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Abstract

Phylogenetics is the study of evolutionary structure, aiming to reconstruct the branching structure

of speciation from a common ancestor. There are many methods of infering the tree-like structure

from the most basic, physical traits (morphology) to analysing the distances between genetic code

based on a predefined metric. For viruses such a method is the best way to access their hereditity.

Bayesian inference enables us to learn a region of possible trees and alter the distribution of

trees according to prior beliefs. The most common method of conducting Bayesian inference

over evolutionary trees, called Tree space (Billera et al., 2001), is by Markov Chain Monte Carlo

(MCMC). Tree space is big and exploration is slow; a modern technique for speeding up MCMC

is Hamiltonian Monte Carlo (HMC), developed by Duane et al. (1987). We incorporate HMC

into Tree space by creating our own algorithm: Cross-Orthant HMC (COrtHMC). Many methods

of increasing HMC convergence speed have been developed, such as Riemannian Manifold HMC

(RM-HMC) (Girolami et al., 2011). Where applicable, we adapted such methods to COrtHMC

and then compared COrtHMC to pre-existing methods of phylogenetic inference and probabilistic

path HMC (Dinh et al., 2017). We found that all forms of COrtHMC perform similarly, including

ppHMC, but that the increased computational cost in using such HMC methods outweighs any

benefit.
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Chapter 1

Introduction

Darwin’s theory of evolution revolutionised biology and is the basis of molecular biology. However,

due to incompleteness of historic fossil records and the time spans involved, it is challenging to

learn about the evolutionary relationships between organisms and the inferred relationships are

subject to uncertainty. This means that inferring the evolutionary relationships can be posed as

a statistical problem using the genetic material available from extant species.

Darwinian evolution occurs via three main processes: inheritance, variation and selection.

Inheritance is the passage of traits from parent to offspring, variation is the mutation of traits and

selection is the process by which favourable traits become prevalent in the population. Sometimes

one species may adopt different traits within sub-populations. Once these two sub-populations

are no longer able to inherit from each other they are considered different species and speciation

is said to have occurred. The branching process of speciation from shared roots results in the

evolutionary structure being modelled as a directed tree with extant species at the leaves and

points of speciation as the internal vertices. Such trees are called phylogenetic trees. While

Darwin had to use morphological data provided by observable characteristics, modern molecular

biology uses genetic data from present day DNA. As a result the problem becomes how to infer

evolutionary relationships from the DNA of the species in question.

The most up to date methodology involves likelihood based approaches. Likelihood based

approaches involve constructing a likelihood based on a Markov model. Markov models are used

to model DNA substitution. DNA substitution is a combination of mutation and fixation, the

processes underlying the variation of the species and uniformity of the subspecies respectively.

Markov models are used because they are forgetful, and the simplifying assumption that DNA

bases do not remember what was in their position is sensible as the process of evolution occurs
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over many generations. To assume the contrary would imply that more than just genetic code

is passed to the offspring. As we do not fully understand the process of base substitution and

the geometry of a DNA strand it is reasonable to not force such a multilevel relationship into

phylogenetic modelling since we are more likely to adversely affect the results. Two approaches

are commonly used to attain information from the likelihood: maximum likelihood methods and

Bayesian analysis. Maximum likelihood methods attempt to find the most likely tree, and so

estimate a point. Bayesian analysis utilises Bayes’ theorem in order to adapt a set of prior beliefs

by the data. It produces a density distribution with regions of high and low probability.

Increasing the number of species increases the number of relationships modelled and the number

of different phylogenetic trees possible. There are (2n − 5)!! unrooted phylogenetic trees for

n species as described in section 3.1. This results in a space that rapidly becomes infeasible

to explore quickly. Furthermore standard Markov Chain Monte Carlo (MCMC) techniques

sample trees and model parameters separately, further decreasing the efficacy of exploratory

algorithms. Hamiltonian Monte Carlo (HMC) provides a coherent method of exploration that

samples everything in tandem and ensures that regions of low probability are not excessively

proposed.

MCMC methods produce a chain of states designed so that the stationary distribution is

the required posterior. Most MCMC methods are variants of the Metropolis-Hastings algorithm.

The algorithm offers a new point from a proposal distribution to an accept-reject criterion, if

accepted the chain moves to the posed point otherwise it remains fixed. HMC is a variant of

the Metropolis-Hastings algorithm that employs auxiliary variables to ensure the posed point is

accepted more readily, enabling larger jumps around the state space. It does this by constructing

curves of constant density in the augmented state space and proposing points a certain distance

along these curves. For phylogenetic inference using standard Metropolis-Hastings, a separate

proposal is required for every collection of parameters. These parameters include, composition

parameters, transition-transversion rate, gamma rate and tree selection. There are two issues

with this approach. As the tree is the underlying process, proposals for model parameters are

made conditional on the tree, compounding any high rejection rates. By contrast, the proposals

for composition and transition-transversion rate may commonly be a lognormal random walk.

Proposals for the tree have to be able to vary the structure of the tree, and doing so requires the

use of topological moves that often produce very different trees with different likelihoods. In a

large space of trees this results in points in regions of low probability being proposed frequently.

By following equivalent density curves HMC prevents this issue.
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HMC has a few criteria that need to be satisfied, most important among which, is the need

for the likelihood to be differentiable and continuous. Tree space, the space of all trees with

varying edge length and structure on a fixed number of species, is a manifold stratified space. The

stratified manifold for Tree space does not accept a continuous flow generated by the likelihood.

During the course of this thesis I will go over how to adapt HMC to a stratified space and apply

it to phylogenetic inference. This includes the effect on the likelihood, how to cross boundaries,

efficiency of computation, and how to conduct HMC on the model parameters. As with most

methods of MCMC, HMC has many flavours, I will discuss which methods were chosen and

which were discarded while giving reasoning for the choices made.

1.1 A Brief History of Phylogenetics

Phylogenetics is the study of the evolutionary history of a group of organisms. It is primarily

concerned with speciation, when two sub-populations of organisms are no longer able to reproduce.

The foundations for studying phylogenetics appeared in the 19th century with the work of Bronn,

Darwin, Haekel and Mendel; Haekel himself coined the term Phylogeny in 1866.

The practice started out based on physical traits or morphologies with Mendel: “The experimental

plants must necessarily ... possess constant differentiating characters”, (Mendel and Bennett,

1965). Similarly Darwin employed a trait based method resulting in a question of common

ancestry. Did all life evolve from one common ancestor or many? “The term ‘variety’ is almost

equally hard to define; but here community of descent is almost universally implied, though it

can be rarely proved.” (Darwin, 1857) In Phylogenetics a single common ancestor was assumed

until in 1977 Woese & Fox demonstrated there to be three main clades of descent. Nevertheless

structural relationship or ‘evolutionary proximity’ between different groups of organisms remains

an issue of study.

Evolution has been used by humanity since civilisation began. The first cities Uruk and Ur relied

heavily on a variant of grass with shorter glumes allowing it to be threshed. Over time this

was selectively bred into the various forms of modern day cereal (Campbell, 2016). We did not

understand the processes behind evolution until millennia later.
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Figure 1.1: The Tree of Life, a phylogenetic tree constructed using most of the known base sequences of
living creatures. In this diagram we can see the evolutionary relationship between the various kingdoms,
phyla and classes of creatures living on earth. For example Animals and Fungi exist on the same subtree
when compared to plants and so the phylogenetic inference used to create this tree has animals and fungi
more closely related to one another than to plants. Source: David M. Hillis, Derrick Zwickl, and Robin
Gutell, University of Texas

In the 1970’s DNA sequencing provided genetic data. This meant that more advanced statistical

techniques such as Maximum Likelihood Estimation or Bayesian Inference could be applied. This

in turn led to an explosion in both theoretical models of evolution based on genetic data and

computational programs such as Phylip, MrBayes (Ronquist and Huelsenbeck, 2003) and Beast

(Drummond and Bouckaert, 2015).

1.2 DNA and Bases

Mendel (Abbott and Fairbanks, 2016) noticed the patterns of genetic inheritence between two

sets of morphologies, through looking at seeds, if they had a round shape or angular shape, yellow

or green albumen. Sutton and Boveri then independently related this pattern to chromosomes,

(Sutton, 1903), (Boveri, 1904). Avery et al. (1944) demonstrated that DNA determined cell

properties. Chagraff discovered two rules about the nucleotide base rates and Franklin, Watson and

Crick famously discovered the double helix structure of DNA. DNA is formed of Deoxyribonucleic

acid which is a compound molecule made up of two strings, each of many nucleotides connected
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by a sugar phosphate backbone. These two strings are connected by hydrogen bonding between

the nucleotides contained within them. It is these two strings which form the double helix

structure. In humans the nucleotides are Adenine (A), Guanine (G), Cytosine (C) and Thymine

(T). Adenine and Guanine and called purines because they consist of two rings, Cytosine and

Thymine are called pyramidines because they consist of one. Adenine hydrogen bonds with

Thymine and Guanine with Cytosine. These nucleotides are called bases. DNA supplies the

code for the creation of proteins in the body, an activity that occurs in the ribosome, which

transcribes the DNA into RNA and then translates it into a protein. In this way DNA determines

the functionality of a living organism. Within DNA itself certain base locations have varying

functional importance, for example we know that DNA consists of introns and exons where the

intron is a buffer region not involved in protein construction. In 2010 approximately 90% of the

genome was considered non-coding (National Human Genome Research Institute, 2010) and it is

estimated more than 75% is non-coding (Graur, 2017). Srinivasan et al. (1987) demonstrates that

local bases affect the local structure of the double helix and most Manhattan plots demonstrate

the morphological links between nearby sites. This local correlation is quantified in many ways

such as HESS. It is therefore important to maintain the order of sites in an alignment.

1.3 Motivation

The study of Phylogenetics provides two different types of categorical benefit. Benefits that arise

from knowing species are distinct and benefits that arise from knowing they are similar. Such

benefits can be wide ranging “The fact that tomato and other subspecies of this genus actually

are embedded within a well-marked subclade Solanum ... is a powerful statement that is important

to geneticists, molecular biologists, and plant breeders” (Soltis and Soltis, 2003).

1.3.1 Disease spread

Disease spread and infectivity is an important application of Phylogenetics. If a disease exhibits

in one group of organisms, it will likely mutate to infect organisms of similar genetic makeup. To

a plant breeder such information can therefore provide knowledge of what treatments to provide

and how to cultivate resilience within a crop. Furthermore such information may provide possible

breeding partners which have hitherto been ignored. The first example of phylogenetics being

used was Holmes et al. (1995) demonstrating that HCV had existed within human populations

for a long time when compared to HIV-1 and Pybus et al. (2001) demonstrated that the genetic

history could lead to accurate R0 estimation. More recently phylogenetic inference has been used

to monitor and understand the diverging variants of SARS-COV-2 (Forster et al., 2020).
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1.3.2 Scientific Efficiency

Cloning DNA takes several steps, one step involves cutting the DNA at certain bases by use

of a restriction endonuclease. To quote an Eric Lander lecture; on the construction of ecoR1,

a restriction enzyme found in Escherichia Coli strain R, “Almost everything important that we

say molecular biologists have come up with, it means molecular biologists sat at the feet of the

true masters, bacteria, and learned from the true masters: this protein is found in nature”. The

question is once ecoR1 is found, where to look for similar restriction enzymes but with modified

cutting locations. Phylogenetic studies can provide knowledge of bacteria which are similar

genetically to Ecoli and may provide similarly useful proteins. Without Phylogenetics the amount

of time wasted searching in wrong clades of bacteria could be detrimental.

1.3.3 Virology

Phylogenetic analysis can be used to identify a virus at the start of an outbreak and determine

its origin, with the SARS-CoV-2 virus early on three clusters could be observed, one related to

the its appearance in bats (BatCoVRaTG13), an offshoot seen predominantly in eastern china

and an offshoot from that seen mostly in Europe (Forster et al., 2020). Such analyses both show

where the virus originated from and how it is spreading. Phylogenetic analysis can also identify

the causes of inter-species transfer, such as mapping the development of HIV (Castro-Nallar et al.,

2011). It can also be used to analyse cospeciation, how the virus develops with a population,

branching into various new forms, for example Hepatitis C virus (HCV) has been shown to have

6 major types and 11 clusters (Simmonds et al., 1993), knowing which type of HCV you are

treating can effect treatment methods as in particular type 1 may cause damage to the liver

(Treatment Action Group, 2019).

1.4 Literature Review: Challenges in Phylogenetic Inference

Phylogenetic Inference using MCMC was first introduced by Mau and Newton (1997). To do so

they use standard Metropolis-Hastings on the cophenetic matrix representation of a tree.

Mau and Newton (1997) use a split proposal which alternates between two different proposals

depending on whether the extant species are very closely related or not. Newton et al. (1999) then

extended this idea to a global proposal on trees not using the cophenetic matrix representation.

Kuhner et al. (1995) also use MCMC to estimate effective population size.

Yang and Rannala (1997) also uses a Metropolis-Hastings scheme to conduct their inference
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over the posterior. They use nearest neighbour interchange to change topologies. Yang and

Rannala (1997) models evolution along a branch as a birth-death process as described in Nee

et al. (1994). Yang (2006) then provides a clear over of the state of phylogenetic inference in

2006. More recently Yang and Rannala (2010) use a reverse jump MCMC method (rjMCMC),

see Johansen and Evers (2007), to either expand or contract the number of nodes. This is in

order to provide a Bayesian method of species delimination. Stephens and Donnelly (2000)

compare the MCMC approach with numerical approximation, Stephens and Donnelly (2000)

also documents various different proposal mechanisms used in MCMC for phylogenetics. Several

software packages have since been produced to run phylogenetic inference, the most famous of

these is MrBayes, (Huelsenbeck and Ronquist, 2001) based on work by Huelsenbeck and Ronquist,

and Beast, (Drummond and Bouckaert, 2015) and (R. et al., 2019), based on work by Drummond,

Bloomquist, Rambaut and many collaborators.

1.4.1 MCMC

A more concrete example is (Cherlin, 2016). Phylogenetic inference is conducted over a product

space. This product space consists of Tree space, the substitution model parameter space

and the site rate parameter space. (Cherlin, 2016) uses the Gibbs sampling algorithm to

sample the tree, the substitution model parameters and the site rate parameters individually.

A Metropolis-Hastings algorithm can be employed at each step (Cherlin, 2016). To sample a

new tree one possibility is to propose new edge lengths according to a normal random walk. An

NNI, SPR or TBR is then performed on a subset of the edges of the tree. A Metropolis-Hastings

update for the new tree is then performed. New substitution model parameters can also be

proposed via the Metropolis-Hastings algorithm. The acceptance probability for the proposed

parameters is computed and the proposed parameters are accepted or rejected. Similarly, site

rate parameters can also be found by the Metropolis-Hastings algorithm. This sequence of three

different Metropolis-Hastings algorithms are then repeated forming a Markov chain of trees and

substitution parameters, and repeated until the chain has apparently converged to its stationary

distribution.

1.4.2 Metropolis-Coupled MCMC

Metropolis-Coupled MCMC (MC)3 (Altekar et al., 2004) runs several chains with varying

annealing temperatures and then combines them. Phylogenetic inference is conducted over

various different topologies with radically different density gradients, so by running multiple

chains with different temperatures it ensures that the posterior effectively informs the chain

greatly increasing the exploration and effective sample size of a MCMC approach.
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(MC)3 requires two decisions to be made, the first is which temperatures to run the chains

at and the second is which chains to swap between. When the posterior is continuous it

makes sense to swap between neighbouring temperatures. It common for temperatures to map

N → [1,∞) and there are various ways of doing this often involving a change in temperature

which then becomes another parameter to be chosen.

We do not cover a Metropolis-Coupled version of COrtHMC as annealed HMC is covered

in many different sources such as Neal et al. (2011), through dividing the Hamiltonian by the

temperature. While running multiple different temperature chains would likely improve the

result it is clearer to compare the results at a fixed temperature and any improvements would be

expected to carry over to the Metropolis-Coupled version.

1.4.3 Huelsenbeck and Ronquist

As previously stated Beast and MrBayes are the two main competing tools used for phylogenetic

inference MrBayes developed by Huelsenbeck and Ronquist. Huelsenbeck has a long history in the

field, (Hillis et al., 1994), (Huelsenbeck, 1997) and (Hillis and Huelsenbeck, 1994). MrBayes and

Ronquist and Huelsenbeck (2003) employ (MC)3. In Huelsenbeck et al. (2002) problems involved

in the MCMC approach are discussed, such as poor mixing, reliance on priors and whether a

Bayesian approach results in overconfidence. Nylander et al. (2004) then explores including

morphological in the form of the MkΓ −GTRIΓ which they found “contributed to < 5% of the

characters in our data but still had significant influence on the tree” and found that a Bayesian

comparison can “favor simple models over much more complicated ones”. In Huelsenbeck et al.

(2004) they use the reversible jump Markov Chain Monte Carlo Algorithm to sample between

different time reversible Markov processes to model evolution. In the reversible jump MCMC

requires a differentiable way to compare between two spaces of different dimension. Huelsenbeck

et al. (2004) use one of a hierarchical likelihood-ratio test, the Akaike Informaiton Criterion

or the Bayesian Informaiton Criterion, they find that partitioned model heterogeneity across

sites improved fit but that it is more important to include within partition rate heterogeneity.

Huelsenbeck and Andolfatto (2007) expands the number of available priors to include a dirichlet

process which is useful for multiple populations. Perhaps the most useful paper with regards to

HMC is Lakner et al. (2008) in which the compare a continuous change proposal from Jow et al.

(2002) and the LOCAL algorithm of Larget (2008) with TBR and SPR (see subsection 3.4.1)

and find that they are not very efficient when compared to TBR and SPR, as HMC is a local

algorithm we might expect similar results.
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1.4.4 Probabilistic Path Hamiltonian Monte Carlo

Probabilistic Path Hamiltonian Monte Carlo (ppHMC) (Dinh et al., 2017) is a method developed

by Dinh, Bilge, Zhang and Matsen in Seattle, it has a similar formulation to COrtHMC, our

technique. To conduct ppHMC they employ the Leap-prog integrator. The Leap-prog integrator

integrates according to the hamiltonian checks for a boundary crossing and then proposes a

new point in a new topology. They also developed the refractive Leap-prog algorithm which

upon crossing into a new topology rescales the momenta based upon the difference between the

posterior likelihood of the proposal and current topologies. Like Leap-prog COrtHMC checks

repeatedly to see if the Markov chain leaves an orthant, when it does do COrtHMC proposes a

new orthant and new momenta like Leap-prog. COrtHMC like the refractive Leap-prog enables

momenta to be resampled. Leap-prog keeps the set of indices crossed whereas COrtHMC methods

apply sequential techniques for dealing with multiple crossings. In Leap-prog it chooses a new

topology using a uniform distribution, this is equivalent to option 1 in subsection 5.7.4. Leap-prog

also employs a system where the state proposed in a new topology is as close to the point where

the flow crosses the orthant boundary as possible, this extra level of refinement around orthant

boundaries is something we did not propose in our various different crossing methods. Finally

Leap-prog requires all boundary crossings are known in FirstUpdateEvent.

1.4.5 Sequential Monte Carlo

The idea of Sequential Monte Carlo (SMC) is to have a collection of particles in the state space

with are weights. These particles are then parsed through a filter in which an intermediate set of

particles are sampled from the old particles according to their weights with replacement. This

intermediate set generates a new set of particles from a specified proposal distribution whic

takes a particle as an input. New weights are then calculated for the set of particles and an

estimate for the posterior is given by the average of the weighted averages of each collection

of particles. In PosetSMC (Bouchard-Côté et al., 2012) an adaption of SMC for phylogenetic

inference the particles are forests connecting the leaves representing extant species. PosetSMC

therefore requires a proposal distribution for forests which depends upon an existing forest. It

then produces a set of forests at each iteration and refines them by their weighting. In a way

similar to parallel MCMC this effectively enables exploration over a large subsets of the state

space simultaneously speeding up the convergence of the algorithm.

1.4.6 Variational Bayesian Phylogenetic Inference

A new method of phylogenetic inference has recently arisen called Variational Bayesian Phylogenetic

Inference (VBPI)(Zhang and IV, 2019), (Zhang, 2020). It works by making use of Subsplit
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Bayesian Networks (SBN). In Subsplit Bayesian Networks you have a total order on the clades of

a tree and you can split the density into a product of the conditional density of each clade, this

creates a family of distributions. VBPI takes the SBNs as a family of approximate distributions

over phylogenetic tree topologies and combines it with a family for edge lengths. VBPI then

rephrases the inference problem as minimizing the Kullback-Leibler divergence of this family

with the posterior distribution. There are many methods of approximating the solution one

such method is stochastic gradient descent. This means that the time consuming Markov chain

construction is bypassed resulting in faster results.

1.5 Contribution

We have developed a novel method of applying HMC to a phylogenetic setting and have produced

results agreeing with those of others who have attemped similar approaches demonstrating that

HMC should not be applied to this setting. We have developed a package to conduct our approach

with blackbox and user defined parameterisation in which we have developed and implemented

methods of speeding up the inference. We have designed our own way of measuring ESS and

ESS/s to get around the static pendant edge problem which can cause standard ESS and ESS/s

to artificially lower the evaluation of ESS/s. We have also implemented and compared ppHMC

with COrtHMC and found the two techniques to produce like results. Finally we have developed

new ways of visualising MCMC on Tree space.
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Chapter 2

Substitution Models

This chapter describes how we construct models for evolution to use in likelihood based inference

schemes. We do this by using Markov processes to construct a likelihood. These Markov processes

provide a probabilistic model for how a base transforms throughout the evolutionary tree from

a common base ancestor. We start by considering how a single base of DNA evolves from an

ancestor to a descendant. Changes in the DNA base can be modelled via a continuous-time

discrete state Markov process.

2.1 Markov Models and Markov Processes

A Markov process is a particular type of probabilistic model for moving between states randomly

over time. We shall only concern ourselves with discrete state continuous time Markov processes

which move between discrete states randomly over continuous time. Markov processes are

distinguished from more general stochastic processes by the Markov property. This states that

the future state is conditional only on the current state, and that future states do not depend

on past states. A Markov process consists of a family of random variables Zt indexed by t in

some indexing set T , thought of as times, taking values in a state space A. A more in depth

explanation of Markov processes can be found in Adams (2011).

Definition (The Markov Property). The Markov property for the collection Zt is:

∀k ∈ N≤n−1 tn ≥ tn−1 ≥ ... ≥ tn−k z, zn−1, ..., zn−k ∈ A

P(Ztn = z|Ztn−1 = zn−1, ..., Ztn−k = zn−k) = P(Ztn = z|Ztn−1 = zn−1).

A Markov process can be expressed in the form of a Markov kernel.

12
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Definition (Kernel). A kernel P is a two argument function taking in times t and s and returning

the probability of Zt given Zs for all possible states. For discrete state-spaces the transition kernel

P of the Markov Process Zt can be represented as a matrix that corresponds to the transition

probability, (Johansen and Evers, 2007), P (t, s) = [P (t, s)]ij . Each entry of the matrix is given

by the following:

[P (t, s)]ij = P(Zt = i|Zs = j).

In this project we begin by considering random changes to a single base in a DNA strand. In

this case the state-space consists of the DNA bases A = {A,G,C, T} and Zt will be indexed by

t ∈ T ⊂ R.

Definition (Discrete-state continuous time Markov process). A discrete-state continuous time

stochastic process is a family of random variables indexed by time t ∈ T ⊂ R and taking values

in a discrete state space. A discrete-state continuous time Markov process is a discrete-state

continuous time stochastic process satisfying the Markov property.

Definition (Time Homogeneity). A Markov process is time homogeneous if

P(Zt = zt|Zs = zs) = P(Zt−s = zt|Z0 = zs) for all s and t in the index set such that t ≥ s.

When the Markov process is time homogeneous, P (t, s) = P (t− s, 0) and so can be represented

by a function that we shall also call P with a single parameter, P (t) = P (t, 0). When the

kernel is discrete P (t) can be represented by the matrix [P (t, 0)]ij . Most substitution models in

phylogenetics are time homogeneous and all models in this thesis will be too.

A Markovian approach is appropriate to modelling evolution. The only observed influences are

the current population size and the current environmental stresses and biochemical properties.

These are memoryless. In phylogenetics we start by taking the state at a single site of DNA for a

common ancestor of the species of interest. We take this state to be the state at time t = 0. As t

increases Zt evolves according to a Markov process.

2.1.1 Chapman-Kolmogorov equation

Chapman-Kolmogorov equations are important identities of Markov processes. The Chapman-Kolmogorov

equation for time homogeneous Markov processes is:

P (t1 + t2) = P (t1)P (t2)
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where P (t) is the kernel as viewed as a matrix. This can be derived from the Markov property as

follows:

P(Zt1+t2 = i|Z0 = j) = [P (t1 + t2)ij ] =
∑
k∈A

P(Zt1+t2 = i | Zt1 = k, Z0 = j)P(Zt1 = k | Z0 = j)

=
∑
k∈A

P(Zt1+t2 = i | Zt1 = k)P(Zt1 = k | Z0 = j).

=
∑
k∈A

[P (t1)]ik [P (t2)]kj

= [P (t1)P (t2)]ij .

2.1.2 The rate matrix

In this section we are using Pt to denote P (t) for clarity. If we have a time homogeneous process

and if the following limit exists, then Pt is differentiable in t and the rate matrix Q can be defined:

Q := lim
t→0

Pt − I
t

=
dPt
dt
.

The time homogeneous forward and backward Kolmogorov equations dPt
dt = PtQ, dPt

dt = QPt can

be derived from the Chapman-Kolmogorov equations. By the Chapman-Kolmogorov equations

Pt+dt = PtPdt = Pt(I +Qdt+O(dt2)) and P(t+dt) = PdtPt = (I +Qdt+O(dt2))Pt.

These in turn imply

P(t+dt) − Pt
dt

= PtQ+O(dt) and
P(t+dt) − Pt

dt
= QPdt +O(dt).

Letting dt→ 0 gives

dPt
dt

= PtQ and
dPt
dt

= QPt.

To find a solution for P in terms of Q make an Ansatz that Pt = P0 exp(Qt). Simple computation

reveals this to be the solution. The rate matrix Q is sometimes called the Q matrix or generator.

The elements of the rate matrix qij are called the transition rates and denote the rate at which

the state leaves state i and moves to state j. As we can obtain the probability kernel P from Q it

is often clearer to express the substitution model in terms of the rate of flow between states rather

than the probability of being at a given state at time t. It is important to define a stationary

distribution as many models use the stationary distribution as a key model parameter.

14
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Definition (Stationary Distribution). The stationary distribution is the vector Π = (π1, ..., πn)

where n = |A| such that for all t, PtΠ = Π.

If the Markov process is time homogeneous, irreducible and recurrent, then the stationary

distribution exists and is unique. The stationary distribution represents the limiting distribution

over the states if the process is ergodic.

Definition (Reversible Markov Process). A Markov process is reversible if when stationary the

transition probability going forward in time is the same as going backwards, where P is the

transition probability when stationary.

P(t, t− s)ij = P(t, t+ s)ij , ∀i, j ∈ A.

If a Markov process satisfies the detailed balance equation πiP (t)ji = πjP (t)ij then it is reversible.

It is important to say that we shall be using a time reversible Markov process. This means that

while notionally there is a root representing the common ancestor in any given phylogenetic tree,

the distribution of random variables at the leaves does not depend on the position of the root. In

particular, this means that the likelihood we construct is invariant under changes of the root

position. This flexibility in the location of the root will enable us to compute derivatives with

respect to edge lengths faster as we shall explain in chapter 5.

2.2 The substitution model

We have outlined how a single site evolves over time by a Markov process. We now go on

to explain how different substitution models give different families of kernels for that Markov

process. A Substitution Model is a certain parametrised family of rate matrices Q. It defines the

probability of one state moving to another and may depend on various factors. We use θ to range

over the various different parameters of Q and we denote the space of substitution parameters Θ.

2.2.1 Examples of substitution models

Several standard examples of substitution model can be found in the book by Yang (1994). The

generic layout for the rate matrix of a substitution model is depicted in figure 2.1. Each entry

consists of base rates and conversion rates. The base rates, πA, πC , πG and πT , represent the

stationary distribution. The conversion rates are qij , i, j ∈ A. The asterisk is a place holder for

the negation of the sum of the row, e.g. for the first line ? = −πCqAC − πGqAG − πT qAT .

15
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Q =

· A C G T

A ? πCqAC πGqAG πT qAT

C πAqCA ? πGqCG πT qCT

G πAqGA πCqGC ? πT qGT

T πAqTA πCqTC πGqTG ?

Figure 2.1: The General Rate Matrix

2.2.2 General Time Reversible Model (GTR)

Most examples in Yang (1994) are specific instances of the Generalised Time-Reversible model

(GTR) (Tavaré, 1986). The GTR model assumes that there is a stationary distribution. The

GTR model also assumes that there are different transition rates associated with each pair of

bases. It has the same rate forwards and backwards between states, and hence it is reversible.

All the models we consider are specific examples of GTR and are therefore also reversible. GTR

has the most parametric freedom while preserving reversibility. This means given enough data

GTR should replicate the results of any other model but can cause overfitting (Spielman, 2019).

It is the instance of the general model in which qij = qji.

QGTR =

· A C G T

A ? πCα πGβ πTγ

C πAα ? πGδ πT ε

G πAβ πCδ ? πT η

T πAγ πCε πGη ?

In this project we need to to acquire the transition matrix. For this it is necessary to diagonalise

Q and compute its eigenvalues. The transition matrix is then a function of the exponentials of

the eigenvalues. Unfortunately, the eigenvalues of Q are not readily identifiable as functions of

the substitution model parameters (Roch, 2012). Also the derivative of the transition matrix

with respect to substitution model parameters cannot be taken in terms of matrix Q as

d exp(Qt)

dθ
=

d

dθ

∞∑ (Qt)i

i!

and matrix multiplication is not commutative. Here θ is one of πA, πC , πG, πT , α, β, γ, δ or ε.

This means that the derivative of the transition kernel with respect to its parameters requires

an approximation. We chose to avoid approximations where possible as we are interested in the

16



Chapter 2. Substitution Models 17

behaviour of HMC rather than the impact of the approximation. Other models have an algebraic

transition kernel and so do not require such an approximation. It is for this reason that we

decided to use HKY85 as our model in testing our algorithm. HKY85 only has two conversion

parameters (or one up to a constant) which means that the transition matrix can be written

down explicitly in terms of all the substitution model parameters and an exact derivative can be

computed.

2.2.3 Hasegawa, Kishino and Yano 1985 (HKY85)

Other models are motivated by properties of DNA. DNA bases are composed of purines A & G,

which have both an iodine and pyrimidine ring and complementary pyrimidines C & T . The

Kimura 2-parameter model posits one rate, α for transitions and another rate, β for transversions.

Definition (Transitions and transversions). A transition is a purine to purine or pyrimidine

to pyrimidine substitution and a transversion is a purine to pyrimidine or pyrimidine to purine

substitution.

HKY85 (Hasegawa et al., 1985) generalises the Kimura 2-parameter model and the Felsenstein

models. The Felsenstein model has the base transition parameters all the same, qij = 1 for

all i, j ∈ A. The Kimura 2 model is the HKY85 model with fixed base rate probabilities,

(πA, πC , πG, πT ) = (14 ,
1
4 ,

1
4 ,

1
4). HKY85 has the following rate matrix:

Q =

· A C G T

A ? πCβ πGα πTβ

C πAβ ? πGβ πTα

G πAα πCβ ? πTβ

T πAβ πCα πGβ ?

HKY85 employs the use of base rates or transition-transversion ratios. Such parameters result

in a problem for HMC, which is normally conducted on parameters taking values on R without

constraint. The bases πA, πC , πG, πT lie on a simplex. This is an issue as it requires a form of

constrained HMC, where πA + πC + πG + πT = 1; πA, πC , πG, πT ≥ 0. As such it is necessary to

transform the base rates to make them applicable for HMC. The transition-transversion rates

also need to be transformed as they are required to be strictly non-negative.

