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Abstract

In Synthetic biology, researchers can alter the DNA sequence of organisms such

that the behaviour to specific inputs is predictable. Regulatory systems have been

‘hacked’ into doing computation, help with bio-production, aid in personalised

medicine and providing highly specific sensors.

A major bottleneck in current synthetic biology is that models fail to predict

system behaviour reliably, causing recent progress to be reliant on the trial and

error of model-assisted system designs.

One of the reasons for the models to fail is the neglect of Spatial effects. While

this neglect simplifies models, recent experimental data shows localised effects.

This work shows that only the combination of 3D cytosol diffusion and the

1D sliding along the chromosome of transcription factors can explain localised

effects; the modelling transcription factors initial sliding route after formation

reproduces experimental results.

However, one essential assumption for the model described above is the initial

location of a functional transcription factor at the encoding gene. While the

coupled transcription and translation in prokaryotes are experimentally verified

and can lead to the localisation of Transcription Factor proteins, this localisation

must be assumed to be transferred to the active dimer form to reproduce the



Abstract

experiment.

To substantiate this assumption, this work expands the limited field of protein

dimerisation. A new model is introduced to explain the localisation effect with

an extra pathway we call Translation Mediated Dimerisation. Here, the partially

formed transcription factors still undergoing translation are thought to meet and

form a dimer while still constrained to the mRNA on the other end. Even if this

occurs in a minority of events, this can drastically affect non-linear behaviour.

This model allows utilisation of localised effects for the rational design of

system dynamics otherwise unavailable, expanding the possibilities and increasing

the efficiency of synthetic biology.
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Chapter 1

Introduction

Organisms without a central nervous system seem simple; give a plant some water

and sunlight, and it will grow. Bacteria look even more simple, as they appear

only to need a carbon source to metabolise. While this predictable behaviour

is apparently simple, these organisms thrive in a large range of conditions due

to evolution over millions of years, which has led to complex adapting networks

adjusting pathways depending on their environment. Over the last two decades,

research has developed an understanding of these networks and the relation with

the chromosome. Pathways have been drawn out and patterns of genes analysed,

incrementally leading to the creation of models about regulation. While checking

these models and creating tools for DNA adaptation, a new field arose: synthetic

biology. This field alters the DNA sequence to engineer desired dynamics.

However, the networks that are altered are such complex systems that we

currently need numerous (over)simplifications to begin to apprehend pathway

dynamics and predict behaviour. It is good practice to revisit steps where sim-

plification is undertaken and analyse what effect these assumptions have.
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1. INTRODUCTION

1.1 Aims and problem definition

In previous works, it is seen that in bacteria, the location of regulatory genes

relative to their target effect system dynamics. Moreover, low distances appear

to arise through evolutionary pressure. The central problem in this thesis reads

as follows:

While empirical observations in prokaryotes show that the spatial placement

of a regulatory gene relative to its target affects its regulatory efficiency, standard

modelling techniques do not account for these spatial characteristics. Therefore,

standard implementations of synthetic networks are not as reliable as they could

be.

In this thesis, I research this problem by introducing mathematical models

describing the spatial dynamics of the gene regulatory systems. This work is

split into two related mathematical models with a different focus.

• Using the first model, we can answer the following questions to get closer

to solving the problem:

What is the reason that gene location is correlated in procaryotes, where

eucaryotes do not show similar such effects? What drives this difference

between these groups? How does gene separation affect gene regulatory

systems? What is the relation between the amount of gene separation and

the advantage for procaryotes? Finally, if gene separation alters system

dynamics, can we use gene separation as a rational design parameter?

• The second model mostly solves a hurdle in the first model:

How can transcription factors reach their active state while remaining at
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their encoding gene?

After answering that I dive into:

How Translation Mediated Dimerisation affect non-linear systems? And

again, if Translation Mediated Dimerisation alters system dynamics, can

we influence it?

1.2 Thesis Outline

• Chapter 2 defines the field of synthetic biology and the importance of Tran-

scription factors. Also, it introduces the modelling frameworks that will be

used throughout the work.

• Chapter 3 introduces a spatial expression model for synthetic biology net-

works. It, first of all, shows how traditional modelling using partial differ-

ential equations can not capture in-vivo expression dynamics since there is

a lack of modelling specifics and the time scales of different processes are

non-comparable. Next, to account for this lack of modelling specifics in

traditional modelling, the new model accounts for the spatial dynamics in

a special way. The model is an ordinary system of differential equations;

however, it differentiates between local Transcription factors that search

along the DNA strand after formation and global Transcription factors that

unbind at some point in the search trajectory to account for empirically ob-

served impact of gene insertion location on regulation efficiency. While

the modelling of global Transcription factors does not contain spatial in-

formation, the modelling for local Transcription factors does rely on the
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1. INTRODUCTION

movement relative to the gene encoding it.

• Chapter 4 presents a conceptual model of the dimerisation of Transcription

factors. In this model, Transcription factors can dimerise and fold to their

“active” state while being translated. This enables the local Transcription

factors modelling in Chapter 3, since this would allow the search along

DNA directly after formation. This conceptual model takes into account a

volume where partially formed proteins can interact with another that is

being translated by another ribosome that is nearby. This interaction vol-

ume depends on the distance between ribosomes and the length of partially

formed proteins.

• Chapter 5 summarises findings and contains final remarks

1.3 Summary of outputs

Portions of the work within this thesis have been documented in the following

publications:

• Stoof, R., Wood, A., & Goñi-Moreno, Á. (2019). A Model for the Spa-

tiotemporal Design of Gene Regulatory Circuits. ACS Synthetic Biology,

8(9), 2007–2016.[87]

• Stoof, R., & Goñi-Moreno, Á. (2020). Modelling co-translational dimeriza-

tion for programmable nonlinearity in synthetic biology. Journal of The

Royal Society Interface, 17(172), 20200561.[86]

• Tas, H., Grozinger, L., Stoof, R., de Lorenzo, V., & Goñi-Moreno, Á. (2021).
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Contextual dependencies expand the re-usability of genetic inverters. Na-

ture Communications, 12(1), 355.[93]

• Grozinger, L., Amos, M., Gorochowski, T. E., Carbonell, P., Oyarzún, D.

A., Stoof, R., . . . Goñi-Moreno, A. (2019). Pathways to cellular supremacy

in biocomputing. Nature Communications, 10(1), 1–11.[44]

• Stoof, R., Grozinger, L., Tas, H., & Goñi-Moreno, Á. (2020). FlowScatt:

enabling volume-independent flow cytometry data by decoupling fluores-

cence from scattering. BioRxiv.[88]

Where Stoof, Grozinger, Tas, and Goñi-Moreno [88] is an application note

being adapted for peer review publication about my software tool FlowScatt.

FlowScatt is available at: https://github.com/rstoof/FlowScatt.

And I made a filtered data-set for Tas et al. [93] available here.
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Chapter 2

Background information

Parts of this background were adapted from our perspective work,[44]

with doi: 10.1038/s41467-019-13232-z.
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The lack of nervous system in organisms forces all “choices” to be hard-coded

in the chromosome. While DNA sequences determine these choices, it is not

immediately apparent how genes are part of decision trees. The central dogma

of biology, see figure 2.1, claims that the flow of genetic information is purely one

directional. DNA is used for transcription of RNA which in turn is generally used

for translation of proteins.

Figure 2.1: The central dogma of molecular biology

An important observation is that the transcription and the translation process

are not independent of the environmental conditions. While the information that

is available can not be influenced by processes downstream, the rate at which

genes are expressed can be influenced.

To maintain homeostasis, cellular pathways often base their expression on

surrounding conditions. These pathways are regulated by proteins that have a

dynamic structure that is altered by a binding to a specific chemical species. The

interaction with a network of gene regulatory components is what allows for the

DNA encoded decision trees to express the desired dynamics.
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2. BACKGROUND INFORMATION

Transcription factors are an essential part of these gene regualatory compo-

nents. They have DNA-binding domains specific to certain sequences and when

transcription factors encounter these sequences, they have a high binding affinity

to them. Upon binding, the transcription factors are split in two catagories based

on the interaction with RNA-polymerase: they can either up-regulate (activators)

or down-regulate (repressor) its binding.

2.1 Synthetic biology

With the ability to alter the chromosome came the ability to make use of these

regulatory components; this enabled the engineering of organisms within the field

of "Synthetic Biology". The field of man-made biology is nothing new; we have

been selecting sheep for their wool, selecting less aggressive wolves to keep as

pets and caused some chickens to grow at a staggering rate. What is new in

"synthetic" biology is the methodology: whereas, for example, the selection of

yeast was made via selection based on phenotypic behaviour, in synthetic biology

the underlying process is modelled. Modelling the pathways enables us to know

which genes to target.

A strength of using synthetic biology is the proteins that organisms make,

specifically the sensory enzymes. The large complexes of amino acids allow an

extensive range of possibilities and structures, organisms make use of a wide

variety of proteins performing specific task(s).

While all proteins require folding to reach their secondary structure, some

highly specific proteins have a binding site. When the binding site is used the

structure changes, along with the interaction with gene regulatory components.

8



These kinds of proteins would also be advantageous to be used as highly sensitive

sensors for the regulation of mechanical/electronical machines. However, the

direct measurement of a structure reformation would be challenging. To make

use of proteins as sensors, researchers need to set up an artificial gene circuit

with behaviour that can be recognised by current measurement techniques. In a

neat example, researchers [84] showed how to alter bacteria such that they can

produce light when they sense the DNT leaking from buried land mines. This

shows the extreme versatility of synthetic biology.

2.2 Nature designs co-localisation

Structural analyses on bacterial cells have helped to clarify this internal com-

plexity, where a non-compartmentalised, but highly organised chromosome is

compacted [23]. Rather than being randomly dispersed throughout the cell, the

chromosome is organised into four large macrodomains and two non-structured

domains [71, 95]. In addition to this, it is further organised into smaller, more

dynamic microdomains [59, 99]. Such chromosomal structure is heavily linked to

genetic function; it has been observed that co-regulated genes are often clustered

and retained in close proximity, not only in terms of base pairs [49] but also

considering the 3D folding of the chromosome [100, 105] .

2.3 Modelling

Mathematical modeling assists the design of synthetic regulatory networks by

providing a detailed mechanistic understanding of biological systems. Models

9



2. BACKGROUND INFORMATION

that can predict the performance of a design are fundamental for synthetic bi-

ology since they minimize iterations along the design-build-test lifecycle. Such

predictability aspects depend crucially on what assumptions (i.e. biological sim-

plifications) the model considers.

2.3.1 ODEs

Differential equations describe how changes in time will happen when the current

state is known (or vice versa, with using temporal changes and a previous state

the current state can be determined). The simplest kind are called ordinary

differential equations. This case omits spatial dimensions, a so-called 0-D system.

A very basic example for biology is the population size of bacteria. In the

simplest scenario bacteria double in a characteristic time (τ2). If the current

population size is Pop

Pop(t+ τ2) = 2Pop(t) (2.1)

If we want to know he population size outside of these points, we will need to

use a differential equation. If we say that for very small time differences (dt)

the population is linear with time, we can say that at each point of time there

exists division chance fraction the population (µ) times this time difference.These

division events lead to an extra part of the population:

dPop(t) = µdtPop(t) (2.2)

10



We can rewrite this to

dPop(t)

dt
= µPop(t) (2.3)

So we know that the derivative of the function Pop(i.e. Pop’(t)) is the fuction

Pop itself times µ. The only functions that show this behaviour are exponential

functions:

Hence,

Pop(t) = Pop(0)eµt (2.4)

From equation 2.1 we know that Pop(τ2) = 2Pop(0), combining this with

equation 2.4:

2Pop(0) = Pop(0)eµτ2 (2.5)

hence,

ln(2) = µτ2 (2.6)

which sets the relationship between the fraction dividing at each time point

and the doubling time.

While less intuitive than a doubling time, from here onwards I will use, for

notation, a typical τ , where τ is τ2
ln(2)

. This is easier to combine with other rates

as well as allows for more compact and aesthetic differential equations, as seen in

2.7:

Pop(t) = Pop(0)e
t
τ = Pop(0)e

ln(2)∗ t
τ2 = Pop(0)eµt (2.7)

While this example shows how non-limited cell populations grow, in biology

11



2. BACKGROUND INFORMATION

we are often interested in how different (chemical) species interact. To model

this in time we can have differential equations that depend on other differential

equations, called a system of differential equations. These systems can capture the

multitude of interactions in biological environments much more accurately than

single differential equations, but are often harder to solve. Luckily, combining

simplifying conditions and the usage of numerical simulations, widens the ability

to observe the model behaviour within a range of system states within a limited

time interval.

A neat example of how a set of differential equations can model real-live

interactions are the Lotka-Voltera system of equations.

