
Advanced Informatics For Event

Detection And Temporal Localization

Chan Teck Kai

Supervisor: Prof. Chin Cheng Siong

Faculty of Science, Agriculture and Engineering

Newcastle University Upon Tyne

This dissertation is submitted for the degree of

Doctor of Philosophy

August 2021

Abstract

The primary objective of a Sound Event Detection (SED) system is to detect the prescene

of an acoustic event (i.e., audio tagging) and to return the onset and offset of the iden-

tified acoustic event within an audio clip (i.e., temporal localization). Such a system

can be promising in wildlife and biodiversity monitoring, surveillance, and smart-home

applications.

However, developing a system to be adept at both subtasks is not a trivial task. It can

be hindered by the need for a large amount of strongly labeled data, where the event tags

and the corresponding onsets and offsets are known with certainty. This is a limiting factor

as strongly labeled data is challenging to collect and is prone to annotation errors due to

the ambiguity in the perception of onsets and offsets.

In this thesis, we propose to address the lack of strongly labeled data by using pseudo

strongly labeled data, where the event tags are known with certainty while the correspond-

ing onsets and offsets are estimated. While Nonnegative Matrix Factorization can be

used directly for SED but with limited accuracy, we show that it can be a useful tool

for pseudo labeling. We further show that pseudo strongly labeled data estimated using

our proposed methods can improve the accuracy of a SED system developed using deep

learning approaches.

Subsequent work then focused on improving a SED system as a whole rather than a

single subtask. This leads to the proposal of a novel student-teacher training framework

that incorporates a noise-robust loss function, a new cyclic training scheme, an improved

depthwise separable convolution, a triple instance-level temporal pooling approach, and an

improved Transformer encoding layer. Together with synthetic strongly labeled data and a

large corpus of unlabeled data, we show that a SED system developed using our proposed

method is capable of producing state-of-the-art performance.

Acknowledgements

The completion of this study could not have been possible without the support and help of

many individuals.

First and foremost, I would like to express my deepest gratitude to my supervisor, Prof

Chin Cheng Siong, who has been my supervisor since my undergraduate days. I would not

have made it this far without his supervision and guidance.

I am also thankful to my fellow schoolmate, Kek Xing Yong, for his technical help

whenever I ran into problems with Amazon Web Service or other database-related problems.

The words of encouragement that we exchanged have helped me endure these few years.

I am also very grateful to my parents, who have always offered their listening ears and

providing emotional support.

Special thanks to my loving wife, Emily Chua, who has never doubted me during this

journey. She has been my pillar of strength, whose words of encouragement and support

during difficult times are much appreciated and duly noted.

Table of Contents

List of Figures xi

List of Tables xv

Nomenclature xix

1 Introduction 1

1.1 Background . 1

1.2 Challenges for SED . 2

1.3 Contributions of This Thesis . 4

1.4 Thesis Outline . 8

2 Literature Review 11

2.1 Non Neural Network Based Methodology 11

2.1.1 Gaussian Mixture Model-Hidden Markov Model 11

2.1.2 Nonnegative Matrix Factorization 15

2.1.3 Summary of Non-Neural Network Based Methodologies 19

2.2 Neural Network Based Methodology . 22

2.2.1 Non Hybrid Models . 22

2.2.2 Summary of Non Hybrid Models 30

2.2.3 Hybrid Models . 34

2.2.4 Summary of Hybrid Models . 42

2.2.5 Models Utilizing Weakly Labeled Data 51

2.2.6 Summary of Models Utilizing Weakly Labeled Data 61

3 Training a SED System Using Pseudo Strongly Labeled Data 71

3.1 Motivation . 71

3.2 Proof of Concept . 72

3.2.1 Dataset Used . 72

3.2.2 Unsupervised NMF for Pseudo Labeling 75

Table of Contents

3.2.3 Proposed SED Model . 77

3.2.4 Experiment Setup . 78

3.2.5 Evaluation Metric . 78

3.2.6 Results and Discussion . 80

3.3 Semi-supervised NMF-CNN For SED 83

3.3.1 Dataset Used . 84

3.3.2 Supervised NMF for Pseudo Labeling 86

3.3.3 Proposed Semi-supervised Learning Framework 87

3.3.4 Experiment Setup . 90

3.3.5 Results and Discussion . 92

3.3.6 Comparison against SOTA . 99

3.3.7 Summary . 105

4 Improved Pseudo Labeling Approach and Integration of Macaron Net 107

4.1 Supervised CNMF for Pseudo Labeling 107

4.2 Macaron Net . 109

4.2.1 Motivation . 109

4.2.2 Preliminaries of Transformer and Macaron Net 109

4.3 Experimentation using CNMF and Macaron Net 113

4.3.1 Proposed Semi-Supervised Learning Framework 114

4.3.2 Experiment Setup . 117

4.3.3 Results and Discussion . 119

4.3.4 Comparison against SOTA . 123

4.4 Multi-branch Convolutional Macaron Net for SED 124

4.4.1 Improved Models Architecture 125

4.4.2 Meta-ACON and SE Module . 127

4.4.3 Improved Macaron Net Encoding Layer 129

4.4.4 Multi-Branch Pooling . 130

4.4.5 Proposed Semi-Supervised Learning Framework 131

4.4.6 Experiment Setup . 133

4.4.7 Results and Discussion . 136

4.4.8 Comparison against SOTA . 143

4.5 Summary . 147

5 Lightweight Convolutional-iConformer For SED 149

5.1 Motivation . 149

viii

Table of Contents

5.2 Preliminaries of Conformer and Symmetrical Cross Entropy 152

5.2.1 Conformer . 152

5.2.2 Symmetrical Cross Entropy . 155

5.3 Model Layout . 156

5.4 Proposed Semi-Supervised Learning Framework 160

5.5 Experiment Setup . 162

5.6 Results and Discussion . 164

5.7 Comparison against SOTA . 169

5.8 Summary . 172

6 Conclusion 173

6.1 Summary and Contributions . 173

6.2 Future Work . 175

References 177

ix

List of Figures

1.1 Difference between a monophonic (left) and polyphonic (right) SED system 2

1.2 Difference between strong label and weak label 3

1.3 Example of a Mean-Teacher approach 4

2.1 Different categories of a SED system . 11

2.2 Proposed methodology by Heittola et al. (2013a) 13

2.3 Proposed methodology by Heittola et al. (2013b) 14

2.4 Proposed methodology by Mesaros et al. (2015) 17

2.5 Example of an MLP . 22

2.6 Backpropagation algorithm . 24

2.7 Proposed methodology by Cakir et al. (2015b) 25

2.8 Proposed methodology by Cakir et al. (2015a) 26

2.9 Flowchart of a CapsNet (Vesperini et al., 2019) 30

2.10 Example of a CRNN . 34

2.11 Proposed framework by Xia et al. (2019) 40

2.12 Proposed framework by Lee et al. (2017) 52

2.13 Proposed framework by Xu et al. (2018) 53

2.14 Proposed framework by Lin et al. (2020) 57

2.15 Proposed framework by Kothinti et al. (2019) 59

2.16 Proposed framework by Pellegrini and Cances (2019) 60

3.1 Activation matrix of an audio clip containing dog barking 72

3.2 Flowchart of proposed unsupervised NMF pseudo labeling method 75

3.3 Comparison between a TF representation and the strong labels of the TF

representation . 76

3.4 Difference between proposed model and Kong et al. (2019a) model 77

3.5 Flowchart for data combination . 81

3.6 Proposed supervised NMF labeling method 87

3.7 SM for frame-level prediction . 87

xi

List of Figures

3.8 TM for clip-level prediction . 88

3.9 Effects of different scaling factor . 89

3.10 Flowchart of experiment setup . 91

3.11 Flowchart of experiment setup . 93

3.12 Difference in labeling method . 95

4.1 Architecture of a Transformer (Vaswani et al., 2017) 110

4.2 Example of a PE . 112

4.3 Difference between a Transformer encoding layer (Vaswani et al., 2017)

and a Macaron Net encoding layer (Lu et al., 2019) 113

4.4 SM with Macaron Net (Lu et al., 2019) for frame-level prediction 114

4.5 TM with Macaron Net (Lu et al., 2019) for clip-level prediction 115

4.6 Improved SM and TM . 126

4.7 Modules description . 126

4.8 Multi-branch pooling approach . 127

4.9 SE module . 128

4.10 Difference between the encoding layers 129

4.11 Mixup by concatenation . 132

4.12 Difference in cyclic learning scheme . 135

4.13 Transition of w in the proposed cyclic learning scheme 135

4.14 Accuracy chart using different multi-branch combinations 137

5.1 Accuracy versus parameter used by the top 3 submissions in the annual

DCASE challenge task 4 (evaluation dataset) 149

5.2 Differences between the conventional convolution and depthwise separable

convolution . 151

5.3 Difference between the encoding layers 153

5.4 Positionwise feedforward module in a Conformer 154

5.5 Multi-head attention with relative positional encoding in Conformer . . . 154

5.6 Convolutional module in Conformer . 154

5.7 SM and TM . 156

5.8 Modules description . 157

5.9 Difference between Conformer and iConformer 158

5.10 Difference between positionwise feedforward module in Conformer and

iConformer (LN represents layer normalization and FF represents feedfor-

ward) . 158

xii

List of Figures

5.11 Difference between the convolutional module in Conformer and iConformer158

xiii

List of Tables

2.1 Features proposed for non-NN based methodologies 20

2.2 Parameters used for feature calculation (non-NN based methodologies) . 20

2.3 Additional processing steps (non-NN-based methodologies) 20

2.4 Non-NN based methodologies . 21

2.5 Dataset used by different authors and reported accuracy using non-NN-

based methodologies . 22

2.6 Limitations for different non-NN based methodologies 23

2.7 Features proposed for non-hybrid NN-based methodologies 31

2.8 Parameters used for feature calculation (non-hybrid NN-based methodolo-

gies) . 32

2.9 Additional processing steps (non-hybrid NN-based methodologies) 32

2.10 Non-hybrid NN architecture . 33

2.11 Loss functions and optimizers used for training non-hybrid NN-based

architecture . 34

2.12 Additional models information (non-hybrid NN-based architecture) . . . 35

2.13 Dataset used by different authors and reported accuracy using non-hybrid

NN-based methodologies . 36

2.14 Limitations for different non-hybrid NN-based methodologies 37

2.15 Features proposed for hybrid NN-based methodologies 43

2.16 Parameters used for feature calculation (hybrid NN-based methodologies) 43

2.17 Additional processing steps (hybrid NN-based methodologies) 44

2.18 Hybrid NN architecture by Cakir et al. (2017) 45

2.19 Hybrid NN architecture by Jung et al. (2019) 45

2.20 Hybrid NN architecture by Adavanne et al. (2017) 46

2.21 Hybrid NN architecture by Adavanne et al. (2018) *First layer is a 3D CNN 47

2.22 Hybrid NN architecture by Xia et al. (2019) 47

2.23 Hybrid NN architecture by Ding and He (2020) 47

2.24 Loss functions and optimizers used for training hybrid NN-based architecture 48

xv

List of Tables

2.25 Additional models information (hybrid NN-based architecture) 49

2.26 Dataset used by different authors and reported accuracy using hybrid NN-

based methodologies. Dev refers to development dataset. Eva refers to

evaluation dataset. 50

2.27 Limitations for different hybrid NN-based methodologies 51

2.28 Features proposed for methodologies utilizing weakly labled data 62

2.29 Parameters used for feature calculation (models utilizing weakly labeled

data). *Spectrogram channels . 63

2.30 Additional processing steps (models utilizing weakly labeled data) 63

2.31 Proposed architecture by Lee et al. (2017) 64

2.32 Proposed CRNN architecture by Xu et al. (2018) 64

2.33 Proposed CNNT architecture by Kong et al. (2020) 64

2.34 Proposed CRNN architecture by Lu (2018). (Note: SM and TM are identical) 65

2.35 Proposed architecture by Lin et al. (2019, 2020) 65

2.36 Proposed architecture by Kothinti et al. (2019) 66

2.37 Proposed architecture by Pellegrini and Cances (2019) 66

2.38 Loss functions and optimizers used for models utilizing weakly labeled data 67

2.39 Additional models information (models utilizing weakly labeled data) . . 68

2.40 Dataset used by different authors and reported accuracy (models utilizing

weakly labeled data). Dev refers to development dataset. Eva refers to

evaluation dataset. 69

2.41 Limitations of models utilizing weakly labeled data 70

3.1 Parameters used to calculate a mel spectrogram 72

3.2 DCASE 2019 dataset . 74

3.3 Comparison against Kong et al. (2019a) and baseline system on the valida-

tion dataset . 80

3.4 F1-Score on validation dataset using different types of data. ♣ C1-Pseudo

strongly labeled data. ♠ C2- Synthetic strongly labeled data. ♢ C3-

Pseudo strongly labeled data and synthetic strongly labeled data. ♡ C4-

Unlabeled data (labeled using ♣ Proposed-C1). ⋆ C5- Pseudo strongly

labeled data and unlabeled data (labeled using ♣ Proposed-C1). □ C6-

Unlabeled data (labeled using ♢ Proposed-C3). △ C7- Pseudo strongly

labeled data, synthetic strongly labeled data and unlabeled data (labeled

using ♢ Proposed-C3). 81

xvi

List of Tables

3.5 F1-Score on evaluation 2019 dataset using different types of data. ♣ C1-

Pseudo strongly labeled data. ♢ C3- Pseudo strongly labeled data and

synthetic strongly labeled data. ⋆ C5- Pseudo strongly labeled data and

unlabeled data (labeled using ♣ Proposed-C1). △ C7- Pseudo strongly

labeled data, synthetic strongly labeled data and unlabeled data (labeled

using ♢ Proposed-C3). 82

3.6 DESED 2020 dataset . 85

3.7 Importance of synthetic data . 93

3.8 Sensitivity of λ . 94

3.9 Effects of using different Ptot and Pmult 94

3.10 Comparison against different labeling method 96

3.11 Model trained with pseudo strongly labeled data and weak labeled data

labeled with type-1 labeling . 97

3.12 Model trained with pseudo strongly labeled data and weak labeled data

labeled with type-2 labeling . 97

3.13 Ablation of lcon and lunlabel . 97

3.14 Effects of different pooling approach in SM 98

3.15 Classwise event-based F1-score (%) of System 2 99

3.16 Comparison against the top 3 submissions from 2019 on the validation

dataset. (Note: *Ensembled system with median filter window sizes tuned).101

3.17 Comparison against the baseline systems and top submission from 2020

on the validation dataset and evaluation 2020 dataset. (Note: *Ensembled

system with median filter window sizes tuned). 102

3.18 Augmentations used (non-ensembled system) 103

3.19 Accuracy on long-duration (60s) dataset (Turpault et al., 2021) 104

4.1 Accuracies of systems trained using different pseudo strongly labeled data 120

4.2 System accuracy with different warm-up epochs 120

4.3 Importance of positional encoding . 121

4.4 Architecture accuracy using different settings 121

4.5 System accuracy with different numbers of encoding layer and head . . . 121

4.6 Ablation of lcon and lri . 122

4.7 Comparison of accuracy with and without curriculum consistency losses . 122

4.8 Effect of λmin on accuracy . 122

4.9 Parameter analysis for Lookahead . 123

xvii

List of Tables

4.10 Effect of λmin on accuracy . 123

4.11 AT and event-based F1 score using different pooling methods 136

4.12 Effects of NBR on accuracy . 137

4.13 AT (first row) and event-based F1-score (second row) (%) using different

pooling combinations . 138

4.14 Effects of Lri on event-based F1-score 139

4.15 Sensitivity analysis of ν . 139

4.16 Effect of having multi-branch pooling 139

4.17 Accuracy using different pooling methods in SM and ESM-AP-Att in TM 139

4.18 Accuracy of model using different number of heads and encoding layer . 141

4.19 Effects of LN and proposed feedforward networks 141

4.20 Effects of SE modules . 142

4.21 Effects of different Ti and proposed slow learning rate transition 142

4.22 Effectiveness of CNMF for pseudo labeling (Illustration of type-1 and

type-2 labeling is given in Section 3.3.5) 143

4.23 Comparison of system against other SOTA 145

4.24 Classwise accuracy of proposed methodology 147

5.1 Effects of filter size and kernel size on event-based F1-score (%) 164

5.2 Effects of NFBR and RF on event-based F1-score (%) 164

5.3 Importance of additional pointwise convolution and GLU 165

5.4 Accuracy using different number of encoding layers and heads 166

5.5 Effect of using different positional encoding 166

5.6 Comparison between iConformer and Conformer 167

5.7 Analysis on depthwise-separable module 167

5.8 Importance of encoding layer for AT model 167

5.9 Effects of different µ . 168

5.10 Effects of different τ . 168

5.11 Loss functions use for calculating frame-level loss 169

5.12 Importance of lrc and lru . 169

5.13 Comparison of system against other SOTA 171

xviii

Nomenclature

List of Symbols

b Bias

C Cost

d Index of dimension

dk Dimension of key

dmodel Dimension of model

EF Expansion factor

ε Weighing parameter

f (.) Activation function

gi, j Ground truth for event i at frame j

Ḧ Activation matrix

H Head
k→
Ḧ Ḧ which is shifted k steps to the right

k→
Ḧt Ḧ which is shifted k steps to the right at time step t

Ḧt Activation matrix at time step t

Ḧt−1 Activation matrix at time step t−1

J(.) Cost function

K Key

κ Switching factor

λ Confidence threshold

xix

Nomenclature

λcurr Current confidence threshold

λmax Maximum confidence threshold

λmin Minimum confidence threshold

lc Clip-level loss

lce Cross Entropy Loss

lcon Consistency cost on labeled sample

lunlabel Consistency cost on unlabeled sample

lf Frame-level loss

li Interpolated consistency loss

lL
i Interpolated consistency loss on labeled data

lL
ri Regularized interpolated consistency loss on labeled data

lce Reverse Cross Entropy Loss

LRcurr Current learning rate

lri Regularized interpolated consistency loss

LRmax Maximum learning rate

LRmin Minimum learning rate

lsbce Symmetrical Binary Cross Entropy Loss

lce Symmetrical Cross Entropy Loss

Mi, j Predicted probabilty for event i at frame j

µ Weighing parameter

Nb Number of frequency bins

NBR Number of branches

Nc Number of channels

Nde Number of decoding layers

xx

Nomenclature

Ne Number of events

Nen Number of encoding layers

Nf Number of frames

NFBR Number of positionwise feedforward branches

Nh Number of heads

ν Weighing parameter

P Positive value representing training progression

Pcurr Current iteration

PE Positional encoding

Pmult Positive integer to delay the next learning rate reset

pos Index of position

ψ Mixing factor

Ptot Total iteration before a learning rate reset

Q Query

r Number of component

RF Reduction factor

Sc
i Student model’s predicted probability of event i in a labeled sample

S̃c
i Student model’s predicted probability of event i in an unlabeled sample

σ Sigmoid function

Si, j Student model’s predicted probability of event i at frame j

Smc Student model’s predicted probability of event i in a mixed labeled sample

S̃mc Student model’s predicted probability of event i in a mixed unlabeled sample

S̃mc Vector representing student model’s predicted probabilities in a mixed unlabeled

sample

xxi

Nomenclature

Smc Vector representing student model’s predicted probabilities in a mixed labeled

sample

S̈k Vector representing clip-level prediction from student model on sample k

S̈u
k Vector representing clip-level prediction from student model on unlabeled sample k

T Vector representing teacher model’s predicted probabilities of all events in a labeled

sample

τ Weighing parameter

Ti Teacher model’s predicted probability of event i in a labeled sample

Tm Vector representing teacher model’s interpolated predicted probabilties in a labeled

mixed sample

T́m Vector representing teacher model’s combined predicted probabilties in an unlabeled

mixed sample

T́ m
i Teacher model’s combined predicted probability of event i in an unlabeled sample

T̂m Vector representing teacher model’s predicted probabilities in a mixed unlabeled

sample

T̂i Teacher model’s predicted probability of event i in a mixed unlabeled sample

T m
i Teacher model’s interpolated predicted probability of event i in a labeled mixed

sample

T̈k Vector representing clip-level prediction from teacher model on sample k

T̃m Vector representing teacher model’s interpolated predicted probabilties in an unla-

beled mixed sample

T̃ m
i Teacher model’s interpolated predicted probability of event i in an unlabeled mixed

sample

T̃ Vector representing teacher model’s predicted probabilities of all events in an

unlabeled sample

T̃i Teacher model’s predicted probability of event i in an unlabeled sample

T̈u
k Vector representing clip-level prediction from teacher model on unlabeled sample k

xxii

Nomenclature

UA
1 Augmented feature representation of unlabeled sample 1

ŪA
1 Portion of UA

1

UU
1 Unaugmented feature representation of unlabeled sample 1

UA
2 Augmented feature representation of unlabeled sample 2

ŪA
2 Portion of UA

2

UU
2 Unaugmented feature representation of unlabeled sample 2

Um Feature representation of a mixed unlabeled sample

V Value

ς Trainable parameter in meta-ACON

V̈ Nonnegative matrix

Ṽ Estimated nonnegative matrix of V̈

W Weights

WK
i Parameter matrix for the i head

Ẅ Basis/Dictionary matrix

Ẅk Ẅ at k-step shift

Ẅk,t Ẅ at k-step shift and time step t

Ẅk,t−1 Ẅ at k-step shift and time step t−1

Ẅt Basis/Dictionary matrix at time step t

Ẅt−1 Basis/Dictionary matrix at time step t−1

WO Parameter matrix for the concatenated feature vector (i.e., head)