One of the key properties for us of HKY85 is that the eigenvalues have simple closed forms and

the diagonal can be computed. Following the work of Nye and Heaps (2014) we know that the

eigenvalues are 1 −βt −(πY α+ πRβ)t and −(πRα+ πY β). This enables the transition matrix to
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be computed. Specifically if we let:

πR = πA + πG πY = πC + πT

yr = πY /πR ry = 1.0/yr

e2 = exp(−βt) e3 = exp(−(πRα+ πY β)t)

e4 = exp(−(πY α+ πRβ)t)

then:

P (t) = exp(tQ)

· A C G T

A πA + πAyre2 + πG/πRe3 πC(1− e2) πG + πGyre2 − πG/πRe3 πT (1− e2)

C πA(1− e2) πC + πCrye2 + πT /πY e4 πG(1− e2) πT + πT rye2 − πT /πY e4

G πA + πAyre2 − πA/πRe3 πC(1− e2) πG + πGyre2 + πA/πRe3 πT (1− e2)

T πA(1− e2) πC + πCrye2 − πC/πY e4 πG(1− e2) πT + πT rye2 + πC/πY e4

.

Moreover, the above formulation for HKY85 enables us to compute the derivatives dP (t)
dθ . We give

dP (t)
dπA

as an example. For ease of notation the symbol ′ will denote d
dπA

applied to the preceding

term.

π′R = 1 π′Y = 0

yr′ = −πY /π2R ry′ = 1/πY

e′2 = 0 e′3 = −αte3
e′4 = −βte4

18
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P ′(t) = (first two columns)

. A C

A 1 + yre2 + πAyr
′e2 − πG/π2Re3 + πG/πRe

′
3 0

C 1− e2 πCry
′e2 + πt/πY e4

G 1 + yre2 + πAyr
′e2 − 1/πRe3 + πA/π

2
Re3 + πA/πRe

′
3 0

T 1− e2 πCry
′e2

(last two columns)

. G T

A πGyr
′e2 + πG/π

2
Re3 − πG/πRe′3 0

C 0 piT ry
′e2 + πT /πY e4

G πGyr
′e2 + 1/πRe3 + πA/π

2
Re3 − πA/πRe′3 0

T 0 πT ry
′e2

Derivatives of P for all parameters were calculated algebraically and coded up in our software.

2.2.4 Substitution Models and Trees

So far we have only considered a single site, with no speciation in the evolution. This is a Markov

process on R and can be represented by the line graph e with vertices v(e(1)) and v(e(2)), and

length `(e). The length of the edge represents the time taken multiplied by the rate of evolution,

represented by µe, `(e) = µete. We cannot identify or differentiate between the effects of µe

and te. Over time a species can speciate, this is a branching of the Markov process. A Markov

process that branches again and again forms a Markov process on a tree, so that Zt is indexed

by points in a tree, rather than a subset of R. The Chapman-Kolmogorov equations ensure that

the Markov process can speciate at any point coherently.

To sample from the process, we start with a collection of sites in a common ancestor for

extant species. This common ancestor is represented by the root of the tree. We assume that

these sites can be identified with sites in extant species by common descent. We can then simulate

the Markov process by simulating branch-wise. The branch-wise simulation for any edge in

the tree can be treated as standard simulation on R. Given a base at one vertex of the edge,

w.l.o.g. v(e(1)), the base at the other, v(e(2)), is simulated according to the Markov process, the

transition probabilities being P (`(e)). Repeating this process down the tree eventually results in

bases being simulated for the leaves. Each extant species is represented by a leaf. The simulated

base at the leaf gives a simulated base for the extant species identified with a particular site in
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the ancestral species. We require many sites to get an accurate idea of te evolutionary distance

between multiple species. Mice and humans have 85% of protein coding regions of DNA identical

to one another, a single site would therefore be a poor judge of evolutionary distance (National

Human Genome Research Institute, 2010). Each site produces a simulated base at each leaf

referencing both the site and the extant species. This data can be collated in the form of an

Alignment. The Alignment is the data structure we use for inference.

2.3 The Alignment

The data used to constructed the likelihood is called the alignment (Yang, 1994). This data

consists of DNA bases arranged into an array. As seen in section 2.2.1 DNA consists of nucleotide

pairings between the four bases: adenine (A), cytosine (C), guanine (G), thymine (T). DNA

sequencing provides a list of bases and where they appear in the DNA strand. The set of all

possible bases forms the alphabet denoted A. In section 2.1 we described a Markov process

transitioning a root base to a pendant base. The pendant base is dependent on species and initial

root base. We can therefore construct an array X = {xij}i=1:m,j=1:n where the rows represent

different species and the columns represent the site in the DNA from the common ancestor base

xij is associated with. It is standard practice to order the DNA string to maintain the order of

the sites in the DNA. This can be beneficial in analysing global site heterogeneity, but it has been

shown that site rate heterogeneity depends on local affects also, such as the surrounding bases

and methylation, the most famous example of this is at CpG dinucleotide sites (Todorova and

Danieli, 1997), which can lead to an above 10 fold increase in specific mutations(Hodgkinson et al.,

2009). Hodgkinson et al. (2009) perform a comparison of SNPs between human and chimpanzee

genomes, they find that there is significant global variation in mutation, not be explained by

local genomic data, supporting a consistent ordering. A global approach is further supported

by Matassi et al. (1999) which uses CpG sites to see the change in mutation rate. Nevertheless

in adopting a global approach to the order most substitution models remove the granularity

required to account for local behaviour, something that a categorised reordering might be able to

account for. Combining all the strings of DNA bases for the different species of interest creates

an alignment. The alignment is the data over which phylogenetic inference is conducted.

Definition (Alignment X = {χi}i=1:m = {xij}i=1:m,j=1:n). The alignment is the name given to

the n×m matrix of genetic bases where the m rows correspond to different species and the n

columns to different sites of the DNA sequence.
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Species 1 A G T G C . . . A G C
Species 2 A C A T A . . . G T A
Species 3 G G T T G . . . A C C

...
...

...
...

...
... . . .

...
...

...
Species m T G A T C . . . T T A

Figure 2.2: Example of an Alignment

2.4 Linear Site Rate Heterogeneity

It is known that selection effects differ depending on site. This means that it is sensible to model

the rate of evolution as varying over the different sites. The rate is added into the likelihood by

multiplying the rate matrix by a constant k and the likelihood by the probability of that constant.

That constant is often modelled as being drawn from a gamma distribution with parameters

(α, α). As k is unknown we have to average over k, that is to integrate the conditional likelihood

of k, multiplied by the probability of k over all possible values of k. This results in difficult

integrals (Yang, 2006): ∏
j

∫ ∞
0

Lkgα(k)dk

where Lk is the likelihood given k and j ranges over sites in the alignment, see section 2.5.

The function gα(k) is the probability of k from a Γ (α, α) distribution. Yang (1994) shows that

the discrete gamma distribution provides a suitable approximation for 4 or more classes. This

replaces the above integral with ∏
j

∑
k1,...,kn

Lkigα(ki)

where ki are the values at which a fraction of the density is reached. There are other models

such as the log-normal model, a mixture of invariable sites (Yang, 2006) or a gamma mixture

model (Mayrose et al., 2005) but we decided to adopt the simplest, the discrete gamma model.

The discrete gamma model takes the gamma distribution and splits it into K bins. Each

bin represents 1/K of the total density. The model selects the mean of each bin to be the different

rates k1, ..., kK . The rates k1, ..., kK are dependent on α. The ki are computed by computing the

value at which the cumulative density function is equal to the appropriate density.

For example, suppose K = 4, then there are four partitions of [0, 1], [0, 0.25), [0.25, 0.5), [0.5, 0.75)

and [0.75, 1], each partition has an associated mean c1 = 0.125, c2 = 0.375, c3 = 0.625, c4 = 0.875.
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k1, ..., k4 are the solutions of ∫ ki

0

tα−1 exp(−t)
Γ (α)

dt = ci.

The above gives the appropriate rates ki and the probability of ki is
ααkα−1

i exp(−αki)
Γ (α) . To conduct

HMC we need to be able to compute the derivative of ki with respect to α. This is intractable

and requires a numerical approximation. To run HMC we discretised R so that α took values in

{0.001× j}6000j=1 , and computed ki for all the values on the discretisation,
ˆ
kji . We then used the

finite difference method to estimate the derivative of ki for for every α on R. The number 6000

was chosen as the gradient has tapered off at α = 6 for all ki up to 8 bins. A refinement of 0.001

was chosen because it resulted in the same derivative of the likelihood with respect to α as the

numerical approximation.

dki
dα

=
ˆk
αj+1

i − ˆk
αj−1

i

αj+1 − αj−1
.

2.5 The Markov Model and the Likelihood

Constructing the likelihood is key to conducting inference over the posterior. The likelihood is

constructed according to a Markov process on edge lengths and then as more edges are added

these individual transition probabilities are multiplied together. The likelihood is defined in

terms of alignment X, model parameters θ, the site rate parameters α that generate k, tree T

consisting of edge lengths ` and topology τ , and alphabet A. The relationship u ≺ v denotes that

u is a child of v. The child relationship requires the tree to be directed. We direct the tree such

that the root is the parent of all its neighbouring vertices. Disconnecting these child vertices from

the root generates several subtrees. Repeating the process provides a parent child relationship

for every connected pair of vertices in the tree. The likelihood Lu is the subtree likelihood, the

likelihood of the subtree created when u is disconnected from its parent v. This means that we

can construct likelihood as a standard tree recursion in terms of Lu. We write Px,y;k{`, θ} for the

probability of transitioning from x to y given parameters τ , θ and α. We denote the stationary

distribution P(v = x) or simply π˜(x).

The likelihood is then:

L(X|`, τ, θ, α) =

n∏
i=1

∑
k∈γ

P(k)
∑
x∈A

π˜(x)

∏
u≺v0

∑
y∈A

Px,y;k{`(u, v0), θ}Lu(χi|y, `, τ, θ, α)

 .
We now explain this construction. We start with a single site i. We require the transition matrix

of a Markov process P modelling base substitution. We then consider the set of all possible
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labellings of the vertices of the tree with members of the alphabet. Each member of the set has

the requirement that for the leaves lj the labelling matches the associated base ω(lj) = xj,i, the

observation of that leaf in the alignment. We let ωr denote the labelling at the root. We can

now consider a single edge in a given tree T with specific labelling ν as two bases separated by a

distance.

a = ν(e(1)) b = ν(e(2))

edge e, length `(e)

The probability of substituting the base a with base b in evolutionary time `(e) is given by the

transition matrix Pa,b;k{`(u, v0), θ} = P (0) exp(Qk`)a,b where θ represents all the substitution

model parameters.

r
a1 a2

an
e1 e2 en

The probability of moving from the nucleotide at the root, r to nucleotide an in time t consists of

two sums, one containing points e1, ..., en such that they lie in the simplex∇ = {`(e1)+...+`(en) =

t|`(ei) ∈ R} and the over possible bases at the internal vertices. The summand is given by the

transition matrix Pr,a1;k{`(e1), θ}Pa2,a3;k{`(e2), θ}...Pan−1,an;k{`(en), θ}, which can be simplified

by the Chapman-Kolmogorov equations.

Consider a species Sv, with w children Sv,1,...,Sv,w. It seems sensible to take each branch

of evolution as independent of each other. This results in the likelihood defined on a subtree of v

being:

Lv(χi|sv, θ, k) =P(Sv = sv ∧ Sv,1 = A ∨ Sv,1 = C ∨ Sv,1 = G ∨ Sv,1 = T

∧ ... ∧ Sv,j = A ∨ Sv,j = C ∨ Sv,j = G ∨ Sv,j = T )

=
w∏
l=1

∑
y∈A

P(Sv = sv ∧ Sv,l = y)

=
w∏
l=1

∑
y∈A

Psv ,y;k{t(Sv,l, Sv), θ}Lsv(χi|y, `, τ, θ, k)

The above is a formulation for Lv in terms of the children of v. Writing the likelihood in terms

of Lv is called the Felsenstein pruning formulation.
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Taking the subtree starting at the root, to define the likelihood sum over all possible rates∑
k∈γ and sum over characters the root can take

∑
x∈A, the probability that the root takes that

character P(χ̂)(v0) = x multiplied by the subtree likelihood Lv0(χi|xv, `, τ, θ, α). This gives the

likelihood on a single site:

L(χi|`, τ, θ, α) =
∑
k∈γ

P(k)
∑
x∈A

π˜(x)

∏
u≺v0

∑
y∈A

Px,y;k{`(u, v0), θ}Lu(χi|y, `, τ, θ, α)


Taking each site as independent gives the full likelihood.

The likelihood Lk in subsection 2.2.2 can now be defined as

∑
x∈A

π˜(x)

∏
u≺v0

∑
y∈A

Px,y;k{`(u, v0), θ}Lu(χi|y, `, τ, θ, α)

 .

This is the recursive formulation of the likelihood. The likelihood can also be defined in

terms of the Felsenstein algorithm, which takes advantage of the binary nature of a phylogenetic

tree. For more details see appendix 1.

It should be clear that the location of the root does not affect the computation of the likelihood

due to the reversibility of the Markov process.
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Chapter 3

Bayesian Inference and Tree space

In likelihood based phylogenetic inference there are two main methods of using the likelihood

to learn about the evolutionary process. These are the maximum likelihood and the Bayesian

approaches. Maximum likelihood aims to find the single point in the parameter space which

maximises the likelihood, it provides a best fit model. Bayesian approaches, on the other

hand, allow the incorporation of prior information, summarised by a prior density over unknown

parameters of interest. Upon observing data, the prior density can be combined with the likelihood

function to give the posterior density, upon which we base parameter inference. Unfortunately,

the posterior density is typically only available up to a constant of proportionality, except in some

very simple cases. Consequently, posterior summaries such as (marginal) means and variances

remain intractable. Nevertheless given samples from the posterior distribution, Monte Carlo

methods can be used to approximate posterior moments as required. Of particular interest

in this thesis is a commonly used technique known as Markov chain Monte Carlo (see section

3.3). In brief, a Markov chain is constructed whose equilibrium distribution is the posterior of

interest. Simulations from this Markov chain are then taken as (dependent) draws from the

posterior. In this chapter, we consider MCMC schemes for performing inference in Tree space.

We therefore provide an introduction to Tree space before considering the inference problem and

the construction of appropriate MCMC schemes. By far the most influential of this family of

techniques is the Metropolis-Hastings algorithm.
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3.1 Tree space

Tree space is complicated, so the MCMC methods need to be tailored to it.

Tree space Tn is defined to be the space of all edge-weighted phylogenetic trees including non-binary

trees with n-leaves, labelled 1, ..., n. This thesis is concerned with unrooted phylogenetic trees as

we assume the Markov process is reversible. The number of different topologies, see Def: 3.1.1, of

unrooted trees on n leaves is (2n− 5)!!.

(2n− 5)!! = (2n− 5)× (2n− 3)× ...× 3× 1

For example there are 15 different topologies when there are 5 leaves. We will see later in figure

3.1 T5 modulo edge weights can be represented by the Petersen graph, a non-planar graph.

Figure 3.1: The Petersen graph encodes the different topologies in T5. Up to permutation of labels there
is one binary unlabelled branching tree with five leaves. This looks like an “H”-graph with an added edge
in the middle. Each edge of the Petersen graph represents an orthant of Tree space as defined in subsection
3.1.1. Each edge of the Petersen graph has been given a string of numbers representing a labelling on the
leaves of the tree. The first two numbers correspond to the leaves at one end of the H-graph, the middle
number corresponds to the added leaf in the middle, and the last two correspond to the leaves at the other
end of the H-graph. As a point travels within an edge of the Petersen graph, the internal edges of the tree
represented by that point contract and expand. At corners where three edges of the Petersen graph meet
one of the internal edges of the tree has contracted to a point. Around the left hand side of the diagram
and bottom is depicted the tree associated with the left most and bottom edge. Also depicted are the
trees at the corner. T5 is in fact the cone of the Petersen graph so each edge becomes an orthant with a
vertex at the apex of the cone as can be seen in 3.5.

3.1.1 Phylogenetic Tree

A common assumption when conducting phylogenetic inference is that the evolutionary structure

is tree-like, this model is common to both morphological and genetic data. A tree which is
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designed to model evolutionary structure is called a phylogenetic tree.

A Phylogenetic Tree is an acyclic bifurcating graph in which every leaf represents an organism of

interest. Each leaf has degree exactly one and the unique edge connected to a leaf is called its

pendant edge. Each internal vertex has degree at least three with the sole exception of the root

which, where there is one, has degree two. At every internal vertex there an act of speciation,

one species divides into two. The root has degree two as it lacks a parent.

Phylogenetic Trees can either be weighted, (each edge has an associated length corresponding to

evolutionary distance) or unweighted, (the tree merely provides structural information).

Root: Common Ancestor

Leaves: SpeciesCrocodilesAlligators

Points of speciation

Penguins

Internal Edges

Quails Turkeys

Pendant Edges

sub-clade: Galliformes

clade: Ornithurae

Figure 3.2: Example of a Phylogenetic Tree for birds and reptiles, here we have a striped down version
of Figure: 1.1 where we focus on only a few species to understand the structure of a Phylogenetic tree.
We see that a Phylogenetic tree has a root representing a common ancestor, internal edges representing
unknown instances of speciation for which we have no data, and pendant edges which connect the modern
species to some unknown shared ancestor. We also see that by disconnecting an internal edge we form two
subtrees, partitioning all species into a clade representing the appropriate toxonomic rank at which the
edge was cut.

Formally,

Definition (Phylogenetic Tree). A phylogenetic tree is given by:

• a graph T = (V,E) where V is a vertex set and E ⊆
(
V
2

)
a set of edges between pairs of

vertices.

• a labelling ϕ : V → S where S = Sant∪Sinct is a set of extant species for which information

is known and extinct species for which information is unknown.

such that:

• T = (V,E) is a tree, it is acyclic and connected,
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• the labelling function ϕ is injective and is required to satisfy ϕ(v) ∈ Sant for all leaves v

(vertices of degree 1), and ϕ(v) ∈ Sinct for all internal nodes (vertices of degree greater than

1). inct stands for extinct as Sinct represents extinct species and ant stands for extant as

Sant represents extant species.

Two phylogenetic trees have the same topology when they are isomorphic to each other and the

isomorphism preserves the labelling function ϕ.

One of the most important tools for comparing trees when they change topology is how an edge

splits the extant species into two groups, this is called a tree split or split. A split is a useful tool

because it can uniquely represent an edge in a way that does not depend on the topologies of the

two trees formed when an edge is removed. This enables us to have a consistent notion of an

edge when topology changes.

Definition (Split of a Phylogenetic Tree). A split of a phylogenetic tree T is a disjoint pair of sets

S1, S2 ⊆ S obtained by removing an edge from the phylogenetic tree. As a phylogenetic tree is

connected and acyclic, removing an edge results in two subtrees T1 = (V1, E1) and T2 = (V2, E2).

The split is then the unordered pair of sets S1 = ϕ(V1) ∩ Sant and S2 = ϕ(V2) ∩ Sant and their

related bases. We denote the split of edge e by split(e) = (S1, S2).

An equivalent notion of topology is that two trees are topologically equivalent if the set of splits

generated by removing edges from the trees are the same.

Definition (Topology of a Phylogenetic Tree). The topology of a tree T = (V,E) is the set of

splits of the tree T :

τ = {split(e)|e ∈ E}.

This definition means that two phylogenetic trees have the same topology if and only if they are

isomorphic as labelled trees.

In the definition 3.1.1 a phylogenetic tree can be weighted or unweighted. If it is weighted

each edge e ∈ E has a weighting `(e) ∈ R associated to it, commonly called its length. As trees

are acyclic, there exists a unique shortest path p between any two vertices, the length of this

path, `(p), is the sum of the length of all the edges in the path.

There are a few exceptions where DNA transfer between two different species does not occur

in an acyclic branching pattern. Two species that diverged in the past can share genetic

information. Certain bacteria can share DNA in the form of a plasmid ring due to processes

such as recombination and conjugation. Methods of recombination and conjugation are well
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understood and so the data in the alignment can be sampled to account for these effects.

Tree space is the space of all possible phylogenetic trees on n-leaves. Orthants are the subspace

of phylogenetic trees restricted to particular topologies. Locations within orthants are defined

by edge lengths. The orthants are connected to one another by gluing at the points where an

internal edge has 0 length. When one edge is contracted this renders the topology of the tree

indistinguishable between three possibilities, when more edges are contracted more orthants are

connected by the codimensional point. We can observe this structure in “the open book” Figure

3.3.

τ1 τ2

τ3

T1

T2

T3

T4

T5

`1

T4

T5

T2

T1

T3

`2

T3

T2

T1

T4

T5

exp(−Q`1)

exp(−Q`2)

exp(−Q`3)

Id

T4

T5

T1

T3

T2

`3

Figure 3.3: Here we can see an example of three different orthants (pages) of the open book and how they
relate to one another. T1, T2, T3, T4, and T5 are subtrees. Edges `1, `2, and `3 shrink to 0 to form the
tree depicted on the spine, the intersection of the 3 orthants, labelled Id due to the associated transition
probability across an edge of 0 length.

Definition (Orthant of Tree space). An orthant of Tree space is the collection of trees belonging
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to a single topology. The labelling on each tree is combinatorially the same but each tree in an

orthant is distinct due to having different edge lengths. If an unrooted tree has n leaves, then

it has 2n− 3 edges. Each orthant is isomorphic to a copy of R2n−3
+ . Moving within an orthant

corresponds to stretching and contracting edges.

Definition (Billera Holmes Vogtmann Tree space (BHV Tree space)). Billera Holmes and

Vogtmann Tree space as proposed in Billera et al. (2001) consists of orthants glued together

along codimensional lines. This occurs when the length of an edge is 0 in all orthants such that

they are topologically indistinct from one another.

BHV Tree space can be thought of as the collection of trees, T denotes a generic tree, quotiented

by an equivalence relation ∼. T1 ∼ T2 if there is a correspondence between e1 ∈ E1 and e2 ∈ E2

preserving the length, and if the lengths of e1 and e2 are non-zero, the split of e1 is the same as

that of e2. See Figure 3.3 for an example of this.

Definition (Codimensional boundaries). The join between orthants consisting of n edges of 0

length has codimension n.

When dealing with HMC it is only necessary to consider codimension 1 spaces as the integrator

almost surely does not pass through a codimension n > 1 point as can be seen in Theorem 7.2.

BHV Tree space is path connected and CAT (0) when orthants are equipped with Euclidean

metric on edge weights (Billera et al., 2001). A CAT (0) space is curved such that the geodesic

distance between points on a triangle is less than or equal to the geodesic distance in Euclidean

space. This means that there exists a unique shortest path between any two trees in BHV Tree

space called a geodesic (Billera et al., 2001). We will use these geodesics in computing distances

and as a metric for the effective sample size on Tree space. In order to compute geodesics in Tree

space we use an algorithm developed by Owen and Provan (2011) that computes the geodesic

between two trees T and T ′, in polynomial time, see section 3.5.1.

Definition (Cat(k) space). A Cat(k) space expresses how distance is transformed. A geodesic

triangle is a collection of three points connected by geodesics. A space is Cat(k) if for every

geodesic triangle in it the distances between points on the triangle are less than or equal to the

distances between points of a triangle with the same length sides in the simple connected surface

with curvature k.

We show that BHV Tree space is a manifold stratified space or stratifold where codimensional

boundaries form the different strata. There are several definitions of stratified manifold in the

literature such as in Kreck (2010). We use the definition of a stratified topological space from

Miller (2015).
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Definition (Stratified Space). A Topologically Stratified Space, Stratified Manifold or Stratifold.

A topologically stratified space is a topological space, which is the disjoint union of strata

M1, ...,Ml

M = M1 ∪M2 ∪ · · · ∪Ml

where Mi are topological manifolds for all i. This satisfies two conditions:

1. M1 ∪ · · · ∪Mk is closed in M for all k ≤ l.

2. For all points x, y ∈ Mi there exists a homeomorphism φ : M → M with φ(x) = y and

φ(Mk) = Mk for all k.

We start with the example from Kreck (2010) as it provides intuition as to why Tree space is a

stratifold.

Example 4.1:

Let M be an n dimensional manifold satisfying property 2. We construct the open cone

of a manifold M in the following way. The open cone over M is C̊M :=M× [0, 1)/M×{0}.

We now show that open cone C̊M is a stratifold consisting of two strata M1 and M2: M1

is the point of the cone and M2 is the rest. The strata M1 is a point, depicted in red in Figure:

3.4, and trivially closed. M1 ∪M2 is the cone C̊M . To show that property 2 in definition 3.1.1

holds there we need to show it for two cases.

1. For M1 when k = 1 we have x = y and we can take φ to be the identity.

2. For M2, k = 2, we write x and y as x = xm × h1 and y = ym × h2 in M2. We can stretch

the cone while fixing M1 so that x overlaps y.

Mathematically we create a map:

h 7→

hh2h1 if h ∈ [0, h1]

h2 + (h−h1)(1−h2)
(1−h1) if h ∈ [h1, 1)

.

This map maps 0 to 0, 1 to 1 and h1 to h2 in a continuous bijective manner and so is a

homeomorphism. We can then pair this map with the homeomorphism that exists on the

manifold mapping xM to yM to get a homeomorphism on C̊M mapping M1 to M1.

This shows that the cone is a stratified manifold with two strata.
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0

M

(0, 1)

Figure 3.4: The two differenct strata of a cone of a manifold as described in example 4.1. We have the red
stratum at 0 corresponding to M1 and the rest of the cone corresponding to M2. It from this we can see
that the two partition the cone manifold CM into two strata.

From this example we can intuitively see that Tree space will be a stratified manifold with strata

being orthants, and corners of codimension i, as can be seen in Figure 3.5.

Theorem 3.1. Tree space is a stratified manifold.

Proof. By definition there exists a partial order on Tree space. This is defined by tree T1 <

tree T2 if T2 can be transformed into a tree T ′2 in the same orthant of T1,(isomorphic to T1 up

to edge length), by reducing 1 or more edges to length 0. We can then construct a sequence

of strata based on this ordering. Starting with T0 the tree such that all internal edges have 0

length, pick an internal edge with 0 length an extend it to get T1 > T0. Repeat this process to

get Tn−3 > · · · > T1 > T0. Define Mi for i = 0 to n − 3 be the collection of trees structurally

isomorphic to Ti. Define Mn−2 to be T\ \
⋃n−3
i=0 Mi. The union ∪0≤i≤kMi is closed. We can see it

is closed because any sequence of trees with at least n− i edges of 0 length cannot tend to a tree

where there are n− i− 1 edges of 0 length in the limit. To satisfy 2. we define homeomorphisms

φ between points x and y on Mi such that φ(Mk) = Mk. The two points x and y are contained

within a connected submanifold by definition. When x and y are contained within a connected

submanifold of Mi, as we are operating on Tree space, this is homeomorphic to a copy of Ri+n+ .

Given Ri+n+ there is a trivial homeomorphic map f taking x to y, f(m) 7→ m y
x .
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Red is of full dimension 2

Green of codimension 1

Blue of codimension 2

Figure 3.5: Different strata for T5, the strata are coloured, red represents the varying orthants and green
are the boundaries over which CortHMC will cross.

In the following chapters we will see that we wish to define HMC on the cotangent space of Tree

space, we do this in chapter 5.

3.1.2 Newick String Representation

It is necessary to write trees in a way that incorporates topological structure. The standard way

is to use parantheses. A Newick string uses parantheses to denote subtrees, commas to denote

siblings, colons to denote edge lengths and semi-colons to denote the end of the expression. We

explain Newick strings through examples.

“(t5 : 0.73, ((t2 : 0.91, (t1 : 0.10, t3 : 0.43) : 0.18) : 0.50, t4 : 0.60) : 0.43); ” (2.s.f.).

This is the Newick string for the following tree in Figure 3.6.
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Figure 3.6: The alignment generating tree for 5 taxa.

The unrooted tree constructed from a Newick string is unique but the Newick string is dependent

on the root of the tree. A Newick string represents the subtree structure by brackets, each pair

enclosing a subtree. Each pair of brackets enclose two subtrees separated by a comma. The edge

between two subtrees is denoted by a : followed by a weighting or length. In the above we start

with two subtrees t5 : 0.73 and ((t2 : 0.91, (t1 : 0.10, t3 : 0.43) : 0.18) : 0.50, t4 : 0.60) separated by

an edge of length 0.43. In Figure 3.6 the metric for computing the distance between nodes is

the sum of the lengths of the horizontal edges between the two nodes. To understand how to

write Newick strings let us construct a Newick string for Fig: 3.6 but with a new root 0.2 away

from t3 on the pendent edge for t3. We start by opening the tree and splitting it into the subtree

containing t3 and everything else noting that the choice of 0.2 is arbitrary.

(t3 : 0.2, (subtree) : 0.23);

We expand the subtree into two subtrees, one containing t1 and the other containing t2, t4 and t5

(t3 : 0.2, (t1 : 0.10, (subtree) : 0.18) : 0.23); .

Iterating this process along each subtree gives

(t3 : 0.2, (t1 : 0.10, (t2 : 0.91, ( subtree ) : 0.50) : 0.18) : 0.23);

(t3 : 0.2, (t1 : 0.10, (t2 : 0.91, (t4 : 0.60, t5 : 1.16) : 0.50) : 0.18) : 0.23); .
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3.2 Bayesian Inference

Bayesian inference uses Bayes’ theorem to construct the posterior from the prior and the likelihood.

We use the likelihood L constructed in section 2.5 with alignment X from subsection 2.3. We

infer the substitution model parameters, site rate parameter and the tree from X. We specify

a prior density over edge lengths, substitution model parameters and the site rate parameter.

Collectively denoted by π0.

Given events Y1 and Y2 and probability function P, Bayes’ theorem states

P(Y1|Y2) =
P(Y2|Y1)P(Y1)

P(Y2)
.

Intuitively, we are often able to understand the effect of some hypothesis Y1 on an event Y2

(encoded by P(Y2|Y1)), but wish to calculate the probability of the hypothesis having observed the

event (encoded by P(Y1|Y2)). Bayes’ theorem gives a way of “flipping the conditional probability

around”. P(Y1) represents our prior beliefs about Y1, P(Y2|Y1) gives the likelihood of Y1 and

P(Y1|Y2) gives the posterior probability of Y1. Bayes’ theorem is easily extended to the inference

problem in this thesis:

π(θ, α, `, τ |X) ∝L(X|θ, α, `, τ)π0(θ, α, `, τ).

The above unnormalised posterior is typically straightforward to evaluate, but the full posterior

remains intractable. This necessitates the use of computationally intensive sampling based

approaches. We describe one such commonly used sampling approach in the next section.

3.3 Markov Chain Monte Carlo

Given an unnormalised probability density function π̂(z) where z ∈ RD, integrals involving

π̂(z) are often intractable. This makes computing such things as the mean of π̂ intractable.

Nevertheless, key quantities of interest can be estimated, given by the ability to sample from

π(z) where π(z) is the normalised density. For example, it should be clear that given draws

z1, z2, ..., zn from π(z) and some real valued function g(·), n−1
∑n

i=1 g(zi) is a realisation of an

unbiased estimator of E(g(z)). The process of estimating integrals by random sampling is known

as Monte Carlo integration. It remains that we can generate realisations from π(z). Markov

Chain Monte Carlo (MCMC) methods (see (Gamerman and Lopes, 2006) for an introduction)

construct a Markov Chain Z = {zi}ni=1 whose invariant density is π(z). Hence, for n sufficiently

large, we may regard draws of the Markov chain as dependent draws from π(z). There are several
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different MCMC algorithms, one of which is the Metropolis-Hastings algorithm, developed by

Metropolis et al. (1953) and Hastings (1970) for a more general setting.

Metropolis-Hastings

The Metropolis-Hastings algorithm uses a carefully constructed acceptance ratio to ensure that

the Markov chain induced by the algorithm is reversible and targets the distribution of interest.