An example of a Lotka-Voltera system is if we look the population number

of Hares (prey),H, which are hunted by foxes (predator),F . We can write the

equation for the population of hares as.

dH

dt
= kbH − kd,HH − khHF (2.8)

where

H is the The population of Hares

F is the The population of Foxes

The change in population is dependent on, the first term, a breed rate(kb)

and current population size (H) and, second term, the natural death rate of the

population(kd,H). The interaction with another equation comes in the third term

−khHF , where the amount of caught hares depends on the number of hares,

the number of foxes (F ) and a rate describing how efficiently the foxes hunt

the Hares(kh). This equation can be solved, given a constant number of foxes.

12



However, the Fox population can also change in time:

dF

dt
= khHF − kd,FH (2.9)

In this equation the population of foxes can only grow when the foxes catch hares.

Also these foxes die with natural death rate kd,F .

If we plug in all parameters, we still need the initial population numbers to

fully describe the system. In figure 2.2 the initial number are 20 hares and 10

foxes (at t = 0). Now we can, using the equations from before, calculate the

population numbers for a certain time interval.

10 20 30 40

20

40

60

80

100

120

Hare

Fox

Figure 2.2: Time series simulation of the ODEs describing the predator prey sys-

tem, where for certain parameters and inertial conditions the population numbers

are seen to have periodic solutions.
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2. BACKGROUND INFORMATION

2.3.2 Stochastic simulation

In the fox and hare system described in the previous section, the population

numbers are assumed to be continuous, which in this case is incorrect. To consider

that species are made up by individuals, population numbers change in discrete

steps. A way to still adhere to the chemical master equation is to use the Gillespie

algorithms.

Gillespie [33] shows a very simple computer algorithm based on chemical reac-

tion rates, which is able to simulate these kinds of discrete processes. An example

of a solution to the fox-hare problem as stated above, simulated over time, is given

in figure 2.3.

10 20 30 40

50

100

150

Hare

Fox

Figure 2.3: Gillespie simulation of the preditor prey system. Note that, unlike

the ODE model, here when the fox population drops below 1 it does not recover.

The Gillespie algorithm exists of two steps: first it takes the current numbers

of populations and the differential equations from the previous sections to calcu-

late the rates at which specific reactions fire. It uses the total of these rate to

14



determine the time step it will take. On average however a higher total will lead

to a smaller time step. However, to take into account the stochastic nature of the

reactions, the time step is weighed by a number drawn from a random number

generator. The second step is that it takes another random number to pick which

reaction to fire weighed by the magnitude of their rates.

2.3.3 PDEs

Time

Time

Time

High concentration Low Concentration

Homogenous concentration

Figure 2.4: Schematic of dynamic of 1D diffusion. The second law of thermody-

namic drives the system towards a state with higher entropy. The rate at which

this happens is determined by Fick’s law.

In general, diffusion can be though of as the mixing of two different chemical

species. On the macroscopic scale it is the tendency of a chemical species to

15



2. BACKGROUND INFORMATION

move to a lower concentration. This is described in Fick’s first law:

j(x, t) = −D∆∆∆ρ(x, t) (2.10)

where

j is the The flux of a chemical species

D is the Diffusion constant

∆∆∆ is the divergence operator

ρ is the Chemical species concentration

This equation describes chemical diffusion very well on the large scale, where

one can generally observe the macroscopic properties of chemicals.

On the scale of bacteria, however, this is not always the case. They are so

small that the paths individual molecules take can influence the whole organism.

In the main body of this work, I will use both the empirical macroscopic laws,

such as 2.10, as well as stochastic simulations on the molecular scale.

2.4 Boolean based modelling

A popular approach in synthetic biology is to draw analogies with electronic

engineering, a field that over the decades has developed tools for and an intuition

in engineers. To build computers, in the semiconductor industry, the Turing

complete NAND-gate (only negative when both inputs are negative) is mostly

used. A common goal is to accomplish this gate behaviour in living organisms

as well. There are several such gates currently known to work, albeit at very

specific environmental conditions. These gates consist of a specifically chosen

combination of multiple promotors, one or more expressing a transcription factor

16



regulating the others. For example, an invertor can be made by a regulatable

promoter expressing a repressor repressing a repressible promoter. In such a

case, if the input promotor is in a "High" state, it represses the other promoter

to be in a “Low” state.

Theoretically, one can connect two such gates together and combine the truth

tables to get the new dynamics of the system. Moreover, cells with circuits that

do computing have been theorised and very simple circuits have been successfully

implemented in vivo [19]. However, dynamics arising from such designed circuits

often do not comply to the logic of the combinatorial truth tables.

2.5 Alternative modelling approaches to Synthetic

Biology

While this work will mostly approach synthetic biology with the methods de-

scribed above, alternative approaches are commonly used. In the next section, I

will touch on some of these alternative approaches that might benefit the reader.

2.5.1 Network based modelling

When working with the vast amounts of data obtained with sequencing tech-

niques, network-based modelling can be fairly efficient. Here, results are not

simulated from the ground up, but the model analyses relations between data

points. Network analysis algorithms can cope with vast assays of different ge-

netic components[4]. These components are combined from other species, strains

and along the phylogenetic tree. Often these genes are clustered in sequence

17



2. BACKGROUND INFORMATION

similarity, function, co-evolution and expression pattern to find analogous com-

ponents [3, 83]. These can then iteratively be exchanged to vary the system and

approach desired system dynamics.

2.5.2 Multi-agent simulations

In this work, I use single instances of my models. On the population scale, how-

ever, multiple individuals have to be modelled. A naive solution would be to run

single individual models, like those introduced in this work, multiple times. This

naive approach, however, is unable to capture the interactions between individ-

uals. To capture these interactions, multiple instances (or agents) of the same

model are set up containing coupling terms between each agent [68]. Frequently,

the magnitude of the coupling terms depends on how "close" [46] the individuals

are thought to be. Not only could this be applied to solve multi-cell systems, but

one might implement this to solve systems with multiple plasmids [57], proteins

[43],organelles [18] or other multi-copy components. In short, multi-agent simu-

lation can be a valuable tool to capture the behaviour that arises from coupled

systems.

2.5.3 Stochastic discrete models

Section 2.3.2 refers to the traditional Gillespie algorithm to capture the discrete

steps in molecular chemical reactions. However, this is a slow and relatively

computationally expensive approach. While the Gillespie algorithm guarantees

provide one of the stochastic solutions to the chemical master equation, the num-

ber of computations it needs is linear with the number of reactions. This linear

18



computational cost limits the suitability to concentration trajectories of single

(low expression) chemical species. However, when attempting to capture com-

mon reactions on a large scale, a less expensive method is needed, such as the tau

leaping method [34] or the Next Reaction Method [32]). While the tau leaping

method exceedingly speeds up computation, it compromises by only approach-

ing an exact solution of the chemical master equation. In this thesis, I only use

the simulation on small scales, such that my implementation of the inefficient

Gillespie algorithm suffices. Still, if an exact solution is desired and computation

efficiency is a concern, a superior alternative would be to use the Next Reaction

Method.

2.6 Related work

2.6.1 Empirical spatial transcription factor dynamics

Goñi-Moreno et al. [40] show that there is an influence in expression dynamics,

dependent on where a gene is located in the cell. If the regulation and reg-

ulated genes are both located on the chromosome, it is seen that the genetic

up-regulation is done in a constant and predictable way. If the regulator gene

expression comes form a gene in the plasmid, they see significantly different dy-

namics. The up-regulation in this case is noisy, and varies between the formerly

up-regulation given by placement in the chromosome and base expression. The

hypothesis here is that the spatial location (which was different from the chromo-

some and the plasmid) causes this noise effect. It is also observed that genes that

work together are seen to cluster together [100], possibly because of this effect.
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2. BACKGROUND INFORMATION

For instance, transcription factors are not homogeneously distributed within

the volume of a cell [51], but are sometimes localised around their interacting

DNA components, e.g. their coding gene and cognate promoter [24].

2.6.2 Models for spatial dynamics of transcription factors

The coupled nature of transcription and translation in prokaryotes [54] is theo-

rised to produce locally high distributions of transcription factors near the site of

their expression [55], making co-localisation of transcription factors’ coding genes

and their target promoters a potential evolutionary solution for the tight control

of protein production.

In this scenario, the physical separation of co-regulated genes is revealed as a

key parameter for such expression control. It has been shown, for instance, that

the further away from the transcription factors’ coding gene that the target is

located in the chromosome, the less effective the regulation is [58]. Therefore, the

strength of a regulatory interaction, either repression or induction, may change

with increasing or decreasing this relative distance.

While the field of molecular dynamics is growing quickly in possibilities, it

is mostly the decent of the energy landscape from the primary structure to the

secondary structure (folding), that gets taken into account. This challenge used

to be exceptionally computationally expensive, but is closer to being viable today.

These folding dynamics can explain how the transcription factors are highly spe-

cific for a genetic sequence, and can explain the binding by specific domains. True

molecular dynamics for transcription factors over their whole lifetime, however,

remain a distant prospect.
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A major aspect for the efficiency of a transcription factor is the search for the

target. Winter et al. show that this search is not a simple process, and it cannot

be explained by classical chemistry. Transcription factors are seen to bind to

their target at a rate above the limit for 3D-diffusion limited reaction. The DNA

binding domain in transcription factors catalyses the search for the target gene.

Transcription factors are thought to have two ways of binding to the DNA: one

low energy bond that is non-specific to the underlying sequence, and one high

energy bond with a very specific DNA sequence. It is thought that the low energy

allows lateral movement, guiding the search along the genes.

Some claim that there is no possibility of this behaviour from one gene to

another. Moreover, some experiments do not show the need for co-localisation

[25]. However, experimental results are still inconclusive and contradict each

other. In [106], the authors show a model where transcription factors have a lower

search time for promoters that are physically closer to where the transcription

factor is bound. What is missing however, is how this affects gene circuits. Since

this is the only work describing this effect, I will build on this model in chapter

3 to describe how to use space as a design parameter.
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Chapter 3

Spatial separation as a design

parameter

This chapter is an adaptation of our previously published work, Stoof, Wood, and

Goñi-Moreno [87], where I developed the theory, made the models and ran the

simulations.

Problem definition: It was previously seen that the spatial separation of two

interacting genes affects the dynamics arising from the system. This chapter

attempts to capture this influence in a mathematical model, where I show that 3D

diffusion alone does not give rise to empirically observed outcomes. I introduce a

mathematical model based on facilitated diffusion that is able to reproduce these

experiments.
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When making synthetic constructs, in most cases, sequences are synthesised in

plasmids, these plasmids then are to be transformed into the organisms. While

plasmids are a quick and reusable way to include the desired genes, plasmids

behaviour is different from chromosome inserts in several ways. 1) The copy

number of plasmids causes copy number variation. 2) The antibiotics used to

keep the plasmid in could affect dynamics, and 3) there is a lack of control of

these genes spatial location. This chapter focuses on this third aspect. This

chapter introduces a model that explains the spatial effects of transcription. I

show how the inclusion of genes on the chromosome on a specific location can

improve these insertions reliability.

Despite the small volume of a bacterial cell, it has become increasingly ap-

parent that spatial constraints have significant implications for bacterial function

[89]. There has been a lot of attention for the spatial dynamics of bacteria on

the multi-cellular scale, where bacteria can communicate to form patterns and

allow the formation of so-called bio-films [29, 38, 39, 80]. However, on the single-

cell level, less research is carried out. Even thought back in 2004, when genome

sequencing was in its early days, the importance of spatial constrains and its

implications for bacterial function as already observed [100]. A supporting argu-

ment of the significance of spatial constrains for bacterial function can be found

in nature. Where related genes are more likely to be co-located, not only in base

pairs [49] but also in considering the 3D folding of the chromosome [100, 105].

Traditional assumptions for spatial effects can not explain this co-localisation.
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3. SPATIAL SEPARATION AS A DESIGN PARAMETER

Figure 3.1: Spatiotemporal principles of gene regulation. (A) Diagram of three

chromosomal insertions: one source of transcription factors (green) and two tar-

get regions (purple). One of the target regions is co-located with the source; the

other one is spatially separated. This is indicated by rulers along the different

combinations. (B) A Schematic comparison between homogeneous and spatial

models. While the former assumes that transcription factors are instantly avail-

able to bind, the latter explicitly simulates the travel from source to target. (C)

Transcription factor dynamics through facilitated diffusion: 1D sliding, hopping,

non-specific un-/binding and 3D diffusion. The model adds these dynamics to

promoter activity and gene expression events.
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Breaking with traditional assumptions of homogeneous distribution compli-

cates the models describing dynamics. To accurately describe the physiological

distribution of Transcription Factors involves explicitly modelling 1D diffusion

(hopping and sliding) along the chromosome, non-specific interactions (i.e. non-

target DNA regions) and 3D diffusion across the cytoplasm [6].