WQ
i Parameter matrix for the i head

w Weighing parameter

WV
i Parameter matrix for the i head

x Input vector/input matrix/input features

xxiii

Nomenclature

x̄ Output matrix from the MHA

xFM Feature maps from the last convolutional layer

x̂ Output matrix from the positional encoding

x̃ Output matrix from the first Macaron Net positionwise FF module

Y Output vector/output matrix/output features

Yen Output matrix from an encoding layer

ẑi Predicted probability of event i in an audio clip

zi Ground truth of event i in a labeled sample

Zk Vector representing clip-level ground truth of sample k

List of Abbreviations

AC-GAN Auxiliary Classifier Generative Adversarial Network

ACR Autocorrelation

AED Acoustic Event Detection

ASA Auditory Scene Analysis

ASR Automatic Speech Recognition

AUC Area Under Curve

BCE Binary Cross Entropy

BGRU Bidirectional GRU

BLSTM Bidirectional Long Short Term Memory

BN Batch Normalization

CapsNet Capsule Neural Network

CASA Computational Auditory Scene Analysis

CBLSTM Convolutional Bidirectional Long Short Term Memory

CD Contrastive Divergence

xxiv

Nomenclature

CE Cross Entropy

CG Context Gating

CNMF Convolutive Nonegative Matrix Factorization

CNN Convolutional Neural Network

CNNT Convolutional Neural Network-Transformer

cRBM Conditional Restricted Boltzmann Machine

CRNN Convolutional Recurrent Neural Network

CRP Chinese Restaurant Process

DCASE Detection and Classification of Acoustic Scenes and Events

DCT Discrete Cosine Transform

DNN Deep Neural Network

dom-freq Dominant frequency and its amplitude

EER Equal Error Rate

EM Expectation-Maximization

ER Error Rate

FC Fully Connected

FF Feedforward

FFT Fast Fourier Transform

FN False negative

FNN Feedforward Neural Network

FP False positive

GAN Generative Adversarial Network

GCC-PHAT Generalized cross-correlation with phase-based weighting

GLU Gated Linear Unit

xxv

Nomenclature

GMM Gaussian Mixture Model

GMM-HMM Gaussian Mixture Model-Hidden Markov Model

GPU Graphics Processing Unit

GRU Gated Recurrent Unit

HMM Hidden Markov Model

iConformer Improved-Conformer

LN Layer Normalization

MAE Mean Absolute Error

meta-ACON meta-ACtivate-Or-Not

MFCCs Mel-Frequency Cepstral Coefficients

MHA Multi-Head Attention module

mIBP Markov Indian Buffet Process

mixupc Mixup by concatenation

MLP Multi-Layer Perceptron

NMF Nonnegative Matrix Factorization

NN Neural Network

PCA Principle Component Analysis

RBCE Reverse Binary Cross Entropy

RBCE Reverse Binary Cross Entropy

RBM Restricted Boltzmann Machine

RCE Reverse Cross Entropy

ReLU Rectified Linear Unit

RF Random Forest

RMSE Root Mean Square Error

xxvi

Nomenclature

RNN Recurrent Neural Network

SBCE Symmetrical Binary Cross Entropy

SCE Symmetrical Cross Entropy

SED Sound Event Detection

SE Squeeze and Excite

SM Student Model

SNR Signal-to-Noise Ratio

SOTA State-Of-The-Art

STFT Short Time Fast Fourier Transform

TDoA Time Difference of Arrival

TF Time-Frequency

TM Teacher Model

TP True positive

xxvii

Chapter 1. Introduction

1.1. Background

Sound phenomena can be described as a series of events that begin with the mechanical

disturbance in a medium. For example, a vibrating sound source sets the molecules in

a medium into motion, leading to deviations from the static pressure. These deviations

then propagate in the form of longitudinal waves known as sound waves (Thewissen and

Nummela, 2008). These waves are received by the human ears, which cause us to react

differently depending on the situation and individual preference.

The environment surrounding us usually comprises several different sounds interleaving

and overlapping in time and frequency, resulting in a complex array of acoustic information

(Virtanen et al., 2017). Nevertheless, such complex information can be easily deciphered

by our auditory system allowing us to make sense of the acoustic information. This is

made possible through a fundamental skill known as Auditory Scene Analysis (ASA). The

analytical framework can be described in two stages: decomposing an acoustic signal into

different sensory components, followed by combining components from similar sources

into a perceptual structure that can be interpreted by higher-level processes (Bregman,

1990). Subsequent research efforts to replicate ASA using computational means were then

termed Computational Auditory Scene Analysis (CASA). One major research area in this

domain is Sound Event Detection (SED), which may also be referred to as Acoustic Event

Detection (AED).

A SED system can be described as an intelligent system that mimics an aspect of the

auditory system where the primary objective is to perform audio tagging and temporal

localization simultaneously. Audio tagging refers to the detection of an acoustic event of

interest within an audio clip. In contrast, temporal localization refers to the annotation of

the onset and offset of the identified acoustic event of interest.

A SED system can be categorized into a monophonic SED system or a polyphonic

SED system. As illustrated in Figure 1.1, a monophonic SED system can only detect a

single event within a specific time frame. In comparison, a polyphonic SED system has

the capability to detect more than one event within a specific time frame. Naturally, a

1

Introduction

polyphonic SED system is more suitable for real-life applications since a recorded audio

clip is more likely to contain multiple acoustic events which may overlap.

Figure 1.1 Difference between a monophonic (left) and polyphonic (right) SED system

Compared to an image, the information provided by a SED system may seem trivial at

first thought; however, a SED system can have several advantages compared to a camera or

video recorder. Firstly, a sound is not affected by the degree of illumination or occlusion,

making it suitable for deployment in dark or areas with low visibility. Secondly, some

events can only be detected by sounds such as a car horn or gunshot. Furthermore, sound

can attract the immediate attention of an individual, while a video recording may not. For

example, a baby wailing can capture the immediate attention of a parent or guardian, who

can then remedy any issue or discomfort the baby faced. However, the video captured by a

closed-circuit television may not show any symptoms or signs of the baby’s discomfort,

which can delay any necessary treatment. Finally, storing and processing an audio clip

typically consumes lesser computation resources than a video recording.

Thus, a SED system can be promising in various domains such as medical telemon-

itoring (Nguyen and Tran, 2013), surveillance (Chaudhary et al., 2018; Clavel et al.,

2005), equipment monitoring (Chan and Chin, 2019; Grollmisch et al., 2019), wildlife and

biodiversity monitoring (Florentin et al., 2016; Zhao et al., 2017) .

1.2. Challenges for SED

As mentioned earlier, the environment surrounding us usually comprises several different

sounds interleaving and overlapping in time and frequency (Virtanen et al., 2017). Thus,

audio recorded in our daily lives is a complex array of acoustic information that can be

difficult to decode through computational means.

As events may coincide, this may indicate that features extracted from the audio

mixture may not match any features extracted from sounds in isolation (Parascandolo

2

Introduction

et al., 2016; Schroder et al., 2017) . Moreover, it is not known a priori which events are

overlapped and the number of events captured in an audio clip.

Subsequently, each event class may be made up of different sources with varying

characteristics. For example, a barking sound produced by a chihuahua and a husky is

different and can be affected by the dog’s level of aggression at that moment (Parascandolo

et al., 2016). Furthermore, background noise can complicate the identification of sound

events within a particular time frame (Kong et al., 2019b) and is further aggravated if the

Signal-to-Noise Ratio (SNR) is low.

System development can also be hindered by the need for a large amount of strongly

labeled data, where the event tags and their corresponding onsets and offsets are known

with certainty (as seen in Figure 1.2A). This is because collecting such data is difficult and

time-consuming as it requires repeated listening and adjustments of events’ boundaries on

a visual interface (Kim and Pardo, 2019). Accuracy of onset and offset annotation is also

ambiguous due to the fade in and fade out effect (McFee et al., 2018) and is subjected to

the person labeling the event. Thus, the sizes of such data are often limited to minutes or a

few hours (Kim and Pardo, 2019; Kong et al., 2019b; McFee et al., 2018).

Figure 1.2 Difference between strong label and weak label

Research efforts then turn to weakly labeled data, where only the event tags are known

with certainty for system development (as seen in Figure 1.2B). The use of such data

alleviates the need for strongly labeled data and has shown promising results in various

studies (Lin et al., 2019; Lu, 2018; Miyazaki et al., 2020). However, as seen in the

Detection and Classification of Acoustic Scenes and Events (DCASE) 2017 challenge task

4, no system could win both tagging and localization subtasks when given only weakly

labeled data. This may be due to the lack of strongly labeled data, and the development

of a SED system may still require strongly labeled data to achieve maximal performance.

Such a conclusion is derived from a study conducted by Turpault et al. (2020a), where

they found that weakly labeled data can degrade the tagging performance slightly when

using an end-to-end classifier trained in a discriminative manner. Subsequently, Hershey

3

Introduction

et al. (2021) also found that the use of both strongly labeled and weakly labeled data can

substantially improve the classifier’s performance in the audio classification domain.

Among the different strategies used to train a SED system that excludes strongly

labeled data, the most popular framework is the Mean-Teacher approach (Tarvainen and

Valpola, 2017). The main idea is to train two identical models synchronously, in which one

is known as the student model while the other is known as the teacher model. The student

model is updated with a multi-label classification cost and a consistency cost, where the

consistency cost enforces the predictions of the student model to be consistent with the

predictions of the teacher model on the unlabeled data. On the other hand, the teacher

model is updated using the exponential moving average of the student model’s weight. An

example of such an implementation is illustrated in Figure 1.3.

Figure 1.3 Example of a Mean-Teacher approach

However, the Mean-Teacher approach (Tarvainen and Valpola, 2017) can have two

critical limitations. Firstly, it can be computationally expensive if a very deep model is

designed due to a need to train two of them synchronously. Secondly, a model designed

might only be optimal for either audio tagging or temporal localization but not both.

1.3. Contributions of This Thesis

This thesis proposes to address the lack of strongly labeled data by using pseudo strongly

labeled data. A set of pseudo strongly labeled data can be defined as a set of data where the

event tags are known with certainty, but the corresponding onsets and offsets are estimated.

In addition, we also propose to address the issues caused by using the Mean-Teacher

approach. Using the pseudo strongly labeled data, we conducted different experiments and

4

Introduction

studies to investigate various aspects of a SED system to maximize the system’s accuracy

at both subtasks (i.e., audio tagging and temporal localization). These lead to the following

contributions:

• A novel pseudo labeling approach using unsupervised Nonnegative Matrix Fac-

torization (NMF). In the SED domain, NMF (Lee and Seung, 1999) is commonly

used as a decomposition method to extract spectral templates from isolated events to

form a dictionary. Temporal localization is then done by applying a threshold on the

activation matrix obtained from the decomposition of the test data using the event

dictionary (i.e., consolidated spectral templates). In our study, instead of applying

NMF in the conventional manner, we propose to apply NMF on each weakly labeled

sound clip to derive the activation matrix. We then locate the activated frames in the

activation matrix, which acts as the temporal labels for the weakly labeled clip. If

the clip contains multiple events, those activated frames are deemed to contain all

the sound events. A Convolutional Neural Network (CNN) is then trained using the

pseudo strongly labeled data. Experiment results show that our proposed method

can be a promising solution to train a SED system.

– The entire framework is described in Chapter 3 and was published as a work-

shop paper; Chan, T. K., Chin, C. S., and Y. Li. (2019). Non-negative matrix

factorization-convolution neural network (NMF-CNN) for sound event de-

tection. In Proceeding of the Workshop on Detection and Classification of

Acoustic Scenes and Events, pages 40-44, New York, NY, USA.

– This study also won the DCASE 2019 challenge task 4 Judges’ Award for the

method considered by the judges to be the most interesting or innovative.

• An improved pseudo labeling approach using supervised NMF and a combina-

tive transfer learning and semi-supervised learning framework to train a SED

system. Our previous study assumed that each activated frame contains all the events

present in an audio clip; such an assumption can introduce noise into the training

data. As such, we propose an improved pseudo labeling method using supervised

NMF. The idea is to approximate the temporal labels for each weakly labeled data

using spectral templates extracted from synthetic strongly labeled data. We then

proposed a combinative transfer learning and semi-supervised learning framework

to train a SED system using the pseudo strongly labeled data. This combinative

approach incorporates a cyclic learning scheme that improves convergence and a

5

Introduction

novel student-teacher framework that allows the system to be adept at audio tagging

and temporal localization. Subsequent analysis shows that our system is capable of

producing SOTA (State-Of-The-Art) performance.

– The entire framework is described in Chapter 3 and was summarized as journal

paper; Chan, T. K., Chin, C. S., and Y. Li. (2021). Semi-supervised nmf-cnn

for sound event detection. IEEE Access, 9:130529-130542.

• Further improvement of the pseudo labeling quality using Convolutive Non-

negative Matrix Factorization (CNMF) and a novel architecture combining

CNN with Macaron Net encoding layer trained using curriculum consistency

costs. We propose using CNMF (Smaragdis, 2007) as our pseudo labeling method

based on the hypothesis that if CNMF can better separate the audio mixtures than

NMF, it should also improve the pseudo labeling quality. We then propose a novel

architecture combining CNN with the Macaron Net encoding layer (Lu et al., 2019)

that uses a new activation function known as Mish (Misra, 2019) rather than the con-

ventional Rectified Linear Unit (ReLU) activation function in the entire architecture.

Finally, to better leverage the large corpus of unlabeled data for semi-supervised

learning, we propose two new consistency costs: curriculum consistency cost and

curriculum interpolated consistency cost. The main idea is to vary the confidence

threshold so that consistency costs that ensure consistency between the student and

teacher models will not be calculated based on only highly confident predictions

throughout the entire training process. Experiment results then show that CNMF is a

better pseudo labeling tool, and a system trained using our proposed framework can

be competitive to the SOTA.

– The entire framework is described in Chapter 4 and was published as workshop

paper; Chan, T. K., and Chin, C. S. (2021). Detecting sound events using

convolutional macaron net with pseudo strong labels. In Proceeding of the

IEEE 23rd Workshop on Multimedia Signal Processing, Tampere, Finland.

• The proposal of an improved student-teacher framework that incorporates a

triple instance-level pooling approach, an improved Macaron Net encoding

layer, and an improved cyclic learning scheme that improve both audio tagging

and temporalization. Although our earlier student-teacher framework can be

competitive to the SOTA, having to tune two completely different models can be

time-consuming. As such, we propose a straightforward design where the only

6

Introduction

differences lie in the number of convolutional layers, pooling size, and temporal

pooling method. Subsequently, although the use of a Macaron Net encoding layer

(Lu et al., 2019) can improve the accuracy of temporal localization, we found that the

accuracy of audio tagging can be reduced. We then focused on improving the SED

system as a whole rather than a single subtask. This leads to the proposal of several

new ideas. Firstly, an improved cyclic learning scheme that incorporates a periodic

increment and decrement of the learning rate. Secondly, a triple instance-level

pooling approach that allows the model to learn unique characteristics from each

temporal pooling approach. The incorporation of such a module in the teacher model

not only raises the audio tagging accuracy but also forces the student model to learn

from a more complex model, which leads to an improvement in temporal localization.

Finally, we propose an improved Macaron Net encoding layer that adopts the pre-

Layer Normalization (LN) arrangement with additional Fully Connected (FC) layers

and shows that a single layer single head implementation is sufficient for SED.

Extensive experiments were carried out to examine different aspects of our proposals.

Based on our framework, our SED system can achieve an event-based F1-score of

48.5%, and by ensembling the top five models, the event-based F1-score can be

increased to 50.4%. Such results allow our model to have a minimum margin of over

12% against the baseline system and be competitive against the other SOTA.

– The entire framework is described in Chapter 4 and was summarized as journal

paper; Chan, T. K., and Chin, C. S. (2021). Multi-branch convolutional mac-

aron net for sound event detection. IEEE/ACM Transactions on Audio, Speech

and Language Processing, 29:2972-2985.

• The proposal of a noise-robust loss function with an improved depthwise sepa-

rable convolution and an improved Conformer encoding layer. As pseudo labels

will inevitably contain a certain amount of noise, we propose a noise-robust loss

function that extends the Binary Cross Entropy (BCE) by considering the Reverse

Binary Cross Entropy (RBCE) to promote learning in the presence of label noise.

Driven by the fact that deep learning models are often highly parametrized and

may face deployment issues in many real-world applications, we propose using a

lightweight convolution. This lightweight convolution is commonly known as the

depthwise separable convolution (Chollet, 2017b), which factorizes a standard con-

volution into a depthwise and pointwise convolution. Unlike the standard depthwise

separable convolution, which does not include the use of nonlinearities, we propose

7

Introduction

the addition of Swish (Ramachandran et al., 2017) and Batch Normalization (BN),

which was found to improve the system accuracy. Finally, we propose an improved

Conformer encoding layer (Gulati et al., 2020) which utilizes a multibranch position-

wise FeedForward (FF) module and a convolution module with lesser convolution

operations. Through our experiments, we show that our lightweight system that

utilizes approximately 509k parameters has the capability to outperform the SOTA.

– The entire framework is described in Chapter 5 and was summarized as journal

paper and is currently under review.

Other contribution includes a comprehensive review on SED, which was published as

a journal paper and forms the Chapter 2 of this thesis.

• Chan, T. K., and Chin, C. S. (2020). A comprehensive review on polyphonic sound

event detection. IEEE Access, 8:103339-103373.

1.4. Thesis Outline

The rest of the thesis is organized as follows:

In Chapter 2, a literature review for SED is provided. The chapter provides an in-depth

discussion of different methodologies proposed by various authors, which comprises the

features used, detection algorithms, and their corresponding accuracy and limitations.

In the earlier few sections of Chapter 3, the motivation of using pseudo labels is

provided, followed by a proof of concept carried out to determine if NMF can be an

effective tool for pseudo labeling and how pseudo strongly label data can affect the training

of a CNN. These sections include a description of the pseudo labeling procedure and

experimental results on the DCASE 2019 challenge task 4 dataset. The later sections of

the chapter then present a supervised NMF pseudo labeling method and the proposed

combinative transfer learning and semi-supervised learning framework. We first describe

how NMF can provide temporal labels in a supervised manner, followed by the description

of two different models that are designed to be adept at the respective subtasks (i.e., audio

tagging and temporal localization). We then present how we trained the two models and

examine the results of extensive experiments to better understand the effects of different

hyperparameters.

In Chapter 4, we investigate the effectiveness of CNMF as a pseudo labeling tool and

the incorporation of the Macaron Net encoding layer into our SED system, and finally, the

use of curriculum consistency costs. The proposed ideas are then evaluated on the DCASE

8

Introduction

2020 challenge task 4 dataset. We then attempt to improve a SED system as a whole rather

than improving the accuracy on a single subtask. First, we demonstrate that two models

can be designed in a simple way and yet adept at both subtasks (i.e., audio tagging and

temporal localization). We then evaluate the use of 7 different pooling methods and their

combinations and present a theoretical explanation of the results. We then examine other

aspects of our system, such as the proposed cyclic learning scheme and improved Macaron

Net encoding layer.

In Chapter 5, we attempt to address the noise that can be introduced through pseudo

labeling and presents our framework to reduce the number of parameters in our sys-

tem. Through extensive experiments, we demonstrate that a lightweight system can be

competitive or even outperform the SOTA.

Finally, Chapter 6 concludes this thesis and discusses the future research directions.

9

Chapter 2. Literature Review

A SED system can be broadly classified into non-Neural Network (NN) based and NN-

based methodologies. As seen in Figure 2.1, NN-based methods can be further classified

into non-hybrid models, hybrid models, and models utilizing weakly labeled data. In

this thesis, a non-hybrid model refers to a model that has not been modified or stacked

with another model, whereas a hybrid model refers to models that are stacked together

to become one model. As models trained using weakly label data generally have a big

difference with their detection strategy, they are classified into a different subcategory

instead of the non-hybrid or hybrid models subcategory. Thus this chapter proposed to

discuss these groups of methodologies in the same manner. The discussion of methods in

this section will be done in the following order, the non-NN based methods followed by

the NN based methods.

The content of this chapter was published as a journal paper, Chan, T. K., and Chin, C.

S. (2020). A Comprehensive Review on Polyphonic Sound Event Detection. IEEE Access,

8:103339-103373.

Figure 2.1 Different categories of a SED system

2.1. Non Neural Network Based Methodology

2.1.1. Gaussian Mixture Model-Hidden Markov Model

Perhaps one of the earliest SOTA for Automatic Speech Recognition (ASR) is the Hidden

Markov Model (HMM) (Baker et al., 2009; Rabiner, 1989), where it provides the likelihood

11

Literature Review

of a set of acoustic vectors given a word sequence (Stuttle, 2003). HMM is a statistical

model where each state is not directly observable (i.e., hidden) (Mayorga et al., 2015;

Shi et al., 2018) and can be considered a natural speech recognition framework. This is

because speech has a temporal structure and can be encoded as a sequence of spectral

vectors spanning the audio frequency range (Gales and Young, 2007).

With the introduction of the Expectation-Maximization (EM) algorithm, Gaussian

Mixture Model (GMM) can be used to model the probability distributions over vectors of

input features associated with each state of an HMM (Hinton et al., 2012; Mayorga et al.,

2015). Hinton et al. (2012) explained that GMM could have several benefits that make

it suitable for such a task. Firstly, with enough components, they can model probability

distributions to any required level of accuracy, and secondly, they are relatively easy to

fit data using the EM algorithm. Such a combination made them so successful that it was

difficult for any new method to outperform them for a long while (Hinton et al., 2012).

With success in ASR, GMM-HMM becomes a natural choice for other sound-related tasks

(Heck et al., 2016; Mayorga et al., 2015; Rajapakse and Wyse, 2005).

Mesaros et al. (2010) investigated the effectiveness of GMM-HMM on a large-scale

audio database that consists of 61 event classes. In their study, Mel-Frequency Cepstral

Coefficients (MFCCs), delta MFCCs, delta-delta MFCCs were used as the input features

to train a three-state left-to-right HMM with 16 Gaussians per state for each event class.

Subsequently, the models were connected into a network HMM having equal transition

probabilities from one event model to another. Such implementation would allow an

unrestricted sequence of 61 models where any model can follow any other with no limits

to the number of detected events. Using the Viterbi algorithm (Forney, 1973), an optimal

sequence of events can then be decoded, allowing the detection of the most prominent

event at each given polyphonic segment and its timestamp.

