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Abstract

Phylogenetics is the study of evolutionary structure, aiming to reconstruct the branching structure
of speciation from a common ancestor. There are many methods of infering the tree-like structure
from the most basic, physical traits (morphology) to analysing the distances between genetic code
based on a predefined metric. For viruses such a method is the best way to access their hereditity.
Bayesian inference enables us to learn a region of possible trees and alter the distribution of
trees according to prior beliefs. The most common method of conducting Bayesian inference
over evolutionary trees, called Tree space (Billera et al., 2001), is by Markov Chain Monte Carlo
(MCMC). Tree space is big and exploration is slow; a modern technique for speeding up MCMC
is Hamiltonian Monte Carlo (HMC), developed by |[Duane et al.| (1987). We incorporate HMC
into Tree space by creating our own algorithm: Cross-Orthant HMC (COrtHMC). Many methods
of increasing HMC convergence speed have been developed, such as Riemannian Manifold HMC
(RM-HMC) (Girolami et al., 2011). Where applicable, we adapted such methods to COrtHMC
and then compared COrtHMC to pre-existing methods of phylogenetic inference and probabilistic
path HMC (Dinh et al., [2017). We found that all forms of COrtHMC perform similarly, including
ppHMC, but that the increased computational cost in using such HMC methods outweighs any
benefit.
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Chapter 1

Introduction

Darwin’s theory of evolution revolutionised biology and is the basis of molecular biology. However,
due to incompleteness of historic fossil records and the time spans involved, it is challenging to
learn about the evolutionary relationships between organisms and the inferred relationships are
subject to uncertainty. This means that inferring the evolutionary relationships can be posed as

a statistical problem using the genetic material available from extant species.

Darwinian evolution occurs via three main processes: inheritance, variation and selection.
Inheritance is the passage of traits from parent to offspring, variation is the mutation of traits and
selection is the process by which favourable traits become prevalent in the population. Sometimes
one species may adopt different traits within sub-populations. Once these two sub-populations
are no longer able to inherit from each other they are considered different species and speciation
is said to have occurred. The branching process of speciation from shared roots results in the
evolutionary structure being modelled as a directed tree with extant species at the leaves and
points of speciation as the internal vertices. Such trees are called phylogenetic trees. While
Darwin had to use morphological data provided by observable characteristics, modern molecular
biology uses genetic data from present day DNA. As a result the problem becomes how to infer

evolutionary relationships from the DNA of the species in question.

The most up to date methodology involves likelihood based approaches. Likelihood based
approaches involve constructing a likelihood based on a Markov model. Markov models are used
to model DNA substitution. DNA substitution is a combination of mutation and fixation, the
processes underlying the variation of the species and uniformity of the subspecies respectively.
Markov models are used because they are forgetful, and the simplifying assumption that DNA

bases do not remember what was in their position is sensible as the process of evolution occurs
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over many generations. To assume the contrary would imply that more than just genetic code
is passed to the offspring. As we do not fully understand the process of base substitution and
the geometry of a DNA strand it is reasonable to not force such a multilevel relationship into
phylogenetic modelling since we are more likely to adversely affect the results. Two approaches
are commonly used to attain information from the likelihood: maximum likelihood methods and
Bayesian analysis. Maximum likelihood methods attempt to find the most likely tree, and so
estimate a point. Bayesian analysis utilises Bayes’ theorem in order to adapt a set of prior beliefs

by the data. It produces a density distribution with regions of high and low probability.

Increasing the number of species increases the number of relationships modelled and the number
of different phylogenetic trees possible. There are (2n — 5)!! unrooted phylogenetic trees for
n species as described in section [3.1} This results in a space that rapidly becomes infeasible
to explore quickly. Furthermore standard Markov Chain Monte Carlo (MCMC) techniques
sample trees and model parameters separately, further decreasing the efficacy of exploratory
algorithms. Hamiltonian Monte Carlo (HMC) provides a coherent method of exploration that
samples everything in tandem and ensures that regions of low probability are not excessively

proposed.

MCMC methods produce a chain of states designed so that the stationary distribution is
the required posterior. Most MCMC methods are variants of the Metropolis-Hastings algorithm.
The algorithm offers a new point from a proposal distribution to an accept-reject criterion, if
accepted the chain moves to the posed point otherwise it remains fixed. HMC is a variant of
the Metropolis-Hastings algorithm that employs auxiliary variables to ensure the posed point is
accepted more readily, enabling larger jumps around the state space. It does this by constructing
curves of constant density in the augmented state space and proposing points a certain distance
along these curves. For phylogenetic inference using standard Metropolis-Hastings, a separate
proposal is required for every collection of parameters. These parameters include, composition
parameters, transition-transversion rate, gamma rate and tree selection. There are two issues
with this approach. As the tree is the underlying process, proposals for model parameters are
made conditional on the tree, compounding any high rejection rates. By contrast, the proposals
for composition and transition-transversion rate may commonly be a lognormal random walk.
Proposals for the tree have to be able to vary the structure of the tree, and doing so requires the
use of topological moves that often produce very different trees with different likelihoods. In a
large space of trees this results in points in regions of low probability being proposed frequently.

By following equivalent density curves HMC prevents this issue.
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HMC has a few criteria that need to be satisfied, most important among which, is the need
for the likelihood to be differentiable and continuous. Tree space, the space of all trees with
varying edge length and structure on a fixed number of species, is a manifold stratified space. The
stratified manifold for Tree space does not accept a continuous flow generated by the likelihood.
During the course of this thesis I will go over how to adapt HMC to a stratified space and apply
it to phylogenetic inference. This includes the effect on the likelihood, how to cross boundaries,
efficiency of computation, and how to conduct HMC on the model parameters. As with most
methods of MCMC, HMC has many flavours, I will discuss which methods were chosen and

which were discarded while giving reasoning for the choices made.

1.1 A Brief History of Phylogenetics

Phylogenetics is the study of the evolutionary history of a group of organisms. It is primarily
concerned with speciation, when two sub-populations of organisms are no longer able to reproduce.
The foundations for studying phylogenetics appeared in the 19th century with the work of Bronn,
Darwin, Haekel and Mendel; Haekel himself coined the term Phylogeny in 1866.

The practice started out based on physical traits or morphologies with Mendel: “The experimental
plants must necessarily ... possess constant differentiating characters”, (Mendel and Bennett],
1965). Similarly Darwin employed a trait based method resulting in a question of common
ancestry. Did all life evolve from one common ancestor or many? “The term ‘variety’ is almost
equally hard to define; but here community of descent is almost universally implied, though it
can be rarely proved.” (Darwinl 1857) In Phylogenetics a single common ancestor was assumed
until in 1977 Woese & Fox demonstrated there to be three main clades of descent. Nevertheless
structural relationship or ‘evolutionary proximity’ between different groups of organisms remains

an issue of study.

Evolution has been used by humanity since civilisation began. The first cities Uruk and Ur relied
heavily on a variant of grass with shorter glumes allowing it to be threshed. Over time this
was selectively bred into the various forms of modern day cereal (Campbell, 2016). We did not

understand the processes behind evolution until millennia later.
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Animals

Figure 1.1: The Tree of Life, a phylogenetic tree constructed using most of the known base sequences of
living creatures. In this diagram we can see the evolutionary relationship between the various kingdoms,
phyla and classes of creatures living on earth. For example Animals and Fungi exist on the same subtree
when compared to plants and so the phylogenetic inference used to create this tree has animals and fungi
more closely related to one another than to plants. Source: David M. Hillis, Derrick Zwickl, and Robin
Gutell, University of Texas

In the 1970’s DNA sequencing provided genetic data. This meant that more advanced statistical
techniques such as Maximum Likelihood Estimation or Bayesian Inference could be applied. This

in turn led to an explosion in both theoretical models of evolution based on genetic data and

computational programs such as Phylip, MrBayes (Ronquist and Huelsenbeckl, 2003) and Beast
(Drummond and Bouckaert|, 2015)).

1.2 DNA and Bases

Mendel (Abbott and Fairbanks, [2016) noticed the patterns of genetic inheritence between two

sets of morphologies, through looking at seeds, if they had a round shape or angular shape, yellow

or green albumen. Sutton and Boveri then independently related this pattern to chromosomes,
(Sutton, 1903), (Boveri, 1904). |Avery et al.|(1944) demonstrated that DNA determined cell

properties. Chagraff discovered two rules about the nucleotide base rates and Franklin, Watson and

Crick famously discovered the double helix structure of DNA. DNA is formed of Deoxyribonucleic

acid which is a compound molecule made up of two strings, each of many nucleotides connected
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by a sugar phosphate backbone. These two strings are connected by hydrogen bonding between
the nucleotides contained within them. It is these two strings which form the double helix
structure. In humans the nucleotides are Adenine (A), Guanine (G), Cytosine (C) and Thymine
(T). Adenine and Guanine and called purines because they consist of two rings, Cytosine and
Thymine are called pyramidines because they consist of one. Adenine hydrogen bonds with
Thymine and Guanine with Cytosine. These nucleotides are called bases. DNA supplies the
code for the creation of proteins in the body, an activity that occurs in the ribosome, which
transcribes the DNA into RNA and then translates it into a protein. In this way DNA determines
the functionality of a living organism. Within DNA itself certain base locations have varying
functional importance, for example we know that DNA consists of introns and exons where the
intron is a buffer region not involved in protein construction. In 2010 approximately 90% of the
genome was considered non-coding (National Human Genome Research Institute, |2010) and it is
estimated more than 75% is non-coding (Graur} [2017). |Srinivasan et al.| (1987) demonstrates that
local bases affect the local structure of the double helix and most Manhattan plots demonstrate
the morphological links between nearby sites. This local correlation is quantified in many ways

such as HESS. It is therefore important to maintain the order of sites in an alignment.

1.3 Motivation

The study of Phylogenetics provides two different types of categorical benefit. Benefits that arise
from knowing species are distinct and benefits that arise from knowing they are similar. Such
benefits can be wide ranging “The fact that tomato and other subspecies of this genus actually
are embedded within a well-marked subclade Solanum ... is a powerful statement that is important

to geneticists, molecular biologists, and plant breeders” (Soltis and Soltisl 2003).

1.3.1 Disease spread

Disease spread and infectivity is an important application of Phylogenetics. If a disease exhibits
in one group of organisms, it will likely mutate to infect organisms of similar genetic makeup. To
a plant breeder such information can therefore provide knowledge of what treatments to provide
and how to cultivate resilience within a crop. Furthermore such information may provide possible
breeding partners which have hitherto been ignored. The first example of phylogenetics being
used was |[Holmes et al.| (1995) demonstrating that HCV had existed within human populations
for a long time when compared to HIV-1 and Pybus et al.| (2001) demonstrated that the genetic
history could lead to accurate Ry estimation. More recently phylogenetic inference has been used
to monitor and understand the diverging variants of SARS-COV-2 (Forster et al., 2020).
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1.3.2 Scientific Efficiency

Cloning DNA takes several steps, one step involves cutting the DNA at certain bases by use
of a restriction endonuclease. To quote an Eric Lander lecture; on the construction of ecoR1,
a restriction enzyme found in Escherichia Coli strain R, “Almost everything important that we
say molecular biologists have come up with, it means molecular biologists sat at the feet of the
true masters, bacteria, and learned from the true masters: this protein is found in nature”. The
question is once ecoR1 is found, where to look for similar restriction enzymes but with modified
cutting locations. Phylogenetic studies can provide knowledge of bacteria which are similar
genetically to Ecoli and may provide similarly useful proteins. Without Phylogenetics the amount

of time wasted searching in wrong clades of bacteria could be detrimental.

1.3.3 Virology

Phylogenetic analysis can be used to identify a virus at the start of an outbreak and determine
its origin, with the SARS-CoV-2 virus early on three clusters could be observed, one related to
the its appearance in bats (BatCoVRaTG13), an offshoot seen predominantly in eastern china
and an offshoot from that seen mostly in Europe (Forster et al., 2020). Such analyses both show
where the virus originated from and how it is spreading. Phylogenetic analysis can also identify
the causes of inter-species transfer, such as mapping the development of HIV (Castro-Nallar et al.,
2011). It can also be used to analyse cospeciation, how the virus develops with a population,
branching into various new forms, for example Hepatitis C virus (HCV) has been shown to have
6 major types and 11 clusters (Simmonds et al.l [1993), knowing which type of HCV you are
treating can effect treatment methods as in particular type 1 may cause damage to the liver
(Treatment Action Group, 2019)).

1.4 Literature Review: Challenges in Phylogenetic Inference

Phylogenetic Inference using MCMC was first introduced by Mau and Newton| (1997)). To do so

they use standard Metropolis-Hastings on the cophenetic matrix representation of a tree.

Mau and Newton| (1997)) use a split proposal which alternates between two different proposals
depending on whether the extant species are very closely related or not. Newton et al.| (1999) then
extended this idea to a global proposal on trees not using the cophenetic matrix representation.

Kuhner et al. (1995) also use MCMC to estimate effective population size.

Yang and Rannalal (1997)) also uses a Metropolis-Hastings scheme to conduct their inference
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over the posterior. They use nearest neighbour interchange to change topologies. |Yang and
Rannalal (1997)) models evolution along a branch as a birth-death process as described in |[Nee
et al|(1994). [Yang (2006) then provides a clear over of the state of phylogenetic inference in
2006. More recently [Yang and Rannala) (2010) use a reverse jump MCMC method (rjMCMC),
see [Johansen and Evers (2007), to either expand or contract the number of nodes. This is in
order to provide a Bayesian method of species delimination. [Stephens and Donnelly| (2000)
compare the MCMC approach with numerical approximation, |[Stephens and Donnelly| (2000J)
also documents various different proposal mechanisms used in MCMC for phylogenetics. Several
software packages have since been produced to run phylogenetic inference, the most famous of
these is MrBayes, (Huelsenbeck and Ronquist|, [2001)) based on work by Huelsenbeck and Ronquist,
and Beast, (Drummond and Bouckaert} |2015) and (R. et al., 2019), based on work by Drummond,

Bloomquist, Rambaut and many collaborators.

1.4.1 MCMC

A more concrete example is (Cherlin, [2016]). Phylogenetic inference is conducted over a product
space. This product space consists of Tree space, the substitution model parameter space
and the site rate parameter space. (Cherlin, 2016) uses the Gibbs sampling algorithm to
sample the tree, the substitution model parameters and the site rate parameters individually.
A Metropolis-Hastings algorithm can be employed at each step (Cherlin, 2016). To sample a
new tree one possibility is to propose new edge lengths according to a normal random walk. An
NNI, SPR or TBR is then performed on a subset of the edges of the tree. A Metropolis-Hastings
update for the new tree is then performed. New substitution model parameters can also be
proposed via the Metropolis-Hastings algorithm. The acceptance probability for the proposed
parameters is computed and the proposed parameters are accepted or rejected. Similarly, site
rate parameters can also be found by the Metropolis-Hastings algorithm. This sequence of three
different Metropolis-Hastings algorithms are then repeated forming a Markov chain of trees and
substitution parameters, and repeated until the chain has apparently converged to its stationary

distribution.

1.4.2 Metropolis-Coupled MCMC

Metropolis-Coupled MCMC (MC)? (Altekar et all [2004) runs several chains with varying
annealing temperatures and then combines them. Phylogenetic inference is conducted over
various different topologies with radically different density gradients, so by running multiple
chains with different temperatures it ensures that the posterior effectively informs the chain

greatly increasing the exploration and effective sample size of a MCMC approach.
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(MC)3 requires two decisions to be made, the first is which temperatures to run the chains
at and the second is which chains to swap between. When the posterior is continuous it
makes sense to swap between neighbouring temperatures. It common for temperatures to map
N — [1,00) and there are various ways of doing this often involving a change in temperature

which then becomes another parameter to be chosen.

We do not cover a Metropolis-Coupled version of COrtHMC as annealed HMC is covered
in many different sources such as Neal et al.| (2011)), through dividing the Hamiltonian by the
temperature. While running multiple different temperature chains would likely improve the
result it is clearer to compare the results at a fixed temperature and any improvements would be

expected to carry over to the Metropolis-Coupled version.

1.4.3 Huelsenbeck and Ronquist

As previously stated Beast and MrBayes are the two main competing tools used for phylogenetic
inference MrBayes developed by Huelsenbeck and Ronquist. Huelsenbeck has a long history in the
field, (Hillis et al., [1994), (Huelsenbeck, |1997)) and (Hillis and Huelsenbeck, [1994). MrBayes and
Ronquist and Huelsenbeck| (2003) employ (MC)3. In [Huelsenbeck et al.| (2002) problems involved
in the MCMC approach are discussed, such as poor mixing, reliance on priors and whether a
Bayesian approach results in overconfidence. |[Nylander et al. (2004) then explores including
morphological in the form of the MkI' — GT RII" which they found “contributed to < 5% of the
characters in our data but still had significant influence on the tree” and found that a Bayesian
comparison can “favor simple models over much more complicated ones”. In [Huelsenbeck et al.
(2004) they use the reversible jump Markov Chain Monte Carlo Algorithm to sample between
different time reversible Markov processes to model evolution. In the reversible jump MCMC
requires a differentiable way to compare between two spaces of different dimension. [Huelsenbeck
et al.| (2004) use one of a hierarchical likelihood-ratio test, the Akaike Informaiton Criterion
or the Bayesian Informaiton Criterion, they find that partitioned model heterogeneity across
sites improved fit but that it is more important to include within partition rate heterogeneity.
Huelsenbeck and Andolfatto| (2007)) expands the number of available priors to include a dirichlet
process which is useful for multiple populations. Perhaps the most useful paper with regards to
HMC is Lakner et al. (2008) in which the compare a continuous change proposal from Jow et al.
(2002) and the LOCAL algorithm of Larget| (2008]) with TBR and SPR (see subsection
and find that they are not very efficient when compared to TBR and SPR, as HMC is a local

algorithm we might expect similar results.
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1.4.4 Probabilistic Path Hamiltonian Monte Carlo

Probabilistic Path Hamiltonian Monte Carlo (ppHMC) (Dinh et al., 2017) is a method developed
by Dinh, Bilge, Zhang and Matsen in Seattle, it has a similar formulation to COrtHMC, our
technique. To conduct ppHMC they employ the Leap-prog integrator. The Leap-prog integrator
integrates according to the hamiltonian checks for a boundary crossing and then proposes a
new point in a new topology. They also developed the refractive Leap-prog algorithm which
upon crossing into a new topology rescales the momenta based upon the difference between the
posterior likelihood of the proposal and current topologies. Like Leap-prog COrtHMC checks
repeatedly to see if the Markov chain leaves an orthant, when it does do COrtHMC proposes a
new orthant and new momenta like Leap-prog. COrtHMC like the refractive Leap-prog enables
momenta to be resampled. Leap-prog keeps the set of indices crossed whereas COrtHMC methods
apply sequential techniques for dealing with multiple crossings. In Leap-prog it chooses a new
topology using a uniform distribution, this is equivalent to option 1 in subsection Leap-prog
also employs a system where the state proposed in a new topology is as close to the point where
the flow crosses the orthant boundary as possible, this extra level of refinement around orthant
boundaries is something we did not propose in our various different crossing methods. Finally

Leap-prog requires all boundary crossings are known in F'irstUpdate Event.

1.4.5 Sequential Monte Carlo

The idea of Sequential Monte Carlo (SMC) is to have a collection of particles in the state space
with are weights. These particles are then parsed through a filter in which an intermediate set of
particles are sampled from the old particles according to their weights with replacement. This
intermediate set generates a new set of particles from a specified proposal distribution whic
takes a particle as an input. New weights are then calculated for the set of particles and an
estimate for the posterior is given by the average of the weighted averages of each collection
of particles. In PosetSMC (Bouchard-Coté et al., 2012) an adaption of SMC for phylogenetic
inference the particles are forests connecting the leaves representing extant species. PosetSMC
therefore requires a proposal distribution for forests which depends upon an existing forest. It
then produces a set of forests at each iteration and refines them by their weighting. In a way
similar to parallel MCMC this effectively enables exploration over a large subsets of the state

space simultaneously speeding up the convergence of the algorithm.

1.4.6 Variational Bayesian Phylogenetic Inference

A new method of phylogenetic inference has recently arisen called Variational Bayesian Phylogenetic
Inference (VBPI)(Zhang and IV] [2019), (Zhang, 2020). It works by making use of Subsplit

10
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Bayesian Networks (SBN). In Subsplit Bayesian Networks you have a total order on the clades of
a tree and you can split the density into a product of the conditional density of each clade, this
creates a family of distributions. VBPI takes the SBNs as a family of approximate distributions
over phylogenetic tree topologies and combines it with a family for edge lengths. VBPI then
rephrases the inference problem as minimizing the Kullback-Leibler divergence of this family
with the posterior distribution. There are many methods of approximating the solution one
such method is stochastic gradient descent. This means that the time consuming Markov chain

construction is bypassed resulting in faster results.

1.5 Contribution

We have developed a novel method of applying HMC to a phylogenetic setting and have produced
results agreeing with those of others who have attemped similar approaches demonstrating that
HMC should not be applied to this setting. We have developed a package to conduct our approach
with blackbox and user defined parameterisation in which we have developed and implemented
methods of speeding up the inference. We have designed our own way of measuring ESS and
ESS/s to get around the static pendant edge problem which can cause standard ESS and ESS/s
to artificially lower the evaluation of ESS/s. We have also implemented and compared ppHMC
with COrtHMC and found the two techniques to produce like results. Finally we have developed

new ways of visualising MCMC on Tree space.

11



Chapter 2

Substitution Models

This chapter describes how we construct models for evolution to use in likelihood based inference
schemes. We do this by using Markov processes to construct a likelihood. These Markov processes
provide a probabilistic model for how a base transforms throughout the evolutionary tree from
a common base ancestor. We start by considering how a single base of DNA evolves from an
ancestor to a descendant. Changes in the DNA base can be modelled via a continuous-time

discrete state Markov process.

2.1 Markov Models and Markov Processes

A Markov process is a particular type of probabilistic model for moving between states randomly
over time. We shall only concern ourselves with discrete state continuous time Markov processes
which move between discrete states randomly over continuous time. Markov processes are
distinguished from more general stochastic processes by the Markov property. This states that
the future state is conditional only on the current state, and that future states do not depend
on past states. A Markov process consists of a family of random variables Z; indexed by ¢ in
some indexing set T', thought of as times, taking values in a state space A. A more in depth

explanation of Markov processes can be found in |Adams| (2011)).

Definition (The Markov Property). The Markov property for the collection Z; is:

Vk € Ngn—l th 2 th—1> ... 2tk Zy 2Ty s Zn—k € A
P(Ztn = Z|Ztn_1 = Zn—1y ey Ztn—k = Zn_k) = P(Ztn = Z|Ztn_1 = Zn_l).

A Markov process can be expressed in the form of a Markov kernel.

12



Chapter 2. Substitution Models 13

Definition (Kernel). A kernel P is a two argument function taking in times ¢ and s and returning
the probability of Z; given Z, for all possible states. For discrete state-spaces the transition kernel
P of the Markov Process Z; can be represented as a matrix that corresponds to the transition
probability, (Johansen and Evers, 2007), P(t,s) = [P(t,s)];;. Each entry of the matrix is given
by the following:

[P(t, S)L‘j =P(Zy =i|Zs = j).

In this project we begin by considering random changes to a single base in a DNA strand. In
this case the state-space consists of the DNA bases A = {A,G,C,T} and Z; will be indexed by
teTlT CR.

Definition (Discrete-state continuous time Markov process). A discrete-state continuous time
stochastic process is a family of random variables indexed by time ¢ € T' C R and taking values
in a discrete state space. A discrete-state continuous time Markov process is a discrete-state

continuous time stochastic process satisfying the Markov property.

Definition (Time Homogeneity). A Markov process is time homogeneous if
P(Zy = 2| Zs = z5) = P(Zi—s = 2| Zp = z5) for all s and ¢ in the index set such that t > s.

When the Markov process is time homogeneous, P(t,s) = P(t — s,0) and so can be represented
by a function that we shall also call P with a single parameter, P(t) = P(¢,0). When the
kernel is discrete P(t) can be represented by the matrix [P(¢,0)];;. Most substitution models in

phylogenetics are time homogeneous and all models in this thesis will be too.

A Markovian approach is appropriate to modelling evolution. The only observed influences are
the current population size and the current environmental stresses and biochemical properties.
These are memoryless. In phylogenetics we start by taking the state at a single site of DNA for a
common ancestor of the species of interest. We take this state to be the state at time t = 0. As t

increases Z; evolves according to a Markov process.

2.1.1 Chapman-Kolmogorov equation

Chapman-Kolmogorov equations are important identities of Markov processes. The Chapman-Kolmogorov

equation for time homogeneous Markov processes is:

P(ty +t2) = P(t1)P(t2)

13
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where P(t) is the kernel as viewed as a matrix. This can be derived from the Markov property as

follows:
P(ZtlthQ = 1|Z0 = j) = [P(tl + tQ)’ij] = Z IED(ZtlJrh =1 | Zt1 = ky Zy = j)P(Ztl =k | Zy = ])
ke A
= ZP(Ztl+t2 =i| Zy, = k)P(Zy, = k| Zo = j).
ke A
= Z [P(t1)]3r, [P(t2)]k;
keA

= [P(tl)P(tQ)]ij'

2.1.2 The rate matrix

In this section we are using P, to denote P(t) for clarity. If we have a time homogeneous process

and if the following limit exists, then P, is differentiable in ¢ and the rate matrix ) can be defined:

. P—=T1 dP;
=1 = —,
Q tg% t dt

The time homogeneous forward and backward Kolmogorov equations % ap = RO, 5 ap ‘g = QP can

be derived from the Chapman-Kolmogorov equations. By the Chapman—KolmogorOV equations
Pirat = PPy = P14 Qdt + O(dt?)) and Py gy = PuPr = (I+ Qdt + O(dt*)) P,

These in turn imply

Pyar — Pt

P — P,
o = P,Q + O(dt) and “F "t _ opy, + O(at).

dt

Letting dt — 0 gives

dP; dP;
&t _p —t - QP
dt tQ and dt Q te

To find a solution for P in terms of () make an Ansatz that P, = Pyexp(Qt). Simple computation
reveals this to be the solution. The rate matrix @) is sometimes called the () matrix or generator.
The elements of the rate matrix g;; are called the transition rates and denote the rate at which
the state leaves state ¢ and moves to state j. As we can obtain the probability kernel P from @ it
is often clearer to express the substitution model in terms of the rate of flow between states rather
than the probability of being at a given state at time ¢. It is important to define a stationary

distribution as many models use the stationary distribution as a key model parameter.

14
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Definition (Stationary Distribution). The stationary distribution is the vector IT = (1, ..., 7,)
where n = | A| such that for all ¢, P.IT = II.

If the Markov process is time homogeneous, irreducible and recurrent, then the stationary
distribution exists and is unique. The stationary distribution represents the limiting distribution

over the states if the process is ergodic.

Definition (Reversible Markov Process). A Markov process is reversible if when stationary the
transition probability going forward in time is the same as going backwards, where P is the

transition probability when stationary.
P(t,t — S)ij =P(t,t + S)ij, Vi, j € A.

If a Markov process satisfies the detailed balance equation m; P(t);; = m;P(t);; then it is reversible.

It is important to say that we shall be using a time reversible Markov process. This means that
while notionally there is a root representing the common ancestor in any given phylogenetic tree,
the distribution of random variables at the leaves does not depend on the position of the root. In
particular, this means that the likelihood we construct is invariant under changes of the root
position. This flexibility in the location of the root will enable us to compute derivatives with

respect to edge lengths faster as we shall explain in chapter

2.2 The substitution model

We have outlined how a single site evolves over time by a Markov process. We now go on
to explain how different substitution models give different families of kernels for that Markov
process. A Substitution Model is a certain parametrised family of rate matrices Q). It defines the
probability of one state moving to another and may depend on various factors. We use 6 to range

over the various different parameters of () and we denote the space of substitution parameters ©.

2.2.1 Examples of substitution models

Several standard examples of substitution model can be found in the book by Yang| (1994). The
generic layout for the rate matrix of a substitution model is depicted in figure 2.1} Each entry
consists of base rates and conversion rates. The base rates, w4, 7¢, 7¢ and 7, represent the
stationary distribution. The conversion rates are g;j, ¢, j € A. The asterisk is a place holder for

the negation of the sum of the row, e.g. for the first line x = —woqac — Taqac — TrqaT.

15



Chapter 2. Substitution Models 16

A C G T
A * TCQAC TGYAG TTYAT
Q= C | magca x  TGqeG  TTqoT
G | mTaqca Tcqco * TrqGT

T | maqra Toqrce TG4rG *

Figure 2.1: The General Rate Matrix

2.2.2 General Time Reversible Model (GTR)

Most examples in [Yang (1994) are specific instances of the Generalised Time-Reversible model
(GTR) (Tavaré, 1986). The GTR model assumes that there is a stationary distribution. The
GTR model also assumes that there are different transition rates associated with each pair of
bases. It has the same rate forwards and backwards between states, and hence it is reversible.
All the models we consider are specific examples of GTR and are therefore also reversible. GTR
has the most parametric freedom while preserving reversibility. This means given enough data
GTR should replicate the results of any other model but can cause overfitting (Spielman, [2019).

It is the instance of the general model in which ¢;; = gj;.

A C G T
Al * woa wgB wry
Qerr= C |maa * 7wgd mre
G|maB med * ay

T | may mge mwgn %

In this project we need to to acquire the transition matrix. For this it is necessary to diagonalise
() and compute its eigenvalues. The transition matrix is then a function of the exponentials of
the eigenvalues. Unfortunately, the eigenvalues of @) are not readily identifiable as functions of
the substitution model parameters (Roch) 2012). Also the derivative of the transition matrix

with respect to substitution model parameters cannot be taken in terms of matrix () as

dexp(Qt)  d < (Qt)
do _@Z il

and matrix multiplication is not commutative. Here 6 is one of w4, 7¢c, 7g, mr, 0, B,7,0 or €.
This means that the derivative of the transition kernel with respect to its parameters requires

an approximation. We chose to avoid approximations where possible as we are interested in the

16
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behaviour of HMC rather than the impact of the approximation. Other models have an algebraic
transition kernel and so do not require such an approximation. It is for this reason that we
decided to use HKY85 as our model in testing our algorithm. HKY85 only has two conversion
parameters (or one up to a constant) which means that the transition matrix can be written
down explicitly in terms of all the substitution model parameters and an exact derivative can be

computed.