It also ensures aperiodicity. It requires the construction of a proposal distribution with the same

support as π(·) that does not segment the space, creating a reducible sequence. We allow for

proposing local moves and let q(ẑ, z) denote the proposal density, where z denotes the current

state of the chain. The Metropolis-Hastings algorithm is given below.
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Algorithm 1: Metropolis-Hastings

• Input: unnormalised target density π, starting point z0 for the Markov chain (see section

2.1), proposal distribution q and chain length n.

• for i in 1 : n

1. Draw ẑ ∼ q(·, zi−1).

2. Compute a = min
[
1, π(ẑ)q(zi−1,ẑ)

π(zi−1)q(ẑ,zi−1)

]
.

3. Draw u ∼ U(0, 1)

4. If u ≤ a set zi = ẑ

else set zi = zi−1.

• Output: chain {zi}ni=0 with invariant distribution π.

The proposal density q(·, ·) should be chosen so that the chain moves often and around the

parameter space. A typical choice of q proposal is the random walk with normal innovations. In

this case the proposal mechanism is:

ẑ = z + wi, wi ∼ N(0, Σ)

where Σ is a matrix specified by the practitioner. Roberts and Tweedie (1996) suggest using

the heuristic for Σ = 2.382

D × ˆV ar(Z) where ˆV ar(Z) is the estimated posterior variance from an

initial pilot run for Σ, D is the dimension for Z . Σ can be further scaled to give an acceptance

rate around 20%− 30%.

In scenarios where the full conditional distributions of the components of z are available for

sampling from, an automatic scheme is possible.

Gibbs Sampler

The Gibbs sampling algorithm, proposed by Geman and Geman (1984) and developed in Gelfand

and Smith (1990) uses the full conditional distributions of z to construct a chain with the

appropriate invariant distribution.

Let πj(z
1, ..., zj−1, zj+1, ..., zD) denote the full conditional density of component j of z of

z = (z1, ..., zD).
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Algorithm 2: Gibbs Sampler

• Inputs: unnormalised target density π with marginal distributions πi(·|z1, ..., zj−1, zj+1, ..., zD),

starting position z0 = (z10 , ..., z
D
0 ) and chain length n.

• for i in 1 : n

– For j in 1 : D

∗ Draw ẑji ∼ πj(·|z1i , ..., z
j−1
i , zj+1

i , ..., zni ).

– Set zi+1 = (ẑ0i , ..., ẑ
D
i ).

• Output: chain {zi}ni=0 with invariant distribution π.

Metropolis-Hastings and Gibbs sampling are two of the most common techniques employed

in phylogenetic inference. Often Metropolis-Hastings is used within Gibbs. Software such as

MrBayes and Beast perform highly optimised versions of the Metropolis-Hastings and Gibbs

algorithms in order to conduct phylogenetic inference.

Further details along with proofs about the mathematical properties of Metropolis-Hastings

algorithm and the Gibbs sampling algorithm can be found in Johansen and Evers (2007).

Metropolis within Gibbs

Gilks et al. (1995) proposed an algorithm that applies a Metropolis-Hastings step to the full

conditional distributions πi(·|z1, ..., zi−1, zi+1, ..., zD) when they can’t be sampled from directly.

This means that this is an example of a rejection sampling chain.
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Algorithm 3: Metropolis-Hastings within Gibbs or the Adaptive Rejection Metropolis

Sampling algorithm

• Inputs: unnormalised target density π with marginal distributions πj(·|z1, ..., zj−1, zj+1, ..., zD),

starting position z0 = (z10 , ..., z
D
0 ), proposal distributions {qi}Di=1 and chain length n.

• for i in 1 : n

– For j in 1 : D

∗ Draw ẑj ∼ qj(·; zi−1).

∗ Compute a = min

[
1,

πj(ẑ
j |z1i+1,...,z

j−1
i+1 ,z

j+1
i ,...,zDi )qj(z

j
i−1;z

1
i+1,...,z

j−1
i+1 ,z

j+1
i ,...,zDi )

πj(z
j
i |z1i+1,...,z

j−1
i+1 ,z

j+1
i ,...,zDi )qj(ẑj ;z1i+1,...,z

j−1
i+1 ,z

j+1
i ,...,zDi )

]
.

∗ Draw u ∼ U(0, 1)

∗ If u ≤ a set zji+1 = ẑj

else set zji+1 = zji .

• Output: chain {zi}ni=0 with invariant distribution π.

This enables us to construct more streamlined proposals when inferring over multiple parameters.

3.4 MCMC in Tree space

3.4.1 Tree Operations

In order to conduct MCMC in Tree space, different topologies need to be proposed. To do so it

is common to employ one of three different topological operations as covered in Allen and Steel

(2001). These are Nearest Neighbour Interchange (NNI), Subtree Prune and Regraft (SPR) and

Tree Bisection and Reconnection (TBR). In PhyloCore a method of Metropolis within Gibbs is

used using NNI and SPR and a log random walk on edge lengths (Nye and Heaps, 2014).

NNI

Given an internal edge e = (u, v), u and v have degree 3 and so are connected to 2 other vertices

meaning that e is connected to 4 vertices. Each of these 4 vertices then define a subtree consisting

of all vertices and edges beneath them if the tree is rooted at u or v. An NNI interchange swaps

two of these 4 subtrees, which means that there are a total of 3 different trees possible around an

edge. The new edge often has random length.
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SPR

Given an edge e = (u, v), cut the edge e to create two subtrees t1, t2. Regraft t2 to t1 by the cut

edge to a pre-existing random edge in t2. Then apply a forced contraction. The regrafted edge

often has random length and is regrafted a random length along the random edge in t2.

TBR

Given an edge e = (u, v), cut the edge e to create two subtrees t1, t2. Regraft t2 to t1 by creating

an edge between the middle of a random edge in t1 and the middle of a random edge in t2. The

regrafted edge often has random length and is regrafted a random length along the random edge

in t1 and t2.

NNI

τ1 τ2

τ3

A

B

C

D

A

C

B

D

A

D

C

B

A

B

C

D

SPR
τ1 τ2

A B C

D E

A B C

D E

A B C

D

E

TBR
τ1 τ2

A B C

D E

A B C

D E

A B C

D E

Figure 3.7: Here we can see the three different tree operations, (NNI,SPR and TBR) for switching topology
from τ1 to τ2 or τ3. In NNI, subtree A is interchanged with subtree C or D to produce one of two new
topologies. In SPR, subtree D it cut off the tree and reattached to a new location in the tree by an edge
of the same length as before and connected to the same point in subtree D as before. In TBR the edge is
deleted and a new edge is introduced between subtree D and the tree connecting a random location of the
tree to a random location within D.
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3.5 Assessing MCMC for phylogenetic inference

Several techniques exist for analysing the effectiveness of various inference schemes. The two

we shall focus on are the effective sample size and a topological measure of convergence. These

will be applied to MCMC and HMC samplers to compare the behaviour of different inference

algorithms.

3.5.1 Effective Sample Size

The effective sample size measures the loss of information caused by positive correlation within

the Markov chain Zt. The variance of an estimator obtained using samples from a positively

correlated chain is larger than that of an i.i.d. chain. It can be shown that for a chain of length

n and measurable function f that:

V ar(
1

n

n∑
τ=1

f(Zτ )) =
σ2

n

(
1 + 2

n−1∑
τ=1

(1− τ

n
)ρ(τ)

)

where ρ(τ) is the autocorrelation of Zt with lag τ (Johansen and Evers, 2007). The standard

deviation σ is the standard deviation of f(Zt). Taking the limit as n→∞ gives:

nV ar(
1

n

n∑
τ=1

f(Zτ ))→ σ2

(
1 + 2

∞∑
τ=1

ρ(τ)

)

under a bounded condition for the sum of the autocorrelations. We use this to give the standard

form for the effective sample size. First note that if the samples are i.i.d.

V ar(
1

n

n∑
i=1

f(Zi)) =
σ2

n
.

As V ar( 1
n

∑n
i=1 f(Zi)) is fixed in both we can equate the two to give

σ2

neff
=
σ2

n

(
1 + 2

∞∑
τ=1

ρ(τ)

)
.

This gives us the effective sample size neff .

Definition (Effective Sample Size (ESS)). The effective sample size is the approximate number

of effective samples given by

neff =
n

1 + 2
∑n

τ=1 ρ(τ)
.
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Definition (Autocorrelation with lag τ). The autocorrelation with lag τ of chain Zt is defined

as:

ρ(τ) =
E((Zt+τ − µ)(Zt − µ))

σ2
=

E((Zt+τ − µ)(Zt − µ))

E((Zt − µ)(Zt − µ))

where µ = E(Zt).

There are many different ways of approximating the autocorrelation, some methods use spectral

decomposition, others simply compute the expectation of the chain so far. We opt to use the

effective sample size computed by the package Coda, which uses spectral decomposition (Plummer

et al., 2006) to compute the effective sample size.

As trees are dependent on multiple parameters it is not clear which marginals of the chain

to use to compute the effective sample size. A common method is to use minESS, the minimum

ESS across all the different parameters. This would mean the minimum effective sample size across

all edges, substitution model parameters and site rate parameters. When conducting reverse jump

MCMC, as parameters are not comparable, a summary statistic is used, for example the likelihood.

We argue that using minESS is not appropriate for phylogenetic inference. Under minESS

a chain of trees could explore a wide range of topologies, and have widely fluctuating edge lengths

in all but one edge, and be scored the same as a chain of trees that does not exhibit such variation.

To get around this issue we developed a new form of effective sample size for phylogenetic trees.

Intrinsic Effective Sample Size

The effective sample size should aim to be an estimator for every parameter. To do this

we notice that the standard effective sample size for a parameter, E((Zt+τ − µ)(Zt − µ)), is

E(d(Zt+τ , µ)d(Zt, µ)) where d is Euclidean distance. We posited that instead of using Euclidean

distance we could use the distance intrinsic to Tree space created by the geodesics between trees.

This would at least enable some collation of the data. We therefore approximate ρ by:

ρ̂(τ) =
E (d(Zt+τ , µ)d(Zt, µ))

E (d(Zt, µ)d(Zt, µ))

where d is either the Billera-Holmes-Vogtmann distance or the Robinson-Foulds metric Nye et al.

(2005).
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Definition (Billera-Holmes-Vogtmann distance). The Billera-Holmes-Vogtmann distance is the

distance defined in Billera et al. (2001) and outlined there in section 4.2. It is defined as the

length of the geodesic between the two trees.

The Robinson-Foulds metric does not take into account edge-lengths so should be avoided when

this is an important part of the inference.

3.5.2 An alternative Effective Sample Size

The Stan Development Team (2019) provide an alternative form of ESS estimation, requiring

multiple runs of HMC. If there are M runs and W is the estimate for the within sample variance

and V the estimate for the variance across all the chains and p̂m(τ) is the standard autocorrelation

estimate on chain m,

p̂m(τ) =
1

N − τ

N−τ∑
n=1

(f(Zn)− µ)(f(Zn+τ − µ)

calculated using a fast fourier transform.

p̂(τ) = 1−
W −

∑M
m=1 p̂m(τ)

V

It should be clear to see when M = 1 this agrees with the standard definition. This method is

useful because it attempts to account for chains that have not fully converged.

3.5.3 Convergence

To check convergence a technique from PhyloBayes is employed. It runs two chains and compares

split frequences computing the maxdiff and meandiff. If the maxdiff is less than 0.1 then

convergence is said to be “good” (Nye and Heaps, 2014). the maxdiff is the maximum difference

between relative split frequencies.

It is also common to compute the average standard deviation of split frequencies, the closer to 0

this value the more the chain has converged (The Stan Development Team, 2019).
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Chapter 4

Hamiltonian Monte Carlo

This chapter covers the theory behind Hamiltonian Monte Carlo (HMC) and describes the

standard algorithm used to sample from a given target distribution. Various forms of HMC

require different operational parameters and this chapter will discuss which forms to use and how

to optimise the parameters involved. This chapter also covers several extensions to HMC which

can improve its performance, but also add to the total computational complexity.

4.1 Introduction

4.1.1 History

Hamiltonian Monte Carlo (HMC) was introduced by Duane et al. (1987), and the theory has

been further developed by Neal et al. (2011), Girolami et al. (2011) and Hoffman and Gelman

(2014) among many others. A package called Stan (The Stan Development Team, 2019) has been

implemented, which enables users to perform Bayesian inference using HMC in a user friendly

manner on a range of models. However due to the stratified nature of tree space, HMC requires

considerable adaptation. At present Stan cannot operate on phylogenetic trees.

4.1.2 Concept

Hamiltonian Monte Carlo adapts the standard Metropolis-Hastings algorithm. It generates

random draws from posterior π(z), known up to a constant of proportionality. It generates draws

from an augmented posterior π(z, p), with augmented variables p, that when marginalised over p

gives π(z): ∫
π(z, p)dp = π(z).
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The augmented posterior π(z, p) is constructed to make use of properties of Hamiltonian systems.

It relates the posterior with the Hamiltonian by π(z, p) ∝ exp(−H(z, p)) where H(z, p) is the

Hamiltonian, a smooth function of z and p. In standard HMC the parameters z are taken to lie in

a manifoldM and the augmented parameters p are taken to lie in its cotangent space at z, T ∗zM.

HMC is therefore defined on the cotangent bundle T ∗M = tz∈MT ∗zM, which is the disjoint union

of cotangent spaces over M; see 4.2.1 for definitions of manifolds and the surrounding theory. A

physical interpretation for (z, p) is a position momentum pair upon which the Hamiltonian acts.

The Hamiltonian H(z, p) defines a vector field on T ∗M. We will demonstrate how the vector

field defines flows φH : R× T ∗M→ T ∗M that conserve the Hamiltonian along the flow i.e.

H(z, p) = H(φH(t, z, p)), for all times t and (z, p) ∈ T ∗M.

As a result of the Hamiltonian construction, whenever H(z, p) = H(z′, p′), π(z, p) = π(z′, p′).

Flows therefore conserve the augmented density: π(z, p) = π(φH(t, z, p)). This is the property

that enables large moves in the target space.

A single iteration of HMC can be summarised as follows:

1. The momenta p are randomly sampled from some distribution, which enables the algorithm

to switch between different flows.

2. The position momenta pair (z, p) then becomes the starting point for the flow along which

to integrate. A new pair (z′, p′) = φH(t, z, p) is proposed for some t > 0.

3. A Metropolis-Hastings accept-reject step is applied to (z′, p′) to ensure that the chain has

the correct stationary distribution. It is important to note that under perfect integration

there would be no integration error and so the probability of acceptance would equal 1.

Notation: Suppose P (y1) is a distribution dependent on y1 then we shall denote the density

at y, P (y2; y1) and draw y2 from P (·; y1). For example we shall write the normal distribution

N(µ, σ2), draw from N(·;µ, σ2) and the density of y2 is N(y1;µ, σ
2).

Example 5.1.4: Consider a normal target distribution N(0, 1) so that π(z) = N(z; 0, 1).

Augment π(x) with momenta p ∈ R such that

π(z, p) = exp(−z2/2) exp(−p2/2)/ (2π) .

It is easily checked that
∫∞
−∞ exp(−z2/2) exp(−p2/2)/ (2π) dp = exp(−z2/2)/

√
(2π).
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In this example the Hamiltonian is, up to additive constant, H(z, p) = z2/2 + p2/2. In the

physical interpretation, H is an energy function. In this example (z2/2) is the potential energy,

and (p2/2) is the kinetic energy. This Hamiltonian represents simple harmonic motion.

4.1.3 Requirements and uses

As integral curves of Hamiltonian flows need to be computed, HMC requires that the posterior is

differentiable. It also requires a means of computing the integral curves. HMC is also a more

computationally complex method than standard MCMC and so to be beneficial it is typically

conducted on models with large numbers of parameters or posteriors with strong gradients.

This is due to HMC relying heavily on the underlying geometry of the space of parameters and

exploiting it to enable efficient sampling from the parameter space. It is for the above two reasons

HMC might be suited to phylogenetic inference, which has an extremely large parameter space,

in which the posterior density can vary very substantially from region to region.

4.2 Theory

4.2.1 Manifolds and Notation

HMC employs a lot of technical mathematics, much of which only requires a cursory understanding.

For a more in-depth review of manifolds please see Lee (2013). This section is meant to refresh

the reader, provide notation and highlight how manifolds will be used.

A topological manifold M is a Hausdorff, second-countable, locally Euclidean space. A smooth

manifold is a manifold in which all transition maps between charts are diffeomorphisms. Examples

of manifolds include: orthants of tree space, Rn, Sn and the n-dimensional simplex

∆ = {z̄|
n∑
i

zi = 1}.

A Riemannian metric g on a smooth manifold M is a smooth symmetric covariant 2-tensor

field that is positive definite at each point. It is common to write g = gijdz
i ⊗ dzj . The matrix

G = {gij} is then positive definite.

Definition (Covariance Matrix). The covariance matrix for a random vector Z = (Z1, ..., ZD)

is given by:

[Cov(Z)]ij = E{(Zi − E(Zi))(Zj − E(Zj))}.
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Every positive semi-definite matrix can be thought of as the covariance matrix for some random

vector.

Example 4.2.1 Euclidean Space Euclidean space of dimension n is Rn and has inner product

〈y1, y2〉 = y1 · y2 = yt1Idny2. This inner product creates the metric g = {Idn}ijdzi ⊗ dzj , which

means that the change 〈y1 + δ, y1〉 =
∑n

i=1 δi. We know that Idn is positive semi-definite so it is

a covariance matrix for the random vector Z ∼ N(0, Idn).

Example 4.2.1 Generic Riemannian Manifold A Riemannian manifold is a a pair (M, g)

where M is a smooth manifold and g is a Riemannian metric. It can be thought of as similar to

Euclidean space, but where the inner product 〈y1, y2〉 = yt1{gij}y2. As with the Euclidean case

{gij} is positive definite and so defines a covariance matrix for a multivariate normal random

variable Z ∼ N(0, G−1).

We write ∂
∂zi

as the basis for the tangent space at point z. The tangent space TzM consists

of linear maps mapping smooth functions on the manifold to R, satisfying the product rule.

Members of the tangent space can be written as vectors v = vi ∂∂zi |z. In Figure 4.1 we visualise

the tangent space at a point z by a blue plane and members of the tangent space as lines within

the plane. The tangent bundle TM is the disjoint union of all tangent spaces.

The cotangent space at a point T ∗zM is the dual space to TzM. The cotangent space consists

of linear maps mapping members of the tangent space to R. We write dzi as a basis for the

cotangent space. For w = widzi ∈ T ∗zM we write w(v) =
(
viwi

)
. In Figure 4.1 we try to visualise

the cotangent space as a red plane so that any two linear maps within the tangent space and the

cotangent space can interact to get a point in R represented by p(v). The cotangent bundle is

the disjoint union of the cotagent spaces at points z ∈M.

We have stated in section 4.1.2 that HMC acts on the cotangent space, or really the cotangent

bundle. We also call p the momenta. Relating these terms back to a more familiar setting

we can think of the manifold as a smooth moulded piece of clay and z as a particle on the

surface of the clay that cannot leave the surface. We understand the concept of velocity

v for the particle at z and that is a member of the tangent plane as you can only specify

direction and magnitude. We relate this to our definition by thinking how this speed acts

on smooth functions of z. In time δt, z becomes z + vδt. Smooth function f(z) becomes

f(z+ vδt) = f(z) + f ′(z)vδt+O((vδt)2) and smooth function f(z)g(z) where f and g are smooth

functions becomes f(z + vδt)g(z + vδt) = f(z)g(z) + (f ′(z)g(z) + f(z)g′(z))vδt + O((vδt)2).
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Momenta is related to velocity by the equation p = mv. To understand how momenta is a

covector we need to know about the Lagrangian. The Lagrangian is the addition of kinetic energy

and potential energy L = K.E.−P.E.. We can take the derivative of the Lagrangian with respect

to velocity. This gives dL
dv = dK.E.

dv = d
dv

1
2mv

2 = mv = p. Clearly p is linear and it maps v to the

derivative of L with respect to v which takes values in R.

The smooth vector field of a function f ∈ C∞(M), ψf , is defined as the inverse of an isomorphism

from the tangent to cotangent, applied to the differential of f .

O

x
Parameter space M

v ∈ TzM

TzM

z

p(v) ∈ R

T ∗zM applied to v

TzM
p ∈ T ∗zM

T ∗zM applied to v

TzM

Point in the field R
velocity (tangent vector)

momenta (cotangent vector)

p(v) ∈ R

Figure 4.1: Here we can see a maninfold, the surface is curved but still has a tangent plan and a cotangent
which can be applied to the tangent plane, here the sphere is the parameter space, the velocity is the
tangent and the momenta, the cotangent.
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4.2.2 Introduction to Hamiltonian Dynamics

A Hamiltonian system is a symplectic manifold N paired with a smooth function H ∈ C∞(N ).

In HMC N will always be the cotangent bundle of a manifold M and so N = T ∗M. The

Hamiltonian H maps T ∗M→ R. The Hamiltonian defines a vector field ψH on T ∗M and this

in turn defines flows φH(t, ·) around the field. In physics sometimes the function H can be

dependent on time. This is equivalent to defining M′ =M× R and Hamiltonian H(z′, p′) for

(z′, p′) ∈ T ∗M′ such that it is constant in the time component of the momenta. However for

HMC it is only necessary to allow H to be defined on z and p.

We now wish to relate the augmented posterior π to the Hamiltonian. The Hamiltonian is

defined from the augmented space by:

H(z, p) =− log (cπ(z, p)) where c is some normalising constant.

so that :

π(z, p) =
exp (−H(z, p))

c

The Hamiltonian vector field on T ∗M is defined as:

ψH =
n∑
i=1

(
∂H

∂pi
∂

∂zi
− ∂H

∂zi
∂

∂pi

)
. (1)

If we let z = z(t) and p = p(t) so that the Hamiltonian takes in values dependent on t, then

taking the flow along a vector field VH =
(
dz(t)
dt ,

dp(t)
dt

)
evaluated at (z(t), p(t)) gives Hamilton’s

equations: (
dz

dt
,
dp

dt

)
=

(
∂H

∂pi
|(z(t),p(t)),−

∂H

∂z
|(z(t),p(t))

)
. (2)

The Hamiltonian flow φH : R × T ∗M → T ∗M is defined as the solution to the initial value

problem:

dφH(t, z(t), p(t))

dt
=

(
dz

dt
,
dp

dt

)
= ψH , φH(0, z(0), p(0)) = (z(0), p(0)). (3)

The object dφH(t,z(t),p(t))
dt lives in the tangent space of the cotangent space T ∗M.

A flow is a family of diffeomorphisms indexed by time t in an interval of R. A flow has
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two key properties:

1. φH(0, (z, p)) = (z, p), for all (z, p) ∈ T ∗M and

2. φH(t, φH(s, (z, p))) = φH(t+ s, (z, p)) for all s, t ∈ R, (z, p) ∈ T ∗M.

Lemma 4.1. The Hamiltonian flow φH satisfies conditions 1. and 2.

Proof. Condition 1 follows immediately from the definition. To show condition 2 first consider a

flow on M = Rn:

φH(t+ s, (z(0), p(0))) =

∫ t+s

0

dφH(u, z(u), p(u))

du
du+ (z(0), p(0))

=

∫ t+s

s

dφH(u, z(u), p(u))

du
du+

∫ s

0

dφH(u, z(u), p(u))

du
du+ (z(0), p(0))

=

∫ t+s

s

dφH(u, z(u), p(u))

du
du+ (z(s), p(s))

=φH(t, φH(s, (z, p))).

To prove this result on a manifold, a sequence of overlapping charts covering the flow from z, p at

time zero to φH(t+ s, z, p) is considered. The above result on Rn applies within each chart, and

the charts are stitched together to prove the general result.

Hamiltonian vector fields have two key properties. Equations (1) and (2) imply that H is constant

along integral curves of VH and that the Hamiltonian vector field is tangent to the level set of H,

as can be seen in Figure 4.2. This means that integrating along the Hamiltonian flow stays on

the same integral curve and maintains H.

Example 5.1.4 cont.: The Hamiltonian is

H(z, p) = − log(exp(−z2) exp(−p2)/ (2π)) = z2 + p2 + log(2π)

resulting in a vector field

ψH =

(
2p

∂

∂z
− 2z

∂

∂p

)
.

We can see in Figure 4.2 the simple pendulum has this Hamiltonian. For small oscillations of

z the level sets of H are circles in the z, p plane, called the phase portrait. This should not be

confused with the path of the pendulum. For larger values of z, h = l − lcos(z) resulting in a

more complicated Hamiltonian and level sets that aren’t circles and for large enough values of p

can span the whole of R in the z dimension.
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h = l − lcos(x) ≈ lx2/2

h′ = l − lcos(x′) ≈ lx′2/2

H = mgh+ 1
2mv

2 ≈ x2/2 + p2/2

H = mgh′ + 1
2mv

′2 ≈ x′2/2 + p′2/2

xx′

Path of pendulum along flow φH

v′

v

H = H ′

Figure 4.2: The Hamiltonian of a Pendulum for small z. Here the same energy state is depicted but with
two difference momenta and heights.

In our example the posterior we wish to recover is a normal density. In subsection 4.1.2 we

outline the method HMC follows. As we have seen before we can recover the density of a normal

distribution from the Hamiltonian. We construct the Hamiltonian as specified below. The flows

of the Hamiltonian then correspond to the points along the trajectory of the pendulum. HMC

then samples from the posterior by choosing a starting point for the pendulum and giving it

a little random push, this specifies z and p. The pendulum then swings for a set amount of

time. This is the same as integrating along the flow for a set amount of time. This returns a

new position ẑ and momenta p̂. These new points are then accepted according to the HMC

acceptance probability. The process is then repeated creating a chain of different positions z.

This chain is normally distributed for small oscillations. It should be clear to see that z will be

distributed symmetrically around 0. In fact z will be distributed exactly as a normal distribution

but the symmetrical properties and the decrease in probability for large values of z should be

evident.

There are many different ways to augment π(z) to π(z, p) as in subsection 4.1.2. The pendulum

gives us an intuition for how to augment. For a given z the momenta p determine which energy

level and equivalently integral curve to flow along. This means that the augmentation should be

constructed so that it does not exclude flows. In the pendulum example excluding flows would

mean never proposing momenta large enough for the pendulum to reach a full 360◦ of rotation.

The Hamiltonian is different for large oscillations, but the analogy holds. It also should be clear

that a symmetrical augmentation is preferable, suppose positive momenta were preferred, or

had a greater variance, then extreme clockwise rotations would be favoured more than extreme

anticlockwise rotations.
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The density function for momenta conditional on position is often written as K(p; z) or K(z, p),

due to correspondence with kinetic energy. For consistency we shall use K(p;x). It is common

while working on Rn to choose a multivariate normal centred around the origin for K(p;x). The

key parameter that a multivariate normal centred around the origin requires is the covariance

matrix, which we shall denote G. There are a few reasons for this. The density of the normal

distribution is smooth, which both means that it has a derivative and that numerical integrators

are more accurate (Dinh et al., 2017). On average it doesn’t favour a particular part of the

parameter space and it can propose any possible momenta, which not only means that the Markov

chain produced is aperiodic but also irreducible.

It is important to give some intuition as to why we define the Hamiltonian so that exp(−H)
c = π.

First, exp(−H)
c is a function of the Hamiltonian alone so anything that preserves integral curves

preserves π. Second, it is the canonical density of a Hamiltonian as written in Geman and Geman

(1984). The canonical density is the density such that summing over the derivatives of the density

with respect to each variable is equal to 0. i.e.

∑
i

(
dP

dzi
+
dP

dpi

)
= 0

where P is the canonical density. The function exp(−H)
c is the simplest such distribution and has

important applications to many physical phenomena.

It should be clear that given any function H(z, p), H can be expressed in the form H(z, p) =

U(z) + V (p; z), where in physics U represents the potential energy and V represents the kinetic

energy. H is called separable when V is a function solely dependent on p. Feeding this into the

canonical density gives a density of the form:

exp(−{U(z) + V (p; z)})
T

=
exp(−U(z)) exp(−V (p; z))

T
.

Conditioning such that ∫
exp(−V (p; z))dp = 1
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demonstrates that the required Hamiltonian must have

π(z) =

∫
exp [−U(z)− V (p; z)]

T
dp

=

∫
exp [−U(z)] exp [−V (p; z)]

T
dp

=
exp [−U(z)]

T
.

The above implies

U(z) = − log(π(z)).

Similarly we can find an expression for V (p; z):

π(z)K(p; z) =
exp [−U(z)] exp [−V (p; z)]

T

implies

log(π(z)) + log(K(p; z)) = − [U(z) + V (p; z)]

V (p; z) = − log(K(p; z)).

4.2.3 HMC

Hamiltonian Monte Carlo can be considered as a three step process consisting of a random proposal

for momenta, a deterministic integration step, (which we shall adapt later to be non-deterministic)

and a Metropolis-Hastings accept-reject step. As we have seen HMC constructs a Hamiltonian

H(x, p) = − log(π(z)) − log(K(p; z)) so that the augmented density is π(z, p) = π(z)K(p; z).

This Hamiltonian defines flows φH that preserve π(z, p) along them. To integrate along the flows

φH we require an integrator. An integrator I is a function t×T ∗M→ T ∗M that given z(0), p(0)

approximates the flow at time t. Often t is fixed and so is absorbed into the integrator. For fixed

t we shall express the integrator I(t, z, p) as It(z, p) or I(z, p). We require that the numerical

approximation of the derivative of the flow produced by an integrator converges to the true

derivative. That is

lim
t→0

ϕ [I(t, (z(0), p(0)))]− φ(z(0), p(0))

t
=

(
dφ

dt
|z,
dφ

dt
|p
)

Later we shall adapt the integrator to have random components, in which case we write

It(z, p; z
′, p′) as the probability density of integrating from (z′, p′) to (z, p). Often the integration

length t will be fixed and so we will drop it from the expression.
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In order to integrate along a flow we require the derivative of the posterior, and so require

the likelihood to be differentiable. HMC reverses the direction of momenta after the integration

step to ensure reversibility of the deterministic section. The integration step can be seen in

Algorithm 3, step 2. For the random proposal HMC proposes new momenta, step 1. This ensures

that the whole space is explored, not just circling about a single flow. It then uses these two

processes combined as the proposed state for a Metropolis-Hastings accept-reject step, steps 4-5.

Since the momenta are be marginalised out, it is sufficient to compare the proposal with the

previous state with the momenta proposed at the end of step 1. When we use a kernel K(p;x)

such that it is symmetrical in p this step is not strictly necessary.

Algorithm 3: Hamiltonian Monte Carlo

• Input: unnormalised target density π, starting position z0, starting momenta p0; momenta
proposal density K, integrator (often deterministic) acting along the Hamiltonian flows I
and number of iterations n.

• For i = 1, . . . n :

1. Draw p′ ∼ K(·; zi−1).
2. Compute and set (ẑ, p̂) = I(zi−1, p

′).

3. Set (ẑ, p̂) = (ẑ,−p̂).
4. Compute the acceptance probability

a = min

[
1,

π(ẑ)K(p̂; ẑ)I((zi−1, p
′); (ẑ, p̂))

π(zi−1)K(p′; zi−1)I((ẑ, p̂); (zi−1, p′))

]
.

5. With probability a, set zi = ẑ and pi = p̂ and otherwise set zi = xi−1 and pi = pi−1

• Output: chain {(zi, pi)}ni=0 with stationary distribution π.

It is common to simplify a into an expression involving H and further simplify a in the standard

case when I is deterministic.

a = min

[
1, exp{H

[
(zi−1, p

′)
]
−H [(ẑ, p̂)]}I((zi−1, p

′); (ẑ, p̂))

I((ẑ, p̂); (zi−1, p′))

]
= min

[
1, exp{H

[
(zi−1, p

′)
]
−H [(ẑ, p̂)]}

]
.

If I is a perfect integrator then H [(zi−1, p
′)] = H [(ẑ, p̂)] and a further simplifies to a = 1. This

demonstrates that the Metropolis-Hastings accept-reject step acts as a correction step for the
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integration. We include the option for non-deterministic I for clarity in later chapters.

4.2.4 The Hamiltonian Monte Carlo algorithm targets the correct distribution

Each iteration of the Hamiltonian Monte Carlo Algorithm consists of three parts: proposing the

momenta, computing the integration and performing a Metropolis-Hastings accept-reject step.