However, such implementation only achieved an F1-score of 30.1% but came with an

Error Rate (ER) of 84.1%. Despite the inclusion of event frequency of occurrence as the

prior knowledge, the accuracy was not improved. Mesaros et al. (2010) explained that

this might be due to the adding of events from different environments, which averaged out

the differences in count between events specific to a particular environment. Although

there was no limit to the number of detected events, such implementation only allowed the

detection of the most prominent event in each segment, which did not reflect a real-life

scenario where sound events can coincide. Moreover, it was found that the majority of the

errors can be caused by overlapping sound events (Diment et al., 2013).

12

Literature Review

Heittola et al. (2013a) then proposed a two-stage detection methodology, which can

be summarized in Figure 2.2, in an attempt to improve detection accuracy and allow

polyphonic SED on the same dataset. In their framework, Heittola et al. (2013a) proposed

determining the audio context before detecting the events in the audio. Context, in this

case, refers to the audio background or environment. Heittola et al. (2013a) explained that

this could reduce the search space for sound events as context information can provide

rules for selecting a specific set of events.

Figure 2.2 Proposed methodology by Heittola et al. (2013a)

Each context recognition system was trained using GMM with MFCCs extracted from

the different contexts where each GMM consists of 32 Gaussian distributions. Whereas

a SED system was trained using an HMM with Mel Frequency Cepstral Coefficients

(MFCCs), delta MFCCs, and delta-delta MFCCs extracted from sound events belonging to

different contexts. Similar to (Mesaros et al., 2010), each event class was modeled by an

individual three-state left-to-right HMM with 16 Gaussians per state.

Frames with overlapping events were not discarded during training and were instead

used as training samples for the respectively sound events. Heittola et al. (2013a) hy-

pothesized that the variability caused by the overlapping sound events classes would be

averaged out, and the model will still be able to learn a reliable representation of the

target sound events. In order to allow polyphonic SED, consecutive passes of the Viterbi

algorithm (Forney, 1973) were proposed, and each decoded pass must be different from

the previously decoded one. Such restriction prevented the detection of a similar event,

and in their study, the number of consecutive passes was fixed at 4 (Heittola et al., 2013a).

Test audio was first segmented into 4 seconds during the inference stage and classified

by each context recognition model. Context label was then given based on the highest total

log-likelihood accumulated over the audio. Based on the context label, events were then

detected using the HMM models trained. Together with the use of event priors, such a

13

Literature Review

system can achieve a single-second segment-based F1-score of 19.5% and a 30-seconds

segment-based F1-score of 29.4%.

Based on the results, such a system could not win a monophonic HMM-GMM system

by a considerable margin and instead performed slightly worse in terms of the 30-seconds

segment-based F1-score. The drawback of this system is the dependency on the context

recognition accuracy. A wrongly recognized context can lead to wrong SED model

selection and event priors. However, this complication was not fully reflected in their

experiment as different contexts contain similar sound events, and some of the common

events were correctly recognized. Also, the number of Viterbi (Forney, 1973) passes was

estimated based on the average polyphony of the recorded materials. However, the number

of events in test data is usually not known a priori.

Figure 2.3 Proposed methodology by Heittola et al. (2013b)

Heittola et al. (2013b) then extended their work by including source separation before

SED. In addition, the ground truth of the context was known with certainty and given to

the SED system, which eliminates the need to train a context recognition system, unlike

the earlier work (Heittola et al., 2013a).

As seen in Figure 2.3, the framework began with the source separation where NMF

was utilized to decompose the spectrum into 4 different components. The number of

components was determined based on the average amount of overlapping events in the

evaluation dataset. Since each component may contain one or more sound sources, Heittola

et al. (2013b) proposed using a Wiener filter on each component to separate the stream,

which contained roughly homogenous spectral content and differs significantly from the

others.

As the source separation was unsupervised, there was no knowledge of which event

was separated into which stream. Thus, Heittola et al. (2013b) suggested two approaches to

select the stream that contained the target event using the EM algorithm. The first approach

was to choose the most prominent stream based on the highest likelihood. The second

14

Literature Review

approach was to perform iterative elimination of the least possible stream that contained

the target event. However, it was found that results from both schemes were comparable,

but the stream elimination scheme had the advantage of faster convergence and being

straightforward. Separated streams from their respective event class then have features

such as MFCCs, delta MFCCs and delta-delta MFCCs extracted where they were used to

model a three-state left-to-right HMM with 16 Gaussians per state.

During the testing stage, test audio will be decomposed into 4 different streams, and

the SED system will process each stream and combine the results into a single set of events.

Based on the proposed methodology, Heittola et al. (2013b) reported a single-second

segment-based F1-score of 44.9% and an average 30-seconds segment-based F1-score of

60.8%, which was approximately a double of their earlier work (Heittola et al., 2013a).

However, such a system requires the context of testing audio to be known a priori,

which may limit its applicability. Similarly, the number of components to be separated

was based on the average number of overlapping events in the evaluation dataset and thus

cannot be known beforehand. Also, there may be a risk of selecting the wrong stream for

event training.

Although GMM-HMM had seen its success in ASR, it does not seem to be very

effective and accurate for SED. This may be due to the fact that GMM has a serious

shortcoming where they cannot effectively exploit information embedded in a large window

of frames (Hinton et al., 2012). Another major drawback of using GMM-HMM is the need

to train an individual model to represent an event class.

Based on the results seen earlier, the use of MFCCs as the model input may also be

unsuitable. Cakir et al. (2015b) suggested that the calculation of MFCCs may result in a

loss of information as MFCCs are made up of the first few coefficients after the application

of Discrete Cosine Transform (DCT). Moreover, the sum of MFCCs of different sound

sources is not the same as the sum of MFCCs of the mixtures of these sources.

2.1.2. Nonnegative Matrix Factorization

Another popular methodology for SED is the use of NMF (Lee and Seung, 1999). NMF

(Lee and Seung, 1999) is a matrix decomposition method where the objective is to de-

compose a nonnegative matrix V̈ ∈ Rm×n
+ into two nonnegative matrices Ẅ ∈ Rm×r

+ and

Ḧ ∈ Rr×n
+ . r, in this case, represents the number of components. The linear combina-

tion of Ẅ and Ḧ would then produce an estimated V̈, which can be represented as Ṽ.

Mathematically, it can be defined as

15

Literature Review

V̈≈ ẄH (2.1)

To find an optimal Ṽ, Lee and Seung (2000) proposed an efficient multiplicative update

rule for Ẅ and Ḧ, which can be defined as

Ẅt = Ẅt−1⊗
V̈

Ẅt−1Ḧt−1
Ḧ⊤t−1

1nḦ⊤t−1
(2.2)

Ḧt = Ḧt−1⊗
Ẅ⊤

t−1
V̈

Ẅt−1Ḧt−1

Ẅ⊤
t−11m

(2.3)

where Ẅt and Ẅt−1 represent Ẅ at time step t and t−1. Ḧt and Ḧt−1 represent Ḧ at time

step t and t−1. 1m and 1n represent an m and n dimensional vector of ones, respectively.

In practice, Ẅ and Ḧ are randomly initialized, and in each time step, both Ẅ and Ḧ are

updated. In a regular coding environment, the updating procedure is sequential, meaning

either Ẅ or Ḧ is updated first before updating the other matrix. If one chooses to update Ẅ

first, then when Ḧ is updated, the calculation of the new Ḧ should utilize the updated Ẅ.

The updating procedure can be terminated when the cost function that measures the quality

between V̈ and Ṽ cannot be lowered any further or has reached the user’s expectation, i.e.,

pre-defined threshold.

As discussed in the previous section, NMF was used by Heittola et al. (2013b) in an

unsupervised manner where r is set as 4 for audio source separation before SED (for more

information, please refer to the earlier section or (Heittola et al., 2013b)). On the other

hand, NMF can also be used as a supervised approach for SED. In the SED domain, Ẅ can

be considered as a dictionary that contains a collection of spectral templates. In contrast,

Ḧ can be considered as the activation matrix which can be used to locate the activated

frames (i.e., the occurrence of an event in an audio clip). Thus the first step to applying

the conventional supervised NMF approach is to extract spectral templates from isolated

events to form a dictionary (Bui et al., 2016; Smaragdis and Brown, 2003). Subsequently,

the test data is decomposed using the consolidated dictionary based on Equation 2.1 while

keeping Ẅ constant (i.e., Ẅ will not be updated using the multiplicative rule).

Although the algorithm’s simplicity makes it attractive, it has difficulty detecting

overlapping sounds (Smaragdis and Brown, 2003). While this problem can be overcome

by modeling overlapping sound as an additional class (Smaragdis and Brown, 2003), the

combination of different events would make the training intractable.

16

Literature Review

As such, research efforts then focused on improving the conventional supervised NMF

approach for SED. Mesaros et al. (2015) proposed a coupled NMF where the idea was to

learn two non-negative dictionary matrices jointly, Ẅ1 and Ẅ2 with a similar Ḧ. Thus, the

coupled NMF problem can be considered to minimize (Mesaros et al., 2015)

ε1D1(V̈1||Ẅ1Ḧ)+ ε2D2(V̈2||Ẅ2Ḧ) (2.4)

where ε1 and ε2 are the weights associated with divergences and are set as 1, respectively.

D(V̈||ẄH) is the divergence between V̈ and ẄH. V̈1 and V̈2 represent the audio frequency

spectrum and a frame-level one hot encoding matrix that contains the information about

the events’ occurrences. The proposed methodology by Mesaros et al. (2015) is illustrated

in Figure 2.4.

Figure 2.4 Proposed methodology by Mesaros et al. (2015)

In Figure 2.4, Nb and Nf represent the number of frequency bins and the number of

frames of a spectral representation. Ne represents the number of events.

As the size of Ẅ1 is relative to the size of training data, this may not be computationally

feasible. Thus, Mesaros et al. (2015) reduced the size of the dictionary through clustering

of components and only allowed the centroid of clusters to form the dictionary, which

allows computation efficiency to increase.

In order to detect the presence of a sound event in test audio, NMF was first applied

using Ẅ1 to derive Ḧtest. Ḧtest was then used to reconstruct the frame-level one hot

encoding matrix using Ẅ2. The values in the encoding matrix were then converted to a

binary form to determine the occurrence of an event. This is carried out using the mean

value of the encoding matrix as the threshold. Values above the mean value were converted

to 1 to indicate the occurrence of an event and 0 otherwise. To prevent noise and outliers,

17

Literature Review

detected sound events that did not correspond to a minimum of 200ms duration were

discarded.

Based on such a setup, Mesaros et al. (2015) reported an average single-second segment-

based F1 score of 57.8% on TUT-SED 2009. The most interesting result was that a

dictionary formed using only cluster centroids could achieve a higher F1-score than the

entire dictionary.

Although using cluster centroids can reduce the computation cost, there is a need to

perform clustering whenever new training data is added. In addition, the optimal cluster

number has to be derived through several trials. Finally, using the mean as a threshold may

not be the best value to achieve maximal performance.

Bisot et al. (2017) proposed a methodology to learn a classifier and the NMF in a

joint optimization problem referred to as nonnegative task-driven dictionary learning (TD-

NMF). In essence, the methodology learns an optimized dictionary through NMF with beta

divergence by minimizing the classification cost of a regularized linear logistic regression.

Bisot et al. (2017) explained that this would allow a more discriminative dictionary of

spectral templates to be learned.

Once the dictionary is learned, the test data can then be projected onto the learned

dictionary. The projections from the test data were subsequently used as a feature for

classification. To accommodate multi-label classification, the class probabilities of each

test frame were thresholded by a value that was dependent on the acoustic scene (0.3 for

the home environment and 0.35 for the residential area). Thus, overlapping events can be

detected as long as the probabilities in a given frame exceed the fixed threshold.

Based on this methodology, Bisot et al. (2017) reported a single second segment

based F1-Score of 49.5% with an ER of 69.5 when test is performed on the TUT-SED

2016 development dataset. While this methodology achieved the lowest ER compared to

methods such as GMM, Random Forest (RF), Gated Recurrent Neural Network (GRNN),

RNN, and NMF, it could not achieve the highest F1-score (RNN made a slightly higher

F1-score of 49.8%). While such a methodology shows competitive results, it was only

tested on a small dataset with a total duration of approximately 80 minutes, where the

number of overlapping events is minimal. Finally, there is also a need to fine-tune the

threshold to achieve maximal performance.

Ohishi et al. (2013) modeled the overlapping sound event using NMF and Bayesian

nonparametric approaches (i.e., Markov Indian Buffet Process (mIBP) and Chinese Restau-

rant Process (CRP)). Such an approach removes the need to predefine the total number of

18

Literature Review

events that can be present and temporal labels can be estimated using the Bayesian logistic

regression.

Such a method was subsequently tested on an English learning podcast, and Ohishi

et al. (2013) reported an accuracy (in terms of Area Under Curve (AUC)) of 0.79, which

outperforms a baseline GMM and three other variants of proposed methods.

However, the performance of this methodology appears to be inconclusive and biased.

Firstly, it was only tested on a short English learning podcast (approximating 150s) prepared

in a controlled environment. Secondly, the GMM may not be effective using only 100s

of training data, and thus, the comparison does not appear to be fair. Thirdly, there was

no training data for one of the event categories (i.e., Female C); it is unclear how the

classification of this event was achieved. In addition, using AUC as the accuracy metric is

not appropriate; almost the entire block of the testing signal was annotated as Female A

and Female B, but the AUC calculated was 0.769 and 0.744, respectively. Lastly, it was

mentioned by Ohishi et al. (2013) that the Poisson likelihood model used in their study

suffers from theoretical issues where it is only applicable to discrete counts data (Hoffman,

2012).

2.1.3. Summary of Non-Neural Network Based Methodologies

The previous subsections showcased the different non-NN architectures proposed by

various authors, and discussions on their methodologies and limitations were done.

In this section, details on the features used, architectures, performances, and limitations

are summarized in the following tables. Table 2.1 to Table 2.3 provide the information on

features used and their respective processing method. For non-NN based methodologies,

there is a wide variety of features used, with MFCC forming the majority. However, the

use of MFCC may result in the loss of information due to the application of DCT (Cakir

et al., 2015b).

Table 2.4 provides the information on the architectures used. Among the different

methodologies, some utilized context information to provide a set of rules for event

detection. However, detection accuracy is highly dependent on the context recognition

accuracy, which may limit such a strategy. Table 2.5 then showcases the results of

their proposed methodology on different types of datasets. Although non-NN based

methodologies may not require a large amount of strongly labeled data, as seen in Table 2.5,

they do not perform very well. Table 2.6 then presents the summary of each methodology’s

limitations.

19

Literature Review

References Features

Mesaros et al. (2010) MFCCs
Delta-MFCCs

Delta-delta MFCCs

Heittola et al. (2013a) MFCCs
Delta-MFCCs

Delta-delta MFCCs

Heittola et al. (2013b) MFCCs
Delta-MFCCs

Delta-delta MFCCs

Mesaros et al. (2015) Spectrogram

Bisot et al. (2017) Mel spectrum

Ohishi et al. (2013) Mel spectrum

Table 2.1 Features proposed for non-NN based methodologies

References
Window Window Overlap Mel-

length (ms) (%) filterbanks

Mesaros et al. (2010) Hamming 20 50 40

Heittola et al. (2013a) - 20 50 40

Heittola et al. (2013b) - 20 50 -

Mesaros et al. (2015) - 100 50 -

Bisot et al. (2017) - 40 50 40

Ohishi et al. (2013) Hanning 100 - 25

Table 2.2 Parameters used for feature calculation (non-NN based methodologies)

References Additional processing steps

Mesaros et al. (2010) -

Heittola et al. (2013a) Frequency range to computer MFCCs is
set to 30Hz to 22050Hz.

Heittola et al. (2013b) -

Mesaros et al. (2015) 1024 bins for Fast Fourier Transform
(FFT).

Bisot et al. (2017) Min-max normalization before Short
Time Fourier Transform (STFT)

Ohishi et al. (2013) -

Table 2.3 Additional processing steps (non-NN-based methodologies)

20

Literature Review

References
Proposed additional
algorithm information

Mesaros et al. (2010) GMM-HMM • EM algorithm for training.
• Viterbi algorithm for optimal sequence de-

coding.
• Each event class model represented by

three state left to right HMMs with 16
Gaussians per state.

Heittola et al. (2013a) GMM-HMM • GMM for context recognition.
• EM algorithm for training.
• Each event class model represented by

three state left to right HMMs with 16
Gaussians per state.

Heittola et al. (2013b) GMM-HMM • NMF for source separation.
• EM algorithm for training.
• Viterbi algorithm for optimal sequence de-

coding.
• Each event class model represented by

three state left to right HMMs with 16
Gaussians per state.

Bisot et al. (2017) NMF-
Logistic

Regression

• NMF for matrix decomposition.
• Multinomial logistic regression for event

detection.

Ohishi et al. (2013) NMF-
Bayesian
Nonpara-

metric

• NMF with mIBP and CRP for modeling
overlapping audio events.

• Bayesian logistic regression for event an-
notations.

Table 2.4 Non-NN based methodologies

21

Literature Review

References Dataset
Segment-based

Other metric
F1-score (%)

Mesaros et al. (2010) TUT-SED 2009 - F1-Score: 30.1%
ER: 84.1

Heittola et al. (2013a) TUT-SED 2009 1-Second: 19.5 -
30-Seconds: 29.4

Heittola et al. (2013b) TUT-SED 2009 1-Second: 44.9 -
30-Seconds: 60.8

Mesaros et al. (2015) TUT-SED 2009 1-Second: 57.8 -

Bisot et al. (2017) TUT-SED 2016 1-Second: 49.5 1-Second Segment
Development Based ER:

Dataset 69.5

Ohishi et al. (2013) English - AUC: 0.79
Learning
Podcast

Table 2.5 Dataset used by different authors and reported accuracy using non-NN-based methodolo-
gies

2.2. Neural Network Based Methodology

2.2.1. Non Hybrid Models

A Feedforward Neural Network (FNN), Deep Neural Network (DNN), or Multilayer

Perceptrons (MLP) can be considered as a quintessential deep learning model where

the objective is to provide a non-linear mapping between an input vector to a category

(Goodfellow et al., 2016).

Figure 2.5 Example of an MLP

The term deep in deep learning does not represent a deeper understanding of the

problem but rather the depth of successive layers of representations (Chollet, 2017a). As

shown in Figure 2.5, a basic MLP would consist of three types of layers; 1) input layer, 2)

22

Literature Review

References Limitations

Mesaros et al. (2010) • Each event class has to be modeled by an individual HMM.
• GMM cannot effectively exploit information embedded in

large window of frames.
• MFCC may not be a good feature.
• Requires a large number of model to be trained to represent

each event class.
• Low accuracy with large error rate.
• It can only detect the most prominent event at a time.

Heittola et al. (2013a) • Each event class has to be modeled by an individual HMM.
• GMM cannot effectively exploit information embedded in

large window of frames.
• MFCC may not be a good feature.
• Requires a large number of model to be trained to represent

each event class.
• Accuracy of this system did not win a monophonic GMM-

HMM system by a huge margin.
• Accuracy is dependent on the context recognition accuracy.
• Appropriate number of Viterbi passes was estimated based

on data.

Heittola et al. (2013b) • Each event class has to be modeled by an individual HMM.
• GMM cannot effectively exploit information embedded in a

large window of frames.
• MFCC may not be a good feature.
• Requires a large number of model to be trained to represent

each event class.
• Context of testing audio must be known a priori.
• Appropriate number of components in each test stream is

estimated based on evaluation dataset.
• May have risk of selecting the wrong stream for event train-

ing.

Mesaros et al. (2015) • Need to perform clustering for every addition of new training
data.

• Optimal cluster number need to be derive through several
trials.

• Requires careful tuning of threshold value.

Bisot et al. (2017) • Training data cannot contain overlapping events.
• Requires careful tuning of threshold value.

Ohishi et al. (2013) • Only tested on a small dataset collected in a controlled envi-
ronment.

• Comparison and results are not conclusive and appear bias.
• Poisson likelihood model used in the study suffers from

theoretical issues.

Table 2.6 Limitations for different non-NN based methodologies

23

Literature Review

hidden layer, and 3) output layer, and the example shown would be considered an MLP

with two hidden layers. The core fundamental of training a NN is through an updating

procedure known as the backpropagation algorithm.

Figure 2.6 Backpropagation algorithm

As seen in Figure 2.6, the idea of backpropagation is to compare a model’s prediction

and the ground truth and using this difference to update the weights in the model. Due to

the advances in machine learning algorithms and computer hardware, an MLP containing

many hidden layers and a large output layer can now be trained efficiently (Hinton et al.,

2012). This allows deep learning models to learn much better feature representations

and appropriate classifiers (Takahashi et al., 2018), where successes can be seen in many

sound-related domains such as ASR (Ferroni et al., 2015; Hinton et al., 2012; Snyder et al.,

2015), sound event or environmental sound classification (Gencoglu et al., 2014; Piczak,

2015), and source separation (Du et al., 2014; Zhang and Wang, 2016)].

Such successes make an MLP a viable and attractive choice for SED. Moreover, an

MLP architecture allows multi-label classification directly without additional training

efforts. In contrast, non-NN models such as GMM-HMMs require additional effort to

train individual models for each class or allowing multiple passing of the Viterbi algorithm

(Forney, 1973) for polyphonic SED (Mesaros et al., 2019).

However, conventional NN-based methodologies only allow single-label classification

(or multi-class classification) due to the softmax layer. Thus the easiest and the most

common way to accommodate multi-label classification is to change the softmax layer

to a sigmoid layer and threshold the event class probabilities given by the NNs. This

would allow multiple sound events to be detected as long as the probabilities are above the

predefined threshold.