2.2.3 Hasegawa, Kishino and Yano 1985 (HKY85)

Other models are motivated by properties of DNA. DNA bases are composed of purines A & G,
which have both an iodine and pyrimidine ring and complementary pyrimidines C & T. The

Kimura 2-parameter model posits one rate, o for transitions and another rate, 8 for transversions.

Definition (Transitions and transversions). A transition is a purine to purine or pyrimidine
to pyrimidine substitution and a transversion is a purine to pyrimidine or pyrimidine to purine

substitution.

HKY85 (Hasegawa et al., [1985) generalises the Kimura 2-parameter model and the Felsenstein
models. The Felsenstein model has the base transition parameters all the same, ¢;; = 1 for
all i,j € A. The Kimura 2 model is the HKY85 model with fixed base rate probabilities,

(ma, 7o, TG, TT) = (i, %, %, %) HKYS85 has the following rate matrix:

A C G T
*  7wef waa wrf
AP * Taf Tra

maa wef Kk wpf
Al moa waB o %

O
I
H Q Q-

HKY85 employs the use of base rates or transition-transversion ratios. Such parameters result
in a problem for HMC, which is normally conducted on parameters taking values on R without
constraint. The bases w4, 7o, g, 7 lie on a simplex. This is an issue as it requires a form of
constrained HMC, where g + 7o + g + 7 = 1; ma, 7o, 7, 77 > 0. As such it is necessary to
transform the base rates to make them applicable for HMC. The transition-transversion rates

also need to be transformed as they are required to be strictly non-negative.
One of the key properties for us of HKY85 is that the eigenvalues have simple closed forms and

the diagonal can be computed. Following the work of |[Nye and Heaps (2014) we know that the

eigenvalues are 1 —ft —(mya + mgf)t and —(mra + my 3). This enables the transition matrix to
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be computed. Specifically if we let:

7TR:7TA+7TG TFYZTFC+TFT
yr =7y /TR ry = 1.0/yr
s = exp(— 1) e3 = exp(—(mra + Ty B)Y)

eq = exp(—(mya + mrp)t)
then:

P(t) = exp(iQ)

A C G T

A | ma + Tayres + o /TRES me(l —e2) TG + Tayres — G /TRES mr(l — e2)

C ma(l—e2) T + Toryes + T /Ty es ma(l —e2) Tr + Trryes — wr/mTyes .

G | ma + mayres — ma/mwRes me(l — e2) Te + Teyres + wa/TRes mr(l — e2)

T ma(l—e2) e + Teryes — mo /Ty e ma(l —e2) T + Trryes + o /Ty es
Moreover, the above formulation for HKY85 enables us to compute the derivatives dl;—ét). We give
dgri) as an example. For ease of notation the symbol ’ will denote % applied to the preceding
term.

TR =1 my =0

yr' = —y /7% ry =1/my
eh=0 es = —ates
e = —Btey

18
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P'(t) = (first two columns)

A C
A 1+ yres + mayr'es — ma/mhes + e /TREY 0
C 1—e wory'es + m /Ty ey
G | 14+ yres + mayr'es — 1/mres + ma/mhes + ma/TRey 0
T 1—e Tory'es
(last two columns)
G T
A myr'es + G/ Thes — TG/ TRE, 0
C 0 pirry'es + mp/myey
G meyr'es + 1/mres + ma/Thes — A/ TRE, 0
T 0 wrry'es

Derivatives of P for all parameters were calculated algebraically and coded up in our software.

2.2.4 Substitution Models and Trees

So far we have only considered a single site, with no speciation in the evolution. This is a Markov
process on R and can be represented by the line graph e with vertices v(e(1)) and v(e(2)), and
length ¢(e). The length of the edge represents the time taken multiplied by the rate of evolution,
represented by e, ¢(e) = pete. We cannot identify or differentiate between the effects of .
and t.. Over time a species can speciate, this is a branching of the Markov process. A Markov
process that branches again and again forms a Markov process on a tree, so that Z; is indexed
by points in a tree, rather than a subset of R. The Chapman-Kolmogorov equations ensure that

the Markov process can speciate at any point coherently.

To sample from the process, we start with a collection of sites in a common ancestor for
extant species. This common ancestor is represented by the root of the tree. We assume that
these sites can be identified with sites in extant species by common descent. We can then simulate
the Markov process by simulating branch-wise. The branch-wise simulation for any edge in
the tree can be treated as standard simulation on R. Given a base at one vertex of the edge,
w.l.o.g. v(e(1)), the base at the other, v(e(2)), is simulated according to the Markov process, the
transition probabilities being P(¢(e)). Repeating this process down the tree eventually results in
bases being simulated for the leaves. Each extant species is represented by a leaf. The simulated

base at the leaf gives a simulated base for the extant species identified with a particular site in
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the ancestral species. We require many sites to get an accurate idea of te evolutionary distance
between multiple species. Mice and humans have 85% of protein coding regions of DNA identical
to one another, a single site would therefore be a poor judge of evolutionary distance (National
Human Genome Research Institute, 2010)). Each site produces a simulated base at each leaf
referencing both the site and the extant species. This data can be collated in the form of an

Alignment. The Alignment is the data structure we use for inference.

2.3 The Alignment

The data used to constructed the likelihood is called the alignment (Yang), |1994)). This data
consists of DNA bases arranged into an array. As seen in section DNA consists of nucleotide
pairings between the four bases: adenine (A), cytosine (C), guanine (G), thymine (T). DNA
sequencing provides a list of bases and where they appear in the DNA strand. The set of all
possible bases forms the alphabet denoted A. In section [2.1] we described a Markov process
transitioning a root base to a pendant base. The pendant base is dependent on species and initial
root base. We can therefore construct an array X = {x;; }i=1:m j=1.n Where the rows represent
different species and the columns represent the site in the DNA from the common ancestor base
x;; is associated with. It is standard practice to order the DNA string to maintain the order of
the sites in the DNA. This can be beneficial in analysing global site heterogeneity, but it has been
shown that site rate heterogeneity depends on local affects also, such as the surrounding bases
and methylation, the most famous example of this is at CpG dinucleotide sites (Todorova and
Danieli, |[1997), which can lead to an above 10 fold increase in specific mutations(Hodgkinson et al.,
2009). [Hodgkinson et al.| (2009) perform a comparison of SNPs between human and chimpanzee
genomes, they find that there is significant global variation in mutation, not be explained by
local genomic data, supporting a consistent ordering. A global approach is further supported
by Matassi et al. (1999) which uses CpG sites to see the change in mutation rate. Nevertheless
in adopting a global approach to the order most substitution models remove the granularity
required to account for local behaviour, something that a categorised reordering might be able to
account for. Combining all the strings of DNA bases for the different species of interest creates

an alignment. The alignment is the data over which phylogenetic inference is conducted.

Definition (Alignment X = {x;}i=1:m = {%ij }i=1:m,j=1:n). The alignment is the name given to
the n x m matrix of genetic bases where the m rows correspond to different species and the n

columns to different sites of the DNA sequence.
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Speciesl |A G T G C A G C
Species2 |A C A T A G T A
Species3 |G G T T G A C C
Speciesm | T G A T C ... T T A

Figure 2.2: Example of an Alignment

2.4 Linear Site Rate Heterogeneity

It is known that selection effects differ depending on site. This means that it is sensible to model
the rate of evolution as varying over the different sites. The rate is added into the likelihood by
multiplying the rate matrix by a constant k& and the likelihood by the probability of that constant.
That constant is often modelled as being drawn from a gamma distribution with parameters
(o, ). As k is unknown we have to average over k, that is to integrate the conditional likelihood

of k, multiplied by the probability of k over all possible values of k. This results in difficult
integrals (Yang, 2006):

I [ bt

7 Jo

where Lj is the likelihood given k£ and j ranges over sites in the alignment, see section [2.5
The function g, (k) is the probability of k from a I'(«, «) distribution. Yang (1994) shows that

the discrete gamma distribution provides a suitable approximation for 4 or more classes. This

H Z Li; 9o (ki)

J kiykn

replaces the above integral with

where k; are the values at which a fraction of the density is reached. There are other models
such as the log-normal model, a mixture of invariable sites (Yang, |2006)) or a gamma mixture

model (Mayrose et al.l 2005) but we decided to adopt the simplest, the discrete gamma model.

The discrete gamma model takes the gamma distribution and splits it into K bins. Each
bin represents 1/K of the total density. The model selects the mean of each bin to be the different
rates ki, ..., kx. The rates ki, ..., kg are dependent on o. The k; are computed by computing the

value at which the cumulative density function is equal to the appropriate density.

For example, suppose K = 4, then there are four partitions of [0, 1], [0,0.25), [0.25,0.5), [0.5,0.75)
and [0.75, 1], each partition has an associated mean ¢; = 0.125, co = 0.375, c3 = 0.625, ¢4 = 0.875.
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ki, ..., k4 are the solutions of

ki ya—1
it exp(—t
/ T exp(t)
0 I'()
apa—1 _ X
The above gives the appropriate rates k; and the probability of k; is akexp(zak) g conduct

I'(a
HMC we need to be able to compute the derivative of k; with respect to OE. )This is intractable
and requires a numerical approximation. To run HMC we discretised R so that « took values in
{0.001 x j ?2010, and computed k; for all the values on the discretisation, kf . We then used the
finite difference method to estimate the derivative of k; for for every a on R. The number 6000
was chosen as the gradient has tapered off at @ = 6 for all k; up to 8 bins. A refinement of 0.001
was chosen because it resulted in the same derivative of the likelihood with respect to a as the

numerical approximation.

7 ?

dk; KO g
: : ;
do Oéj+1 — Oéj_l '

2.5 The Markov Model and the Likelihood

Constructing the likelihood is key to conducting inference over the posterior. The likelihood is
constructed according to a Markov process on edge lengths and then as more edges are added
these individual transition probabilities are multiplied together. The likelihood is defined in
terms of alignment X, model parameters 6, the site rate parameters « that generate k, tree T’
consisting of edge lengths ¢ and topology 7, and alphabet A. The relationship u < v denotes that
u is a child of v. The child relationship requires the tree to be directed. We direct the tree such
that the root is the parent of all its neighbouring vertices. Disconnecting these child vertices from
the root generates several subtrees. Repeating the process provides a parent child relationship
for every connected pair of vertices in the tree. The likelihood L, is the subtree likelihood, the
likelihood of the subtree created when u is disconnected from its parent v. This means that we
can construct likelihood as a standard tree recursion in terms of £,,. We write P, ,.,{¢, 0} for the
probability of transitioning from z to y given parameters 7,  and . We denote the stationary

distribution P(v = z) or simply 7(z).

The likelihood is then:
ﬁ(X’& 7—7676“) = HZP(k‘) Zl(x) H me,y;k{e(ua vo),H}ﬁu(Xi]y,& T, 9704)

i=1 key €A u<vo | yeA

We now explain this construction. We start with a single site ¢. We require the transition matrix

of a Markov process P modelling base substitution. We then consider the set of all possible
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labellings of the vertices of the tree with members of the alphabet. Each member of the set has
the requirement that for the leaves [; the labelling matches the associated base w(l;) = x;;, the
observation of that leaf in the alignment. We let w, denote the labelling at the root. We can
now consider a single edge in a given tree T with specific labelling v as two bases separated by a

distance.

edge e, length £(e)

The probability of substituting the base a with base b in evolutionary time ¢(e) is given by the
transition matrix P, p.x{¢(u,v0),0} = P(0) exp(Qkl),, where 0 represents all the substitution

model parameters.
€1 €9 €n
"@—@—@ --@in
aj as

The probability of moving from the nucleotide at the root, r to nucleotide a,, in time ¢ consists of
two sums, one containing points e, ..., e, such that they lie in the simplex V = {{(e1)+...+£4(e,,) =
t|¢(e;) € R} and the over possible bases at the internal vertices. The summand is given by the
transition matrix Py 4,.x{¢(€1), 0} Pay.as:k{¢(€2),0}... Pa,,  an:k{€(€n), 0}, which can be simplified

by the Chapman-Kolmogorov equations.

Consider a species S,, with w children S, 1,...,5, 4. It seems sensible to take each branch
of evolution as independent of each other. This results in the likelihood defined on a subtree of v

being:

Ev(Xi|Sv,9,k) :P(Sv = Sv /\Sv,l = A\/Sv,l = C\/SUJ = G\/val =T
Ni NSy =AVS,;=CVS,;=GVS,,; =T)
Z S —Sv/\Svl_y)

yeA

Z smy,k{t v, U)ve}ﬁsv(xi|y?€77_7‘91k)
yeA

m ::]s 0 ::]s

The above is a formulation for £, in terms of the children of v. Writing the likelihood in terms

of L, is called the Felsenstein pruning formulation.
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Taking the subtree starting at the root, to define the likelihood sum over all possible rates
zeA> the probability that the root takes that
character P(x)(vo) = = multiplied by the subtree likelihood L,,(xi|zy, ¥, T, 0, a). This gives the

Zkev and sum over characters the root can take )

likelihood on a single site:

E(X7,|£7 T,H,O[) = Z]P)(k) Zﬂ(x) H ZPm,y;k{g(u700)7g}ﬁu(Xi‘ghE?T?eaa)

key €A u=<vo |yeA

Taking each site as independent gives the full likelihood.

The likelihood Lj in subsection [2.2.2] can now be defined as

Zﬂ(w) H Z Pﬂﬁ,y;k{e(uv 00)79}£u(xi’y7€77_7 9,05)

z€EA u=<vo |yeA

This is the recursive formulation of the likelihood. The likelihood can also be defined in
terms of the Felsenstein algorithm, which takes advantage of the binary nature of a phylogenetic

tree. For more details see appendix 1.

It should be clear that the location of the root does not affect the computation of the likelihood

due to the reversibility of the Markov process.
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Chapter 3
Bayesian Inference and Tree space

In likelihood based phylogenetic inference there are two main methods of using the likelihood
to learn about the evolutionary process. These are the maximum likelihood and the Bayesian
approaches. Maximum likelihood aims to find the single point in the parameter space which
maximises the likelihood, it provides a best fit model. Bayesian approaches, on the other
hand, allow the incorporation of prior information, summarised by a prior density over unknown
parameters of interest. Upon observing data, the prior density can be combined with the likelihood
function to give the posterior density, upon which we base parameter inference. Unfortunately,
the posterior density is typically only available up to a constant of proportionality, except in some
very simple cases. Consequently, posterior summaries such as (marginal) means and variances
remain intractable. Nevertheless given samples from the posterior distribution, Monte Carlo
methods can be used to approximate posterior moments as required. Of particular interest
in this thesis is a commonly used technique known as Markov chain Monte Carlo (see section
. In brief, a Markov chain is constructed whose equilibrium distribution is the posterior of
interest. Simulations from this Markov chain are then taken as (dependent) draws from the
posterior. In this chapter, we consider MCMC schemes for performing inference in Tree space.
We therefore provide an introduction to Tree space before considering the inference problem and
the construction of appropriate MCMC schemes. By far the most influential of this family of
techniques is the Metropolis-Hastings algorithm.
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3.1 Tree space

Tree space is complicated, so the MCMC methods need to be tailored to it.

Tree space T, is defined to be the space of all edge-weighted phylogenetic trees including non-binary
trees with n-leaves, labelled 1,...,n. This thesis is concerned with unrooted phylogenetic trees as
we assume the Markov process is reversible. The number of different topologies, see Def: of

unrooted trees on n leaves is (2n — 5)!1.
2n—5)=02n—-5)x(2n—3) x..x3x1

For example there are 15 different topologies when there are 5 leaves. We will see later in figure

[3:1] 75 modulo edge weights can be represented by the Petersen graph, a non-planar graph.
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Figure 3.1: The Petersen graph encodes the different topologies in 7¢,. Up to permutation of labels there
is one binary unlabelled branching tree with five leaves. This looks like an “H”-graph with an added edge
in the middle. Each edge of the Petersen graph represents an orthant of Tree space as defined in subsection
Each edge of the Petersen graph has been given a string of numbers representing a labelling on the
leaves of the tree. The first two numbers correspond to the leaves at one end of the H-graph, the middle
number corresponds to the added leaf in the middle, and the last two correspond to the leaves at the other
end of the H-graph. As a point travels within an edge of the Petersen graph, the internal edges of the tree
represented by that point contract and expand. At corners where three edges of the Petersen graph meet
one of the internal edges of the tree has contracted to a point. Around the left hand side of the diagram
and bottom is depicted the tree associated with the left most and bottom edge. Also depicted are the
trees at the corner. 75 is in fact the cone of the Petersen graph so each edge becomes an orthant with a
vertex at the apex of the cone as can be seen in

3.1.1 Phylogenetic Tree

A common assumption when conducting phylogenetic inference is that the evolutionary structure

is tree-like, this model is common to both morphological and genetic data. A tree which is
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designed to model evolutionary structure is called a phylogenetic tree.

A Phylogenetic Tree is an acyclic bifurcating graph in which every leaf represents an organism of
interest. Each leaf has degree exactly one and the unique edge connected to a leaf is called its
pendant edge. Each internal vertex has degree at least three with the sole exception of the root
which, where there is one, has degree two. At every internal vertex there an act of speciation,

one species divides into two. The root has degree two as it lacks a parent.

Phylogenetic Trees can either be weighted, (each edge has an associated length corresponding to

evolutionary distance) or unweighted, (the tree merely provides structural information).

Root: Common Ancestor

Internal Edges
ntern ges Points of speciation

sub-clade: Galliformes

Quails Turkeys| Penguins| Alligators Crocodiles Leaves: Species

Figure 3.2: Example of a Phylogenetic Tree for birds and reptiles, here we have a striped down version
of Figure: where we focus on only a few species to understand the structure of a Phylogenetic tree.
We see that a Phylogenetic tree has a root representing a common ancestor, internal edges representing
unknown instances of speciation for which we have no data, and pendant edges which connect the modern
species to some unknown shared ancestor. We also see that by disconnecting an internal edge we form two
subtrees, partitioning all species into a clade representing the appropriate toxonomic rank at which the
edge was cut.

Formally,
Definition (Phylogenetic Tree). A phylogenetic tree is given by:

e a graph T = (V, E) where V is a vertex set and F C (‘2/) a set of edges between pairs of

vertices.

e a labelling ¢ : V. — S where S = Sgnt U Sinet is a set of extant species for which information

is known and extinct species for which information is unknown.
such that:

e T'=(V,E) is a tree, it is acyclic and connected,
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e the labelling function ¢ is injective and is required to satisfy ¢(v) € Sy for all leaves v
(vertices of degree 1), and p(v) € Sie for all internal nodes (vertices of degree greater than
1). inct stands for extinct as Sinc represents extinct species and ant stands for extant as

Sant Tepresents extant species.

Two phylogenetic trees have the same topology when they are isomorphic to each other and the

isomorphism preserves the labelling function (.

One of the most important tools for comparing trees when they change topology is how an edge
splits the extant species into two groups, this is called a tree split or split. A split is a useful tool
because it can uniquely represent an edge in a way that does not depend on the topologies of the
two trees formed when an edge is removed. This enables us to have a consistent notion of an

edge when topology changes.

Definition (Split of a Phylogenetic Tree). A split of a phylogenetic tree 7" is a disjoint pair of sets
S1, S2 C S obtained by removing an edge from the phylogenetic tree. As a phylogenetic tree is
connected and acyclic, removing an edge results in two subtrees 71 = (Vi, Eq) and Ty = (Va, E»).
The split is then the unordered pair of sets S1 = ¢(V1) N Sant and Sy = ¢(Va) N Sgpy and their
related bases. We denote the split of edge e by split(e) = (S1,52).

An equivalent notion of topology is that two trees are topologically equivalent if the set of splits

generated by removing edges from the trees are the same.

Definition (Topology of a Phylogenetic Tree). The topology of a tree T' = (V, E) is the set of
splits of the tree T"
T = {split(e)|e € E}.

This definition means that two phylogenetic trees have the same topology if and only if they are

isomorphic as labelled trees.

In the definition a phylogenetic tree can be weighted or unweighted. If it is weighted
each edge e € E has a weighting /(e) € R associated to it, commonly called its length. As trees
are acyclic, there exists a unique shortest path p between any two vertices, the length of this
path, £(p), is the sum of the length of all the edges in the path.

There are a few exceptions where DNA transfer between two different species does not occur
in an acyclic branching pattern. Two species that diverged in the past can share genetic
information. Certain bacteria can share DNA in the form of a plasmid ring due to processes

such as recombination and conjugation. Methods of recombination and conjugation are well
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understood and so the data in the alignment can be sampled to account for these effects.

Tree space is the space of all possible phylogenetic trees on n-leaves. Orthants are the subspace
of phylogenetic trees restricted to particular topologies. Locations within orthants are defined
by edge lengths. The orthants are connected to one another by gluing at the points where an
internal edge has 0 length. When one edge is contracted this renders the topology of the tree
indistinguishable between three possibilities, when more edges are contracted more orthants are
connected by the codimensional point. We can observe this structure in “the open book” Figure
0.0

Figure 3.3: Here we can see an example of three different orthants (pages) of the open book and how they
relate to one another. Ty, Ty, T3, Ty, and T3 are subtrees. Edges (1, {2, and {3 shrink to 0 to form the
tree depicted on the spine, the intersection of the 3 orthants, labelled I'd due to the associated transition
probability across an edge of 0 length.

Definition (Orthant of Tree space). An orthant of Tree space is the collection of trees belonging
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to a single topology. The labelling on each tree is combinatorially the same but each tree in an
orthant is distinct due to having different edge lengths. If an unrooted tree has n leaves, then
it has 2n — 3 edges. Each orthant is isomorphic to a copy of }Ri”_S. Moving within an orthant

corresponds to stretching and contracting edges.

Definition (Billera Holmes Vogtmann Tree space (BHV Tree space)). Billera Holmes and
Vogtmann Tree space as proposed in Billera et al. (2001) consists of orthants glued together
along codimensional lines. This occurs when the length of an edge is 0 in all orthants such that

they are topologically indistinct from one another.

BHYV Tree space can be thought of as the collection of trees, T denotes a generic tree, quotiented
by an equivalence relation ~. 17 ~ T3 if there is a correspondence between e; € F71 and e € Eo
preserving the length, and if the lengths of e; and es are non-zero, the split of e; is the same as
that of es. See Figure for an example of this.

Definition (Codimensional boundaries). The join between orthants consisting of n edges of 0

length has codimension n.

When dealing with HMC it is only necessary to consider codimension 1 spaces as the integrator

almost surely does not pass through a codimension n > 1 point as can be seen in Theorem 7.2.

BHV Tree space is path connected and CAT(0) when orthants are equipped with Euclidean
metric on edge weights (Billera et al., |2001). A CAT(0) space is curved such that the geodesic
distance between points on a triangle is less than or equal to the geodesic distance in Euclidean
space. This means that there exists a unique shortest path between any two trees in BHV Tree
space called a geodesic (Billera et al., [2001]). We will use these geodesics in computing distances
and as a metric for the effective sample size on Tree space. In order to compute geodesics in Tree
space we use an algorithm developed by (Owen and Provan| (2011)) that computes the geodesic

between two trees T and 7", in polynomial time, see section m

Definition (Cat(k) space). A Cat(k) space expresses how distance is transformed. A geodesic
triangle is a collection of three points connected by geodesics. A space is Cat(k) if for every
geodesic triangle in it the distances between points on the triangle are less than or equal to the
distances between points of a triangle with the same length sides in the simple connected surface

with curvature k.

We show that BHV Tree space is a manifold stratified space or stratifold where codimensional
boundaries form the different strata. There are several definitions of stratified manifold in the
literature such as in |[Kreck! (2010). We use the definition of a stratified topological space from
Miller, (2015).
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Definition (Stratified Space). A Topologically Stratified Space, Stratified Manifold or Stratifold.

A topologically stratified space is a topological space, which is the disjoint union of strata
My, ..., M
M=MUMU---UM,

where M; are topological manifolds for all 4. This satisfies two conditions:
1. MiU---U My is closed in M for all k <.

2. For all points x,y € M; there exists a homeomorphism ¢ : M — M with ¢(z) = y and
gf)(Mk) = Mk for all &.

We start with the example from Kreck| (2010) as it provides intuition as to why Tree space is a
stratifold.

Example 4.1:

Let M be an n dimensional manifold satisfying property 2. We construct the open cone

of a manifold M in the following way. The open cone over M is CM := M x [0,1)/ Mx{0}-

We now show that open cone CM is a stratifold consisting of two strata M; and Ms: M,
is the point of the cone and Ms is the rest. The strata M; is a point, depicted in red in Figure:
and trivially closed. M; U Ms is the cone CM. To show that property 2 in definition
holds there we need to show it for two cases.

1. For M; when k =1 we have x = y and we can take ¢ to be the identity.
2. For My, k = 2, we write x and y as * = x,, X h; and y = y,, X ho in Ms. We can stretch

the cone while fixing M; so that x overlaps y.

Mathematically we create a map:

hi2 if b € [0, hq]

hﬁwime[hl,l)

h—

This map maps 0 to 0, 1 to 1 and h; to hy in a continuous bijective manner and so is a
homeomorphism. We can then pair this map with the homeomorphism that exists on the

manifold mapping xps to yps to get a homeomorphism on CM mapping M; to Mj.

This shows that the cone is a stratified manifold with two strata.
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Figure 3.4: The two differenct strata of a cone of a manifold as described in example 4.1. We have the red
stratum at 0 corresponding to M; and the rest of the cone corresponding to Ms. It from this we can see
that the two partition the cone manifold C' M into two strata.

From this example we can intuitively see that Tree space will be a stratified manifold with strata

being orthants, and corners of codimension i, as can be seen in Figure [3.5
Theorem 3.1. Tree space is a stratified manifold.

Proof. By definition there exists a partial order on Tree space. This is defined by tree T <
tree Ty if T can be transformed into a tree TZ’ in the same orthant of 77,(isomorphic to 77 up
to edge length), by reducing 1 or more edges to length 0. We can then construct a sequence
of strata based on this ordering. Starting with Ty the tree such that all internal edges have 0
length, pick an internal edge with 0 length an extend it to get T7 > Ty. Repeat this process to
get T,_3 > --- > T > Ty. Define M; for i = 0 to n — 3 be the collection of trees structurally
isomorphic to 7;. Define M, 5 to be T\ \ U?:_o?) M;. The union Up<;<xM; is closed. We can see it
is closed because any sequence of trees with at least n — ¢ edges of 0 length cannot tend to a tree
where there are n — i — 1 edges of 0 length in the limit. To satisfy 2. we define homeomorphisms
¢ between points x and y on M; such that ¢(My) = My. The two points z and y are contained
within a connected submanifold by definition. When z and y are contained within a connected
submanifold of M;, as we are operating on Tree space, this is homeomorphic to a copy of Rij”.

Given Rf” there is a trivial homeomorphic map f taking x to y, f(m) — mZ. O
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Red is of full dimension 2
Green of codimension 1

Blue of codimension 2

Figure 3.5: Different strata for 75, the strata are coloured, red represents the varying orthants and green
are the boundaries over which CortHMC will cross.

In the following chapters we will see that we wish to define HMC on the cotangent space of Tree

space, we do this in chapter

3.1.2 Newick String Representation

It is necessary to write trees in a way that incorporates topological structure. The standard way
is to use parantheses. A Newick string uses parantheses to denote subtrees, commas to denote
siblings, colons to denote edge lengths and semi-colons to denote the end of the expression. We

explain Newick strings through examples.

“(t5: 0.73, ((¢2: 0.91, (t1 : 0.10,¢3 : 0.43) : 0.18) : 0.50, ¢4 : 0.60) : 0.43);” (2.5.f.).

This is the Newick string for the following tree in Figure [3.6]
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05

3

Figure 3.6: The alignment generating tree for 5 taxa.

The unrooted tree constructed from a Newick string is unique but the Newick string is dependent
on the root of the tree. A Newick string represents the subtree structure by brackets, each pair
enclosing a subtree. Each pair of brackets enclose two subtrees separated by a comma. The edge
between two subtrees is denoted by a : followed by a weighting or length. In the above we start
with two subtrees t5: 0.73 and ((¢2:0.91, (¢1: 0.10,¢3 : 0.43) : 0.18) : 0.50, ¢4 : 0.60) separated by
an edge of length 0.43. In Figure the metric for computing the distance between nodes is
the sum of the lengths of the horizontal edges between the two nodes. To understand how to
write Newick strings let us construct a Newick string for Fig: but with a new root 0.2 away
from t3 on the pendent edge for t3. We start by opening the tree and splitting it into the subtree

containing t3 and everything else noting that the choice of 0.2 is arbitrary.
(t3: 0.2, (subtree) : 0.23);
We expand the subtree into two subtrees, one containing ¢1 and the other containing ¢2, ¢4 and t5
(t3:0.2,(t1 : 0.10, (subtree) : 0.18) : 0.23);.
Iterating this process along each subtree gives

(t3:0.2,(t1: 0.10,(¢2 : 0.91, ( subtree ):0.50) :0.18) : 0.23);
(t3:0.2,(t1:0.10, (¢2 : 0.91, (¢4 : 0.60,t5 : 1.16) : 0.50) : 0.18) : 0.23);.
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3.2 Bayesian Inference

Bayesian inference uses Bayes’ theorem to construct the posterior from the prior and the likelihood.
We use the likelihood £ constructed in section [2.5 with alignment X from subsection We
infer the substitution model parameters, site rate parameter and the tree from X. We specify
a prior density over edge lengths, substitution model parameters and the site rate parameter.

Collectively denoted by mg.

Given events Y7 and Y2 and probability function P, Bayes’ theorem states

P(Ya|Y1)P(Y1)

Intuitively, we are often able to understand the effect of some hypothesis Y7 on an event Y5
(encoded by P(Y3]Y7)), but wish to calculate the probability of the hypothesis having observed the
event (encoded by P(Y7]Y3)). Bayes’ theorem gives a way of “flipping the conditional probability
around”. P(Y7) represents our prior beliefs about Y1, P(Y2|Y1) gives the likelihood of Y7 and
P(Y1]Y2) gives the posterior probability of Y;. Bayes’ theorem is easily extended to the inference

problem in this thesis:
(0, a, €, 7|X) x L(X|0, o, b, )0 (0, 0, £, 7).