All three parts can be seen clearly in Figure 4.3.

Figure 4.3: Each row contains a single iteration of HMC for the simple pendulum example, with the
second row ending in a rejection step, each column a part of the process. The first column shows momenta
being resampled, the second column shows a 4 step integration step and the third shows whether or not
the final proposed point is accepted. The initial state is the red circle and proposed states are the yellow,
green and blue coloured circles. The algorithm progresses from red to blue.
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Theorem 4.1. The HMC algorithm leaves the target distribution π invariant.

Proof. We wish to show that the canonical distribution satisfies detailed balance:

π(z, p)a(z′, p′; z, p) = π(z′, p′)a(z, p; z′, p′)

We will notice that once we have sampled our cotangent vector the process is deterministic by a

measure preserving transformation and so we get the following:

π(z, p)a(z′, p′; z, p) = π(z)K(p; z)a(z′, p′; z, p) =e−H(z,p) ×min[1, e−H(z′,p′)+H(z,p)]

=e−H(z′,p′) ×min[e−H(z,p)+H(z′,p′), 1]

=π(z′)K(p′; z′)a(z′, p′; z, p) = π(z′, p′)a(z, p; z′, p′).

Detailed balance implies that our update leaves the canonical distribution invariant. We can now

check that the HMC kernel, which we shall denote P leaves the target distribution π invariant:∫ ∫
π(z, p)P (z′, p′; z, p)dzdp = π(z′, p′).

Expanding the left hand side in terms of the HMC acceptance probability gives:∫ ∫
π(z, p)P (z′, p′; z, p)dzdp =π(z′, p′)(1−

∫ ∫
a(z, p; z′, p′)dzdp) +

∫ ∫
π(z; p)a(z′, p′; z, p)dzdp.

We can use the result from detailed balance to prove the rest:∫ ∫
π(z, p)P (z′, p′; z, p)dzdp

=π(z′, p′)(1−
∫ ∫

a(z, p; z′, p′)dzdp) +

∫ ∫
π(z′, p′)a(z, p; z′, p′)dzdp

=π(z′, p′)(1−
∫ ∫

a(z, p; z′, p′)dzdp) + π(z′, p′)

∫ ∫
a(z, p; z′, p′)dzdp

=π(z′, p′).

Theorem 4.2. Ergodicity of HMC

Proof. We use theorem 13.0.1.iv. in Meyn and Tweedie (2009) We know if our space is irreducible,

aperiodic and Harris recurrent then the sample density of the Markov chain will converge to
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the invariant distribution. The chain we have constructed is reversible, and so reversible on an

intercommunicating set of size greater than two, by the Euclidean algorithm, we know that it is

aperiodic. As it is reversible it is also Harris recurrent if it is irreducible, and it is irreducible by

construction.
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4.2.5 Metropolis Adjusted Langevin Algorithm (MALA)

Hamiltonian Monte Carlo is very closely related to Langevin Monte Carlo (Rossky et al. (1978) and

Grenander and Miller (1994)), which uses a similarly constructed Langevin diffusion, maintaining

density, to enhance the proposal.

Let π be a density on Rn, known up to a constant of proportionality. The Metropolis Adjusted

Langevin diffusion algorithm (MALA) then uses a stochastic differential equation instead of a

Hamiltonian. The stochastic differential equation is of the form:

dx(t) =
1

2
A∇ log(π(xt))dt+

√
Adbt (4)

where bt is an n-dimension Brownian motion and A is a covariance matrix. A Brownian motion

bt is a stochastic process such that it is continuous almost surely. For an interval L of R we

partition L into intervals [t0, t1), [t1, t2), . . . , [tk−1, tk] where t0, . . . , tk ∈ R. A Brownian motion

has the property that any partition of the interval into t0, t1, ..., tk has bti − bti+1 independent to

btj − btj+1 and bti − bti+1 is normally distributed according to N(0, ti+1 − ti).

The Langevin stochastic differential equation leaves π(z) invariant. This means that when

a set is evolved according to the s.d.e. the integral of the set w.r.t. measure π is constant almost

surely. However we cannot simulate z exactly so require a discretisation, and as with HMC the

error is corrected using the Metropolis-Hastings accept-reject ratio, (Girolami et al., 2011).

We discretise using the Euler-Maruyama discretisation with step size ε. Applying this to

Equation (4) results in:

zt+1 =zt +
1

2
εA∇ log(π(zt)) +

√
εAη (5)

η ∼N (0, Idn).
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Algorithm 4: Metropolis Adjusted Langevin Algorithm

• Input: unnormalized target density π, starting position z0; normal proposal N(0, Σ), step

size ε and number of iterations n.

• For i = 1, . . . , n :

1. Set ẑ = zi−1 + ε∇ log (π(zi−1)).

2. Draw z′ = N(·; ẑ, εA).

3. Compute the acceptance probability

a = min

[
1,

π(z′)N(zi−1; z
′ + ε∇ log(π(z′)), εA)

π(zi−1)N(z′, zi−1 + ε∇ log(π(zi−1)), εA)

]
. (4.1)

4. With probability a, set zi = z′ otherwise set zi = zi−1.

• Output: chain {(zi, pi)}ni=0 with stationary distribution π.

MALA is related to HMC via a single step of the Leapfrog Algorithm (Betancourt et al., 2017).

Specifically, a single step of the Leapfrog algorithm produces the same proposal as MALA when

the momenta is normal V = N(0, Σ) and Σ = εA. We have seen in subsection 4.2.2 that the

Hamiltonian is

H(z, p) = − log(π(z))− log(N (0, Σ) [p]).

This means that:

H(z, p) =− log(π(z)) +
1

2
log(det(2πΣ)) +

1

2
pTΣ−1p,

so the derivatives are

∂H(z, p)

∂z
=−∇ log(π(z)) and

∂H(z, p)

∂p
= Σ−1p. (6)
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Applying the leapfrog integrator gives

pt+1/2 =pt +
ε

2
∇ log [π (zt)] , and

zt+1 =zt + ε
[
Σ−1pt+1/2

]
=zt + ε

[
Σ−1

(
pt +

ε

2
∇ log [π (zt)]

)]
=zt +

ε2

2
Σ−1∇ log [π(zt)] +Σ−1εpt

where pt ∼ N (0, Σ). Substituting in h = ε2Σ−1 gives

zt+1 =
h

2
∇ log [π(zt)] +

√
hΣ−1pt

where ηt ∼ N (0, Idn)

=
h2

2
∇ log [π(zt)] +

√
hηt

which is the proposal produced by MALA.

The advantage of MALA is that it is less computationally intensive than HMC in producing a

single proposal. This is due to needing to compute only the derivative with respect to position

once rather than twice as in HMC employing a leapfrog integrator.

4.3 Numerical Integration of the Hamiltonian Flow

HMC requires the ability to integrate along flows and this requires knowledge of the derivatives

of the Hamiltonian with respect to both parameters and momenta. There are many standard

methods of conducting integration such as Euler and Runge-Kutta. The Euler method works by

approximating the derivative in the neighbourhood of a point by the differential at the point.

This leads to the approximated flow diverging over multiple iterations as can be seen in Figure 4.4.

The leapfrog method or Störmer-Verlet integrator is a second order Runge-Kutta method and

the standard method used during HMC (Leimkuhler and Reich, 2005). A second order method

of integration is one where the error is of order O(ε2) where ε is the distance integrated. The

leapfrog method does not diverge over multiple iterations see Figure 4.4. The leapfrog integrator

is also symplectic meaning that while it may have some error associated to it, the measure of a

set integrated forward by leapfrog integration is preserved (Leimkuhler and Reich, 2005). Higher
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order simplectic methods such as 4th order Runge-Kutta would also be effective but due to the

high computational cost of differentiating the likelihood they are infeasible in this application.

The leapfrog integrator is simplectic because it employs shear transformations. A shear

transformation is a transformation that transforms all points in an n-dimensional surface by an

amount proportional to their distance from a n− 1-dimensional surface. Applying the Leapfrog

method l times means that the integrator integrates for time t = lε. Among the simplectic

Runge-Kutta methods the leapfrog integrator requires the fewest computations of the derivative

of the likelihood, normally a costly step.

Figure 4.4: Each plot shows the phase portrait of a single flow of the simple pendulum example. The flow
φt starts at the red dot and changes to blue as t increases. The first plot is the phase portrait where the
flow is integrated using the Euler method with step size 0.1. The second plot shows the flow integrated
using the leapfrog method and the same step size whereas the third plot uses the leapfrog method with a
greater step size, 0.8.

Figure 4.4 demonstrates the phase portrait for position and momenta in Example 5.1.4 using

different methods for integration. As we have seen starting at energy H(z, p) = 1 the phase

portrait consists of circles of the form z2 + p2 = 1. The benefit of using the leapfrog integrator

over the Euler integrator when integrating for a long time can clearly be seen as more proposals

will be accepted due to its greater accuracy.

4.3.1 The Leapfrog Integrator

The leapfrog algorithm employs a half step update to momenta, a full step update to position

conditional on the updated momenta, followed by a halfstep update to momenta from the new

position momenta pair. This is illustrated in the following figure, Figure 4.5.
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0. starting position

xi

pi

żi

ṗi

1. half step momenta

xi

pi

pi+ 1
2

żi

ṗi+ 1
2

2. full step position

xi

pi+ 1
2

zi+1

żi+1

ṗi+ 1
2

3. half step momenta

zi+1

pi+ 1
2

żi+1

pi+1

ṗi+1

Figure 4.5: The leapfrog integrator first updates pi to pi+ 1
2
, then xi to xi+1 and finally pi+ 1

2
to pi+1.

Updates are shown with dotted lines and the derivatives are shown with straight lines. The leapfrog
integrator follows the flow by using the derivatives of the flow. Over small updates the behaviour is
approximately linear with gradient specified by the derivative of the flow. The derivatives of the flow

are given by equation (3) in subsection 4.2.2 are −∂H(z,p)
∂p and ∂H(z,p)

∂z , first performing a half update for
momenta followed by a full update for position and then another half update for momenta.

Algorithm 5: The Leapfrog Integrator

• Input: starting point z0, starting momenta p0; step size ε > 0; number of iterations l;
∂H(z,p)
∂p and ∂H(z,p)

∂z .

• For i = 1, . . . , l set the following values:

1. pi+ 1
2

= pi − ε
2
∂H(z,p)
∂z |(zi,pi),

2. zi+1 = zi + ε∂H(z,p)
∂p |(zi,pi+1

2
), and

3. pi+1 = pi+ 1
2
− ε

2
∂H(z,p)
∂z |(zi+1,pi+1

2
).

• Output: pair (zl, pl) approximately on the flow line starting at z0, p0.

When the Hamiltonian is separable, H(z, p) = U(z) + V (p) the derivatives of H with respect to

z and p simplify. The derivative ṗ = −∂H
∂z = −∂U

∂z and the derivative ż = ∂H
∂p = ∂V

∂p . This means

that ṗ is independent of current p so that the first and and third steps concatenate to produce a

single jump. This can be seen in the following figure, Figure 4.6.
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Figure 4.6: Evolution of the Leapfrog Integrator

Since calculating the derivatives of the HamiltonianH with respect to the z is more computationally

intensive than calculating derivatives of H with respect to the momenta for most choices of

distribution for momenta, see (6) in subsection 4.2.5, we developed the Inverted Leapfrog

Integrator.

Algorithm 6: The Inverted Leapfrog Integrator

• Input: starting point z0, starting momenta p0; step size ε > 0; number of iterations l;
∂H(x,p)
∂p and ∂H(z,p)

∂z .

• for i = 1, . . . , l :

1. zi+ 1
2

= zi + ε
2
∂H(z,p)
∂p |(zi,pi)

2. pi+1 = pi − ε∂H(z,p)
∂z |(z

i+1
2
,pi)

3. zi+1 = zi+ 1
2

+ ε
2
∂H(z,p)
∂p |(z

i+1
2
,pi+1).

• output: pair (zl, pl) approximately on the flow.

Figure 4.6 shows how the position and momenta evolve over several leapfrog steps. As the

inverted leapfrog mimics the leapfrog integrator after the first step it seems like a reasonable

algorithm, as we shall now demonstrate.

Theorem 4.3. The Inverted Leapfrog Algorithm correctly integrates along flows.

Proof. To demonstrate this we will show that the inverted leapfrog algorithm is the same as the

leapfrog algorithm with different choices for parameters z, momenta p and Hamiltonian H. Since

the leapfrog algorithm is second order this demonstrates that the inverted leapfrog algorithm is too.
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Suppose we perform the inverted leapfrog algorithm with the following z, p and H; z = p′,

p = z′ and H(z, p) = −H ′(p, z) so that ∂H
∂z |(z,p) = −∂H′

∂p |(p,z) and ∂H
∂p |(z,p) = −∂H′

∂z |(p,z). This

substitution converts the inverted leapfrog algorithm for z, p and H into the leapfrog algorithm

for z′, p′ and H ′. Since H ′ 6= H we then demonstrate that integrating along flows of H ′ also

integrates along flows of H. We start with the inverted leapfrog algorithm

zi+ 1
2

=zi +
ε

2

∂H(z, p)

∂p
|(zi,pi)

pi+1 =pi − ε
∂H(z, p)

∂z
|(z

i+1
2
,pi)

zi+1 =zi+ 1
2

+
ε

2

∂H(z, p)

∂p
|(z

i+1
2
,pi+1).

We apply the above substitutions for z and p so that the inverted leapfrog algorithm becomes

p′
i+ 1

2

=p′i +
ε

2

∂H(p′, z′)

∂p
|(p′i,z′i)

z′i+1 =z′i − ε
∂H(p′, z′)

∂z
|(p′

i+1
2

,z′i)

p′i+1 =p′
i+ 1

2

+
ε

2

∂H(p′, z′)

∂p
|(p′

i+1
2

,z′i+1)
.

Substituting in H ′ for H gives:

p′
i+ 1

2

=p′i −
ε

2

∂H ′(z′, p′)

∂z
|(z′i,p′i)

z′i+1 =z′i + ε
∂H ′(z′, p′)

∂p
|(z′i,p′i+1

2

)

p′i+1 =p′
i+ 1

2

− ε

2

∂H ′(z′, p′)

∂z
|(z′i+1,p

′
i+1

2

).

This is exactly the process in the iterative step of the leapfrog algorithm.

Finally, the inverted leapfrog algorithm integrates along the correct flow. It integrates along flows

of H ′ so that by equation (3) of subsection 4.2.2 we get the first half of:

dφ(t, z(t), p(t))

dt
=

(
∂H ′

∂p
|(z(t),p(t)),−

∂H ′

∂z
|(z(t),p(t))

)
=

(
∂H

∂p
|(z(t),p(t)),−

∂H

∂z
|(z(t),p(t))

)
.

The second half of the above equation follows by substituting back in H for H ′.

Corollary to Theorem 5.1: The Inverted Leapfrog Algorithm is a second order algorithm.

64



Chapter 4. Hamiltonian Monte Carlo 65

The Inverted Leapfrog Algorithm is useful to us as it requires half the number of calculations

with respect to position. As the derivative calculation with respect to position is the derivative

calculation involving the likelihood, it is often the more complex of the two parts to calculate.

This adaptation makes HMC more competitive with MALA. To illustrate how the inverted

leapfrog integrator works we use a contrived example with a forced wait for 0.001s at every

evaluation of the derivative of the Hamiltonian with respect to position. Instead of the usual

example we take π(z) to be N(z; 0, 0.5) so that we can see the different effects of the inverted

leapfrog integrator. Figures 4.7 and 4.8 demonstrate the differences and similarities between the

two methods.

Figure 4.7: The red leapfrog integrator takes longer than than the blue inverted leapfrog integrator.
Though both paths approximate the flow, they produce different paths. Since the variance of the momenta
is greater than that of position, the inverted leapfrog integrator often overpredicts the magnitude of the
momenta, whereas the leapfrog integrator often under predicts it.

Figure 4.8: This plot is constructed the same way as Figure 4.7 but with a finer step size. The plot
demonstrates how both methods converge to the true flow despite different paths taken. The difference in
computational time also is more visible.
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The Inverted Leapfrog Integrator is not reversible.

There is one problem with the inverted leapfrog integrator which is that it is not reversible. This

is because of the dependency of ∂H
∂p on the state z. This would normally an issue with standard

Metropolis-Hastings but we only apply the inverted leapfrog integrator within the context of

COrtHMC. In chapter 5 we prove that COrtHMC leaves the target distribution invariant, see

proposition 5.1, this proof involves a non-deterministic and not necessarily reversible integrator

(to enable more interesting orthant crossing algorithms), and so the inverted leapfrog integrator

can be applied as normal though with a slightly increased computational cost.
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4.3.2 Appropriate Choice of Parameters

The leapfrog algorithm has a choice of two parameters, the step size ε and the number of

iterations l. If you choose too small an l or ε, then the proposal is approximately a random

walk. If l is too large then the algorithm is wasting computational time since for fixed ε,

as l increases so too does the chance of rejecting the proposal. Increasing ε increases the

error in the numerical integration, increasing the computational cost due to more rejections

occuring. To get around this issue Hoffman and Gelman developed the No-U-Turn sampler

and a method for choosing ε (Hoffman and Gelman, 2014). A more basic way of selecting ε

and l is a grid search method in which many different runs are conducted (Neal et al., 2011).

In Neal (1994) a method using windows of varied l is applied to average out the error in

integration, resulting in higher acceptance rates. The whole window is then accepted or rejected

in the Metropolis-Hastings accept-reject step. Neal (1994) demonstrates that this results in an

optimum acceptance rate of approximately 0.85, rather than the standard theoretical optimum

of 0.65 (Beskos et al., 2013). This means that whenever conducting HMC that employs an

integrator with more than 2 steps, over a space with a likelihood which is computationally

expensive to evaluate, a windowed approach may provide a good increase in efficiency. We cover

both NUTS and the grid search method as well as an adaptation to Riemmanian Manifold

Hamiltonian Monte Carlo, which effectively varies integration length in multiple dimensions

to better correspond with the posterior. We found that with HMC it was best to restrict the

number of steps and so it was relatively easy to search over them. We designed a method based

on the heuristic algorithm of Hoffman and Gelman (2014) to estimate appropriate step sizes.

Algorithm: ApplyHeuristic (Hoffman and Gelman, 2014)

1. Parameters: Hamiltonian H, starting position z0, starting momenta p0, starting ε, integrator

following Hamiltonian flows dependent on ε Iε.

2. Set z′, p′ = Iε(z0, p0).

3. Compute p1 = H(z0, p0), p2 = H(z′, p′)

4. if p2/p1 < 0.5 set a = 1 else set a = −1

5. while (p2/p1)a ≥ 2−a

• ε′ = 2a × ε

• z′, p′ = Iε′(z
′, p′)
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• p2 = H(z′, p′)

6. return ε′

We enabled varying step-size using Roberts and Rosenthal (2007) and Bai et al. (2011) by

applying the heuristic algorithm twice, once at the start of a run and once after a specified burn

in, εstart and εburn−in and setting εi = εburn−in + (εstart − εburn−in/(i+ 1)).

4.3.3 Riemannian Manifold Hamiltonian Monte Carlo (RMH-MC)

RM-HMC is a technique designed by Girolami et al. (2011) to efficiently conduct HMC. It does

so by altering or specifying the momenta kernel to be a choice that favours moves in the right

direction. It approaches HMC by considering the target distribution, a specific evolutionary

model, to be belonging to a space of distributions parameterised by values z and acting on data

X. The idea is to consider z and by extension the evolutionary model as existing on a manifold

where the metric is specified by the posterior density π. This notion is formalised in Shun-ichi

(1985). In this space of distributions created by varying z there exists notions of distance such as

the Kullback-Liebler divergence. The Kullback-Liebler divergence between π(X|z) and π(X|z′)
is defined as

KL(π(X|z)|π(X|z′)) =

∫
x
π(X|z) log(π(X|z))

log(π(X|z′))
.

When we look at an infinitesimal distance between two distributions π(X|z) and π(X|z + δz) it

is a well known result that

KL(π(X|z)|π(X|z + δz)) = δztG(z)δz

where G(z) is the Fisher information matrix, (Shun-ichi, 1985). The Fisher information matrix is

defined by

G(z)ij = EX{
∂ log(π(X|z))

∂zi

∂ log(π(X|z))
∂zj

}.

This means that G(z) encapsulates the distance between π(z) and π(z + δz). We have seen in

subsection 4.3.3 example 2 that any Riemannian metric can be used as the covariance matrix for a

multivariate normal distribution. By considering the Fisher information matrix as both the metric

on a manifold and the covariance matrix for a multivariate normal distribution, Riemannian

manifold-HMC can be conducted.

Using the Fisher information metric is a sensible idea. In Shun-ichi (1985) the Cramér-Rao
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inequality is proven. The Cramér-Rao inequality is important as it tells us that the covariance

matrix for an estimator in some sense dominates the inverse of the Fisher information matrix,

meaning we expect our estimator to have stronger correlations than that of the Fisher information

matrix. Notionally the Fisher information matrix therefore provides a greater range of exploration

in dimensions which impact the change in π(X|z) the most. It also means that we do not

completely ignore any correlations occurring within the data. Consider the diagonal case,

larger variance leads to larger proposed momenta and therefore better exploration. When

K(p; z) = N(p; 0, G(z)) then Hamiltonian is as follows

H(z, p) = −L(z)− 1

2
log((2π)D|G(z)|) +

1

2
ptG(z)−1p.

In order to compute the flow we need to be able to compute the derivatives of H(z, p) with

respect to both z and p.

∂H

∂z
=− ∂π

∂z
+

1

2
Tr{G(z)−1}∂G(z)

∂z
− 1

2
ptG(z)−1

∂G(z)

∂z
G(z)−1p (7)

∂H

∂p
=G(z)−1p.

The flow therefore caries G(z) along with z and p ensuring reversibility, Equation (7).
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Chapter 5

HMC on Tree space

In the previous chapter we saw that Hamiltonian Monte Carlo (HMC) uses a measure preserving

flow to make large jumps without sacrificing the acceptance probability. In this chapter we show

that we have to modify HMC for Tree space because no such flow exists on the whole of it. A

measure preserving flow does however exist within each orthant. In this chapter we show how

to extend HMC so that it can cross orthant boundaries, while maintaining the same behaviour

as HMC within every orthant. We define COrtHMC a novel method for MCMC integration

over Tree space that combines HMC with a mechanism for crossing orthants. Another method

has been developed by Dinh et al. (2017) called Probabilistic Path Hamiltonian Monte Carlo

(ppHMC) to conduct HMC over tree space first described in subsection 1.4.4. Our method is

similar to ppHMC but enables various different crossing methods, one of which coincides with

ppHMC. We outline the various ways of conducting COrtHMC.

In this chapter we shall assume that the substitution parameters θ and site rate parameters α are

fixed and known. HMC over substitution parameters and site rate parameters will be covered in

chapter 6 .

5.1 Flows across Tree space

We first show that standard HMC is not applicable on Tree space:

Theorem 5.1. There is no well-defined continuous flow φt defined on the cotangent bundle of

Tn which has flow lines traversing between at least two distinct maximal orthants, where flow is

defined in subsection 4.2.2.

Proof. In order to talk about continuity we need a topology on the space of unrooted trees (Un).

We define the topology on unrooted trees by using the Euclidean metric within each orthant
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and extending it across Tree space as outlined in Nye (2015). This is done by taking the metric

across tree space

dT (x, y) = inf

[
j∑
i=0

dΣ(xi, xi+1|x0 = x, xj = y, where xi, xi+1 in the same closed minimal orthant

]

dΣ is the standard euclidean metric. This works out to be the infimum of lengths of paths

between x and y with straight line segments in each orthant. The space of rooted trees Tn inherits

this metric.

Tree space constists of full dimensional orthants and codimensional-1 regions (“the glue”) between

them Tn =
⋃
τ Rn−3 ∪ T

(1)
n where T (1)

n are the codimension-1 boundaries of Tree space. The

topology is the topology from the BHV metric, so open sets are unions of open sets in each

orthant. We shall show that no flow traversing two maximal orthants exists on the open book.

We shall then describe the cotangent space T ∗Tn using Barden et al. (2013). By showing that

the cotangent space for T (1)
n contains a copy of the open book we demonstrate that no flow can

exist on the cotangent space.

Tree space contains many copies of the 3-spider.

O

Flow on the spider

Image of O after δt

Figure 5.1: The open book and a 3-spider

Consider a flow passing through a point t on the spine of the open book from one maximal

orthant to another, call them orthant A and B. In the 3-spider, S = ∨R3
≥0, this is shown by the
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green flow in Figure 5.1. However this is discontinuous as the points on the blue orthant are

not moved by the flow. By continuity all significantly close points to the t on also end up on B

bounded away from the spine. By the same argument all significantly close points to the image

of t come back from B. This means the flow lines on an open interval of the spine containing t

all go from A to B. The flow is discontinuous because a point arbitrarily close to the origin on

the third orthant, the blue orthant in 5.1, can be at most δx close to the image of the origin. δx

is bounded above 0 and is only dependent on the flow and δt. Hence there cannot exist a flow on

the 3-spider traversing Tree space. Since there cannot exist a flow on the 3-spider there cannot

exist a flow on the open book. This is because the open book is constructed from the 3-spider,

T (1)
n = S × Rn−4. Since pendant edges are incorporated by a product, at strictly codimension-1

tree space is locally homeomorphic to an open book. We now wish to show that the cotangent

space has the same property, we do this by finding a copy of the open book in the cotangent space.

The cotangent bundle of tree space also contains regions which are locally homeomorphic

to the open book. Barden et al. (2013) section 4 defines the tangent space for Tree space T5.
The tangent bundle consists of the tangent spaces of each orthant with a co-ordinate scheme

that represents each orthant or quadrant. The tangent space at a codimension-1 point under this

scheme is regarded as the union of the three half planes connected by the codimensional point.

It is important to note that in Barden et al. (2013) these planes are considered distinct. The

cotangent spaces are the duals of the tangent spaces. It is sufficient to note that from Barden

et al. (2013) there are open regions of the tangent bundle, including points in the fibres that

project to codimension-1 singularities in Tree space, which are homeomorphic to open books.

The same applies to the cotangent bundle. Since the cotangent bundle contains local copies of

open books it follows that no continuous flow can exist.

Figure 5.2: On the left we depict the cotangent space of the 3-spider. On the right we depict the cotangent
space flattened to create a tubed space as in subsection 5.9.1.
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Example 6.1:

To better get to grips with the cotangent space we describe it for T5 and T4 at a codimension-1

point. Using the same co-ordinate scheme as Barden et al. (2013) we can express the cotangent

space at a codimension-1 point of T5 as the union of the three half planes R2
≥0×R2 (the cotangent

space within each half plane connected by the codimensional point). Similarly for T4, the three

spider the cotangent space is the union of the cotangent space of the three half planes R× R. In

the first part of Figure 5.2 we depict the cotangent space at a point on T (1)
4 .

There is an interesting relationship between the cotangent space and the “tubing” method

outlined in 5.9.1. It is possible to extend the cotangent bundle with an auxiliary variable at

codimension-1 points in Tree space. This auxiliary variable glues the disjoint Rn≥0 × Rn cubes

that exist in the cotangent space together. Figure 5.2 demonstrates how this is done for the

3-spider. The tubing enables a flow to exists across this augmented tangent space. As this seems

like a natural and intuitive thing to do here we quickly outline why it is a bad idea.

1. The auxiliary variable has no consistent meaning between maximal orthants.

2. It is a method of “tubing” but with less control over the interior of an orthant.

3. This method of tubing is guaranteed to introduce biased exploration as the momenta at

this point is more likely to be negative than positive.

5.1.1 Motivation

We have now shown that HMC has to be adapted for Tree space. In this section we motivate the

use of HMC in Tree space.

In section 2.5 we outlined how the likelihood was constructed in terms of Px,y;k{`(u, v), θ}
and in subsection 2.1.2 we saw that Px,y;k{`(u, v), θ} = P0 exp(Qk`(u, v)). Taking the derivative

w.r.t. `(u, v) results in P0 exp(Qk(θ)`(u, v))Qk(θ), which is easily computable.

We use Figure 5.3 to further motivate using an adapted form of HMC. In Figure 5.3 we used the

JC69 model to generate a Hamiltonian on Tree space using the likelihood construction in section

2.5 and an Alignment randomly generated from a tree in T5. We chose T5 so that there were only

2 internal edges. This enables both internal edge lengths to be put onto the different axes. The
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lengths of the internal edges of this tree are highlighted by blue lines in Figure 5.3. We then

used this Hamiltonian to plot flows from a grid of starting points. Flows starting from this grid

are in black. We started the flow with zero momenta so that we could see how the likelihood

affected the flow. Figure 5.3 demonstrates how the flow can provide information about regions

of interest and correctly guide the MCMC algorithm. The flow spends less time in incorrect

topologies as can be seen by the greater exploration in the correct orthant. We also notice that

the flow consistently moves towards the correct values when in a neighbouring topology but if we

move to a topology further away that information is lost.

When we encountered a boundary edge reaching 0, depicted in green, we deterministically

specified an orthant to flow into, either the topology used to generate the alignment or a topology

bordering it. In this way we can consider the flow as moving towards regions where we would

expect high density or lower density. To move into the new topology the absolute value of the

edge is chosen. The flow in the new topology is depicted in red. Looking closely at Figure 5.3

we see that the black flow smoothly changes to red. The first plot in Figure 5.3 shows the flow

moving into the topology of the tree used to generate the alignment. The internal edge lengths

of the tree are marked by blue lines and all edges taken to be of length 0.1.

It is important to notice the difference in scale of the two plots. In the first the flows explore three

times further along the axis representing the internal edge of interest into the orthant than in

the second, where the flow explored roughly the same region as the starting grid of points. This

demonstrates two important conclusions we can make. The flow will spend more time in regions

where the posterior density function takes larger values and this can be seen by the amount of

red on the picture and the greater region of exploration. Tracking a given path gives a significant

increase in length before returning to a boundary, notably the path that explores the furthest

ends before returning to the boundary. No such path exists in the second picture. The second

conclusion is that the flow responds to symmetry in the distribution. The tree used to generate

the alignment was symmetrical in the sense that both internal edges are equal and all pendant

edges are equal. While the alignment does not reproduce that symmetry it does hint to it in the

way that choosing an orthant symmetrically equivalent in the tree results in the flow exploring

roughly the same region. These plots do not only show that by randomly choosing an orthant to

move into we are likely to return to the boundary with the original orthant if we choose poorly.

If we choose correctly, the likelihood of reaching the boundary with another orthant is increased.

Figure 5.3 also demonstrates that the flow has some knowledge of the tree used to generate the

alignment within an orthant. This is clear from the shift in the flow in the x-axis edge from
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a length in the 0.1 to 0.3 region to the region 0 to 0.3 where the flows appear to spiral round

0.1, the internal edge length used to generate the alignment. This is a shift we do not see when

we move to an orthant not containing the tree used to generate the alignment. This visually

demonstrates the dependence of internal edge lengths on topology.
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Figure 5.3: Here we create a posterior distribution from a set tree, then picked an orthant 1 nearest
neighbour interchange from the topology of the set tree. We then chose a grid of points, the initial points
of the black lines and ran a leapfrog integrator with low stepsize. Upon encountering a boundary we chose
which topology to move into, in the first diagram we chose to move into the topology of the set tree in
the second we moved to a different topology, we depict the flow in the new topology in red. Comparison
between flows from an incorrect topology (black) moving to either another incorrect topology or the
correct topology (red). We use a blue cross to pinpoint the correct tree in the first diagram (it is not
pictured in the second). We can see that when the flow moves into the correct topology it explores further
into that topology , it circles around the tree used to generate the alignment, and the total time spent in
that orthant is longer. We have scaled the second plot so that the axes align.
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5.2 Cross Orthant HMC

Our method applies standard HMC on each orthant R2n−3
+ and considers the integrator I as a

kernel; see subsection 4.2.3. The Hamiltonian flow is defined on an orthant up to the boundary.