In the SED domain, Cakir et al. (2015b) proposed using an FNN with maxout activation

function (Note: Such network may also be referred to as a Maxout Networks (Goodfellow

24

Literature Review

et al., 2013)). The idea of a maxout unit is to facilitate optimization by dropout and improve

the accuracy of dropout’s fast approximate model averaging technique (Goodfellow et al.,

2013). Given an input, x, a maxout unit implements the following function (Goodfellow

et al., 2013),

h(x) = max(xW+b) (2.5)

where W and b are learned parameters (i.e., learnable weights and bias). This function

retrieves the max of input and can be interpreted as making a piecewise linear approx-

imation to an arbitrary convex function (Goodfellow et al., 2013). Cakir et al. (2015b)

explained that such function is not bounded, easy to optimize, and does not suffer from

vanishing gradients. Most importantly, the maxout function shows superior results than

the sigmoid function in speech-related tasks (Swietojanski et al., 2014; Swietojanski and

Renals, 2014).

In order to model the dynamic properties of sounds, Cakir et al. (2015b) proposed the

use of context windowing (window length of 5) where the audio frame of extracted feature

vectors was concatenated with adjacent time frames to form a single training instance. In

addition, the output from the FNN was smoothed by a median filter to remove noise. The

training procedure can be illustrated in Figure 2.7.

Figure 2.7 Proposed methodology by Cakir et al. (2015b)

Using a two layers FNN, Cakir et al. (2015b) reported a single-second segment-based

F1-score of 63.8% and concluded that using log-mel band energies as an input feature was

much better than using MFCC and mel-band energies.

Cakir et al. (2015a) then extended their work by decomposing the multi-label classifier

into an ensemble of single-label classifiers. While this appears unnecessary, Cakir et al.

(2015a) argued that the benefit of such a method is that it allows the dynamic inclusion

of new labels since only a smaller classifier is trained for the new event class instead of

25

Literature Review

retraining the entire FNN. However, such implementation would require a test clip to be

tested by multiple models to enable polyphonic SED. Such implementation is illustrated in

Figure 2.8.

Figure 2.8 Proposed methodology by Cakir et al. (2015a)

Based on such an implementation, Cakir et al. (2015a) reported a single-second

segment-based F1 score of 61.9%, which was slightly lower than a multi-label DNN

accuracy. Although there is no need to retrain the entire model with new events, a single

label classifier requires training of multiple classifiers that may need to be tuned separated

to achieve maximal performance. In addition, the testing time for such architecture may be

a few folds higher than a multi-label classifier.

In addition, both architectures that utilized the maxout functions may have several

other disadvantages. Firstly, a maxout function doubles the number of parameters for

every single unit, which may lead to a high parameter number (Castaneda et al., 2019). In

addition, a maxout network is prone to overfitting (Cai et al., 2014). This is because the

max function only propagates the gradient to the unit with the maximum value, and the

remaining units do not get updated (Toth, 2015). Finally, an FNN with maxout function

may not be comparable to a CNN with maxout function based on the result shown in

(Renals and Swietojanski, 2014).

Parascandolo et al. (2016) proposed Bidirectional Long Short Term Memory (BLSTM)

for polyphonic SED, which allows data processing in both directions by utilizing two

separate hidden layers. These two layers are subsequently concatenated and fed to the

same output layer (Graves et al., 2013). As such, it allows access to long-range context in

both input directions, which can help in the classification, and Parascandolo et al. (2016)

hypothesized that it might eliminate the need for tailored post-processing or smoothing

steps.

26

Literature Review

In the preprocessing stage, audio recordings were normalized to a scale of -1 to 1

before calculating mel energies to account for audio recorded in different conditions.

As an additional measure to reduce overfitting, Parascandolo et al. (2016) increased the

dataset by 16 times using several data augmentation techniques such as time-stretching,

sub-frame time-shifting, and blocks mixing. Parascandolo et al. (2016) also proposed

adding Gaussian noise to the network weights. Such noise addition was found to ‘simplify’

RNN by reducing the amount of information required to transmit the parameters, which

can improve generalization (Graves et al., 2013b).

Parascandolo et al. (2016) then compared against an FNN, vanilla LSTM, and a

BLSTM without data augmentation on TUT-SED 2009. The final results showed that their

method with data augmentation was the best performing architecture with a single-frame

segment-based F1-score of 64.7% and a single-second segment-based F1-score of 65.5%.

However, it was only marginally better than a BLSTM without data augmentation, which

achieved a single frame segment F1-score of 64.0% and a single second F1-score of

64.6%. Such a result implies that simple data augmentation may not be helpful, given the

considerable increase in preprocessing efforts and computational cost and yet negligible

impact on model accuracy.

While Parascandolo et al. (2016) hypothesized that output from an RNN was already

smoothed, but empirical results shown by (Hayashi et al., 2016) proved that post-processing

is still necessary, especially for event-based evaluation. Although Gaussian noise injection

can improve generalization, it was also found that such a method can also increase the

training time and affect the performance of an LSTM (Greff et al., 2015). In addition,

the LSTM has a relatively high model complexity, and parameter tuning for LSTMs is

not always straightforward (Zeyer et al., 2017; Zohrer and Pernkopf, 2017). Finally, the

sequential nature of LSTM prohibits parallelization, which may lead to a long training

time (Martin and Cundy, 2018).

Adavanne et al. (2016) also proposed the use of LSTM but with additional input

features such as the pitch and its periodicity and the Time Difference of Arrival (TDoA)

in sub-bands. Pitch and periodicity were estimated using Librosa implementation of

pitch tracking on thresholded parabolically interpolated STFT. On the other hand, TDoA

was calculated using the generalized cross-correlation with phase-based weighting (GCC-

PHAT). A median filter was then applied to the estimated TDoA to remove noise. Similar

to (Parascandolo et al., 2016), block mixing was applied to increase the training data to

reduce overfitting. Besides comparing with a GMM, Adavanne et al. (2016) also examined

the performance difference between mono-channel and stereo-channel features.

27

Literature Review

Based on the ER, Adavanne et al. (2016) concluded that LSTM trained using log mel

band energies and TDOA from the stereo channel was the best classifier with an ER of 0.91

and a single-second segment-based F1-score of 35.4%. If the results were based on the

highest F1-score, LSTM trained using mel energies and pitch would be the best classifier

that achieved a single-second segment-based F1-score of 35.7% with an ER of 0.92.

Although results showed that features extracted from the stereo channel were beneficial,

additional features such as pitch and TDOA did not appear to provide many benefits. The

conclusion derived from the fact that an LSTM trained using only log mel energies

calculated from the stereo channel can already achieve a single second segment F1-score

of 35.6% with an ER of 0.93. Moreover, the only system that won the baseline system in

the DCASE 2016 challenge was only trained with mel energies from both channels and

not with the proposed additional features. Besides the redundancy of extra features, LSTM

also has some limitations, which we mentioned earlier.

Xia et al. (2018) proposed a regression-based CNN for SED. Xia et al. (2018) explained

that multi-label classification using frame-wise labeling might not be accurate due to the

annotation errors. Thus, Xia et al. (2018) proposed the soft labeling of events in each

recording based on a confidence measure. In order to estimate the confidence measure,

a parabolic function is used where the peak of the parabola was positioned at the center

frame of the manually labeled event (i.e., the center frame has the highest confidence).

This would allow a continuous representation for each acoustic event, and temporal labels

will be represented as real positive numbers instead of discrete numbers.

Based on such implementation, Xia et al. (2018) reported a segment-based F1-score of

61.02% with an ER of 0.63 on the TUT-SED 2017 development dataset. On the other hand,

a segment-based F1-score of 45.3% with an ER of 0.84 were reported on the evaluation

dataset. Such results can be ranked fourth in the DCASE 2017 task 3 challenge (in terms

of ER).

However, there are several limitations associated with their implementations. Firstly,

the small number of layers and filters may not be sufficient to learn the complex structure of

polyphonic audio. Secondly, CNN is unable to extract long temporal context information

(Cakir et al., 2017). Thirdly, using a parabola as a confidence function may not be

appropriate. This is because events with continuous output without too much fade-in fade-

out effect, such as vacuum cleaner or blender, should have maximal confidence throughout

the entire annotated frames instead of just the center frame. Finally, the hyperparameter

for the parabolic function may require careful tuning to achieve maximal performance.

28

Literature Review

Vesperini et al. (2019) proposed Capsule Neural Network (CapsNet) for polyphonic

SED. The introduction of CapsNet is to overcome some limitations of CNN, particularly

the loss of information due to the application of the max pooling operator (Patrick et al.,

2019).

A capsule can be thought of as a group of neurons whose output represents different

properties of the same entities (Hinton et al., 2018). As explained by Hinton et al. (2018),

NN typically uses simple non-linearities in which a non-linear function is applied to the

scalar output of a linear filter. They may also use softmax non-linearities that convert a

whole vector of logits into a vector of probabilities. On the other hand, capsules use a much

more complicated non-linearity that converts the whole set of activation probabilities and

poses of the capsules in one layer into the activation probabilities and poses of capsules in

the next layer (Hinton et al., 2018).

A CapsNet consists of a convolutional layer for feature extraction and multiple capsule

layers starting a primary capsule layer and ending with a class capsule layer. A primary

capsule layer represents the lowest level of multi-dimensional entities and contains reshap-

ing and squashing functions. Outputs from the primary capsule layer are then passed to the

class capsule layer with one capsule per output class through a dynamic routing procedure.

Event probabilities are then obtained by computing the Euclidean norm of the output of

each capsule. The flowchart of a Capsnet used in (Vesperini et al., 2019) is illustrated in

Figure 2.9.

Using CapsNet, Vesperini et al. (2019) reported an ER of 0.36 on the TUT-SED 2016

and TUT-SED 2017 development dataset using a binaural spectrogram as the input. On the

other hand, the TUT-SED 2017 evaluation dataset results show that a CapsNet trained using

log mel energies achieved the lowest ER of 0.58 instead of using a binaural spectrogram

as input. Regardless of the inputs, CapsNet remains the best classifier (in terms of ER)

compared to CNN, CRNN, and GMM. However, the results did not include the F1-score.

Therefore, it is unclear how well such a classifier performs in terms of F1-score.

The drawback for CapsNet is that even for simple architecture, training CapsNet

requires significant computational resources (Mukhometzianov and Carrillo, 2018) and

training time can be much longer than a CNN (Jiang et al., 2018). The performance is also

highly sensitive towards the hyperparameters (Vesperini et al., 2019). Moreover, CapsNet

can have a more significant performance fluctuation during training, and if the fixed

number of training epochs is suboptimal, CapsNet can be more prone to significant errors

as compared to CNNs. In addition, a CapsNet also appears to show lesser generalization

ability compared to a CNN (Vesperini et al., 2019). Finally, AdaDelta (Zeiler, 2012), which

29

Literature Review

Figure 2.9 Flowchart of a CapsNet (Vesperini et al., 2019)

was used as the gradient optimizer in their architecture, can take a longer time to converge

than Adam (Kingma and Ba, 2015) due to its iterative operation (Kim et al., 2018; Okewu

et al., 2019).

2.2.2. Summary of Non Hybrid Models

The previous section showcased the different NN architectures proposed by various authors,

and limitations on respective methodologies were discussed. In this section, details on the

features used, architectures, accuracy, and limitations are summarized in the following

tables.

Table 2.7 to Table 2.9 provides the information on features used and their respective

processing method. It is evident that mel energies are the most popular input features, and

there is not much difference in the way they are calculated. The MFCC could cause loss of

information, and empirical results shown in (Cakir et al., 2015b) highlighted that using mel

energies as a feature can increase the detection accuracy. The key difference in the input

lies in the post-processing, where several authors proposed normalizing the energy bands.

Table 2.10 to Table 2.12 provides information on the architectures used and showcases

the key configurations (if reported). In Table 2.10, there is a column named No. hidden

30

Literature Review

layers, {No. units / filters} with value given in the following format, 2, {800, 800}. This

means that there are 2 hidden layers with 800 units in the first layer and 800 units in the

second layer.

In Table 2.12, there is an entry known as the Early stop criterion. This is the number of

epochs that the authors used to evaluate if there is any further performance improvement.

Thus, for the Early stop criterion: 20 epochs, it means that the author proposed to stop the

model’s training if accuracy did not increase or did not have a significant increase after

20 epochs. Whereas, for Kernel size or Pooling size, it refers to the size of the filter and

pooling operator, respectively. For example, if Pooling size: (1, 3) means the pooling

operator is using a pooling size of 3 and if Pooling size: (1, 4), (1, 3), (1, 2) means the

pooling operator has a pooling size of 1 by 4 in the first layer and 1 by 3 in the second

layer and 1 by 2 in the third.

Table 2.13 presents the results of their proposed methodology tested on different

datasets. Although results generally have shown that NN-based methodologies can perform

better than non-NN based methodologies, there is still a large room for improvement that

can be made. It should also be pointed out that all methodologies used segment-based

evaluation metrics that place lesser emphasis on the onset and offset of events than event-

based metrics.

Finally, Table 2.14 summarized the different limitations of each proposed methodology.

It is essential to point out that all the NN-based methodologies require a large amount of

strongly labeled training data to learn the mapping between features and event class which

can be a significant limiting factor.

References Features

Cakir et al. (2015b) Log mel energies

Cakir et al. (2015a) Mel energies

Parascandolo et al. (2016) Log mel energies

Adavanne et al. (2016) Log mel energies
Pitch and its periodicity

TDoA

Xia et al. (2018) Log mel energies

Vesperini et al. (2019) Log mel energies

Table 2.7 Features proposed for non-hybrid NN-based methodologies

31

Literature Review

References
Window Overlap Mel-

length (ms) (%) filterbanks

Cakir et al. (2015b) 50 50 40

Cakir et al. (2015a) 50 50 40

Parascandolo et al. (2016) 50 50 40

Adavanne et al. (2016) 50 50 40

Xia et al. (2018) - - -

Vesperini et al. (2019) 40 50 40

Table 2.8 Parameters used for feature calculation (non-hybrid NN-based methodologies)

References Additional processing steps

Cakir et al. (2015b) -

Cakir et al. (2015a) • Min-max normalization before
STFT.

Parascandolo et al. (2016) • Min-max normalization before
STFT.

• Z-score normalization of energy
band.

• Data augmentation using time
stretching, subframe time shifting
and block mixing.

Adavanne et al. (2016) • Z-score normalization of feature
vectors.

• Data augmentation using block mix-
ing.

• Periodicity extracted in 100Hz-
4000Hz.

• TDOA calculated using window
length of 120ms, 240ms, 480ms
with 20ms hop.

• Post processed of TDOA with me-
dian filter (kernel of length three).

Xia et al. (2018) -

Vesperini et al. (2019) • Min-max normalization before
STFT.

Table 2.9 Additional processing steps (non-hybrid NN-based methodologies)

32

Literature Review

References Model No. hidden layers, {No.
units/filters}

Activation function

Cakir et al. (2015b) FNN 2, {800,800} • Maxout at hidden
layer

• Sigmoid for out-
put layer

Cakir et al. (2015b) FNN 2, {400,400} • Maxout at hidden
layer.

• Sigmoid for out-
put layer.

Parascandolo et al.
(2016)

BLSTM 4, {200,200,200,200} • Hyperbolic tan-
gent for memory
cell.

• Sigmoid for in-
put, forget, output
gates and output
layer.

Adavanne et al.
(2016)

LSTM 2, {32,32} • Sigmoid for out-
put layer

Xia et al. (2018) LSTM 2, {32,32} • Rectified Linear
Unit (ReLU) for
convolution lay-
ers

• Sigmoid for out-
put layer

Vesperini et al. (2019) CapsNet TUT-SED
2016 Home:
3,{32,32,8}
TUT-SED 2016
Residential and
TUT-SED 2017:
4,{4,16,32,4}

• ReLU for convo-
lution and capsule
layers

• Sigmoid for out-
put layer

Table 2.10 Non-hybrid NN architecture

33

Literature Review

References Loss function Optimizer

Cakir et al. (2015b) Kullback Leibler (KL)
Divergence

Stochastic Gradient
Descent (SGD)

Cakir et al. (2015a) BCE SGD

Parascandolo et al.
(2016)

Root Mean Square
Error (RMSE)

RMSProp

Adavanne et al. (2016) BCE Adam (Kingma and Ba,
2015)

Xia et al. (2018) MSE Adam (Kingma and Ba,
2015)

Vesperini et al. (2019) Margin Loss Adadelta (Zeiler, 2012)

Table 2.11 Loss functions and optimizers used for training non-hybrid NN-based architecture

2.2.3. Hybrid Models

One of the most popular hybrid models for SED is the Convolution Recurrent Neural Net-

work (CRNN). In actual application, the combination of CRNN is pretty straightforward.

As seen in Figure 2.10, stack a CNN over an RNN so that the features map extracted by

the CNN can be passed directly to the RNN. Outputs from the RNN are then passed to a

FC layer to reshape the dimension, and a sigmoid activation function is usually applied. A

global or class-specific threshold can then be applied for polyphonic SED.

Figure 2.10 Example of a CRNN

The reason behind its popularity could be due to the combination of two can supplement

each other. CNN can learn filters that are shifted in both time and frequency (Cakir et al.,

2017) and can capture energy modulation patterns across time and frequency when applied

to spectrogram-like inputs (Salamon and Bello, 2017). However, CNN lacks long temporal

context information (Cakir et al., 2017). On the other hand, RNN can overcome this

constraint by integrating information from an earlier time window, but it cannot capture

the invariance in the frequency domain (Cakir et al., 2017). Thus, the combination of the

two can overcome the shortcomings while providing the benefits of both approaches.

Cakir et al. (2017) proposed combining CNN with Gated Recurrent Unit (GRU) for

polyphonic SED. The idea of GRU is similar to an LSTM, where its motivation is to

overcome the vanishing or exploding gradient problems faced by a conventional RNN. A

34

Literature Review

References Additional information

Cakir et al.
(2015b)

• Initial weight range: +-0.001
• Learning rate: 0.02
• Mini-batch: 50
• Pooling operator: Max
• Pooling size: (1, 3)
• Context window: 5 frames
• Median filter: 10 frames window

Cakir et al.
(2015a)

• Learning rate: 0.02
• Context window: 2 frames
• Median filter: 10 frames window

Parascandolo
et al. (2016)

• Initial weight range: +-0.1
• Learning rate: 0.005
• Decay rate: 0.9
• Gaussian input noise: 0.2
• Early stop criterion: 20 epochs

Adavanne et al.
(2016)

• Early stop criterion: 100 epochs

Xia et al. (2018) • CNN Kernel size: (3, 3)
• BN after each convolution layer
• Pooling operator: Max
• Pooling applied after every convolution layer

Vesperini et al.
(2019)

TUT-SED 2016 Home
• CNN Kernel size: (6, 6)
• Pooling Operator: Max
• Pooling size: (1, 4), (1, 3), (1, 2)
• Primary capsule convolution capsule: 8
• Primary capsule kernel size: (4 , 4)
• Routing iteration: 3
• Decay rate: 0.95
• Dropout rate: 0.2
• Mini-batch: 20
• Early stop criterion: 20

TUT-SED 2016 Residential and TUT-SED 2017
• CNN kernel size: (4 , 4)
• Pooling Operator: Max
• Pooling size: (1, 2), (1, 2), (1, 2)
• Pooling applied after every convolution layer
• Primary capsule convolution capsule: 7
• Primary capsule kernel size: 3 by 3
• Routing iteration: 4
• Decay rate: 0.95
• Dropout rate: 0.2
• Mini-batch: 20
• Early stop criterion: 20

Table 2.12 Additional models information (non-hybrid NN-based architecture)

35

Literature Review

References Dataset Segment-
based F1-score

(%)

Segment-
based ER

Other metric

Cakir et al.
(2015b)

TUT-SED
2009

1-Second:
63.8

Cakir et al.
(2015a)

TUT-SED
2009

1-Second:
61.9

Hamming
loss: 0.0325

Parascandolo
et al. (2016)

TUT-SED
2009

1-Frame: 64.7

1-Second:
65.5

Adavanne et al.
(2016)

TUT-SED
2016

Development
Dataset

1 Second: 35.4 1 Second: 0.91

TUT-SED
2016

Evaluation
Dataset

1 Second: 47.8 1 Second: 0.80

Xia et al.
(2018)

TUT-SED
2017

Development
Dataset

0.1 Second:
61.02

0.1 Second:
0.63

Vesperini et al.
(2019)

TUT-SED
2016

Development
Dataset

1 Second: 0.36

TUT-SED
2016

Evaluation
Dataset

1-Second:
0.69

TUT-SED
2017

Development
Dataset

1-Second:
0.36

TUT-SED
2017

Evaluation
Dataset

1-Second:
0.58

Table 2.13 Dataset used by different authors and reported accuracy using non-hybrid NN-based
methodologies

36

Literature Review

References Limitations

Cakir et al.
(2015b)

• Maxout function doubles the number of parameters for every
single unit.

• Maxout network is prone to overfitting.
• FNN with maxout function may not perform as well as a

CNN CNN with maxout function.

Cakir et al.
(2015a)

• Single label classifier may need to be tuned separately to
achieve maximal performance.

• The testing time may be a few folds higher than a multi-label
classifier.

• Maxout function doubles the number of parameters for every
single unit.

• Maxout network is prone to overfitting.
• FNN with maxout function may not perform as well as a

CNN CNN with maxout function.

Parascandolo
et al. (2016)

• Data augmentation techniques is not useful.
• Lack of post processing which may results in a lower event-

based evaluation metric.
• Use of Gaussian noise as optimization can increase training

time and decrease the accuracy.
• LSTM has high model complexity and is not easy to tune.
• Sequential nature of LSTM also inhibits parallelization.

Adavanne et al.
(2016)

• Additional audio features provide little performance im-
provement.

• LSTM has high model complexity and is not easy to tune.
• Sequential nature of LSTM also inhibits parallelization.

Xia et al.
(2018)

• Simple architecture may be the cause of low accuracy.
• CNN lacks long temporal context information.
• May require careful tuning of hyperparameters for the

parabolic function.
• Using a parabola as a confidence function may not be appro-

priate.

Vesperini et al.
(2019)

• Unclear how well this classifier performs in terms of F1-
score.

• CapsNet requires significant computational resources.
• Training of CapsNet is longer, can be more prone to large

errors and also lower generalization ability as compared to
CNNs.

• Hyperparameters must be tuned correctly for maximal per-
formance.