Figure 3.1 shows the spatio-temporal principles that govern gene regulation

within the model. Fundamental to this approach is the time it takes for a tran-

scription factor to go from its encoding gene, where it is expressed, to its cognate

promoter, where the transcription factor binds. Therefore, these two regions are

referred to as the source and the target respectively. Since transcription factors

must actively reach the target, the distance between them (i.e. base-pairs sepa-

ration in the chromosome) is the key parameter that the model revolves around

(Figure 3.1A). This implies that transcription factors will not be automatically

available to bind to the target after expression, which is the customary view of

what I refer to as homogeneous models [36, 37] (Figure 3.1B). Importantly, such

homogeneous models are inconsistent with having intra-cellular spatial dynamics.

Specifically, the basic dynamics of transcription factors searching for the target

need to be considered, as summarised in Figure 3.1C: sliding and hopping (com-

bined in our model), 3D diffusion (or global search as it is explained next) and

non-specific (un)binding to DNA regions that are not the target.

3.1 TF Diffusion modelling, 3D search

As stated before, cells are generally modelled assuming homogeneously mixed

contents. This assumption is based on the time constant needed for spatial effects.
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3. SPATIAL SEPARATION AS A DESIGN PARAMETER

The reasoning behind this assumption of homogeneously mixing is as follows:

Degradation of proteins is typically in the order of hours. In comparison, the

typical time, τ , it takes to spread a typical distance of ∆x

τ ∝ (∆x)2

2D
. (3.1)

with some small proportionality constant and diffusion constant D. With a rule

of thumb diffusion coefficient of 100µm
2

s
[75] for proteins in water, spatial effects

in E.Coli for example decay in ∼1s. Since the cytoplasm consists of around 80%

water, this seems like a reasonable value for the diffusion constant. This would

indicate that since spatial effects are much shorter that protein degradation, it

can therefore be neglected. However, the diffusion of proteins in cells is more

complex in cells than in water, affecting the diffusion constant. This increase of

the diffusion constant leads to an increasing the time introduce by the spatial

effect and therefore spatial effect cannot be neglected.

In this section, I show how standard modelling of diffusion within the cell

cannot explain the observed localisation effects as described in 2.2.

3.1.1 Case study: Spatial separation of a two-gene oscilla-

tor

As shown in section 2.3.3 it is relatively easy to set up a system of partial differ-

ential equations to model spatial effects. A way to study how a method behaves

is to look at it in an oscillatory system. In physics, we often use the harmonic

oscillator because of its simplicity. In synthetic biology, there is a similar system,

the two-gene oscillator[45]. Instead of a phase shift between speed and position,
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due to the exchange of potential and kinetic energy leading to, in the two-gene

oscillator there is a phase shift in the first and second genes expression due to the

repression of the first and the activation of the second gene.

P1

P2

(a) Schematic two gene os-

cillator

P1 P2

(b) Spatial two gene oscillator

Figure 3.2: (a): Schematic of the two gene oscillator. The “activator” gene with

promoter P1 expresses a transcription factor wich increases the expression of P2.

The “repressor” gene with promoter P2 expresses a transcription factor that lowers

the expression of P1. This leads to an ocillaroty interaction between the genes.

(b): The spatial seperation between two genes in the two-gene-oscilator, here in

opposite poles of a coli bacterium shaped volume. This is a 2D representation,

however full 3D simulations were conducted to get figure 3.3

.

This leads to a simple set of partial differential equations where:

βtransl is the Rate of transcription

βtransc is the Rate of translation

kunr is the Rate of specific unbinding

kbind is the Binding rate

kDm is the mrna degradation rate
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3. SPATIAL SEPARATION AS A DESIGN PARAMETER

kDp is the Protein degradation rate

D is the Diffusion constant

P is the Concentration field of the non-inhibited promoters

iP is the Concentration field of the inhibited promoters

m is the mRNA concentration field

TF is the TF field

and

∇∇∇2 is the Laplace operator

The activator promoter( P1) is repressed to an inactive state(iP1) by a repres-

sor dimer:

∂tP1(t) = kunriP1(t) - kbindTF2(t)2P1(t) (3.2)

∂tiP1(t) = -kunriP1(t) + kbindTF2(t)2P1(t) (3.3)

The inactive repressor promoter( iP2) is induced to an active state(P2) by a

activator dimer:

∂tP2(t) = kbindTF1(t)iP2(t) - kunrP2(t) (3.4)

∂tiP2(t) = -kbindTF1(t)2iP2(t) + kunrP2(t) (3.5)

mRNA is transcribed from the genes when the promoter is in the active state.
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It is modelled to diffuse through the cell and decay over rime.

∂tm1(t) = βtranslP1(t)−D∇∇∇2m1(t) -kDmm1(t) (3.6)

∂tm2(t) = βtranslP2(t)−D∇∇∇2m2(t) -kDmm2(t) (3.7)

And finally the transcription factors are created from the mRNA concentra-

tions. This is also modelled to diffuse through the cell and decay over rime.

∂tTF1(t) = βtranscm1(t)−D∇∇∇2TF1(t) -kDpTF1(t) (3.8)

∂tTF2(t) = βtranscm2(t)−D∇∇∇2TF2(t) -kDpTF2(t) (3.9)

In short, the one gene indirectly inhibits the other gene which in its place

induces the original gene. Since the system is non-linear, it is not easily solvable.

The specialised PDE solver FEniCS can solve this system using the Finite Ele-

ment Method (or FEM). I implement Neumann boundary conditions and trivial

initial conditions except for iP1 and P2, which have unit probability divided over

two spheres of radius 0.09 at x=1 at -1 respectively to get figure 3.3.

In figure 3.3, the limit cycle is determined by running a time series simulation

of the ODEs given until a periodic solution arrives. Since the diffusion value is not

known, it is varied in a big range, from 10−3−101 µm2

s
. In the limit where diffusion

is fast, the limit cycle arrives as described by a similar well stirred solution, as

seen in the regime between 100 − 101 µm2

s
. In the limit where the diffusion is

slow, the Transcription Factors degrade before being able to arrive at the other
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3. SPATIAL SEPARATION AS A DESIGN PARAMETER

gene, thus not allowing up or down regulation. This is seen in the case around

10−3 µm2

s
where there is barely any down regulation of gene one and barely any

up regulation of gene 2.

Figure 3.3: The oscillations of the two-gene oscillator using non-physiological

parameters for different diffusion rates. Each coloured line is a time-series sim-

ulation after reaching a periodic solution. It is seen that the diffusion is only

limiting the oscillation up to a value of around 0.1µm2/s.

While this model shows that the dynamics of the system are dependent on

the 3D diffusion of transcription factors, the increase of diffusion constant does

only effect dynamics until a point of 0.1µm2/s. Since physiological diffusion is

expected to be higher than this value, I conclude that the 3D spatial model in

this example does not add more information than a well stirred model would. To

account for spatial effects another model is needed. This is similar to what I find
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using the same technique on the repressilator.

3.1.2 Case study: 3D diffusion-only spatial repressilator

λ clTetr

LacI

(a) Schematic repressilator

LacI λclTetR

(b) Spatial repressilator

Figure 3.4: (a): Schematic representation of the cyclic repression of the repressi-

lator circuit. This circuit exists of three genes, all of which express transcription

factors repressing the promoter of one of the other two genes. The gene encod-

ing the Tet repressor protein starts with the cI promoter and expresses the Tet

repressor. The Tet repressor proteins down-regulate the expresses Lac inhibitor

protein, since this gene is altered such that it starts with the Tet promoter. The

same technique is used such that the Lac inhibitor proteins repress the gene that

expresses the Lambda phage repressors. Since the Lambda phage repressors bind

to the cI promoter already mentioned this causes a circle of negative feedback.

(b): 2D schematic of the 3D spatial simulations of the repressilator. The cir-

cuit is placed in a rod shaped volume representing a coli-type bacterium with

the two promoters expressing LacI and Lambda phage at opposite poles and the

TetR promoter in the middle. The 2D diffusion trajectories represent the 3D

simulations resulting in quantised spatial simulation as shown in Figure 3.5
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3. SPATIAL SEPARATION AS A DESIGN PARAMETER

The repressilator is a genetic design in which three different parts circularly re-

press each other, i.e. the first promoter encodes a transcription factor that re-

presses the second, the second represses the third and the third represses the first.

This leads to sustainable periodic oscillations between the three species with a

2π
3
phase difference. This system was first shown in [30] and was a starting point

for synthetic biology. Although the system expresses a sustainable oscillation

and some degree of periodicity, there have been genetic designs improving the

amplitude of oscillation [76] and an increase of periodicity. What exactly causes

the deviation in the original system is not known.
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Spatial, Continuous

Well stirred, Quantised

Spatial, Quantised

Well stirred, Continuous

Figure 3.5: Comparison of different simulation methods of the spatial repressilator

with an artificially low diffusion constant. The classical well stirred simulation

techniques do not allow for (intricate) spatial information as described in Figure

3.4. This results in no differentiation of expression dynamics except for initial

conditions for the continuous simulation and fluctuations in expression dynamics

in the quantised system to be explained by chance. However for the spatial

continuous simulation, since the diffusion distance of the λcl transcription factors

to repress the TerR gene its expression is shorter and to have a lower magnitude.

Similar dynamics were found in quantised spatial simulations (Moving simulation

available here). However due to the random nature of this simulation it is harder

to discern.

Let us look at an extreme example of a spatial repressilator design. We place

two parts of the repressilator in the opposite poles of an E.Coli cell (∼ 2µm) and
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3. SPATIAL SEPARATION AS A DESIGN PARAMETER

(a) Simulation set-up

Spatial other pole

Spatial middle cell

Well stirred

20 40 60 80 100 120 140
Time[s]

0.1

0.2

0.3

0.4

Concentration TF[AU]
Spatial effects cause a maximum 20s delay

(b) Time series simulation at different loca-

tions compared to the well stirred model.

Figure 3.6: Simulation showing how localised effects due to 3D diffusion are

transient. When using physiological values, see Table in Apendix I

one part in the middle. We set up a partial differential equations system in an

analogous manner as shown for the two-gene-oscillator shown above. We know

that the transcription factors are created at the spatially defined parts of the cell

(we assume fast degradation of RNA). The only parts that are now important

are diffusion towards the gene and the degradation of the transcription factor. If

we model this process using a high parameter for degradation and a low value

for the diffusion constant, we should see the maximal effect of 3D-localisation.

However, even in this scenario, a homogeneous mixture is reached after only a

short delay.

This delay of around 20 seconds for the 2µm as seen in Figure 3.6b is short

relative to the lower bound of the protein degradation time. If we put these delay

times in a delay differential equation, we see no significant effect.

To conclude, the 3D diffusion of transcription factors is likely on a much

shorter timescale than other system dynamics. Therefore the seen spatial effects

are most likely caused by a different mechanism.
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3.2 Transcription Factor Diffusion modelling; Fa-

cilitated diffusion

To explain spatial effects in bacteria, I investigate another aspect of transcrip-

tion displacement: the 1D diffusion along the chromosome. While it is widely

accepted that the 1D diffusion is needed to explain the incredible efficiency of

the transcription factor search, how this affects the spatial distribution remains

poorly understood [16, 103, 104]. This transcription factor distribution is known

to be higher at the location of both target and source genes [24, 51]. These lo-

calised distribution effects have yet to be described with mathematical models. I

developed on previous models of facilitated diffusion dynamics [65, 106], that add

the space-dependent 1D local search [7] to the space-independent 3D diffusion of

molecules [7].

Transcription factors are known to have a DNA binding domain. This part

of the protein is highly developed to have a structure that is specific in binding

to the target gene combination; the binding energy causes the unbinding rate to

be very low. Moreover, these binding domains are known to have non-specific

binding energies as well. This causes the Transcription factors to (temporarily)

remain bound to the chromosome with the DNA binding domain. While the

domain is radially bound to the chromosome, it is able to move along the length

of the chromosome.

This mechanism of movement along the chromosome is called “sliding” and,

along with short sections of 3D-diffusion (hopping), this is thought to affect how

a Transcription factor finds its target significantly. The reduced search-space is

thought to catalyse the search by orders of magnitude, albeit only in combina-
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tion with 3D diffusion[104]. The distribution of transcription factors along the

chromosome is therefore central to the model.

To analyse this distribution, I examine the location of transcription factors

during local search upon their generation from the source. Figure 3.8 records

the trajectories of individual regulator molecules along the chromosome while

performing 1D diffusion (sliding + hopping) until they unbind into the cytosol.