The above unnormalised posterior is typically straightforward to evaluate, but the full posterior
remains intractable. This necessitates the use of computationally intensive sampling based

approaches. We describe one such commonly used sampling approach in the next section.

3.3 Markov Chain Monte Carlo

Given an unnormalised probability density function #(z) where z € RP| integrals involving
7(z) are often intractable. This makes computing such things as the mean of & intractable.
Nevertheless, key quantities of interest can be estimated, given by the ability to sample from
m(z) where 7(z) is the normalised density. For example, it should be clear that given draws
21,22, ..., 2 from 7(2) and some real valued function g(-), n=2 3" | g(z;) is a realisation of an
unbiased estimator of E(g(z)). The process of estimating integrals by random sampling is known
as Monte Carlo integration. It remains that we can generate realisations from 7(z). Markov
Chain Monte Carlo (MCMC) methods (see (Gamerman and Lopes, [2006]) for an introduction)
construct a Markov Chain Z = {z;}?" ; whose invariant density is 7(z). Hence, for n sufficiently

large, we may regard draws of the Markov chain as dependent draws from 7 (z). There are several
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different MCMC algorithms, one of which is the Metropolis-Hastings algorithm, developed by
Metropolis et al.| (1953) and Hastings| (1970)) for a more general setting.

Metropolis-Hastings

The Metropolis-Hastings algorithm uses a carefully constructed acceptance ratio to ensure that
the Markov chain induced by the algorithm is reversible and targets the distribution of interest.
It also ensures aperiodicity. It requires the construction of a proposal distribution with the same
support as 7(-) that does not segment the space, creating a reducible sequence. We allow for
proposing local moves and let ¢(2, z) denote the proposal density, where z denotes the current

state of the chain. The Metropolis-Hastings algorithm is given below.
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Algorithm 1: Metropolis-Hastings

e Input: unnormalised target density , starting point zo for the Markov chain (see section
2.1)), proposal distribution ¢ and chain length n.

e foriinl:n

1. Draw 2z ~ q(-, zi—1).
Compute a = min |1

Draw u ~ U(0,1)

ren) |

' w(zim1)a(Z2i-1)

Ll S

IfTu<aset z;=2

else set z; = z;_1.

e Output: chain {z;}]", with invariant distribution =.

The proposal density ¢(-,-) should be chosen so that the chain moves often and around the
parameter space. A typical choice of ¢ proposal is the random walk with normal innovations. In

this case the proposal mechanism is:

=z + w;, wiNN(O,E)

N>

where Y is a matrix specified by the practitioner. |Roberts and Tweedie| (1996)) suggest using
the heuristic for X' = &DBQ x Var(Z) where Var(Z) is the estimated posterior variance from an
initial pilot run for 3/, D is the dimension for Z . X' can be further scaled to give an acceptance
rate around 20% — 30%.

In scenarios where the full conditional distributions of the components of z are available for

sampling from, an automatic scheme is possible.

Gibbs Sampler

The Gibbs sampling algorithm, proposed by |(Geman and Geman| (1984) and developed in |Gelfand
and Smith (1990) uses the full conditional distributions of z to construct a chain with the

appropriate invariant distribution.

Let 7rj(zl,...,zj_l,zj“‘l,...,zD) denote the full conditional density of component j of z of

z=(24...,2P).
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Algorithm 2: Gibbs Sampler

e Inputs: unnormalised target density 7 with marginal distributions ; (|2, ..., 2771, 20+ . 2

starting position zp = (2§, ..., 2’) and chain length n.

e foriinl:n

— Forjinl:D
5J 1 j—1 _j+1 n
* Draw 2] ~ m;(-|z;, ... 2] 27,020
— (20 5D
— Set zip1 = (%7, ..., 2)).

e Output: chain {z;}]", with invariant distribution =.

Metropolis-Hastings and Gibbs sampling are two of the most common techniques employed
in phylogenetic inference. Often Metropolis-Hastings is used within Gibbs. Software such as
MrBayes and Beast perform highly optimised versions of the Metropolis-Hastings and Gibbs

algorithms in order to conduct phylogenetic inference.

Further details along with proofs about the mathematical properties of Metropolis-Hastings
algorithm and the Gibbs sampling algorithm can be found in |Johansen and Evers (2007).
Metropolis within Gibbs

Gilks et al. (1995) proposed an algorithm that applies a Metropolis-Hastings step to the full
i—1 i+l

conditional distributions m; (|2, ..., 2871, 271, .. 2P) when they can’t be sampled from directly.

This means that this is an example of a rejection sampling chain.

38
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Algorithm 3: Metropolis-Hastings within Gibbs or the Adaptive Rejection Metropolis

Sampling algorithm

e Inputs: unnormalised target density 7 with marginal distributions ; (-2, ..., 2071, 291 . 2

starting position 2o = (2§, ..., 28’), proposal distributions {¢;}”; and chain length n.

e foriinl:n

—Forjinl:D
* Draw 27 ~ q;(+; zi—1).
27141 j—1 _j+1 D J .1 j—1 _j+1 D
C t . 1 ﬂj(zj\zi+l,...,zi+l7zi yeerZi )qj(zl-71,2'1-_'_17...,ziJrl 2 enzy)
* Lompute a = min | 1, 71,1 T—T_JF1 Do (5551 7-1_j+1___D
Wj(zi|zi+1v-"vzi+1 2 ez )q5 (2 I R L R ] )

* Draw u ~ U(0,1)
* Ifugasetzf+1:§j

Jj o _
else set Zi1 =2

e Output: chain {z;}]", with invariant distribution =.

This enables us to construct more streamlined proposals when inferring over multiple parameters.

3.4 MCMC in Tree space

3.4.1 Tree Operations

In order to conduct MCMC in Tree space, different topologies need to be proposed. To do so it
is common to employ one of three different topological operations as covered in |Allen and Steel
(2001). These are Nearest Neighbour Interchange (NNI), Subtree Prune and Regraft (SPR) and
Tree Bisection and Reconnection (TBR). In PhyloCore a method of Metropolis within Gibbs is
used using NNI and SPR and a log random walk on edge lengths (Nye and Heaps, [2014).

NNI

Given an internal edge e = (u,v), v and v have degree 3 and so are connected to 2 other vertices
meaning that e is connected to 4 vertices. Fach of these 4 vertices then define a subtree consisting
of all vertices and edges beneath them if the tree is rooted at u or v. An NNI interchange swaps
two of these 4 subtrees, which means that there are a total of 3 different trees possible around an

edge. The new edge often has random length.
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SPR

Given an edge e = (u,v), cut the edge e to create two subtrees t1, to. Regraft o to ¢1 by the cut
edge to a pre-existing random edge in t2. Then apply a forced contraction. The regrafted edge

often has random length and is regrafted a random length along the random edge in 5.

TBR

Given an edge e = (u,v), cut the edge e to create two subtrees t1,t2. Regraft to to t; by creating
an edge between the middle of a random edge in #; and the middle of a random edge in t5. The
regrafted edge often has random length and is regrafted a random length along the random edge

in t; and to.

NNI

2
I

ONVO
& ®
OV,

O,

3

'I’I‘ " o

Figure 3.7: Here we can see the three different tree operations, (NNI,SPR and TBR) for switching topology
from 7 to 7 or 73. In NNI, subtree A is interchanged with subtree C or D to produce one of two new
topologies. In SPR, subtree D it cut off the tree and reattached to a new location in the tree by an edge
of the same length as before and connected to the same point in subtree D as before. In TBR the edge is

deleted and a new edge is introduced between subtree D and the tree connecting a random location of the
tree to a random location within D.
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3.5 Assessing MCMC for phylogenetic inference

Several techniques exist for analysing the effectiveness of various inference schemes. The two
we shall focus on are the effective sample size and a topological measure of convergence. These
will be applied to MCMC and HMC samplers to compare the behaviour of different inference

algorithms.

3.5.1 Effective Sample Size

The effective sample size measures the loss of information caused by positive correlation within
the Markov chain Z;. The variance of an estimator obtained using samples from a positively
correlated chain is larger than that of an i.i.d. chain. It can be shown that for a chain of length

n and measurable function f that:

n 0_2 n—1 -
Var(% > f(Zr) = o (1 +2) (1- n)P(T))
T=1 T=1

where p(7) is the autocorrelation of Z; with lag 7 (Johansen and Evers, [2007)). The standard

deviation o is the standard deviation of f(Z;). Taking the limit as n — oo gives:

nVar(% Zf(ZT)) — o (1 + 2Zp(7)>
=1 T=1

under a bounded condition for the sum of the autocorrelations. We use this to give the standard

form for the effective sample size. First note that if the samples are i.i.d.
2

Var(- 3" 7(z) =
i=1

As Var(2 377" | f(Z;)) is fixed in both we can equate the two to give

2

o o? >
= (1 —|—22p(7)> :
T=1

Neff

This gives us the effective sample size ny .

Definition (Effective Sample Size (ESS)). The effective sample size is the approximate number

of effective samples given by
n

n = .
T2 ()
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Definition (Autocorrelation with lag 7). The autocorrelation with lag 7 of chain Z; is defined

as:

o) = B Zir = )%= ) B(Zir = ) = )
i E((Zi— m)(Zi — )

where p = E(Z;).

There are many different ways of approximating the autocorrelation, some methods use spectral
decomposition, others simply compute the expectation of the chain so far. We opt to use the
effective sample size computed by the package Coda, which uses spectral decomposition (Plummer

et al.l 2006) to compute the effective sample size.

As trees are dependent on multiple parameters it is not clear which marginals of the chain
to use to compute the effective sample size. A common method is to use minESS, the minimum
ESS across all the different parameters. This would mean the minimum effective sample size across
all edges, substitution model parameters and site rate parameters. When conducting reverse jump

MCMC, as parameters are not comparable, a summary statistic is used, for example the likelihood.

We argue that using minESS is not appropriate for phylogenetic inference. Under minESS
a chain of trees could explore a wide range of topologies, and have widely fluctuating edge lengths
in all but one edge, and be scored the same as a chain of trees that does not exhibit such variation.

To get around this issue we developed a new form of effective sample size for phylogenetic trees.

Intrinsic Effective Sample Size

The effective sample size should aim to be an estimator for every parameter. To do this
we notice that the standard effective sample size for a parameter, E((Zyr — p)(Zy — 1)), is
E(d(Ztyr, p)d(Zs, pv)) where d is Euclidean distance. We posited that instead of using Euclidean
distance we could use the distance intrinsic to Tree space created by the geodesics between trees.

This would at least enable some collation of the data. We therefore approximate p by:

E (d(Ztyr, p)d(Zt, 1))

p(r) = E (d(Z, p)d(Zi, 1))

where d is either the Billera-Holmes-Vogtmann distance or the Robinson-Foulds metric |Nye et al.
(2005]).
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Definition (Billera-Holmes-Vogtmann distance). The Billera-Holmes-Vogtmann distance is the
distance defined in |Billera et al.| (2001) and outlined there in section 4.2. It is defined as the

length of the geodesic between the two trees.

The Robinson-Foulds metric does not take into account edge-lengths so should be avoided when

this is an important part of the inference.

3.5.2 An alternative Effective Sample Size

The Stan Development Team| (2019) provide an alternative form of ESS estimation, requiring
multiple runs of HMC. If there are M runs and W is the estimate for the within sample variance
and V' the estimate for the variance across all the chains and p,,(7) is the standard autocorrelation

estimate on chain m,

N-—1

™ (F(Z0) — ) o — 1)

n=1

~

Pm(T) = N

1
—T

calculated using a fast fourier transform.

W =31 (1)
V

p(r) =1-

It should be clear to see when M = 1 this agrees with the standard definition. This method is

useful because it attempts to account for chains that have not fully converged.

3.5.3 Convergence

To check convergence a technique from PhyloBayes is employed. It runs two chains and compares
split frequences computing the maxdiff and meandiff. If the maxdiff is less than 0.1 then
convergence is said to be “good” (Nye and Heaps, [2014)). the maxdiff is the maximum difference

between relative split frequencies.

It is also common to compute the average standard deviation of split frequencies, the closer to 0

this value the more the chain has converged (The Stan Development Team, 2019).
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Chapter 4
Hamiltonian Monte Carlo

This chapter covers the theory behind Hamiltonian Monte Carlo (HMC) and describes the
standard algorithm used to sample from a given target distribution. Various forms of HMC
require different operational parameters and this chapter will discuss which forms to use and how
to optimise the parameters involved. This chapter also covers several extensions to HMC which

can improve its performance, but also add to the total computational complexity.

4.1 Introduction

4.1.1 History

Hamiltonian Monte Carlo (HMC) was introduced by |[Duane et al. (1987)), and the theory has
been further developed by |[Neal et al.| (2011), |Girolami et al. (2011)) and Hoffman and Gelman
(2014) among many others. A package called Stan (The Stan Development Team) 2019) has been
implemented, which enables users to perform Bayesian inference using HMC in a user friendly
manner on a range of models. However due to the stratified nature of tree space, HMC requires

considerable adaptation. At present Stan cannot operate on phylogenetic trees.

4.1.2 Concept

Hamiltonian Monte Carlo adapts the standard Metropolis-Hastings algorithm. It generates
random draws from posterior 7(z), known up to a constant of proportionality. It generates draws
from an augmented posterior m(z, p), with augmented variables p, that when marginalised over p

gives m(z):

/ (2, p)dp = 7(2).
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The augmented posterior 7(z, p) is constructed to make use of properties of Hamiltonian systems.
It relates the posterior with the Hamiltonian by 7 (z,p) o exp(—H(z,p)) where H(z,p) is the
Hamiltonian, a smooth function of z and p. In standard HMC the parameters z are taken to lie in
a manifold M and the augmented parameters p are taken to lie in its cotangent space at z, 17 M.
HMC is therefore defined on the cotangent bundle 7*M = L, pmTF M, which is the disjoint union
of cotangent spaces over M; see for definitions of manifolds and the surrounding theory. A
physical interpretation for (z,p) is a position momentum pair upon which the Hamiltonian acts.
The Hamiltonian H(z,p) defines a vector field on 7% M. We will demonstrate how the vector
field defines flows ¢ : R x T* M — T* M that conserve the Hamiltonian along the flow i.e.

H(z,p) = H(¢u(t,z,p)), for all times ¢ and (z,p) € T* M.

As a result of the Hamiltonian construction, whenever H(z,p) = H(2',p'), m(z,p) = 7 (', p).
Flows therefore conserve the augmented density: n(z,p) = m(¢m(t, z,p)). This is the property
that enables large moves in the target space.

A single iteration of HMC can be summarised as follows:

1. The momenta p are randomly sampled from some distribution, which enables the algorithm

to switch between different flows.

2. The position momenta pair (z,p) then becomes the starting point for the flow along which

to integrate. A new pair (2/,p’) = ¢y (t, z,p) is proposed for some ¢ > 0.

3. A Metropolis-Hastings accept-reject step is applied to (z/,p’) to ensure that the chain has
the correct stationary distribution. It is important to note that under perfect integration

there would be no integration error and so the probability of acceptance would equal 1.

Notation: Suppose P(y;) is a distribution dependent on y; then we shall denote the density
at y, P(y2;y1) and draw yo from P(-;y;). For example we shall write the normal distribution
N(u,0?), draw from N(-;p,0?) and the density of yo is N(y1; i, 02).

Example 5.1.4: Consider a normal target distribution N(0,1) so that w(z) = N(z;0,1).
Augment 7(z) with momenta p € R such that

7m(z,p) = exp(—2>/2) exp(—p°/2)/ (27) .

It is easily checked that [%_exp(—z%/2)exp(—p?/2)/ (27) dp = exp(—2z%/2)/\/(2).
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In this example the Hamiltonian is, up to additive constant, H(z,p) = 2z2/2 + p?/2. In the
physical interpretation, H is an energy function. In this example (2%/2) is the potential energy,

and (p?/2) is the kinetic energy. This Hamiltonian represents simple harmonic motion.

4.1.3 Requirements and uses

As integral curves of Hamiltonian flows need to be computed, HMC requires that the posterior is
differentiable. It also requires a means of computing the integral curves. HMC is also a more
computationally complex method than standard MCMC and so to be beneficial it is typically
conducted on models with large numbers of parameters or posteriors with strong gradients.
This is due to HMC relying heavily on the underlying geometry of the space of parameters and
exploiting it to enable efficient sampling from the parameter space. It is for the above two reasons
HMC might be suited to phylogenetic inference, which has an extremely large parameter space,

in which the posterior density can vary very substantially from region to region.

4.2 Theory

4.2.1 Manifolds and Notation

HMC employs a lot of technical mathematics, much of which only requires a cursory understanding.
For a more in-depth review of manifolds please see Lee| (2013)). This section is meant to refresh

the reader, provide notation and highlight how manifolds will be used.

A topological manifold M is a Hausdorff, second-countable, locally Euclidean space. A smooth
manifold is a manifold in which all transition maps between charts are diffeomorphisms. Examples

of manifolds include: orthants of tree space, R™, S™ and the n-dimensional simplex

A:{azz,:u.

A Riemannian metric g on a smooth manifold M is a smooth symmetric covariant 2-tensor
field that is positive definite at each point. It is common to write g = gijdzi ® dz?. The matrix

G = {gij} is then positive definite.

Definition (Covariance Matrix). The covariance matrix for a random vector Z = (Z1, ..., ZP)
is given by:

[Cov(2)]y; = B{(Zi — E(Z:))(Z; — E(Z;))}-
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Every positive semi-definite matrix can be thought of as the covariance matrix for some random

vector.

Example Euclidean Space Euclidean space of dimension n is R™ and has inner product
(y1,92) = y1 - y2 = yi Idpy2. This inner product creates the metric g = {Id,};;dz* ® dz’, which
means that the change (y1 + d,y1) = Y ;- 6;. We know that Id,, is positive semi-definite so it is

a covariance matrix for the random vector Z ~ N (0, Id,,).

Example Generic Riemannian Manifold A Riemannian manifold is a a pair (M, g)
where M is a smooth manifold and ¢ is a Riemannian metric. It can be thought of as similar to
Euclidean space, but where the inner product (y1,v2) = y%{gij}vy2. As with the Euclidean case
{gi;} is positive definite and so defines a covariance matrix for a multivariate normal random
variable Z ~ N(0,G™1).

We write 8%1- as the basis for the tangent space at point z. The tangent space T, M consists
of linear maps mapping smooth functions on the manifold to R, satisfying the product rule.
Members of the tangent space can be written as vectors v = via%i| »- In Figure H we visualise
the tangent space at a point z by a blue plane and members of the tangent space as lines within

the plane. The tangent bundle T'M is the disjoint union of all tangent spaces.

The cotangent space at a point 7 M is the dual space to 7, M. The cotangent space consists
of linear maps mapping members of the tangent space to R. We write dz; as a basis for the
cotangent space. For w = w;dz; € T M we write w(v) = (viwi). In Figure we try to visualise
the cotangent space as a red plane so that any two linear maps within the tangent space and the
cotangent space can interact to get a point in R represented by p(v). The cotangent bundle is

the disjoint union of the cotagent spaces at points z € M.

We have stated in section that HMC acts on the cotangent space, or really the cotangent
bundle. We also call p the momenta. Relating these terms back to a more familiar setting
we can think of the manifold as a smooth moulded piece of clay and z as a particle on the
surface of the clay that cannot leave the surface. We understand the concept of velocity
v for the particle at z and that is a member of the tangent plane as you can only specify
direction and magnitude. We relate this to our definition by thinking how this speed acts
on smooth functions of z. In time dt, z becomes z + vdt. Smooth function f(z) becomes
f(z+vdt) = f(2)+ f'(2)vdt + O((vét)?) and smooth function f(z)g(z) where f and g are smooth
functions becomes f(z + vdt)g(z + vt) = f(2)g(2) + (f'(2)g(2) + f(2)g' (2))vdt + O((vét)?).
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Momenta is related to velocity by the equation p = mwv. To understand how momenta is a
covector we need to know about the Lagrangian. The Lagrangian is the addition of kinetic energy
and potential energy L = K.E. — P.FE.. We can take the derivative of the Lagrangian with respect
to velocity. This gives % = % = d%%va = muv = p. Clearly p is linear and it maps v to the

derivative of L with respect to v which takes values in R.

The smooth vector field of a function f € C°°(M), 1y, is defined as the inverse of an isomorphism

from the tangent to cotangent, applied to the differential of f.

T M applied to v T M applied to v

« Point in the field R

. velocity (tangent vector)

. momenta (cotangent vector)
« plv) eR

Figure 4.1: Here we can see a maninfold, the surface is curved but still has a tangent plan and a cotangent
which can be applied to the tangent plane, here the sphere is the parameter space, the velocity is the
tangent and the momenta, the cotangent.
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4.2.2 Introduction to Hamiltonian Dynamics

A Hamiltonian system is a symplectic manifold N paired with a smooth function H € C*°(N).
In HMC N will always be the cotangent bundle of a manifold M and so N' = T*M. The
Hamiltonian H maps T*M — R. The Hamiltonian defines a vector field ¢ on T*M and this
in turn defines flows ¢y (¢, ) around the field. In physics sometimes the function H can be
dependent on time. This is equivalent to defining M’ = M x R and Hamiltonian H(z',p’) for
(2/,p') € T* M’ such that it is constant in the time component of the momenta. However for

HMC it is only necessary to allow H to be defined on z and p.

We now wish to relate the augmented posterior 7 to the Hamiltonian. The Hamiltonian is

defined from the augmented space by:

H(z,p) = —log (cm(z,p)) where c is some normalising constant.

so that :

exp (—H (2, p))

n(zp) =2

The Hamiltonian vector field on T* M is defined as:

““/OH & OH 9
= Il I 1
Ve Z <(9p’ 0zt 02 8p1> (1)

i=1

If we let z = z(t) and p = p(t) so that the Hamiltonian takes in values dependent on ¢, then

taking the flow along a vector field Vi = (dz(tt), dz;gt)) evaluated at (z(t),p(t)) gives Hamilton’s

dz dp OH OH
a0 at) = gy w01 =5 lewaw) ) - @

The Hamiltonian flow ¢y : R x T*M — T*M is defined as the solution to the initial value

problem:

equations:

- -(22 61 (0, 2(0), p(0)) = (2(0), p(0)). (3)

d¢H(t7Z(t)7p(t)) <dZ dp) -
- /lzZ)Hv
The object w lives in the tangent space of the cotangent space T* M.

A flow is a family of diffeomorphisms indexed by time ¢ in an interval of R. A flow has
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two key properties:

1. ¢5(0,(z,p)) = (2z,p), for all (z,p) € T*M and

2. ¢u(t,ou(s,(z,p)) = du(t+s,(z,p)) for all s,t € R, (z,p) € T*M.
Lemma 4.1. The Hamiltonian flow ¢ satisfies conditions 1. and 2.

Proof. Condition 1 follows immediately from the definition. To show condition 2 first consider a
flow on M =R™:

s u, 2(u), p(u
bt +5, (0 p0)) = [ LD 4y 4 (2(0),p10)

:/t+s d¢H(U,Z(U),p(U>)du N /5 dqu(u,z(u),p(u))
s 0

. "D+ (2(0).p(0)

_ /HS doop (u, 2(1s) p(u))
s du

:¢H(t7 ¢H(S’ (Zap)))'

du + (2(s), p(s))

To prove this result on a manifold, a sequence of overlapping charts covering the flow from z, p at
time zero to ¢y (t + s, z,p) is considered. The above result on R™ applies within each chart, and

the charts are stitched together to prove the general result. O

Hamiltonian vector fields have two key properties. Equations and imply that H is constant
along integral curves of Vp and that the Hamiltonian vector field is tangent to the level set of H,
as can be seen in Figure This means that integrating along the Hamiltonian flow stays on

the same integral curve and maintains H.

Example 5.1.4 cont.: The Hamiltonian is

H (z,p) = —log(exp(—27) exp(—p®)/ (2m)) = 2* 4 p* + log(2n)

resulting in a vector field
0 0
Vv = (2])(% — 228}9) .
We can see in Figure the simple pendulum has this Hamiltonian. For small oscillations of
z the level sets of H are circles in the z, p plane, called the phase portrait. This should not be
confused with the path of the pendulum. For larger values of z, h = [ — lcos(z) resulting in a

more complicated Hamiltonian and level sets that aren’t circles and for large enough values of p

can span the whole of R in the z dimension.
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W =1—lcos(z') = 1z /20
H =mgh’ + 3mv™ ~ 2 /2 + p% /2

e _®h=1—lcos(x) ~ lx%/2
Path of pendulum along flow ¢ v H =mgh + %mv2 ~ 22 /2 + p2/2

H=H

Figure 4.2: The Hamiltonian of a Pendulum for small z. Here the same energy state is depicted but with
two difference momenta and heights.

In our example the posterior we wish to recover is a normal density. In subsection [£.1.2] we
outline the method HMC follows. As we have seen before we can recover the density of a normal
distribution from the Hamiltonian. We construct the Hamiltonian as specified below. The flows
of the Hamiltonian then correspond to the points along the trajectory of the pendulum. HMC
then samples from the posterior by choosing a starting point for the pendulum and giving it
a little random push, this specifies z and p. The pendulum then swings for a set amount of
time. This is the same as integrating along the flow for a set amount of time. This returns a
new position 2 and momenta p. These new points are then accepted according to the HMC
acceptance probability. The process is then repeated creating a chain of different positions z.
This chain is normally distributed for small oscillations. It should be clear to see that z will be
distributed symmetrically around 0. In fact z will be distributed exactly as a normal distribution
but the symmetrical properties and the decrease in probability for large values of z should be

evident.

There are many different ways to augment 7(z) to 7(z,p) as in subsection The pendulum
gives us an intuition for how to augment. For a given z the momenta p determine which energy
level and equivalently integral curve to flow along. This means that the augmentation should be
constructed so that it does not exclude flows. In the pendulum example excluding flows would
mean never proposing momenta large enough for the pendulum to reach a full 360° of rotation.
The Hamiltonian is different for large oscillations, but the analogy holds. It also should be clear
that a symmetrical augmentation is preferable, suppose positive momenta were preferred, or
had a greater variance, then extreme clockwise rotations would be favoured more than extreme

anticlockwise rotations.
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The density function for momenta conditional on position is often written as K (p; z) or K(z,p),
due to correspondence with kinetic energy. For consistency we shall use K (p;x). It is common
while working on R" to choose a multivariate normal centred around the origin for K (p;x). The
key parameter that a multivariate normal centred around the origin requires is the covariance
matrix, which we shall denote G. There are a few reasons for this. The density of the normal
distribution is smooth, which both means that it has a derivative and that numerical integrators
are more accurate (Dinh et al., 2017). On average it doesn’t favour a particular part of the
parameter space and it can propose any possible momenta, which not only means that the Markov
chain produced is aperiodic but also irreducible.

It is important to give some intuition as to why we define the Hamiltonian so that eXp(C_H)

=.
First, %C_H) is a function of the Hamiltonian alone so anything that preserves integral curves
preserves 7. Second, it is the canonical density of a Hamiltonian as written in |Geman and Geman
(1984)). The canonical density is the density such that summing over the derivatives of the density
with respect to each variable is equal to 0. i.e.

Z d£+d£ -0
dzi  dpi)

7

p(—H)

where P is the canonical density. The function = e is the simplest such distribution and has

important applications to many physical phenomena.

It should be clear that given any function H(z,p), H can be expressed in the form H(z,p) =
U(z) + V(p; z), where in physics U represents the potential energy and V represents the kinetic
energy. H is called separable when V is a function solely dependent on p. Feeding this into the

canonical density gives a density of the form:

exp(—{U(2) + V(p;2)}) _ exp(=U(z)) exp(=V (p; 2))
T T

Conditioning such that

/eXp(—V(p; z))dp =1

52



Chapter 4. Hamiltonian Monte Carlo 53

demonstrates that the required Hamiltonian must have

(2) :/ exp [—U(Z;— V(p; z)]dp
:/ exp [—U(z)] exp [V (p; 2)]

d
T p

_exp[-U(2)]
o

The above implies
U(z) = —log(m(z)).

Similarly we can find an expression for V(p; 2):

exp [—U(z)] exp [V (p; 2)]

m(2)K(p; ) = T
implies
log(m(2)) + log(K (p; 2)) = — [U(2) + V(p; 2)]
V(p;z) = —log(K(p; 2)).
4.2.3 HMC

Hamiltonian Monte Carlo can be considered as a three step process consisting of a random proposal
for momenta, a deterministic integration step, (which we shall adapt later to be non-deterministic)
and a Metropolis-Hastings accept-reject step. As we have seen HMC constructs a Hamiltonian
H(xz,p) = —log(m(z)) — log(K (p;z)) so that the augmented density is 7(z,p) = 7(2)K(p;2).
This Hamiltonian defines flows ¢ that preserve m(z,p) along them. To integrate along the flows
¢m we require an integrator. An integrator I is a function ¢t x T* M — T* M that given z(0), p(0)
approximates the flow at time ¢. Often ¢ is fixed and so is absorbed into the integrator. For fixed
t we shall express the integrator I(¢, z,p) as I;(z,p) or I(z,p). We require that the numerical
approximation of the derivative of the flow produced by an integrator converges to the true

derivative. That is

p [L(, (2(0),p(0)))] = ¢(2(0), p(0)) <d¢ d¢|p>

li _(d4¢, do
50 ¢ at " dt

Later we shall adapt the integrator to have random components, in which case we write
Ii(z,p; 2, p') as the probability density of integrating from (2, p’) to (z,p). Often the integration

length t will be fixed and so we will drop it from the expression.
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In order to integrate along a flow we require the derivative of the posterior, and so require
the likelihood to be differentiable. HMC reverses the direction of momenta after the integration
step to ensure reversibility of the deterministic section. The integration step can be seen in
Algorithm 3, step 2. For the random proposal HMC proposes new momenta, step 1. This ensures
that the whole space is explored, not just circling about a single flow. It then uses these two
processes combined as the proposed state for a Metropolis-Hastings accept-reject step, steps 4-5.
Since the momenta are be marginalised out, it is sufficient to compare the proposal with the
previous state with the momenta proposed at the end of step 1. When we use a kernel K (p; z)

such that it is symmetrical in p this step is not strictly necessary.