• AdaDelta (Zeiler, 2012) has higher computational time as
compared to Adam (Kingma and Ba, 2015)

Table 2.14 Limitations for different non-hybrid NN-based methodologies

37

Literature Review

gated recurrent unit (GRU) was proposed to make each recurrent unit capture dependencies

of different time scales adaptively (Cho et al., 2014). It is similar to an LSTM, such that

GRU also has gating units that modulate the flow of information inside the unit, but the

difference with an LSTM is that GRU does not have separate memory cells (Chung et al.,

2014). Such implementation results in a simpler model with much lesser parameters, and

as evaluated by Cakir et al. (2017), performance between the two models was comparable

in their application.

Based on the use of such a combination, Cakir et al. (2017) reported a single-frame

segment-based F1-score of 69.7% with 0.45 single-frame ER and single-second segment-

based F1-score of 69.3% with 0.48 single-frame ER on the TUT-SED 2009 dataset, which

outperforms CNN, RNN, GMM, and FNN.

However, such architecture was not the best classifier when tested on TUT-SED 2016

dataset in terms of F1-score even though the architecture had the lowest single-frame

and single-second ER. On the TUT-SED 2016 dataset, Cakir et al. (2017) reported a

single-frame segment-based F1-score of 27.5% (lower than RNN with an F1-score of

27.6%) and a single-second segment-based F1-score of 30.3% (lower than GMM with an

F1-score of 32.5%). This architecture was also not the best architecture when tested on the

CHIME-Home evaluation dataset. CNN achieved the lowest Equal Error Rate (EER) of

10.7, while CRNN achieves an EER of 11.3.

On the other hand, Jung et al. (2019) proposed using BLSTM to stack with CNN. The

architecture and training scheme remains largely similar as compared to (Cakir et al., 2017).

However, the implementation by Jung et al. (2019) had more recurrent layers and utilized

LN instead of BN on the recurrent layer. Since BLSTM produces two outputs that differ

due to the input order, the outputs were concatenated and used as input to the subsequent

layer. Jung et al. (2019) then proposed transfer learning in an attempt to increase the

training accuracy. In their framework, transfer learning was carried out by first training

the Convolutional Bidirectional LSTM (CBLSTM) using a set of synthetic data before

transferring the adjusted weights to a new CBLSTM, which will be trained using the set of

real training data.

Based on such implementation, Jung et al. (2019) achieved a single-frame segment-

based F1-score of 49.9%, which was much higher than Cakir et al. (2017). Jung et al.

(2019) reported an even higher single-frame segment-based F1-score of 55.9% with the

application of transfer learning. Their system also had a lower single frame ER of 0.56 as

compared to Cakir et al. (2017), which had a single frame ER of 0.98. However, due to

the application of transfer learning, there is a need to generate synthetic data that requires

38

Literature Review

additional effort. Moreover, as mentioned earlier, LSTM has high model complexity and

may be difficult to tune.

Adavanne et al. (2017) extended their work in (Adavanne et al., 2016) and proposed

a CBLSTM with spatial features extracted from the different channels. In their proposal,

input features comprised log mel energies, TDOA estimated using generalized cross-

correlation with phase-based weighting (GCC-PHAT), GCC-PHAT, dominant frequency

(dom-freq) and their amplitudes, and Autocorrelation (ACR), which was used to estimate

pitch. Each feature from each channel was stacked over the other to form a volume, and by

slicing the volume within a specific time frame, all multichannel features corresponding

to the time frame can be extracted. Since there was a difference in features dimension,

Adavanne et al. (2017) proposed to use separate CNN to learn local shift-invariant features

and concatenated the feature maps from each CNN before passing them to the BLSTM.

Based on different feature combinations, Adavanne et al. (2017) concluded that using

log mel energies with dom-freq was the best combination for TUT-SED 2009, which

achieved a single-second segment-based F1-score of 71.7% with a single-second ER of

0.43. The best feature combination for TUT-SED 2016 was log mel energies with TDOA,

which achieved a single-second segment-based F1 score of 35.8% with a single-second

ER of 0.95.

While results showed that features extracted from the stereo channel could be beneficial,

results did not indicate the usefulness of adding additional features. In their paper, a

classifier trained using only log mel energies can achieve a single-second F1-score of

71.1% with 0.43 ER on the TUT-SED 2009, which means that the best classifier only

performed marginally better.

Whereas in their earlier work, Adavanne et al. (2016) demonstrated that an LSTM

trained using only log mel energies could achieve a single-second segment-based F1-score

of 35.6% with an ER of 0.93 on the TUT-SED 2016. Thus, the proposed CBLSTM with

additional features only marginally improved the F1-score by 0.2 but at the expense of ER.

Adavanne et al. (2018) further extended their work using a 3D CNN and only using log

mel energies with GCC-PHAT. As compared to the earlier work (Adavanne et al., 2017),

the other key differences are 1) the first layer of CNN used to extract features from log mel

energies, and GCC-PHAT was a 3D CNN, 2) the bidirectional LSTM was replaced with

a bidirectional GRU, 3) early stop was based on accuracy improvement over 100 epochs

instead of 50.

Adavanne et al. (2018) then tested the architecture using a different combination of

features on a synthetic dataset, and the results reiterated that GCC-PHAT as an additional

39

Literature Review

input feature was ineffectual in improving the accuracy. With this conclusion, Adavanne

et al. (2018) then tested the architecture on TUT-SED 2017. They reported a single-second

F1-score of 67.5% with a single-second ER of 0.35. Such results outperformed a similar

architecture with 2D CNN, which achieved a single-second F1-score of 64.8% with a

single-second ER of 0.37.

Xia et al. (2019) also extended his work (Xia et al., 2018) by introducing Auxiliary

Classifier Generative Adversarial Network (AC-GAN) to balance the dataset between

event classes and replaced the use of CNN with CRNN. In their framework, AC-GAN

was utilized to generate virtual sound samples that are close to the real sound samples by

considering additional conditions such as the sound event class information and the sound

event localization information. Note that localization in this context refers to the location

of the activated frames in the audio (i.e., temporal localization); it does not refer to the

location of the sound source (i.e., spatial localization). Thus, generated samples would be

more convincing than using simple data augmentation methods proposed in (Parascandolo

et al., 2016), which were shown to produce limited success. Generated samples were then

used together with the real samples to train a CRNN. The overall framework is illustrated

in Figure 2.11.

Figure 2.11 Proposed framework by Xia et al. (2019)

Based on such a proposal, Xia et al. (2019) reported a single-second segment-based

F1-score of 31.1% with an ER of 0.58 on the TUT-SED 2016 development dataset (Home)

but only achieved a single-second segment-based F1-score of 19.6% with an ER of 0.84

on the evaluation dataset. As results were only reported on the part of the dataset, it is

40

Literature Review

unclear how well it performs on the entire dataset and thus cannot be compared with other

methodologies that tested their methods over the whole dataset.

When tested on TUT-SED 2017 development dataset, Xia et al. (2019) reported a

single-second segment-based F1-score of 52.7% with an ER of 0.34. On the other hand,

Xia et al. (2019) reported a single-second segment-based F1-score of 48.3% with an ER of

0.59 on the evaluation dataset. Although based on the evaluation results, Xia et al. (2019)

can easily clinch the top spot in the DCASE 2017 challenge task 3, it had a 15% gap

compared to (Adavanne et al., 2018) on the development dataset.

In the experiment, AC-GAN was used to balance five minority classes for SED-2016,

while AC-GAN was used to balance only three minority classes for SED-2017. As seen

from the results, the accuracy of such methodology appears to have a significant fluctuation

when tested on different datasets. It could be due to the fact that AC-GAN tends to generate

near-identical samples for most classes as the number of labels increases (Gong et al.,

2019). Secondly, AC-GAN imposes perfect separability, which is disadvantageous when

the supports of the class distributions have significant overlap (Gong et al., 2019). As the

method for generating soft labels is similar to their earlier work (Xia et al., 2018), the

limitations associated with the earlier work remain the same.

Ding and He (2020) proposed an adaptive multi-scale detection method that combined

the idea of an hourglass network (Newell et al., 2016) with a Bidirectional GRU (BGR).

An hourglass network comprises several convolutional and max-pooling layers to

process features down to a very low resolution. The network branches off at each max

pooling step and applies more convolutions at the original pre-pooled resolution. After

reaching the lowest resolution, the network begins the top-down sequence of upsampling

and a combination of features across scales (Newell et al., 2016).

Since this was a hybrid model, the combination of features at each scale was sent to a

bidirectional GRU. Outputs from the GRUs were then upsampled and multiplied with a

set of weights to balance the contribution of each branch. The resulting values were then

added up and sent to the output layer.

In their study, Ding and He (2020) proposed using a 4 layers hourglass network with

3 layers of bidirectional GRU at each scale. Based on such architecture, Ding and He

(2020) reported a single-second F1-score of 48.7% with an ER of 0.78 on the TUT-SED

2016 evaluation dataset and a single-second F1-score of 43.6% with an ER of 0.77 on the

TUT-SED 2017 evaluation dataset.

However, such results cannot outperform a conventional CRNN with data augmentation

using Generative Adversarial Network (GAN) (Xia et al., 2019). Moreover, it requires

41

Literature Review

much higher computational resources than a CRNN due to the combination of features at

different scales and may also overfit easily with a small number of samples.

2.2.4. Summary of Hybrid Models

In the previous section, different types of CRNN were reviewed in detail and discussed.

Although there are different ways to construct a CRNN, the main difference lies in the

choice of RNN. Although GRU and LSTM may be on par in terms of accuracy, GRU has

much lesser parameters than an LSTM.

It should also be noted that although CRNN can further increase the detection accuracy,

it still requires a large amount of strongly labeled training data to learn the mapping

between features and event class. Moreover, stacking CNN with RNN will increase the

computational complexity by several folds, resulting in a much longer training time. In

addition, such architecture does not allow parallel computing due to its sequential nature

(Kong et al., 2020). Lastly, CRNN also requires class-specific thresholds to determine

the activation of sound events, which can affect the detection accuracy due to suboptimal

tuning.

In this section, features used by different authors are presented in Table 2.15 to Table

2.17. Similarly, mel energies remain the most popular feature. The details of their

architecture can be seen in Table 2.18 to Table 2.25. As an author can propose a different

architecture based on different datasets or features, we split the architecture according to

authors for better clarity.

The Filters and Units in Table 2.18 to Table 2.22 represent the number of filters or units

in each layer. Example: 256, 256, 256 in the Filter column refers to 256 filters in the first

layer, 256 filters in the second layer, and 256 filters in the third layer. Whereas the Pooling

Size in Table 2.18 to Table 2.22 indicates the pooling size at each layer. Thus, a pooling

size of (1, 5), (1, 4), (1, 2) represent that the Time-Frequency (TF) representation only has

its frequency dimension reduced by 5 times in the first layer, further reduced by another 4

times in the second layer and another 2 times in the last layer. Using a 40 mel bands TF

input as an example, the 40 bands become 1 band in 3 stages: 40→ 8→ 2→ 1.

Finally, results and limitations of all the CRNN architectures are presented in Table

2.26 and Table 2.27, respectively.

42

Literature Review

References Features

Cakir et al. (2017) Log mel energies

Jung et al. (2019) Mel energies

Adavanne et al. (2017) Log mel energies
TDoA

GCC-PHAT
dom-freq

ACR

Adavanne et al. (2018) Log mel energies
GCC-PHAT

Xia et al. (2019) Log mel energies

Ding and He (2020) Mel energies

Table 2.15 Features proposed for hybrid NN-based methodologies

References Window
Window Overlap Mel-

length (ms) (%) filterbanks

Cakir et al. (2017) Hanning 40 50 40

Jung et al. (2019) - 50 50 40

Adavanne et al. (2017) Hamming 40 - 40

Adavanne et al. (2018) 40 50 40

Xia et al. (2019) - 40 50 40

Ding and He (2020) 40 50 128

Table 2.16 Parameters used for feature calculation (hybrid NN-based methodologies)

43

Literature Review

References Additional processing steps

Cakir et al. (2017) • Z-score normalization of energy
band.

Jung et al. (2019) • Clip below -100db and min-max
normalization of energy band.

Adavanne et al. (2017) • dom-freq picked from 100 to
4000Hz.

• ACR calculated in 40ms window
and in the range of 107.5Hz to 4410
Hz.

Adavanne et al. (2018) • GCC extracted in 120, 240, 480 ms
window.

Xia et al. (2019) • Data augmentation using AC-GAN.

Ding and He (2020) • Z-score normalization of energy
band.

Table 2.17 Additional processing steps (hybrid NN-based methodologies)

44

Literature Review

Model based on CNN details RNN details

TUT-SED2009 • Layers: 3
• Filters: 256, 256, 256
• Kernel size: (5, 5)
• Pooling operator: Max
• Pooling size: (1, 5), (1,

4), (1, 2)
• Activation function:

ReLU

• Type: GRU
• Layer: 1
• Units: 256

TUT-SED 2016 • Layer: 3
• Filters: 256, 256, 256
• Kernel size: (5, 5)
• Pooling operator: Max
• Pooling size: (1, 2) , (1,

2), (1, 2)
• Activation function:

ReLU

• Type: GRU
• Layers: 3
• Units: 96, 96, 96

CHIME-Home • Layer: 4
• Filters: 256, 256, 256,

256
• Kernel size: (5, 5)
• Pooling operator: Max
• Pooling size: (1, 2), (1,

2), (1, 2), (1, 1)
• Activation function:

ReLU

• Type: GRU
• Layer: 1
• Units: 256

Table 2.18 Hybrid NN architecture by Cakir et al. (2017)

CNN details RNN details

• Layers: 3
• Filters: 256, 256, 256
• Kernel size: 3
• Pooling operator: Max
• Pooling size: (1, 5), (1, 4), (1, 2)
• Activation function: Sigmoid

• Type: BLSTM
• Layers: 3
• Units: 100, 100, 100
• Activation function:

Sigmoid

Table 2.19 Hybrid NN architecture by Jung et al. (2019)

45

Literature Review

Model based on CNN details RNN details

Log mel energies • Layers: 3
• Filters: 100, 100, 100
• Kernel size: (3, 3)
• Pooling operator: Max
• Pooling size: (1, 2), (1,

2), (1, 2)
• Activation function:

ReLU

• Type: BLSTM
• Layers: 2
• Units: 100, 100

GCC-PHAT • Layers: 3
• Filters: 100, 100, 100
• Kernel size: (3, 3)
• Pooling operator: Max
• Pooling size: (1, 3), (1,

2), (1, 2)
• Activation function:

ReLU

ACR • Layers: 3
• Filters: 100, 100, 100
• Kernel size: (3, 3)
• Pooling operator: Max
• Pooling size: (1, 10), (1,

4), (1, 2)
• Activation function:

ReLU

TDoA and
dom-freq

• Layer: 1
• Filters: 100
• Kernel size: (3, 3)
• Activation function:

ReLU

Table 2.20 Hybrid NN architecture by Adavanne et al. (2017)

46

Literature Review

Model based on CNN details RNN details

Log mel energies • Layers: 3
• Filters: 64, 64, 64
• Kernel size: (3, 3)*
• Pooling operator: Max
• Pooling size: (1, 5), (1,

2), (1, 2)
• Activation function:

ReLU

• Type: GRU
• Layers: 2
• Units: 64, 64
• Activation func-

tion: Hyperbolic
Tangent

GCC-PHAT • Layers: 3
• Filters: 64, 64, 64
• Kernel size: (3, 3)*
• Pooling operator: Max
• Pooling size: (1, 5), (1,

3), (1, 2)
• Activation function:

ReLU

Table 2.21 Hybrid NN architecture by Adavanne et al. (2018)
*First layer is a 3D CNN

CNN details RNN details

• Layers: 3
• Filters: 128, 128, 128
• Kernel size: (3, 3)
• Pooling operator: Max
• Pooling size: (1, 5), (1, 2) , (1, 2)
• Activation function: ReLu

• Type: GRU
• Layers: 2
• Units: 32, 32

Table 2.22 Hybrid NN architecture by Xia et al. (2019)

Hourglass network details RNN details

• Layers: 4
• Activation function: ReLu

• Type: GRU
• Layers: 3

Table 2.23 Hybrid NN architecture by Ding and He (2020)

47

Literature Review

References Loss function Optimizer

Cakir et al. (2017) BCE Adam (Kingma and Ba,
2015)

Jung et al. (2019) BCE Adam (Kingma and Ba,
2015)

Adavanne et al. (2017) BCE Adam (Kingma and Ba,
2015)

Adavanne et al. (2018) BCE Adam (Kingma and Ba,
2015)

Xia et al. (2019) BCE Adam (Kingma and Ba,
2015)

Ding and He (2020) Weighted Average BCE Adam (Kingma and Ba,
2015)

Table 2.24 Loss functions and optimizers used for training hybrid NN-based architecture

48

Literature Review

References Additional information

Cakir et al.
(2017)

• Dropout rate: 0.25
• Early stop criterion: 100
• BN after each convolutional layer or FC layer
• Pooling applied after every convolution layer
• Activation function for output layer: Sigmoid

Jung et al. (2019) • Learning rate: 0.001
• Decay rate: Exponential
• Dropout rate: 0.3
• BN for each convolution layer.
• Pooling applied after every convolution layer
• LN for each BLSTM layer
• Activation function for output layer: Sigmoid

Adavanne et al.
(2017)

• Mini-batch: 32
• Dropout rate: 0.5
• BN for each convolution layer
• Early stop criterion: 50 epochs
• Activation function for output layer: Sigmoid

Adavanne et al.
(2018)

• Learning rate: 0.0001
• Mini-batch: 128
• Dropout rate: 0.2
• BN for each convolution layer
• Pooling applied after every convolution layer
• Early stop criterion: 100 epochs
• Activation function for output layer: Sigmoid

Xia et al. (2018) • Learning rate: 0.001
• BN for each convolution layer
• Pooling applied after every convolution layer
• Activation function for output layer: Sigmoid

Ding and He
(2020)

• Learning rate: 0.001
• Mini-batch: 45
• BN for each convolution layer
• Pooling applied after every convolution layer
• Activation function for output layer: Sigmoid

Table 2.25 Additional models information (hybrid NN-based architecture)

49

Literature Review

R
ef

er
en

ce
s

D
at

as
et

Se
gm

en
t-

ba
se

d
F1

-s
co

re
(%

)
Se

gm
en

t-
ba

se
d

E
R

O
th

er
m

et
ri

c

C
ak

ir
et

al
.(

20
17

)
T

U
T-

SE
D

20
09

1-
Fr

am
e:

69
.7

1-
Fr

am
e:

0.
45

1-
Fr

am
e:

69
.3

1-
Fr

am
e:

0.
48

T
U

T-
SE

D
20

16
(D

ev
)

1-
Fr

am
e:

27
.6

1-
Fr

am
e:

0.
98

1-
Fr

am
e:

30
.3

1-
Fr

am
e:

0.
95

C
H

iM
E

-H
om

e
(D

ev
)

E
E

R
:1

3
C

H
iM

E
-H

om
e

(E
va

)
E

E
R

:1
1.

3

Ju
ng

et
al

.(
20

19
)

T
U

T-
SE

D
20

16
(D

ev
)

1-
Fr

am
e:

55
.9

1-
Fr

am
e:

0.
56

A
da

va
nn

e
et

al
.(

20
17

)
T

U
T-

SE
D

20
09

1-
Fr

am
e:

71
.7

1-
Fr

am
e:

0.
43

T
U

T-
SE

D
20

16
(D

ev
)

1-
Fr

am
e:

35
.8

1-
Fr

am
e:

0.
95

A
da

va
nn

e
et

al
.(

20
18

)
T

U
T-

SE
D

20
17

(D
ev

)
1-

Fr
am

e:
67

.5
1-

Fr
am

e:
0.

35

X
ia

et
al

.(
20

19
)

T
U

T-
SE

D
20

16
-H

om
e

(D
ev

)
1-

Fr
am

e:
37

.1
1-

Fr
am

e:
0.

58
T

U
T-

SE
D

20
16

-H
om

e
(E

va
)

1-
Fr

am
e:

19
.6

1-
Fr

am
e:

0.
84

T
U

T-
SE

D
20

17
(D

ev
)

1-
Fr

am
e:

52
.7

1-
Fr

am
e:

0.
34

T
U

T-
SE

D
20

17
(E

va
)

1-
Fr

am
e:

48
.3

1-
Fr

am
e:

0.
59

D
in

g
an

d
H

e
(2

02
0)

T
U

T-
SE

D
20

16
(E

va
)

1-
Fr

am
e:

48
.7

1-
Fr

am
e:

0.
78

T
U

T-
SE

D
20

17
(E

va
)

1-
Fr

am
e:

43
.6

1-
Fr

am
e:

0.
77

Ta
bl

e
2.

26
D

at
as

et
us

ed
by

di
ff

er
en

ta
ut

ho
rs

an
d

re
po

rt
ed

ac
cu

ra
cy

us
in

g
hy

br
id

N
N

-b
as

ed
m

et
ho

do
lo

gi
es

.D
ev

re
fe

rs
to

de
ve

lo
pm

en
td

at
as

et
.E

va
re

fe
rs

to
ev

al
ua

tio
n

da
ta

se
t.

50

Literature Review

References Limitations

Cakir et al.
(2017)

• Accuracy was not the best across different dataset.

Jung et al.
(2019)

• Require additional effort to generate synthetic data for trans-
fer learning.

• LSTM has high model complexity and is not easy to tune.

Adavanne et al.
(2017)

• Additional audio features provide little performance im-
provement.

• LSTM has high model complexity and is not easy to tune.

Adavanne et al.
(2018)

• Additional features did not help to increase accuracy.

Xia et al.
(2019)

• May require careful tuning of hyperparameters for the
parabolic function.

• Using a parabola as a confidence function may not be appro-
priate.

• AC-GAN produces sample with less diversity as classes
increases.

• AC-GAN imposes perfect separability which is disadvanta-
geous.

Ding and He
(2020)

• May requires much higher computational resource as com-
pared to a CRNN.

• Such network can easily overfit with a small amount of
samples.