Given the coupling of transcription and translation in bacteria [11, 42, 64], it is

safe to assume that newly generated regulators start their search from (nearby)

the source coding region (0bp in the graph). The visualisation of 1D movement

leads to two conclusions. First of all, the timescale for the local search is of the

order of seconds, with many transcription factors spending less than a second

bound to the local chromosome. The second conclusion is that the local region

is crowded with transcription factors searching for their target, which means

that any regulatory interaction will be stronger and/or more efficient within this

chromosomal segment. Therefore, the density of transcription factors at a given

chromosomal region is correlated to the strength of the regulatory interaction.

The cumulative effect of local and global search on such density is shown in

Figure 3.7. Global search generates a uniform distribution (i.e. the same value

for all chromosomal locations). In contrast to this, the local search leads to

a higher concentration of transcription factors around the source region. This

suggests a crucial role in the location of the source for determining transcription

factor distribution [58].
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3.2.1 Local search

In the model by Wunderlich and Mirny [106], transcription factor binding dynam-

ics are modelled with a first-time-passage process[78] to get a typical time,τs,1D,

which a transcription factor needs to find its target due to 1D diffusion:

τs,1D =
∆x

2
√
D1D/kun

(3.10)

where kun is the Non-specific DNA unbinding

∆x is the difference binding location and the location of the cognate promoter

and D1D is the 1D-diffusion rate

In my model I look at the initial sliding event after formation, where it starts

at the gene encoding the Transcription factor “locally” searching along the chro-

mosome until they find the cognate promoter. Reusing equation 3.10 to:

τs,local =
d

2
√
D1D/kun

(3.11)

.

where d is the Distance along chromosome

It has been previously [96] observed that, after unbinding, transcription factors

are likely to rebound after a small 1D-diffusion trajectory. A suggested method

to cope with this is to re-scale the unbinding rate to account for these effects.

However, if we try to look at this effect in the model suggested by Wunderlich

and Mirny [106], there is no chance for transcription factors escaping. Diffusion

around the target gene would lead to immediate rebinding, and the transcription

factor remains bound over its lifetime. Instead of using the first time passage
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3. SPATIAL SEPARATION AS A DESIGN PARAMETER

effects, I suggest that there is a rate of binding when a transcription factor is

located at the target gene, kb,TF@TG.

3.2.2 Influence of kb,TF@TG, using kunr when at cognate pro-

moter

In this section, I show how, while equation 3.11 is accurate for even slight separa-

tions, there can be an (effective) specific unbinding rate (kunr) in the case where

d=0. To allow for this rate, I consider a rate of binding at the target (kb,TF@TG).

This rate represents the attraction to the minimal free energy state, depending

on the interaction this rate of binding to the target when at the target location

is high, but not infinite since the difference in free energy is finite. Since imme-

diate binding is assumed in Wunderlich and Mirny [106] this can only be a lower

bound on the local search time in the limit assuming infinite local binding rate,

limkb,TF@TG→∞. In the other limit,limkb,TF@TG→0 where there is no binding, one

can determine the upper bound on the search time. This search time is counter-

intuitive measure (as with many limits), that if we do assume that a transcription

factor binds, how long we expect it to have take if we assume that the the binding

is very low.

In the case where kb,TF@TG = 0 the transcription factor freely diffuses along

the chromosome until it unbinds. This leads to the concentration distribution

depends on the 1D diffusion constant and the rate of non-specific unbinding.

This can be captured the following partial differential equation that describes the
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density of transcription factors in time and space:

∂ρ(x, t)

∂t
= D1D

∂2ρ(x, t)

∂x2
− kunρ(x, t). (3.12)

where

ρ is the Chemical species concentration

D1D is the 1D-diffusion rate

kun is the Non-specific DNA unbinding

For the case of a single transcription factor where t = 0 is the time of tran-

scription factor expression, and x = 0 is the location of the source gene, the initial

condition is expressed by the Dirac delta (δ).

ρ(x, 0) = δ(x) (3.13)

It is defined to be zero anywhere except at the origin, along with the fact

that integration over the origin gives a unitary value. Solving equation 3.12, with

initial condition 3.13 gives:

ρ(x, t) =
e
− x2

4D1Dt
−tkun

2
√
π
√
D1Dt

(3.14)

The integration of t from 0 to ∞ returns the local distribution of Figure 3.7:

∫ ∞
0

ρ(x, t)dt =
e
−
√
kunx2
D1D

2
√
D1Dkun

(3.15)

Using equation 3.14 and looking at the concentration at location of the cognate

promoter x∗ multiplied by the binding rate, kb,TF@TG, I determine the fraction of
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Figure 3.7: Density of transcription factors along the chromosome due to specific

modelling dynamics. Global search (yellow line) results in a flat distribution

where, due to fast 3D diffusion, the transcription factors are equally spread along

the cells volume. Around the source region, local search (green line) favours

the accumulation of transcription factors due to one-dimensional sliding after

expression. Total distribution is coloured in blue.

eventually binding transcription factor concentration by integrating over time.

∫ ∞
0

kb,TF@TGρ(x∗, t)dt (3.16)

Note that this fraction of bound transcription factor approaches zero in the limit

that the binding. However, I can still determine the time it takes for the fraction

that does bind to bind by integrating the binding times and normalising it by the
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Figure 3.8: Transcription factor diffusion along the chromosome without cog-

nate promoter binding. Simulations of the time (horizontal axis) during which

individual transcription factors (colored trajectories) slide and hop along the chro-

mosome and around their encoding gene location (vertical axis). Each simulated

line ends when the transcription factor jumps to 3D diffusion.

fraction of binding in equation 3.16.

lim
kb,TF@TG→0

τs,local =

∫∞
0
tkb,TF@TGρ(x∗, t)dt∫∞

0
kb,TF@TGρ(x∗, t)dt

=

∫∞
0
tρ(x∗, t)dt∫∞

0
ρ(x∗, t)dt

=

√
kun |x∗|+

√
D1D

2
√
D1Dkun

(3.17)

If I compare this against the solution |x∗|
2
√
D1Dkun

in Wunderlich and Mirny [106],

I see that there is an extra term of
√
D1D/kun

2
√
D1Dkun

. This term can be neglected when

|x∗| >>
√
D1D/kun. Here, I assume that the binding rate to the target promoter

is very high, so even when |x∗| >>
√
D1D/kun is not satisfied, the local search

time for distances greater than zero is determined by the lower bound derived
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in Wunderlich and Mirny [106]. However, I take a different approach when the

distance is zero (transcription factor at the target). At this point, the approxi-

mation becomes inaccurate. This is why instead of using Equation 3.12 (when

the transcription factor is at the target), I use the specific unbinding rate kunr.

This is how the model captures the effects of local searches around the target.

I argue that the empirically observed specific unbinding rate (i.e. from the

target into the cytoplasm) corresponds to a value [47] that already contain for

different specific transcription factor dynamics, like rebinding [96]. This allows

me to not know model the specifics (i.e. fast binding after unbinding), for which

metrics are not well established experimentally by combining the unbinding rate

for cases when |x∗| ≈ 0 and equation 3.11 otherwise.

3.2.3 Global search

In the case that a local transcription factor unbinds it becomes a global tran-

scription factor and has to search the whole chromosome, the global search time

equation is similar to equation 3.11:

τs,global =
M

2
√
D1D/kun

(3.18)

where

M is the Chromosome length

D1D is the 1D-diffusion rate

kun is the Non-specific DNA unbinding
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3.3 Transcription factor diffusion modelling; ODEs

In this section, I develop an ordinary differential equation model to accurately

simulate regulatory interactions in a spatio-temporal setup. For this, I com-

bine the homogeneous (or global) model and the 1D spatial (or local) model as

described above. Firstly, the model is described and compared against the tradi-

tional homogeneous model. Secondly, the model is used to fit experimental data

where inter-genic distance was minimised or enlarged [40]. Finally, distance is

highlighted as a potential design parameter. That is, intergenic distance is used

to fine-tune the predicted performance of synthetic circuits.
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Figure 3.9: Model diagram. (A) The commonly used homogeneous model as-

sumes space can be abstracted away. Therefore, transcription factors can di-

rectly regulate (i.e. bind) the target promoter after expression. (B) The spatio-

temporal model presented here explicitly handles spatial dynamics. After ex-

pression, transcription factors start a local search via one-dimensional sliding

along the chromosome. At this stage, a transcription factor may find the target

promoter or dissociate into the cytoplasm. In the latter scenario, the transcrip-

tion factor starts a global search which combines both three-dimensional diffusion

through the cytoplasm and sliding, until it finds the target promoter or degrades.

Transcription factors bind to the target with a specific binding rate. The sketch

specifies the main rates used in model equations.

44



3.3.1 Assumptions taken by the model.

There are a number of ground assumptions in the model that are needed to derive

system dynamics below.

1. Transcription and translation are single-particle reactions

The mRNA-polymerases and ribosomes are not explicitly modeled and the

expression of a gene only depends on the promoter availability. This does

simplify modelling, but can only represent systems where this promoter

availability is limiting.

2. Global search is a combination of 3D- and 1D-diffusion

This is generally thought to be needed to catalyse the reaction between

the target promoter and transcription factors. Transcriptions slide many

times during global search [6, 103, 104], thus reducing the search volume

and achieving higher rates than theoretical chemistry without surrounding

chromosomes.

3. Gene sequence length captures the physical distance description

The chromosome is not explicitly modeled (DNA folding not considered)

which reduces the problem from solving a 3D reaction to solving a 1-

dimensional one. This should be accurate in the case where a sequence-

length below tens of kilo-bases are considered, since chromosome bends are

generally larger than that [65].

4. Transcription and translation are co-localised

This is generally accepted for prokaryotes [54] (although not without con-

troversy [52]).
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5. Transcription factor polymers are formed directly after translation, bind to

the chromosome at that moment and perform a local search

Without this assumption, the model cannot explain spatial effects. Exper-

iments on the polymerisation dynamics of transcription factors are limited.

I developed a model to substantiate this assumption in chapter 4

6. Transcription factors only bind while sliding

Since the 1D search space is smaller than the 3D search space this will cause

the majority of binding events to be catalysed by 1D-search. Taking this

assumption allows to use equation 3.18.

3.3.2 Modelling the search of a transcription factor for its

target

The model differs from a homogeneous model in that it considers spatial dynamics

(Figure 3.9). Specifically, the model focuses on simulating the diffusion of a

transcription factor from its source to its target. To this end, I simulated a

regulatory interaction where the expression of transcription factors is controlled.

These transcription factors negatively regulate (i.e. repress) a target promoter.

In turn, the target promoter controls the expression of a reporter gene. It is

assumed by the model that spatial constraints do not affect the mRNAs, but only

transcription factors. The former is determined by the following set of Ordinary

Differential Equations:

dmgfp

dt
= βtransl(1−

P gfp

1 + αleak
)− (kDm + µ)mgfp (3.19)
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dmR

dt
= βtranslν − (kDm + µ)mR (3.20)

where

m is the Population of protein encoding RNA. These are specified for two

different encoded protein as shown in the specifier in the subscript, where

GFP is the Reporter protein tagged with a green fluorescent component

R is the Repressor protein

βtransl is the Rate of transcription

αleak is the Basal transcription of the promoter when repressed

kDm is the mrna degradation rate

P gfp the target promoter (1 when repressed, 0 when free)

and µ is the Growth rate.

The model describes a “promoter availibility” parameter at the source, ν,

with ν = 0 meaning no transcription and ν = 1 meaning full transcription (e.g.

constitutive promoter).

Spatial effects are modelled upon mRNA translation. Therefore, mRNA

molecules are generated locally to the source gene and do not diffuse away. This

assumption draws on the coupling of transcription and translation in prokaryotes

[54, 55] along with fast mRNA decay (see Methods). Immediately after the gen-

eration of a transcription factor, this is classified as local and it is one-dimensional

(1D) diffusion along the neighbouring chromosome (sliding + hopping) that de-

termines transcription factols location and dynamics. During local search, tran-

scription factors could unbind and then rapidly rebind (hopping) to resume the

1D diffusion [106]. This effect is taken into account by a re-scaled non-specific
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unbinding rate, which sends a local transcription factor into the global search–

local searches would be shorter if rebinding were not considered. After this initial

period (timescale of seconds) the regulator will unbind from the chromosome into

the cytosol and rapidly lose location autocorrelation due to fast three-dimensional

(3D) diffusion. From that moment onward (until it degrades), the transcription

factor is classified as global (Figure 3.9). The ODEs that calculate the amount of

both local and global transcription factors over time are:

dRlocal

dt
= βtranscmR − (kDp + µ)Rlocal − kunrRlocal −

γ(1− P gfp)Rlocal

τs,local
(3.21)

dRglobal

dt
= kunrRlocal −

γ(1− P gfp)Rglobal

τs,global
− (kDp + µ)Rglobal (3.22)

where

Rlocal and Rglobal are the amount of local and global repressors, respectively.