Algorithm 3: Hamiltonian Monte Carlo

e Input: unnormalised target density =, starting position zg, starting momenta pp; momenta
proposal density K, integrator (often deterministic) acting along the Hamiltonian flows I
and number of iterations n.

e Fori=1,...n:
. Draw p/ ~ K(-;2i—1).
. Compute and set (2,p) = I(2;—1,p').
. Compute the acceptance probability
m(2)K(p; 2)I((2i-1,p'); (2, D))
m(2i—1) K(p's 2i-1)1((2,P); (2i-1,7'))

=W N

a =min |1,

5. With probability a, set z; = 2 and p; = p and otherwise set z; = x;_1 and p; = p;_1

e Output: chain {(z;,p;)}I", with stationary distribution 7.

It is common to simplify a into an expression involving H and further simplify « in the standard

case when [ is deterministic.

a =min |1,exp{H [(zi-1,p")] — H[(é’ﬁ)]}f((Aa 0); (2i-1,7"))

=min [1,exp{H [(Zi—lyp/)] - H[(é,ﬁ)]}] :

If I is a perfect integrator then H [(z;—1,p’)] = H [(2,p)] and a further simplifies to a = 1. This

demonstrates that the Metropolis-Hastings accept-reject step acts as a correction step for the
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integration. We include the option for non-deterministic I for clarity in later chapters.

4.2.4 The Hamiltonian Monte Carlo algorithm targets the correct distribution

Each iteration of the Hamiltonian Monte Carlo Algorithm consists of three parts: proposing the
momenta, computing the integration and performing a Metropolis-Hastings accept-reject step.

All three parts can be seen clearly in Figure [4.3

HMC Step 1 HMC Step 2 HMC Step 3

3 3 3
= s =
5 o 5 o 5 o
g 2 g2 ]
g g g

g 3 3

s s =

T T T T T T T T T T T T T T T
-1.0 05 00 05 1.0 -1.0 -05 00 05 10 -10 05 00 05 10
position position position
HMC Step 1 Repeat 1 HMC Step 2 Repeat 1 HMC Step 3 Repeat 1

o < <

3 g 2
2 2 2
g 3 g 3 g3
g g g

g 3 3

o o o

T T T T T T T T T T T T T T T
-1.0 05 00 05 1.0 -1.0 -05 00 05 10 -10 05 00 05 10
position position position
HMC Step 1 Repeat 2 HMC Step 2 Repeat 2 HMC Step 3 Repeat 2

momenta
0.0

momenta
0.0

momenta
0.0

T T T T T T T T T T T T T T T
10 05 00 05 1.0 10 05 00 05 10 -0 05 00 05 10

position position position

Figure 4.3: Each row contains a single iteration of HMC for the simple pendulum example, with the
second row ending in a rejection step, each column a part of the process. The first column shows momenta
being resampled, the second column shows a 4 step integration step and the third shows whether or not
the final proposed point is accepted. The initial state is the red circle and proposed states are the yellow,
green and blue coloured circles. The algorithm progresses from red to blue.
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Theorem 4.1. The HMC algorithm leaves the target distribution m invariant.

Proof. We wish to show that the canonical distribution satisfies detailed balance:

m(z,p)a(Z,p's z,p) = n(Z, p)alz,p; 2, p)

We will notice that once we have sampled our cotangent vector the process is deterministic by a

measure preserving transformation and so we get the following:

n(z,p)a(z',ps 2,p) = 7(2)K (p; 2)a(2', p'; 2,p) =P x min|1, e H P HHED)]

—e HEP) s minfe HEPFHEY) 1]
=n(2VK(p'; 2")a(z',p's2,p) = (', p')a(z,p; 2/, D).

Detailed balance implies that our update leaves the canonical distribution invariant. We can now

check that the HMC kernel, which we shall denote P leaves the target distribution 7 invariant:

//W(z,p)P(z/,p/;z,p)dzdp =7(,p).

Expanding the left hand side in terms of the HMC acceptance probability gives:

//W(z,p)P(z’,p’;z,p)dzdp ZW(Z',p’)(l—//a(z,p; z’,p’)dzdp)+//W(Z;p)a(Z’,p’;z,p)dzdp-

We can use the result from detailed balance to prove the rest:

//W(Z,p)P(z',p';z,p)dzdp
_w(z',p')(l—//a(z,p; z',p’)dzdp)+//7T(z/,p’)a(z,p; 2 p')dzdp
=7(2,p")(1 //a(z,p; z',p’)dzdp)+7T(Z',p’)//a(z,p; 2, p')dzdp

=n(,p').

Theorem 4.2. Ergodicity of HMC

Proof. We use theorem 13.0.1.iv. in|Meyn and Tweedie (2009) We know if our space is irreducible,

aperiodic and Harris recurrent then the sample density of the Markov chain will converge to
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the invariant distribution. The chain we have constructed is reversible, and so reversible on an
intercommunicating set of size greater than two, by the Euclidean algorithm, we know that it is
aperiodic. As it is reversible it is also Harris recurrent if it is irreducible, and it is irreducible by

construction. I
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4.2.5 Metropolis Adjusted Langevin Algorithm (MALA)

Hamiltonian Monte Carlo is very closely related to Langevin Monte Carlo (Rossky et al.| (1978]) and
Grenander and Miller (1994]))), which uses a similarly constructed Langevin diffusion, maintaining

density, to enhance the proposal.

Let 7 be a density on R”, known up to a constant of proportionality. The Metropolis Adjusted
Langevin diffusion algorithm (MALA) then uses a stochastic differential equation instead of a

Hamiltonian. The stochastic differential equation is of the form:
1
dar(t) = S AV log(m (1) )dt + v Adb; (4)

where b; is an n-dimension Brownian motion and A is a covariance matrix. A Brownian motion
b; is a stochastic process such that it is continuous almost surely. For an interval L of R we
partition L into intervals [to,t1), [t1,t2), ..., [tk—1, tx] Where tg,...,tx € R. A Brownian motion

has the property that any partition of the interval into ¢, ¢y, ..., tx has by, — by,,, independent to

i+1
b, — bt;,, and by, — by, is normally distributed according to N (0,41 —t;).

The Langevin stochastic differential equation leaves 7(z) invariant. This means that when
a set is evolved according to the s.d.e. the integral of the set w.r.t. measure 7 is constant almost
surely. However we cannot simulate z exactly so require a discretisation, and as with HMC the

error is corrected using the Metropolis-Hastings accept-reject ratio, (Girolami et al., [2011)).

We discretise using the Euler-Maruyama discretisation with step size e. Applying this to
Equation results in:

1
Zip1 =2t + §GAV log(m(2¢)) + VeAn (5)
n ~N(0,Id,).
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Algorithm 4: Metropolis Adjusted Langevin Algorithm

e Input: unnormalized target density m, starting position zp; normal proposal N(0, ), step

size € and number of iterations n.
e Fori=1,...,n:
1. Set 2 = z;_1 + eVlog (m(zi—1)).
2. Draw 2/ = N(+;2,€A).
3. Compute the acceptance probability

(2" )N (zi—1; 2" + eViog(m(Z)), eA)
m(zi-1)N (2, zi-1 + €Vlog(m(2i-1)),€A) |

a = min |1,

4. With probability a, set z; = 2’ otherwise set z; = 2z;_1.

e Output: chain {(z;,p;)}l~, with stationary distribution .

MALA is related to HMC via a single step of the Leapfrog Algorithm (Betancourt et al., [2017)).
Specifically, a single step of the Leapfrog algorithm produces the same proposal as MALA when
the momenta is normal V' = N(0,X) and X' = eA. We have seen in subsection that the

Hamiltonian is

H(z,p) = —log(r(2)) — log(N(0, £) [p]).
This means that:
H(z,p) = —log(m(2)) + %IOg(det(%E)) + %pTgfln

so the derivatives are

M = — Vlog(n(z)) and M

=X 1p.
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Applying the leapfrog integrator gives

€
Pr+1/2 =Pt + §Vlog [ (2¢)], and
Zt41 =2t + € [2_1pt+1/2]

i+ [S7 (prt 5V log m (20)])]

2
=z + %Z_IVIOg [7(2)] + X Lepy

where p; ~ N(0, X). Substituting in h = e2X~! gives
h V/ 1
2441 :§V10g [7(z0)] + VRE1p,

where 7, ~ N (0, Id,,)

hZ
:?V log [m(z;)] + Vhn

which is the proposal produced by MALA.

The advantage of MALA is that it is less computationally intensive than HMC in producing a
single proposal. This is due to needing to compute only the derivative with respect to position

once rather than twice as in HMC employing a leapfrog integrator.

4.3 Numerical Integration of the Hamiltonian Flow

HMC requires the ability to integrate along flows and this requires knowledge of the derivatives
of the Hamiltonian with respect to both parameters and momenta. There are many standard
methods of conducting integration such as Euler and Runge-Kutta. The Euler method works by
approximating the derivative in the neighbourhood of a point by the differential at the point.
This leads to the approximated flow diverging over multiple iterations as can be seen in Figure
The leapfrog method or Stormer-Verlet integrator is a second order Runge-Kutta method and
the standard method used during HMC (Leimkuhler and Reich, [2005]). A second order method
of integration is one where the error is of order O(e?) where ¢ is the distance integrated. The
leapfrog method does not diverge over multiple iterations see Figure The leapfrog integrator
is also symplectic meaning that while it may have some error associated to it, the measure of a

set integrated forward by leapfrog integration is preserved (Leimkuhler and Reich, 2005). Higher
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order simplectic methods such as 4th order Runge-Kutta would also be effective but due to the

high computational cost of differentiating the likelihood they are infeasible in this application.

A shear

transformation is a transformation that transforms all points in an n-dimensional surface by an

The leapfrog integrator is simplectic because it employs shear transformations.

amount proportional to their distance from a n — 1-dimensional surface. Applying the Leapfrog
method [ times means that the integrator integrates for time ¢ = le. Among the simplectic
Runge-Kutta methods the leapfrog integrator requires the fewest computations of the derivative

of the likelihood, normally a costly step.

momenta

Euler stepsize=0.1

position

ome:

05

05

Leapfrog stepsize=0.1

position

momenta

10

05

05

Leapfrog stepsize=0.8

I
\/

posilion

G

Figure 4.4: Each plot shows the phase portrait of a single flow of the simple pendulum example. The flow
¢ starts at the red dot and changes to blue as t increases. The first plot is the phase portrait where the
flow is integrated using the Euler method with step size 0.1. The second plot shows the flow integrated
using the leapfrog method and the same step size whereas the third plot uses the leapfrog method with a
greater step size, 0.8.

Figure [£.4] demonstrates the phase portrait for position and momenta in Example 5.1.4 using
different methods for integration. As we have seen starting at energy H(z,p) = 1 the phase
portrait consists of circles of the form 2% + p? = 1. The benefit of using the leapfrog integrator
over the Euler integrator when integrating for a long time can clearly be seen as more proposals

will be accepted due to its greater accuracy.

4.3.1 The Leapfrog Integrator

The leapfrog algorithm employs a half step update to momenta, a full step update to position
conditional on the updated momenta, followed by a halfstep update to momenta from the new

position momenta pair. This is illustrated in the following figure, Figure
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0. starting position 1. half step momenta 2. full step position 3. half step momenta

Z; _ o Ritl Zi+1
— z— zi -7 \ \
Di Zi+1 Zi+1
_ Pir) Pir) Pirk

B p 1
Di Di \ \ AN /H

Pyl Pyl Pi+1

T

Figure 4.5: The leapfrog integrator first updates p; to Pitd then z; to x;41 and finally Piyy tO piy1.
Updates are shown with dotted lines and the derivatives are shown with straight lines. The leapfrog
integrator follows the flow by using the derivatives of the flow. Over small updates the behaviour is
approximately linear with gradient specified by the derivative of the flow. The derivatives of the flow
are given by equation (3) in subsection are faH(;Z’p ) and 22E2) firgt performing a half update for

0z
momenta followed by a full update for position and then another half update for momenta.

Algorithm 5: The Leapfrog Integrator

e Input: starting point zg, starting momenta pg; step size € > 0; number of iterations [;

op 0z

e Fori=1,...,[ set the following values:

_ OH(z,p)
Lopir =pi— 579 lw

. OH(zp)
2. ziy1 = 2t e, |(z1:,pi+%)’and

. — € aH(Zyp)
3. pit1 =Pyl T 270z ‘(Zi+17pi+%)'

e Output: pair (z;,p;) approximately on the flow line starting at zg, po.

When the Hamiltonian is separable, H(z,p) = U(z) + V(p) the derivatives of H with respect to

z and p simplify. The derivative p = —%—g = —%—g and the derivative z = %—Ig = %—‘;. This means

that p is independent of current p so that the first and and third steps concatenate to produce a

single jump. This can be seen in the following figure, Figure
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position x

1/2 3/2 5/2 7/2 9/2 11/2 13/2 15/2

momenta p

Figure 4.6: Evolution of the Leapfrog Integrator

Since calculating the derivatives of the Hamiltonian H with respect to the z is more computationally
intensive than calculating derivatives of H with respect to the momenta for most choices of

distribution for momenta, see (6) in subsection [4.2.5, we developed the Inverted Leapfrog

Integrator.

Algorithm 6: The Inverted Leapfrog Integrator

e Input: starting point zg, starting momenta pg; step size € > 0; number of iterations [;

OH (z,p) OH (z,p)
o and =5

e fori=1,...,1:

.. e 0H(z,p)
L. Fipl = % +3 op ’(Zzwpz‘)
_ OH (z,p)
2. Pi+1 = Pi — € 9z ‘(ZH_%,]?Z')
e OH(z,p)

3

3. Zip1 = Zi+% +3 op ’(Z-+%7Pi+l)'

e output: pair (z;,p;) approximately on the flow.

Figure [4.6] shows how the position and momenta evolve over several leapfrog steps. As the
inverted leapfrog mimics the leapfrog integrator after the first step it seems like a reasonable

algorithm, as we shall now demonstrate.
Theorem 4.3. The Inverted Leapfrog Algorithm correctly integrates along flows.

Proof. To demonstrate this we will show that the inverted leapfrog algorithm is the same as the
leapfrog algorithm with different choices for parameters z, momenta p and Hamiltonian H. Since

the leapfrog algorithm is second order this demonstrates that the inverted leapfrog algorithm is too.
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Suppose we perform the inverted leapfrog algorithm with the following z,p and H; z = p/,
p =2 and H(z,p) = —H'(p, 2) so that %q(z,p) = _%kpz) and %—]Zkz,p) = —aa—ljkp,z). This
substitution converts the inverted leapfrog algorithm for z,p and H into the leapfrog algorithm
for 2/,p’ and H'. Since H' # H we then demonstrate that integrating along flows of H' also
integrates along flows of H. We start with the inverted leapfrog algorithm

€ 0H(z,p)
Zipl =% ETp’(zi,m)
B OH (z,p)
Di+1 =Pi — ETRZH%JH)
€ OH(z,p)
Zi4l =% 1 + 2 o | 7y LPit1)”

We apply the above substitutions for z and p so that the inverted leapfrog algorithm becomes

r 0, € OH(p', 2")
pi_;'_% =P + 2 6p |(pi7zi
OH(p',7")
/ / 9
Ziy1 =& €T|(p;+%,zl’-)

P e dH(p',2")
Pit1 —p¢+% + 92 op ’(p;+%722+1)'

Substituting in H' for H gives:

/ 4 € aH/(Z,,p/)
Pigr =Pi = 55 lehd)
OH'(2',p')

/ /
Zip1 =%; T € '
i+1 7 8]9 |(zz,pi+%)

/ c OH'(#,p')

/
. =pP., 1 — / / .
Pit1 p7,+§ 9 Oz ‘(Zz+1’pi+%)

This is exactly the process in the iterative step of the leapfrog algorithm.

Finally, the inverted leapfrog algorithm integrates along the correct flow. It integrates along flows
of H' so that by equation (3) of subsection we get the first half of:

d(b(tvz(t)vp(t)) OH' OH' OH OH
dt - op |(Z(t)7p(t))7 _sz(t%p(t)) = aip‘(z(t),p(t))a _Ekz(t)’p(t)) .
The second half of the above equation follows by substituting back in H for H'. ]

Corollary to Theorem 5.1: The Inverted Leapfrog Algorithm is a second order algorithm.

64



Chapter 4. Hamiltonian Monte Carlo 65

The Inverted Leapfrog Algorithm is useful to us as it requires half the number of calculations
with respect to position. As the derivative calculation with respect to position is the derivative
calculation involving the likelihood, it is often the more complex of the two parts to calculate.
This adaptation makes HMC more competitive with MALA. To illustrate how the inverted
leapfrog integrator works we use a contrived example with a forced wait for 0.001s at every
evaluation of the derivative of the Hamiltonian with respect to position. Instead of the usual
example we take m(z) to be N(z;0,0.5) so that we can see the different effects of the inverted
leapfrog integrator. Figures and demonstrate the differences and similarities between the

two methods.
A single flow of x~N(0,0.5) and p~N(0,1)

Integrator
— Leapfrog Integrator

— Inverted Leapfrog Integrator
— Tiue Flow

Gomputation Time ()
—— 1.475, 1.690, 1.477, 1.590
— 0.815, 1.102, 0.900, 0.914

momenta
0
|

Step size
05
— 05

T T T T T
-2 -1 0 1 2

position

Figure 4.7: The red leapfrog integrator takes longer than than the blue inverted leapfrog integrator.
Though both paths approximate the flow, they produce different paths. Since the variance of the momenta
is greater than that of position, the inverted leapfrog integrator often overpredicts the magnitude of the
momenta, whereas the leapfrog integrator often under predicts it.

A single flow of x~N(0,0.5) and p~N(0,1)

Integrator

—— Leapfrog Integrator
—— Inverted Leapfrog Integrator

Computation Time (s)
—— 9.443, 9.407, 9.373, 9.407
— 5.166, 5.132, 5.307, 5.202

momenta
0
|

Step size
0.001
— 0.001

T T T T T
-2 -1 0 1 2

position
Figure 4.8: This plot is constructed the same way as Figure but with a finer step size. The plot

demonstrates how both methods converge to the true flow despite different paths taken. The difference in
computational time also is more visible.
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The Inverted Leapfrog Integrator is not reversible.

There is one problem with the inverted leapfrog integrator which is that it is not reversible. This
is because of the dependency of %—I; on the state z. This would normally an issue with standard
Metropolis-Hastings but we only apply the inverted leapfrog integrator within the context of
COrtHMC. In chapter [5| we prove that COrtHMC leaves the target distribution invariant, see
proposition this proof involves a non-deterministic and not necessarily reversible integrator
(to enable more interesting orthant crossing algorithms), and so the inverted leapfrog integrator

can be applied as normal though with a slightly increased computational cost.
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4.3.2 Appropriate Choice of Parameters

The leapfrog algorithm has a choice of two parameters, the step size ¢ and the number of
iterations [. If you choose too small an [ or €, then the proposal is approximately a random
walk. If [ is too large then the algorithm is wasting computational time since for fixed e,
as | increases so too does the chance of rejecting the proposal. Increasing e increases the
error in the numerical integration, increasing the computational cost due to more rejections
occuring. To get around this issue Hoffman and Gelman developed the No-U-Turn sampler
and a method for choosing ¢ (Hoffman and Gelman, [2014)). A more basic way of selecting e
and [ is a grid search method in which many different runs are conducted (Neal et al., [2011)).
In Neal (1994) a method using windows of varied [ is applied to average out the error in
integration, resulting in higher acceptance rates. The whole window is then accepted or rejected
in the Metropolis-Hastings accept-reject step. Neal (1994) demonstrates that this results in an
optimum acceptance rate of approximately 0.85, rather than the standard theoretical optimum
of 0.65 (Beskos et al., [2013)). This means that whenever conducting HMC that employs an
integrator with more than 2 steps, over a space with a likelihood which is computationally
expensive to evaluate, a windowed approach may provide a good increase in efficiency. We cover
both NUTS and the grid search method as well as an adaptation to Riemmanian Manifold
Hamiltonian Monte Carlo, which effectively varies integration length in multiple dimensions
to better correspond with the posterior. We found that with HMC it was best to restrict the
number of steps and so it was relatively easy to search over them. We designed a method based

on the heuristic algorithm of Hoffman and Gelman (2014) to estimate appropriate step sizes.

Algorithm: ApplyHeuristic (Hoffman and Gelman), 2014)

1. Parameters: Hamiltonian H, starting position zg, starting momenta pg, starting ¢, integrator

following Hamiltonian flows dependent on € I..
2. Set 2/, p' = I.(z0,p0)-
3. Compute pl = H(zg,po), p2 = H(Z',p)
4. if p2/pl <0.5set a =1 else set a = —1
5. while (p2/p1)® > 27¢
o /=2%x¢

o 2 =1.(,p)
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6. return €

We enabled varying step-size using Roberts and Rosenthall (2007) and [Bai et al. (2011)) by
applying the heuristic algorithm twice, once at the start of a run and once after a specified burn

inv Estart and €burn—in and Setting € = €purn—in + (estart - Eburn—m/(i + 1))

4.3.3 Riemannian Manifold Hamiltonian Monte Carlo (RMH-MC)

RM-HMC is a technique designed by |Girolami et al.| (2011) to efficiently conduct HMC. It does
so by altering or specifying the momenta kernel to be a choice that favours moves in the right
direction. It approaches HMC by considering the target distribution, a specific evolutionary
model, to be belonging to a space of distributions parameterised by values z and acting on data
X. The idea is to consider z and by extension the evolutionary model as existing on a manifold
where the metric is specified by the posterior density 7. This notion is formalised in [Shun-ichi
(1985). In this space of distributions created by varying z there exists notions of distance such as
the Kullback-Liebler divergence. The Kullback-Liebler divergence between w(X|z) and 7(X|z2’)
is defined as

KL(n(X|2)|n(X|2)) = /w(XIZ)m-

When we look at an infinitesimal distance between two distributions 7(X|z) and 7(X|z + 02) it

is a well known result that
KL(m(X|2)|n(X|z + 62)) = §2'G(2)d2

where G(z) is the Fisher information matrix, (Shun-ichi, 1985). The Fisher information matrix is

defined b
' 9 log(r(X]2)) dlog(r(X]-))

G(2)ij = Ex{ o= oz, }-

This means that G(z) encapsulates the distance between 7(z) and m(z + dz). We have seen in
subsection example 2 that any Riemannian metric can be used as the covariance matrix for a
multivariate normal distribution. By considering the Fisher information matrix as both the metric
on a manifold and the covariance matrix for a multivariate normal distribution, Riemannian
manifold-HMC can be conducted.

Using the Fisher information metric is a sensible idea. In Shun-ichi (1985)) the Cramér-Rao
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inequality is proven. The Cramér-Rao inequality is important as it tells us that the covariance
matrix for an estimator in some sense dominates the inverse of the Fisher information matrix,
meaning we expect our estimator to have stronger correlations than that of the Fisher information
matrix. Notionally the Fisher information matrix therefore provides a greater range of exploration
in dimensions which impact the change in 7(X|z) the most. It also means that we do not
completely ignore any correlations occurring within the data. Consider the diagonal case,
larger variance leads to larger proposed momenta and therefore better exploration. When
K(p;z) = N(p;0,G(z)) then Hamiltonian is as follows

H(z,p) = ~L(2) — 5 108((2m)”IG()) + 59'G() .

In order to compute the flow we need to be able to compute the derivatives of H(z,p) with

respect to both z and p.

o o e 5D e Py -
oOH _
o (=)"'p

The flow therefore caries G(z) along with z and p ensuring reversibility, Equation .
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Chapter 5

HMC on Tree space

In the previous chapter we saw that Hamiltonian Monte Carlo (HMC) uses a measure preserving
flow to make large jumps without sacrificing the acceptance probability. In this chapter we show
that we have to modify HMC for Tree space because no such flow exists on the whole of it. A
measure preserving flow does however exist within each orthant. In this chapter we show how
to extend HMC so that it can cross orthant boundaries, while maintaining the same behaviour
as HMC within every orthant. We define COrtHMC a novel method for MCMC integration
over Tree space that combines HMC with a mechanism for crossing orthants. Another method
has been developed by [Dinh et al. (2017) called Probabilistic Path Hamiltonian Monte Carlo
(ppHMC) to conduct HMC over tree space first described in subsection Our method is
similar to ppHMC but enables various different crossing methods, one of which coincides with
ppHMC. We outline the various ways of conducting COrtHMC.

In this chapter we shall assume that the substitution parameters 6 and site rate parameters « are
fixed and known. HMC over substitution parameters and site rate parameters will be covered in
chapter [6] .

5.1 Flows across Tree space

We first show that standard HMC is not applicable on Tree space:

Theorem 5.1. There is no well-defined continuous flow ¢; defined on the cotangent bundle of

Tn which has flow lines traversing between at least two distinct maximal orthants, where flow is
defined in subsection [{.2.9

Proof. In order to talk about continuity we need a topology on the space of unrooted trees (Uy,).

We define the topology on unrooted trees by using the Euclidean metric within each orthant
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and extending it across Tree space as outlined in (2015). This is done by taking the metric
across tree space
J
dr(z,y) =inf Z dx (i, iy1]|xo = x, x5 = y, where x;, ;11 in the same closed minimal orthant
1=0
ds is the standard euclidean metric. This works out to be the infimum of lengths of paths
between x and y with straight line segments in each orthant. The space of rooted trees 7, inherits

this metric.

Tree space constists of full dimensional orthants and codimensional-1 regions (“the glue”) between
them 7,, = UT R 3 U n(l) where ’7}(1) are the codimension-1 boundaries of Tree space. The
topology is the topology from the BHV metric, so open sets are unions of open sets in each
orthant. We shall show that no flow traversing two maximal orthants exists on the open book.
We shall then describe the cotangent space 77, using Barden et al. (2013)). By showing that

the cotangent space for 7}(1) contains a copy of the open book we demonstrate that no flow can

exist on the cotangent space.

Tree space contains many copies of the 3-spider.

o

Image of O after t
Flow on the spider

Figure 5.1: The open book and a 3-spider

Consider a flow passing through a point ¢ on the spine of the open book from one maximal
orthant to another, call them orthant A and B. In the 3-spider, S = \/]R?;O, this is shown by the
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green flow in Figure 5.1} However this is discontinuous as the points on the blue orthant are
not moved by the flow. By continuity all significantly close points to the ¢ on also end up on B
bounded away from the spine. By the same argument all significantly close points to the image
of t come back from B. This means the flow lines on an open interval of the spine containing ¢
all go from A to B. The flow is discontinuous because a point arbitrarily close to the origin on
the third orthant, the blue orthant in [5.1] can be at most dz close to the image of the origin. dz
is bounded above 0 and is only dependent on the flow and d¢. Hence there cannot exist a flow on
the 3-spider traversing Tree space. Since there cannot exist a flow on the 3-spider there cannot
exist a flow on the open book. This is because the open book is constructed from the 3-spider,
7}(1) = 8 x R, Since pendant edges are incorporated by a product, at strictly codimension-1
tree space is locally homeomorphic to an open book. We now wish to show that the cotangent

space has the same property, we do this by finding a copy of the open book in the cotangent space.

The cotangent bundle of tree space also contains regions which are locally homeomorphic
to the open book. Barden et al.| (2013) section 4 defines the tangent space for Tree space Ts.
The tangent bundle consists of the tangent spaces of each orthant with a co-ordinate scheme
that represents each orthant or quadrant. The tangent space at a codimension-1 point under this
scheme is regarded as the union of the three half planes connected by the codimensional point.
It is important to note that in [Barden et al.| (2013]) these planes are considered distinct. The
cotangent spaces are the duals of the tangent spaces. It is sufficient to note that from [Barden
et al. (2013)) there are open regions of the tangent bundle, including points in the fibres that
project to codimension-1 singularities in Tree space, which are homeomorphic to open books.
The same applies to the cotangent bundle. Since the cotangent bundle contains local copies of

open books it follows that no continuous flow can exist.

Figure 5.2: On the left we depict the cotangent space of the 3-spider. On the right we depict the cotangent
space flattened to create a tubed space as in subsection
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Example 6.1:

To better get to grips with the cotangent space we describe it for 75 and 74 at a codimension-1
point. Using the same co-ordinate scheme as |Barden et al. (2013) we can express the cotangent
space at a codimension-1 point of 75 as the union of the three half planes RQZO x R? (the cotangent
space within each half plane connected by the codimensional point). Similarly for 7y, the three
spider the cotangent space is the union of the cotangent space of the three half planes R x R. In
the first part of Figure we depict the cotangent space at a point on 7:1(1).

There is an interesting relationship between the cotangent space and the “tubing” method
outlined in It is possible to extend the cotangent bundle with an auxiliary variable at
codimension-1 points in Tree space. This auxiliary variable glues the disjoint R%, x R" cubes
that exist in the cotangent space together. Figure demonstrates how this i; done for the
3-spider. The tubing enables a flow to exists across this augmented tangent space. As this seems

like a natural and intuitive thing to do here we quickly outline why it is a bad idea.
1. The auxiliary variable has no consistent meaning between maximal orthants.
2. It is a method of “tubing” but with less control over the interior of an orthant.

3. This method of tubing is guaranteed to introduce biased exploration as the momenta at

this point is more likely to be negative than positive.

5.1.1 Motivation

We have now shown that HMC has to be adapted for Tree space. In this section we motivate the

use of HMC in Tree space.

In section we outlined how the likelihood was constructed in terms of P, ,..{¢(u,v),0}
and in subsection we saw that Py ., {l(u,v),0} = Pyexp(Qkl(u,v)). Taking the derivative
w.r.t. £(u,v) results in Pyexp(Qk(6)¢(u,v))Qk(f), which is easily computable.

We use Figure to further motivate using an adapted form of HMC. In Figure [5.3| we used the
JC69 model to generate a Hamiltonian on Tree space using the likelihood construction in section
and an Alignment randomly generated from a tree in 75. We chose T5 so that there were only
2 internal edges. This enables both internal edge lengths to be put onto the different axes. The
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lengths of the internal edges of this tree are highlighted by blue lines in Figure [5.3] We then
used this Hamiltonian to plot flows from a grid of starting points. Flows starting from this grid
are in black. We started the flow with zero momenta so that we could see how the likelihood
affected the flow. Figure demonstrates how the flow can provide information about regions
of interest and correctly guide the MCMC algorithm. The flow spends less time in incorrect
topologies as can be seen by the greater exploration in the correct orthant. We also notice that
the flow consistently moves towards the correct values when in a neighbouring topology but if we

move to a topology further away that information is lost.

