore, we decided to rely on the equivalence axioms created by the

GO-Plus ontology.

In general, the advantages of applying the hypernormalisation can be summarised

as following:

1. Reduce the amount of knowledge that an ontology developer has to hold in

their mind at any one time; they only need to have enough knowledge to build

the list of definitions and formal descriptions that allow an automated reasoner

to determine the relationships between ontology classes.

2. Support the creation of ontological higher-level patterns, and recast existing

patterns to build ontologies. Pattern-driven development is a well-known ap-

1Most of the mappings were found using related databases (e.g., MetaCyc and KEGG) using
the Cross-references relation from GO.
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proach for easing the maintenance and evolution tasks by reducing the time

needed to make the necessary modifications.

3. Build compositional and large ontologies in an explicit, modular and main-

tainable form.

4. A hypernormalised ontology is built from several modules that can be re-used,

maintained and developed independently with minimal effort.

8.3.1 Future Work

8.3.1.1 Practical Immediate Next Steps

For our future work, we seek to continue the development of the catalytic activity

classes, evaluating and discussing any new inferred relationships. In addition, we

wish to apply hypernormalisation to other molecular activities and compare the re-

sults with the original ontology. In terms of the part of GO that is hypernormalised,

we could review it and improve the designed patterns in response to future develop-

ments of the GO classes. We believe that this research will be of interest to ontology

developers, as we are showing that it is possible to reconstruct an ontology using

the hypernormalisation approach.

In summary, this investigation of the hypernormalisation methodology has resulted

in the development of a hypernormalised form of the transporter and catalytic ac-

tivity hierarchies (this fulfils RQ2). Employing our hypernormalisation methodol-

ogy has resulted in the construction of explicit, manageable and robust hierarchies

(this fulfils RQ2.1). Moreover, it has allowed us to highlight inconsistent classifi-

cations and identify semantic mismatch between GO and ChEBI ontologies (this

fulfils RQ2.2). Our ability to query the generated ontology increased expressively

after using computed logical definitions (this fulfils RQ2.3). In aggregate, using

Identitas and hypernormalisation should enable the easy development of large-scale

ontologies in the future (this fulfils RQ3).

8.4 Final Thoughts

Ontologies seek to model parts of the world in a computationally amenable way. One

recurrent issue has been understanding which part of the world we should model;
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indeed, once you have understood the possibility of modelling part of the world,

there is a natural desire to extend this model as widely as possible. Perhaps this

is typified by systems such as Cyc [73], which has been building a comprehensive

model of all parts of the world for many years.

Within biomedical ontologies, the need for this kind of modelling is also apparent.

Consider the following statement, which we would like to be able to state:

The Kent variant of COVID-19 presents an alteration of the spike protein

of the virus, which makes it easier for the virus to gain entry to the cell.

This results in a faster infection process, causing a more rapid onset

of the disease, which in turn, increases its spread through the human

population.

This is hard or impossible to model ontologically as it is so multi-scale. It describes

biology at the population, organism, cell, protein and genetic levels. The OBO

Foundry aims to coordinate the development of biomedical ontologies by encouraging

ontologies developers adhere to shared principles. This includes using a common

system of identifiers and encouraging the developers of domain-related ontologies to

coordinate their efforts to produce a single artifact.

So, the OBO Foundry is attempting to resolve the problem of multi-scale ontolo-

gies, by encouraging developers to build parts of an ontology independently and

orthogonally. Yet, this plan has not succeeded: despite the significant efforts of

OBO Foundry, there is still considerable term overlap among the OBO Foundry

ontologies [67] and, as our work has shown, there is a semantic mismatch between

ontologies on closely related topics, such as chemical structures.

There are some fundamental problems here. Both the GO and ChEBI developers

have been behaving sensibly; they have addressed an old question – how much detail

should we model and how much should we simplify? We could model all of reality,

all of time, but of course, this would mean that GO would need to model in the

same way as the semantically more complex ChEBI. And no doubt, ChEBI would

need to deal with a semantically more complex view that a full chemical ontology
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would have. The solution to our problems cannot be to model at ever greater and

greater detail; dealing with all the complexity of reality, all of the time is not an

answer.

As our motivating example shows, we need to model at multi-scale. In order to

achieve this multi-scale, we need to stop developing independent ontologies and bring

them together. Clearly, this is difficult, but to achieve this we need not coordination

but modularity. It is this, that has enabled us to build massive software systems,

much larger than the biggest ontology.

Hypernormalisation and Identitas are both attempts to achieve these ends. They

take ideas from software engineering but adapt them for ontologies; our hope is that

they fulfil a role similar to encapsulation for software engineering. If they do, they

will have a significant contribution to make in building large-scale, comprehensive

and useful models of all of biology. This will, in turn, help us to harness the power

of computation to enable us to understand life better in all of its complexity.
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Table A.1: This table summaries the set of ontologies that are used in this thesis.

Ontology Name Str Description

The Gene Ontology GO A formal and computational representation of biologi-
cal systems, including the functions of genes and genes
products from different organisms.

The Chemical Entity
of Biological Interest

ChEBI The most comprehensive standardised and structured
chemical terminology of biological interest.

Systematised Nomen-
clature of Medicine
Clinical Terms

SNOMED-
CT

A comprehensive and standardised health terminologies
that cover most areas of medicine.

International Classifi-
cation of Disease

ICD An international classifications for health conditions in-
cluding diseases, symptoms and injuries.

Rhea, the Annotated
Reactions Database

Rhea Rhea is an extensive resource of biochemical reactions
in which the reactions participants are defined using
ChEBI entities and their chemical structures.
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Table B.1: This table provides the set of catalytic activity (CA) classes with the
equivalent classes from Rhea that we found during the investigation of the catalytic
activity classes. Here we present each GO class ID with the its equivalent Rhea
entry ID. There are GO classes which include more than one reactions, we have split
these into classes.