βtransc is the

γ is the Chance that a transcription factor binds to the target promoter when

both elements are co-located

kDp is the Protein degradation rate

τs,local is the Local search time (described in Equation 3.11)

τs,global is the Global search time (described in Equation 3.18)

kunr is the Re-scaled specific unbinding rate from the target,which also ac-

counts for re-binding events.

µ is the Growth rate

and
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P is the Promoter availability

While 1D diffusion is relatively slow compared to 3D diffusion, local search

times can be orders of magnitude shorter than global ones (seconds instead of

tens of minutes) if source and target are co-localised. Importantly, 1D diffusion is

explicitly simulated, but 3D diffusion is indirectly captured by the model. Since

during global search transcription factor location is random with respect to the

source, 3D diffusion can be approximated by the definition of an effective binding

rate.

When, finally, a repressor binds to the target promoter, the expression of the

reporter gene is inhibited. The set of ODEs that describe this is as follows:

dP gfp

dt
= −kunrP gfp + γ(1− P gfp)(

Rlocal

τs,local
+

Rglobal

τs,global
) (3.23)

dGFP
dt

= βtranscmgfp − (kDp + µ)GFP (3.24)

where

βtransc is the Rate of translation

GFP is the Green Fluorescent protein

kunr is the Rate of specific unbinding

kDp is the Protein degradation rate

m is the mRNA

µ is the Growth rate

P is the Promoter availability

R is the Repressor

τs,local is the local search time
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and: τs,global is the Global search time

3.3.3 Quasi steady state mRNA

The system of Ordinary Differential Equations was simplified using the quasi-

steady-state assumption for mRNA,m∗. I achieve this by taking equation 3.19,

replacing the gfp specification with a dummy specification i, setting the derivative

to zero and solving for the mRNA species.

m∗i =
βtransl

P i+αleak
1+αleak

kDm + µ
(3.25)

replacing equations 3.21 and 3.24 with:

dRlocal

dt
= βtranscm

∗
R − (kDp + µ)Rlocal − kunRlocal −

P gfpRlocal

τs,local
(3.26)

dGFP
dt

= βtranscm
∗
gfp − (kDp + µ)GFP (3.27)

3.3.4 Binding rates

The homogeneous model of Figure 3.10 uses a binding rate of 106 M−1s−1.

Spatial-based binding rates, however, cannot be expressed by such a singular

value. In the spatial model, I decompose the binding rate into two different parts:

[i] the time it takes for a transcription factor to find the target (i.e. local/global

search times), which depends on diffusion and unbinding rates as described in sec-

tion 3.2 and [ii] the propensity, γ, of a transcription factor to bind after it finds
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the target. Figure 3.12 shows the effect of decreasing this parameter tenfold. Un-

binding rates are not affected by spatial constraints, and are thus obtained from

literature.

3.3.5 System sensitivity to intergenic distance modulation.

Gene expression, and more specifically, promoter activity, reflects the upstream

dynamics of the cognate regulatory machinery. In traditional homogeneous mod-

els, such promoter activity is determined by the overall number of transcription

factors and a constant binding rate. In contrast to this, the addition of spatial

resolution to modelling makes transcription factor binding dependent of [i] the

location of the transcription factor (i.e. local or global), [ii] diffusion speeds, [iii]

the distance between the source of transcription factors and the target promoter,

[iv] binding rate and [v] non-specific and specific unbinding rates (Figure 3.10).

For the stochastic simulations in Figures 3.10, 3.12, 3.11 and 3.13, reactions

were implemented in the Gillespie algorithm [35] as explained in 2.3.2.
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Figure 3.10: (see next page)

Simulations of an inhibition interaction (i.e. repression) using both homoge-

neous and spatial models were compared (3.10B). For the sake of comparison, the
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Figure 3.10 (previous page): Analysis and comparison of negative regulation (re-

pression) in bothspatial and homogeneous models. (A) The binding of a tran-

scription factor to its cognate promoter is the key difference of both modelling

approaches. While a single absolute value is enough in a homogeneous model,

binding events depend on 1D/3D sliding/diffusion and the relative distance from

transcription factor source in spatial models. (B) Time course simulation of

gene expression in the two models. The homogeneous simulation is similar to the

distant source-target scenario in the spatially-resolved model since both models

converge when one-dimensional sliding does not play an important role. (C)

Characterisation of promoter activity in both source (x axis) and target (y axis)

regions. Axes measure the normalised proportion of time (from 0 to 1) that a pro-

moter is in its active state. Note that the repression promoter can be “stronger”

than the promoter used for normalisation(i.e.> 1). If the repression promoter is

high, it reduces the expression of the target promoter. When the target is co-

located with the repression promoter, the same repression is reached at a lower

expression of the repression promoter.

non-spatial parameters in both models have the same values (e.g., transcription,

translation, or molecule degradation). That is, source-target distance (thus tran-

scription factor dynamics) is the only difference between the two models. Simu-

lations returned similar expression levels for both approaches, providing that the

relative location of genetic components was distant in the spatial model. This

guarantees that when the effect of sliding at the local search is not relevant, the

spatially-resolved model will converge to the homogeneous model [73]. Although
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Figure 3.11: Increasing the 1D diffusion coefficient decreases the impact of inter-

genic distance. The fraction of time the target promoter is active (i.e. without

the repressor bound; y axis) increases as the target moves away from the source.

However, increasing the 1D diffusion coefficient mitigates (up to a limit) this

trend.

the expression levels are qualitatively similar, the simulated DNA components

are not far enough to cancel out completely the effects by local search. However,

when components were co-localised in the spatial model, the time series simula-

tions were very different. Upon co-localisation, the repression was observed to

be stronger (i.e. less reporter expression). A closer look at promoter availability

(fraction of time it is in its active form) confirmed this trend - the activity of the

source promoter has a faster (and stronger) impact on the target when placed

in proximity, since the interaction is not diluted within the volume of the cell

(Figure 3.10C). It is not coincidental that the simulations gave similar results be-
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Figure 3.12: Gene expression noise variation in relation to source-target distance. Noise was analysed in both

homogeneous and spatial models with two sets of rates for binding and unbinding (low rates decrease tenfold in

respect to normal rates). The relationship between the two simulation runs in the homogeneous model (left) correlates

to the spatial model (right) when the relative distance from source to target is high. If such distance is low, noise

patterns also overlap. However, at middle distances, the noise corresponding to the low set was much bigger. Error

bars show noise ranges within standard deviation; dots represent minimum and maximum simulation values.
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tween the homogeneous and spatial models when the source-target distance was

maximised. This is because space-specific parameters in the spatial model were

set up to that end. These intial parameter guesses where chosen based on the

assumption that the majority of empirically observed (binding/unbinding/ etc.)

parameters measured without co-location of genes, however ideally space specific

should be used from measurements in future works. Therefore, the comparison

informs about what the reduction of source-target distance leads to, which is, as

described above, a lower reporter expression (i.e. stronger regulation). However,

at high intergenic distances, the majority of transcription factors reach the tar-

get promoter via global (instead of local) search, which in our model generates a

uniform distribution of transcription factors along the chromosome. As a result,

the spatial parameters, that are more relevant during local searches, lose signifi-

cance and the simulation converges to the homogeneous model. If space-specific

parameters had been established so that the proximity scenario had matched the

homogeneous model in the first place, the simulation would return the opposite

results.

Gene expression noise [48, 63] is decisively influenced by intergenic space sep-

aration. A major source of genetic noise is the so-called bursting effect [92, 108], a

pulse-like expression activity that results from a transcription factor binding and

unbinding its cognate promoter. Given that physical source-target separation

modifies the binding process through modulating the availability of transcription

factors, it can be concluded that it has a direct influence in transcription bursts.

Figure 3.12 shows the variation in gene expression noise concerning source-target

distance. Results are shown for two sets of binding and unbinding rates: the

first one referred to as normal (obtained from the experimental literature) and
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the second one termed low (one-tenth of the previous). The expression profile

returned by the homogeneous model shows a trend towards a slightly wider noise

pattern in the low scenario. This matches the far-away spatial simulation. How-

ever, the changes in noise patterns at such high distance are not very relevant,

since transcription factors are not efficient (i.e. target promoter always ON).

At short separation, the noise patterns under both normal and low rates also

overlap. In contrast, the noise corresponding to the low set of rates increases sig-

nificantly at middle distances. This suggests that protein variability is more than

the mere consequence of stochasticity and can be deterministically controlled by

modulating intergenic distance alone.

3.3.6 Nonlinear response regulation to intergenic distance.

The effects of source-target separation in reporter expression do not vary in di-

rect proportion to the increase in distance (Figure 3.12). In fact, up to 102

base pair (bp) separation, the effects were found to be effectively the same. A

similar performance was observed when the separation was above 104 bp, when

further differences cannot be appreciated. However, the impact of such separa-

tion increases in all values in between, almost proportionally, with 103 bp being

halfway in the overall response curve. Figure 3.12 implies that the origin of such

nonlinearity lies in the balance between local and global search: local search pre-

dominates in the first region (0-102bp), within which the location of the target

promoter will not make a difference; both local and global searches are combined

in the second region (102-104bp), that shows proportional effects when increasing

distance; global search predominates in the third region (104-107) which also re-
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sulted in a plateau-like response function. Although the thresholds between such

regions can be altered by decreasing/increasing 1D diffusion (Figure 3.11), the

overall pattern remains the same. It is important to note, however, that the level

of repression at long distances (far-right of x-axis) changed substantially when 1D

diffusion was modified. This is because global search includes 1D sliding along

non-local chromosomal regions. Thus, it is correlated to 1D diffusion in that

an increase in this rate would facilitate transcription factors to reach their tar-

get during global search. Altogether, this suggests that spatial effects are stable

at two source-target relative locations, very close and very far, while at middle

points the regulation would change rapidly.

3.3.7 Inducible system

. For the simulations of Figure 3.13, the target promoter is inducible instead of

repressible. This implies the promoter has a leaky expression when a regulator is

not bound (P gfp = 0). Therefore, Equation 3.19 is re-defined as follows:

dmgfp

dt
= βtransc

P gfp + αleak

1 + αleak
− (kDm + µ)mgfp (3.28)

3.4 Space as a design parameter.

A previous study [40] experimentally measured the effects of intergenic distance in

a positive regulation (i.e. induction) using components of the TOL pathway [21]

of the environmental bacterium Pseudomonas putida [13, 70]. Specifically, the

gene xylS (source), which expresses XylS regulators was inserted in proximity to,

or separated from, the promoter Pm (target), which is in turn activated by XylS.
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Spatial effects were quantified by measuring the expression of Pm-gfp fusions in

single cells with flow cytometry (Figure 3.13). Results suggested that space could

be used as a design parameter for selecting output levels since the performance

of the regulatory circuit changed according to spatial configuration. Specifically,

when the source-target distance was minimised, reporter expression was fully on

(i.e. narrow distribution to the right of the plot). In contrast, when such distance

was increased, the expression became very noisy (i.e. wide distribution from left

to right). Here, I compared the expression distributions in the experimental data

with simulations by modulating source-target distance in our spatial model. As

it can be observed in the side-by-side comparison of Figure 3.13, the model for

spatial regulation presented here gave an accurate reproduction of the experi-

mental information - something that was not possible with homogeneous (i.e.

non-spatial) models.
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Figure 3.13: Space as a design parameter. Reproducing the experimental results

from Goñi-Moreno et al.[40] with the proposed spatial model. These experimental

results measured gene expression noise in a construct where the source (gene

xylS) of transcription factors (XylS) and its cognate target promoter (Pm) were

engineered to be in either 1) proximity or 2) in distant locations inside the bacteria

Pseudomonas putida. In vivo flow cytometry results (adapted from [40]) and their

in-silico counterpart look alike by modulating the intergenic distance alone.

In the case of co-localisation (Figure 3.13 top row), both source and target

were inserted into the same chromosomal location (attTn7 site), but in diverging

orientations. This means that when the transcription factor is finally expressed it

is around 1kbp away from the target. In the case of high source-target separation

(Figure 3.13 A middle row), I considered the distance to be as large as it could

be. This is because the source( Ps xylS ) was in a plasmid whereas the target
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(Pm gfp) was located in the plasmid, such that there is no 1D trajectory from

source to target and effect of 1D sliding can be ruled out. In this scenario only

the global search contributes to binding events. The model uses 1kbp and 107bp

as the close and far distances for the simulations, respectively.