This means that each point p within an orthant has an interval [0, tp), where tp is when the

flow hits a codimensional boundary and the flow is not defined after this point. This means

that the numerical integrator along the flow J maps the orthant R2n−3
+ into R2n−3. The kernel

I = I(·, ·; z, p) takes T ∗M→ T ∗M where M = Tn ×Θ × R+, Tn is defined in section 3.1, Θ is

as in subsection 2.2.1, and R+ is the space for rate heterogeneity parameter. This combines the

numerical integrator for the flow J with a kernel C that dictates what happens when J maps

into R2n−3 \ Rm+ .

We now explain this construction in more detail. In section 5.7 we define various different

crossing methods for crossing a boundary as maps R2n−3×Θ×R+ → Tn×Θ×R+. The crossing

method could be deterministic but in constructing a deterministic method we risk creating

periodicity in the topologies we move to, creating a reducible chain, and introducing forced

latency in the event that the deterministic crossing method chosen is systematically wrong. To

demonstrate this point, suppose a deterministic crossing method mostly suggested moves to

orthants away from regions of high density. We take the No-U-Turn Sampler (NUTS), see section

A.3 in appendix A, as a motivating example for the kernel approach to integration. At every

iteration of NUTS a deterministic process creates a set of possible proposals, this set is then

reduced by a non-deterministic method. In the same way we think of I in COrtHMC as being

built from two components, a deterministic component J and a non-deterministic component

C. We take J to be a standard integrator for the Hamiltonian flow acting within an orthant

and mapping to the orthant extended to include trees with “negative” edges. As J follows the

flow and the flow is not defined across codimension 1 boundaries J cannot itself change topology.

The non-deterministic C creates and chooses from a set of potential trees in various different

topologies created from the tree with “negative” edge lengths. This means that we can express I

in either of two equivalent ways depending on whether we think of J as a deterministic function

(z′, p′) = J(z, p) or a kernel

J(z′, p′; z, p) =

1 if (z′, p′) = J(z, p)

0 otherwise
.

We can take either:

1. I is the composition of J and C so that I(z′, p′; z, p) = C(z′, p′; J(z, p))
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2. or I(ẑ, p̂; z, p) = C(ẑ, p̂; z′, p′)J(z′, p′; z, p).

In the algorithm we use 1. In order for our algorithm to coincide with HMC when restricted to

flows contained within an orthant we require that

C(ẑ, p̂; z′, p′) =

1 if z′ ∈ Tn and (ẑ, p̂) = (z′, p′)

0 if z′ ∈ Tn and (ẑ, p̂) 6= (z′, p′)
.

We construct the MCMC algorithm as follows. Within an orthant apply standard HMC; upon

hitting a boundary propose a new point, possibly in a new orthant, to move to. There are several

different methods for proposing this new point. We first cover the general case before outlining

some specific proposal mechanisms. We have designed COrtHMC for phylogenetic inference and

therefore we shall express the algorithm in this setting. We recall that z represents all of the

parameters for trees in Tn. Since the topology τ is a parameter of interest, we henceforth denote

by τ the topology and z the remaining parameters.

Algorithm 7: Cross-orthant HMC (COrtHMC)

• Input: unnormalised target density π, starting position z0 and starting momenta p, momenta

density K, deterministic component of integrator J , random component of integrator C,

number of iterations n

• for i in 1 : n

1. Draw p′ ∼ K(·; zi−1, τi−1).
2. Compute (ẑ, p̂, τi−1) = J(zi−1, p

′, τi−1).

3. Draw (ẑ′, p̂′, τ ′) ∼ C(·; (ẑ, p̂, τi−1)).

4. Set (ẑ′, p̂′, τ ′) = (ẑ′,−p̂′, τ ′).
5. Compute

a = min

[
1,

π(ẑ′, p̂′, τ ′)C(ẑ, p̂, τi−1; ẑ
′, p̂′, τ ′)J(zi−1, p

′, τi−1; ẑ, p̂, τi−1)

π(zi−1, p′, τi−1)J(ẑ, p̂, τi−1; zi−1, p′, τi−1)C(ẑ′, p̂′, τ ′; ẑ, p̂, τi−1)

]
.

6. With probability a, set zi = ẑ′, pi = p̂′ and τi = τ ′ and otherwise set zi = zi−1,

pi = pi−1 and τi = τi−1.

• Output: chain {(zi, pi, τi)}ni=0 with invariant distribution π.
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5.3 COrtHMC targets the posterior and produces an ergodic

chain

We first demonstrate that COrtHMC targets the posterior. This follows because it is constructed

to satisfy detailed balance.

Proposition 5.1. COrtHMC leaves π(z) invariant where π(z) =
∫

1
Z exp(−H(z, p))dp.

Proof. Let P (z′, p′, τ ′, z, p, τ) be the transition kernel for COrtHMC. A distribution π is the

invariant distribution of P if∫
P (z′, p′, τ ′, z, p, τ)π(z, p, τ)dz dp dτ = π(z′, p′, τ ′).

If P can be decomposed into kernels, P = P2 · P1 where P1 and P2 leave π invariant then P

leaves π invariant:∫
P (ẑ,p̂, τ̂ , z, p, τ)π(z, p, τ)dz dp dτ

=

∫
P1(z

′, p′, τ ′, z, p, τ)P2(ẑ, p̂, τ̂ , z
′, p′, τ ′)π(z, p, τ)dz dp dτ dz′dp′ dτ ′

=

∫
P2(ẑ, p̂, τ̂ , z

′, p′, τ ′)

[∫
P1(z

′, p′, τ ′, z, p, τ)π(z, p, τ)dzdpdτ

]
dz′ dp′ dτ ′

=

∫
P2(ẑ, p̂, τ̂ , z

′, p′, τ ′)π(z′, p′, τ ′)dz′ dp′ dτ ′

=π(ẑ, p̂, τ̂)

We show that the kernel for COrtHMC leaves the target density π(z, τ) invariant by showing

that it satisfies detailed balance. We follow the same method as in Brockwell and Kadane (2018)

where they validate a Hybrid Metropolis-Hastings algorithm. We shall consider the process in two

steps, the first being the integration step and the second the crossing step. We shall demonstrate

that each step leaves the target density invariant and therefore by the above argument the kernel

for COrtHMC does also. We consider

P1(z
′, p′, τ ; z, p, τ) = J(z′, p′, τ ; z, p, τ) min

[
1,
π(z′, p′, τ ′)J(z, p, τ ; z′, p′, τ)

π(z, p, τ)J(z′, p′, τ ; z, p, τ)

]
.
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The kernel P1 leaves the target π invariant because it satisfies detailed balance:

P1(z
′, p′, τ ′; z, p, τ)π(z, p, τ) =π(z, p, τ)J(z′, p′, τ ′; z, p, τ) min

[
1,
π(z′, p′, τ ′)J(z, p, τ ; z′, p′, τ ′)

π(z, p, τ)J(z′, p′, τ ′; z, p, τ)

]
= min

[
π(z, p, τ)J(z′, p′, τ ′; z, p, τ), π(z′, p′, τ ′)J(z, p, τ ; z′, p′, τ ′)

]
=π(z′, p′, τ ′)J(z, p, τ ; z′, p′, τ ′) min

[
π(z, p, τ)J(z′, p′, τ ′; z, p, τ)

π(z′, p′, τ ′)J(z, p, τ ; z′, p′, τ ′)
, 1

]
=P1(z, p, τ ; z′, p′, τ ′)π(z′, p′, τ ′).

We now consider

P2(z
′, p′, τ ′; z, p, τ) =

C(z′, p′, τ ′; z, p, τ) min
[
1, π(z

′,p′,τ ′)C(z,p,τ ;z′,p′,τ ′)
π(z,p,τ)C(z′,p′,τ ′;z,p,τ)

]
0

if respectively C(z, p, τ ; z′, p′, τ ′) 6= 0 and C(z′, p′, τ ′; z, p, τ) 6= 0; and if respectively C(z, p, τ ; z′, p′, τ ′) =

0 and C(z′, p′, τ ′; z, p, τ) = 0. P1 and P2 combine to draw from J draw from C and accept

with acceptance probability a. We show detailed balance which implies π invariance: When

C(z, p, τ ; z′, p′, τ ′) 6= 0 and C(z′, p′, τ ′; z, p, τ) 6= 0 the following holds:

P2(z
′, p′, τ ′; z, p, τ)π(z, p, τ) =π(z, p, τ)C(z′, p′, τ ′; z, p, τ) min

[
1,
π(z′, p′, τ ′)C(z, p, τ ; z′, p′, τ ′)

π(z, p, τ)C(z′, p′, τ ′; z, p, τ)

]
= min

[
π(z, p, τ)C(z′, p′, τ ′; z, p, τ), π(z′, p′, τ ′)C(z, p, τ ; z′, p′, τ ′)

]
=π(z′, p′, τ ′)C(z, p, τ ; z′, p′, τ ′) min

[
π(z, p, τ)C(z′, p′, τ ′; z, p, τ)

π(z′, p′, τ ′)C(z, p, τ ; z′, p′, τ ′)
, 1

]
=P2(z, p, τ ; z′, p′, τ ′)π(z′, p′, τ ′).

When C(z, p, τ ; z′, p′, τ ′) = 0 or C(z′, p′, τ ′; z, p, τ) = 0 the above does not hold and we wish to

accommodate such integrators, in particular when our choice of kernel restricts the values the

momenta can take. This means that C(z′, p′, τ ′; z, p, τ) 6= 0 but C(z, p, τ ; z′, p′, τ ′) = 0. Let us

assume that C(z, p, τ ; z′, p′, τ ′) = 0 and C(z′, p′, τ ′; z, p, τ) 6= 0. We need to define the acceptance

probability in this case. C having a constrained support when restricted to p we disperse p

afterwards. We can disperse p by the introduction of another kernel F ∼ N(p̃, cIddim(p)) where

p̃ is a point in the support of C. We can then define Cc = F ◦ C which satisfies detailed

balance and never has Cc(z, p, τ ; z′, p′, τ ′) = 0 or Cc(z′, p′, τ ′; z, p, τ) = 0. This adds a step to

C where the momenta is resampled according to a N(p̃, cIddim(p)) which combines with C and

slightly alters the acceptance probability to ac. It should be clear from the above that π is the

invariant distribution of P in these cases. We now wish to demonstrate that π(z) is the invariant
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distribution of the limit when c→ 0.

We have constructed this new kernel such that the distribution π is invariant for P2 with

this choice of C = Cc. We can therefore write the following for Ccac:∫
π(z, p, τ)Cc(z′, p′, τ ′; z, p, τ)ac(z′, p′, τ ′; z, p, τ)dz dp dτ = π(z′, p′, τ ′).

By taking the limit of each side and integrating over p′ because p′ is drawn from a normal

distribution N(p̃, cIddim(p)), it follows that

lim
c→0

∫
π(z, p, τ)Cc(z′, p′, τ ′; z, p, τ)ac(z′, p′, τ ′; z, p, τ)dz dp dτ dp′

=

∫
π(z′, p′, τ ′)dp′ = π(z′, τ ′).

Therefore by the dominated convergence theorem

lim
c→0

∫
π(z, p, τ)Cc(z′, p′, τ ′; z, p, τ)ac(z′, p′, τ ′; z, p, τ)dz dp dτ dp′

=

∫
lim
c→0

π(z, p, τ)Cc(z′, p′, τ ′; z, p, τ)ac(z′, p′, τ ′; z, p, τ)dz dp dτ dp′

=

∫
π(z, p, τ)C(z′, p′, τ ′; z, p, τ)a(z′, p′, τ ′; z, p, τ)dz dp dτ dp′.

So that:

π(z′, τ ′) =

∫
π(z, p, τ)C(z′, p′, τ ′; z, p, τ)a(z′, p′, τ ′; z, p, τ)dz dp dτ dp′.

We want to construct an appropriate acceptance probability for this case. To do this we examine

Cc. As c→ 0, Cc selects points closer to p̃, this is true no matter where the chain was before the

crossing. Remembering that p′ is a point in the support of C, we can define P2 to be:

C(z′, p′, τ ′; z, p, τ) min

[
1,
π(z′, p′, τ ′)C(z, p̃, τ ; z′, p′, τ ′)

π(z, p, τ)C(z′, p′, τ ′; z, p, τ)

]
where p̃ is fixed and chosen by the user. This in turn defines the acceptance probability when

our crossing methods present such problems.

Theorem 5.2. The Markov Chain defined by COrtHMC is ergodic, irreducible and aperiodic.

COrtHMC is a generalisation of ppHMC and the arguments given in Dinh et al. (2017) generalise

to COrtHMC. The arguments in Dinh et al. (2017) establish the theorem. For more details see

the appendix 5.7.4Proofs.
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5.4 Probabilistic Path HMC (ppHMC)

In this section we describe probabilistic path HMC in Dinh et al. (2017).

Algorithm: The Leap-prog algorithm (ppHMC)

• Input: U , starting position z and starting momenta p, stepsize ε

1. p = p− ε δU(τ,z)
2

2. If FirstUpdateEvent(τ, z, p, ε) = ∅, z = z + εp

3. Else t = 0

4. while FirstUpdateEvent(τ, z, p, ε− t) 6= ∅

– (z, e, I) = FirstUpdateEvent(τ, z, p, ε− t)
– t = t+ e

– τ ∼ Z(N (τ, z))

– pI = −pI

5. z = z + (ε− t)p
6. end if

7. p = p− ε δU(τ,z)
2

• Output: chain {(zi, pi, τi)}ni=0 with invariant distribution π.

They define e to be the time at which crossing occurs and I are the indices of the edges causing

the cross. Looking at the above algorithm Z(N (τ, z)) is a randomly chosen new topology, this

corresponds to choice 1 of subsection 5.7.4. Multiple crossings can occur in a single step, each

crossing is mapped into a new topology according to the momenta it would have in the new

topology, this choice corresponds to an ordered crossing with no dampning and no truncation

asa described in subsection 5.7.1 and by the way momenta is reversed upon entering a new

topology we can see that they treat the boundary as a reflecting boundary in subsection 5.7.1.

So COrtHMC simplifies to the Leap-prog algorithm when we select momenta according to a

N (0, In) distribution, use the standard leapfrog algorithm, select an equal probability reflecting

boundary with no dampning and allow multiple crossings.
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5.5 Derivative of the Likelihood with respect to an Edge

In order to conduct HMC on Tree space we need to compute the derivative of the likelihood with

respect to an edge to feed into the numerical computation of the flow. To do this we expand z

into its components, the tree components ` and τ and the substitution and site rate components

θ and α. We start with the Felsenstein pruning formulation of the likelihood as defined in section

2.5. Since the likelihood does not depend on the position of the root we can specify v0 to be one

of the internal vertices on the end of the edge of interest e. When the edge is a pendent edge

there is only one possible choice for this vertex. Then

∂

∂`(e)
log{L(X|`, τ, θ, α)} =

∂

∂`(e)

n∑
i=1

log (P(χi|`, τ, θ, α))

=
n∑
i=1

∂
∂`(e)P(χi|`, τ, θ, α)

P(χi|`, τ, θ, α)

where P and π˜ are defined in section 2.5. As ∂
∂`(e)P(k) = 0

∂

∂`(e)
P(χi|`, τ, θ, α) =

∑
k∈γ

P(k)
∑
x∈A

∂

∂`(e)

(
π˜(x)Lv0(χi|x, `, τ, θ, α)

)
=
∑
k∈γ

P(k)
∑
x∈A
Lv0(χi|x, `, τ, θ, α)

∂

∂`(e)
π˜(x) + π˜(x)

∂

∂`(e)
Lv0(χi|x, `, τ, θ, α).

Since ∂
∂`(e)π˜(x) = 0 and because we can choose v0 such that edge e connects v0 to a child of v0

we shall call u, the following applies:

∂

∂`(e)
Lv(χi|x, `, τ, θ, α) =

u′ 6=u∏
u′≺v

∑
y∈A

Px,y;k{`(u′, v)|θ}Lu′i (χi|y, `, τ, θ, α)


×
∑
y∈A

∂

∂`(e)
(Px,y;k{`(u, v)|θ}Lu(χi|y, `, τ, θ, α)) .
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We know that edge e is not contained in the subtree generated by u so ∂
∂`(e)Lu(χi|y, `, τ, θ, α) = 0.

This means we can easily compute the numerator:

∂

∂`(e)
P(χi|`, τ, θ, α) =

∑
k∈γ

P(k)
∑
x∈A

π˜(x)

u′ 6=u∏
u′≺v

∑
y∈A

Px,y;k{`(u′, v)|θ}Lu′(χi|y, `, τ, θ, α)

 .
×
∑
y∈A

∂

∂`(e)
(Px,y;k{`(u, v)|θ})Lu(χi|y, `, τ, θ, α)

Px,y;k{`(u, v)|θ} = exp{k`(u, v)Q} ⇒ ∂

∂`(u, v)
Px,y;k{`(u, v)|θ} = kQ(θ)Px,y;k{`(u, v)|θ}.

Putting everything together we get

∂

∂`(e)
log{L(X|`, τ, θ, α)} =

n∑
i=1

1

P(χi|`, τ, θ, α)

∑
k∈γ

P(k)
∑
x∈A

π˜(x)

u′ 6=u∏
u′≺v

∑
y∈A

Px,y;k{`(u′, v)|θ}

Lu′(χi|y, `, τ, θ, α)]]×
∑
y∈A

kQPx,y;k{`(u, v)|θ}Lu(χi|y, `, τ, θ, α)

 .
We notice that if we have previously computed the likelihood a lot of the Lu information is

readily available. Our algorithms make use of this by storing the terms for each vertex.

5.6 Other results about COrtHMC

Theorem 5.3. COrtHMC hits boundaries of codimension 2 with probability 0 for posterior π

with a non-zero probability density function over the whole of tree space.

Proof. Let X be a manifold of dimension n and let µ a probability measure on X such that

the support of µ is X. We consider a posterior defined from the likelihood of a tree. We are

interested in when a flow φ hits a submanifold of codimension 1. The flow φ is defined such that

∀t ∈ R, A ⊂ X µ(φ(t, A)) = µ(A). φ(t, ·) is a homeomorphism with respect to t. Let S be a

submanifold of X such that codim(S) = 2. We wish to show that

µ({x : φ([0, t], x) ∩ S 6= ∅}) = 0.

We use the notation φ([0, t], x) to mean
⋃

s∈[0,t]
{φ(s, x)}. {x : φ([0, t], x) ∩ S 6= ∅} is the set of

x ∈M such that x hits S at some point while following flow φ.
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We know φ is a measure preserving homeomorphism for each t. This implies

µ({x : φ([0,−t], x) ∩ S 6= ∅}) = µ({x : x ∈ φ([−t, 0], S)}).

If the codimension of a submanifold is greater than 0 and the measure has support across the

whole of the manifold the measure of the submanifold is also 0 (Lee, 2013).

We now demonstrate that the codimension of φ([t, 0], S) is 1 for all t. To show this define a

homeomorphism mapping local subspaces of φ([0,−t], S) into Rn−1. Define the homeomorphism

in the following way: Let p be any point in S then there exists U an open neighbourhood of p such

that there is a mapping ψU : U → Rn−2. Let τ be a point in [−t, 0]. Define the homeomorphism

ϕ:

ϕ : φ[τ, p]→ Rn−1 by φ[(τ − δ, τ + δ), U ] 7→ τ × ψU (p)

This is a chart and homeomorphism as open set are mapped to open sets in an invertible way:

φ[(τ − δ, τ + δ), U ] 7→ (τ − δ, τ + δ)× ψU (U)

Hence φ([−t, 0], S) is a submanifold of dimension n − 1 meaning that codim(φ([−t, 0], S)) = 1

and therefore µ({x : φ([0,∞], x) ∩ S 6= ∅}) = 0.

Theorem 5.4. The numerical integrator for HMC lands on a boundary of codimension 1 with

probability 0.

This follows from the arguments above. We take S to be a submanifold of codimension 1 and

apply φ to a point, as the numerical integrator picks out discrete points on flow lines.

Theorem 5.5. The likelihood as defined in section 2.5 is smooth across codimension 1 strata.

Proof. We outline the ideas behind the proof, for the exact details please see Appendix B. The

likelihood is smooth within an orthant. At the boundaries of orthants the trees can be viewed as

belonging to either orthant but are equivalent. Viewing the whole of tree space the likelihood is

continuous through any codimensional space and the derivative agrees at the boundary when

being approached from either orthant. We can see this by viewing the path from one orthant to

another embedded in Rn as in 5.4.

5.7 Methods for Crossing Codimensional Boundaries

We have designed several methods for crossing codimensional boundaries in order to produce

the kernel C. Each method requires several user choices. We focussed on how to transform the
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τ2 τ1
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`2
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exp(−Q`2) exp(−Q`1)Id

Figure 5.4: The three trees show different stages of smoothly transforming a tree across the boundary
from topology τ2 to τ2. The edge `2 shrinks to a point and a nearest neighbour interchange occurs before
it grows out to `1. Beneath each tree is the term associated with the edge expressed in the likelihood. It
is clear to see that as `2 7→ 0 7→ `1 smoothly, exp(−Q`2) 7→ Id 7→ exp(−Q`1) smoothly.

edge lengths upon crossing a boundary, how to transform the momenta, and whether or not to

continue the integration upon entering a new orthant. When we generate a proposal across a

boundary we perform an initial “jump” as seen in subsection 5.7.1, then transform this new state

according to chosen momenta and by integrating along the flow, subsection 5.7.3 and subsection

5.7.2.

Hamiltonian Monte Carlo makes use of local information. Standard MCMC uses NNI, SPR and

TBR, as defined in section 3.4, to perform topological moves. Of these NNI is guaranteed to move

to a neighbouring topology, a topology sharing the spine of the open book. It therefore makes no

sense to use SPR or TBR when conducting HMC. We use NNI because when conditioned on the

topology you move into NNI provides a smooth flow.

5.7.1 Transforming Edges: Reflecting vs Projecting across the Boundary

We decide to transform edge lengths in one of two ways. A single step of the leapfrog algorithm

for the state is a linear map. This map crosses a boundary when an edge’s length becomes

negative. This leads to two natural methods for transforming edge lengths. The first seen in

Figure 5.5 takes the edge lengths to be the same as if the leapfrog algorithm reflected off the

boundary. Upon crossing into a new topology a nearest neighbour interchange is performed.

During a NNI one edge ceases to exist and a new one is created. This new edge is given the

length of the old edge. We call this the reflecting boundary. The other method projects the state

back along the path it came from upon hitting a boundary. The new edge lengths are then taken

to be the edge lengths at this point and the new edge is given the length of the old edge. This
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can be seen in Figure 3.3 and is called the projecting boundary.

ττ ′

Reflecting boundary

ττ ′

Projecting boundary

Figure 5.5: The figure on the left depicts a reflecting crossing, the right a projecting crossing. The dotted
red line gives the reflection or projection, the blue line and ball is the single step process of the leapfrog
integrator assuming the axis is for when the edge has 0 length and the red line and ball is the proposed
point.

We shall denote the transformation R as the reflecting boundary and P as the projecting boundary.

Let ` = {`1, . . . ,−`i, . . . , `n} then R is easy to compute.

R({`1, . . . ,−`i, . . . , `n}) = {`1, . . . , `i, . . . , `n}.

The projection is harder to compute as it requires knowledge of the gradient ∂H
∂p .

The distance of integration to the intersection, d, is first computed d = `i
ε ∂H
∂p

then:

P({`1, . . . ,−`i, . . . , `n}) = {`1 − 2dε
∂H

∂p
, ..., `i, ..., `n − 2dε

∂H

∂p
}.

Multiple crossing

We cover here how we design C when during a single step of the leapfrog algorithm multiple

edges become negative. This is visualised in Figure 5.6 and notionally represents crossing two or

more boundaries. When the edges are in two distant subtrees, crossing two boundaries in one

step is motivated by the underlying flow due to the total evolutionary distance varying much

more locally. When the edges are neighbouring the effect of the nearest neighbour interchange

on one can have considerable impact on the direction of the flow and therefore two edges should
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not be crossed at the same time.

ττ ′

τ ′′

Figure 5.6: Crossing two orthants in a single step

We now discuss a few different ways to cross multiple boundaries. We can truncate the flow so

that it only crosses into one orthant. If we adopt this method then we have to decide which

edge to prioritise and by how much to truncate the flow. The advantage of this is method is

that it simplifies the crossing algorithm and we do not skip over topologies. The disadvantage

is that the next iteration will often cross the boundary anyway. If multiple edges are assigned

negative values we have to decide on the order to cross them. An intuitive way is to cross in

order the edges hit 0. The correct ordering is important. Suppose we choose to select orthants

in an unordered manner. Unordered reflection R increases the number of potential orthants

it is possible to move into, the decision changes from 2n choices to n!2n choices, where n is

the number of orthants crossed. While this is not a problem, it isn’t a very directed approach.

Under an ordered approach the space of potential topologies reachable is greatly reduced and

is informed by the direction of travel in the original topology τ , see Figure 5.7. If the order is

ignored let a random negative edge be chosen. If P is applied as normal ignoring all other edges,

we then check to see if any edge is negative and repeat the process until there are no remaining

negative edges. Figure 5.7 demonstrates that by applying unordered projection we can transform

a negative edge to one that is positive, potentially undoing the first or most influential nearest

neighbour interchange. When order is respected, with each edge that goes negative projection

spirals towards high codimensional spaces as can be seen in Figure 5.7. This leads us to conclude

that the best approach is to simply truncate the leapfrog approximation of the flow so that it

only crosses one boundary in the rare cases when it crosses multiple boundaries.
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ττ ′

τ ′′

ττ ′

τ ′′

Figure 5.7: Here we see how an unordered projection will result in a negative edge becoming positive (left)
and how an ordered projection will result in movement towards the origin (right).

5.7.2 Continuing the Integration

Once an NNI has been conducted from a method proposed in subsection 5.7.1 we can choose to

propose the new point, or take the new point as a starting point for continuing on the leapfrog

integration, the end of which we take as the proposed point. From section 5.3 and section 2.4 of

Dinh et al. (2017) we can see it is possible to stop the integration during the integration process

upon an edge becoming negative.

5.7.3 Resetting Momenta

The momenta can be changed upon crossing a boundary. If we maintain the density then the

momenta are consistent from orthant to orthant, we can see this in Figure 5.8 in the figure titled

Free-falling. In this figure the flow starts in the black orthant with no momenta and is allowed to

flow according to the Hamiltonian without any outside influence to the momenta. We specify that

it moves towards the orthant generating the alignment, the exact tree is specified by a purple

dot. The orthant boundaries are shown in cyan. In Figure 5.8, Free-falling, we can see how if we

allow the state to free fall the momenta carry the state past the region of interest. We decided to

“parachute” the momenta where we abruptly stop the momenta i.e. set it to zero, upon entering

a new orthant, as if we pulled a parachute upon entering a new part of the atmosphere. We

can see three key effects occurring in Figure 5.8, Parachuting, the states condense, all the flows

explore the region about the tree generating the alignment and the flows spend much less time in

orthants that are not the generating orthant. In Figure 5.8 we can see that if we “parachute”

the momenta we have more rapid convergence to the correct orthant (see the scale relative to

Free-falling) and from the acceptance probability of COrtHMC we can see that moving into new

orthants is favoured since if the momenta have mean 0, resetting the momenta increases the

acceptance probability. Resetting the momenta, apart from affecting the acceptance probability,
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only really has an effect on the proposed point if we continue the integration after crossing a

codimensional boundary. This is because at the start of each HMC and COrtHMC iteration the

momenta are resampled.

5.7.4 Choosing a Topology

It is possible to enter different topologies with varying probability. We therefore have three

methods:

1. We choose with probability 1
2 one of the two new topologies to enter.

2. We choose with probability 1
3 one out of the two new topologies and the original topology

to move into.

3. We choose which new topology to move into by a ratio of the posteriors.

These all explore new topologies, focussing on only the new topologies results in greater movement

to new topologies and choosing by posterior results in favouring moves to regions with greater

posterior density. This means that for rapid convergence a posterior new topology system will be

preferable whereas once we have converged it might be better to go with a more randomized

approach. In the results section we actually see that due to the continuous nature of the posterior

across codimension 1 spaces that most crossing methods perform comparably.

Figure 5.8: This figure demonstrates the difference between parachuting and free-falling on the movement
between four topologies represented by black, red, green and blue lines in four different quadrants. The
integration starts at the black points with 0 momenta, the tree used to generate the alignment is represented
by a purple dot and is in the blue quadrant. The starting points are the same in both images, the scale
for parachuting has been expanded as it occupies approximately an eighth of the scale of free-falling. For
comparison a version to the same scale as Free-falling has been placed alongside it. The cyan lines show
codimensional boundaries. We have fixed which topology we move into at every boundary so that the
state converges to the generating topology.
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5.8 Adapting COrtHMC

When the flow remains in an orthant COrtHMC propopses the same state as standard HMC and

uses the same mechanism to propose that state. As the proposal mechanism is the same within

an orthant, pre-existing adaptations can be applied to the proposal mechanism. These adapted

proposal mechanisms leave π invariant, and 5.3 will hold for the new HMC component J . We

implemented RM-HMC, subsection 4.3.3, in particular as this improves the direction of the flow

in high dimensional spaces. We provide a brief discussion as to why we chose not to implement

NUTS. In chapter 6, we cover some issues with implementing constrained HMC. A brief overview

of constrained HMC can be found in subsection D.5.

5.8.1 RM-HMC

In tree space the computational bottleneck comes from computing the likelihood and derivatives

of the likelihood. This is because it is a recursive algorithm of order O(|χ||k|(2n− 3)|A|2) where

|χ| is the number of columns, |k| is the number of categories for the site rate parameter, 2n− 3 is

the number of edges and |A| is the size of the alphabet, in our case 4. RM-HMC requires not only

the derivative of the likelihood to be calculated but all the second derivatives of it, see subsection

4.3.3 Equation (7). This increases the total computational time by a factor of (2n− 3)2 making

it an O(n3) order algorithm. We can reduce the order by storing parts of the computation,

but it will still take more than 2n− 2 times longer than computing all the derivatives. This is

impractical for HMC as it would remove all competitiveness from the algorithm. In RM-HMC

the second derivatives are only necessary for integrating along the flow. We construct a kernel

based on that in RM-HMC, which does not require second derivatives to integrate along the flow

but produces a less exact integration.

5.8.2 Adapting RM-HMC to Tree Space

The kernel for momenta RM-HMC employs improves the exploration of HMC. Our aim is to

choose the same kernel as dictated by RM-HMC but without continually transforming it around

the space, the process that requires second derivatives. COrtHMC has obvious resemblances to

adaptive schemes when the kernel K is dependent on state z. This is the case when using the

Fisher information matrix as a covariance matrix for a normal distribution centred about the

origin. Andrieu and Thoms (2008) show that a significant issue with adaptive schemes is that

they subtly alter the invariant distribution to be dependent on the adaptation, resulting in the

incorrect distribution being targeted. Common constructions used to ensure ergodicity and that

the chain eventually targets the correct distribution require diminishing adaptation with either
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the simultaneous uniform ergodicity condition or containment condition (Roberts and Rosenthal,

2007) and (Bai et al., 2011). If we were to require these conditions for the Fisher information

matrix F we could adapt it to F by either of the following methods. We define this adapted F
here iteratively:

Fn+1 =
Fn × n+ Fn+1

n+ 1

{Fn+1}ij =

{Fn+1}
1
n
ij if i = j

{Fn+1}
1
n
ij − 1 otherwise

However we have shown in section 5.3 that COrtHMC targets the correct distribution even when

K is dependent on state z, and so do not require such an adaptive method to be implemented.

RM-HMC also has some resemblance to adaptive methods, Girolami et al. (2011) who also avoid

adapting the kernel by implicitly having the kernel as part of the state space over which they are

conducting HMC.

Computing the Fisher Information Matrix

The Fisher Information matrix can be written in the following way for an alignment X with n

columns:

Fjk =
n∑
i=1

∂ log(L(χi|x))

∂xj

∂ log(L(χi|x))

∂xk
L(χi|x)

where x is a parameter of interest.