When we encountered a boundary edge reaching 0, depicted in green, we deterministically
specified an orthant to flow into, either the topology used to generate the alignment or a topology
bordering it. In this way we can consider the flow as moving towards regions where we would
expect high density or lower density. To move into the new topology the absolute value of the
edge is chosen. The flow in the new topology is depicted in red. Looking closely at Figure [5.3
we see that the black flow smoothly changes to red. The first plot in Figure [5.3| shows the flow
moving into the topology of the tree used to generate the alignment. The internal edge lengths

of the tree are marked by blue lines and all edges taken to be of length 0.1.

It is important to notice the difference in scale of the two plots. In the first the flows explore three
times further along the axis representing the internal edge of interest into the orthant than in
the second, where the flow explored roughly the same region as the starting grid of points. This
demonstrates two important conclusions we can make. The flow will spend more time in regions
where the posterior density function takes larger values and this can be seen by the amount of
red on the picture and the greater region of exploration. Tracking a given path gives a significant
increase in length before returning to a boundary, notably the path that explores the furthest
ends before returning to the boundary. No such path exists in the second picture. The second
conclusion is that the flow responds to symmetry in the distribution. The tree used to generate
the alignment was symmetrical in the sense that both internal edges are equal and all pendant
edges are equal. While the alignment does not reproduce that symmetry it does hint to it in the
way that choosing an orthant symmetrically equivalent in the tree results in the flow exploring
roughly the same region. These plots do not only show that by randomly choosing an orthant to
move into we are likely to return to the boundary with the original orthant if we choose poorly.

If we choose correctly, the likelihood of reaching the boundary with another orthant is increased.

Figure also demonstrates that the flow has some knowledge of the tree used to generate the

alignment within an orthant. This is clear from the shift in the flow in the z-axis edge from
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a length in the 0.1 to 0.3 region to the region 0 to 0.3 where the flows appear to spiral round
0.1, the internal edge length used to generate the alignment. This is a shift we do not see when
we move to an orthant not containing the tree used to generate the alignment. This visually

demonstrates the dependence of internal edge lengths on topology.
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Flow to Correct Orthant

T
00 o1 02 03 04

firstintemal edge

Flow to Incorrect Orthant

firstintemal edge

Figure 5.3: Here we create a posterior distribution from a set tree, then picked an orthant 1 nearest
neighbour interchange from the topology of the set tree. We then chose a grid of points, the initial points
of the black lines and ran a leapfrog integrator with low stepsize. Upon encountering a boundary we chose
which topology to move into, in the first diagram we chose to move into the topology of the set tree in
the second we moved to a different topology, we depict the flow in the new topology in red. Comparison
between flows from an incorrect topology (black) moving to either another incorrect topology or the
correct topology (red). We use a blue cross to pinpoint the correct tree in the first diagram (it is not
pictured in the second). We can see that when the flow moves into the correct topology it explores further
into that topology , it circles around the tree used to generate the alignment, and the total time spent in
that orthant is longer. We have scaled the second plot so that the axes align.
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5.2 Cross Orthant HMC

Our method applies standard HMC on each orthant Ri"_?’ and considers the integrator I as a
kernel; see subsection [4.2.3] The Hamiltonian flow is defined on an orthant up to the boundary.
This means that each point p within an orthant has an interval [0,%,), where ¢, is when the
flow hits a codimensional boundary and the flow is not defined after this point. This means
that the numerical integrator along the flow J maps the orthant Ri”fs’ into R?"~3. The kernel
I=1(,-z,p) takes T* M — T* M where M =T, x © x Ry, T, is defined in section O is
as in subsection [2.2.1], and R is the space for rate heterogeneity parameter. This combines the
numerical integrator for the flow J with a kernel C' that dictates what happens when J maps
into R?"=3 \ R

We now explain this construction in more detail. In section we define various different
crossing methods for crossing a boundary as maps R?"3 x © x Ry — T, x © x R,. The crossing
method could be deterministic but in constructing a deterministic method we risk creating
periodicity in the topologies we move to, creating a reducible chain, and introducing forced
latency in the event that the deterministic crossing method chosen is systematically wrong. To
demonstrate this point, suppose a deterministic crossing method mostly suggested moves to
orthants away from regions of high density. We take the No-U-Turn Sampler (NUTS), see section
in appendix [A] as a motivating example for the kernel approach to integration. At every
iteration of NUTS a deterministic process creates a set of possible proposals, this set is then
reduced by a non-deterministic method. In the same way we think of I in COrtHMC as being
built from two components, a deterministic component J and a non-deterministic component
C. We take J to be a standard integrator for the Hamiltonian flow acting within an orthant
and mapping to the orthant extended to include trees with “negative” edges. As J follows the
flow and the flow is not defined across codimension 1 boundaries J cannot itself change topology.
The non-deterministic C' creates and chooses from a set of potential trees in various different
topologies created from the tree with “negative” edge lengths. This means that we can express [
in either of two equivalent ways depending on whether we think of J as a deterministic function

(z/,p) = J(z,p) or a kernel

Lif (2/,p') = J(z,p)

0 otherwise

J(Z',p;z,p) =

We can take either:

1. T is the composition of J and C so that I(2/,p';z,p) = C(Z/,p'; J(2,p))
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2. or I(2,p;2,p) = C(2,p; 2/, 0)J (2, ps 2,p).

In the algorithm we use 1. In order for our algorithm to coincide with HMC when restricted to

flows contained within an orthant we require that

Lif 2" € T, and (2,p) = (¢/,p)

Cz,p7.p) =
0if 2/ € T, and (2,p) # (2, )

We construct the MCMC algorithm as follows. Within an orthant apply standard HMC; upon
hitting a boundary propose a new point, possibly in a new orthant, to move to. There are several
different methods for proposing this new point. We first cover the general case before outlining
some specific proposal mechanisms. We have designed COrtHMC for phylogenetic inference and
therefore we shall express the algorithm in this setting. We recall that z represents all of the
parameters for trees in 7,. Since the topology 7 is a parameter of interest, we henceforth denote

by 7 the topology and z the remaining parameters.

Algorithm 7: Cross-orthant HMC (COrtHMC)

e Input: unnormalised target density m, starting position zy and starting momenta p, momenta
density K, deterministic component of integrator J, random component of integrator C,

number of iterations n

e foriinl:n

1. Draw p’ ~ K(+;2i—1,Ti—1)-

2. Compute (2,p,7-1) = J(zi—1,0', Ti—1).
3. Draw (2,9, 7') ~ C(:; (2,9, 7Ti-1))-
4. Set (2,9, 7) = (2, -, 7).

5)

. Compute

ﬂ-(é/aﬁ/v T/)C(27ﬁ7 Ti—1; 2/7]5/7 T/)J(Z’i—laplv Ti—1; 27137 Ti—l)

m(zi—1, 0, Tic1)J(2,D, Ti—1; 2ie1, P/, i1 )C (2, 0, T/5 2, D, Ti1)

a =min |1,

6. With probability a, set z; = 2/, p; = p/ and 7; = 7’ and otherwise set z; = 2;_1,

pi = pi—1 and 7; = T;_1.

e Output: chain {(z;,p;, )}, with invariant distribution 7.
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5.3 COrtHMC targets the posterior and produces an ergodic

chain

We first demonstrate that COrtHMC targets the posterior. This follows because it is constructed

to satisfy detailed balance.
Proposition 5.1. COrtHMC leaves w(z) invariant where n(z) = [ % exp(—H(z,p))dp.

Proof. Let P(Z',p',7',2,p,7) be the transition kernel for COrtHMC. A distribution 7 is the

invariant distribution of P if
/P(z',p', 2,0, 7)7(z,p, T)dzdpdr = w(2',p', 7).

If P can be decomposed into kernels, P = P, - P, where P; and P, leave w invariant then P

leaves 7 invariant:

[ PGt sp ntep iz dpdr

P (2 p 7 2,0, T)Pa(2,p, 7,2, p T (2, p, T)d2 dp dT dZ' dp’ dr’

! ) [/ P (2,7 2, p,7)m(2, p, T)dzdpdT | d2’ dp’ dr’

Il
.
=
=
\,\]>
N
S
3

Py(2,p, 7,20, 7w (2,0’ ') d2 dp' dr’

We show that the kernel for COrtHMC leaves the target density m(z,7) invariant by showing
that it satisfies detailed balance. We follow the same method as in |Brockwell and Kadane| (2018))
where they validate a Hybrid Metropolis-Hastings algorithm. We shall consider the process in two
steps, the first being the integration step and the second the crossing step. We shall demonstrate
that each step leaves the target density invariant and therefore by the above argument the kernel
for COrtHMC does also. We consider

(2, p', ) (z,p, 720, T)
W(zvpv T)J(Zlvp/7 T;2,P, T)

P1(2/7p177-;27p7 T) == J(Z/7p/77';2,p, T) min 17
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The kernel P; leaves the target 7 invariant because it satisfies detailed balance:

m(2, o', ) (z,p, 720, T’)}
7(z,p,7)J (2,0, T 2,p,T)
= min [71-(27])7 T)J(Z/7p/7 T/; Z, P, T)? W(Zla p/7 T/)J(Z7p) T3 Z/7p/7 T/)]

m(z,p,7)J (2,0, 75 2, p, T) ]
(2, p' ) (z,p, 73 2, D, )

Pl(zlapla 7—/; 25 Dy T)W(Zap, T) ZTI'(Z,p, T)J(Zlvp,, T,; %, Dy T) min |:1a

=n(,p',7")J(2,p,7;2,p',7") min [
=Pi(z,p, 72,0, 7w (2 0, ).

We now consider

VAN

(2,7 )C(z,p,;2 p' )
7 (z,p,7)C(2,p',7";2,p,7T)

C(Z,p', 72 p,7) min [1,
PQ(Z/)p/aT/;Z7p)T) = ( ’ )
0

if respectively C(z,p, 7;2',p',7') # 0and C (2, p/, 7’5 2, p, 7) # 0; and if respectively C(z,p, 752/, p/, 7') =
0 and C(2,p',7";2,p,7) = 0. P and P, combine to draw from J draw from C and accept
with acceptance probability a. We show detailed balance which implies 7w invariance: When
C(z,p,1;2',p,7) £ 0 and C(2',p',7';2,p,7) # 0 the following holds:

A /C [ A /
PZ(ZluplvT,; vaaT)ﬂ-(Z7p) 7—) :W(Z7p77—)c(z/7p,)7—/; vavT) min |:]-a Tr(z P T ) (Z’p77—’ =P T ):|

m(z,p, 7)C(2,p', 75 2,p, T)
=min [7(z,p,7)C(Z,p, s 2,p,7), (2", 0/, 7)C(z,p, 7; 2, ', 7')]

m(z,p,7)C(Z,p', 7’5 2, p, T) )
m(2,p, m)C(z,p, 75 2, p, T!)

=n(,p',7)C(z,p,7;2,p/,7) min {
=Py (z,p,7; 2,0, 7w (0, ).

When C(z,p,7;2,p/,7') =0 or C(2',p',7';2,p,7) = 0 the above does not hold and we wish to
accommodate such integrators, in particular when our choice of kernel restricts the values the
momenta can take. This means that C(2',p’,7";2z,p,7) # 0 but C(2,p,7;2',p/,7") = 0. Let us
assume that C(z,p,7;2/,p/,7') =0 and C(Z,p',7; z,p,7) # 0. We need to define the acceptance
probability in this case. C' having a constrained support when restricted to p we disperse p
afterwards. We can disperse p by the introduction of another kernel F' ~ N (p, cId iy p)) where
p is a point in the support of C. We can then define C¢ = F o C' which satisfies detailed
balance and never has C¢(z,p,7;2,p/,7') = 0 or C°(2/,p',7’;2,p,7) = 0. This adds a step to
C where the momenta is resampled according to a N (p, cId iy p)) Which combines with C' and
slightly alters the acceptance probability to a¢. It should be clear from the above that 7 is the

invariant distribution of P in these cases. We now wish to demonstrate that 7(z) is the invariant
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distribution of the limit when ¢ — 0.

We have constructed this new kernel such that the distribution = is invariant for P, with
this choice of C' = C°. We can therefore write the following for C¢a®:

/W(z,p, O, p' 7z, 7)a (2 0 T z,p, T)dz dpdr = (2, P! 7).

By taking the limit of each side and integrating over p’ because p’ is drawn from a normal
distribution N (5, cldgim(p)), it follows that

(lzi_r)r(l) 7(z,p, 7)C(Z, 0,75 2,0, 7)a (2,0, 75 2, p, T)dz dp dr dp’
= /w(z’,p',T’)dp' =7, 7).

Therefore by the dominated convergence theorem

lii% 7(z,p, 7)C(Z, 0, 75 2,0, 7)a (2,0, 75 2, p, T)dz dp dr dp’
_/(lji_r}(l)w(z,p, C(Z,p' 752, p,7)ac (2,0, 7’5 2, p, 7)dz dp dr dp’
:/w(z,p,T)C(z',p',T';z,p,T)a(z’,p',T';z,p,T)dzdpdep'.

So that:
(1) = /ﬂ'(z,p,T)C(z’,p’,T’;z,p,T)a(z/,p',T’;z,p, 7)dz dp dr dp'.

We want to construct an appropriate acceptance probability for this case. To do this we examine
C°. As ¢ — 0, C° selects points closer to p, this is true no matter where the chain was before the

crossing. Remembering that p’ is a point in the support of C, we can define P, to be:

W(Z,,p,, T/)C(Z7ﬁ) T5 Z/7p,7 7—,)
7(z,p,7)C (2, p',T'5 2, p, T)

C(,p,7';2,p,7) min [1,
where p is fixed and chosen by the user. This in turn defines the acceptance probability when
our crossing methods present such problems. O
Theorem 5.2. The Markov Chain defined by COrtHMC' is ergodic, irreducible and aperiodic.

COrtHMC is a generalisation of ppHMC and the arguments given in Dinh et al. (2017) generalise
to COrtHMC. The arguments in |Dinh et al.| (2017)) establish the theorem. For more details see

the appendix [5.7.4Proofs.
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5.4 Probabilistic Path HMC (ppHMC)

In this section we describe probabilistic path HMC in Dinh et al.| (2017).

Algorithm: The Leap-prog algorithm (ppHMC)

e Input: U, starting position z and starting momenta p, stepsize ¢

. p=p— 66U(27—,z)

1
2. If FirstUpdateEvent(t,z,p,e) =0, 2= 2+ €ep
3. Elset =0
4. while FirstUpdate Event(t,z,p,e —t) # ()
— (z,e,1) = FirstUpdateEvent(r, z,p, € — t)

—t=t+e
— 7~ Z(N(1,2))
— b1 = —pI

5. z=z+4+ (e—t)p

6. end if

_ 6U(7,2)
T.p=p—e—x—

e Output: chain {(z;,p;, )}, with invariant distribution 7.

They define e to be the time at which crossing occurs and I are the indices of the edges causing
the cross. Looking at the above algorithm Z (N (7, 2)) is a randomly chosen new topology, this
corresponds to choice 1 of subsection Multiple crossings can occur in a single step, each
crossing is mapped into a new topology according to the momenta it would have in the new
topology, this choice corresponds to an ordered crossing with no dampning and no truncation
asa described in subsection [5.7.1] and by the way momenta is reversed upon entering a new
topology we can see that they treat the boundary as a reflecting boundary in subsection [5.7.1]
So COrtHMC simplifies to the Leap-prog algorithm when we select momenta according to a
N(0,1,,) distribution, use the standard leapfrog algorithm, select an equal probability reflecting

boundary with no dampning and allow multiple crossings.
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5.5 Derivative of the Likelihood with respect to an Edge

In order to conduct HMC on Tree space we need to compute the derivative of the likelihood with
respect to an edge to feed into the numerical computation of the flow. To do this we expand z
into its components, the tree components ¢ and 7 and the substitution and site rate components
0 and a. We start with the Felsenstein pruning formulation of the likelihood as defined in section
Since the likelihood does not depend on the position of the root we can specify vy to be one
of the internal vertices on the end of the edge of interest e. When the edge is a pendent edge

there is only one possible choice for this vertex. Then

0
al(e )log{ﬁ(XM 7,0, ) Zlog (xill, 7,0, a))

where P and 7 are defined in section As %@P(k) =0

0
%P(Xiwﬂ',@,a ZP Z OK ( Lo, (Xilz, ¢, 7',9,0[))

key

= ZIP’(I::) Z Loy (Xilz, £, 7,0, ) 856(6)1(1:) + Z(w)aj)@ﬁvo(xi|x,€, 7,0, ).

key €A

Since a%@g(x) = 0 and because we can choose vy such that edge e connects vy to a child of vy

we shall call u, the following applies:

u'#u
a ’
af(e) EU(Xi|$)£7 7—7 0) O[) = H Z Px’y7k{£(ul,v)|0}£;u (Xl|y7 E, 7" 07 a)
u'<v |yeA

> ity (Pran 0} £uly £.7.6.0).
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We know that edge e is not contained in the subtree generated by u so %(e)ﬁu(x”y, 0,1,0,a) =0.

This means we can easily compute the numerator:

u/#u
0
auie Poaltm 6,00 =3 B() D m(@) | [T | D Pear (el 0)I6}Lur (ily, €70, )
key z€A u'<v |yeA

y y; 8;(6) (P {0, 0)]03) Lu(xily, 1,70, )

Py gy {€(u,0)|0} = exp{kl(u,v)Q} = az(i) A E(u,0) |0} = kQ(0) Py yik {0(u, v)|6}.
Putting everything together we get

9 n u' £u
57 log{L(X|t,7,0,0)} = Z leﬁ e ;P ;\ x) UE[ ;Px,y;k{ﬁ(u,,v)W}

Loy (Xi’ya E, T, 07 a)]] X Z kQPa:,y;k{g(ua v)‘g}ﬁu(Xi‘yy E, T, 97 Oé)

yeA

We notice that if we have previously computed the likelihood a lot of the L, information is

readily available. Our algorithms make use of this by storing the terms for each vertex.

5.6 Other results about COrtHMC

Theorem 5.3. COrtHMC hits boundaries of codimension 2 with probability 0 for posterior m

with a non-zero probability density function over the whole of tree space.

Proof. Let X be a manifold of dimension n and let p a probability measure on X such that
the support of 1 is X. We consider a posterior defined from the likelihood of a tree. We are
interested in when a flow ¢ hits a submanifold of codimension 1. The flow ¢ is defined such that
Vi e Ry,A C X p(o(t,A)) = pu(A). ¢(t,-) is a homeomorphism with respect to t. Let S be a
submanifold of X such that codim(S) = 2. We wish to show that

p({z = 0([0,1], z) NS # 0}) = 0.

We use the notation ¢([0,t],z) to mean |J {¢(s,x)}. {z : ¢([0,t],2) NS # B} is the set of
s€[0,t]
x € M such that x hits S at some point while following flow ¢.
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We know ¢ is a measure preserving homeomorphism for each ¢. This implies

p({z: o([0, 1], 2) N S # 0}) = p({z : x € ¢([=1,0], 9)}).

If the codimension of a submanifold is greater than 0 and the measure has support across the

whole of the manifold the measure of the submanifold is also 0 (Lee, [2013).

We now demonstrate that the codimension of ¢([¢,0],.5) is 1 for all ¢. To show this define a
homeomorphism mapping local subspaces of ¢([0, —t],.S) into R"~!. Define the homeomorphism
in the following way: Let p be any point in S then there exists U an open neighbourhood of p such
that there is a mapping ¥y : U — R"™2. Let 7 be a point in [~t,0]. Define the homeomorphism
®:

¢ : ¢[r,p] = R" " by ¢[(T — 6,7 +6),U] = 7 x ¢y (p)

This is a chart and homeomorphism as open set are mapped to open sets in an invertible way:
¢[(T - 577+6)7U] = (T_ 57T+5> X ¢U(U)

Hence ¢([—t,0],S) is a submanifold of dimension n — 1 meaning that codim(¢([—t,0],S)) =1
and therefore p({x : ¢([0,00],2) NS # 0}) = 0. O

Theorem 5.4. The numerical integrator for HMC lands on a boundary of codimension 1 with

probability 0.

This follows from the arguments above. We take S to be a submanifold of codimension 1 and

apply ¢ to a point, as the numerical integrator picks out discrete points on flow lines.
Theorem 5.5. The likelihood as defined in section is smooth across codimension 1 strata.

Proof. We outline the ideas behind the proof, for the exact details please see Appendix [Bl The
likelihood is smooth within an orthant. At the boundaries of orthants the trees can be viewed as
belonging to either orthant but are equivalent. Viewing the whole of tree space the likelihood is
continuous through any codimensional space and the derivative agrees at the boundary when

being approached from either orthant. We can see this by viewing the path from one orthant to
another embedded in R™ as in O

5.7 Methods for Crossing Codimensional Boundaries

We have designed several methods for crossing codimensional boundaries in order to produce

the kernel C'. Each method requires several user choices. We focussed on how to transform the
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Figure 5.4: The three trees show different stages of smoothly transforming a tree across the boundary
from topology 7 to 2. The edge ¢5 shrinks to a point and a nearest neighbour interchange occurs before
it grows out to /1. Beneath each tree is the term associated with the edge expressed in the likelihood. It
is clear to see that as ¢5 — 0 +— ¢1 smoothly, exp(—Q¥2) — Id — exp(—Q¥¢;) smoothly.

edge lengths upon crossing a boundary, how to transform the momenta, and whether or not to
continue the integration upon entering a new orthant. When we generate a proposal across a
boundary we perform an initial “jump” as seen in subsection then transform this new state
according to chosen momenta and by integrating along the flow, subsection [5.7.3| and subsection
0. (.2

Hamiltonian Monte Carlo makes use of local information. Standard MCMC uses NNI, SPR and
TBR, as defined in section to perform topological moves. Of these NNI is guaranteed to move
to a neighbouring topology, a topology sharing the spine of the open book. It therefore makes no
sense to use SPR or TBR when conducting HMC. We use NNI because when conditioned on the

topology you move into NNI provides a smooth flow.

5.7.1 Transforming Edges: Reflecting vs Projecting across the Boundary

We decide to transform edge lengths in one of two ways. A single step of the leapfrog algorithm
for the state is a linear map. This map crosses a boundary when an edge’s length becomes
negative. This leads to two natural methods for transforming edge lengths. The first seen in
Figure takes the edge lengths to be the same as if the leapfrog algorithm reflected off the
boundary. Upon crossing into a new topology a nearest neighbour interchange is performed.
During a NNI one edge ceases to exist and a new one is created. This new edge is given the
length of the old edge. We call this the reflecting boundary. The other method projects the state
back along the path it came from upon hitting a boundary. The new edge lengths are then taken
to be the edge lengths at this point and the new edge is given the length of the old edge. This
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can be seen in Figure |3.3|and is called the projecting boundary.

T/ T T T

Reflecting boundary Projecting boundary

Figure 5.5: The figure on the left depicts a reflecting crossing, the right a projecting crossing. The dotted
red line gives the reflection or projection, the blue line and ball is the single step process of the leapfrog
integrator assuming the axis is for when the edge has 0 length and the red line and ball is the proposed
point.

We shall denote the transformation fR as the reflecting boundary and 3 as the projecting boundary.
Let £ ={ly,...,—4;,...,0,} then R is easy to compute.

Rty —Liye o b} = (o by )

The projection is harder to compute as it requires knowledge of the gradient %—I;.

The distance of integration to the intersection, d, is first computed d = Ef;i then:

op
OH 0H
gp({gl, ey —gi, e ,gn}) = {El - 2d€87p, ...761', 7€’n - 2d687p}

Multiple crossing

We cover here how we design C' when during a single step of the leapfrog algorithm multiple
edges become negative. This is visualised in Figure and notionally represents crossing two or
more boundaries. When the edges are in two distant subtrees, crossing two boundaries in one
step is motivated by the underlying flow due to the total evolutionary distance varying much
more locally. When the edges are neighbouring the effect of the nearest neighbour interchange

on one can have considerable impact on the direction of the flow and therefore two edges should
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not be crossed at the same time.

T’ T

Figure 5.6: Crossing two orthants in a single step

We now discuss a few different ways to cross multiple boundaries. We can truncate the flow so
that it only crosses into one orthant. If we adopt this method then we have to decide which
edge to prioritise and by how much to truncate the flow. The advantage of this is method is
that it simplifies the crossing algorithm and we do not skip over topologies. The disadvantage
is that the next iteration will often cross the boundary anyway. If multiple edges are assigned
negative values we have to decide on the order to cross them. An intuitive way is to cross in
order the edges hit 0. The correct ordering is important. Suppose we choose to select orthants
in an unordered manner. Unordered reflection R increases the number of potential orthants
it is possible to move into, the decision changes from 2" choices to n!2™ choices, where n is
the number of orthants crossed. While this is not a problem, it isn’t a very directed approach.
Under an ordered approach the space of potential topologies reachable is greatly reduced and
is informed by the direction of travel in the original topology 7, see Figure [5.7] If the order is
ignored let a random negative edge be chosen. If B8 is applied as normal ignoring all other edges,
we then check to see if any edge is negative and repeat the process until there are no remaining
negative edges. Figure demonstrates that by applying unordered projection we can transform
a negative edge to one that is positive, potentially undoing the first or most influential nearest
neighbour interchange. When order is respected, with each edge that goes negative projection
spirals towards high codimensional spaces as can be seen in Figure This leads us to conclude
that the best approach is to simply truncate the leapfrog approximation of the flow so that it

only crosses one boundary in the rare cases when it crosses multiple boundaries.
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, = y _—

Figure 5.7: Here we see how an unordered projection will result in a negative edge becoming positive (left)
and how an ordered projection will result in movement towards the origin (right).

5.7.2 Continuing the Integration

Once an NNI has been conducted from a method proposed in subsection [5.7.1| we can choose to
propose the new point, or take the new point as a starting point for continuing on the leapfrog
integration, the end of which we take as the proposed point. From section [5.3] and section 2.4 of
Dinh et al.| (2017) we can see it is possible to stop the integration during the integration process

upon an edge becoming negative.

5.7.3 Resetting Momenta

The momenta can be changed upon crossing a boundary. If we maintain the density then the
momenta are consistent from orthant to orthant, we can see this in Figure [5.8]in the figure titled
Free-falling. In this figure the flow starts in the black orthant with no momenta and is allowed to
flow according to the Hamiltonian without any outside influence to the momenta. We specify that
it moves towards the orthant generating the alignment, the exact tree is specified by a purple
dot. The orthant boundaries are shown in cyan. In Figure Free-falling, we can see how if we
allow the state to free fall the momenta carry the state past the region of interest. We decided to
“parachute” the momenta where we abruptly stop the momenta i.e. set it to zero, upon entering
a new orthant, as if we pulled a parachute upon entering a new part of the atmosphere. We
can see three key effects occurring in Figure Parachuting, the states condense, all the flows
explore the region about the tree generating the alignment and the flows spend much less time in
orthants that are not the generating orthant. In Figure [5.8] we can see that if we “parachute”
the momenta we have more rapid convergence to the correct orthant (see the scale relative to
Free-falling) and from the acceptance probability of COrtHMC we can see that moving into new
orthants is favoured since if the momenta have mean 0, resetting the momenta increases the

acceptance probability. Resetting the momenta, apart from affecting the acceptance probability,
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only really has an effect on the proposed point if we continue the integration after crossing a
codimensional boundary. This is because at the start of each HMC and COrtHMC iteration the

momenta are resampled.

5.7.4 Choosing a Topology

It is possible to enter different topologies with varying probability. We therefore have three

methods:

1. We choose with probability 5 one of the two new topologies to enter.

2. We choose with probability 5 one out of the two new topologies and the original topology

to move into.
3. We choose which new topology to move into by a ratio of the posteriors.

These all explore new topologies, focussing on only the new topologies results in greater movement
to new topologies and choosing by posterior results in favouring moves to regions with greater
posterior density. This means that for rapid convergence a posterior new topology system will be
preferable whereas once we have converged it might be better to go with a more randomized
approach. In the results section we actually see that due to the continuous nature of the posterior

across codimension 1 spaces that most crossing methods perform comparably.

Flow to Correct Orthant
Flow to Correct Orthant resetting Momenta

Figure 5.8: This figure demonstrates the difference between parachuting and free-falling on the movement
between four topologies represented by black, red, green and blue lines in four different quadrants. The
integration starts at the black points with 0 momenta, the tree used to generate the alignment is represented
by a purple dot and is in the blue quadrant. The starting points are the same in both images, the scale
for parachuting has been expanded as it occupies approximately an eighth of the scale of free-falling. For
comparison a version to the same scale as Free-falling has been placed alongside it. The cyan lines show
codimensional boundaries. We have fixed which topology we move into at every boundary so that the
state converges to the generating topology.
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5.8 Adapting COrtHMC

When the flow remains in an orthant COrtHMC propopses the same state as standard HMC and
uses the same mechanism to propose that state. As the proposal mechanism is the same within
an orthant, pre-existing adaptations can be applied to the proposal mechanism. These adapted
proposal mechanisms leave 7 invariant, and will hold for the new HMC component J. We
implemented RM-HMC, subsection in particular as this improves the direction of the flow
in high dimensional spaces. We provide a brief discussion as to why we chose not to implement
NUTS. In chapter [6] we cover some issues with implementing constrained HMC. A brief overview
of constrained HMC can be found in subsection [D.5l

5.8.1 RM-HMC

In tree space the computational bottleneck comes from computing the likelihood and derivatives
of the likelihood. This is because it is a recursive algorithm of order O(|x||k|(2n — 3)|.A|?) where
|x| is the number of columns, |k| is the number of categories for the site rate parameter, 2n — 3 is
the number of edges and |.A| is the size of the alphabet, in our case 4. RM-HMC requires not only
the derivative of the likelihood to be calculated but all the second derivatives of it, see subsection
Equation (7). This increases the total computational time by a factor of (2n — 3)2 making
it an O(n3) order algorithm. We can reduce the order by storing parts of the computation,
but it will still take more than 2n — 2 times longer than computing all the derivatives. This is
impractical for HMC as it would remove all competitiveness from the algorithm. In RM-HMC
the second derivatives are only necessary for integrating along the flow. We construct a kernel
based on that in RM-HMC, which does not require second derivatives to integrate along the flow

but produces a less exact integration.