• Cannot perform as well as a CRNN with data augmentation
using GAN.

Table 2.27 Limitations for different hybrid NN-based methodologies

2.2.5. Models Utilizing Weakly Labeled Data

Due to the lack of strongly labeled data, research efforts then focus on the effective use of

weakly labeled data. Lee et al. (2017) proposed an ensemble of CNNs for SED utilizing

only weakly labeled data. The idea was to have two different CNN architectures trained

with different inputs. In their framework, a Global Input Model utilized the entire TF

representation as the training input and a Separated Input Model that took a smaller segment

of TF representation as training input. These smaller segments are broken up from the

original TF representation using a non-overlapping sliding window with a window size of

1 to 5 seconds and were considered to have the same label as the original TF representation.

The final prediction was then given by combining the models’ probabilities. The overall

framework is illustrated in Figure 2.12.

51

Literature Review

Figure 2.12 Proposed framework by Lee et al. (2017)

Lee et al. (2017) then proposed an iterative approach to form the ensemble based on

accuracy measures. Thus, a model will only be included in the ensemble if it can raise

the accuracy of the ensemble. An ensemble was formed from 12 models trained using the

Global Input Model and Separated Input Model based on such an approach.

Using the ensemble, Lee et al. (2017) reported an F1-score of 52.1% with ER of 0.66

on the DCASE 2017challenge task 4 challenge development dataset and an F1-score of

55.5% with an ER of 0.66 on the evaluation dataset. Based on such results, Lee et al.

(2017) were able to clinch first place in the challenge.

A significant drawback of such a methodology is the computational resource and time

required to train many models and form an ensemble using the iterative selection approach.

Subsequently, to eliminate the background noise from the audio, Lee et al. (2017) proposed

a background subtraction method, which was carried out by subtracting the median from

each mel band. However, this method can significantly degrade model performance that

used the entire or half the TF representation. In addition, treating the smaller segments

to have the same label as the original TF representation can induce noise to the training

sample because the smaller samples may not contain any information regarding the label.

The idea of disregarding the label position was also tested in (Chan et al., 2019), where

results have shown that it can induce noise to the training examples, resulting in a lower

segment-based F1-score.

Xu et al. (2018) proposed a CRNN with Gated Linear Unit (GLU) (Dauphin et al.,

2018) and a temporal pooling approach known as attention pooling. Such a system was

a joint system that produced the audio tags and the corresponding temporal labels. Such

framework is illustrated in Figure 2.13.

52

Literature Review

Figure 2.13 Proposed framework by Xu et al. (2018)

The GLU activation function can be regarded as a local attention scheme and is similar

to other gating mechanisms in LSTM or GRU, which control the information flow to the

next layer and is defined as (Dauphin et al., 2018)

Y = (xW1 +b1)⊗σ(xW2 +b2) (2.6)

where x is the input and σ is the sigmoidal function. ⊗ is the hadamard product. W1,

W2, b1 and b2 are learnable parameters (i.e., weights and bias). The benefit of GLU is

that it reduces the gradient vanishing problem for the deep network by allowing a linear

path for the gradients while keeping non-linear capabilities through the sigmoid operation

(Dauphin et al., 2018).

Attention pooling is a temporal pooling approach that makes use of two FNNs with

different activation functions. The first activation function in the FNN was the softmax

activation function which was used to infer the temporal locations for each occurring class

and attended to the most salient frames for each class. The second activation function was

the sigmoid activation function which performed classification at each frame. The audio

tags were then obtained through a two-step approach. The first step is to perform the sum

of product between sigmoid and softmax activation outputs along the temporal axis. The

second step is the division of the value obtained in step 1 by the sum of the output from

the softmax activation along the temporal axis.

In order to alleviate the issue of an imbalanced dataset, Xu et al. (2018) proposed

including samples from all classes in every training batch. The selection of samples would

53

Literature Review

follow the similar distribution ratio of each class but ensure that there is at least one sample

from the minority classes. In contrast, the majority class would be restricted to be at most

five times more than the minority class.

Xu et al. (2018) proposed fusing results generated during each training epoch to

improve the detection accuracy. They also proposed an ensemble system where one system

was trained using MFCCs while the other was trained using log mel energies. Outputs

from both systems will then be averaged to retrieved the final posterior, which was then

thresholded by an array of class-dependent thresholds to determine the occurrence of the

sound event. Based on such implementation, Xu et al. (2018) achieved a single-second

segment-based F1-score of 49.7% with ER of 0.72 on the DCASE 2017 challenge task 4

development dataset and a single-second segment-based F1-score of 51.8% with an ER of

0.73 on the evaluation dataset.

While such a system was among the top three implementations in the challenge, it

was also found to perform rather poorly on event-based evaluations for a similar task

in DCASE 2018 (Kothinti et al., 2019). In addition, experiments also found that such

architecture cannot be simplified and will result in poor detection accuracy (Pellegrini and

Cances, 2019). The use of GLU in their methodology can also increase the total number of

parameters to be learned. Finally, it was also found that attention pooling may not be the

best temporal pooling option for audio tags prediction (Wang et al., 2019a).

Kong et al. (2020) proposed a CNN-Transformer (CNNT) for SED. The motivation

of their work was to reduce the training time of a CRNN by making use of a transformer

to replace the RNN. As a CRNN has to be calculated sequentially, this can make it quite

challenging to complete the training process in a short amount of time (Kong et al., 2020).

On the other hand, the Transformer can take a long-time dependency into consideration

for a system but comes with the benefit of allowing parallel computing, thus, making it an

excellent alternative to RNN (Kong et al., 2020).

In their framework, Kong et al. (2020) made use of 3 different sets of thresholds. The

first set would allow the audio to be tagged. The second set was a set of upper bound

thresholds that would indicate the frames containing the respective sound event. However,

this may result in several false negatives. Thus, the third set of the lower bound threshold

was utilized to determine if the neighboring frames contain the same sound event. As there

were many thresholds, manual tuning of these values can be complicated and inefficient.

Thus, Kong et al. (2020) proposed an automatic threshold tuning method. Such a method

would allow the thresholds to be tuned using backpropagation.

54

Literature Review

Based on such implementation, Kong et al. (2020) reported a segment-based F1-score

of 52.4% with ER of 0.75 on the development dataset and a segment-based F1-score of

57.3% with an ER of 0.75 on the evaluation dataset.

However, based on both DCASE 2017 development and evaluation results, the CNNT

could not outperform a CRNN with the attention layer. Although Kong et al. (2020)

only applied the encoding layer of a Transformer, it should be pointed out that the overall

training process can be slowed down if the decoding layer is used (Karita et al., 2019; Zhang

et al., 2018a). Finally, as analyzed by Pellegrini and Masquelier (2021), the threshold

optimizer proposed by Kong et al. (2020) may suffer from convergence issues because

hyperparameters such as learning rate may not be optimal for each target class individually.

It is also inefficient when dealing with a large number of classes and training examples.

Lu (2018) then proposed a modified version of the Xu et al. (2018) system. To lessen

the number of parameters due to the use of GLU (Dauphin et al., 2018), Lu (2018) proposed

using Context Gating (CG) (Miech et al., 2018) as the activation function for CNN, which

can be defined as

Y = x⊗σ(xW1 +b1) (2.7)

By comparing with Equation 2.6, CG only has one set of learnable parameters and thus has

the benefit of improved efficiency compared to GLU. At the same time, it also allowing

non-linear interactions among activations of the input representation (Miech et al., 2018).

Besides training the system with only weakly labeled data, Lu (2018) also utilized a

large set of unlabeled data. Such an approach is known as semi-supervised learning, and

Lu (2018) proposed using the Mean-Teacher semi-supervised learning scheme (Tarvainen

and Valpola, 2017) in their framework.

The idea of the Mean-Teacher approach is to train two identical models (i.e., Teacher

Model (TM) and Student Model (SM)) synchronously. Such a framework has two primary

loss functions; a multi-class (or multi-label) loss function and a consistency loss function.

The first loss function is to update the models according to the training input, whereas

the second loss function is to enforce similar predictions between SM and TM (i.e., SM

predictions should be close to TM predictions). In the training procedure, the weights

of the SM are updated through gradient descent. In contrast, the weights of the TM are

updated as an exponential moving average of the SM weights. Such a training scheme is

based on the fact that using average model weights over training epochs instead of using

the final weights directly can produce a more accurate model (Tarvainen and Valpola,

2017). An example of the Mean-Teacher approach is illustrated in Figure 1.3.

55

Literature Review

Similar to (Xu et al., 2018), Lu (2018) also proposed an ensembled system to produce

a more accurate model, in which Lu (2018) proposed to combine the results from different

systems using different consistency costs for the Mean Teacher model.

Based on this system, Lu (2018) reported an event-based F1-score of 34.4% with an ER

of 1.16 on the development dataset and an event-based F1-score of 32.4% on the evaluation

dataset, which allows Lu (2018) to clinch first place in the 2018 DCASE Task 4 challenge.

However, the subsequent analysis found that such a system performed poorly for sound

events of short duration (Serizel and Turpault, 2019). Moreover, the major drawback of

this model is the large number of models to be trained to form the ensemble. Due to the

nature of the student-teacher model, each model with a different consistency cost requires

two models (i.e., SM and TM) to be trained synchronously; this can result in a significant

increase in computational cost and resource burdens. The use of attention pooling for

audio tagging may also not be optimal (Wang et al., 2019a). Finally, consistency cost

requires careful tuning to achieve maximal performance. Since Lu (2018) proposed an

ensemble approach, the impact of consistency cost was alleviated.

Lin et al. (2020) also proposed a teacher-student frame for SED. However, instead

of training two identical models synchronously, Lin et al. (2020) proposed training two

different models synchronously. The TM was a model with higher model complexity

and a larger pooling size along the temporal axis after each convolutional layer. It was

hypothesized that such a model could integrate the audio contextual information and, thus,

capable of producing a better clip level prediction. In contrast, the SM was a simpler model

with no pooling along the temporal axis and was hypothesized to be better at frame-level

prediction. The proposed teacher and student model can be seen in Figure 2.14. The

entire training procedure can be broken down into two different stages where the transition

from stage one to stage two is controlled by the training epochs defined by the user. The

first stage can be considered the student learning stage, while the second stage can be

considered the mutual learning stage. In the first stage, both TM and SM model parameters

are updated based on a combined cost consisting of three components. The first two

components were the classification cost of TM and SM on the labeled data, which can be

given as

C1 = J(T̈k,Zk) (2.8)

C2 = J(S̈k,Zk) (2.9)

where J(.) denotes the cost function and Zk as the vector representing the clip-level ground

truth of the k sample of the weakly labeled dataset. T̈k and S̈k represent the vectors

56

Literature Review

Figure 2.14 Proposed framework by Lin et al. (2020)

containing the probabilities of each event that occurred in weakly labeled sample k by the

TM and SM, respectively. The third component was the classification cost of TM and SM

on the unlabeled data, which can be defined as

C3 = J(S̈u
k , T̈

u
k) (2.10)

where S̈u
k and T̈u

k represent the SM and TM prediction of the k sample of the unlabeled

dataset. Thus, in the first stage, the learning procedure effectively forces the SM to learn

from the TM. After a specific training epoch, the training procedure transits into the second

stage, where the combined cost was added with another component, C4, which can be

defined as

C4 = ε× J(T̈u
k , S̈

u
k) (2.11)

where ε determines how much the TM should learn from the SM. Thus, such a learning

scheme will allow the two CNN models to be trained simultaneously and forcing them to

learn from each other, which Lin et al. (2020) hypothesized can increase the performance

of the two models. As such, Lin et al. (2020) methodology can also be thought of as a

variant of the distillation approach (Hinton et al., 2015) or the mutual learning (Zhang

et al., 2018b) framework.

57

Literature Review

Based on such architecture, Lin et al. (2020) reported a higher event-based F1 score of

39.5% than (Lu, 2018) on the DCASE 2018 evaluation dataset.

Lin et al. (2019) then extended their work by creating a set of disentangled features that

would mitigate the effects of overlapping sound events. Lin et al. (2019) then proposed

using an adaptive median filter to smooth the SM’s temporal outputs. The idea of an

adaptive median filter is to smooth predicted temporal labels for an event class with an

event-specific window which is determined through the average duration of event class in

the synthetic dataset.

Finally, an ensemble of models with different ε was trained to produce the audio

prediction. Based on these improvements, Lin et al. (2019) reported an event-based F1-

score of 45.4% on the development dataset and an event-based F1-score of 42.7% on the

evaluation dataset, which won first place in the DCASE 2019 task 4 challenge.

However, the major drawback of Lin et al. (2020) and Lin et al. (2019) is similar to Lu

(2018); two models (i.e., SM and TM) have to be trained synchronously, which can result

in a significant increase of computational cost and resource burdens. The use of ensemble

in Lin et al. (2019) can further aggravate this problem.

Moreover, as seen in Figure 2.14, the two models are designed differently with no

specific guidelines. This can result in a significant model tuning time. Besides, there

are also several hyperparameters to be tuned. Firstly, how can the training epochs be

determined effectively to allow proper transition from stage one to stage two? Secondly,

how much should the TM learn from the SM? These two issues can only be answered

through manual tuning, which further increases the model tuning time. Finally, the

proposed adaptive median window size for each event may also not be optimal since it was

derived based on the average event duration in the synthetic dataset.

Kothinti et al. (2019) also proposed two different setups for audio tagging and tem-

poralization, which are illustrated in Figure 2.15. The temporal localization model was a

combination of Restricted Boltzmann Machine (RBM), conditional RBM (cRBM), and

Principle Component Analysis (PCA). In contrast, the audio tagging model was an ensem-

ble of CRNNs. For the temporal localization model, a spectrogram was used as the input

for the RBM to capture local-spectrotemporal dependencies. Outputs were subsequently

passed to an array of cRBMs to generate the final high-dimensional representation of the

acoustic signal. The dimensions of the signal representation were then reduced using PCA.

The closest preceding sample at 25% of the maximal value in the reduced representation

was then determined as the onset of an event. On the other hand, the offset was determined

based on the threshold set on the short-term energies of the audio signal.

58

Literature Review

Figure 2.15 Proposed framework by Kothinti et al. (2019)

For the audio tagging model, log mel energies were used as the input for three different

CRNNs. The first two CRNNs had the same architecture but were trained differently. The

first system was trained using only weakly labeled data, while the second was trained

using weakly labeled data and augmented data generated by mixing weakly labeled audios.

The third system was the DCASE 2018 challenge task 4 baseline system trained using

only weakly label audio. Besides the difference in training inputs used, the critical

differences between the three systems were the number of filters and kernel size used in

each convolutional layer. In their framework, the posterior probabilities from the three

models were combined to give the final prediction through majority voting.

Kothinti et al. (2019) achieved an event-based F1-score of 30.05% with ER of 1.36 on

the development dataset and an event-based F1-score of 25.4% with ER of 1.19 on the

evaluation dataset.

Such results can only be considered mediocre despite such a complex design. In

addition, it was found that the accuracy of the boundary detection system is lower for audio

with overlapping events. The impact was only mitigated due to the error tolerance used

for evaluation. Furthermore, it was found that the audio tagging system was poor at event

labelings which deteriorate the overall performance significantly. Moreover, there also lies

a possibility that the accuracy of boundary detection is affected by suboptimal thresholds.

In the framework, Contrastive Divergence (CD) is used to train a cRBM, but it was

mentioned in (Mnih et al., 2011) that it might not be an excellent choice to use CD to train a

cRBM for prediction purposes. It is unclear if it will also affect the representation learning,

which in turn affects the boundary detection accuracy. However, theoretical analysis of CD

is difficult (Carreira-Perpinan and Hinton, 2005), which can prohibit further investigation.

Pellegrini and Cances (2019) also proposed different model setups for SED, but the

critical difference with the earlier proposals (Kothinti et al., 2019; Lin et al., 2019, 2020)

is that the two setups shared the same feature extraction block. The overall framework is

59

Literature Review

illustrated in Figure 2.16. For the audio tagging model, the last feature extraction block

Figure 2.16 Proposed framework by Pellegrini and Cances (2019)

was followed by both global average pooling and global max pooling, then by a dense

layer, and finally the output layer. The predictions from the audio tagging model were

then thresholded by a set of class-dependent thresholds that were optimized by the Genetic

Algorithm. For the temporal localization model, the last convolution block was followed

by a BGRU, a dense layer, and finally, the output layer. Another distinct difference with

the audio tagging model would be the cost function, where the temporal localization model

took Cosine Similarity between classes into consideration, which was proposed to penalize

overlapping events.

The output from this model was a set of temporal predictions for each class where

Pellegrini and Cances (2019) proposed to discard all temporal predictions of classes

detected as negative (i.e., event is predicted as not present) by the audio tagging model.

The remaining temporal predictions were subsequently rescaled to 0 and 1 and smoothed

with an average sliding window. Finally, the onsets and offsets of events were retrieved

using a global threshold.

Based on such implementation, Pellegrini and Cances (2019) reported an event-based

F1-score of 34.75% on the DCASE 2018 development dataset and an event-based F1-score

of 26.2% on the evaluation dataset.

In their framework, several hyperparameters were coarsely determined. For example,

the threshold used to detect the final onsets and offsets of events and the regularization

weight used to determine the amount of contribution by Cosine Similarity to the loss

60

Literature Review

function. A coarsely determined threshold value can have an adverse effect on model

accuracy. The overall accuracy is also dependent on the audio tagging model’s accuracy. It

was found that the temporal accuracy can have a 10% boost if all audio tags are correctly

given.

Although Cosine Similarity was added to penalize overlapping events, it was not always

helpful. In specific scenarios, it can help to decorrelate overlapping classes. However, in

certain situations, it cannot provide decorrelation and can even cause one of the classes to

be undetectable.

Finally, as GLU (Dauphin et al., 2018) was utilized, it can lead to a large parameter

count due to a sophisticated model design.

2.2.6. Summary of Models Utilizing Weakly Labeled Data

In the previous section, different methodologies utilizing weakly labeled data with their

limitations were discussed in detail. To leverage a large amount of weakly labeled data,

most of the methodologies adopted the use of ensemble system or training of two different

models where one is in charge of audio tagging while the other is in charge of boundary

detection. However, this will require much more computational resources and time to train

a different number of models. It is also important to point out that the model using weakly

labeled data is not as effective as its counterpart using strongly labeled data. There are

also studies that show audio tagging or classification accuracy may be reduced if trained

with only weakly labeled data (Hershey et al., 2021; Turpault et al., 2020a). Thus, this

remains an open research area as to how data can be utilized effectively. Finally, the use

of threshold to determine the event activation remains a norm but Kong et al. (2020);

Pellegrini and Cances (2019) presented some interesting ideas to tune it to an optimal

value automatically and Kong et al. (2020) showed that accuracy did increase based on

their optimization. However, there are still convergence issues associated with the tuning

method proposed, and it may not work well with a large number of events classes or

training samples (Pellegrini and Masquelier, 2021).

In this section, the features used by different authors are presented in Table 2.28 to

Table 2.30. Similarly, mel energies remain the most popular as a feature and will most

probably remain the gold standard for SED.

Table 2.31 to Table 2.39 that present the information of the architecture proposed. Due

to significant differences in models’ architecture, each model layout is presented in an

individual table. Each column represents the different models used (either SM or TM or

audio tagging model or event boundary model). In the case of (Kong et al., 2020; Xu

61

Literature Review

et al., 2018) , since they only utilized one type of hybrid architecture (i.e., CRNN and

CNNT), the columns then showcase the details of the components used in their hybrid

system. Since Lu (2018) used the mean-teacher training approach (Tarvainen and Valpola,

2017), both SM and TM are identical, so only one model is shown.

The table containing information on the Kothinti et al. (2019) system (which utilized 3

different CRNNs for audio tagging) is presented differently. The two systems that used

a similar layout are classed together, so we only present one model architecture, and the

information can be viewed under bullet point, Variant 1 and Variant 2. At the same time,

the information on the third model can be viewed under bullet point, Variant 3.

Other naming convention, writing style (such as the number of filters, kernel size)

remains the same as the previous section to ensure consistency.

Finally, results and limitations of all the CRNN architectures are presented in Table

2.40 and Table 2.41, respectively.

References Features

Lee et al. (2017) Log mel energies

Xu et al. (2018) MFCC
Log mel energies

Kong et al. (2020) Log mel energies

Lu (2018) Log mel energies

Lin et al. (2020) Log mel energies

Lin et al. (2019) Log mel energies

Kothinti et al. (2019) Spectrogram
Log mel energies

Pellegrini and Cances (2019) Log mel energies

Table 2.28 Features proposed for methodologies utilizing weakly labled data

62

Literature Review

References Window
Window Overlap Mel-

length (ms) (%) filterbanks

Lee et al. (2017) - 46 78 128

Xu et al. (2018) Hamming 64 35 64

Kong et al. (2019b) Hanning 32 69 64

Lu (2018) - 93 83 128

Lin et al. (2020) - 40 50 64

Lin et al. (2019) - 40 50 64

Kothinti et al. (2019) Unspecified
for spectro-

gram

10 - 128*

Kothinti et al. (2019) Hamming
for log mel

energies

40 50 64

Pellegrini and Cances (2019) - 46 50 64

Table 2.29 Parameters used for feature calculation (models utilizing weakly labeled data). *Spec-
trogram channels

References Additional processing steps

Lee et al. (2017) • Audio was normalized prior to the
calculation of mel energies.

• All mel bands were then subtracted
by the median value.

Xu et al. (2018) -

Kong et al. (2020) • Audio resampled to 32000Hz.
• Frequency range to compute mel

band is 50Hz to 14000Hz.

Lu (2018) • Audio resampled to 22050Hz.

Lin et al. (2020) • Normalization of energy bands.