When we compute the likelihood and the derivative with respect to a parameter we already

compute ∂ log(L(χi|x))
∂xk

. This means that we can avoid computing them again if we store the

derivatives for each χi speeding up the computation of the Fisher Information Matrix. This is

because all that is required is the final multiplication and sum, taking a minor amount of time.

Stability of the Kernel

The kernel is the covariance matrix for a normal distribution, so it is necessary for it to be

invertible. Sometimes particular derivatives can become very small and on a few runs this meant

that numerically the matrix became unstable and threw computational errors. We wish to have a

stable kernel so we decided to try two methods, both of which prevented the error from occurring

again. We call this new stabilised kernel F . These are applied globally over the algorithm to

avoid numerical issues:
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1. Fij =

Fij if i = j

0 otherwise
, and

2. Fij =

2Fij if i = j

Fij otherwise
.

5.9 Discussion of other methods

We have presented one way of constructing an algorithm to traverse Tree space using HMC. This

is not the only method available. It is possible to embed Tree space into a Euclidean space. With

this embedding we can then move in the super Euclidean space and project back into Tree space.

Another method is to “tube”. Around each orthant add an auxiliary variable creating a tube

around the orthant. The value of the auxiliary variable, for example if it is positive or negative,

dictates the chirality of the NNI transformation applied.

5.9.1 Tubing

Consider the following roughly designed proceedure. We adjoin an auxiliary variable to our state

space and define a distribution over this auxiliary variable, for example a N(0, 1) distribution.

As we run the HMC algorithm this variable generates samples from the normal distribution. The

value of this random variable dictates which orthant to move into. This is user defined. It is

preferable that the user defines the orthant moves so that returning to the same codimensional

boundary results in a new orthant being explored. The end result of this method is the longer

we spend exploring an orthant the less deterministic and more random the choice of the next

orthant is. We decided against such a method for several reasons.

1. As seen in subsection 5.1.1 the posterior directs us to the correct orthant.

2. The user defines the distribution, which effectively calibrates how quickly it transforms

from a roughly deterministic process to a random one. This can introduce unwanted biases

to the process.

3. It adds another parameter.

We summarise that tubing adds extra hassle to the process, increases computation time, and

introduces a variable which can have significantly negative impact if mishandled. To make best

use of this method, we would need a rough understanding of how long the chain spends in each

orthant, which is one of the original aims of performing the inference.
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Figure 5.9: Here we depict the open book in black. The tubes around the pages of the open book
representing the added auxiliary variable are pictured in blue. We can see two flows in green oscillating
from side to side. The side at the codimension 1 space dictates which orthant of the open book the flow
enters.

5.9.2 Embedding

We can embed Tree space into Euclidean space. We can show that the dimension of this Euclidean

space is bounded between 2n − 3, the number of edges contained in a tree in Tn and n2. To

see that Tree space Tn can be embedded into a Euclidean space of dimension n(n−1)
2 , we can

construct any tree from all the path lengths between taxa contained in the tree. We don’t know

of any embedding of order less than this.
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Figure 5.10: Here we depict Tree space in black. The Euclidean space we embed it in is pictured in blue.
We can see the flow in green is travelling in the Euclidean space. The projection from the flow to Tree
space is in red.

This method has one benefit but several reasons why it is not feasible. The benefit is that

it enables geometrically motivated topological moves that are greater than nearest neighbour

interchanges. The problem is that it requires every iteration to be projected back onto Tree

space, (this is costly and would give discontinuous flows see Figure 5.11). It requires us to define

a consistent and useful cotangent space, (this is impossible to do everywhere). On the almost

everywhere region where this is possible, the “honeycomb” structure of Tree space has to have the

distribution extended onto it. This results in a posterior function that is greatly more complex,

involving the posteriors of projections to neighbouring topologies, if it wished to be informative.

It also converts an O(n) dimensional problem into an O(n2) dimensional one. It should therefore

be clear that such a method could never hope to be competitive. In the case where the structure

is filled in by an arbitrary posterior this method would then act as a costly form of a two step

HMC within Gibbs sampler, sampling a HMC update and then a topological update.
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Figure 5.11: Here by imbedding Tree space in Euclidean space we encounter a discontinuity in the flow
when projecting from Euclidean space to Tree space..
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Chapter 6

HMC on Substitution Model

Parameters and Site Rate

Parameters

In chapter 5 we covered how we adapt HMC to work on Tree space, and in chapter 2 we covered

various parametric schemes for carrying out inference. One of the key benefits in conducting

HMC over standard Metropolis within Gibbs is that we can lift the work in chapter 5 to enable

simultaneous updates of the model parameters and the tree incorporating the dependency between

the two. The model parameters and tree are dependent on one another through the likelihood

defined in section 2.5 and so HMC provides an update which does not fall into the standard

problems Gibbs encounters with highly correlated parameters. Some adaptation is necessary to

convert the substitution model parameters and site rate parameters into a form applicable to

COrtHMC. In chapter 2 we saw that some substitution model parameters lie on the simplex and

that some lie on R+. HMC, in its basic form, acts on copies of R. This means that we have to

transform the parameters into something that HMC and CortHMC can handle.

6.1 Computing the Derivative of the Likelihood with respect to

Substitution Model Parameters

Before outlining exactly how to transform the parameters, we describe how to compute the

derivative of the loglikelihood with respect to a general substitution model parameter. Unlike

the computation in subsection 5.5 the choice of root v0 does not matter so long as it is an

internal vertex. In our code we specify a root to the tree which is used in computing the
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likelihood. We choose the root used for calculating the derivative with respect to substitution

model parameters v0 to be consistent with the root of the tree as this saves minor computational

time and stops unnecessary confusion. The time save comes from subtree likelihoods having been

already computed based on a recursion from v0 and can be reused in the derivative calculation.

We use the same notation as in 5.5. We use φ to denote a general substitution model parameter.

We discriminate between composition parameters and transition/transversion parameters later

on. Using the definition of the likelihood found in section 2.5 we compute the derivative of the

loglikelihood as follows:

∂

∂φ
log{L(X|`, τ, θ, α)} =

∂

∂φ

n∑
i=1

logP(χi|`, τ, θ, α)

=

n∑
i=1

∂
∂φP(χi|`, τ, θ, α)

P(χi|`, τ, θ, α)
.

Since ∂
∂φP(k) = 0 and from the definition of P(χi|`, τ, θ, α) in section 2.5 we have that

∂

∂φ
P(χi|`, τ, θ, α) =

∂

∂φ

∑
k∈γ

P(k)
∑
x∈A

π˜(x)Lv0(χi|x, θ, k)

=
∑
k∈γ

P(k)
∑
x∈A

[
Lv0(χi|x, θ, k)

∂

∂φ
π˜(x) + π˜(x)

∂

∂φ
Lv0(χi|x, θ, k)

]
.

There are two derivatives to compute in this calculation, ∂
∂φLv0(χi|x, θ, k) and ∂

∂φπ˜(x). Since

π˜(x) is a substitution model parameter its derivative is easy to compute. Lv0(χi|x, θ, k) is

defined in section 2.5 as
∏
u≺v

∑
y∈A

Px,y;k{`(u, v)}Lu(χi|y, θ, k). We define u ≺ v, Px,y;k{`(u, v)} and

Lu(χi|y, θ, k) at the start of 2.5. The product rule applied to ∂
∂φLv0(χi|x, θ, k) gives:

∂

∂φ
Lv(χi|x, θ, k) =

∑
u≺v

u′ 6=u∏
u′≺v

∑
y∈A

Px,y;k{`(u′, v)}Lu′i (χi|y, θ, k)


×
∑
y∈A

∂

∂φ
(Px,y;k{`(u, v)}Lu(χi|y, θ, k)) .

We are now left with the derivative ∂
∂φ (Px,y;k{`(u, v)}Lu(χi|y, θ, k)) to compute. The product

rule gives:

∂

∂φ
(Px,y;k{`(u, v)}Lu(χi|y, θ, k)) =

∂

∂φ
Px,y;k{`(u, v)}×Lu(χi|y, θ, k)+Px,y;k{`(u, v)} ∂

∂φ
Lu(χi|y, θ, k).
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We wish to compute ∂
∂φPx,y;k{`(u, v)}. This is not necessarily algebraically possible. In subsection

2.2.2 we noted that GTR does not admit ∂
∂φPx,y;k{`(u, v)} in algebraic form. We chose to use

HKY85 and we covered the algebraic form of the transition matrix for HKY85 in subsection

2.2.3. We need an algebraic form for the transition matrix rather than the rate matrix (as needed

for edges) because differentiating with respect to substitution model parameters does not have

the same nice form as differentiating with respect to edge lengths:

Px,y;k{`(u, v)} = exp{k`(u, v)Q} 6⇒ ∂

∂φ
Px,y;k{`(u, v)} = k`(u, v)Px,y;k{`(u, v)} ∂

∂φ
Q.

The analysis above tells us that ∂
∂φ log{L(X|θ)} depends on information we have previously

computed and two derivatives, ∂
∂φP(χ̂(v0) = x) and ∂

∂φPx,y;k{t(u, v)}. When we choose the

reparameterisation of the model parameters it is important that it enables us to compute these

two derivatives effectively.

We also notice that u′ 6=u∏
u′≺v0

∑
y∈A

Px,y;k{`(u′, v)}Lu′i (χi|y, θ, k)

 =
Lv0(χi|x, θ, k)∑

y∈A Px,y;k{`(u, v)}Lui (χi|y, θ, k)

since

Lv0(χi|x, θ, k) =
∏
u′≺v0

∑
y∈A

Px,y;k{`(u′, v)}Lu′i (χi|y, θ, k)

 .
When calculating the derivative for substitution parameters we do not vary v0. This means that

the numerator and the summands in the denominator have already been computed. This leads

to considerable time saving over the course of a full run of HMC.

6.2 HMC on the Simplex

In subsection 2.2.1 the simplex is defined as ∆n = {(π1, . . . , πn)|
n∑
i=1

πi = 1}. For phylogenetic

inference the base rates are positive and represent the proportion of the base occurring at

stationarity. It follows that each parameter is bounded between 0 and 1. We work with the DNA

base rate parameters πA, πC , πG and πT . These lie on ∆4. Working on the simplex complicates

HMC in two ways; the parameters do not exist on copies of R and are related by a constraint.

This constraint affects the derivative of the log-likelihood as its calculation depends on how

we decide to formulate the dependency between πA, πC , πG and πT . We tried two methods of
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transforming the parameters; a method involving trigonometric functions and constrained HMC

from Betancourt (2012) and an exponential method from Heaps et al. (2014). The method of

Heaps et al. (2014), although requiring more operations, was easier to implement and avoided

some issues that occurred.

6.2.1 Cruising the Simplex

In Betancourt (2012) the parameters πi are transformed so that y2i = πi for i = 1, . . . , n, where n

is the number of parameters lying in the simplex. The yi are then transformed using a hypersphere

transformation

yi =
n∏
j=1

sin(θj)×

cos(θi) if i < n

1 otherwise
.

In order to simplify the mathematics the θi are further transformed to zi = sin2(θi). Following

everything through we get:

πi = y2i =
n∏
j=1

sin(θj)
2 ×

cos(θi)
2 if i < n

1 otherwise

=

n∏
j=1

zk ×

1− zi if i < n

1 otherwise

⇒ zi =

1−
i−1∑
j=1

πj

1−
i∑

j=1
πj

for i < n so that there is one less zi.

The chain rule implies the derivatives with respect to the transformed variables zi are

∂f

∂zi
=

(
πi

zi − 1

)
∂f

∂πi
+

n∑
j=i+1

πj
zi

∂f

∂πj

for further details see (Betancourt, 2012).

The transformation above means that zi, like πi are bounded between 0 and 1. Hence, when

conducting HMC we require the use of constrained methods such as those described in subsection

D.5. The use of constrained HMC can cause problems when there are constraints in multiple

dimensions. When we deal with ∆4 the space for the transformed base rates is [0, 1]3. We shall

describe the problem in terms of [0, 1]2 to allow illustration.
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Figure 6.1: This figure exaggerates the flaw of constrained HMC that can result in the chain getting stuck.
The density is depicted by the ellipses, the various arrows depict possible paths under constrained HMC
from the original state in purple. We can see here that even if we propose moving towards regions of high
density the dynamics involved can result in catapulting the point to a region of low density.

When conducting HMC using a numerical integrator it is important to choose the correct stepsize,

too small and exploration is slow, too large and the integration error will continuously reject

proposals. Constrained HMC can increase the integration error and therefore aggravate any issue

caused by too large a stepsize. The large and mostly unknown nature of the posterior over tree

space means that appropriately adapting the stepsize to deal with this issue is difficult. We have

found that the optimum stepsize does vary over Tree space. Constrained HMC is particularly

problematic because of a dissociation from the underlying principals of HMC. In constrained

HMC the gradient informs the integration along a flow faithfully up until the boundary is hit.

Once the boundary is hit, unlike when hitting a codimension-1 boundary in Tree space, most

methods of constrained HMC switch from one integral curve to another. Different integral curves

hae different values for the Hamiltonian and different derivates of the Hamiltonian. This means

that constrained HMC can cause us to continuously land in regions of low density. At this

point the algorithm gets stuck for a period of time before moving on. Such stepsize problems

appear throughout HMC. The issues depicted in Figure 6.1 only become more extreme in higher

dimensions.

Constrained HMC has some similarities to COrtHMC in the above. We also allow the flow to

switch from one integral curve to another in COrtHMC. This is done in the crossing kernel C of

Algorithm 7. As a consequence we can create choices of kernel that produce poor results. We

notice that in the choices of crossing kernel we provide the proposed point always attemps to

102



Chapter 6. HMC on Substitution Model Parameters and Site Rate
Parameters 103

maintain the marginal density π(z) and never to decrease the density of π(z, p). This avoids

the above problem and may even improve mixing. We preserve the density by maintaining the

gradient of the parameters from one step to the next.

The transformation in Betancourt (2012) is computationally cheap. The method requires

the parameters to be constrained to a cube. As a form of constrained HMC it can encounter

the problems depicted in Figure 6.1. In phylogenetics the substitution model parameters are

dependent on the tree. After each step the distribution changes and may vary substantially

between topologies, which makes accepting new states in different topologies particularly difficult.

Hence constrained HMC schemes such as that of Betancourt (2012) may require locally very

different stepsizes to avoid a lack of mixing. This problem is further aggravated in the case of

small alignments as it is common for the likelihood to dictate that a lot of the density is situated

close to the boundary of the simplex and therefore close to the boundary of the transformed space

in Betancourt (2012). This means in situations where the alignment is small the transformation

in Betancourt (2012) loses efficiency. We note that in inference on Tree space the bottleneck

in the computation is in the likelihood. This means the marginal gains from performing the

transformation in Betancourt (2012) are not worth the time it spends stuck. To avoid the above

issue we decided to use a different transformation.

It may be of interest that Lan et al. (2013) covers a method that removes the constraints

by transitioning in a similar way to a spherical system. We decided against this approach as we

had doubts about the possibility of using it in conjunction with our form of RM-HMC.

6.2.2 The Farrow Transformation

Instead of the transformation found in Betancourt (2012) we chose to use the transformation

found in Heaps et al. (2014). We call this transformation the Farrow transformation, after

Malcolm Farrow the famous Bayesian Statistician.

Definition (The Farrow Transformation). It is F is a map from Rn−1 to the n-dimensional

simplex

∆n = {π :
n∑
i=1

πi = 1}.

We define the Farrow transformation F as the composition of a linear map H sending Rn−1

to the hyperplane {(a1, ..., an)|a1 + ... + an = 0} ⊂ Rn and another transformation F taking
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{(a1, ..., an)|a1 + ...+ an = 0} to ∆n so that:

F(β) = F(Hβ).

The matrix for H is the n× n− 1 dimensional matrix

hij =


0 if i < j

dj if i = j

−dj/(n− j) if i > j

where

d1 = 1 & dj = dj−1

√
1− 1

(n− j + 1)2
, j = 2, . . . , n− 1.

It can be shown that
∑n

i=1 hij = 0 and therefore Hβ is an n dimensional vector which sums to 0.

We now define the transformation F to be:

F(a) =

(
exp(a1)∑n
i=1 exp(ai)

, . . . ,
exp(an)∑n
i=1 exp(ai)

)
.

We notice that for each i, 0 < exp(ai)∑n
j=1 exp(aj)

< 1. This means that this transformation never maps

to the boundary case πi = 0 or πi = 1. This in turn means that the transformed derivative is not

inclined to map to the boundary.

Theorem 6.1. The Farrow transformation is bijective.

Proof. (Injectivity)

We are going to show that if F(β) = F(β′) then β = β′. First we show that F(a) = F(a′)

implies a = a′ for a ∈ {(a1, ..., an)|a1 + ... + an = 0}. We then show that Hβ = Hβ′ implies

β = β′.

Suppose F(a) = F(a′), where a and a′ are in {(a1, ..., an)|a1 + ... + an = 0}. This means

that:

exp(ai)∑n
j=1 exp(aj)

=
exp(a′i)∑n
j=1 exp(a′j)

for all i = 1, . . . , n, which implies exp(ai) = c exp(a′i) for all i and hence ai = a′i + c′ for some

constant c′.
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As 0 =
∑n

i=1 ai =
∑n

i=1 a
′
i by nature of ai and a′i being in {(a1, ..., an)|a1 + ... + an = 0}

and as ai = a′i + c′ we can conclude c′ = 0.

n∑
i=1

ai =

n∑
i=1

a′i + c′

0 =

n∑
i=1

a′i + c′

0 = nc′ +

n∑
i=1

a′i

0 = nc′.

If c′ = 0 then a = a′ and F is injective.

We now need to show that H is injective. Suppose Hβ = Hβ′, then we get the following

equations:

d1β
′
1 =d1β1

− d1
n− 1

β′1 + d2β
′
2 =− d1

n− 1
β1 + d2β2

...

− d1
n− 1

β′1 −
d2

n− 2
β′2 . . .−

dn−2
2

β′n−2 + dn−1β
′
n−1 =− d1

n− 1
β1 −

d2
n− 2

β2 . . .−
dn−2

2
βn−2 + dn−1βn−1

− d1
n− 1

β′1 −
d2

n− 2
β′2 . . .−

dn−2
2

β′n−2 − dn−1β′n−1 =− d1
n− 1

β1 −
d2

n− 2
β2 . . .−

dn−2
2

βn−2 − dn−1βn−1.

As di is non-zero for all i, β1 = β′1. We now assume βi = β′i for all i < j and show that βj = β′j .

− d1
n− 1

β′1 −
d2

n− 2
β′2 . . .−

dj−1
n− j + 1

β′j−1 + djβ
′
j =− d1

n− 1
β1 −

d2
n− 2

β2 . . .−
dj−1

n− j + 1
βj−1 + djβ

′
j

which by supposition is equal to

− d1
n− 1

β1 −
d2

n− 2
β2 . . .−

dj−1
n− j + 1

βj−1 + djβj

and as dj is non-zero

β′j = βj .
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Hence by induction β = β′, meaning H is injective. The composition of two injective functions is

also injective so F = F ◦H is injective.

(Surjectivity)

We show that F is surjective by construction. First we construct a such that a = π. Let

ai = log

 πi(
n∏
i=1

πi

)1/n

 for 1 ≤ i ≤ n

Applying F(a)i gives

πi =
πi(

n∏
i=1

πi

)1/n

/
n∑
j=1

πj(
n∏
i=1

πi

)1/n
.

Pulling out the product from the denominator gives:

F(a)i =
πi
n∑
j=1

πj

.

As
n∑
j=1

πj = 1 this gives πi showing that F is surjective. We now show that H is surjective onto

{(a1, ..., an)|a1 + ...+ an = 0}.

We wish to find β so that a = Hβ. The system of n linear equations a = Hβ, is in n−1 variables,

the di are non-zero. This means that if we think of the first n − 1 linear equations, Gaussian

elimination gives βi for i = 1 to n− 1. As H maps from Rn−1 to {(a1, ..., an)|a1 + ...+ an = 0}
this is sufficient and H is surjective.

To show that H maps Rn−1 to {(a1, ..., an)|a1 + ...+ an = 0} all we have to show is an = −
n−1∑
i=1

ai
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where an = −dn−1βn−1 −
∑n−2

j=1
dj
n−jβj and ai = diβi −

∑i−1
j=1

dj
n−jβj for all i < n.

−
n−1∑
i=1

ai =−
n−1∑
i=1

diβi −
i−1∑
j=1

dj
n− j

βj

=−
n−1∑
i=1

diβi −
∑
j<n−i

di
n− i

βi

=−
n−1∑
i=1

diβi −
(n− i− 1)di

n− i
βi

=−
n−1∑
i=1

di
n− i

βi

=an

Since H and F are surjective F is.

As F is both injective and surjective it is bijective.

Composition parameters and the Farrow transformation

In this subsection we cover how to transform the base rates by the Farrow transformation. The base

rates πA, πG, πC , and πT exist on the 4 dimensional simplex ∆4 such that πA+πG+πC +πT = 1.

The Farrow transformation provides a method to transform the space that generates a space

where HMC can easily be run.

In this case:

H =


1 0 0

−1/3
√

8/9 0

−1/3 −
√

2/9
√

2/3

−1/3 −
√

2/9 −
√

2/3


The columns sum to 0.
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We now have the following relationships between α and β.

α1 =β1 β1 =α1

α2 =− β1
3

+

√
8

9
β2 β2 =

α2 + α1
3√

8/9

α3 =− β1
3
−
√

2

9
β2 +

√
2

3
β3 β3 =

α3 + α1
3 +

α2+
α1
3

2√
2/3

α4 =− β1
3
−
√

2

9
β2 −

√
2

3
β3 =−

α4 + α1
3 +

α2+
α1
3

2√
2/3

Hence we can express πA, πG, πC , and πT in terms of β: Let:

S = exp(β1) + exp(−β1
3

+

√
8

9
β2) + exp(−β1

3
−
√

2

9
β2 +

√
2

3
β3),

+ exp(−β1
3
−
√

2

9
β2 −

√
2

3
β3)

then:

πA =
exp(β1)

S
πG =

exp(−β1
3 +

√
8
9β2)

S

πC =
exp(−β1

3 −
√

2
9β2 +

√
2
3β3)

S
πT =

exp(−β1
3 −

√
2
9β2 −

√
2
3β3)

S
.
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Hence we can compute the derivatives of πA, πG, πC , and πT with repect to β1, β2, and β3.

∂πA
∂β1

=πA

(
1− πA +

1

3
(πG + πC + πT )

)
∂πA
∂β2

=−
√

2

9
πA (2πG − πC − πT )

∂πA
∂β3

=−
√

2

3
πA (πC − πT )

∂πG
∂β1

=− πG
3
− πG

(
πA −

πG
3

+
πC
3

+
πT
3

) ∂πG
∂β2

=

√
8

9
πG −

√
2

9
πG (2πG − πC − πT )

∂πG
∂β3

=−
√

2

3
πG (πC − πT )

∂πC
∂β1

=− πC
3
− πC

(
πA −

πG
3

+
πC
3

+
πT
3

) ∂πC
∂β2

=−
√

2

9
πC −

√
2

9
πA (2πG − πC − πT )

∂πC
∂β3

=

√
2

3
πC −

√
2

3
πC (πC − πT )

∂πT
∂β1

=− πT
3
− πT

(
πA −

πG
3

+
πC
3

+
πT
3

) ∂πT
∂β2

=−
√

2

9
πT −

√
2

9
πA (2πG − πC − πT )

∂πT
∂β3

=−
√

2

3
πT −

√
2

3
πT (πC − πT ) .

In subsection 2.2.3 we see that for HKY85 model the transition matrix takes the following form:

Let πR = πA + πG πY = πC + πT

yr = πY /πR ry = 1.0/yr

e2 = exp(−βt) e3 = exp(−(πRα+ πY β)t)

e4 = exp(−(πY α+ πRβ)t)

then:

P (t) = exp(tQ) has the form

· A C G T

A πA + πAyre2 + πG/πRe3 πC(1− e2) πG + πGyre2 − πG/πRe3 πT (1− e2)

C πA(1− e2) πC + πCrye2 + πT /πY e4 πG(1− e2) πT + πT rye2 − πT /πY e4

G πA + πAyre2 − πA/πRe3 πC(1− e2) πG + πGyre2 + πA/πRe3 πT (1− e2)

T πA(1− e2) πC + πCrye2 − πC/πY e4 πG(1− e2) πT + πT rye2 + πC/πY e4

.
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This means we can compute the derivative of P with respect to βi, and so we have everything

needed for the derivative calculation in section 6.1.

∂πR
∂βi

=
∂πA
∂βi

+
∂πG
∂βi

∂πY
∂βi

=
∂πC
∂βi

+
∂πT
∂βi

∂e1
∂βi

= 0
∂e2
∂βi

= −(
∂πR
∂βi

λ+
∂πY
∂βi

)t exp(−(πRλ+ πY )t)

∂e3
∂βi

= −(
∂πR
∂βi

+
∂πY
∂βi

λ)t exp(−(πR + πY λ)t)

We can also apply the chain rule to get the derivative of any function f with respect to βj instead

of πi
∂f

∂βj
=
∑
j

∂f

∂πi

∂πi
∂βj

.

This reparameterisation affects the derivative, we now infer over β1, β2 and β3. The choice of

reparameterisation affects how the derivative with respect to β1, β2 and β3 interacts with the

parameters πA, πC , πG and πT . Since the Farrow transformation does not map to the boundary,

the derivative avoids the boundary. This is a good feature for HMC as we do not wish to propose

points on the boundary.

6.3 HMC on R+

The transition-transversion parameters and α are positive real parameters. We choose to conduct

HMC on R+ by means of the log transformation, φ ∈ R+ ⇒ log(φ) ∈ R. This means that

∂f

∂ log(φ)
= φ

∂f

∂φ
.

6.4 Computing the Derivative with Respect to Site Rate Parameters

To compute the derivative with respect to site rate parameters we start with the same formulation

of the likelihood as in section 6.1. We differentiate with respect to the site rate parameter α.

Taking the derivative of the Likelihood as defined in section 2.5 with respect to α we get:

∂

∂α
log{L(X|θ)} =

∂

∂α

n∑
i=1

logP(χi, |θ)

=

n∑
i=1

∂
∂αP(χi, |θ)
P(χi, |θ)
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We now expand P(χi, |θ) =
∑

k∈γ P(k)
∑

x∈A Lv0(χi|x, θk)P(χ̂(v0) = x):

∂

∂α
P(χi, |θ) =

∑
k∈γ

P(k)
∑
x∈A
Lv0(χi|x, θk)

∂

∂α
P(χ̂(v0) = x)

+ P(χ̂(v0) = x)
∂

∂α
Lv0(χi|x, θ, k)

+
∑
k∈γ

∂P(k)

∂α

∑
x∈A
Lv0(χi|x, θk)P(χ̂(v0) = x). (1)

We know that ∂
∂αP(χ̂(v0) = x) = 0 and hence that the first term can be removed:

∂

∂α
P(χi, |θ)

=
∑
k∈γ

P(k)
∑
x∈A

P(χ̂(v0) = x)
∂

∂α
Lv0(χi|x, θ, k) +

∑
k∈γ

∂P(k)

∂α

∑
x∈A
Lv0(χi|x, θk)P(χ̂(v0) = x)

As with the substitution model parameter derivative calculation we expand and differentiate

Lv(χi|x, θ, k).

∂

∂α
Lv(χi|x, θ, k) =

∑
u≺v

u′ 6=u∏
u′≺v

∑
y∈A

Px,y;k{t(u′, v)}Lu′i (χi|y, θ, k)


×
∑
y∈A

∂

∂α
(Px,y;k{t(u, v)}Lu(χi|y, θ, k))

We expand ∂
∂α (Px,y;k{t(u, v)}Lu(χi|y, θ, k)) by the product rule:

∂

∂α
(Px,y;k{t(u, v)}Lu(χi|y, θ, k))

=
∂

∂α
Px,y;k{t(u, v)} × Lu(χi|y, θ, k) + Px,y;k{t(u, v)} ∂

∂α
Lu(χi|y, θ, k)

With substitution model parameters we noticed that the nature of Q meant that we could

not trivially compute ∂
∂φPx,y;k{t(u, v)} whereas with the site rate parameter this is no longer a

problem and so the derivative behaves like an edge length.

Px,y;k{t(u, v)} = exp{kt(u, v)Q} ⇒ ∂

∂α
Px,y;k{t(u, v)} =

∂k

∂α
t(u, v)Px,y;k{t(u, v)}Q. (2)

The above analysis shows that two derivatives must be calculated, ∂P(k)
∂α from (1) and ∂k

∂α from

(2). In section 2.4 we have seen that k is fixed at various levels and α generates a fixed gamma
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distribution with shape and rate α. We use this information to compute ∂k
∂α and ∂P(k)

∂α from it.

We first show how to compute ∂P(k)
∂α if we have ∂k

∂α available.

P(k) =
ααkα−1 exp(−αk)

Γ (α)

We can take the derivative:

∂P(k)

∂α
=

∂

∂α

ααkα−1 exp(−αk)

Γ (α)

We now use the chain rule:
P(k)

∂α
=
∂P(k)

∂k

∂k

∂α
.

∂P(k)

∂α
=
∂k

∂α

∂

∂k

ααkα−1 exp(−kα)

Γ (α)

=
∂k

∂α

αα(α− 1)kα−2 exp(−αk) + ααkα−1 exp(−αk)

Γ (α)
.

This means that once we have ∂k
∂α we can compute ∂P (k)

∂α .

We now focus on computing ∂k
∂α . We first explain the difficulty in calculating ∂k

∂α and then

explain our solution. k is the solution to the cumulative density function at a particular point c.∫ k

0

ααxα−1 exp(−αx)

Γ (a)
dx = c.

We apply the fundamental theorem of calculus to get F (k) − F (0) = c for some F and that

k = F−1(c+ F (0)). Standard theory tells us that F is

F (x) =

∫ αx
0 tα−1e−tdt

Γ (α)

so that F (0) = 0. The integral is continuously differentiable since tα−1e−t is. We can apply the

I.V.T. to find that the derivative of ∂F−1(c)
∂α in terms of the derivative of F with respect to α.

This requires a numerical solution, hence if we want to incorporate gamma rate heterogeneity we

need to employ a numerical approximation.

We now describe the numerical approximation. In Phylogenetics there are characteristic choices
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for c which depend on how many partitions of the interval (0, 1) are required, these are found by

approximating the value across the interval by the value in the middle. It is common to partition

the interval into powers of 2 and rarely are more than 8 partitions put into practice. We used a

standard approximation,
∂k(α)

∂α
≈ k(α+ h)− k(α− h)

2h

for small h. As stated in subsection 2.4 we chose h = 0.001. We decided to take values between

0 and 6 as the derivative became fairly consistent, changing in the 4th significant figure, we

approximated greater values of α by the final value at 6.

We decided not to go with a linear approximation to compute the derivative with respect

to α for values greater than 6. If we were to go with a decreasing scheme in the tail rather than

a flat approximation the gradient would be smaller in the tail, resulting in proposals staying

in this region of low density as the gradient along with the momenta dictate the change in

the proposal. Furthermore it is in a region where the CortHMC should rarely visit due to the

Metropolis-Hastings acceptance step rejecting most of the moves to such a region. It can be

seen when the Alignment is not very informative causing α to reach values far above something

realistic. At this point α is effecting the gamma-distribution in such a way that all columns of

the alignment have approximately the same evolutionary rate.
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Results
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Chapter 7

Results

We wish to compare and contrast COrtHMC with existing Metropolis within Gibbs techniques

(see chapter 3). We implemented COrtHMC in our project COrtHMC dependent on PhyloCore.