5.8.2 Adapting RM-HMC to Tree Space

The kernel for momenta RM-HMC employs improves the exploration of HMC. Our aim is to
choose the same kernel as dictated by RM-HMC but without continually transforming it around
the space, the process that requires second derivatives. COrtHMC has obvious resemblances to
adaptive schemes when the kernel K is dependent on state z. This is the case when using the
Fisher information matrix as a covariance matrix for a normal distribution centred about the
origin. |Andrieu and Thoms| (2008)) show that a significant issue with adaptive schemes is that
they subtly alter the invariant distribution to be dependent on the adaptation, resulting in the
incorrect distribution being targeted. Common constructions used to ensure ergodicity and that

the chain eventually targets the correct distribution require diminishing adaptation with either
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the simultaneous uniform ergodicity condition or containment condition (Roberts and Rosenthal,
2007) and (Bai et al., 2011)). If we were to require these conditions for the Fisher information
matrix F' we could adapt it to F by either of the following methods. We define this adapted F

here iteratively:

¥ _Faxn+ Fnp
n+1 — n+ 1
1
F; n ifi=4j
{Fag1tij = { nﬂ}” !

i
Fn+1}{} — 1 otherwise

However we have shown in section [5.3| that COrtHMC targets the correct distribution even when
K is dependent on state z, and so do not require such an adaptive method to be implemented.
RM-HMC also has some resemblance to adaptive methods, (Girolami et al. (2011) who also avoid
adapting the kernel by implicitly having the kernel as part of the state space over which they are
conducting HMC.

Computing the Fisher Information Matrix

The Fisher Information matrix can be written in the following way for an alignment X with n

columns:
n

Fj =) alog(g;jﬁm)) mogg;;”x))ﬁ(xix)

1=1

where x is a parameter of interest.

When we compute the likelihood and the derivative with respect to a parameter we already

compute %ﬂ:‘im). This means that we can avoid computing them again if we store the
derivatives for each x; speeding up the computation of the Fisher Information Matrix. This is

because all that is required is the final multiplication and sum, taking a minor amount of time.

Stability of the Kernel

The kernel is the covariance matrix for a normal distribution, so it is necessary for it to be
invertible. Sometimes particular derivatives can become very small and on a few runs this meant
that numerically the matrix became unstable and threw computational errors. We wish to have a
stable kernel so we decided to try two methods, both of which prevented the error from occurring
again. We call this new stabilised kernel F. These are applied globally over the algorithm to

avoid numerical issues:
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1. Fi = Fijiti=j and
N 0 otherwise ’

5 2F;; ifi=j
. ij =
F;; otherwise

5.9 Discussion of other methods

We have presented one way of constructing an algorithm to traverse Tree space using HMC. This
is not the only method available. It is possible to embed Tree space into a Euclidean space. With
this embedding we can then move in the super Euclidean space and project back into Tree space.
Another method is to “tube”. Around each orthant add an auxiliary variable creating a tube
around the orthant. The value of the auxiliary variable, for example if it is positive or negative,

dictates the chirality of the NNI transformation applied.

5.9.1 Tubing

Consider the following roughly designed proceedure. We adjoin an auxiliary variable to our state
space and define a distribution over this auxiliary variable, for example a N (0, 1) distribution.
As we run the HMC algorithm this variable generates samples from the normal distribution. The
value of this random variable dictates which orthant to move into. This is user defined. It is
preferable that the user defines the orthant moves so that returning to the same codimensional
boundary results in a new orthant being explored. The end result of this method is the longer
we spend exploring an orthant the less deterministic and more random the choice of the next

orthant is. We decided against such a method for several reasons.
1. As seen in subsection the posterior directs us to the correct orthant.

2. The user defines the distribution, which effectively calibrates how quickly it transforms
from a roughly deterministic process to a random one. This can introduce unwanted biases

to the process.
3. It adds another parameter.

We summarise that tubing adds extra hassle to the process, increases computation time, and
introduces a variable which can have significantly negative impact if mishandled. To make best
use of this method, we would need a rough understanding of how long the chain spends in each

orthant, which is one of the original aims of performing the inference.
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o

Figure 5.9: Here we depict the open book in black. The tubes around the pages of the open book
representing the added auxiliary variable are pictured in blue. We can see two flows in green oscillating
from side to side. The side at the codimension 1 space dictates which orthant of the open book the flow

enters.

5.9.2 Embedding

We can embed Tree space into Euclidean space. We can show that the dimension of this Euclidean
space is bounded between 2n — 3, the number of edges contained in a tree in 7, and n?. To
see that Tree space T, can be embedded into a Euclidean space of dimension @, we can

construct any tree from all the path lengths between taxa contained in the tree. We don’t know

of any embedding of order less than this.
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Figure 5.10: Here we depict Tree space in black. The Euclidean space we embed it in is pictured in blue.
We can see the flow in green is travelling in the Euclidean space. The projection from the flow to Tree
space is in red.

This method has one benefit but several reasons why it is not feasible. The benefit is that
it enables geometrically motivated topological moves that are greater than nearest neighbour
interchanges. The problem is that it requires every iteration to be projected back onto Tree
space, (this is costly and would give discontinuous flows see Figure . It requires us to define
a consistent and useful cotangent space, (this is impossible to do everywhere). On the almost
everywhere region where this is possible, the “honeycomb” structure of Tree space has to have the
distribution extended onto it. This results in a posterior function that is greatly more complex,
involving the posteriors of projections to neighbouring topologies, if it wished to be informative.
It also converts an O(n) dimensional problem into an O(n?) dimensional one. It should therefore
be clear that such a method could never hope to be competitive. In the case where the structure
is filled in by an arbitrary posterior this method would then act as a costly form of a two step

HMC within Gibbs sampler, sampling a HMC update and then a topological update.
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Figure 5.11: Here by imbedding Tree space in Euclidean space we encounter a discontinuity in the flow
when projecting from Euclidean space to Tree space..
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Chapter 6

HMC on Substitution Model
Parameters and Site Rate

Parameters

In chapter 5| we covered how we adapt HMC to work on Tree space, and in chapter [2] we covered
various parametric schemes for carrying out inference. One of the key benefits in conducting
HMC over standard Metropolis within Gibbs is that we can lift the work in chapter [5] to enable
simultaneous updates of the model parameters and the tree incorporating the dependency between
the two. The model parameters and tree are dependent on one another through the likelihood
defined in section and so HMC provides an update which does not fall into the standard
problems Gibbs encounters with highly correlated parameters. Some adaptation is necessary to
convert the substitution model parameters and site rate parameters into a form applicable to
COrtHMC. In chapter [2| we saw that some substitution model parameters lie on the simplex and
that some lie on Ry. HMC, in its basic form, acts on copies of R. This means that we have to

transform the parameters into something that HMC and CortHMC can handle.

6.1 Computing the Derivative of the Likelihood with respect to
Substitution Model Parameters

Before outlining exactly how to transform the parameters, we describe how to compute the

derivative of the loglikelihood with respect to a general substitution model parameter. Unlike

the computation in subsection the choice of root vy does not matter so long as it is an

internal vertex. In our code we specify a root to the tree which is used in computing the

98



Chapter 6. HMC on Substitution Model Parameters and Site Rate
Parameters 99

likelihood. We choose the root used for calculating the derivative with respect to substitution
model parameters vy to be consistent with the root of the tree as this saves minor computational
time and stops unnecessary confusion. The time save comes from subtree likelihoods having been
already computed based on a recursion from vy and can be reused in the derivative calculation.
We use the same notation as in We use ¢ to denote a general substitution model parameter.
We discriminate between composition parameters and transition/transversion parameters later
on. Using the definition of the likelihood found in section we compute the derivative of the
loglikelihood as follows:

n

0 0
9 log{L(X|¢,T,0, ) 6¢Zlog]}” xill, 7,0, a)

n

—Z 68(75]? Xill, 7,0, a)
P(x;|¢,7,0,a)

=1

Since %P(k) = 0 and from the definition of P(x;|¢, 7,0, @) in section [2.5/ we have that

8a¢ (Xlw T 9 a G(Z) ZP Z ( ) vo(X1|ZL‘ 9 k‘)

key zeA
0 0
— 3" B(k) [avom\x,e, B2 ) + w(sc)z%(xirx,e,k)} .
202 06+ )55

There are two derivatives to compute in this calculation, a%ﬁvo(xi\x, 0,k) and a%g(a:). Since
7(x) is a substitution model parameter its derivative is easy to compute. L,,(x;|z,6,k) is
defined in sectionas [T > Poyndl(u,v)}Lu(xily, 0, k). We define u < v, Py .. {f(u,v)} and

u<v yeA
Lu(xily, 0, k) at the start of The product rule applied to %EUO (xil|z, 0, k) gives:

u' #u
Lo(xile,0.k) =) | IT [ D Prall, 0)}L (xily, 6. %)

u=<v [u/'<v |yeA

X Z (Pe g {€(u, 0) }ou(xily, 0, K)) -

yEA

0
¢

We are now left with the derivative % (P yiefl(u,v) }Lu(xily, 0, k)) to compute. The product

rule gives:

0 0
8¢ x,y;k{g(u7 U)} XEU(XZ"% 97 k)"i_Px,y;k{E(u: v)}iﬁu

( ,y,k{g(u ’U)}E (Xl‘yae k)) By
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We wish to compute %Px,y;k{f (u,v)}. This is not necessarily algebraically possible. In subsection
2.2.2| we noted that GTR does not admit B%Pz,y;k{ﬂ(u, v)} in algebraic form. We chose to use
HKYS85 and we covered the algebraic form of the transition matrix for HKY85 in subsection
We need an algebraic form for the transition matrix rather than the rate matrix (as needed
for edges) because differentiating with respect to substitution model parameters does not have
the same nice form as differentiating with respect to edge lengths:

2.

Py oy {l(u,v)} = exp{kl(u,v)Q} # %Px,y;k{ﬂ(u,v)} = kl(u,v) Py {l(u, v)}agzs

The analysis above tells us that 8%) log{£(X|#)} depends on information we have previously
computed and two derivatives, %IP’()Z(UO) = z) and a%Px,y;k{t(u, v)}. When we choose the
reparameterisation of the model parameters it is important that it enables us to compute these

two derivatives effectively.

We also notice that

u'#u
! ‘CU (Xl‘waav k)
Pyl €(u', v)}LE (Xily, 0,k) | | = ¢ -
ugo y;él ! ZyEA vayﬂf{g(u? ’U)}EZ (Xl’ya 97 k)

since
Loo(xilz,0.k) = T[ D Poyadtu', 0)}LY (xily. 0, k)
u'<vg |yeA

When calculating the derivative for substitution parameters we do not vary vg. This means that
the numerator and the summands in the denominator have already been computed. This leads

to considerable time saving over the course of a full run of HMC.

6.2 HMC on the Simplex

In subsection [2.2.1| the simplex is defined as A,, = {(71,...,m,)] Z m; = 1}. For phylogenetic

inference the base rates are positive and represent the proportlon of the base occurring at
stationarity. It follows that each parameter is bounded between 0 and 1. We work with the DNA
base rate parameters 74, 7o, g and 7. These lie on A4. Working on the simplex complicates
HMC in two ways; the parameters do not exist on copies of R and are related by a constraint.
This constraint affects the derivative of the log-likelihood as its calculation depends on how

we decide to formulate the dependency between w4, 7o, 7o and 7. We tried two methods of
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transforming the parameters; a method involving trigonometric functions and constrained HMC
from Betancourt| (2012)) and an exponential method from Heaps et al.| (2014). The method of
Heaps et al.| (2014)), although requiring more operations, was easier to implement and avoided

some issues that occurred.

6.2.1 Cruising the Simplex

In Betancourt| (2012) the parameters m; are transformed so that y? = m; for i = 1,...,n, where n
is the number of parameters lying in the simplex. The y; are then transformed using a hypersphere
transformation
L cos(0;) ifi<n
Yi = Hsm(ﬁj) X
j=1 1 otherwise
In order to simplify the mathematics the 6; are further transformed to z; = sin?(6;). Following

everything through we get:

n cos(6;)2 ifi<n
m:yiz:Hsin(Gj)zx (6)

j=1 1 otherwise

1—ziifi<n

= ZE X

j=1 1 otherwise
i—1

1—3 m
j=1 . .

=z = - for ¢ < n so that there is one less z;.

1—->

=1

The chain rule implies the derivatives with respect to the transformed variables z; are

of _(m \Of S~ 0f
azi N Z; — 1 87’[‘1' L Z3 871']‘
Jj=i+1

for further details see (Betancourt, [2012]).

The transformation above means that z;, like 7; are bounded between 0 and 1. Hence, when
conducting HMC we require the use of constrained methods such as those described in subsection
The use of constrained HMC can cause problems when there are constraints in multiple
dimensions. When we deal with A4 the space for the transformed base rates is [0, 1]3. We shall

describe the problem in terms of [0, 1]? to allow illustration.
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Figure 6.1: This figure exaggerates the flaw of constrained HMC that can result in the chain getting stuck.
The density is depicted by the ellipses, the various arrows depict possible paths under constrained HMC
from the original state in purple. We can see here that even if we propose moving towards regions of high
density the dynamics involved can result in catapulting the point to a region of low density.

When conducting HMC using a numerical integrator it is important to choose the correct stepsize,
too small and exploration is slow, too large and the integration error will continuously reject
proposals. Constrained HMC can increase the integration error and therefore aggravate any issue
caused by too large a stepsize. The large and mostly unknown nature of the posterior over tree
space means that appropriately adapting the stepsize to deal with this issue is difficult. We have
found that the optimum stepsize does vary over Tree space. Constrained HMC is particularly
problematic because of a dissociation from the underlying principals of HMC. In constrained
HMC the gradient informs the integration along a flow faithfully up until the boundary is hit.
Once the boundary is hit, unlike when hitting a codimension-1 boundary in Tree space, most
methods of constrained HMC switch from one integral curve to another. Different integral curves
hae different values for the Hamiltonian and different derivates of the Hamiltonian. This means
that constrained HMC can cause us to continuously land in regions of low density. At this
point the algorithm gets stuck for a period of time before moving on. Such stepsize problems
appear throughout HMC. The issues depicted in Figure only become more extreme in higher

dimensions.

Constrained HMC has some similarities to COrtHMC in the above. We also allow the flow to
switch from one integral curve to another in COrtHMC. This is done in the crossing kernel C' of
Algorithm 7. As a consequence we can create choices of kernel that produce poor results. We

notice that in the choices of crossing kernel we provide the proposed point always attemps to
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maintain the marginal density 7(z) and never to decrease the density of m(z,p). This avoids
the above problem and may even improve mixing. We preserve the density by maintaining the

gradient of the parameters from one step to the next.

The transformation in Betancourt| (2012) is computationally cheap. The method requires
the parameters to be constrained to a cube. As a form of constrained HMC it can encounter
the problems depicted in Figure [6.1] In phylogenetics the substitution model parameters are
dependent on the tree. After each step the distribution changes and may vary substantially
between topologies, which makes accepting new states in different topologies particularly difficult.
Hence constrained HMC schemes such as that of Betancourt| (2012) may require locally very
different stepsizes to avoid a lack of mixing. This problem is further aggravated in the case of
small alignments as it is common for the likelihood to dictate that a lot of the density is situated
close to the boundary of the simplex and therefore close to the boundary of the transformed space
in Betancourt| (2012). This means in situations where the alignment is small the transformation
in |Betancourt| (2012) loses efficiency. We note that in inference on Tree space the bottleneck
in the computation is in the likelihood. This means the marginal gains from performing the
transformation in Betancourt (2012) are not worth the time it spends stuck. To avoid the above

issue we decided to use a different transformation.

It may be of interest that Lan et al. (2013) covers a method that removes the constraints
by transitioning in a similar way to a spherical system. We decided against this approach as we

had doubts about the possibility of using it in conjunction with our form of RM-HMC.

6.2.2 The Farrow Transformation

Instead of the transformation found in [Betancourt| (2012) we chose to use the transformation
found in Heaps et al. (2014). We call this transformation the Farrow transformation, after

Malcolm Farrow the famous Bayesian Statistician.

Definition (The Farrow Transformation). It is F is a map from R"~! to the n-dimensional

simplex

A" = {W:Zn:m =1}.
=1

We define the Farrow transformation F as the composition of a linear map H sending R™ !

to the hyperplane {(a1,...,an)la1 + ... + ap, = 0} C R™ and another transformation § taking
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{(a1,...,an)|a1 + ... + a, = 0} to A™ so that:
F(B) = §(HP).
The matrix for H is the n x n — 1 dimensional matrix

0ifi<j
hij=qd;ifi=j
dif(n ) i ]

where

1
=1 =di_qy |l ———————=, 1=2,... — 1.
dq & dj dj 1\/ (n—j—i—l)Q’ J ) y T

It can be shown that )" | h;; = 0 and therefore H/3 is an n dimensional vector which sums to 0.

We now define the transformation § to be:

a) — exp(al) eXp<an)
5la) <z?:1 ep(a) S, exp(ao) '

We notice that for each i, 0 < % < 1. This means that this transformation never maps
j=1 j
to the boundary case m; = 0 or m; = 1. This in turn means that the transformed derivative is not

inclined to map to the boundary.

Theorem 6.1. The Farrow transformation is bijective.

Proof. (Injectivity)

We are going to show that if F(8) = F(B’) then 8 = f'. First we show that F(a) = F(a')

implies a = d’ for a € {(a1,...,an)|a1 + ... + ap, = 0}. We then show that HS = Hp' implies
B=pg.

Suppose F(a) = F(d’), where a and o' are in {(ai,...,an)la1 + ... + a, = 0}. This means
that:
exp(a;) _ exp(a)

Z;’L:I exp(a;) Z}l:1 exp(a;-)

for all i = 1,...,n, which implies exp(a;) = cexp(a}) for all ¢ and hence a; = a; + ¢ for some

constant c'.
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As 0 = Z?:1 a; = Z?:l a;-

and as a; = a}, + ¢ we can conclude ¢ = 0.
n n
/ /
E a; = E a; +c¢
i=1 i=1
n
/ /
0= g a; +¢
i=1

n
0=ncd + E a;

i=1
0=nc.

If ¢ =0 then a = @’ and § is injective.

by nature of a; and a, being in {(ay,...

Jap)lal + ... + ap

0}

We now need to show that H is injective. Suppose HfB = Hf’, then we get the following

equations:
d1 ) =d1 1
d d
—n_llﬁi +daffy = — n_llﬂl + d2f32
v, dy dp—2 ;o dq do
n—lﬁl n—2ﬁ2' 9 Br—o+dn-18,_1 = n—lﬁl n—2ﬁ2'
i, doy dp—2 , ;o dq do

dp—

92 261172 + dnflﬁnfl
dp—

92 2/87172 - dnflﬁnfl-

As d; is non-zero for all 4, B; = . We now assume f3; = 3 for all i < j and show that 8; = 3.

di dy di-1 , dy do
- — =3 d; 3 = — — .
n_]_/Bl n_2ﬁ2 n—j—l—lﬂyil—i_ ]/BJ 7’L—]_I61 TL—QBQ
which by supposition is equal to
dy do dj—1
_ _ ' o d. B
n—lﬁl n_2ﬁ2 —j+1ﬁ] 1+ ]Bj
and as d; is non-zero
B35 = B;.
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Hence by induction S = 8, meaning H is injective. The composition of two injective functions is

also injective so F = § o H is injective.
(Surjectivity)

We show that F is surjective by construction. First we construct a such that a = 7. Let

U

(it

a; = log for1<i<n

1/n

Applying §(a); gives
n
T, = 7% Z 771-] .

n 1/n _ n 1/n
(fe) 7 (1)
=1 1=1

Pulling out the product from the denominator gives:

n
As > m; =1 this gives m; showing that § is surjective. We now show that H is surjective onto
j=1
{(a1,...,an)|a1 + ... + a, = 0}.

We wish to find 8 so that a = HB. The system of n linear equations a = Hf3, is in n — 1 variables,
the d; are non-zero. This means that if we think of the first n — 1 linear equations, Gaussian
elimination gives f; for i = 1 to n — 1. As H maps from R"~! to {(ay,...,a,)|as + ... + a, = 0}
this is sufficient and H is surjective.

n—1

To show that H maps R~ to {(a1, ..., an)|a1 + ... + an = 0} all we have to show is a, = — > a;
i=1
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where ap, = —dp_18p-1 — 3,122 4B, and a; = diB; — 3)'ZL -4 B; for all i < n.

7=1 n—j j=1n—j
n—1 n—1 i—1 d:
J
_Zai Z—Zdiﬂi _anjﬂj
i=1 =1 j=1
n—1 d.
- _ d:B; — v .
D_diBi= Y b
1=1 I<n—t

n—1 .
=—> difi - iz 1)diﬂz‘
i=1

n—1
n—1
d;
=— E -
- n-—1
=1

:an

Since H and § are surjective F is.
As F is both injective and surjective it is bijective. O

Composition parameters and the Farrow transformation

In this subsection we cover how to transform the base rates by the Farrow transformation. The base
rates w4, mq, 7o, and 7w exist on the 4 dimensional simplex Ay such that mq +7g + 7o+ 7 = 1.
The Farrow transformation provides a method to transform the space that generates a space

where HMC can easily be run.

In this case:
1 0 0

—-1/3 8/9 0
~1/3 —v2/9 /2/3
~1/3 —/2/9 —/2/3

The columns sum to 0.
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We now have the following relationships between « and S.

a1 = B1 =

ag + G

R N fp="21 2

2 2 579

L

az + 4 + 253

———\/>52+\/>ﬂ3 B3 = 4 :
2/3

B [2 2 s+ 4 2
3 Vo 3 2/3

Hence we can express w4, ng, ¢, and 7p in terms of §: Let:

5 = exp() + exp( 21 136 rexp(- 2~ \ 251\ 25,

B 2
+ exp( 3 952
then:
_o() _exp(=5 +/56)
TA = TG = S
exp(— 2 — \[52 + fﬂ:& exp(—2L — /28, — /23)
o = T = S .
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Hence we can compute the derivatives of 74, 7@, ¢, and mp with repect to 51, B2, and Bs.

ora 1 Oma _ \/5 o
8751 =74 (1 A+ 3 (rq + mc -|-7TT)> 95, = 97TA (2rg — o — 7M7)

87”‘__\/§ (rc — 77)
965 37A(mC — 71

%*—E—W <7T —E+E+E> aTrG\/gw —\/57'( (2rg — m¢ — )
o, 3 e\UAT 3T T3 9, Vo'¢T \grete mRe AT

org _ 2

3753__ §7TG(7TC—7TT)

one TC Tq¢ T¢ 7T ore \/5 \/5

&0 _ ¢ e e oY s ]2 Dt — o —

95, 5 T (74 3 T3 " 3) 95, g™C ~\ g™ (276 —mc — )
2 2

e _ [ 2ne - 27 (te — 7r)

005 3 3

orr IUs Ta TC 7T onr \/5 \/5

or_ T _e et 2 22 Vs — o —

3, T (ﬂ'A +5+ 3) 95, o™ 97TA( TG — T — TT)

3 3
6777’__\/§ _\/5 (rc — 77)
05 37T 37 (e —77).

In subsection [2.2.3| we see that for HK'Y85 model the transition matrix takes the following form:

Let TR =TA + TG Ty =g + 7T
yr =y /TR ry =1.0/yr
ez = exp(—pt) es = exp(—(mra + my fB)t)

eq = exp(—(mya + wrP)t)
then:

P(t) = exp(tQ) has the form

3 A c G T

A | ma + mayres + wa/TRES me(l —e2) Te + Teyres — wa /TrRE3 mr(l —e2)

C 7a(l—e2) Te + meryes + mr /Ty e ma(l —e2) T + Trryes — T /Ty es .
G | ma + mayres — ma/mwRes me(l —e2) Te + Teyres + wa/TRres mr(l — e2)

T ma(l—e2) e + Teryes — o /Ty e ma(l —e2) Tr + Trryes + o /Ty es
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This means we can compute the derivative of P with respect to §;, and so we have everything

needed for the derivative calculation in section [6.11

87TR_87TA+87TG 87Ty_(97rc+a7TT

0B 0B 0B 0B 0B = 9B

661 o 862 _ 87‘(‘3 87‘&'}/ _

98 = 0 95, ~ ( 95, A+ a5, Jtexp(—(mrA + Ty )t)
663 _ aﬂ'R aﬂ'y .

95, (852' + 95, Mtexp(—(mr + Ty A)t)

We can also apply the chain rule to get the derivative of any function f with respect to 3; instead

of m;

Af - Of Om
OB; &= Omi 9B;’

This reparameterisation affects the derivative, we now infer over 1, 82 and f83. The choice of
reparameterisation affects how the derivative with respect to 51, f2 and (3 interacts with the
parameters 74, ¢, g and mp. Since the Farrow transformation does not map to the boundary,
the derivative avoids the boundary. This is a good feature for HMC as we do not wish to propose

points on the boundary.

6.3 HMC on R,

The transition-transversion parameters and « are positive real parameters. We choose to conduct

HMC on Ry by means of the log transformation, ¢ € R, = log(¢) € R. This means that

of  of
Olog(¢) 09

6.4 Computing the Derivative with Respect to Site Rate Parameters

To compute the derivative with respect to site rate parameters we start with the same formulation
of the likelihood as in section [6.I] We differentiate with respect to the site rate parameter a.
Taking the derivative of the Likelihood as defined in section with respect to a we get:

0
5o log{L(X10)} ZlogP Xi» |0)

Z Ba X“ |9

=1 th
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We now expand P(x;, [0) = > _yc, P(k) -, cu Lo (Xil@, OK)P(X(v0) = 2):

T B0 10) = S B(R) S Lyl 08) - B (v0) = )

kevy zeA

Ly, (xilz,0,k)

+28P o (i, BB (o) = ). 1)

ke~ cA

We know that 8%1?()2(1)0) = z) = 0 and hence that the first term can be removed:

%P(Xn 10)
= S TB) Y B (w0) = ) Lyl 08) + 30 LS £ (v, OR)B (i) = )
key zeA key zeA

As with the substitution model parameter derivative calculation we expand and differentiate
LU(XZ'|QZ, 9, ki)

u' #u

9 y
%ﬁv(XiW@ak) :Z H Z Px,y;k{t(u/av)}‘ci (Xi|ya‘9ak)

u=<v [u/'<v |yeA

D Ao (Pt {t(u, 0)}£u Caily. 60, K)

yeA

We expand % (Pyye{t(u,v)} Lo(xily, 8, k)) by the product rule:

o (Praft(,0) a0l 6,1)
= P10, 0)) x Ll 0.K) + el 0)) - Ll 0, )

With substitution model parameters we noticed that the nature of () meant that we could
not trivially compute %P%y;k{t(u, v)} whereas with the site rate parameter this is no longer a
problem and so the derivative behaves like an edge length.
0 ok
Px7y;k{t(u7 U)} = exp{kt(ua U)Q} = %Px,y;k{t(ua U)} = %t(ua U)Px,y;k{t(u> ’U)}Q (2)

The above analysis shows that two derivatives must be calculated, ag(j) from and % from

. In section we have seen that k is fixed at various levels and « generates a fixed gamma
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distribution with shape and rate a. We use this information to compute % and mg—ff) from it.

We first show how to compute 82%’3) if we have % available.

a®k® 1 exp(—ak)

E A

We can take the derivative:

da  Oa I'(@)

oP(k) 0 k1 exp(—ak)

We now use the chain rule:
P(k) B OP(k) ok

o ok Oa’

OP(k) Ok 0 a“k* ! exp(—ka)

da  dadk I'(a)
B %ao‘(a — 1)k 2 exp(—ak) + a®k* ! exp(—ak)
~ Oa I'(a) '
ok oP(k)

This means that once we have 5o We can compute —5 .

We now focus on computing c‘% We first explain the difficulty in calculating % and then

explain our solution. k is the solution to the cumulative density function at a particular point c.

/k a®re! exp(fozx)d
x = c.
0

I'(a)

We apply the fundamental theorem of calculus to get F'(k) — F'(0) = ¢ for some F' and that
k= F~!(c+ F(0)). Standard theory tells us that F is

ot tetdt

F ="

so that F(0) = 0. The integral is continuously differentiable since t*te~! is. We can apply the
-1

I.V.T. to find that the derivative of BFT(C) in terms of the derivative of F' with respect to a.

This requires a numerical solution, hence if we want to incorporate gamma rate heterogeneity we

need to employ a numerical approximation.

We now describe the numerical approximation. In Phylogenetics there are characteristic choices
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for ¢ which depend on how many partitions of the interval (0, 1) are required, these are found by
approximating the value across the interval by the value in the middle. It is common to partition
the interval into powers of 2 and rarely are more than 8 partitions put into practice. We used a
standard approximation,
Ok(a) k(a4 h) —k(a—h)
Jda ~ 2h
for small h. As stated in subsection 2.4] we chose h = 0.001. We decided to take values between

0 and 6 as the derivative became fairly consistent, changing in the 4th significant figure, we

approximated greater values of a by the final value at 6.

We decided not to go with a linear approximation to compute the derivative with respect
to « for values greater than 6. If we were to go with a decreasing scheme in the tail rather than
a flat approximation the gradient would be smaller in the tail, resulting in proposals staying
in this region of low density as the gradient along with the momenta dictate the change in
the proposal. Furthermore it is in a region where the CortHMC should rarely visit due to the
Metropolis-Hastings acceptance step rejecting most of the moves to such a region. It can be
seen when the Alignment is not very informative causing « to reach values far above something
realistic. At this point « is effecting the gamma-distribution in such a way that all columns of

the alignment have approximately the same evolutionary rate.
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Chapter 7

Results

We wish to compare and contrast COrtHMC with existing Metropolis within Gibbs techniques
(see chapter . We implemented COrtHMC in our project COrtHMC dependent on PhyloCore.
All runs are conducted either in COrtHMC or in PhyloCore for comparison, we do this as to
maintain a comparitive level of optimisation and to run code using the same language. We
split every run into lots of short runs stitched together, for ease of storage and to manually
perform garbage collection. In this section we use several artificial alignments over which we
design an optimal version of COrtHMC. We then compare COrtHMC with Metropolis within
Gibbs for our artificial alignments and an alignment from MrBayes (Huelsenbeck and Ronquist},
2001). We first specify the alignments and priors we use. We then move on to demonstrate that
COrtHMC does in fact target the correct distribution as a means to inspire confidence in our
technique. COrtHMC requires specification of lots of tuning parameters and various crossing
methods are available to the practitioner. To simplify things for the reader we shall split the
design of COrtHMC into two parts. The first parts deals with the parameters required for J, the
“HMC” component of COrtHMC, see section These are the choice of integrator and choice
of momenta kernel. Since we use the leapfrog integrator the tuning parameters involved in the
choice of integrator are the step-size and number of steps. The second part covers the different

choice of crossing kernels.