Lin et al. (2019) -

Kothinti et al. (2019) -

Pellegrini and Cances (2019) -

Table 2.30 Additional processing steps (models utilizing weakly labeled data)

63

Literature Review

Global input model Separated input model

• Layers: 10
• Filters: 64, 64, 64, 64, 64, 64, 64,

64, 64, 64
• Kernel size: (3, 3) for all layers
• Pooling Operator: Max
• Pooling after every 2 convolution

layers
• Pooling size: (2, 4), (2, 4), (4, 4),

(4, 4)
• Activation function: ReLU

• Layers: 10
• Filters: 64, 64, 64, 64, 64, 64, 64,

64, 64, 64
• Kernel size: (3, 3) for all layers
• Pooling Operator: Max
• Pooling after every 2 convolution

layers
• Pooling size: (2, 2), (2, 2), (4, 3),

(4, 4)
• Activation function: ReLU

Table 2.31 Proposed architecture by Lee et al. (2017)

CNN details RNN details

• Layers: 6
• Filters: 64
• Kernel size: (3, 3) for all layers
• Pooling operator: Max
• Pooling after every 2 convolution

layers
• Pooling size: (2, 2) through the

whole model
• Activation function: GLU

• Type: BGRU
• Layer: 1
• Units: 128

Table 2.32 Proposed CRNN architecture by Xu et al. (2018)

CNN details Transformer details

• Layers: 8
• Filters: 64, 64, 128, 128, 256,

256, 512, 512
• Kernel size: (3, 3) for all layers
• Pooling operator: Average
• Pooling after every 2 convolution

layer
• Pooling size: (4, 1) for the last

layer, otherwise (2,2)
• Activation function: ReLU

-

Table 2.33 Proposed CNNT architecture by Kong et al. (2020)

64

Literature Review

CNN details RNN details

• Layers: 7
• Filters: 16, 32, 64, 128, 128, 128,

128
• Kernel size: (3, 3) for all layers
• Pooling operator: Average
• Pooling after every layer
• Pooling size: (2, 2) for the first 2

layers, otherwise (1, 2)

• Type: BRNN
• Layers: 1
• Units: 128

Table 2.34 Proposed CRNN architecture by Lu (2018). (Note: SM and TM are identical)

TM details SM details

• Gaussian input noise: 0.15
• Layers: 9
• Filters: 16, 16, 32, 32, 64, 64, 12,

128, 256
• Kernel size: (1, 1) for the last

layer otherwise (3, 3)
• Pooling Operator: Max
• Pooling after every 2 convolution

layers
• Pooling size: (5,4), (5,2), (2,2),

(2,2)
• Activation function: ReLU

• Layers: 3
• Filters: 160, 160, 160
• Kernel size: (3, 3) for the last

layer otherwise (5, 5)
• Pooling Operator: Max
• Pooling after every convolution

layer
• Pooling size: (1,4), (1,4), (1,4)
• Activation function: ReLU

Table 2.35 Proposed architecture by Lin et al. (2019, 2020)

65

Literature Review

Audio tagging model (CRNN) details Event boundary
model details

CNN details RNN details

• Variant 1 and Variant 2
– Layers: 3
– Filter: 128, 128,

192
– Kernel size: (1, 3)

for all layers
– Pooling after ev-

ery layer
– Pooling size:

(1,8), (1, 4), (1,2)
– Activation func-

tion: ReLU

• Variant 1 and Variant 2
– Layers: 1
– Units: 64

• RBM and
cBRM

• Units for
RBM: 350

• Units for
cRBM: 300

• Variant 3
– Layers: 3
– Filter: 64, 64, 64
– Kernel size: (3, 3)

for all layers
– Pooling operator:

Max
– Pooling after ev-

ery layer
– Pooling size:

(1,4), (1, 4), (1,4)
– Activation func-

tion: ReLU

• Variant 3
– Layers: 1
– Units: 64

Table 2.36 Proposed architecture by Kothinti et al. (2019)

Shared block Audio tagging model Event boundary model

• Layers: 3
• Filters: 64
• Kernel size: (3, 3)

for all layers
• Pooling Operator:

Max
• Pooling applied

after every convo-
lution layer

• Pooling size: (1,
4) for all layers

• Activation func-
tion: GLU

• A global max and
global avg pool-
ing layer

• FC units: 1024,
10

• RNN Type:
BGRU

– Layer: 1
– Units: 64
– Activation

function:
Hyperbolic
Tangent

• FC units: 64, 10

Table 2.37 Proposed architecture by Pellegrini and Cances (2019)

66

Literature Review

References Loss function Optimizer

Lee et al. (2017) - Adam (Kingma and
Ba, 2015)

Xu et al. (2018) BCE Adam (Kingma and
Ba, 2015)

Kong et al. (2020) BCE Adam (Kingma and
Ba, 2015)

Lu (2018) - Adam (Kingma and
Ba, 2015)

Lin et al. (2019, 2020) BCE Adam (Kingma and
Ba, 2015)

Kothinti et al. (2019) - CD for RBM and
cRBM

Pellegrini and Cances (2019) BCE for CNN Adam (Kingma and
Ba, 2015)

BCE with Cosine
Similarity for CRNN

Table 2.38 Loss functions and optimizers used for models utilizing weakly labeled data

67

Literature Review

References Additional Information

Lee et al. (2017) • BN for each convolution layer
• Global average pooling after the last convolution layer

Xu et al. (2018) • Minibatch data balancing
• Learning rate: 0.001
• Attention pooling

Kong et al. (2020) • Learning rate: 0.001
• Mixup with alpha of 1
• BN after every convolution layer
• Mel bins are averaged after the last convolution layer

Lu (2018) • Dropout rate: 0.5
• Attention pooling

Lin et al. (2019,
2020)

• Learning rate: 0.0018
• Mini-batch: 64
• Decay rate: 0.8
• Dropout rate: 0.3
• BN for each convolution layer
• Attention pooling
• Early stop criterion: 20 epochs
• Median filter applied on the output

Kothinti et al.
(2019)

• PCA on the output of RBM+cRBM
• Global average pooling after the last convolution layer for

Variant 3
• Dropout rate: 0.3 for Variant 3
• Early stop criterion: 20 epochs for Variant 3
• Activation function for output layer: Sigmoid

Pellegrini and
Cances (2019)

• Dropout rate: 0.2 for CNN layers, 0.5 for first dense layer in
audio tagging model

• BN after every convolution layer

Table 2.39 Additional models information (models utilizing weakly labeled data)

68

Literature Review

R
ef

er
en

ce
s

D
at

as
et

E
ve

nt
-b

as
ed

F1
-s

co
re

(%
)

E
ve

nt
ba

se
d

E
R

Se
gm

en
t-

ba
se

d
F1

-s
co

re
(%

)
Se

gm
en

t-
ba

se
d

E
R

L
ee

et
al

.(
20

17
)

D
C

A
SE

20
17

Ta
sk

4
(D

ev
)

-
-

1-
Fr

am
e:

52
.1

1-
Se

co
nd

:0
.6

6
D

C
A

SE
20

17
Ta

sk
4

(E
va

)
-

-
1-

Fr
am

e:
55

.5
1-

Se
co

nd
:0

.6
6

X
u

et
al

.(
20

18
)

D
C

A
SE

20
17

Ta
sk

4
(D

ev
)

-
-

1-
Fr

am
e:

49
.7

1-
Se

co
nd

:0
.7

2
D

C
A

SE
20

17
Ta

sk
4

(E
va

)
-

-
1-

Fr
am

e:
51

.8
1-

Se
co

nd
:0

.7
3

K
on

g
et

al
.(

20
20

)
D

C
A

SE
20

17
Ta

sk
4

(D
ev

)
-

-
1-

Fr
am

e:
52

.4
1-

Se
co

nd
:0

.7
5

D
C

A
SE

20
17

Ta
sk

4
(E

va
)

-
-

1-
Fr

am
e:

57
.3

1-
Se

co
nd

:0
.7

5

L
u

(2
01

8)
D

C
A

SE
20

18
Ta

sk
4

(D
ev

)
34

.4
1.

12
-

-
D

C
A

SE
20

18
Ta

sk
4

(E
va

)
32

.4
-

-
-

L
in

et
al

.(
20

20
)

D
C

A
SE

20
18

Ta
sk

4
(E

va
)

39
.5

-
-

-

L
in

et
al

.(
20

19
)

D
C

A
SE

20
19

Ta
sk

4
(D

ev
)

45
.4

-
1-

Se
co

nd
:6

9.
02

-
D

C
A

SE
20

19
Ta

sk
4

(E
va

)
42

.7
-

1-
Se

co
nd

:7
1.

4
-

K
ot

hi
nt

ie
ta

l.
(2

01
9)

D
C

A
SE

20
18

Ta
sk

4
(D

ev
)

30
.1

1.
36

-
-

D
C

A
SE

20
18

Ta
sk

4
(E

va
)

25
.4

1.
19

-
-

Pe
lle

gr
in

ia
nd

C
an

ce
s

(2
01

9)
D

C
A

SE
20

18
Ta

sk
4

(D
ev

)
34

.8
-

-
-

D
C

A
SE

20
18

Ta
sk

4
(E

va
)

26
.2

-
-

-

Ta
bl

e
2.

40
D

at
as

et
us

ed
by

di
ff

er
en

ta
ut

ho
rs

an
d

re
po

rt
ed

ac
cu

ra
cy

(m
od

el
s

ut
ili

zi
ng

w
ea

kl
y

la
be

le
d

da
ta

).
D

ev
re

fe
rs

to
de

ve
lo

pm
en

td
at

as
et

.E
va

re
fe

rs
to

ev
al

ua
tio

n
da

ta
se

t.

69

Literature Review

References Limitations

Lee et al.
(2017)

• Iterative selection method to form an ensemble is time-consuming.
• Background subtraction method can significantly degrade model

performance that used the entire or half the TF representation.
• Pseudo labeling method can induce large amount of noise.

Xu et al.
(2018)

• Accuracy was low in terms of event-based evaluations for a similar
task in DCASE 2018.

• Architecture cannot be simplified as it will result in poor detection
accuracy

• The use of GLU increases the total number of parameters to be
learned.

• Attention pooling may not work as well as other pooling function
such as linear softmax pooling.

Kong et al.
(2020)

• CNNT was not able to achieve better performance than a CRNN
with attention layer.

• Decoding process in a Transformer is slow (if decoding layer is
added).

• Threshold tuner has convergence issues and is inefficient when
dealing with a large number of classes and training examples.

Lu (2018) • Attention pooling may not work as well as other pooling function
such as linear softmax.

• Accuracy is low for sound events with a short duration.
• Consistency cost requires careful tuning.

Lin et al.
(2020)

• Different models are used which require various tuning.
• Several hyperparameters have to be tuned carefully.

Lin et al.
(2019)

• Different models are used which require various tuning.
• Several hyperparameters have to be tuned carefully.
• Window sizes of the median filters were derived based on the

average event duration in the synthetic dataset which may not be
perfect.

Kothinti
et al. (2019)

• Complex design with mediocre accuracy.
• Accuracy of boundary detection system is lower for audio with

overlapping events which is caused by CD learning or suboptimal
threshold values.

• Audio tagging accuracy is poor.

Pellegrini
and Cances

(2019)

• Several hyperparameters have to be tuned carefully.
• The overall accuracy is also dependent on the audio tagging

model’s accuracy.
• The use of GLU increases the total number of parameters to be

learned.
• Cosine Similarity was not always helpful.

Table 2.41 Limitations of models utilizing weakly labeled data

70

Chapter 3. Training a SED System Using Pseudo Strongly Labeled
Data

3.1. Motivation

In the previous chapter, a comprehensive review of the current SOTA for SED was pre-

sented. While there are many interesting strategies for training a SED system, a limited

effort was made to alleviate the need for strongly labeled data through pseudo labels.

Among the earlier methodologies reviewed, only Lee et al. (2017) attempted to use some

form of pseudo labels to train a SED system. As mentioned earlier, Lee et al. (2017)

methodology assumed all frames of a TF representation to contain an event based on

the given audio tag (for example, if clip A is weakly labeled to contain Speech, then all

frames are considered to contain Speech). Even though such an assumption can induce

a significant amount of noise, their methodology was ranked first in the DCASE 2017

challenge task 4. Thus, how pseudo strongly labeled data can be an effective solution

remains uncharted territory.

In this thesis, we propose to address the lack of strongly labeled data through the use

of pseudo strongly labeled data. Rather than assuming all frames of a TF representation to

contain an event based on the given audio tag, we propose using NMF to provide pseudo

strong labels for the weakly labeled audio clip. The motivation for using NMF for pseudo

labeling stems from the fact that the decomposition of a TF representation using NMF can

still give a coarse temporal location of an event even though they do not work very well

when applied directly for SED.

We first show an example of what we meant by NMF is capable of giving a coarse

temporal location of an event. We propose using an audio clip that contains only a dog

barking as an example. In this 10s audio clip, a dog was recorded barking 15 times. We

first resampled the audio clip to 32000Hz, and a mel spectrogram was tabulated using the

parameters shown in the following table.

NMF was then applied on the mel spectrogram to obtain Ḧ with r set as 1. The derived

Ḧ was subsequently rescaled to a range of 0 to 1 and is illustrated in the Figure 3.1.

71

Training a SED System Using Pseudo Strongly Labeled Data

Variable Value

FFT window size 1024

Hop length 500

Max frequency 16kHz

Min frequency 0Hz

Mel bins 64

Table 3.1 Parameters used to calculate a mel spectrogram

Figure 3.1 Activation matrix of an audio clip containing dog barking

As seen in Figure 3.1, there are exactly 15 spikes which correspond to the total number

of barks in the audio clip. This example essential shows that NMF is capable of providing

a coarse temporal location of an event. In the following subsection, we showcase the proof

of concept where pseudo labels estimated using NMF can be effective when tested on a

large-scale dataset.

3.2. Proof of Concept

The content of this section was published as a workshop paper; Chan, T. K., Chin, C.

S., and Y. Li. (2019). Non-negative matrix factorization-convolution neural network

(NMF-CNN) for sound event detection. In Proceeding of the Workshop on Detection and

Classification of Acoustic Scenes and Events, pages 40-44, New York, NY, USA.

3.2.1. Dataset Used

In order to prove that NMF can be a useful pseudo labeling tool, we propose to test it on

a large-scale dataset for SED in a domestic environment. The dataset used for the proof

of concept is the DESED dataset (Turpault et al., 2019), a subset of Audioset (Gemmeke

72

Training a SED System Using Pseudo Strongly Labeled Data

et al., 2017). The dataset consists of five different subsets, 1) synthetic strongly labeled, 2)

weakly labeled, 3) unlabeled, 4) validation, and 5) evaluation.

The synthetic strongly labeled set was generated by the organizers (Turpault et al.,

2019) using Scaper (Salamon et al., 2017). Scaper (Salamon et al., 2017) is a tool that

automatically generates soundscapes containing random mixtures of the provided events

sampled from user-defined distributions, given a set of user-specified background and

foreground sound event recordings.

Each subset of data is made up of ten event classes which are typically heard in a

domestic environment. However, each subset of data contains a different number of audio

clips, where each audio clip is 10s long and can contain multiple events, which may also

overlap. Since each clip can contain multiple events, the total number of event occurrences

is not equal to the total number of audio clips. Table 3.2 presents key information about

the event classes, event distribution, and total occurrences and clips.

It is essential to point out that the evaluation data is not released to the public. We were

able to obtain the evaluation results because we participated in the DCASE 2019 challenge

task 4.

73

Training a SED System Using Pseudo Strongly Labeled Data

E
ve

nt
cl

as
se

s
Sy

nt
he

tic
st

ro
ng

ly
la

be
le

d
W

ea
kl

y
la

be
le

d
U

nl
ab

el
ed

V
al

id
at

io
n

E
va

lu
at

io
n

20
19

E
ve

nt
oc

cu
rr

en
ce

s

Sp
ee

ch
21

32
55

0
-

16
62

-

D
og

51
6

21
4

-
57

7
-

C
at

54
7

17
3

-
34

0
-

A
la

rm
/b

el
l/r

in
gi

ng
75

5
20

5
-

41
8

-

D
is

he
s

81
4

18
4

-
49

2
-

Fr
yi

ng
13

7
17

1
-

91
-

B
le

nd
er

54
0

13
4

-
96

-

R
un

ni
ng

w
at

er
15

7
34

3
-

23
0

-

V
ac

uu
m

cl
ea

ne
r

20
4

16
7

-
92

-

E
le

ct
ri

c
sh

av
er

/to
ot

hb
ru

sh
23

0
10

3
-

65
-

To
ta

le
ve

nt
oc

cu
rr

en
ce

s
60

32
22

44
-

40
63

-

To
ta

la
ud

io
cl

ip
s

22
44

15
68

14
41

2
11

68
13

20
5

Ta
bl

e
3.

2
D

C
A

SE
20

19
da

ta
se

t

74

Training a SED System Using Pseudo Strongly Labeled Data

3.2.2. Unsupervised NMF for Pseudo Labeling

As mentioned in the earlier chapter (Chapter 2.1.2), NMF can be applied directly for SED.

The conventional NMF SED approach consolidates the extracted spectral templates from

isolated events to form a dictionary for a particular event class. This dictionary is then

used to derive Ḧ for a test audio clip, and activated frames in Ḧ are considered to contain

the specific event.

Instead of applying the conventional method, we propose to decompose the TF rep-

resentation of a weakly labeled audio clip using NMF and locate the activated frames in

Ḧ. As we are only interested in the activated frames, r can be set as 1. If r is set above 1,

it can be considered the unsupervised audio source separation technique (Heittola et al.,

2013b), which is not the focus of this application. Moreover, there is no indication of

which separated stream belongs to which audio event.

Thus, in our application, r is set as 1, and the occurrence of an event is determined by

locating the activated frames. Since each audio clip can contain multiple events which can

overlap, the activated frames are assumed to contain all events based on the given audio

tags. Ḧ is then binarized and used as the pseudo strong labels of a weakly labeled audio

clip. The process can be illustrated in Figure 3.2.

Figure 3.2 Flowchart of proposed unsupervised NMF pseudo labeling method

For better clarity on why a binarized Ḧ can be used as the pseudo strong labels of a

weakly labeled audio clip. We began with the description of the model input. A typical TF

representation has Nf number of frames and Nb number of frequency bin. Naturally, for a

strongly labeled audio clip, one would have the timestamps of an event’s occurrence, which

can be translated into a one-hot-encoding matrix where 1 indicates the event’s occurrence

and 0 otherwise.

75

Training a SED System Using Pseudo Strongly Labeled Data

Given a 10s audio clip with a dog event from 0s to 1s, the calculated TF representation

with 100 frames will only have frames 1-10 labeled as having a dog event. Since each

frame can contain multiple events, the occurrence of any events is represented in a one-

hot-encoding matrix of size Nf by Ne. Using Figure 3.3 as an example, assuming Event A

is present in the TF representation from frames 2-4, they are annotated as 1 from frames

2-4 under the event A row in the strong label matrix. Likewise, if Event C is present from

frames 1 to 10, they are annotated as 1 from frames 1 to 10 under the event C row in the

strong label matrix.

Figure 3.3 Comparison between a TF representation and the strong labels of the TF representation

If NMF is used to decompose a TF representation, TF ∈ RNb×Nf
+ , one would obtain

Ẅ ∈ RNb×r
+ and Ḧ ∈ Rr×Nf

+ . With r is set as 1, Ḧ is a single row nonnegative matrix (or

vector), which after binarization, represents the temporal labels. In our proposed method,

Ḧ is then transposed and used to replace the column of a strong label matrix representing

the event present in an audio clip.

For the rest of this thesis, the weakly labeled data which has been given pseudo strong

labels will be termed pseudo strongly labeled data.

76

Training a SED System Using Pseudo Strongly Labeled Data

3.2.3. Proposed SED Model

The proposed model used for proof of concept is a simple CNN based on the Kong et al.

(2019a) DCASE 2019 cross-task model. As seen in Fig. 3.4, the main difference between

the two models is that our proposed model used a slightly larger kernel size and has

lesser convolution layers. In our model, the clip-level prediction is obtained by applying a

temporal max pooling on the frame-level prediction. In contrast, in (Kong et al., 2019a),

the clip-level prediction is obtained by applying another FC layer after the application of

temporal max pooling on the frame-level prediction.

Figure 3.4 Difference between proposed model and Kong et al. (2019a) model

77

Training a SED System Using Pseudo Strongly Labeled Data

3.2.4. Experiment Setup

As segments containing higher frequency may not be helpful for event detection in daily

life (Lu, 2018), in this experiment, audio clips were first resampled to 32 kHz since the

frequency range was suggested to contain the most energies (Kong et al., 2019a). The

spectrogram is then tabulated using STFT with a window size of 1024 and a hop length of

500. Mel spectrogram is then tabulated using 64 mel bins within a cut-off frequency of

50Hz to 14 kHz. Once all mel spectrograms of weakly labeled data have been tabulated,

we provide the pseudo strong labels for each clip based on the unsupervised NMF pseudo

labeling approach described in Section 3.2.2. Once we obtain the pseudo strong labels,

mel spectrograms are converted to log-scale by applying a logarithm operator.

We began our experiment by training our proposed model using a batch size of 16

made up of only pseudo strongly labeled data. The frame-level loss can be defined as

lf =
1

Ne×Nf

Ne

∑
i=1

Nf

∑
j=1

[gi, jlog(Mi, j)+(1−gi, j)log(1−Mi, j)] (3.1)

where gi, j represents the ground truth for event i at frame j. Mi, j represents the predicted

probability for event i at frame j. Note that for Kong et al. (2019a) model, they are training

it using clip-level BCE. Based on this loss, the proposed model is updated using Adam

(Kingma and Ba, 2015). The learning rate began at 0.001 and is annealed by a factor of 0.1

every 50 iterations.

The post-processing method follows (Kong et al., 2019a), where each frame is con-

sidered activated (i.e., containing an event) if the probability exceeds 0.5. Neighboring

frames of an activated frame are also considered activated if they exceed a lower bound

threshold of 0.1. Subsequently, similar events are joined together if the difference between

the first event offset and the second event onset is less than 0.2s. Finally, an event with a

duration shorter than 0.2s is removed as they are considered noise.

In this section, all experiments were conducted on a system using an Intel Processor

i7-6700HQ with a base frequency of 2.6GHz, 16GB ram and a GTX1060 GPU.