All runs are conducted either in COrtHMC or in PhyloCore for comparison, we do this as to

maintain a comparitive level of optimisation and to run code using the same language. We

split every run into lots of short runs stitched together, for ease of storage and to manually

perform garbage collection. In this section we use several artificial alignments over which we

design an optimal version of COrtHMC. We then compare COrtHMC with Metropolis within

Gibbs for our artificial alignments and an alignment from MrBayes (Huelsenbeck and Ronquist,

2001). We first specify the alignments and priors we use. We then move on to demonstrate that

COrtHMC does in fact target the correct distribution as a means to inspire confidence in our

technique. COrtHMC requires specification of lots of tuning parameters and various crossing

methods are available to the practitioner. To simplify things for the reader we shall split the

design of COrtHMC into two parts. The first parts deals with the parameters required for J , the

“HMC” component of COrtHMC, see section 5.2. These are the choice of integrator and choice

of momenta kernel. Since we use the leapfrog integrator the tuning parameters involved in the

choice of integrator are the step-size and number of steps. The second part covers the different

choice of crossing kernels.

7.1 Data, Priors and Testing

We consider COrtHMC on several alignments constructed from synthetic trees with 5, 16, and 32

taxa, constructed using the package “ape” (Paradis and Schliep, 2018). We also specify priors for

the edges, both internal and pendant, substitution model parameters and site rate parameters.

Where possible, priors commonly adopted in the literature are used.
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7.1.1 Alignments

We denote the alignments generated with n sites for 5, 16 and 32 taxa as An5 ,An16, and An32
respectively. We also use the primate alignment from MrBayes, denoted Ap, as this alignment

is not generated from a tree we include the alignment in Appendix E. Each alignment is fixed

throughout the testing process. The alignments were all generated using a HKY85 substitution

model with base rates πA = 0.4, πC = 0.1, πG = 0.2 and πT = 0.3 and a transition transversion

ratio of 1.5 and a discrete gamma site rate heterogeneity with α = 0.5. We assume a HKY85

model and a discrete gamma model throughout this section.

We used 3 different trees to construct the alignments for the 5, 16 and 32 taxa trees. All

alignments A5 were constructed from the random tree

Figure 7.1: The alignment generating tree for 5 taxa.

We generated two alignments from this tree denoted A100
5 and A1000

5 . For the A16 alignments we

used the random tree
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Figure 7.2: The alignment generating tree for 16 taxa.

Finally, all A32 alignments were constructed from the random tree

Figure 7.3: The alignment generating tree for 32 taxa.

7.1.2 Priors

We adopted an independent prior specification across internal and pendant edges. For the former

we specified Γ (0.01, 10) distributions and for the latter, Γ (0.1, 1) distributions.

We chose this specification because we observed very different behaviour on internal edges

when compared to pendant edges. COrtHMC is dependant on the derivative of the posterior. The

derivative of the prior influences this derivative according to the product rule. For the Gamma
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distribution the derivative is
∂Γα,β(`)

∂l
=
α− 1

`
− 1

β
.

Looking back at the leapfrog integrator, (see section 4.3.1) we can see that the momenta is

transformed by subtracting a small step along the derivative of the Hamiltonian with respect to

the parameters and then the parameters add on a small step of the derivative of the Hamiltonian

with respect to the momenta. For a normal distribution this derivative is Σ−1p where Σ is the

covariance matrix. Taking Σ = I allows us to easily understand how problems occur. For small

values of `
∂Γα,β(`)

∂l
≈ α− 1

`

As α gets smaller
∂Γα,β(`)

∂l decreases meaning that the change in momenta p increases. The choice

of α = 1 is convenient because this term disappears but still results in
∂Γα,β(`)

∂l = − 1
β < 0. This

means that the prior is informing us that we should be moving away from any codimensional

boundary. By choosing α > 1 the prior now favours crossing codimensional boundaries for small

edge lengths. As we wish to explore tree space by crossing boundaries we opt to use a prior

that says such movement is possible rather than one that says it ought not occur. This is also

consistent with the continuous nature of the likelihood. The likelihood states that two points

infinitesimally close to each other but either side of the boundary are effectively the same and so

evolution from one to the other should not be much harder than large jumps within an orthant.

Such a poorly designed prior is demonstrated in Fig 7.4 where we can see changes in topology by

changes in colour.
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Figure 7.4: Trace plots of the log-posterior showing different numbers of topological crossings when using
a Dirichlet distribution with α = 0.01. The first figure changes topology once, the second with α = 1 often
changes topology as can be seen by the various different colours. (We used A1000

5 to generate these trace
plots.)

We opt to use a Dirichlet prior for the base rates with all the concentration parameters fixed at

0.25. A Dirichlet prior is a prior on the simplex given by a Dirichlet distribution. The choice of

0.25 makes sense as we have no reason to presume that any base occurs more often than any

other base. We used an inverse gamma prior for the transition transversion ratio with α = β = 2

to have a mean of 2. While we decided to use this prior for the TT ratio we find that we are

actually giving a lot of information to COrtHMC, for example that the most likely value for the

TT ratio is 2
3 . To get around this abundance of information we provide an alternative prior.

Let c = 1
2(b−a)/(2

1√
2π

) + 1/2 + 1
2(b−a)/(2

(a+1)aa−a−1 exp(−a+1
a

Γ (a) ) then

P(x|a) =


c 1
2(b−a)a−a−1 exp(−a+1

a
)
x−a−1 exp(−a+1

x ) if x < a

c 1
2(b−a) if a < x < b

c 1
2(b−a) exp

(
−(x− b)2

)
otherwise

.

This prior is constructed piecewise by first using an inverted gamma distribution, the a uniform

distribution and finally a normal distribution, such that they are all smoothly connected. The

middle uniform distribution means that the user can abdicate all knowledge of the transition

transversion ratio for a region, (a, b), while allowing the ratio to lie anyway on R+. This prior is

also similar to the inverse gamma prior in that high values and low values, corresponding to all

transitions or all transversions, are increasingly unlikely. We chose not to use this prior as it is
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complicated and while the mean is at (a+ b)/2 it is an unknown distribution and therefore we

avoid it.

Finally, we used an exponential Exp(0.5) prior for the site rate parameter α.

We note that unlike standard Metropolis within Gibbs, the statistical efficiency of COrtHMC is

likely to be particular sensitive to the choice of prior. When the shape parameter in the gamma

distribution is greater than or equal to the scale parameter the probability density tends to 0 as

the random variable does. This dominates the posterior causing the posterior density to also

tend to as the random variable does. The positive nature of the gradient near 0 values also is

inherited by the posterior from the prior in this case. The resulting effect is as the proposal

gets closer to crossing a codimensional boundary the prior moves the proposal away from the

boundary. This means that to overcome this effect and propose a point in a new topology large

momenta is required which will often compound the error in the integration meaning that new

topologies are proposed rarely, limiting exploration and convergence.

7.1.3 Testing COrtHMC

To test COrtHMC we ran it on a known target distribution. We targeted the distribution

comprising of the priors outlined in subsection 7.1.2. To do this we turned off the likelihood

so that the posterior is completely dictated by the prior. Below we compare the results of

COrtHMC, in blue, with the theoretical result depicted, in red. We do this by looking at the

three graphs in Fig: 7.5. The first graph is diagnostic and depicts the trace plot, which gives

an idea of how the parameter mixes and whether it gets stuck at particular values. The second

plot plots the autocorrelation against lag which shows how correlated one sample is to the next,

the faster the autocorrelation function (ACF) drops to 0, the less correlated the samples are

and the more effective samples are produced, a number related to the number of independent

samples. The final plot in Fig: 7.5 is the most important in demonstrating the correctness of

COrtHMC. In each plot the theoretical density plot for the prior is depicted in red and the

estimated density is drawn on it in blue. We can see that the prior for edges here is our standard

prior for internal edges Γ (10, 0.01) and the prior for piG is our standard Dirichlet prior. When

these align we know that COrtHMC correctly samples from the prior. Here we provide the three

plots for a couple of different parameters as all parameters produced similar results. The ACF

plots for the substitution model parameters demonstrate that the samples are more correlated

from one iteration to the next. The ACF here is greater than that expected in MCMC due to

the correlated nature of HMC but also could be due to a lack of sufficient tuning. The density
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plots demonstrate that the algorithm correctly targets the posterior as the inferred density (blue)

agrees with the true density (red).

Figure 7.5: Plots for each parameter. Left: Trace plot depicted in blue, Middle: Autocorrelation in red,
Right: Density in blue and red.

7.1.4 Prior Sensitivity

In this section we compare the effect of different priors on mixing performance. We consider the

prior specification discussed in section 7.1.2 and an improper prior that is globally uniform. We

find that priors can alter the mixing of COrtHMC as can be seen in Figure 7.6 and can override

the information in the likelihood as in Figure 7.7.

121



Chapter 7. Results 122

0 10000 20000 30000 40000 50000

0.
30

0.
35

0.
40

0.
45

0.
50

Plot of a Base Rate

Iteration

pi
 A

0 10000 20000 30000 40000 50000

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

Plot of a Base Rate

Iteration

pi
 A

Figure 7.6: Informative vs Improper Priors. Here we see the different mixing of πA using A100
5 . The

informative prior is on the left and exhibits poorer mixing than the improper prior on the right, both
explore multiple topologies but the graph of the informative prior spends more time in the correct topology,
as can be seen by the high percentage of black. The colours denote the topological distance from the tree
used to generate A100

5 , Fig: 7.1.
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Figure 7.7: Informative vs Improper Priors. The improper prior is depicted on the left anad informative on
the right. We can see that an informative prior acts to return the transition-transvertion ratio to a more
confined region whereas and improper prior can cause extreme exploration around less informative areas.
The informative prior effectively explores the prior for the gamma rate heterogeneity without exploring
region about α = 0.5 whereas the improper prior provides better exploration.

As two different posteriors are being compared it makes no sense to talk about comparative

effective sample sizes. As the alignment length increased the importance of the prior decreased

as can be seen in column sensitivity.
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7.1.5 Column Sensitivity

The alignment length is not user defined but has an effect on the posterior via the likelihood.

As the alignment length is the amount of data available, increasing the length increases how

informative the likelihood is. This affects some parameters to a greater degree than others in

particular the site rate heterogeneity. For smaller alignments the site rate heterogeneity parameter

α is unbounded as there is not enough information available to specify how the site rate changes

over sites. To see this consider the extreme example with only 1 site, in such a situation α could

be anything. Referring back to section 2.4 this is equivalent to site rate homogeneity as the

gamma distribution becomes more diffuse.
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Figure 7.8: Two plots of the log-posterior for differing alignment lengths. On the left plot was generated
from A1000

5 and the right the alignment has length A100
5 . The more informative alignment focusses the

chain to within a single orthant and provides a more informed path.

In Figure 7.8 there are two things to notice. First the alignment of length 1000 has a posterior

varying by approximately ±20 whereas in an alignment of length 100 the posterior varies by

approximately ±10 but as a percentage of the posterior it is 0.6% and 3%. The second thing

to notice is that the chain does not leave the correct topology (depicted in black) when the

alignment is length 1000 but does for the shorter alignment.

7.2 Specifying the HMC component: J from section 5.2

7.2.1 Inverted vs Standard Leapfrog integration

The first thing we want to compare is the inverted leapfrog integrator in section 4.3.1 to the

standard leapfrog integrator. We found that the inverted leapfrog integrator provided significant

speed up when we ran COrtHMC over more complicated trees. Although we expected a factor of

123



Chapter 7. Results 124

(5 taxa)
Standard Inverted

Edges Parameters Posterior Edges Parameters Posterior

ESS 570 8.9 540 2000 7.6 740
ESS / s 0.11 0.0017 0.10 0.37 0.0014 0.13

(16 taxa)
Standard Inverted

Edges Parameters Posterior Edges Parameters Posterior

ESS 370 58 102 730 120 170
ESS / s 0.012 0.0019 0.000042 0.019 0.0031 0.0044

Figure 7.9: Comparison of the effective sample size for Inverted vs Standard leapfrog integrators.

2 increase in CPU time, some of the time saved in not needing to compute as many derivatives

was spent updating the parameters in storage. For less complicated trees, when the likelihood

calculation has a less expensive time cost than inverting the momenta kernel, the inverted leapfrog

integrator can be detrimental, for the simplest 5 taxa tree we found that the time taken for the

inverted compared to the standard leapfrog was comparable. As most trees will have significantly

more than 5 taxa, increasing the likelihood time cost above that of the momenta kernel, we

would recommend always using the inverted leapfrog integrator, but do use the standard leapfrog

integrator for testing, we decided to do so as to maintain a consistent base for our testing only

varying one part at a time. We can see the benefit as the inverted leapfrog integrator on 16 taxa

outperformed the leapfrog integrator we saw a 3 : 4 ratio in the time taken or a speed up of

roughly 25%. For most trees it provides effective speed up. In Figure 7.9 we see that both the

leapfrog and inverted leapfrog produce an approximately equivalent effective sample size. We

conducted the experiments with 16 and 32 taxa and received similar results to that of the 5 taxa

tree, see appendix E. For ease of reading we only reproduce the results of the 5 taxa tree when

this is the case but the data is available if required.

7.2.2 Step Number Sensitivity

We tested several different step numbers, l in section 4.3.1. As can be expected the time cost

increased linearly as we increased the number of steps. Due to this we stopped testing after l = 8

as it became apparent that the cost was not being outweighed by the gain in ESS.
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(5 taxa)

One Step Two Steps

Edges Parameters Posterior Edges Parameters Posterior

ESS 570 8.9 540 240 6.1 19

ESS / s 0.11 0.0017 0.10 0.026 0.00066 0.0020

(5 taxa)

Three Steps Four Steps

Edges Parameters Posterior Edges Parameters Posterior

ESS 120 15 660 760 7.3 130

ESS / s 0.090 0.0011 0.050 0.043 0.00041 0.071

(5 taxa)

Eight Steps

Edges Parameters Posterior

ESS 100 11 900

ESS / s 0.033 0.00033 0.025

Figure 7.10: Comparison of the effective sample size for various different numbers of steps in the leapfrog
integrator.

The above tables show that the one step MALA process produces the best ESS / s followed

either by the 3 step process for a 5 taxa tree. We found for the 16 and 32 taxa case that 3 steps

produced the best results. We did not run 8 steps for the 32 taxa case as this would have taken

a significantly longer run time when it was clear from the 16 taxa case that 8 steps would not be

the best performing example. As 3 steps performed comparatively to 1 in the 5 taxa case we opt

to try both for our final analysis.

7.2.3 Step Size Sensitivity

While we found that there were many different ways of generating ε. The best approaches

were had with a manual grid approach similar to that suggested in Neal et al. (2011). The

problem with this approach is that it required a lot of user input as the granularity of the grid to
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(5 taxa)
Fixed Blackbox Adaptive Blackbox

Edges Parameters Posterior Edges Parameters Posterior

ESS 960 15 58 790 11 74
ESS / s 0.30 0.0047 0.018 0.17 0.0024 0.016

Figure 7.11: Comparison of the effective sample size for various different numbers of steps in the leapfrog
integrator.

search over differs depending on the number of taxa in the tree. We therefore constructed two

blackbox methods based on the heuristic algorithm in Hoffman and Gelman (2014) as described

in subsection 4.3.2. The two blackbox methods differed in that one enabled an adaptive stepsize.

The two blackbox methods use the same method to choose an appropriate ε but one uses an

adaptive scheme to alter ε throughout the run to slightly improve the results. To construct the

adaptive scheme we make sure that we satisfy the simultaneous uniform ergodicity condition

and diminishing adaptation condition found in Roberts and Rosenthal (2007). To construct the

blackbox scheme we use the method found in Hoffman and Gelman (2014). We can see that both

blackbox methods produce results that work.

We also tested how stepsize changes with the number of taxa by simulating some data for

a random 20 taxa tree, Figure 7.12. We then removed data from the alignment associated with

each pendant as we pruned the tree. We then used the specifically constructed tree in Figure

7.13 as the initial tree around which we found the optimum stepsize. We choose this tree because

we could prune off pendant edges while maintaining a similar structure, and all edge lengths are

the same which removes the impact of different edge lengths different topological importance in

the pendant edges. We found that as the number of taxa increases the stepsize has to decrease

which makes sense as the logposterior decreases.
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Figure 7.12: Here is the tree used to generate the alignment we used to test the effect of taxa on stepsize.

Figure 7.13: We see the tree used for the experiment and the relationship between stepsize and the number
of edges.

While more taxa results ina a lower optimum stepsize as seen in Fig: 7.13 when we compare the

acceptance rate to the logposterior we find a linear relationship, Fig: 7.14, the acceptance rate is

inversely related to the stepsize and the and the logposterior is inversely related to the number

of taxa.
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Figure 7.14: Here we see that acceptance rate has a linear relationship with the log-posterior.

7.2.4 Different Choices of Kernel for the Momenta

In Girolami et al. (2011) they adapt HMC for a position dependent momenta kernel, we produced

a similar scheme that loses some accuracy in the integration in order to avoid the computational

cost in computer the second order derivatives. As with Girolami et al. (2011) and Betancourt

(2013) we tried using the Fisher information matrix, G. We encountered problems with this

approach due to numerically errors during the run resulting in eigenvalues too close to 0. To

counteract the issue we decided upon trying two different forms of the Fisher information matrix,

the diagonal Fisher and the stabilised Fisher

Diagonal {Gd}ij = δijGij

Stabilised {Gs}ij = {G}ij + {Gd}ij .

We then compared both of these with a standard fixed normal kernel.
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(5 taxa)
Projecting Reflecting

Edges Parameters Posterior Edges Parameters Posterior

ESS 1100 152 1200 1000 4.4 100
ESS / s 0.22 0.032 0.25 0.24 0.0010 0.024

Figure 7.16: Comparison of the effective sample size for various different numbers of steps in the leapfrog
integrator.

(5 taxa)

Stabilised F isher Diagonal F isher

Edges Parameters Posterior Edges Parameters Posterior

ESS 1200 280 1300 1100 80 720

ESS / s 0.22 0.054 0.24 0.22 0.017 0.15

Figure 7.15: Comparison of the effective sample size for various different numbers of steps in the leapfrog
integrator.

Both choices, provide significant improvements to the ESS / s when compared with the standard

approach. This is particularly true for the worst performing parameters which improve by a

factor of approximately 30 for the stabilised Fisher or 10 for the diagonal Fisher.

7.3 Specifying the Crossing component: C from section 5.2

7.3.1 Reflecting vs Projecting

We found that reflecting and projecting across a boundary, as described in subsection 5.7.1, only

provided marginal differences in ESS/s. We found that projecting produced slighlty better ESS

and ESS/s. This is counter-intuitive as the likelihood is differentiable across codimension 1

boundaries, this means we might expect the reflecting boundary to produce better results as it is

linear estimate of the derivative at the boundary Dinh et al. (2017). The projecting boundary is

simpler so we expect it to be quicker, the improvement in results could be due to the dependent

nature of substitution model parameters and tree parameters.
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(5 taxa)
Fixed Crossing Ratio Crossing

Edges Parameters Posterior Edges Parameters Posterior

ESS 1100 152 1200 2900 25 2200
ESS / s 0.22 0.032 0.25 0.63 0.0053 0.48

Figure 7.18: Comparison between chosing via ratio of the posterior densities vs a fixed probability.

7.3.2 3 orthants vs 2 orthants

We found that there was little practical benefit to using all 3 orthants when compared with 2

orthants. We in fact found that 3 orthants performed slightly poorer than 2 orthants.

(5 taxa)

2 Orthants 3 Orthants

Edges Parameters Posterior Edges Parameters Posterior

ESS 1100 152 1200 360 55 540

ESS / s 0.22 0.032 0.25 0.081 0.012 0.12

Figure 7.17: Comparison of the effective sample size for entering 3 orthants as opposed to 2.

7.3.3 Ratio vs Fixed Transitions

When choosing a crossing kernel we can choose to either force entry into a new orthant, or have

some chance of remaining in the current orthant. We found that there was little practical benefit

to using all 3 orthants as this artificially forces the markov chain back on itself, slightly slowing

exploration when compared with 2 orthants. In Fig: 7.17 we see that 3 orthants performed

slightly poorer than 2 orthants.

7.3.4 Continuing the integration

Parachuting resets the momenta after changing topology. This is to enable faster convergence.

We found that parachuting does not improve the ESS / s.
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(5 taxa)

Standard Continuing and Parachuting

Edges Parameters Posterior Edges Parameters Posterior

ESS 1100 152 1200 630 0.84 2.3

ESS / s 0.22 0.032 0.25 0.13 0.00017 0.00048

Figure 7.19: Comparison of the effective sample size for when we parachute the momenta as described in
section 5.7.3.

7.4 Comparison with MCMC

Here we compare how COrtHMC runs against standard Metropolis-within-Gibbs. We compare

the two using the alignment from MrBayes, Ap. We do this by conducting several runs each

pairwise, making sure their maxdiff is < 0.1. We can see in Fig: 7.20 that both COrtHMC and

Metropolis-within-Gibbs produce the same tree but with a different root, one separating Tarsius

syrichta subclade, the other separating the Homo sapiens subclade.

Figure 7.20: Comparison of the tree generated by MCMC (left) and the tree generated by COrtHMC
(right).

We ran this comparison several times and consistently found that Metropolis-within-Gibbs
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outperformed COrtHMC. In Fig: 7.21 and Fig: 7.22 we see that Metropolis-within-Gibbs always

has the substitution model parameters converge faster than edges whereas, COrtHMC varies.

(COrtHMC)

Edges Parameters Posterior Intrinsic ESS

ESS 12 9.7 11 8.8

ESS / s 0.0021 0.0017 0.0018 0.0015

(Metropolis-within-Gibbs)

Edges Parameters Posterior IntrinsicESS

ESS 44 880 680 1200

ESS / s 0.38 7.7 5.9 13

Figure 7.21: Here we have a relatively short chain and the Metropolis-within-Gibbs outperforms COrtHMC.
This provides a perfect example as to why Intrinsic ESS is a more reliable measure of ESS than taking the
minimum ESS over edges. The minimum gives an ESS of 44 samples, several edges had an ESS of over
2000, neither really provide you with information of how the tree changes as they only describe a local
region of the tree, whereas Intrinsic does.

(COrtHMC)

Edges Parameters Posterior

ESS 540 1200 1700

ESS / s 0.014 0.031 0.044

(Metropolis-within-Gibbs)

Edges Parameters Posterior

ESS 53000 66000 1200000

ESS / s 2.9 3.6 6.5

Figure 7.22: The added complexity of HMC and the autocorrelation significantly slows down the process
and reduces the ESS.
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7.5 Comparison with ppHMC

We used the primate alignment Ap to compare ppHMC’s performance with that of COrtHMC.

We found that both behaved similarly because the behaviour of HMC approaches are dominated

by the behaviour inside and orthant.

(ppHMC)

Edges Parameters Posterior

ESS 1.53 0.96 1.65

ESS / s 6.85e− 13 4.28e− 13 7.37e− 13

(COrtHMC)

Edges Parameters Posterior

ESS 1.32 1.38 1.57

ESS / s 5.91e− 13 6.15e− 13 7.02e− 13

Figure 7.23: ppHMC behaves as expected just like most other COrtHMC crossing kernels.

7.6 Parallelising COrtHMC and Improving Efficiency

There are two key ways of improving the efficiency of COrtHMC. In sections 5.5,6.1 and 6.4

we have seen that computing the derivative is trivially parallelisable. This means that we can

parallelise the computation of the derivative. Sections 5.5,6.1 and 6.4 also demonstrate that

computing the derivative uses a lot of shared information due to the recursive nature of the

algorithm. We also implemented both approaches, sharing as much information as possible

within the recursion or evaluating the derivatives in parallel. We were unable to do both as

evaluating the derivative would alter some of the shared information in the recursion. We

quickly noticed by use of Netbeans’s (Apache Software Foundation Oracle Corporation and

Roman Staněk, 2021) internal profiler that implementing in parallel produced exactly the same

results but ran slower. It is for this reason we do not go over how exactly to run COrtHMC

in parallel. We include a link to our code where one can see how we efficiently stored the

information in the likelihood in one object, called the “StoredLikelihoodInfomationHMC”, and

stored information specific to the derivatives in various different objects the constructors of which

require a “StoredLikelihoodInformationHMC” object. All of the above referenced objects are all
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found in the folder “DerivativeCalculators”.

https://github.com/matthewberobinson/COrtHMC

7.7 Visualisations

During this project we found that we had to visualise and describe the Markov Chain and how

the algorithm operates on Tree space. To do this we created two visualisations, a video of the

tree as it alters throughout the chain combined with videos of the posterior densities of the

substitution model parameters and site rate parameters and an rshiny for viewing the tree and

the posterior density particular targeted at 5 taxa trees as they provide a good starting test. As

we cannot include a video in this thesis and the rshiny is interactive we provide an example and

the code below.

https://github.com/matthewberobinson/Visualisations

https://github.com/matthewberobinson/Rshiny

At 1 minute in we can observe a second peak forming in the base rate corresponding to a

change in topology.
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Figure 7.24: The various informative panels in our R Shiny app (RStudio, Inc, 2013). There are two plots
of the internal edges of the tree. The colour either denotes distance from a given topology or merely a
change of topology. We can see the current tree and it’s location on the Petersen graph. We can see the
acceptance rate and the logposterior, as well as a density plot.
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Conclusions and Future Work

8.1 Conclusions

We have constructed a method for conducting HMC traversing Tree-space. We then streamlined

the process as much as possible. Many of the techniques we developed to improve COrtHMC can

be used to improve other forms of HMC. These include such examples as inverting the leapfrog

integrator, stabilising and fixing the momenta kernel, parachuting the momenta and using the

Farrow transformation to conduct HMC on the simplex. We have justified certain choices of

priors and invalidated gamma priors with small α. Through our visualisation we can also see the

coupling the tree in Tree space and the substitution model parameters. We have also employed

the use of our own measure of ESS for tree parameters, which encompasses how the tree changes

as a whole.

However HMC greatly increases the complexity of the computations involved in MCMC,

and when put to the test COrtHMC does not seem to yield a significant improvement on

Metropolis-within-Gibbs.

We also looked into some work that ended up being unrelated, in particular Windowed HMC

(Neal et al., 2011), which we adapted and the relationship between Operads and trees which we

didn’t manage to use Baez and Otter (2015).
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8.2 Future Work

It is important that COrtHMC can adapt itself to different alignments without a lot of user

interaction. Currently it requires either a lot of tuning or uses the Dual Averaging algorithm

from Hoffman and Gelman (2014), see section A.2. In Fig: 7.14 we saw that there is a strong

relationship between the optimum stepsize and the logposterior. With a little bit of extra

exploration it may be possible to come up with an algebraic form for the stepsize dependent on

the logposterior. We might even be able to show that due to convergence of the logposterior, the

stepsize satisfies the simultaneous uniform ergodicity and diminishing adaptation requirements

to produce an ergodic chain (Roberts and Rosenthal, 2007).

We also noticed a significant improvement from applying the stabilised version of the Fisher

information matrix. The Fisher information metric is not the only geometry we can use, in

particular Critchley et al. (2002) recommends various different preferred point geometries. We

have also in no way exhausted the various different crossing methods, in particular a perpendicular

crossing method resulting in proposing the midpoint between the reflecting and projecting crossing

methods might produce a better result than either. In section 5.9 we discussed two other ways of

performing HMC on Tree space and reasoned why they were inappropriate, coding them up would

provide a practical validation. Much of my time spent on this project has been in optimising code,

during which I have noticed that small changes such as storing ordered lists of edges and vertices

preventing them from being recomputed at each iteration can provide significant improvement in

the speed of the algorithm. It is possible that I may have missed something. Furthermore, while

the time cost of parallelisation is too great for the trivial approach, a non-trivial approach might

produce better results. Finally while I have conducted many runs over a lot of synthetic data I

have not tested how COrtHMC runs with large numbers of taxa for real data.
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Algorithms

In this appendix we outline several algorithms for the sake of completeness that would either be

time consuming for the reader or distracting from the overall outline of the thesis.

A.1 The GTP algorithm for computing geodesics in polynomial

time

1. If E = (E1, ..., Ek) and E ′ = (E′1, ..., E
′
k) are partitions of E and E′, for each i > j Ei and

Ej are compatible

Definition. Compatible

Two splits S = E|Ē and S′ = E ′|Ē ′ are compatible if the intersection of one of the sets they

generate is empty. i.e. if one of the following is true E|Ē ′ = ∅, E|Ē = ∅, Ē |Ē ′ = ∅, E|E ′ = ∅

2. |A1|
|B1| ≤

|A2|
|B2| ≤ ... ≤

|Ak|
|Bk|

3. For each pair Ai, Bi there is a non-trivial partition of Ai, C1, C2 and Bi D1, D2 such that

C2 is compatible with D1 and |C1|
|D1| <

|C2|
|D2|
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Algorithm A.1: The GTP algorithm

• Inputs: Trees T and T ′ and proper path between them Γ 0 with support

• Initialise: form the incompatibility graph between T and T ′. Set Γ 0 to be the cone path

between the two.

• At each stage Γ i is a proper path and has support E i and E ′i satisfying 1 and 2.

• For each support pair solve the extension problem.

• If every min weight cover found has weight ≥ 1 then Γ i satisfies 3

• Choose any min weight cover C1 ∪D2 having weight |C1|2
|Aj |2 + |D2|2

|Bj |2 replace Aj and Bj with

C1, C2 and D1, D2 and replace Γ i with the associated proper path Γ i+1

• output: Geodesic Γn where Γn is the geodesic between T and T ′
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A.2 The Dual Averaging algorithm

Algorithm A.2.1: Heuristic for choosing an initial value of ε (Hoffman and Gelman,

2014)

1. Parameters: Hamiltonian H, starting position x0, starting momenta p0 tuning parameters

a, integrator following Hamiltonian flows I, number of iterations k.

2. Initialise ε = 1 and p ∼ N(·; 0, Id).

3. Calculate (x′, p′) = I(x, p, ε).

4. Set a← 2I
[
π(x′,p′)
π(x0,p0)

> 0.5
]
− 1.

5. While
[
π(x′,p′)
π(x0,p0)

> 0.5
]a
> 2−a

(a) ε = 2aε

(b) Set x′, p′ ← I(x, p, ε).

6. output: ε.
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Algorithm A.2.2: Hamiltonian Monte Carlo with Dual Averaging (Hoffman and

Gelman, 2014)

1. Parameters: Hamiltonian H, starting position x0, starting momenta p0, optimum δ, λ,

integrator following Hamiltonian flows I, number of iterations M , number of adaptations

Madapt.

2. Initialise ε0 = ApplyHeuristic(x0), µ = log(10ε0), ε̄ = 1, H̄0 = 0, γ = 0.05, t0 = 10,

κ = 0.75.

3. for i = 1, ...,M

(a) p ∼ N(·; 0, I)

(b) xi = xi−1, x̃ = xi−1, p̃ = p.

(c) Calculate (x′, p′) = I(x, p, ε).

(d) With probability a = min{1, π((x̃,p̃))
π((xm−1,p))

} set xi = x̃ and pi = −p.

(e) if i ≤Madapt:

• Set H̄i = (1− 1
i+t0

)H̄i−1 + 1
i+t0

(δ − a).

• Set log εi = µ−
√
i
γ H̄i and log ε̄i = i−κ log εi + (1− i−κ) log ε̄m−1.

(f) Otherwise set εi = ε̄Madapt .
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A.3 The various different NUTS algorithms

A.3.1 Simplified NUTS

Algorithm A.3.1.1: BuildTree for Simplified NUTS Hoffman and Gelman (2014)

• input: starting position x, starting momenta p, tuning parameters ε > 0 and ∆max > 0,

integrator I, u ∈ R≥0, direction v ∈ {−1, 1} and counter j ∈ N.

• If j = 0:

1. Calculate (x′, p′) = I(x, p, vε).

2. Set C′ =

{(x′, p′)} if u < exp [−H(x′, p′)] .

∅ o/w

3. Set s′ = I [exp [−H(x′, p′)] > log u−∆max].

4. Set x+ = x− = x′ and p+ = p− = p′.

• Otherwise:

1. Set x−, p−, x+, p+, C′, s′ ← BuildTree(x, p, u, v, j − 1, ε).

2. If vj = 1 x−, p−, C′′, s′′ ← BuildTree(x−, p−, u, v, j − 1, ε)

otherwise set x+, p+, C′′, s′′ ← BuildTree(x+, p+, u, v, j − 1, ε).