No Catalytic Activity class Equivalents Rhea

1 GO:0002948 RHEA:54084

2 GO:0001888 RHEA:16224

3 GO:0003755 RHEA:16237

4 GO:0003810 RHEA:43771

5 GO:0030743 RHEA:43212

6 GO:0016436 RHEA:43184

7 GO:0016437 RHEA:14433

8 GO:0008825 RHEA:11991

9 GO:0047144 RHEA:14236

10 GO:1990259 RHEA:50904

11 GO:0033801 RHEA:11435

12 GO:0008882 RHEA:18592

13 GO:0033837 RHEA:35628

14 GO:0033830 RHEA:17841

15 GO:0102511 RHEA:35434

16 GO:0008412 RHEA:27782

17 GO:0030792 RHEA:11685

18 GO:0047946 RHEA:18472

19 GO:0008353 RHEA:10219

20 GO:0047961 RHEA:19872

21 GO:0050313 RHEA:12984

22 GO:0004457 RHEA:23447

23 GO:0047137 RHEA:13116

24 GO:0004455 RHEA:22071

Continued on next page...
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Table B.1 – continued from previous page

No Catalytic Activity class Equivalents Rhea

25 GO:0008805 RHEA:13984

26 GO:0052580 RHEA:25644

27 GO:0052579 RHEA:25647

28 GO:0018678 RHEA:16388

29 GO:0008874 RHEA:23938

30 GO:0052590 RHEA:28756

31 GO:0052589 RHEA:30095

32 GO:0018665 RHEA:15160

33 GO:0003908 RHEA:24000

34 GO:0033786 RHEA:27465

35 GO:0033785 RHEA:27473

36 GO:0003968 RHEA:21251

37 GO:0036408 RHEA:21992

38 GO:0052908 RHEA:19609

39 GO:0052909 RHEA:42780

40 GO:0003976 RHEA:13584

41 GO:0050316 RHEA:13517 & RHEA:12697

42 GO:0004674 RHEA:46608 & RHEA:17989

43 GO:0003956 RHEA:19149

44 GO:0004851 RHEA:32459

45 GO:0018708 RHEA:18280

46 GO:0015667 RHEA:16857

47 GO:0033094 RHEA:12271

48 GO:0047286 RHEA:11820

49 GO:0052622 RHEA:36331

50 GO:0047284 RHEA:18361

51 GO:0047281 RHEA:10232

Continued on next page...
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Table B.1 – continued from previous page

No Catalytic Activity class Equivalents Rhea

52 GO:0052623 RHEA:36327

53 GO:0052624 RHEA:40551

54 GO:0061599 RHEA:35047

55 GO:0047297 RHEA:19813

56 GO:0047293 RHEA:17709

57 GO:0047291 RHEA:18417

58 GO:0047228 RHEA:17285

59 GO:0004579 RHEA:22980

60 GO:0004578 RHEA:13865

61 GO:0008951 RHEA:44012

62 GO:0047237 RHEA:23465

63 GO:0008955 RHEA:23711

64 GO:0047253 RHEA:19945

65 GO:0008914 RHEA:12340 & RHEA:50416

66 GO:0051742 RHEA:38000

67 GO:0047257 RHEA:19165

68 GO:0051748 RHEA:13205

69 GO:0004577 RHEA:23380

70 GO:0047267 RHEA:28118

71 GO:0008983 RHEA:24452

72 GO:0004145 RHEA:11116

73 GO:0044605 RHEA:56080

74 GO:0043752 RHEA:15769 & RHEA:15765

75 GO:0008999 RHEA:16433

76 GO:0043754 RHEA:18865

77 GO:0043761 RHEA:35439

78 GO:0008965 RHEA:23883

Continued on next page...
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Table B.1 – continued from previous page

No Catalytic Activity class Equivalents Rhea

79 GO:0043764 RHEA:17817

80 GO:0004125 RHEA:22728

81 GO:0008963 RHEA:21920

82 GO:0050053 RHEA:13656

83 GO:0043770 RHEA:26466

84 GO:0030409 RHEA:15097

85 GO:0043772 RHEA:34075

86 GO:0050071 RHEA:10668

87 GO:0043776 RHEA:36067

88 GO:0008976 RHEA:19573

89 GO:0043777 RHEA:34592

90 GO:0004127 RHEA:25094

91 GO:0043780 RHEA:26286

92 GO:0052654 RHEA:18321

93 GO:0052655 RHEA:24813

94 GO:0052656 RHEA:24801

95 GO:0043712 RHEA:49440

96 GO:0050004 RHEA:56344

97 GO:0052669 RHEA:51680

98 GO:0043720 RHEA:31558

99 GO:0004169 RHEA:17377 & RHEA:53396

100 GO:0008467 RHEA:15461

101 GO:0008466 RHEA:23360

102 GO:0008469 RHEA:12108

103 GO:0008476 RHEA:16804

104 GO:0008479 RHEA:16636

105 GO:0034738 RHEA:33479

Continued on next page...
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Table B.1 – continued from previous page

No Catalytic Activity class Equivalents Rhea

106 GO:0034737 RHEA:33483

107 GO:0102425 RHEA:61212

108 GO:0047600 RHEA:34183

109 GO:0090447 RHEA:33559

110 GO:0008455 RHEA:12944

111 GO:0008454 RHEA:16060

112 GO:0008459 RHEA:11108

113 GO:0047756 RHEA:16101

114 GO:0010341 RHEA:36123

115 GO:0019161 RHEA:18220

116 GO:0102437 RHEA:25629
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