Finally, I illustrate the potential of space as a design parameter in the context

of genetic combinatorial circuits. In these, information is transmitted in the form

of digital-like values, 0/low expression and 1/high expression, through regulatory

interactions. Each of the components of a circuit can be seen as an electronic

device that gets a value in the input and returns a value in the output after

some processing. To get optimal performance, a key feature for a circuit is that

the output of a component must be compatible with the input of the next one.

Compatible in that the first componenls output range (i.e. the gap between the

lower and higher values that can be produced as output) must be sufficient to

differentiate two distinct values at the input of the second component. Otherwise,

that connection will not be able to propagate digital values.
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Figure 3.14: Two connected repressions modify their input-output mapping when

either co-located or spatially separated. Top graphs show the simulation of the

connection when the components of the circuit are placed in proximity; the output

of the first (signal b) regulates the input of the second (also, signal b). The output

of the second component (signal c) shows a minimal dynamic range (green shaded

region). Bottom graphs show the same simulation but changing the location of

the components to be far apart. The connection changes and the dynamic range

at the output increases. Both examples suggest that space can be effectively used

as a design parameter.

Currently, the lack of such compatibility between components is solved by
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simply selecting different components. That is, a given genetic logic gate can

be replaced by another one if it is not ideal for a specific regulatory interaction.

This approach is followed by, for instance, the tool Cello [69], a design automation

platform that allows a user to turn high-level specifications into the DNA sequence

of the corresponding genetic circuit. However, this procedure is limited by the

catalog of available components that could be used to this end - which is, in most

of the cases, just a handful. Our take here is that there would be no need to replace

the components if optimal performance could be achieved by organising them

into a different configuration within the volume of the cell. Figure 3.13 shows

the compatibility between two theoretical negative regulations, so-called genetic

inverters, which are components that invert the input signal: if the input is 1,

the output would be 0, and vice-versa. The inverters are characterised by their

transfer function, which relates the amount of output (y-axis) that correspond

to a given input level (x-axis). From the transfer function of the first inverter

(violet in Figure 3.13) we can measure its output range as the region covered

along the y-axis. When this range is turned into the input range of the second

inverter (green) I can assess their compatibility. As can be observed, by solely

changing the inverters from co-located to spatially separated, the output range

of the second one improved substantially. Importantly, it was only distance that

was modified in the model; the rest of the parameters in the simulation were the

same. This suggests that the catalog of functions that could be used to replace

circuit components may not only be formed by different DNA devices, but by

the same ones with a different spatial arrangement. Moreover, this also points

out that analog signals can be used to process information beyond mere digital

abstractions [19].
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3.5 Discussion

The rational design of gene regulatory circuits builds on our mechanistic un-

derstanding of gene regulation. Such understanding is commonly captured by

mathematical models, that allow for turning mechanistic details into design prin-

ciples. Although well-studied, gene regulation is still based on unclear dynamics;

at least, not clear enough for the rigorous mathematical formalisation that pre-

dictive modelling needs. Here, I focus on the implications that the separation

between genetic components, within the chromosome, has on their final perfor-

mance.

Ever since advances in technology allowed for it, the interest in the intracel-

lular spatial organisation of the regulatory machinery has increased [24, 26, 51,

54, 55]. However, current descriptions of how regulatory interactions are affected

by intergenic distance are still somewhat controversial. It is the case that similar

experimental setups had shown both significant [58] and insignificant [9] effects

of such chromosomal separation. Our previous experimental work [40] showed

not only a decrease in gene expression, upon inserting the regulator source far

away, but also an increase of the noise pattern. Therefore, it is both expres-

sion and noise that were suggested to be modified by solely altering the spatial

configuration of the regulation. There could be many potential causes of these

conflicting results, such as growth rates, bacterial species/strains, genetic machin-

ery and measuring methods. Therefore, the formalisation of such dynamics in a

modelling framework is essential; model-guided analysis of spatio-temporal gene

regulation may turn decisive to elucidated these details. Although existing tools

such as SmolDyn [2], eGFRD [90], SMeagol [60] and others [82] simulate spatial
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dynamics to various extents, they do not focus on gene regulatory circuits, which

is the goal of our study.

Our model builds on a previous definition of facilitated diffusion [106] that in-

clude the classification of transcription factors into two groups: of local and global.

This is a crucial feature of the model. While local TFs perform a one-dimensional

search along the chromosome close to their coding gene, global transcription fac-

tors undergo rapid three-dimensional diffusion through the cytoplasm. I adapted

this definition to include the specific dynamics of gene expression (i.e. tran-

scription and translation) and gene regulation (i.e. transcription factor-promoter

interplay). By considering the distribution of transcription factors along the chro-

mosome (due to diffusion) and the binding rates of the system, I calculated the

time it takes for a transcription factor to bind its cognate promoter at any given

location. While this model was able to reproduce experimental observations ac-

curately (see Figure 3.13) [40] (which seems not to be possible with non-spatial

models), I identified two areas of improvement that will be the focus of successive

studies. Firstly, the model fails to simulate Hill function-based dynamics. This

is a direct consequence of diffusion since it makes it very challenging to calculate

cooperativity. Secondly, the model does not account for the three-dimensional

folding of the chromosome. Rather, it assumes a homogeneous shape along the

cell. However, since Hill functions are a phenomenological description, rather

than a physical model, and nucleoid structure is not rigorously known, none of

these features would make the model physiologically more accurate.

The growing availability of methods for chromosomal insertions [14, 62, 98],

allows researchers to transit from plasmid-based to chromosomal-based synthetic

systems. While plasmids are metabolically demanding for bacteria [61], chro-
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mosomal insertions are more efficient [28]. As increasingly precise responses are

required from synthetic constructs, each component may need a specific location

within the chromosome for optimal performance - an issue that deserves further

attention. I advocate for the use of inter-component distance as a design param-

eter for synthetic circuits, and the use of spatio-temporal modelling to establish

the engineering principles of such three-dimensional design.

3.6 Future work

A lot of assumptions were made in the model that should be substantiated. The

most far-fetching assumption, that there is co-localisation retention in the dimeri-

sation process, is partially substantiated in chapter 4, but further research is

needed.

Another assumption is that the search rate can be characterised by the ob-

served combination of 1-D sliding and short 3-D hops. There is some research

[22] indicating that indicates that this is valid, however the molecular dynamics

theory of this needs improvement.

To make sure that observed spatial effects are purely due to relative spatial

distancing and not due to structural effects, gene copy number or any artifacts due

to usage of the plasmid (antibiotics, burden ), the experiment could be replicated

with some changes: Firstly, both genes should be included into the chromosome

to eliminate any plasmid effects. Secondly, instead of a single reporter, it would be

beneficial to include a second reporter right next to the location of the regulated

gene which instead is constitutively expressed. This would be a good indication

of the structural effects on expression (super-coiling, localised crowding etc.).
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To confirm the experimental description put forward by the model, I call for

and assay of distances that are below the predicted order of magnitude (<kb)

and more than kilo-bases.
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Chapter 4

Spatial aspects of protein

dimerisation

This chapter is an adaptation to our work, Stoof and Goñi-Moreno [86]. The

work is currently in peer-review at "Journal of the Royal Society Interface". In

this work I came up the initial hypothesis, developed the theory, made the models

and did the simulations.

Problem definition:

The assumption in Chapter 3 that a Transcription Factor is located at the

encoding gene after it is created is unsubstantiated in Chapter 3. For this as-

sumption to hold, there must be processes that allow the formation of an active

form of a transcription factor at the location of its encoding gene. One of these

processes is the formation of a dimer, as most transcription factors only function

in di-/tri-meric form. This chapter describes an interaction of proteins during

the translation process to allow for this di-/tri-merisation. The existence of this

process substantiates the assumption in Chapter 3.
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For homeostasis, organisms often heavily rely on feedback mechanisms. To

reduce the burden of these feedback mechanisms, it is observed that these pro-

cesses are frequently non-linear. Key processes for synthetic gene circuits, such

as the design of bistability or oscillatory patterns, build on non-linear molecu-

lar dynamics. However, the molecular details responsible for non-linearity are

only partially understood. Non-linear dynamics are mostly described with phe-

nomenological models and the rational design of non-linear interactions remains

a distant prospect.

In this chapter, I introduce a mathematical model for the dimerisation of

proteins dependent on the transcription and translation processes. I show that the

dimerisation process can induce a combination of linear and quadratic processes

in the creation process of the proteins. The distribution of which is dependent

on molecular and genetic features, such as protein length or gene location within

the volume of the cell. Moreover, I revisit Chapter 3’s model, implementing the

combination of dimerisation and space. I suggest design rules and principles,

using these models, section 4.3.2, that may be used to fine-tune non-linear effects

in-vivo, resulting in an increase in the computing abilities of biological systems.

4.1 Related models on transcription and transla-

tion

Since this is the first mathematical model to describe dimerisation during the

transcription and translation processes I attempt to keep the model as simple as

possible.
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4. SPATIAL ASPECTS OF TF DIMERISATION

Therefore I will not capture the dynamics of the RNA-polymerases nor the

capture variations in translation speed by ribosomes. In my model I will assume

a random (Poisson distributed) difference in time between ribosome initiation

event and not model how the Ribosome Binding site recruits these ribosomes.

However, Tuller et al. [94] show that this is not necessarily the case. The

authors claim that genes encoding specific processes encode a “ramp” in the first

∼ 40 codons of mRNAs. As the authors state this ramp “may represent an

important next stage of translational control that modulates the parameters set

by the previous initiation stage” such that the time difference between ribosome

initiation events might not be random.

Moreover, the concentration of ribosomes is not constant along the cells.

Castellana et al. [12] describe a partial differential equation model of ribosmomal

sub components and show that that the ribosomes tend to be volume excluded

by the nucleoid and driven toward the cell poles. Klumpp et al. [53] confirms

that the large ribosome complexes are effected by these crowding effects.

Another effect not captured in the model is transcriptional bursting where it

is seen that the arrival of RNA-polymerases is also not constant process. While

Pájaro et al. [74] are able to reproduce these bursting dynamics with a partial

integral differential equation model, Chong et al. [15] are able to describe bursting

from a mechanical model. The authors show that their model of supercoiling

induced by a protein called gyrase affects the binding dynamics in a way that

reproduces emperical results.

Future modelling could look into how ramping , crowding, supercoiling and

other more detailed expression modelling could combine with the dimerisation

process.
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I do however rely on the model of the expressome. Where the coupled nature

of transcription and translation in prokaryotes [54, 81] is theorised to produce

locally high distributions of transcription factors near the site of their expression

[55].

4.2 Non-linear effects by Transcription factors

It has long been known that the binding of transcription factors is a non-linear

mechanism [1]. This non-linearity allows the design of complex synthetic circuits

with dynamic behaviour. In the early days of the field, two landmark papers

demonstrated that nonlinear dynamics are at the core of relatively simple cir-

cuits. The first one implemented a “toggle switch” [31]; a genetic circuit able to

switch between two states according to external signals. The second one imple-

mented what was called the “repressilator” [27]; an oscillator based on a circuit

of gene transcription repressors. Mathematical models of these two circuits show

bistability and reliable oscillations (respectively) only if they account for nonlin-

ear dynamics.

Non-linear effects are usually modelled using abstract parameters without

bottom-up physical description. While Michaelis-Menten equations, for instance,

use integer values for a physical parameter (which has since been described from

basic principles), Hill equations allow for unphysical non-integer values (which

increase controllability). Although effective, this indicates a fundamental gap in

existing mathematical modelling. The lacking description of the molecular details

of non-linearity limits the rational design of such behaviour.
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4. SPATIAL ASPECTS OF TF DIMERISATION

4.3 Results

There are several ways the non-linear binding can arise; the conformational

change of an operon [56, 85], regulator-promoter interplay [40, 74] (known as

“bursting”) and other upstream processes [20, 58]. Here I analyse the monomers-

dimer reaction[102]. Upon gene expression, most resulting proteins are “monomers”

that need to interact to form “dimers” (or higher-order “oligomers”); it is only the

protein in its final from that is active. As a consequence, the relationship be-

tween active proteins and gene expression is purely nonlinear: monomers will

have to "meet" for dimerisation, such that there is at least a quadratic term. I

suggest an alternative pathway for monomers to dimerise: Translation mediated

dimerisation.