3. Set s′ = s′s′′I [(x+ − x−) · p− ≥ 0] I [(x+ − x−) · p+ ≥ 0] and C′ = C′ ∪ C′′.

• Output: x−, p−, x+, p+, C′, s.
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Algorithm A.3.1.1: The Simplified NUT sampler (Hoffman and Gelman, 2014)

• Input: starting position x0, tuning parameters ε > 0 and ∆max > 0, integrator I integrating

along Hamiltonian flows, number of iterations n

• For i = 1, . . . , n :

1. Draw p0 ∼ N(·; 0, Id).

2. Draw u ∼ U(·; [0, exp(−H(x, p))]).

3. Set x− = xi−1, x+ = xi−1, p− = p0, p+ = p0, j = 0, C = {(xi−1, p0)}, s = 1.

4. While s = 1 :

(a) Draw vj ∼ U(·; {−1, 1}).
(b) If vj = −1 then x−, p−, C′, s′ ← BuildTree(x−, p−, u, vj , j, ε)

otherwise x+, p+, C′, s′ ← BuildTree(x+, p+, u, vj , j, ε).

(c) If s′ = 1 set C = C ∪ C′.
(d) Set s = s′I [(x+ − x−) · r− ≥ 0] [(x+ − x−) · r+ ≥ 0] and j = j + 1.

• Draw (x, p) ∼ U(·; C).

• Output: (x, p) where (x, p) is a single output from C found by integrating along the intergral

curve of the Hamiltonian.
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A.3.2 Efficient NUTS

Algorithm A.3.2.1: BuildTree for Efficient NUTS(Hoffman and Gelman, 2014)

• Input: starting position x, starting momenta p, tuning parameters ε > 0 and ∆max > 0,

integrator I, u ∈ R≥0, direction v ∈ {−1, 1}, counter j ∈ N and tree set size n.

• If j = 0 :

1. Calculate (x′, p′) = I(x, p, vε).

2. Set n′ = I [u < exp [−H(x′, p′)]], s′ = I [exp [−H(x′, p′)] > log u−∆max],

x+ = x− = x′ and p+ = p− = p′.

• Otherwise set x−, p−, x+, p+, x′, n′, s′ = BuildTree(x, p, u, v, j − 1, ε).

• If vj = 1 set x−, p−, x′′, n′′, s′′ = BuildTree(x−, p−, u, vj , j, ε)

otherwise set x+, p+, x′′, n′′, s′′ = BuildTree(x+, p+, u, vj , j, ε).

• With probability n′′

n′+n′′ set x′ = x′′, s′ = s′′I [(x+ − x−) · p− ≥ 0] [(x+ − x−) · p+ ≥ 0] and

n′ = n′ + n′′.

• Output: x−, p−, x+, p+, x′, p′, n′, s
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Algorithm A.3.2.2: Efficient NUTS Hoffman and Gelman (2014)

• Parameters: starting position x0, tuning parameters ε > 0 and ∆max > 0, integrator
following Hamiltonian flows I, number of iterations k

• for i = 1, . . . , n :

1. Draw p0 ∼ N(·; 0, Id)

2. Draw u′ ∼ U(·; [0, exp(−H(x, p))])

3. Set x− = xi−1, x+ = xi−1, p− = p0, p+ = p0, j = 0, n = 1 and s = 1

4. While s = 1:

(a) Draw vj ∼ U(·; {−1, 1})
(b) If vj = −1 then set x−, p−, x′, n′, s′ = BuildTree(x−, p−, u, vj , j, ε) otherwise set

x+, p+, x′, n′, s′ ← BuildTree(x+, p+, u, vj , j, ε).

5. If s′ = 1

(a) Draw u′ ∼ U [0, 1] if u′ ≤ n′

n set xi = x′

(b) Set s′ = s′′I [(x+ − x−) · r− ≥ 0] [(x+ − x−) · r+ ≥ 0], j = j + 1 and n = n+ n′

• output: (xi, pi) is the result of integrating along the intergral curve of the Hamiltonian for
a set amount of time.

145



Appendix A. Algorithms 146

A.4 Shadow HMC

All that is left to do is formulate the shadow Hamiltonian based on an approximation. There is a

general formula but for our purposes we only show the 4th order shadow Hamiltonian.

H(x, p) =
1

2ε
(A10 −

1

6
A12)

where

A10 =y1 +mass× 0.5× (xi+1 − xi−1)pi − z1 +mass× 0.5× (pi+1 − pi−1)xi − 0.5× (βi+1 − βi−1)

A12 =y2 − z2

where

y1 =y1 +mass× 0.5× (xi+1 − xi−1)pi
z1 =z1 +mass× 0.5× (pi+1 − pi−1)xi
y2 =y2 +mass× 0.5× (xi+1 − xi−1)(pi+1 − 2× pi + pi−1)

z2 =z2 +mass× 0.5× (pi+1 − pi−1)(xi+1 − 2× xi + xi−1)

and βi is a constant in exp (−βH(x, p)) often called the temperature, here propogated along with

the momenta.

The mass is a value corresponding to the covariance in K(p;x) when K(p;x) is normal.
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Proofs

We follow the general layout of in Probabilistic Path Hamiltonian Monte Carlo.

Proposition B.1. The Hamiltonian H is not conserved along any system dynamics.

Proof. Clearly the Hamiltonian is not preserved as it will depend on the choice of C. It is true

that the Hamiltonian is preserved within an orthant. CortHMC preserves the hamiltonian on an

orthant but may change it upon crossing into a new orthant.

Proposition B.2. The chain generated by CortHMC is Markov.

Proof. CortHMC is defined by several kernels each of which are Markov, hence the composition

is.

We now follow the same arguments as outlined in (Dinh et al., 2017). This is because CortHMC

is deeply related to ppHMC and is designed to carry out the same function. We include the full

proof for completion.

Proposition B.3. Lemma 3.4 (Dinh et al., 2017)

For every sequence of topologies ω = {τ (0), ..., τ (nω)} and every set with positive measure B ⊂M,

let Bω the set of all (τ ′, q′) ∈ B such that (τ ′, q′) can be reached from (τ (0), q(0)) in k CortHMC

steps and such that the sequence of topologies crossed by the topologies crossed by trajectory is ω.

Denote by IB,ω the set of all sequences of initial momenta for each CortHMC step {p(0), ..., p(k)}
that make such a path possible.

Then, if µ(IB,ω) = 0, then µ(Bω) = 0.

Proof. For a path Σ of k leapfrog steps and n boundary steps denote by

FΣ = {(`(0), τ (0)), ..., (`(n+k), τ (n+k))}
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the states which are visited.

If the sequence of topologies crossed byΣ has been prespecified then the whole path is deterministic

based on the initial momenta p(0). Hence the functions:

φi,ω(p) := (`i, τ i) ∀p ∈ IB,ω

are well-defined. Show that φ1,ω is Lipschitz. i.e. given p and p′ d(φ1,ω(p), φ1,ω(p)) ≤ Cd(p, p′).

d is defined as the Euclidean metric on the cotangent space and d is defined as the Euclidean

metric defined by Euclidean distance where two orthants are joined via the negative plane as the

algorithm cannot explore further than an orthant in a single jump, this is a well-defined metric.

There are two cases:

1. If topology does not alter, φ1,ω(p) is the result of the leapfrog algorithm which from standard

results about HMC on Euclidean spaces results in φ1,ω(p) being Lipschitz.

2. If topology does alter φ1,ω(p) is a composition of the leapfrog algorithm on Euclidean

spaces, a linear map and a projection. Linear maps and projections are Lipschitz φ1,ω(p) is

Lipschitz.

As φn,ω(p) = φ1,ω · ... · φ1,ω︸ ︷︷ ︸
n times

and compositions of finite Lipschitz functions are Lipschitz, φn,ω is

Lipschitz on IB,ω. As Lipschitz functions preserve zero measure if µ(IB,ω) = 0 then µ(B) = 0.

Theorem B.1. Theorem 3.1 (Dinh et al., 2017)

The Markov chain generated by CortHMC is ergodic.

Proof. By exactly the same arguments as in (Dinh et al., 2017) the chain is irreducible. It

preserves π due to proposition 6.3. So all that is required is aperiodicity. Suppose it is periodic

with period d, then M must be able to be partitioned into at most d orbits and at least two.

i.e. k disjoint subsets X1, ..., Xk of M with positive measure. Around any point x ∈M there is

a neighbourhood Ux reachable from x by Hamiltonian dynamics. Hence µ(Ux ∩X1) = 0 as Ux

exists for almost every x ∈ X1, µ(X1) = 0 a contradiction.

B.0.1 Theorem 6.4

Proof. The likelihood is defined as:

L(X|`, τ, θ, α) =
n∏
i=1

∑
k∈γ

P(k)
∑
x∈A

π˜(x)

∏
u≺v0

∑
y∈A

Px,y;k{`(u, v0), θ}Lu(χi|y, `, τ, θ, α)
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The process of travelling across codimension 1 strata involves a particular `(u, v)→ 0 followed

by a nearest neighbour interchange and an increase in the length of a new edge. First we show

that the process is continuous upto and including `(u, v) = 0 and that the same is true for all

derivatives with respect to `(u, v). We then demonstrate that a nearest neighbour interchange

does not alter the likelihood, nor the derivative and finally by the initial argument the likelihood

and derivatives are continuous in any other orthant.

Since we can specify the root of the tree let us take v0 to be the root and u0 to be a vertex

connected with v0 such that e(u0, v0) is the edge via which we are going to cross the codimension 1

boundary and `(u0, v0) is the length of that edge. Apart from Px,y;k{`(u0, v0), θ} everything else is

independent of the edge e(u0, v0) and so constant with respect to `(u0, v0) and the derivatives are 0

with respect to `(u0, v0). In subsection 2.1.2 we show that Px,y;k{`(u0, v0), θ} = P0 exp(Q`(u0, v0))

for some P0 constant and Q a rate matrix specified by θ, we know multiplying by a constant

is continuous and exp is a continuous function, since compositions of continuous functions are

continuous so is P0 exp(Q`(u0, v0)). If we take the nth derivative of Px,y;k{`(u0, v0), θ} we get

P0 exp(Q`(u0, v0))Q
n. By the same reasoning the nth derivative on an orthant is continuous.

When `(u, v0) = 0, Px,y;k{`(u, v0), θ} =

1 if x = y

0 if x 6= y
.

This means that the likelihood can be expressed as follows

L(X|`, τ, θ, α) =
n∏
i=1

∑
k∈γ

P(k)
∑
x∈A

π˜(x)

u6=u0∏
u≺v0

∑
y∈A

Px,y;k{`(u, v0), θ}Lu(χi|y, `, τ, θ, α)

 .
× [Px,x;k{`(u0, v0), θ}Lu0(χi|x, `, τ, θ, α)]

A nearest neighbour interchange across e(u0, v0) consists of a swap of two subtrees, one connected

to a child v′ of v0, the other to a child u′ of u0 so that v′ is a child of u0 with length

`(v′, u0) = `(v′, v0) and u′ is a child of v0 with length `(u′, v0) = `(u′, u0) but nothing else

is altered in any lower subtrees. We now write the likelihood of the same tree having experienced

a nearest neighbour interchange.

L(X|`, τ, θ, α) =
n∏
i=1

∑
k∈γ

P(k)
∑
x∈A

π˜(x)

u6=u0,u 6=v′∏
u≺v0∪u′

∑
y∈A

Px,y;k{`(u, v0), θ}Lu(χi|y, `, τ, θ, α)
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×

 w 6=u′∏
w≺u0∪v′

∑
y∈A

Px,y;k{`(w, u0), θ}Lu0,w(χi|y, `, τ, θ, α)


=

n∏
i=1

∑
k∈γ

P(k)
∑
x∈A

π˜(x)

u6=u0,u 6=v′∏
u≺v0∪u′

∑
y∈A

Px,y;k{`(u, v0), θ}Lu(χi|y, `, τ, θ, α)


×

∑
y∈A

Px,y;k{`(v′, u0), θ}Lu0,v′(χi|y, `, τ, θ, α)


×

w 6=u′∏
w≺u0

∑
y∈A

Px,y;k{`(w, u0), θ}Lu0,w(χi|y, `, τ, θ, α)


=

n∏
i=1

∑
k∈γ

P(k)
∑
x∈A

π˜(x)

 u6=u0∏
u≺v0∪u′

∑
y∈A

Px,y;k{`(u, v0), θ}Lu(χi|y, `, τ, θ, α)


×

w 6=u′∏
w≺u0

∑
y∈A

Px,y;k{`(w, u0), θ}Lu0,w(χi|y, `, τ, θ, α)


=

n∏
i=1

∑
k∈γ

P(k)
∑
x∈A

π˜(x)

 u6=u0∏
u≺v0∪u′

∑
y∈A

Px,y;k{`(u, v0), θ}Lu(χi|y, θ, k)


×

∑
y∈A

Px,y;k{`(u′, v0), θ}Lv0,u′(χi|y, `, τ, θ, α)


×

w 6=u′∏
w≺u0

∑
y∈A

Px,y;k{`(w, u0), θ}Lu0,w(χi|y, `, τ, θ, α)


=

n∏
i=1

∑
k∈γ

P(k)
∑
x∈A

π˜(x)

 u6=u0∏
u≺v0∪u′

∑
y∈A

Px,y;k{`(u, v0), θ}Lu(χi|y, `, τ, θ, α)


×

 w∏
w≺u0

∑
y∈A

Px,y;k{`(w, u0), θ}Lu0,w(χi|y, `, τ, θ, α)

 .

150



Appendix B. Proofs 151

This demonstrates that the likelihood L(X|θ) is continuous, to show that it is smooth we take

the derivative of the likelihood with respect to an edge. In subsection 5.5 we show that the

derivative of the likelihood is

n∏
i=1


∑
k∈γ

P(k)
∑
x∈A

π˜(x)

u′ 6=u∏
u′≺v

∑
y∈A

Px,y;k{`(u′, v)}Lu′(χi|y, `, τ, θ, α)


×
∑
y∈A

kQPx,y;k{`(u, v)}Lu(χi|y, `, τ, θ, α)

 .

It is not hard to see that further derivatives involve higher powers of k and Q. We now need

to show that this derivative agrees when crossing codimension 1 strata, which is equivalent to

saying the limit from one orthant is the same as from the other and so the derivative exists. We

apply the same argument as used for the likelihood.

L(X|`, τ, θ, α) =
n∏
i=1

∑
k∈γ

P(k)
∑
x∈A

π˜(x)

u6=u0,u 6=v′∏
u≺v0∪u′

∑
y∈A

Px,y;k{`(u, v0), θ}Lu(χi|y, `, τ, θ, α)


× kQ

 w 6=u′∏
w≺u0∪v′

∑
y∈A

Px,y;k{`(w, u0), θ}Lu0,w(χi|y, `, τ, θ, α)


=

n∏
i=1

∑
k∈γ

P(k)
∑
x∈A

π˜(x)

u6=u0,u 6=v′∏
u≺v0∪u′

∑
y∈A

Px,y;k{`(u, v0), θ}Lu(χi|y, `, τ, θ, α)


kQ×

∑
y∈A

Px,y;k{`(v′, u0), θ}Lu0,v′(χi|y, `, τ, θ, α)


×

w 6=u′∏
w≺u0

∑
y∈A

Px,y;k{`(w, u0), θ}Lu0,w(χi|y, `, τ, θ, α)


=

n∏
i=1

∑
k∈γ

P(k)
∑
x∈A

π˜(x)

 u6=u0∏
u≺v0∪u′

∑
y∈A

Px,y;k{`(u, v0), θ}Lu(χi|y, `, τ, θ, α)


× kQ

w 6=u′∏
w≺u0

∑
y∈A

Px,y;k{`(w, u0), θ}Lu0,w(χi|y, `, τ, θ, α)


=

n∏
i=1

∑
k∈γ

P(k)
∑
x∈A

π˜(x)

 u6=u0∏
u≺v0∪u′

∑
y∈A

Px,y;k{`(u, v0), θ}Lu(χi|y, `, τ, θ, α)
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× kQ

∑
y∈A

Px,y;k{`(u′, v0), θ}Lv0,u′(χi|y, `, τ, θ, α)


×

w 6=u′∏
w≺u0

∑
y∈A

Px,y;k{`(w, u0), θ}Lu0,w(χi|y, `, τ, θ, α)


=

n∏
i=1

∑
k∈γ

P(k)
∑
x∈A

π˜(x)

 u6=u0∏
u≺v0∪u′

∑
y∈A

Px,y;k{t(u, v0), θ}Lu(χi|y, `, τ, θ, α)


× kQ

 w∏
w≺u0

∑
y∈A

Px,y;k{`(w, u0), θ}Lu0,w(χi|y, `, τ, θ, α)

 .
It should be clear that the same argument holds for higher order derivatives. This therefore shows

that the likelihood is smooth with respect to edge lengths and the nearest neighbour substitution

algorithm when applied to edges of zero length.
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Literature Review

Here we outline definitions and techniques that the reader may be interested in but would break

the immersion for someone who already knows the papers referenced.

C.0.1 Yang and Rannala (1997)

Definition (Cophenetic Matrix Representation of a tree). The cophenetic matrix representation

of a tree is a symmetric matrix A = {aij} such that aij = d(ni, nj) the time to coalesce / total

edge length between each extant pair. As such each matrix is unique up to ordering of extant

vertices.

Yang and Rannala (1997) uses a transition probability of

qij =


β

hj−1 no topological change

1−β
2(s−2)hj topological change

hj = distinct labelled histories s =number of extant species β = model parameter

There are s!(s− 1)!/2s−1 different labelled histories, that is s− 1 speciation events occur splitting

up s extant species.

C.0.2 Altekar et al. (2004)

(MC)3 transitions between the different temperatures by employing a Metropolis-Hastings

acceptance probability, 3.3:

a = min

[
1,

π(ẑ)q(zi−1, ẑ)

π(zi−1)q(ẑ, zi−1)

]
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A chain heated by temperature β uses acceptance probability:

aβ = min

[
1,

π(ẑ)βq(zi−1, ẑ)

π(zi−1)βq(ẑ, zi−1)

]
In Metropolis-Coupled MCMC then proposes to swap the states of two chains with probability:

aswap β1,β2 = min

[
1,
π(zβ1)β2π(zβ2)β1

π(zβ1)β1π(zβ2)β2

]

where β1 < β2 and zβ is the state sampled from the MCMC process with temperature β.

C.0.3 Beast and MrBayes (MC)3

Beast and MrBayes use temperature scalars βi = 1
1+(i−1)δt and only propose swapping states

between βi and βi+1. Beast also can use temperature scalar βi = 1− cdf i−1
number of chains

where

cdf is the cumulative density function of the beta distribution with α = 1. Best also implements

an adaptive method for choosing an updating δt after a burn in period

δtnew = max

[
0, δtcurrent +

pglobal − ptarget
number of exchanges

]
where pglobal is the average acceptance probability and ptarget is the acceptance probability we

want.

C.0.4 Probabilistic Path Hamiltonian Monte Carlo

Probabilistic Path Hamiltonian Monte Carlo employs the Leap-prog algorithm to cross orthants.
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Leap-prog Algorithm

• Input: starting point z0, starting momenta p0; step size ε > 0; number of iterations l;
∂H(z,p)
∂p and ∂H(z,p)

∂z .

• 1. pi+ 1
2

= pi − ε
2
∂H(z,p)
∂z |(zi,pi),

2. if FirstUpdateEvent(z, p, ε) = ∅

zi+1 = zi + εpi+ 1
2

otherwise set t = 0.

while FirstUpdateEvent(z, p, ε− t) 6= ∅:

let ẑ, e, I be the first update event FirstUpdateEvent(z, p, ε − t), ẑ is the

state where an orthant boundary is crossed, e, and I the set of indices where it

crossed. Then:

t = t+ e

Sample new topology τ at random from neighbouring orthants τ ∼ Z.

pi+ 1
2

= −pi+ 1
2

3. zi+1 = ẑ + (ε− t)pi+ 1
2

4. pi+1 = pi+ 1
2
− ε

2
∂H(z,p)
∂z |(zi+1,pi+1

2
).

• Output: pair (zl, pl) approximately on the flow line starting at z0, p0.

C.0.5 PosetSMC

The weighted particle measure is

πr,K(·) = Ew(·) =
K∑
k=1

wr,kδsr,k(·)
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where wr,k the are weighted according to

wr,k =
γ∗(sr,k)

γ∗(s̃r−1,k)q(s̃r−1,k → sr,k)
.

The forest proposal distribution is q and γ∗ is the posterior when extended to forests. The

estimate for the posterior is then:

πest(·) = Eunif (Ew(·)) =

R∏
r=1

1

K

K∑
k=1

wr,kδsr,k(·).

PosetSMC and HMC

There are two ways of combining PosetSMC, one is boring the other is more interesting.

Boring PosetSMC HMC

Boring PosetSMC HMC uses a proposal distribution between forests and trees to just use

PosetSMC as a kernel within a HMC scheme.

Interesting PosetSMC HMC

Interesting PosetSMC uses HMC in the construction of q. This requires a form of HMC for

forests. For this we include an adaption of COrtHMC for forests.

To conduct HMC on forests we remember that the crossing kernel occurs at every step of

COrtHMC, whenever the flow is contained within an orthant the crossing kernel is the identity

kernel. We replace this identity to conduct HMC on forests and provide an example for clarity.

A tree is a graph and so a collection of vertices and edges. The vertices can be split into

two sets internal and external, for a phylogenetic tree these represent extinct and extant species.

In order to conduct phylogenetic inference on a forest with a set number of extant leaves we need

a way of connecting trees within the forest and a way of splitting trees.

For every internal edge of length le in the tree propose cutting the edge with probability:

( le2 )

(1 + ( le2 )2)2

156



Appendix C. Literature Review 157

so that low edge lengths are not cut and large edge lengths have a greater chance. This gives a

probability of: ∏
e∈T :e is cut

( le2 )

(1 + ( le2 )2)2

∏
e∈T :e is not cut

1−
( le2 )

(1 + ( le2 )2)2

For the internal vertices V<3 of degree less than 3 draw a permutation uniformly:

P(σ) = |V<3|!

Then propose joining v and u if v follows u in the permutation with probability 1/2 so that the

total probability of joining v and u is

P((v, u)|σ) =
1

2

P((v, u), σ) =
1

2

2× |V<3|!
2

|V<3|!
=

1

2(|V<3| − 1)!

This gives a total density of

∏
e∈T :e is cut

( le2 )

(1 + ( le2 )2)2

∏
e∈T :e is not cut

1−
( le2 )

(1 + ( le2 )2)2
1

2

|V<3|/2 1

(|V<3| − 1)!

We do not conduct this kind of inference for three reasons:

1. If COrtHMC performs poorly in comparison with standard MCMC then PosetSMC HMC

will perform poorly in comparison with PosetSMC.

2. It is more complicated.

3. Slight tuning error has the potential to radically reduce the efficiency of the algorithm.

C.0.6 Variational Bayes

In Variational Bayesian Phylogenetic Inference the total order is such that if clade W includes

clade X then W � X. Ordered by increasing depth and such that clades that are subclades of the

same clade are ordered next to one another. Given this decomposition the SBN tree probability

is:

psbn(T ) = p(Sr = sr)︸ ︷︷ ︸
prob. of root base

∏
i>1

p(Si = si|Sσ(i) = sσ(i))︸ ︷︷ ︸
prob. of next clade base given parent clade base

.

We can see the similarities to the likelihood in section 2.5.
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Other HMC Methods

D.1 Hamiltonian Monte Carlo without Detailed Balance

Hamiltonian Monte Carlo without Detailed Balance is carried out through an algorithm called

Look Ahead HMC developed by Sohl-Dickstein et al. (2014). The aim of Look Ahead HMC is to

avoid efficiency loss caused by forward and reverse transitions happening with equal probability.

In (Sohl-Dickstein et al., 2014) it is shown that this can provide moderately improved mixing.

It has similar ideas to NUTS. It works by first transitioning to a new state via the leapfrog

integrator, applying between 1 and K times with set probability, or flip the momenta. Finally

corrupt the momentum with noise. While Sohl-Dickstein et al. (2014) demonstrates that this

algorithm will target the correct distribution. We can think of this algorithm as being a chained

form of NUTS with the turning criterion being K leapfrog iterations. It requires a lot more

evaluations of the likelihood than standard HMC and would add extra factors muddying the

water as to the effectiveness of HMC. As it would likely not provide any significant gains we

decided that it was not to be explored during this project.

D.2 Kernel Hamiltonian Monte Carlo

Kernel Hamiltonian Monte Carlo (KMC) seeks to adapt HMC to situations where no derivative

of the likelihood exists. Similar to Shadow HMC it does this by replacing the Hamiltonian

with an approximation. Strathmann et al. (2015) does this in two ways that they call lite and finite.

Letting H be a reproducing kernel Hilbert space on M. A Hibert space is a reproducing

kernel Hilbert space if the evaluation functional Lx is a bounded operator i.e. for any point x

|Lx(f ∈ H) ≤M ||f ||H.
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Model π(x) with an exponential family model so that:

Cπ(x) ≈ exp (〈f, k(x, ·)〉H −A(f)) .

The function k is a unique function that is symmetric positive definite and has the property

〈f, k(x, ·)〉H = f(x). The function A(f) = log
∫
M exp (〈f, k(x, ·)〉H) dx. This family is dense in

the space of continuous densities on compact domains with respect to total variation.

This leads to the problem of constructing suitable f . This is done from the data. Both

approaches lite and finite use score matching.

In score-matching the aim is to construct some π̃(x, f) such that

J(f) =
1

2

∫
M
π(x)||∆ log(π̃(x, f))−∆ log(π(x))||22dx.

Given samples x ∈ D this can be computed without π by

Ĵ(f) =
1

n

∑
x∈D

d∑
l=1

[
∂2 log(π̃(x, f))

∂x2l
+

1

2

(
∂ log(π̃(x, f))

∂xl

)]
. (9)

It is this that enables the derivative of π to be avoided.

The lite model takes a solution in the form of the span ({k(zi, ·)}hi=1) so that f(x) =
∑n

i=1 αik(zi, x)

where αi are obtained by minimising (1). Strathmann et al. (2015) show that this can be done

by taking αλ = −σ
2 (C − λI)−1b where

b =
d∑
l=1

(
2

σ
(Ksl +DslK1− 2DxlKxl)−K1

)
C =

d∑
l=1

[DxlK −KDxl ][KDxl −DxlK]

where sl is the entry wise product of xl with itself and Dx is a diagonal matrix composed of x,

diag(x).

The finite model attempts to fit a finite dimensional model. To do so Strathmann et al.

(2015) define an approximate feature space Hm = Rm and define φx to be the embedding of

x ∈M in Hm whenM = Rd. Strathmann et al. (2015) then assume the model can take the form

f(x) = 〈θ, φx〉Hm = θTφx. The function f(x) is then required to minimise the score function for
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given data. Strathmann et al. (2015) prove that this is the case when θλ = (C − λI)−1b where:

b = − 1

n

t∑
i=1

d∑
l=1

∂2φx
dx2l

C =
1

n

t∑
i=1

d∑
l=1

∂φxi
∂xl

∂φxi
∂xl

T

KMC in both forms calculates this approximation at each iteration and then proceeds by standard

HMC using this approximation. We do not use KHMC as we have access to an analytic form

of the derivative. We include it here as it is a possible solution to a problem that arises later.

Experimentally it appears to carry over the explorative properties of HMC as demonstrated on a

synthetic example (Strathmann et al., 2015).

D.3 Shadow HMC

Shadow HMC developed by Izaguirre and Hampton (2004) is a technique that attempts to

increase the acceptance rate of HMC by using high order approximations to the Hamiltonian. It is

primarily done for an ensemble of particles. Shadow HMC requires a reweighting at the end of the

process. It works by constructing H(x, p) = max(H(x, p), H[2k](x, p)− c) where H[2k] is a Shadow

Hamiltonian and c is an arbitrary constant. Shadow HMC proposes momenta p ∼ K(p;x) and

accepts it with probability min(1,
exp(−H[2k](x,p)−c)

exp(−H(x,p)) ), but if p is rejected the process is repeated

until a proposed p is accepted. A new position an momenta is then proposed based on the

accepted momenta and an integrator that integrates flows of H[2k]. This point is accepted with

probability min(1, π(x
′,p′)

π(x,p) . Once a sequence is obtained it is reweighted by
∑n
i=1 wiA((xi,pi))∑n

i=1 wi
. For

proper canonical distributions wi = exp(−H((xi,pi))
−H((x,p)) .

We do not use Shadow HMC as we have the derivative, are not operating on an ensemble

and still requires a large number of derivative calculations in computing xi+1, xi and xi−1.

D.4 Generalised HMC

Generalised HMC is another method used primarily in biomolecular simulations and therefore on

an ensemble of particles. It attempts to maintain momenta to only partially refresh momenta

at each step of the Hamiltonian Monte Carlo algorithm. This is motivated by the fact that the

behaviour local to the sampled point should remain consistent. In (Elena Akhmatskayaa, 2008)

they find that they must minimise the rejection rate and encounter Zitterbewegung and resort to

the use of a shadow Hamiltonian. While interesting, we do not outline the method further as we

have already explained above we it would be impractical for our purposes. The full method can
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be found in (Elena Akhmatskayaa, 2008). It may be fruitful to combine GHMC with Windowed

HMC but we have not done this nor do we outline the method.

D.5 Constrained HMC

HMC occurs on a manifold. Often it is necessary to have boundaries on the manifold to constrain

the state space. Constrained HMC is a method for doing this. There are several methods

developed but most are similar in design. Here we go over the method developed by Michael

Betancourt in (Betancourt, 2011) which is a generalisation of the method of Radford Neal in

(Neal, 1994).

D.5.1 The method of Neal (1994)

Suppose we wish to constrain on R and sample x ≤ u.

Radford Neal alters the potential energy function to achieve constrained HMC

Û(x) = U(x) + Cr(x, u) where Cr(x, u) =

0 if q ≤ u

rr+1(x− u)r otherwise
.

This results in the formulation for the Hamiltonian being:

H(x, p) =
U(x)

2
+K(p;x) + Cr(x, u) +

U(x)

2

For leapfrog the only step that needs to be updated is the full step update for position. This is

done by computing

xi+1 = xi + ε
∂H(x, p)

∂p
|(xi,pi+1

2
).

Then checking if xi+1 ≤ u if it is, the above is linear Cr(x, u) must be zero along the whole path

and xi+1 is left unchanged. If not the particle can be envisioned as climbing a hill until p = 0

then rolling down until the position x = u and p is the negation of the original momenta. This

leads to the following addition to step 2 of algorithm 5.

• Repeat until xi+1 ≤ u,

xi+1 = u+ (u− xi+1) and pi+ 1
2

= −pi+ 1
2
.

Intuitively the trajectory bounces off the walls given by the dynamics (Neal, 1994).

To generalise to multiple dimensions conduct the one dimensional case in each dimension.
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D.5.2 The method of (Betancourt, 2011)

Michael Betancourt adapts this to multiple dimensions and general constraint C(x) ≥ 0. This is

done by altering the last two steps of algorithm 5 (Betancourt, 2011).

1. xi+1 = xi + ε∂H(x,p)
∂p |(xi,pi+1

2
)

2. If C(xi+1 ≥ 0), pi+1 = pi+ 1
2
− ε

2
∂H(x,p)
∂x |(xi+1,pi+1

2
) otherwise

(a) n = ∇C(xi+1

|∇C(xi+1|

(b) pi+ 1
2

= pi+ 1
2
− 2(pi+ 1

2
· n)n

3. xi+1 = xi+1 + ε∂H(x,p)
∂p |(xi+1,pi+1

2
)

4. pi+1 = pi+ 1
2
− ε

2
∂H(x,p)
∂x |(xi+1,pi+1

2
).

This is not quite bouncing off the wall, the particle bounces off a wall parallel to the original wall

but set at xi+1 and re-enters the space.

162



Appendix E

Results

E.1 Primate Alignment from MrBayes

NEXUS

Data from: Hayasaka, K., T. Gojobori, and S. Horai. 1988. Molecular phylogeny and evolution

of primate mitochondrial DNA. Mol. Biol. Evol. 5:626-644.

12 taxa, 898 columns;
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