7.1 Data, Priors and Testing

We consider COrtHMC on several alignments constructed from synthetic trees with 5, 16, and 32
taxa, constructed using the package “ape” (Paradis and Schliepl [2018]). We also specify priors for
the edges, both internal and pendant, substitution model parameters and site rate parameters.

Where possible, priors commonly adopted in the literature are used.
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7.1.1 Alignments

We denote the alignments generated with n sites for 5, 16 and 32 taxa as AL, A7y, and A3,
respectively. We also use the primate alignment from MrBayes, denoted A,, as this alignment
is not generated from a tree we include the alignment in Appendix [E] Each alignment is fixed
throughout the testing process. The alignments were all generated using a HKY85 substitution
model with base rates 74 = 0.4, m1¢ = 0.1, 7g = 0.2 and 7w = 0.3 and a transition transversion
ratio of 1.5 and a discrete gamma site rate heterogeneity with o = 0.5. We assume a HKY85

model and a discrete gamma model throughout this section.

We used 3 different trees to construct the alignments for the 5, 16 and 32 taxa trees. All

alignments As were constructed from the random tree

0.5

Figure 7.1: The alignment generating tree for 5 taxa.

We generated two alignments from this tree denoted ALY and AL, For the A;q alignments we

used the random tree
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t2

Figure 7.2: The alignment generating tree for 16 taxa.

Finally, all A3o alignments were constructed from the random tree

Figure 7.3: The alignment generating tree for 32 taxa.

7.1.2 Priors

We adopted an independent prior specification across internal and pendant edges. For the former
we specified I'(0.01, 10) distributions and for the latter, 1'(0.1,1) distributions.

We chose this specification because we observed very different behaviour on internal edges

when compared to pendant edges. COrtHMC is dependant on the derivative of the posterior. The

derivative of the prior influences this derivative according to the product rule. For the Gamma
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distribution the derivative is
ol,3() a—1 1

2 J—

o~ L B

Looking back at the leapfrog integrator, (see section we can see that the momenta is
transformed by subtracting a small step along the derivative of the Hamiltonian with respect to
the parameters and then the parameters add on a small step of the derivative of the Hamiltonian
with respect to the momenta. For a normal distribution this derivative is X ~1'p where X is the

covariance matrix. Taking 3’ = [ allows us to easily understand how problems occur. For small

values of ¢
8Fa”3(€) o 1
a
As a gets smaller 6F“a’f © decreases meaning that the change in momenta p increases. The choice

aFa, (e) _ 1 iQ
8? =3 < 0. This

of a = 1 is convenient because this term disappears but still results in
means that the prior is informing us that we should be moving away from any codimensional
boundary. By choosing a > 1 the prior now favours crossing codimensional boundaries for small
edge lengths. As we wish to explore tree space by crossing boundaries we opt to use a prior
that says such movement is possible rather than one that says it ought not occur. This is also
consistent with the continuous nature of the likelihood. The likelihood states that two points
infinitesimally close to each other but either side of the boundary are effectively the same and so
evolution from one to the other should not be much harder than large jumps within an orthant.
Such a poorly designed prior is demonstrated in Fig [7.4 where we can see changes in topology by

changes in colour.
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Plot of the Posterior Density Plot of the Posterior Density
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Figure 7.4: Trace plots of the log-posterior showing different numbers of topological crossings when using
a Dirichlet distribution with o = 0.01. The first figure changes topology once, the second with @ = 1 often
changes topology as can be seen by the various different colours. (We used AL to generate these trace
plots.)

We opt to use a Dirichlet prior for the base rates with all the concentration parameters fixed at
0.25. A Dirichlet prior is a prior on the simplex given by a Dirichlet distribution. The choice of
0.25 makes sense as we have no reason to presume that any base occurs more often than any
other base. We used an inverse gamma prior for the transition transversion ratio with a = g =2
to have a mean of 2. While we decided to use this prior for the TT ratio we find that we are
actually giving a lot of information to COrtHMC, for example that the most likely value for the

TT ratio is % To get around this abundance of information we provide an alternative prior.
—a—1 exp(— a+1

(a+1)%a -
Let ¢ = 55505/ (2742) + 1/2+ 55055/ (2 ) ) then

1 —a—1 _atly
ey ep(— =) ¥ exp(—22) ifx <a

cm exp (—(z — b)?) otherwise

This prior is constructed piecewise by first using an inverted gamma distribution, the a uniform
distribution and finally a normal distribution, such that they are all smoothly connected. The
middle uniform distribution means that the user can abdicate all knowledge of the transition
transversion ratio for a region, (a,b), while allowing the ratio to lie anyway on R,. This prior is
also similar to the inverse gamma prior in that high values and low values, corresponding to all

transitions or all transversions, are increasingly unlikely. We chose not to use this prior as it is

119



Chapter 7. Results 120

complicated and while the mean is at (a + b)/2 it is an unknown distribution and therefore we

avoid it.
Finally, we used an exponential Exp(0.5) prior for the site rate parameter a.

We note that unlike standard Metropolis within Gibbs, the statistical efficiency of COrtHMC is
likely to be particular sensitive to the choice of prior. When the shape parameter in the gamma
distribution is greater than or equal to the scale parameter the probability density tends to 0 as
the random variable does. This dominates the posterior causing the posterior density to also
tend to as the random variable does. The positive nature of the gradient near 0 values also is
inherited by the posterior from the prior in this case. The resulting effect is as the proposal
gets closer to crossing a codimensional boundary the prior moves the proposal away from the
boundary. This means that to overcome this effect and propose a point in a new topology large
momenta is required which will often compound the error in the integration meaning that new

topologies are proposed rarely, limiting exploration and convergence.

7.1.3 Testing COrtHMC

To test COrtHMC we ran it on a known target distribution. We targeted the distribution
comprising of the priors outlined in subsection [7.1.2l To do this we turned off the likelihood
so that the posterior is completely dictated by the prior. Below we compare the results of
COrtHMC, in blue, with the theoretical result depicted, in red. We do this by looking at the
three graphs in Fig: The first graph is diagnostic and depicts the trace plot, which gives
an idea of how the parameter mixes and whether it gets stuck at particular values. The second
plot plots the autocorrelation against lag which shows how correlated one sample is to the next,
the faster the autocorrelation function (ACF) drops to 0, the less correlated the samples are
and the more effective samples are produced, a number related to the number of independent
samples. The final plot in Fig: is the most important in demonstrating the correctness of
COrtHMC. In each plot the theoretical density plot for the prior is depicted in red and the
estimated density is drawn on it in blue. We can see that the prior for edges here is our standard
prior for internal edges I'(10,0.01) and the prior for piG is our standard Dirichlet prior. When
these align we know that COrtHMC correctly samples from the prior. Here we provide the three
plots for a couple of different parameters as all parameters produced similar results. The ACF
plots for the substitution model parameters demonstrate that the samples are more correlated
from one iteration to the next. The ACF here is greater than that expected in MCMC due to
the correlated nature of HMC but also could be due to a lack of sufficient tuning. The density
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plots demonstrate that the algorithm correctly targets the posterior as the inferred density (blue)
agrees with the true density (red).

Trace plot for edge 1 ACF plot for edge 1 Density for edge 1
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Figure 7.5: Plots for each parameter. Left: Trace plot depicted in blue, Middle: Autocorrelation in red,
Right: Density in blue and red.

7.1.4 Prior Sensitivity

In this section we compare the effect of different priors on mixing performance. We consider the
prior specification discussed in section and an improper prior that is globally uniform. We
find that priors can alter the mixing of COrtHMC as can be seen in Figure [7.6| and can override
the information in the likelihood as in Figure [7.7]
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Figure 7.6: Informative vs Improper Priors. Here we see the different mixing of 74 using A
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informative prior is on the left and exhibits poorer mixing than the improper prior on the right, both
explore multiple topologies but the graph of the informative prior spends more time in the correct topology,
as can be seen by the high percentage of black. The colours denote the topological distance from the tree
used to generate A% Fig:
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Figure 7.7: Informative vs Improper Priors. The improper prior is depicted on the left anad informative on
the right. We can see that an informative prior acts to return the transition-transvertion ratio to a more
confined region whereas and improper prior can cause extreme exploration around less informative areas.
The informative prior effectively explores the prior for the gamma rate heterogeneity without exploring
region about a = 0.5 whereas the improper prior provides better exploration.

As two different posteriors are being compared it makes no sense to talk about comparative
effective sample sizes. As the alignment length increased the importance of the prior decreased

as can be seen in column sensitivity.
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7.1.5 Column Sensitivity

The alignment length is not user defined but has an effect on the posterior via the likelihood.
As the alignment length is the amount of data available, increasing the length increases how
informative the likelihood is. This affects some parameters to a greater degree than others in
particular the site rate heterogeneity. For smaller alignments the site rate heterogeneity parameter
« is unbounded as there is not enough information available to specify how the site rate changes
over sites. To see this consider the extreme example with only 1 site, in such a situation « could
be anything. Referring back to section this is equivalent to site rate homogeneity as the

gamma distribution becomes more diffuse.

Plot of the Posterior Density with Topological Distance Plot of the Posterior Density with Topological Distance
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Figure 7.8: Two plots of the log-posterior for differing alignment lengths. On the left plot was generated
from A9 and the right the alignment has length A:%°. The more informative alignment focusses the
chain to within a single orthant and provides a more informed path.

In Figure there are two things to notice. First the alignment of length 1000 has a posterior
varying by approximately £20 whereas in an alignment of length 100 the posterior varies by
approximately +10 but as a percentage of the posterior it is 0.6% and 3%. The second thing
to notice is that the chain does not leave the correct topology (depicted in black) when the
alignment is length 1000 but does for the shorter alignment.

7.2 Specifying the HMC component: J from section

7.2.1 Inverted vs Standard Leapfrog integration

The first thing we want to compare is the inverted leapfrog integrator in section to the
standard leapfrog integrator. We found that the inverted leapfrog integrator provided significant

speed up when we ran COrtHMC over more complicated trees. Although we expected a factor of
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(5 taza)
Standard Inverted
Edges Parameters Posterior | Edges Parameters Posterior
ESS 570 8.9 540 2000 7.6 740
ESS /s | 0.11 0.0017 0.10 0.37 0.0014 0.13
(16 taza)
Standard Inverted
Edges Parameters Posterior | Edges Parameters Posterior
ESS 370 58 102 730 120 170
ESS /s | 0.012 0.0019 0.000042 | 0.019 0.0031 0.0044

Figure 7.9: Comparison of the effective sample size for Inverted vs Standard leapfrog integrators.

2 increase in CPU time, some of the time saved in not needing to compute as many derivatives
was spent updating the parameters in storage. For less complicated trees, when the likelihood
calculation has a less expensive time cost than inverting the momenta kernel, the inverted leapfrog
integrator can be detrimental, for the simplest 5 taxa tree we found that the time taken for the
inverted compared to the standard leapfrog was comparable. As most trees will have significantly
more than 5 taxa, increasing the likelihood time cost above that of the momenta kernel, we
would recommend always using the inverted leapfrog integrator, but do use the standard leapfrog
integrator for testing, we decided to do so as to maintain a consistent base for our testing only
varying one part at a time. We can see the benefit as the inverted leapfrog integrator on 16 taxa
outperformed the leapfrog integrator we saw a 3 : 4 ratio in the time taken or a speed up of
roughly 25%. For most trees it provides effective speed up. In Figure [7.9| we see that both the
leapfrog and inverted leapfrog produce an approximately equivalent effective sample size. We
conducted the experiments with 16 and 32 taxa and received similar results to that of the 5 taxa
tree, see appendix [E] For ease of reading we only reproduce the results of the 5 taxa tree when

this is the case but the data is available if required.

7.2.2 Step Number Sensitivity

We tested several different step numbers, [ in section [4.3.1] As can be expected the time cost
increased linearly as we increased the number of steps. Due to this we stopped testing after [ = 8

as it became apparent that the cost was not being outweighed by the gain in ESS.
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(5 tazxa)
One Step Two Steps
FEdges Parameters Posterior | Edges Parameters Posterior
ESS 570 8.9 540 240 6.1 19
ESS /s | 0.11 0.0017 0.10 0.026 0.00066 0.0020
(5 taza)
Three Steps Four Steps

Edges Parameters Posterior | Edges Parameters Posterior

ESS 120 15 660 760 7.3 130
ESS /s | 0.090 0.0011 0.050 0.043 0.00041 0.071
(5 tazxa)

FEight Steps
FEdges Parameters Posterior
100 11 900
0.033 0.00033 0.025

ESS
ESS /s

Figure 7.10: Comparison of the effective sample size for various different numbers of steps in the leapfrog
integrator.

The above tables show that the one step MALA process produces the best ESS / s followed
either by the 3 step process for a 5 taxa tree. We found for the 16 and 32 taxa case that 3 steps
produced the best results. We did not run 8 steps for the 32 taxa case as this would have taken
a significantly longer run time when it was clear from the 16 taxa case that 8 steps would not be
the best performing example. As 3 steps performed comparatively to 1 in the 5 taxa case we opt

to try both for our final analysis.

7.2.3 Step Size Sensitivity

While we found that there were many different ways of generating e. The best approaches
were had with a manual grid approach similar to that suggested in |[Neal et al.| (2011]). The

problem with this approach is that it required a lot of user input as the granularity of the grid to
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(5 taza)
Fixed Blackbox Adaptive Blackbox
FEdges Parameters Posterior | Edges Parameters Posterior
ESS 960 15 58 790 11 74
ESS /s | 0.30 0.0047 0.018 0.17 0.0024 0.016

Figure 7.11: Comparison of the effective sample size for various different numbers of steps in the leapfrog
integrator.

search over differs depending on the number of taxa in the tree. We therefore constructed two
blackbox methods based on the heuristic algorithm in |Hoffman and Gelman| (2014) as described
in subsection The two blackbox methods differed in that one enabled an adaptive stepsize.
The two blackbox methods use the same method to choose an appropriate € but one uses an
adaptive scheme to alter € throughout the run to slightly improve the results. To construct the
adaptive scheme we make sure that we satisfy the simultaneous uniform ergodicity condition
and diminishing adaptation condition found in |Roberts and Rosenthal (2007). To construct the
blackbox scheme we use the method found in |[Hoffman and Gelman (2014). We can see that both

blackbox methods produce results that work.

We also tested how stepsize changes with the number of taxa by simulating some data for
a random 20 taxa tree, Figure We then removed data from the alignment associated with
each pendant as we pruned the tree. We then used the specifically constructed tree in Figure
7.13] as the initial tree around which we found the optimum stepsize. We choose this tree because
we could prune off pendant edges while maintaining a similar structure, and all edge lengths are
the same which removes the impact of different edge lengths different topological importance in
the pendant edges. We found that as the number of taxa increases the stepsize has to decrease

which makes sense as the logposterior decreases.
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Figure 7.12: Here is the tree used to generate the alignment we used to test the effect of taxa on stepsize.

Effect of Taxa on Stepsize

0.012
|

Stepsize
0.008
|

0.004

0.000
|

| | 1
5 10 15

Number of Taxa

Figure 7.13: We see the tree used for the experiment and the relationship between stepsize and the number
of edges.

While more taxa results ina a lower optimum stepsize as seen in Fig: [7.13] when we compare the
acceptance rate to the logposterior we find a linear relationship, Fig: the acceptance rate is
inversely related to the stepsize and the and the logposterior is inversely related to the number

of taxa.
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Acceptance Rate against lteration Acceptance Rate against logposterior
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Figure 7.14: Here we see that acceptance rate has a linear relationship with the log-posterior.

7.2.4 Different Choices of Kernel for the Momenta

In |Girolami et al.| (2011)) they adapt HMC for a position dependent momenta kernel, we produced
a similar scheme that loses some accuracy in the integration in order to avoid the computational
cost in computer the second order derivatives. As with |Girolami et al. (2011)) and Betancourt
(2013) we tried using the Fisher information matrix, G. We encountered problems with this
approach due to numerically errors during the run resulting in eigenvalues too close to 0. To
counteract the issue we decided upon trying two different forms of the Fisher information matrix,

the diagonal Fisher and the stabilised Fisher

Diagonal {Gga}ij = 6:Gij
Stabilised {Gs}i; = {G}ij + {Ga}ij.

We then compared both of these with a standard fixed normal kernel.
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(5 taza)
Projecting Reflecting
Edges Parameters Posterior | Edges Parameters Posterior
ESS 1100 152 1200 1000 4.4 100
ESS /s | 0.22 0.032 0.25 0.24 0.0010 0.024

Figure 7.16: Comparison of the effective sample size for various different numbers of steps in the leapfrog
integrator.

(5 taza)
Stabilised Fisher Diagonal Fisher
Edges Parameters Posterior | Edges Parameters Posterior
ESS 1200 280 1300 1100 80 720
ESS /s | 0.22 0.054 0.24 0.22 0.017 0.15

Figure 7.15: Comparison of the effective sample size for various different numbers of steps in the leapfrog
integrator.

Both choices, provide significant improvements to the ESS / s when compared with the standard
approach. This is particularly true for the worst performing parameters which improve by a

factor of approximately 30 for the stabilised Fisher or 10 for the diagonal Fisher.

7.3 Specifying the Crossing component: C from section

7.3.1 Reflecting vs Projecting

We found that reflecting and projecting across a boundary, as described in subsection [5.7.1] only
provided marginal differences in ESS/s. We found that projecting produced slighlty better ESS
and ESS/s. This is counter-intuitive as the likelihood is differentiable across codimension 1
boundaries, this means we might expect the reflecting boundary to produce better results as it is
linear estimate of the derivative at the boundary |Dinh et al.| (2017). The projecting boundary is
simpler so we expect it to be quicker, the improvement in results could be due to the dependent

nature of substitution model parameters and tree parameters.
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(5 taza)
Fized Crossing Ratio Crossing
FEdges Parameters Posterior | Edges Parameters  Posterior
ESS 1100 152 1200 2900 25 2200
ESS /s | 0.22 0.032 0.25 0.63 0.0053 0.48

Figure 7.18: Comparison between chosing via ratio of the posterior densities vs a fixed probability.

7.3.2 3 orthants vs 2 orthants

We found that there was little practical benefit to using all 3 orthants when compared with 2
orthants. We in fact found that 3 orthants performed slightly poorer than 2 orthants.

(6 taza)
2 Orthants 3 Orthants
Edges Parameters Posterior | Edges Parameters Posterior
ESS 1100 152 1200 360 55 540
ESS /s | 0.22 0.032 0.25 0.081 0.012 0.12

Figure 7.17: Comparison of the effective sample size for entering 3 orthants as opposed to 2.

7.3.3 Ratio vs Fixed Transitions

When choosing a crossing kernel we can choose to either force entry into a new orthant, or have
some chance of remaining in the current orthant. We found that there was little practical benefit
to using all 3 orthants as this artificially forces the markov chain back on itself, slightly slowing
exploration when compared with 2 orthants. In Fig: we see that 3 orthants performed
slightly poorer than 2 orthants.

7.3.4 Continuing the integration

Parachuting resets the momenta after changing topology. This is to enable faster convergence.

We found that parachuting does not improve the ESS / s.
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(5 tazxa)
Standard Continuing and Parachuting
Edges Parameters Posterior | Edges Parameters Posterior
ESS 1100 152 1200 630 0.84 2.3
ESS /s | 0.22 0.032 0.25 0.13 0.00017 0.00048

Figure 7.19: Comparison of the effective sample size for when we parachute the momenta as described in

section @

7.4 Comparison with MCMC

Here we compare how COrtHMC runs against standard Metropolis-within-Gibbs. We compare
the two using the alignment from MrBayes, A,. We do this by conducting several runs each
pairwise, making sure their maxdiff is < 0.1. We can see in Fig: that both COrtHMC and
Metropolis-within-Gibbs produce the same tree but with a different root, one separating Tarsius

syrichta subclade, the other separating the Homo sapiens subclade.

Tarsius syrichta
Lemur cafta

Gorilla Saimiri sciureus
Pongo Macaca fuscata
Hylobates {[M mulatta
Macaca fuscata M fascicularis
M mulatta ——M sylvanus
M fascicularis Pan
sylvanus omo sapiens
——Saimiri sciureus @on’ﬂa
+————————Tarsius syrichta 'ongo
Lemur catta ——Hylobates

Figure 7.20: Comparison of the tree generated by MCMC (left) and the tree generated by COrtHMC
(right).

We ran this comparison several times and consistently found that Metropolis-within-Gibbs
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outperformed COrtHMC. In Fig: and Fig: we see that Metropolis-within-Gibbs always
has the substitution model parameters converge faster than edges whereas, COrtHMC varies.

(COrtHMC)
‘ Edges Parameters Posterior Intrinsic ESS
ESS 12 9.7 11 8.8
ESS / s | 0.0021 0.0017 0.0018 0.0015

(Metropolis-within-Gibbs)
‘Edges Parameters Posterior IntrinsickESS

44 880 680 1200
0.38 7.7 5.9 13

ESS
ESS /s

Figure 7.21: Here we have a relatively short chain and the Metropolis-within-Gibbs outperforms COrt HMC.
This provides a perfect example as to why Intrinsic ESS is a more reliable measure of ESS than taking the
minimum ESS over edges. The minimum gives an ESS of 44 samples, several edges had an ESS of over

2000, neither really provide you with information of how the tree changes as they only describe a local
region of the tree, whereas Intrinsic does.

(COrtHMC)
‘ Edges Parameters Posterior
ESS 540 1200 1700
ESS /s | 0.014 0.031 0.044

(Metropolis-within-Gibbs)
‘ FEdges Parameters Posterior
53000 66000 1200000
2.9 3.6 6.5

ESS
ESS /s

Figure 7.22: The added complexity of HMC and the autocorrelation significantly slows down the process
and reduces the ESS.
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7.5 Comparison with ppHMC

We used the primate alignment A, to compare ppHMC’s performance with that of COrtHMC.
We found that both behaved similarly because the behaviour of HMC approaches are dominated

by the behaviour inside and orthant.

(ppHMC)
‘ FEdges Parameters Posterior
ESS 1.53 0.96 1.65
ESS /s |6.85e —13 4.28¢ —13 7.37e — 13
(COrtHMC)
‘ FEdges Parameters Posterior
ESS 1.32 1.38 1.57
ESS /s |59le—13 6.15e —13 7.02e — 13

Figure 7.23: ppHMC behaves as expected just like most other COrtHMC crossing kernels.

7.6 Parallelising COrtHMC and Improving Efficiency

There are two key ways of improving the efficiency of COrtHMC. In sections and
we have seen that computing the derivative is trivially parallelisable. This means that we can
parallelise the computation of the derivative. Sections [5.5 and also demonstrate that
computing the derivative uses a lot of shared information due to the recursive nature of the
algorithm. We also implemented both approaches, sharing as much information as possible
within the recursion or evaluating the derivatives in parallel. We were unable to do both as
evaluating the derivative would alter some of the shared information in the recursion. We
quickly noticed by use of Netbeans’s (Apache Software Foundation Oracle Corporation and
Roman Stanek) 2021) internal profiler that implementing in parallel produced exactly the same
results but ran slower. It is for this reason we do not go over how exactly to run COrtHMC
in parallel. We include a link to our code where one can see how we efficiently stored the
information in the likelihood in one object, called the “StoredLikelihoodInfomationHMC”, and
stored information specific to the derivatives in various different objects the constructors of which

require a “StoredLikelihoodInformationHMC” object. All of the above referenced objects are all
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found in the folder “DerivativeCalculators”.

https://github.com/matthewberobinson/COrtHMC

7.7 Visualisations

During this project we found that we had to visualise and describe the Markov Chain and how
the algorithm operates on Tree space. To do this we created two visualisations, a video of the
tree as it alters throughout the chain combined with videos of the posterior densities of the
substitution model parameters and site rate parameters and an rshiny for viewing the tree and
the posterior density particular targeted at 5 taxa trees as they provide a good starting test. As
we cannot include a video in this thesis and the rshiny is interactive we provide an example and

the code below.

https://github.com/matthewberobinson/Visualisations
https://github.com/matthewberobinson /Rshiny

At 1 minute in we can observe a second peak forming in the base rate corresponding to a

change in topology.
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Figure 7.24: The various informative panels in our R Shiny app (RStudio, Inc, [2013). There are two plots
of the internal edges of the tree. The colour either denotes distance from a given topology or merely a
change of topology. We can see the current tree and it’s location on the Petersen graph. We can see the
acceptance rate and the logposterior, as well as a density plot.
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Conclusions and Future Work

8.1 Conclusions

We have constructed a method for conducting HMC traversing Tree-space. We then streamlined
the process as much as possible. Many of the techniques we developed to improve COrtHMC can
be used to improve other forms of HMC. These include such examples as inverting the leapfrog
integrator, stabilising and fixing the momenta kernel, parachuting the momenta and using the
Farrow transformation to conduct HMC on the simplex. We have justified certain choices of
priors and invalidated gamma priors with small . Through our visualisation we can also see the
coupling the tree in Tree space and the substitution model parameters. We have also employed
the use of our own measure of ESS for tree parameters, which encompasses how the tree changes

as a whole.

However HMC greatly increases the complexity of the computations involved in MCMC,
and when put to the test COrtHMC does not seem to yield a significant improvement on
Metropolis-within-Gibbs.

We also looked into some work that ended up being unrelated, in particular Windowed HMC

(Neal et al., 2011)), which we adapted and the relationship between Operads and trees which we
didn’t manage to use Baez and Otter| (2015)).
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8.2 Future Work

It is important that COrtHMC can adapt itself to different alignments without a lot of user
interaction. Currently it requires either a lot of tuning or uses the Dual Averaging algorithm
from |Hoffman and Gelman, (2014), see section In Fig: we saw that there is a strong
relationship between the optimum stepsize and the logposterior. With a little bit of extra
exploration it may be possible to come up with an algebraic form for the stepsize dependent on
the logposterior. We might even be able to show that due to convergence of the logposterior, the
stepsize satisfies the simultaneous uniform ergodicity and diminishing adaptation requirements

to produce an ergodic chain (Roberts and Rosenthal, |2007)).

We also noticed a significant improvement from applying the stabilised version of the Fisher
information matrix. The Fisher information metric is not the only geometry we can use, in
particular Critchley et al. (2002)) recommends various different preferred point geometries. We
have also in no way exhausted the various different crossing methods, in particular a perpendicular
crossing method resulting in proposing the midpoint between the reflecting and projecting crossing
methods might produce a better result than either. In section [5.9] we discussed two other ways of
performing HMC on Tree space and reasoned why they were inappropriate, coding them up would
provide a practical validation. Much of my time spent on this project has been in optimising code,
during which I have noticed that small changes such as storing ordered lists of edges and vertices
preventing them from being recomputed at each iteration can provide significant improvement in
the speed of the algorithm. It is possible that I may have missed something. Furthermore, while
the time cost of parallelisation is too great for the trivial approach, a non-trivial approach might
produce better results. Finally while I have conducted many runs over a lot of synthetic data I

have not tested how COrtHMC runs with large numbers of taxa for real data.
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Algorithms

In this appendix we outline several algorithms for the sake of completeness that would either be

time consuming for the reader or distracting from the overall outline of the thesis.

A.1 The GTP algorithm for computing geodesics in polynomial
time

1. If £ = (Ey, ..., Ey) and & = (EY, ..., E}) are partitions of E and E’, for each i > j E; and

E; are compatible

Definition. Compatible

Two splits S = £|€ and S’ = £'|E’ are compatible if the intersection of one of the sets they
generate is empty. i.e. if one of the following is true £|€' =0, E|E =0, E|E' =0, £|&' =0

‘A1| < ‘A2| < < |Ak‘
2 B SB S S (B

3. For each pair A;, B; there is a non-trivial partition of A;, C1,Cy and B; D1, D5 such that
|C1l |C2|

(5 is compatible with Dy and D11 < 1Da]
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Algorithm A.1: The GTP algorithm

e Inputs: Trees T and 7" and proper path between them I'% with support

e Initialise: form the incompatibility graph between T" and T”. Set I'° to be the cone path

between the two.
e At each stage I is a proper path and has support £ and £ satisfying 1 and 2.
e For each support pair solve the extension problem.

e If every min weight cover found has weight > 1 then I'"* satisfies 3

|C1 2

2
e Choose any min weight cover C7 U Do having weight A2 + [l
J

‘ |B;[* %
C1,Cy and Dy, Dy and replace I"* with the associated proper path I"*!

replace A; and B; with

e output: Geodesic I'™ where I'™ is the geodesic between 7' and T”
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A.2 The Dual Averaging algorithm

Algorithm A.2.1: Heuristic for choosing an initial value of ¢ (Hoffman and Gelman,
2014)

1. Parameters: Hamiltonian H, starting position xg, starting momenta pg tuning parameters

a, integrator following Hamiltonian flows I, number of iterations k.
2. Initialise e = 1 and p ~ N(-;0,Id).

3. Calculate (2,p’) = I(z,p, €).

n(a'p) _
4. Set a 21 | ZEL) > 0.5] — 1.

5ywmm[ﬂiﬂl>aﬂa>2%

7(x0,p0)
(a) € =2%
(b) Set 2/, p' + I(x,p,¢).

6. output: e.
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Algorithm A.2.2: Hamiltonian Monte Carlo with Dual Averaging (Hoffman and
Gelman, [2014))

1. Parameters: Hamiltonian H, starting position g, starting momenta pg, optimum 9, A,

integrator following Hamiltonian flows I, number of iterations M, number of adaptations
Madapt_

2. Initialise g = ApplyHeuristic(zp), u = log(10¢y), € = 1, Hy = 0, v = 0.05, tp = 10,
Kk =0.75.

3. fori=1,.... M

NN( 7]1)

iS

-1

i—1

, T=12""", p=p.

(a
(b

(d) With probability ¢ = min{1 ﬂ} set ' = & and p' = —p.

77r(xm

)
) @
(c) Calculate (2/,p") = I(z,p,€).
)
)

(e) if i < Madaert
e Set I‘IZ = (1 — ﬁ)ﬁifl + ﬁ(é‘ — CL).
e Set loge; = pu — iH and logé; =i "loge; + (1 —i ") log €m—1.