4.3.1 New model:Translation mediated dimerisation

Transcription (of a gene into RNA) and translation (of RNA into proteins)

rarely generate fully functional transcriptional regulators. Rather, resulting pro-

teins—or “monomers”—need to interact with others in order to form “dimers”

(4.1A). For example, the repressor protein TetR, which is extensively used in

synthetic biology, is a dimer. This suggests that any mathematical model that

aims at simulating the dynamics of such a molecule (or that of a genetic cir-

cuit regulated by it) must account for the dimerisation of the partially formed

regulators generated after translation in order to result in robust predictions.
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Figure 4.1: Translation-mediated dimerisation (A): Upon DNA transcrip-

tion by RNA polymerase, ribosomes bind the resulting RNA to translate it into

proteins. There is more than one translation processes at any one time, and

ribosomes go along the RNA at different speeds, leading to the appearance of

"traffic jams". Our model simulates the process by which, when distance among

ribosomes is short, partially formed monomers (represented by chains of yellow

circles) dimerise with other partially formed monomers as they are being trans-

lated. (B): Detail of the translation-mediated dimerisation area. The extension

of this region depends on several physical features, as the length of the protein

to be translated or the distance between ribosomes; these constraints will affect

nonlinearities due to protein dimerisation.
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Although typical modelling frameworks, for instance, Michaelis-Menten and

Hill equations, already account for dimerisation, matching this to its specific

molecular mechanisms and features (in contrast to using abstract cooperativity

values) is still an overarching challenge. My model adds a detailed mechanism of

translation, in which ribosomes bind RNA molecules in an asynchronous fashion;

as a result, some ribosomes start translating very close to each other [66]. In

this scenario, two partially-formed monomers come into contact and dimerisa-

tion starts, which I termed translation-mediated dimerisation (4.1B). In short,

when ribosomes are at a long-enough distance, dimerisation will take place in

the cytoplasm, as in the cytoplasm both monomers will need to meet. The re-

sulting non-linearity (in final dimer formation) can therefore be predicted and

designed by my model by modifying parameters such as the length of the protein

to be translated or ribosome availability. A more detailed explanation on this

will follow in the case studies, later in this section.

In order to describe translation-mediated dimerisation rates, I firstly assume

that the arrival of a ribosome to the RNA is captured by a Poisson process. The

distribution of time between binding (Pr(∆t)) events is then given by:

Pr(∆t) = λ · e−λ∆t (4.1)

where λ is the average binding rate of a ribosome to the RNA (i.e., when

translation initiates), and ∆t represents the time between such binding events.

This time distribution, along with experimentally obtained translation rate of ca.

10 AA/s [97, 107] (AA = amino acids), was used to calculate,∆x, the distance
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between two consecutive ribosomes:

∆x = 3xbpktransl∆t (4.2)

where

ktransl is the Rate of ribosome transcription

and xbp is the Base pair width

the factor of 3 comes from one amino acid being encoded by 3 bp. The

difference in initiation time also gives rise to a difference in length of the chain of

amino acids that are already transcribed, ∆r:

∆r = xAAktransl∆t (4.3)

where

xAA is the Amino Acid width, also ca. 3 Å.

This chain of amino acids is the partially formed portein in monomer form.

The model assumes ∆x and ∆r until completing translation, which implies that

the separation between ribosomes depends only on the binding times, not on the

sliding along the RNA.

To calculate the fraction of dimerisation that takes place during translation,

the model defines an area where partially formed monomers can interact (Figure

4.2). While monomers are being formed, they are bound to the ribosome in one

end and moving within a sphere around the ribosome, with a radius based on the

current length, with the other end. If two consecutive monomers are long enough,

the area where the spheres overlap shows where the monomers can interact. In

this state, dimerisation may start.
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4. SPATIAL ASPECTS OF TF DIMERISATION

To analyse this process I focus on a two consecutive ribosome scenario that

can be generalised to the ensemble of all ribosomes. To calculate the chance of

dimerisation, first I derive the fraction where these spheres overlap, equation 4.9.

r + ∆r

r

0 ∆xx∗

h1 h2

a

r

Figure 4.2: Calculation of the spherical overlap, note that the dark grey overlap-

ping section is composed of two spherical domes (seen here is the 2D analogous

circular segments)

I choose my system such that the two ribosomes are placed at the origin and

at a displacement of ∆x with radius r1 and r2 respectively. The spheres are then

described by:

x2 + y2 + z2 ≤ r2
1 (4.4)

and

(x−∆x)2 + y2 + z2 ≤ r2
2 (4.5)

Using these equations, the edges of the spheres meet ar a circle in the yz plane
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at location x determined by:

y2 + z2 = a2 = r2
1 − x2 = r2

2 − (x−∆x)2 (4.6)

Which can be solved for x∗:

x∗ =
∆x2 + r2

1 − r2
2

2∆x
(4.7)

The overlapping volume can be described as a combination of two spherical domes

with the disk as described by equation 4.6 as the base. The volume of each such

dome is:

V = πh
h2 + 3a2

6
(4.8)

where a is the radius of the disk and h the height of the dome. The value of h

differs between the two domes and is r1 − x∗ and r2 − (∆x) + x∗ for the ribosme

at the origin and the ribosome shifted by ∆x respectively. Upon assumption

that the translation rate is constant the length of the transcripts of consecutive

ribosomes related such that r1 = rand r2 = r+∆r, with ∆r as determined by 4.3.

This ribosome arrival time also detemines the distance between the ribosome,∆x,

with equation 4.2.

Plugging this in, along with dividing by the volume of a whole sphere , one

can get the following equation for the fraction of overlap of the spheres.

Ψ(∆t, r) =


π(∆r−∆x+2r)2(−3∆r2+2∆r∆x+∆x(∆x+4r))

12∆x· 4
3
πr3

∆r + 2r > ∆x

0 ∆r + 2r < ∆x

(4.9)
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4. SPATIAL ASPECTS OF TF DIMERISATION

where the output is a relative value going from 0 (no overlap at all) to 1

(complete overlap of partially formed monomers), ∆x, is the distance between

two ribosomes, and r is the current length of the least transcribed monomer.

For each ribosome arrival time, ∆t, I use the michaelis menten equation to

calculate the fraction of dimers after translation. These fractions are multiplied

by the the distibution in equation 4.1 to get the weighed dimerisation fraction,

α. Finally I integrate over the whole transcription process, from 0AA to the full

length of the protein-monomer, to get:

α(∆t, r) = λ

∫ ∞
0

e−λ∆t

∫ Rprotein−∆r

0
(Ψ(∆t, r))2dr

(Rprotein −∆r)/kD +
∫ Rprotein−∆r

0
(Ψ(∆t, r))2dr

d∆t

(4.10)

where

Rprotein is the Final length of the protein

kD is the Reaction parameter for the amino acid chains to dimerise when they

co-exist in the same volume

and λ is the Typical ribosome arrival time
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Figure 4.3: Translation-mediated dimerisation in relation to ribosome

binding and protein length. The fraction of translation-mediated dimeri-

sation (i.e., total dimerisation minus dimerisation in the cellular cytosol), α, as

described by equation 4.10, responds primarily to ribosome binding: if binding in-

creases, α also increases. The dimensionless rate reaction parameter (kD) shows

an important role: α increases as more likely two partially formed monomers

would interact (right plot).

Figure 4.3 shows the resulting fraction of translation-mediated dimerisation

(α) given the binding rate of the ribosomes (λ) and the length of the monomers

(measured in amino acids). These results are shown for two different values of the

reaction parameter (kD, dimensionless), and used experimentally obtained values

for the binding rate [41], λ ≈ 0.1s−1. As observed here, α is minimal (from 0 to

≈0.2) at lower values of λ and protein length; although λ is the limiting rate here,

since at very low values of this rate, the protein length does not make a difference.

This suggests that a very low binding rate (or low ribosome availability) would

result in having no translation-mediated dimerisation (or small values which could
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4. SPATIAL ASPECTS OF TF DIMERISATION

be neglected). However, as soon as λ increases, α gains importance, also amplified

by increasing the reaction parameter kD. This is because the more λ increases,

the more ribosomes will bind to the RNA within a given time interval; as a

consequence, ribosomes will be physically closer while translating and partially-

formed monomers will tend to overlap more (i.e., higher values at Equation 4.9).

4.3.2 Engineering α, the translation mediated dimerisation

fraction

The results shown in Figure 4.3 suggest there is a fragile equilibrium in the

fraction of translation-mediated vs. cytosol dimerisation, which, in turn, would

impact on the non-linear dynamics of the system. Therefore, different values of α

will modify the performance of genetic circuits that build on non-linear reactions

to achieve optimal behaviour. In what follows, I analyse how α may be used to

alter oscillations and bistability.

This could be achieved by altering the two parameters in Figure 4.3. λ could

be influenced by altering how ribosomes bind are recruited. Changing the ribo-

some binding site [67] or the concentration of available (orthogonal) ribosomes

could be regulated[77]. The protein length could also artificially be increases to

increase the overlap leading to increased α.

4.3.3 Case study revisited: Effected damping in the repres-

silator

A general requirement in order to obtain oscillations from a biological system

is that its kinetic machinery must be non-linear [72]. Here, I modify the well-
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known mathematical model of a three-component genetic oscillator [30] with the

parameter that represents the fraction of dimerisation that takes place during

translation (α). I analyse how this parameter can, by itself, modify the damping

of oscillations of the system.

This genetic circuit is formed by a ring of repressors (proteins that negatively

regulate a promoter), where each one regulates its successor (Figure 4.4A). As a

result, the concentration of all three proteins within the circuit oscillates in time.

The system of ODE that represents the oscillator is described as follows. Firstly,

the ODE that calculates the concentration of monomeric repressors is:

dRi,mono

dt
= kon(1− α)P i − kDRi,mono − kdimRi,mono

2 (4.11)

where i ∈ 1, 2, 3 is a specific repressor protein

Rmono is the amount of repressor monomer in the cytosol (i.e., those monomeric

regulators that did not dimerise during translation)

kon is the The expression rate of monomers when the promoter P is not

repressed (thus fully active)

kD represents the degradation rate of monomers

kdim is the The rate of dimerisation in the cytosol

and

α is the fraction of monomers that become dimers during translation-mediated

dimerisation (which will dissolve as dimers in the cytosol).

Secondly, the ODE that calculate repressor dimers (i.e., the fully active pro-
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tein) is given by:

dRi,dimer

dt
= konαP i − kDRi,dimer + kdimRi,mono

2 (4.12)

where Rdimer is the dimerised repressor (note that in this model all three

repressors of the system are assumed to be dimers in its final form).

Lastly, the next ODE calculates the fraction of promoter P that is active (i.e.,

it is not being repressed by any R):

dP i

dt
= kun(1− P i)−

1

τs,local
Ri−1,dimer (4.13)

where

kun is the Non-specific DNA unbinding

and τs,local is the local search time

Note that promoter number i is repressed by a repressor number i− 1, where

the previous element to i = 1 is i = 3, since the three genetic elements [1,2,3] are

arranged in a ring.
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Figure 4.4: Impact of translation-mediated dimerisation (α) on a genetic

oscillator. (A): Diagram of a three-component genetic oscillator (as in [30])—

each repressor protein (R) inhibits the expression of its successor. As a result, the

concentration of each repressor oscillates in time. (B): Eigenvalue analysis, which

shows bifurcation point around α = 0.022. This suggests that the emergence of

oscillations is highly dependent on of the balance between translation-mediated

and cytosol dimerisation. Solid and dotted lines are the real and imaginary values

of the eigenvalues in the jacobian at equilibrium respectively. (C): Time-course

simulations of the genetic oscillator at different values of α. Oscillations are

damped, and the limit cycle removed, at the bifurcation point as indicated in B.

Figure 4.4 shows how the parameter α alters the damping of the system, to
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the point that the circuit stops oscillating if the balance between translation-

mediated vs. cytosol dimerisation is beyond a bifurcation point (Figure 4.4B).

This is, higher values of α lead to a non-oscillating steady state (Figure 4.4C). This

bifurcation, beyond which the oscillatory behaviour vanishes is around α = 0.022,

which indicates that, even if the majority of dimers are formed in the cystosol,

the ones that form during translation can drastically affect circuit behaviour.

The new parameter, α, introduces complexity to the mathematical model in

that it limits the range of parameter values that generate oscillations—it could

be argued that it is more difficult to get reliable oscillations than without it.

However, it offers several pathways to modify damping in-vivo, unlike traditional

methods for nonlinear dynamics (e.g., Hill coefficients). Therefore, its predictive

scope narrows the gap that goes from modelling results to in-vivo experimenta-

tion.

4.3.4 Case study: programmed damping in a genetic toggle

switch

A genetic toggle switch [31] is a device build from two mutually inhibitory re-

pressors that is able to flip between stable states (Figure 4.5), in which only

one of the two proteins is at high expression while the other one is inhibited.

The stability of the system, and also the number of stable states, depends intri-

cately on non-linear dynamics. Although there are examples of genetic switches

where non-linearity emerges from protein dilution [50, 91], the most common

way of achieving non-linear dynamics (and bistability) comes from transcription

cooperativity—in which protein dimerisation plays a fundamental role.
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Figure 4.5: Impact of translation-mediated dimerisation (α) and gene separation on

a genetic toggle switch. (A): Genetic components in proximity. Only in the case of α being

low, the damping is low enough to achieve bistability. (B): Genetic components at distance.

The physical separation forces proteins to travel from its source gene to its target promoter—a

nonlinear process which counteracts high α values. A & B The value of α=0.1 ("predicted")

is our theoretical approximation; up to now, this value has not been experimentally obtained.
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My model for the toggle switch is specified by equations 4.11, 4.12 and 4.13,

but with two (instead of three) repressor proteins (which are also assumed to

be dimers). Furthermore, I added complexity to the model by considering the

intracellular spatial distribution of genes, based on our recent work on spatio-

temporal design [40, 87]. This feature helps differentiating between local and

global repressors; this is, repressors that are in the proximity of, or far from, their

encoding gene. The core message was that the distance a protein must “travel”

from its source gene to its target promoter, modifies regulation in a predictable

fashion. Since the differentiation between local and global proteins intersects

with the model I introduce here, where proteins dimerise during translation (i.e.,

local) or in the cytosol during free diffusion (i.e., global), I analysed the genetic

switch considering both dynamics.

Figure 4.5 shows results of simulating the switch with two different spatial

setups, proximity (Figure 4.5A) and distance (Figure 4.5B), and three values of

translation-mediated dimerisation (α) in each case. Interestingly, the two spa-

tial configurations show different performance for the same level of α, which

implies that both phenomena (intergenic separation and protein dimerisation)

are both involved in shaping nonlinear dynamics. When the genes of the switch

are placed in proximity (Figure 4.5A), only a low value of α reduces damping

sufficiently for the system to show bistability. This is because the generation

of dimers by translation-mediated dimerisation is fully linear. As soon as this

value α increases, more dimerisation takes during translation, leading to system

malfunction; although the switching still occurs to some extent (e.g., α = 0.5),

output values are low, and the intrinsic stochasticity of biological systems would

result in unstable states. However, moving genes far apart (Figure 4.5B) restored
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the function of the system, even in the case of α = 0.5 (a value that seems higher

than physically plausible). By increasing the separation between the genes, the

dimers formed near the source are not immediately available to bind to the target

promoter, since this is now at a long distance. As a result, such linear process

is now less relevant: translation mediated dimers must “travel” from source to

target resulting in a decreased promoter-binding rate, which, in turn, removes

its involvement in total promoter binding events. Unlike the proximity scenario,

where performance was only achieved at low values for α, the distance set up

showed bistability at any value. This highlights the role played by intra-cellular

distance for circuit design.

Altogether, simulations suggest that the necessary conditions for the emer-

gence of bistability could be rationally designed or fine-tuned, and mapped into

biological specifications such as ribosome binding sites (which impacts on α) or

inter-genic separation.

4.4 Discussion

The design of increasingly complex biocomputing circuits in cells is a major chal-

lenge. The lack of robust predictive modelling—which could accurately foresee

the performance of a design before implementation—threatens to undermine the

success of the field. Although model-based design [101] is a common practice,

accurate predictions are difficult to obtain since gene regulation is still based on

unclear dynamics. Here, I focus on modelling protein dimerisation [10] within

regulatory interactions, as a way to fine-tune system damping.

The model for dimerisation is based on differentiating between those monomers
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that interact during translation (what I termed translation-mediated dimerisa-

tion) and those that dimerise within the cytosol of the cell while diffusing. While

the former imposes a linear regime on the reaction, the latter boosts the emer-

gence of non-linear dynamics. By controlling the fraction of each dimerisation

type, on-demand fine-tuning damping may be capable. My model simulates this

process and suggests a number of routes on how to implement such control in-vivo.

For instance, 1) protein length [17] (adding tags or extra amino acids), 2)choice

of RBS [79] (stronger RBS will result in closer ribosomes on the mRNA), and 3)

ribosome availability [20] (influencing binding rates). The model suggests that

considering these features could results in having controllable levels of damping.

Furthermore, I focus on the implication that intergenic distance (i.e., physical

distance between to genes within the volume of a cell) has for the system. Based

on my model for spatiotemporal design in chapter 3 , simulations suggest that the

linear dynamics imposed by translation-mediated dimerisation are less important

if two interacting genes are far apart. This implies that damping can be also

programmed by using spatial constraints.

4.5 Future work

The current work uses the assumption that the free dimer ends are in a flat

distribution circular around the bound end. This does not take into account

structural qualities of a polypeptide. Ideally, the whole Dimerisation During

Translation would be simulated with molecular dynamics. Alternatively, using

a model for the dimerisation rates describing molecules with a worm-like chain

around the bound end could improve the description of a polypeptide.
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To verify the current model, one could try to check whether it is more likely

to dimerise with co-located monomers. A hypothesised method to check this is

to implement two copies of the same transcription factor with varying fluorescent

tags (such as the CFP-YFP pair). If the structure is very specifically designed,

the exited flourescent state might transfer to the other fluorescent tag with förster

resonence (FRET). In the well-mixed model, half of the dimers would have hetero-

fluorescent tags with FRET properties, while the other homo-fluorescent tagged

dimers would only have a single excitation wavelength. With Translation Medi-

ated Dimerisation, there would be a higher fraction of homo-tagged dimers, thus

showing less FRET behaviour. This would require a skilled design of the fluores-

cent tags, so that their dipoles align correctly, and would require highly precise

measurements.

89



Chapter 5

Conclusion

In this thesis, I showed how the small distances between genes in bacteria can still

affect the behaviour of the cell. In a new model I show that a transcription factors’

local search, in the first seconds after creation, can compete with the global search,

lasting protein lifetimes. I describe that this local search is dependent on several

parameters, one of which is the intergenetic distance between the source gene and

the target gene. I show that in physiological ranges, the search is catalysed when

the source and target genes are within 1000 base pairs of each other.

An essential assumption is that after the creation of active transcription factor

it is localised at the source gene. While this could be argued for monomers, cre-

ated by a coupled transcribing-translating expressome, models using dimerisation

in the cytosol did not allow a localised final form of the trancription factor. I de-

veloped a new model to describe spatial effects where partially formed monomers

dimerise during the translation process. In this model dimers can be localised

near the encoding gene after creation. I showed that while this process can catal-

yse the search for a target gene the reaction. Moreover, damping of non-linear
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system behaviour is seen to increase in the scenario where transcription factors

dimerise during the translation process. I show how the fraction that dimerises

during translation increases with the rate that ribosomes bind and the final lenght

of the protein.

These models allow for the rational design of circuits: using co-location to

catalyse a circuit or the reduction of either length or RBS to tune system damp-

ing of non-linear effects. Moreover, these models can be rapidly tested and be

iteratively improved by comparing the designed behaviour using these models

and reality.
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List of symbols

Term Symbol Description Value Units Source Page List

1D-diffusion rate D1D Diffusion of a Transcription factor along the chromosome

while remaining bound

varied µm2s−1 [82] 37, 39, 40,

42, 43,

-Fig 3.13 high 2.62

-Fig 3.13 low 0.000262

-General 0.0262

3D-diffusion rate 2.72 µm2s−1 [82]

Amino Acid width xAA 3 Å 74,

Base pair width xbp 3 Å 74,

Binding rate kbind Binding rate transcription factor 27, 28, 44,

Chance of binding

when at TG

γ Chance that a transcription factor binds to the target pro-

moter when both elements are co-located

varied 48–50,

-General Intermediate binding value used for Fig 3.13,3.10B & 3.12 0.1
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Term Symbol Description Value Units Source Page List

-Immediate Immediate binding used for Fig3.10,3.11,3.14 1

-Low Low binding value used for figure 3.12 0.01

Chemical species con-

centration

ρ Chemical species concentration, mostly in context means

transcription factor density

16, 39–42,

Chromosome length M Length of chromosome, value used here is based on the E.

coli chromosome

107 bp [8] 43,

Degradation rate kdeg Inverse of Transcription factor lifetime 44,

-mrna degradation

rate

kDm Typical time it takes for a mRNA to be broken down 27, 29, 46,

47, 50, 58,

-Protein degradation

rate

kDp Typical time it takes for a protein to be broken down 28, 29, 48–

50,

Diffusion constant D 16, 26, 28,

29,

Dimerisation volume Ψ(∆t, r) The normalised volume where co-translating proteins can

interact

76, 77,

Distance along chro-

mosome

kdim The rate of dimerisation in the cytosol 80,

Distance along chro-

mosome

d Distance between genes where the Transcription factor is

encoded and its cognate promoter

37, 38,
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Term Symbol Description Value Units Source Page List

Distance along chro-

mosome

kon The expression rate of monomers when the promoter P is

not repressed (thus fully active)

80,

divergence operator ∆∆∆ divergence chemical species 16,

Doubling time τ2 The time it takes for a the population to double in number

(Usually related to the time it takes for an individual to

be “born” to reproduction)

varied min [5] 10, 11,

-Fig 3.8 Value for a slow growing population 120

-general Value for a fast growing population 20

Flux j The flux of a chemical species 16,

Global search time τs,global Global search time (described in Equation 3.18) 43, 44, 48–

50,

Green Fluorescent pro-

tein

GFP Reporter protein tagged with a green fluorescent compo-

nent

47, 49, 50,

Growth rate α The growth rate of the Population

Growth rate µ =1/τ . Rate at which a Population grows. Inversely pro-

portional to the Typical growth time.

(ln(2)τ2)−1 10, 11, 46–

50, 58,

Initiation time differ-

ence

∆t Time difference between binding of two consecutive ribo-

somes

73, 74, 77,
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Term Symbol Description Value Units Source Page List

Inter Ribosomal dis-

tance

∆x Distance between two consecutive ribosomes 73–77,

Laplace operator ∇∇∇2 28, 29,

Leakyness production αleak Basal transcription of the promoter when repressed varied 46, 47, 50,

58,

-Fig 3.12 0.005

-Fig 3.12& 3.13 0.002

-Zero expression,

used in 3.13

0

local search time τs,local Local search time (described in Equation 3.11) 37, 42, 44,

48–50, 81,

mRNA m Population of protein encoding RNA. 46, 47, 49,

50, 58,

-mRNA field m mRNA concentration field 28, 29,

Natural logarithm ln The logarithm base e 11,

Non-specific DNA un-

binding

kun Rate at which a Transcription factor unbinds from chro-

mosome when it does not interact with its cognate pro-

moter

10 s−1 [106] 37, 39, 40,

42–44, 50,

81,
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Term Symbol Description Value Units Source Page List

Partial protein length r Length of a protein during its translation, which is time

dependent

75–77,

Population Pop The count of total organisms of a growing population,

generally in the scope of bacteria

10, 11,

-Foxes F The population of Foxes 12, 13,

-Hares H The population of Hares 12, 13,

Probability distribu-

tion

Pr The Probability density function of the parameter speci-

fied

73,

Promoter availability P The relative production rate of mRNA of the promoter

encoding the protein indicated by the descriptor to its

constitutive expression

46–50, 58,

80, 81,

-Inhibited promoter

density

iP Concentration field of the inhibited promoters 28, 29,

-Promoter density P Concentration field of the non-inhibited promoters 28, 29,

Protein length Rprotein Final length of the protein varied 77,

Protein length differ-

ence

∆r Difference in length of partially translated proteins (or

monomers)

74, 76, 77,
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Term Symbol Description Value Units Source Page List

Rate of binding at the

target

kb,TF@TG Rate at which a Transcription factor is attracted to the

minimal free energy state(bound) when at the cognate

promotor location. Assumed to be very high.

vi, 38, 41,

42, 44,

Rate of specific un-

binding

kunr Re-scaled specific unbinding rate from the target,which

also accounts for re-binding events.

vi, 27, 28,

38, 42, 44,

48, 49,

Rate of transcription βtransl 27, 29, 44,

46, 47, 50,

-Rate of ribosome

transcription

ktransl The rate of transcription of a single bound ribosome 74,

Rate of translation βtransc 27, 29, 44,

48–50, 58,

Reaction parameter kD Reaction parameter for the amino acid chains to dimerise

when they co-exist in the same volume

77–81,

Transcription factor TF 3, 4

-Global descriptor global Descriptor of an instance of Transcription factor indicat-

ing that it has unbound from the DNA strand at some

point
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Term Symbol Description Value Units Source Page List

-Local descriptor local Descriptor of an instance of Transcription factor indicat-

ing that it has not unbound from DNA since formation

-Repressor R Repressor protein 47–50, 80–

82,

-TF field TF 28, 29,

Transcription factor

lifetime

k−1
deg Typical time it takes for a chemical species to be broken

down

40 min [5]

Translation mediated

dimerisation fraction

α missing vii, 77–86,

Typical growth time τ The time it takes for the population to grow a factor e = τ2/ln(2) 11,

Typical ribosome ar-

rival time

λ The typical Initiation time difference 73, 77–79,
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