(f) Otherwise set €; = € adapt .
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A.3 The various different NUTS algorithms

A.3.1 Simplified NUTS

Algorithm A.3.1.1: BuildTree for Simplified NUTS Hoffman and Gelman| (2014)

e input: starting position x, starting momenta p, tuning parameters € > 0 and A, > 0,

integrator I, u € R>q, direction v € {—1,1} and counter j € N.
o If j=0:

1. Calculate (2/,p') = I(x, p, ve).

{2, p")} if u < exp[-H(a',p")].
0 o/w

3. Set ' =T [exp [—H(z/,p")] > logu — Apag)-

2. Set C' =

4. Set xT =2~ =2 and pT =p~ =p'.

o Otherwise:

1. Set z—,p~,z%,p*,C', 8" < BuildTree(z,p,u,v,j — 1,¢€).

2. fvy=12",p,C",s" < BuildTree(z,p~,u,v,j — 1,¢€)
otherwise set ,p™,C”,s"” < BuildTree(xt,p*,u,v,j — 1,¢).

3. Set s’ =§'s"I[(zT —a7)-p~ >0]I[(at —2z7)-pt >0]and C'=C"UC".

e Output: z—,p—, 2™, p".C,s.
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Algorithm A.3.1.1: The Simplified NUT sampler (Hoffman and Gelman) 2014)

e Input: starting position xg, tuning parameters € > 0 and A4, > 0, integrator I integrating

along Hamiltonian flows, number of iterations n

e Fori=1,...,n:

1.

Draw p° ~ N(-;0, Id).

2. Draw u ~ U(+;[0,exp(—H (z,p))]).
3.
4. While s =1:

Set z~ =2 gt =2 pm=p% pT =p°, j=0,C= {(xi_l,po)}, s=1.

(a) Draw v; ~ U(-;{—1,1}).

(b) If v; = —1 then «~,p~,C’, s’ <~ BuildTree(x™,p~,u,vj, j,€)
otherwise T, pT,C', s’ < BuildTree(z™,p™, u,vj, j, €).

(c) If s =1set C=CUC.

(d) Set s =sT[(zT —27)-r~ >0][(zT —27)-rT >0] and j =5 + 1.

e Draw (z,p) ~ U(~;C).

e Output: (z,p) where (z,p) is a single output from C found by integrating along the intergral
curve of the Hamiltonian.
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A.3.2 Efficient NUTS

Algorithm A.3.2.1: BuildTree for Efficient NUTS(Hoffman and Gelman, [2014))

e Input: starting position x, starting momenta p, tuning parameters ¢ > 0 and Ay, > 0,

integrator I, u € R>q, direction v € {—1,1}, counter j € N and tree set size n.
o If j=0:

1. Calculate (2/,p') = I(x, p, ve).

2. Set n' =1[u <exp[—H(z,p')]], s =1[exp[-H(2',p")] > logu — Apaal,
xt =2 =2 and pm =p~ =p.

e Otherwise set z—,p~, 27, p",2',n’, s’ = BuildTree(x,p,u,v,j — 1,€).

o Ifv;=1set x=,p 2", n", " = BuildTree(z™,p~,u,vj, j,€)

otherwise set ™, p™, 2", n”, 8" = BuildTree(z™,p™, u,v;, j, €).

e With probability #/;,, set o/ =2", 8 =5"T[(xt —x7)-p~ >0][(zt —27)-p" > 0] and

n' =n'+n".

e Output: z—,p—, 2T, p", 2’ p',n/, s
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Algorithm A.3.2.2: Efficient NUTS Hoffman and Gelman| (2014)

e Parameters: starting position xg, tuning parameters ¢ > 0 and A, > 0, integrator
following Hamiltonian flows I, number of iterations k

e fori=1,...,n:
1. Draw p° ~ N(-;0,Id)
2. Draw v’ ~ U(:;[0, exp(—H (z,p))])
3.8tz =2t ot =21 pm=p pt=p", j=0,n=1and s =1
4. While s = 1:

(a) Draw v; ~ U(;{—1,1})
(b) If v; = —1 then set z~,p~,2/,n’, s’ = BuildT'ree(x™,p~, u,vj, j, €) otherwise set
zt,pt 2/ 0, 8" « BuildTree(z™, p*,u,vj, j,€).

LIfd =1

(a) Draw u’' ~ U[0,1] if o' <™ set 2' = 2/

(b) Set s’ =s"I[(zT —27)-r= >0][(zt —27)-rt >0,j=j+1landn=n+n

e output: (z;,p;) is the result of integrating along the intergral curve of the Hamiltonian for
a set amount of time.
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A.4 Shadow HMC

All that is left to do is formulate the shadow Hamiltonian based on an approximation. There is a

general formula but for our purposes we only show the 4th order shadow Hamiltonian.

1 1
H =—(Ajg— =
(z,p) 26( 10 6A12)
where

Ao =y1 + mass X 0.5 X (x41 — xi—1)pi — 21 + mass X 0.5 X (pi+1 — pi—1)xi — 0.5 X (Bi+1 — Bi—1)

A1g =y2 — 22
where

y1 =y1 +mass x 0.5 X (x;41 — xi—1)p;
z1 =21 + mass X 0.5 X (pit1 — pi—1)x;
Y2 =y2 + mass x 0.5 X (jp1 — 2i—1)(Pit1 — 2 X i + Pi—1)

29 =29 + mass X 0.5 X (pit1 — pi—1)(@ix1 —2 X z; + x4-1)

and (; is a constant in exp (—SH (z,p)) often called the temperature, here propogated along with

the momenta.

The mass is a value corresponding to the covariance in K (p; ) when K (p;x) is normal.
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Proofs

We follow the general layout of in Probabilistic Path Hamiltonian Monte Carlo.
Proposition B.1. The Hamiltonian H is not conserved along any system dynamics.

Proof. Clearly the Hamiltonian is not preserved as it will depend on the choice of C. It is true
that the Hamiltonian is preserved within an orthant. CortHMC preserves the hamiltonian on an

orthant but may change it upon crossing into a new orthant. O
Proposition B.2. The chain generated by CortHMC' is Markov.

Proof. CortHMC is defined by several kernels each of which are Markov, hence the composition
is. O

We now follow the same arguments as outlined in (Dinh et al., |2017). This is because CortHMC
is deeply related to ppHMC and is designed to carry out the same function. We include the full

proof for completion.

Proposition B.3. Lemma 3.4 (Dinh et al., 2017)

For every sequence of topologies w = {’T(O), e T(n“’)} and every set with positive measure B C M,
let B, the set of all (7',q') € B such that (7', ¢') can be reached from (7, ¢ in k CortHMC
steps and such that the sequence of topologies crossed by the topologies crossed by trajectory is w.
Denote by Ip,, the set of all sequences of initial momenta for each CortHMC step {p(o), ...,p(k)}
that make such a path possible.

Then, if u(Ipy) =0, then p(B,) = 0.

Proof. For a path X of k leapfrog steps and n boundary steps denote by
Fy = {(5(0)’ T(O))’ - (g(n+k),7(n+k))}
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the states which are visited.

If the sequence of topologies crossed by X' has been prespecified then the whole path is deterministic

0)‘

based on the initial momenta p(®). Hence the functions:

$iwp) = (€', 7")  Vp€lpy

are well-defined. Show that ¢, is Lipschitz. i.e. given p and p’ d(¢1.,(p), $1,.(p)) < Cd(p,p’).
d is defined as the Euclidean metric on the cotangent space and d is defined as the Euclidean
metric defined by Euclidean distance where two orthants are joined via the negative plane as the
algorithm cannot explore further than an orthant in a single jump, this is a well-defined metric.

There are two cases:

1. If topology does not alter, ¢1 o, (p) is the result of the leapfrog algorithm which from standard
results about HMC on Euclidean spaces results in ¢; ,,(p) being Lipschitz.

2. If topology does alter ¢;.,(p) is a composition of the leapfrog algorithm on Euclidean
spaces, a linear map and a projection. Linear maps and projections are Lipschitz ¢ ., (p) is

Lipschitz.

AS ¢nw(p) = @14 - ... - P14 and compositions of finite Lipschitz functions are Lipschitz, ¢, is
—_———
n times
Lipschitz on Ip,. As Lipschitz functions preserve zero measure if 1(Ip ) = 0 then pu(B) =0. O

Theorem B.1. Theorem 3.1 (Dinh et all, |2017)
The Markov chain generated by CortHMC' is ergodic.

Proof. By exactly the same arguments as in (Dinh et all 2017) the chain is irreducible. It
preserves m due to proposition 6.3. So all that is required is aperiodicity. Suppose it is periodic
with period d, then M must be able to be partitioned into at most d orbits and at least two.
i.e. k disjoint subsets X1, ..., Xi of M with positive measure. Around any point € M there is
a neighbourhood U, reachable from x by Hamiltonian dynamics. Hence u(U, N X;) = 0 as U,

exists for almost every z € X1, u(X1) = 0 a contradiction. O

B.0.1 Theorem 6.4

Proof. The likelihood is defined as:

Lxie,r,0,0) = [[DPE) Y x(@) | [T |D Peywlllu,v0), 0} Lulxily, £, 7,0, )

i=1 kevy €A u<voy |yeA
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The process of travelling across codimension 1 strata involves a particular ¢(u,v) — 0 followed
by a nearest neighbour interchange and an increase in the length of a new edge. First we show
that the process is continuous upto and including ¢(u,v) = 0 and that the same is true for all
derivatives with respect to £(u,v). We then demonstrate that a nearest neighbour interchange
does not alter the likelihood, nor the derivative and finally by the initial argument the likelihood

and derivatives are continuous in any other orthant.

Since we can specify the root of the tree let us take vy to be the root and ug to be a vertex
connected with vg such that e(ug, vg) is the edge via which we are going to cross the codimension 1
boundary and £(ug, vo) is the length of that edge. Apart from P, ;.. {¢(uo,v0), 0} everything else is
independent of the edge e(ug, vo) and so constant with respect to £(ug, vg) and the derivatives are 0
with respect to £(ug, vg). In subsection 2.1.2] we show that Py .k {¢(uo,v0),0} = Pyexp(Q€(ug, vo))
for some Py constant and () a rate matrix specified by 6, we know multiplying by a constant
is continuous and exp is a continuous function, since compositions of continuous functions are
continuous so is Py exp(Q«(ug,vp)). If we take the nth derivative of Py .1 {f(uo,v0), 0} we get

Py exp(Ql(ug,v9))Q". By the same reasoning the nth derivative on an orthant is continuous.

lifx=y
Oifx #y

This means that the likelihood can be expressed as follows

When £(u,vg) = 0, Py yr{l(u,v0),0} =

n uFuQ
ﬁ(XM,T,@,C!) = HZPU{:) Zz(x) H ZPx,y;k{g(u71}0)70}£u(Xi|y>£) 7—707&)
i=1 ke zeA u<vg |ycA

X [Px,r;k{g(UO) UO)) Q}LUU (X2|x7 E? T, 97 Oé)]

A nearest neighbour interchange across e(ug, vg) consists of a swap of two subtrees, one connected
to a child v' of vy, the other to a child u' of ug so that v’ is a child of ug with length
(v ug) = £(v',v9) and v is a child of vy with length £(u',v9) = £(u’,up) but nothing else
is altered in any lower subtrees. We now write the likelihood of the same tree having experienced

a nearest neighbour interchange.

n uFug,uFtv’
,C(XM,T,@,CM) :HZP(/C) Zz(x) H ZPx,y;k{g(uvUO)’G}EU(XA%& T>97a)
i=1 key zcA u<voUu/ |yeA
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wu/
X |: H ZPx,y;k{f(wvuO)ye}Luo,w(Xi’yv&Tv Q’O‘)]]
yeA

w=<uoUv’

n uFug,uFv’
=TID P Y w@) | I] | DL Pewsllu.v0), 0} Lulxily, £, 7,0, )
i=1key zeA u<voUu/ |yeA

X Z ngyy;k{é(?}/, U(]), Q}EUO,U' (X”L‘?ﬁ f’ T, 07 a)]

_yEA

X

-w7ﬁu’
H [Z P-'Ev%k{g(w7 U’O)? H}EUO,w(Xi ‘y7 67 T, 97 Oé)] ]

_w<uo yeA

uFuQ
=[ID> B> n(x) { I 1> Peytllu,v), 0} Lulxily. 67,0, a>] }

i=1 key zeA u<voUu’ | yeA
w#u’

X H ZPx,y;k{g(waUO)ye}Euo,w(Xi‘yaEaTa9>a)
w=<ug |[yeA

u<voUu’ |yeA

Z Px,y;k{g(qh UO)? e}ﬁu(Xi’ya 0, k)] ]

uFug
ZMMZZ(“J){ I1

X

Z Px:?ﬁk{g(ul? 'l)()), e}ﬁvo,u’ (X’L‘y7 67 T, 97 a)]

_yEA

[wsu!
< | 11 [ZPm,y;k{e(muo>,9}£u0,w(xiy,eme,oo”

_w<uo yeA

Z Pz,y;k{g(l% UO)? e}ﬁu(xlwa 4,70, Oé)] :|

yeA

IS Y x@) { il

i=1 kevy zeA u<voUu/

X H ZP%y%k{g(w?uo)?e}ﬁuo,w(xi‘ya577_797a) .
w=<uog |[yeA
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This demonstrates that the likelihood £(X6) is continuous, to show that it is smooth we take
the derivative of the likelihood with respect to an edge. In subsection we show that the

derivative of the likelihood is

u' #u
n | D PE)Y w@) | T D2 Peynd €@, )} uw (xily, €,7,6, )
key zeA u'<v |yeA
=1 XY kQPy i {L(u, v) Y Lu(xily, €, 7, 0, )

yeA

It is not hard to see that further derivatives involve higher powers of k and ). We now need
to show that this derivative agrees when crossing codimension 1 strata, which is equivalent to
saying the limit from one orthant is the same as from the other and so the derivative exists. We

apply the same argument as used for the likelihood.

n uFug,uFv’
;C(XM,T,Q,O&) :Hzp(k) Z E(iﬁ) H Z Pl}yﬂf{g(u7UO)?H}EU(XZ"@/7£> 7—79’05>
i=1 ke reA u<voUu’ |yeA

w#u’
X kQ H Z Px,y;k{g(w7uO)ae}‘Cuo,w(Xi‘%& T,@,OJ)

w=<ugUv’ | yeA

n uFug,uFtv’
=[ID R > (@) | II | D° Peydtlu,v0),03Lulxily. £, 7,6, a)
i=1 key zeA u<voUu’ |yeA

kQ X Z Px,y;k{g(vla ’LLU), H}Euo,v’ (Xi|ya E, T, (9, a)

yeA
w#u’
X H Z PI,y;k{K(wﬁu0)79}£u0,w(><i‘y>€77>97a)
w<ug [yeA
n uFuQ
= Zp(k) Z E(.%') H ZPx,y;k{g(t%vO)ae}ﬁu(Xi’y7£77707a>
i=1 kevy ze A u<voUu’ | yeA
wHu’
X kQ H Z Px,y;k{g(w7u0)vQ}Luo,w(Xﬂy,fa T,G,O[)
w=<ug |yeA
n uFuQ
:HZPU{:) Z E(IL’) H ZPﬂ?,yﬂﬂ{g(u?vo)ae}ﬁu(Xi“/aE?Taeva)
i=1 key reA u<voUu’ | yeA
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X kQ Z Px,y;k{g(ulv 'UO)v G}Evo,u’(Xi“/a E» T, 07 CM)

yeA
w#u’
X H ZPx7y;k{€(w7u0)79}£u0,w(Xi‘y7€77797a)
w=<ug |[yeA
n uFug
Z]P)(k) ZZ(QJ) H ZPx,y;k{t(uvvo)aG}EU(Xi‘y7€7T79aa)
i=1 kevy zeA u<voUu’ |yeA
<kQ | T |2 Peynftlw,uo),0}Lugu(xily, £, 7,6, )
w=<ug |yeA

It should be clear that the same argument holds for higher order derivatives. This therefore shows

that the likelihood is smooth with respect to edge lengths and the nearest neighbour substitution

algorithm when applied to edges of zero length. O
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Literature Review

Here we outline definitions and techniques that the reader may be interested in but would break

the immersion for someone who already knows the papers referenced.

C.0.1 |Yang and Rannalal (1997)

Definition (Cophenetic Matrix Representation of a tree). The cophenetic matrix representation
of a tree is a symmetric matrix A = {a;;} such that a;; = d(n;,n;) the time to coalesce / total
edge length between each extant pair. As such each matrix is unique up to ordering of extant

vertices.

Yang and Rannala) (1997) uses a transition probability of

% no topological change

1-8
2(s—2)h;

qij = )
topological change

h; = distinct labelled histories s =number of extant species [ = model parameter

There are s!(s —1)!/25~! different labelled histories, that is s — 1 speciation events occur splitting

up s extant species.

C.0.2 |Altekar et al.| (2004)

(MC)? transitions between the different temperatures by employing a Metropolis-Hastings
acceptance probability,

7(£)q(zi-1, 2)
m(2i-1)q(Z,; zi-1)

a =min |1,
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A chain heated by temperature S uses acceptance probability:

m(2)%q(zi-1, 2) ]

(zi—1)Pq(2, zi—1)

—min |1
ag 1[1&11&[,7r

In Metropolis-Coupled MCMC then proposes to swap the states of two chains with probability:

W(Zﬁl)ﬁ%(%)&]

— min |1
aswap $1.,6, mm[ " m(2p,)01m(2p,)P

where 31 < B2 and zg is the state sampled from the MCMC process with temperature (3.

C.0.3 Beast and MrBayes (MC)3

Beast and MrBayes use temperature scalars §; = m and only propose swapping states
i—1
number of chains
cdf is the cumulative density function of the beta distribution with v = 1. Best also implements

between f3; and 3;+1. Beast also can use temperature scalar 5; = 1 — cdf where

an adaptive method for choosing an updating ¢ after a burn in period

Pglobal — Ptarget
number of exchanges

Otpew = Max 0, Oteurrent +

where pgiopar is the average acceptance probability and piarger is the acceptance probability we

want.

C.0.4 Probabilistic Path Hamiltonian Monte Carlo

Probabilistic Path Hamiltonian Monte Carlo employs the Leap-prog algorithm to cross orthants.
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Leap-prog Algorithm

e Input: starting point zg, starting momenta pg; step size € > 0; number of iterations I;
9H (z,p) OH(z,p)
op and —57=.
OH(z,p
e L Piyl =Pi— 3 <9(z )‘(Ziypi)’

2. if FirstUpdate Event(z,p,e) = ()

Zitl = Zi T €yl

otherwise set t = 0.
while FirstUpdate Event(z,p,e —t) # (:

let Z,e,I be the first update event FirstUpdateEvent(z,p,e — t), Z is the
state where an orthant boundary is crossed, e, and I the set of indices where it
crossed. Then:

t=t+e

Sample new topology 7 at random from neighbouring orthants 7 ~ Z.

Pipl = 7Piyl

3. ziy1 =2+ (e—t)pH%

. _ 68H(Z,p)
4. pit1 =Pyl — 270z |(Zi+1,Pi+%)'

e Output: pair (z;, p;) approximately on the flow line starting at zg, po.

C.0.5 PosetSMC

The weighted particle measure is

K
WT,K(') = Ew() = Z wr,késr’k(')
k=1
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where w;.;, the are weighted according to

’Y*(Sr,k)
Vx (grfl,k)Q(grfl,k — Sr,k)

Wy g =
The forest proposal distribution is ¢ and -, is the posterior when extended to forests. The

estimate for the posterior is then:

R K
ﬂ'est(') = ]Eunzf = H Zwr k(ss,«k

PosetSMC and HMC

There are two ways of combining PosetSMC, one is boring the other is more interesting.

Boring PosetSMC HMC

Boring PosetSMC HMC uses a proposal distribution between forests and trees to just use
PosetSMC as a kernel within a HMC scheme.

Interesting PosetSMC HMC

Interesting PosetSMC uses HMC in the construction of ¢. This requires a form of HMC for
forests. For this we include an adaption of COrtHMC for forests.

To conduct HMC on forests we remember that the crossing kernel occurs at every step of
COrtHMC, whenever the flow is contained within an orthant the crossing kernel is the identity

kernel. We replace this identity to conduct HMC on forests and provide an example for clarity.
A tree is a graph and so a collection of vertices and edges. The vertices can be split into
two sets internal and external, for a phylogenetic tree these represent extinct and extant species.
In order to conduct phylogenetic inference on a forest with a set number of extant leaves we need

a way of connecting trees within the forest and a way of splitting trees.

For every internal edge of length [, in the tree propose cutting the edge with probability:
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so that low edge lengths are not cut and large edge lengths have a greater chance. This gives a

probability of:

~
o ~—

e l
I (#l I 1_(#[
212 le\2)2
eeT:e 1S cut (1+(3)%) ecT:e 1S not cut 1+(3)%)

[

For the internal vertices V.3 of degree less than 3 draw a permutation uniformly:
B(o) = |Ves|

Then propose joining v and wu if v follows u in the permutation with probability 1/2 so that the

total probability of joining v and u is
1
P((v,u)lo0) = ;

12 x Vesl! 1
P == 2
(). o) = 5 Vi = Vel = 1)

This gives a total density of

~

(5 & el 1
0 o I oG wao

ecT:e 1S cut ecT:e 1S not cut
‘We do not conduct this kind of inference for three reasons:

1. If COrtHMC performs poorly in comparison with standard MCMC then PosetSMC HMC

will perform poorly in comparison with PosetSMC.
2. It is more complicated.

3. Slight tuning error has the potential to radically reduce the efficiency of the algorithm.

C.0.6 Variational Bayes

In Variational Bayesian Phylogenetic Inference the total order is such that if clade W includes
clade X then W > X. Ordered by increasing depth and such that clades that are subclades of the
same clade are ordered next to one another. Given this decomposition the SBN tree probability
is:
pn(T) = p(Sr=s) ][] p(Si = 8ilSs(i) = So())
N

T -~
prob. of root base'” prob. of next clade base given parent clade base

We can see the similarities to the likelihood in section 2.51
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Other HMC Methods

D.1 Hamiltonian Monte Carlo without Detailed Balance

Hamiltonian Monte Carlo without Detailed Balance is carried out through an algorithm called
Look Ahead HMC developed by |Sohl-Dickstein et al.| (2014). The aim of Look Ahead HMC is to
avoid efficiency loss caused by forward and reverse transitions happening with equal probability.
In (Sohl-Dickstein et al., [2014])) it is shown that this can provide moderately improved mixing.
It has similar ideas to NUTS. It works by first transitioning to a new state via the leapfrog
integrator, applying between 1 and K times with set probability, or flip the momenta. Finally
corrupt the momentum with noise. While |Sohl-Dickstein et al.| (2014]) demonstrates that this
algorithm will target the correct distribution. We can think of this algorithm as being a chained
form of NUTS with the turning criterion being K leapfrog iterations. It requires a lot more
evaluations of the likelihood than standard HMC and would add extra factors muddying the
water as to the effectiveness of HMC. As it would likely not provide any significant gains we

decided that it was not to be explored during this project.

D.2 Kernel Hamiltonian Monte Carlo

Kernel Hamiltonian Monte Carlo (KMC) seeks to adapt HMC to situations where no derivative
of the likelihood exists. Similar to Shadow HMC it does this by replacing the Hamiltonian
with an approximation. [Strathmann et al.| (2015) does this in two ways that they call lite and finite.

Letting H be a reproducing kernel Hilbert space on M. A Hibert space is a reproducing

kernel Hilbert space if the evaluation functional L, is a bounded operator i.e. for any point x
[Lo(f € H) < M|[f]|n-

158



Appendix D. Other HMC Methods 159

Model 7 (z) with an exponential family model so that:

Cr(x) ~ exp ((f, k(z,))n — A(f)) -

The function k is a unique function that is symmetric positive definite and has the property
(f,k(x,-))2 = f(x). The function A(f) = log [, exp ({f,k(x,-))3)dz. This family is dense in

the space of continuous densities on compact domains with respect to total variation.

This leads to the problem of constructing suitable f. This is done from the data. Both

approaches lite and finite use score matching.

In score-matching the aim is to construct some 7(z, f) such that

1

J(f)=5 /M m(2)[|Alog (7 (x, f)) — Alog((x))|[3dz.

Given samples € D this can be computed without 7 by

. 4 1910 7(x, 0log(7(x,
- L T3 [Fend) ] (Ghsliln )] .

z€D I=1

It is this that enables the derivative of 7 to be avoided.

The lite model takes a solution in the form of the span ({k(2;, )} ;) so that f(z) = Y- | cik(zi, x)
where «; are obtained by minimising (1). [Strathmann et al.| (2015) show that this can be done
by taking ay = —%(C — AI)~'b where

[DCBLK - KDIz][KDCCl - DCEZK}

d d
2
b="> j(a(Ksl + D, K1— 2D, K,) —Kl) C =
=1 =1

!
where s; is the entry wise product of x; with itself and D, is a diagonal matrix composed of x,

diag(z).

The finite model attempts to fit a finite dimensional model. To do so [Strathmann et al.
(2015) define an approximate feature space H,, = R™ and define ¢, to be the embedding of
r € M in H,, when M = R?. |Strathmann et al.| (2015) then assume the model can take the form

f(x) =0, ¢:)H,, =0 ¢,. The function f(x) is then required to minimise the score function for
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given data. Strathmann et al. (2015)) prove that this is the case when 0y = (C' — A\I)~'b where:

1 8, L~ 060, 065,
P B B P D) Y

t
i=1 i=1 [=1

KMC in both forms calculates this approximation at each iteration and then proceeds by standard
HMC using this approximation. We do not use KHMC as we have access to an analytic form
of the derivative. We include it here as it is a possible solution to a problem that arises later.
Experimentally it appears to carry over the explorative properties of HMC as demonstrated on a

synthetic example (Strathmann et al., [2015)).

D.3 Shadow HMC

Shadow HMC developed by [Izaguirre and Hampton (2004) is a technique that attempts to
increase the acceptance rate of HMC by using high order approximations to the Hamiltonian. It is
primarily done for an ensemble of particles. Shadow HMC requires a reweighting at the end of the
process. It works by constructing H(x, p) = max(H (z,p), Hpa)(z,p) — ¢) where Hyy is a Shadow
Hamiltonian and c is an arbitrary constant. Shadow HMC proposes momenta p ~ K (p;z) and
accepts it with probability min(1, eXpe();Ig_[zl’fI]((iﬁ )))_ 9

until a proposed p is accepted. A new position an momenta is then proposed based on the

), but if p is rejected the process is repeated

accepted momenta and an integrator that integrates flows of Hjg;). This point is accepted with

probability min(1, 77;(&’2 ;). Once a sequence is obtained it is reweighted by —Z?=§£A(Si’p ) For
, i=1 Wi
. N . - exp(=H((x4,p4))
proper canonical distributions w; = =)

We do not use Shadow HMC as we have the derivative, are not operating on an ensemble

and still requires a large number of derivative calculations in computing x;11, x; and x;_1.

D.4 Generalised HMC

Generalised HMC is another method used primarily in biomolecular simulations and therefore on
an ensemble of particles. It attempts to maintain momenta to only partially refresh momenta
at each step of the Hamiltonian Monte Carlo algorithm. This is motivated by the fact that the
behaviour local to the sampled point should remain consistent. In (Elena Akhmatskayaa, 2008])
they find that they must minimise the rejection rate and encounter Zitterbewegung and resort to
the use of a shadow Hamiltonian. While interesting, we do not outline the method further as we

have already explained above we it would be impractical for our purposes. The full method can
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be found in (Elena Akhmatskayaa), 2008). It may be fruitful to combine GHMC with Windowed

HMC but we have not done this nor do we outline the method.

D.5 Constrained HMC

HMC occurs on a manifold. Often it is necessary to have boundaries on the manifold to constrain
the state space. Constrained HMC is a method for doing this. There are several methods
developed but most are similar in design. Here we go over the method developed by Michael
Betancourt in (Betancourt) 2011) which is a generalisation of the method of Radford Neal in
(Neal, (1994)).

D.5.1 The method of |Neal (1994)

Suppose we wish to constrain on R and sample z < u.

Radford Neal alters the potential energy function to achieve constrained HMC

N Oifg<u
U(z) = U(z) + Cy(x,u) where C,(z,u) =

r" (2 — u)" otherwise

This results in the formulation for the Hamiltonian being:

H(z,p) = U(;U)—FK(p;x)—l—Cr(a:,u)-i-

U(x)
2

For leapfrog the only step that needs to be updated is the full step update for position. This is

done by computing

Then checking if z;41 < u if it is, the above is linear C).(z,u) must be zero along the whole path
and x;41 is left unchanged. If not the particle can be envisioned as climbing a hill until p = 0
then rolling down until the position £ = v and p is the negation of the original momenta. This

leads to the following addition to step 2 of algorithm 5.

e Repeat until z;41 < u,
Tit1 =u+ (u— zi11) and Pipl = 7Piyl-

Intuitively the trajectory bounces off the walls given by the dynamics (Neal, [1994).

To generalise to multiple dimensions conduct the one dimensional case in each dimension.
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D.5.2 The method of (Betancourt, 2011
Michael Betancourt adapts this to multiple dimensions and general constraint C'(z) > 0. This is
done by altering the last two steps of algorithm 5 (Betancourt, 2011]).

gy JOH(zp)
1. Tiy1 =T+ € ap ’(:L“i,pi_'_%)

OH (z, .
2. If C(zit1 > 0), pit1 = iyl — 5 8(:13 r) |(Ii+1’pi+%) otherwise

_ VCO(=;
(2) "= et ]

(b) Pip1 =iy —2(piyy 10

OH (x,p
3. Tiy1 =xip1 t€ @(p )

|(wi+1,pi+%)

. _ EaH(x7p)
4. pit1 _pi+§ T 27 oz |(33i+17pi+%)'

This is not quite bouncing off the wall, the particle bounces off a wall parallel to the original wall

but set at x;41 and re-enters the space.
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E.1 Primate Alignment from MrBayes

NEXUS

Data from: Hayasaka, K., T. Gojobori, and S. Horai. 1988. Molecular phylogeny and evolution
of primate mitochondrial DNA. Mol. Biol. Evol. 5:626-644.

12 taxa, 898 columns;
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