3.2.5. Evaluation Metric

Accuracy is measured using event-based and segment-based F1-score (Mesaros et al.,

2016). Event-based metrics compare system output and corresponding reference by the

event, whereas segment-based metrics compare system output and reference in short time

segments (Mesaros et al., 2016).

78

Training a SED System Using Pseudo Strongly Labeled Data

Based on the definitions given in (Mesaros et al., 2016), the intermediate statistics for

event-based metric are defined as follows

• True Positive (TP): a predicted event with its onset and offset tally with the actual

annotation. A margin of error, also known as the collar, is usually given for the

predicted onset and offset.

• False Positive (FP): a predicted event with its onset and offset do not tally the actual

annotation.

• False Negative (FN): a misdetection, the system did not predict any event even

though there is an event occurrence.

The intermediate statistics for the segment-based metric consider the accuracy in

segments rather than considering the entire event. The intermediate statistics for segment-

based metric are defined as follows

• TP: a predicted event tally with the actual annotation in that segment.

• FP: a predicted event does not tally with the actual annotation in that segment.

• FN: a misdetection, the system did not predict any event in the segment even though

there is an event occurrence.

Based on the intermediate statistics, the event-based or segment-based F1-score can be

calculated using the following equation

F1− score =
2Precision×Recall
Precision+Recall

(3.2)

Precision =
T P

T P+FP
(3.3)

Recall =
T P

T P+FN
(3.4)

As recommended in (Mesaros et al., 2016), the event-based metric should be used as

the primary measure to evaluate the performance and capabilities of any models proposed.

This is because event-based metrics better illustrate the ability to locate and label longer

blocks of audio correctly.

Note that the official challenge metric (i.e., metric used to determine ranking) is the

event-based F1-score. In the challenge, the allowable collar for an event onset is 0.2s, and

79

Training a SED System Using Pseudo Strongly Labeled Data

the allowable collar for an event offset is 20% of event duration. On the other hand, the

segment length used for calculating the segment-based F1-score is set as 0.2s.

3.2.6. Results and Discussion

Method F1-score (%)
Event-based Segment-based

Proposed 29.7 55.8

Kong et al. (2019a) 24.1 63.0

Baseline (Turpault et al., 2019) 23.7 55.2

Table 3.3 Comparison against Kong et al. (2019a) and baseline system on the validation dataset

Based on the experiment setup, we tested our system against the system proposed by

Kong et al. (2019a) and the baseline system (Turpault et al., 2019) on the DCASE 2019

validation dataset. As seen in Table 3.3, our system trained using the pseudo strongly

labeled data can obtain an event-based F1-score of 29.7%, which is 5.6% higher than the

system proposed by Kong et al. (2019a). At the same thing, we also observed a higher

event-based accuracy of 6% compared to the baseline system.

However, while our system’s event-based F1-score is higher than the system proposed

by Kong et al. (2019a), the segment-based F1-score is lower. We hypothesized that such

a phenomenon is due to how we provide the pseudo strong labels to the weakly labeled

audio clips. As mentioned earlier, if each clip contains multiple events, each activated

frame is assumed to contain all events; this may cause a lower segment-based F1-score.

As mentioned in Section 3.2.4. Experiment Setup, the training data only consists of

the pseudo strongly labeled data. We then experimented with different combinations of

training data. Each row in Table 3.4 represents the results of our system trained using a

different set of training data, and the set of training data is represented by C1 to C7. The

representation for C1 to C7 is given in the table caption. Therefore, Proposed-C1, where

C1 is denoted as pseudo strongly labeled data in the table caption, means that our system

is trained using only pseudo strongly labeled data. Each set of training data can be derived

using the flow chart given in Figure 3.5.

As seen in Table 3.4, training with only synthetic strongly labeled data can result

in a poor detection accuracy which may be due to the mismatch in domains. However,

detection accuracy can be improved by training our proposed model with both pseudo

strongly labeled data and synthetic strongly labeled data.

80

Training a SED System Using Pseudo Strongly Labeled Data

Figure 3.5 Flowchart for data combination

Method F1-score (%)
Event-based Segment-based

♣ Proposed-C1 29.7 55.8

♠ Proposed-C2 15.3 43.6

♢ Proposed-C3 30.4 57.7

♡ Proposed-C4 25.5 45.9

⋆ Proposed-C5 27.2 48.5

□ Proposed-C6 26.6 47.1

△ Proposed-C7 27.8 50.9

Table 3.4 F1-Score on validation dataset using different types of data. ♣ C1-Pseudo strongly
labeled data. ♠ C2- Synthetic strongly labeled data. ♢ C3- Pseudo strongly labeled data and
synthetic strongly labeled data. ♡ C4- Unlabeled data (labeled using ♣ Proposed-C1). ⋆ C5-
Pseudo strongly labeled data and unlabeled data (labeled using ♣ Proposed-C1). □ C6- Unlabeled
data (labeled using♢ Proposed-C3). △ C7- Pseudo strongly labeled data, synthetic strongly labeled
data and unlabeled data (labeled using ♢ Proposed-C3).

81

Training a SED System Using Pseudo Strongly Labeled Data

In order to incorporate a large amount of unlabeled data for model training, we pro-

pose to tag all the unlabeled data using different systems and subsequently provide each

unlabeled clip with pseudo strong labels. By tag, we meant that we only provide the audio

tags for each unlabeled clip. The reason for not providing the temporal labels for each

unlabeled clip using the trained system is that the event-based F1-score of our system is

still not considered high compared to the audio tagging accuracy. By providing only the

audio tag, we can reduce the amount of noise that may be given compared to providing

temporal labels directly.

As seen in Table 3.4, when trained with only unlabeled data (Proposed-C4 and

Proposed-C6), the system accuracy is lower than using the pseudo strongly labeled data.

This is because the audio tagging accuracy is not perfect, which can still induce a certain

amount of noise. While including the use of pseudo strongly labeled data and synthetic

strongly labeled data can increase the accuracy (Proposed-C5 and Proposed-C7), the im-

provement is still insufficient to outperform our system trained using only pseudo strongly

labeled data. This is because the amount of unlabeled data overweighs the combined

amount of pseudo strongly labeled data and synthetic strongly labeled data by several

folds. Thus, the noise present in the training data can still cause a significant impact on the

detection accuracy.

Method F1-score (%)
Event-based Segment-based

♣ Proposed-C1 29.7 55.6

♢ Proposed-C3 31.0 58.2

⋆ Proposed-C5 26.9 48.7

△ Proposed-C7 27.7 50.5

Kong et al. (2019a) 22.3 59.4

Baseline (Turpault et al., 2019) 25.8 53.7

Table 3.5 F1-Score on evaluation 2019 dataset using different types of data. ♣ C1-Pseudo strongly
labeled data. ♢ C3- Pseudo strongly labeled data and synthetic strongly labeled data. ⋆ C5- Pseudo
strongly labeled data and unlabeled data (labeled using ♣ Proposed-C1). △ C7- Pseudo strongly
labeled data, synthetic strongly labeled data and unlabeled data (labeled using ♢ Proposed-C3).

We then submitted the top 4 systems (Proposed-C1, Proposed-C3, Proposed-C5,

Proposed-C7) to the DCASE 2019 challenge task 4. As seen in Table 3.5, our sys-

tems demonstrated a level of robustness where the largest drop in event-based F1-score

is only 0.3%. Our best system (Proposed-C3) can even obtain a higher event-based and

segment-based F1-score on the evaluation 2019 dataset.

82

Training a SED System Using Pseudo Strongly Labeled Data

In contrast, the system proposed by Kong et al. (2019a) observed a more considerable

drop in accuracy for both event-based and segment-based F1-score (1.8% decrease in

event-based accuracy and 3.6% decrease in segment-based accuracy). Based on the event-

based F1-score, our best system (Proposed-C3) outperforms the system proposed by Kong

et al. (2019a) by 8.7%. At the same time, our best system (Proposed-C3) outperforms the

baseline system by 5.2%. Such results showcase the effectiveness of using pseudo strongly

labeled data and indicate that it can be a valuable alternative to train a SED system.

3.3. Semi-supervised NMF-CNN For SED

With the proof of concept as shown in the previous section, we continued with the use of

pseudo strongly labeled data to train a SED system. As an improvement, we propose a

novel methodology to label the weakly labeled data using NMF (Lee and Seung, 1999) in

a supervised manner. The main idea is to extract the spectral templates from the synthetic

data and derive the activation matrix from the weakly labeled data. Activated frames would

then serve as the pseudo strong label.

In order to better leverage both the synthetic and unlabeled data, we then train our SED

system in a combinative transfer learning and semi-supervised learning framework. Rather

than using the Mean-Teacher approach (Tarvainen and Valpola, 2017), we propose using

two different CNNs where they are trained synchronously to pursue different targets. In

the inference stage, one will produce the clip-level prediction, while the other will produce

the frame-level prediction.

By comparing against the top 3 submissions from the DCASE 2019 challenge task 4,

our single system can even outperform the ensemble system of the first-place submission.

As our system is also submitted to the DCASE 2020 challenge task 4, results show that our

proposed methodology can have a minimum winning margin of 7% against the baseline

system and is competitive against the other SOTA. A post-challenge analysis was also

conducted and revealed that our system is much more duration robust than the top-place

submission in DCASE 2020 challenge task 4. In the following subsections, the description

of the proposed framework is discussed in detail.

The content of this chapter was summarized into a journal paper and is currently under

review.

83

Training a SED System Using Pseudo Strongly Labeled Data

3.3.1. Dataset Used

We continued using the DESED dataset (Turpault et al., 2019) for the subsequent experi-

ments and evaluations; however, it should be noted that the number of synthetic strongly

labeled data and evaluation data is different. The synthetic dataset is slightly larger, and

the maximum polyphony (i.e., the maximum number of events in each clip) is set as 2.

In addition, the evaluation dataset may contain clips that may have a duration of 10s or 5

mins. The distribution of the data can be seen in Table 3.6. Thus, to prevent confusion, we

termed this set of data as DCASE 2020 dataset.

It is important to emphasize that the evaluation dataset is not released to the public, and

we were able to obtain the results because we participated in the DCASE 2020 challenge

task 4.

84

Training a SED System Using Pseudo Strongly Labeled Data

E
ve

nt
cl

as
se

s
Sy

nt
he

tic
st

ro
ng

ly
la

be
le

d
W

ea
kl

y
la

be
le

d
U

nl
ab

el
ed

V
al

id
at

io
n

E
va

lu
at

io
n

20
20

E
ve

nt
oc

cu
rr

en
ce

s

Sp
ee

ch
26

25
55

0
-

16
62

-

D
og

85
8

21
4

-
57

7
-

C
at

78
3

17
3

-
34

0
-

A
la

rm
/b

el
l/r

in
gi

ng
53

2
20

5
-

41
8

-

D
is

he
s

11
15

18
4

-
49

2
-

Fr
yi

ng
20

1
17

1
-

91
-

B
le

nd
er

41
4

13
4

-
96

-

R
un

ni
ng

w
at

er
27

1
34

3
-

23
0

-

V
ac

uu
m

cl
ea

ne
r

43
2

16
7

-
92

-

E
le

ct
ri

c
sh

av
er

/to
ot

hb
ru

sh
33

4
10

3
-

65
-

To
ta

le
ve

nt
oc

cu
rr

en
ce

s
74

75
22

44
-

40
63

-

To
ta

la
ud

io
cl

ip
s

25
95

15
68

14
41

2
11

68
12

56
6

Ta
bl

e
3.

6
D

E
SE

D
20

20
da

ta
se

t

85

Training a SED System Using Pseudo Strongly Labeled Data

3.3.2. Supervised NMF for Pseudo Labeling

As shown earlier, NMF (Lee and Seung, 1999) can approximate strong labels for the

weakly labeled data in an unsupervised manner. However, assuming all frames to contain

events based on the audio clip may not be valid for all scenarios. As a follow-up, we

improve on the pseudo labeling strategy by estimating the pseudo strong labels using NMF

in a supervised manner.

The first step is to extract the event template from the synthetic audio clips to form a

dictionary for different event classes. Since a synthetic sound clip can contain multiple

events, temporal masking is applied to the mel spectrogram using the given temporal

annotations. Templates of each event class are retrieved from the masked mel spectrogram

using NMF by allowing r to be set as 1. For example, if synthetic clip A has Speech and

Cat occurring at frame 1 to 100 and 100 to 110 respectively, all frames from 101 onwards

are masked to extract the Speech template followed by masking all frames except frames

100 to 110 to extract the Cat template. Note that for events that are overlapping, we process

them in the same manner.

As weakly labeled data possessed the audio tags, we apply the corresponding dictionary

on the audio clip to derive the activation matrix. Activated frames are assumed to contain

the event class. For example, if Clip B contains Speech and Dog, we first apply NMF to

decompose Clip B using Speech dictionary and with r set as 1 to derive the Ḧ. Frames

that are over a threshold are assumed to contain only Speech. Based on this condition,

Ḧ is binarized and becomes the temporal label for Speech event, where 1 represents

the occurrence of Speech and 0 otherwise. A similar procedure is applied to derive the

temporal annotation for Dog by using the Dog dictionary. The entire labeling process is

illustrated in Figure 3.6.

As each weakly labeled clip has 10 events, this would indicate there are 10 different

temporal labels. For events that do not exist in the weakly labeled clip, the temporal labels

for those non-existing events are simply vectors of 0. Thus the columns of these events

in the strong label matrix are simply 0. In contrast, the binarized Ḧ is used to replace the

column of a strong label matrix, which represents the event that is present in an audio clip.

(Note that the formation of a strong label is similar to the procedure as discussed in Section

3.2.2)

Once the labeling process is completed, the mel spectrogram is converted to log-scale,

which will be used as model input.

86

Training a SED System Using Pseudo Strongly Labeled Data

Figure 3.6 Proposed supervised NMF labeling method

3.3.3. Proposed Semi-supervised Learning Framework

Lin et al. (2019) mentioned that there could be a trade-off in SED performance due to

the pooling operation. The accuracy of clip-level detection can be improved with higher

temporal compression (pooling along the time axis). In comparison, the accuracy of the

frame-level prediction can be improved with lower temporal compression (Lin et al., 2019).

Therefore, we propose a Student Model (SM) with no temporal compression for frame-

level prediction and a Teacher Model (TM) with temporal compression for clip-level

prediction. In addition to the difference in pooling size, SM has fewer convolutional layers,

adopted context gating (Miech et al., 2018) as the activation function instead of ReLU, and

has a slightly higher dropout rate. The details of SM and TM can be found in Figure 3.7

and Figure 3.8, respectively.

Figure 3.7 SM for frame-level prediction

87

Training a SED System Using Pseudo Strongly Labeled Data

Figure 3.8 TM for clip-level prediction

Given that Si, j represents the SM’s predicted probablity of event i at frame j. gi, j

represents the ground truth of event i at frame, j. The frame-level loss, lf, is defined as

lf =
1

Ne×Nf

Ne

∑
i=1

Nf

∑
j=1

[gi, jlog(Si, j)+(1−gi, j)log(1−Si, j)] (3.5)

On the other hand, the clip-level loss, lc, is defined as

lc =
1

Ne

Ne

∑
i=1

[zilog(Ti)+(1− zi)log(1−Ti)] (3.6)

where Ti represents the TM’s predicted probability of event i in a labeled sample and zi

represents the grouth truth of event i in the same sample. We hypothesize that enforcing the

prediction of SM to be consistent with TM, it could produce a better frame-level prediction.

As the prediction output of SM is in frame level, we apply a global max pooling on the

time axis of SM’s prediction to obtain the clip level prediction. Instead of using BCE,

MSE is used as the consistency loss function as it was evaluated to be a better consistency

loss function (Laine and Aila, 2017). However, the consistency loss, lcon, will only be

88

Training a SED System Using Pseudo Strongly Labeled Data

calculated if TM is confident with its prediction. Thus, lcon is given as

lcon =

1

Ne
∑

Ne
i=1(S

c
i −Ti)

2 if max(T)> λ

0 otherwise
(3.7)

where Sc
i represents the SM’s predicted probability of event i in a labeled sample and T

represents the vector containing the TM’s predicted probabilities of all events present in a

sample. λ is the confidence level used to regulate the loss.

In order to leverage the large corpus of unlabeled data for semi-supervised learning,

we also enforce the consistency of prediction on the unlabeled data. Thus the consistency

cost on the unlabeled data, lunlabel, can be defined as

lunlabel =

w
Ne

∑
Ne
i=1(S̃

c
i − T̃i)

2 if max(T̃)> λ

0 otherwise
(3.8)

where S̃c
i and T̃i represent the SM’s and TM’s predicted probability of event i in an unlabeled

sample, respectively. T̃ represents the vector containing the TM’s predicted probabilities

of all events present in an unlabeled sample. w is a weighing parameter defined as (Laine

and Aila, 2017)

w = exp(−5(1−P)2) (3.9)

where P is a positive value representing the training progression and will be discussed in

more detail in the next section. The purpose of w is to further regulate lunlabel as it was

found that if consistency loss is given too much weightage in the early training stage, it

can lead to a suboptimal solution (Laine and Aila, 2017).

Figure 3.9 Effects of different scaling factor

89

Training a SED System Using Pseudo Strongly Labeled Data

The integer 5 in Equation 3.9 is a scaling factor that controls how steep the transition is

from 0 to 1. As seen in Figure 3.9, the larger the value, the steeper is the transition. With a

larger scaling factor, w will be close to 0 for most iterations and sharply transit to a larger

value at the later iterations. Thus a scaling factor of 5 can be seen as a suitable scaling

factor that has a smoother transition (Note: the use of 5 is also proposed in (Laine and

Aila, 2017)).

In the next section, we then present the experimental setup on how the models are

trained.

3.3.4. Experiment Setup

In the preprocessing step, all audio clips that are longer or shorter than 10s are truncated

or padded to have an equal duration of 10s. As for the 5 mins audio clips, they are

split into clips with a duration of 10s. Processed clips are resampled at 22,050 Hz, and

spectrograms are tabulated using an FFT window size of 2048 with a hop length of 345.

Mel-spectrograms are then tabulated using 64 mel filter banks. Based on such a setting, a

tabulated mel spectrogram would have a size of 640 by 64, which is seen in Figure 3.7 and

Figure 3.8.

The experimental setup consists of two stages, 1) the model training stage and 2)

the model inference stage. Based on our proposed methodology, models are trained in

a two-phase transfer learning framework in the model training stage. The first phase is

referred to as the transfer learning phase, while the second phase is referred to as the

adaptation phase.

Transfer learning is a technique that aims to improve the predictive capability of a

model on the target domain using the knowledge learned in the source domain (Pan and

Yang, 2010). In other words, a model that is trained and updated using a dataset that may

or may not be related to the target domain is used as a starting point for the target domain

and is trained and updated using the target domain dataset. Thus, in the transfer learning

phase, the model is trained using a related dataset, and in the adaptation phase, the model

is then trained using the target domain dataset. The entire training procedure can be seen

in Figure 3.10.

The first phase, which lasts 5 epochs, utilizes only the synthetic data to train the models

with a batch size of 64. In this phase, the learning rate begins at 0.0012 and is reduced by

a factor of 0.1 every 300 iterations. Since the unlabeled data are not utilized in this phase,

the loss components only consist of lf, lc and lcon. λ which is used to calculate lcon is set

90

Training a SED System Using Pseudo Strongly Labeled Data

Figure 3.10 Flowchart of experiment setup

as 0.9. Based on the calculated losses, models are updated using Adam (Kingma and Ba,

2015).

In the second phase (i.e., 6th epoch onwards), the training data is first replaced with

the real data, consisting of both the pseudo strongly labeled and unlabeled data. Batch size

remains at 64 but the data is split equally into pseudo strongly labeled clips and unlabeled

audio clips. At the start of phase 2, the learning rate is reset to 0.0012 and is annealed

according to the cosine function given as (Loshchilov and Hutter, 2017)

LRcurr = LRmin +0.5(LRmax−LRmin)(1+ cos(
Pcurr

Ptot
π)) (3.10)

where LRmax represents the maximum learning rate and is set as 0.0012. LRmin represents

the minimum learning rate, which is set as 1e-6. Pcurr represents the current training

iteration and Ptot represents the maximum training iterations before a learning rate reset.

The way Equation 3.10 is defined, the larger the value of Pcurr, the smaller is LRcurr. Based

on the framework of learning rate reset (Loshchilov and Hutter, 2017), the learning rate

will be reset when Pcurr equals Ptot and Pcurr will revert to 0 while Ptot is multiplied with

an integer, Pmult, which can delay the next restart if Pmult is larger than 1. Loshchilov and

Hutter (2017) explained that such a learning scheme benefits the performance of a deep

NN by allowing faster convergence and deriving a better solution. In this chapter, we

begin our experiment by setting Ptot as 1 epoch and Pmult as 2. Based on such settings, the

learning rate will be reset after 1 epoch in the first reset, and the learning rate will only be

reset after 2 epochs in the second reset, while in the third reset, the learning rate will only

be reset after 4 epochs.

In this phase, the loss components would include lf, lc, lcon. as well as lunlabel with λ

remains as 0.9. As mentioned earlier, w is required to regularize the contribution of lunlabel

where the calculation of w is affected by P which represents the training progression. With

the inclusion of the learning rate reset scheme, we propose to define P according to the

91

Training a SED System Using Pseudo Strongly Labeled Data

learning rate reset schedule. Thus, P can be written as

P =
Pcurr

Ptot
(3.11)

Therefore, w will also be reset to the minimal value whenever the learning rate is reset.

Similarly, models are updated using Adam (Kingma and Ba, 2015) based on the calculated

losses. The total epoch used to train the models in phase 2 is set as 100 epochs. As such,

the total training epoch consisting of both phases is 105 epochs.

In the inference stage, the trained models are used for audio tagging and temporal

annotation. The tagging threshold is set as 0.5, which determines an event’s presence if

the predicted probability by TM exceeds 0.5. The frame-level prediction given by SM for

the detected event will then be used to determine the onset and offset. This frame-level

prediction is first subjected to further processing before the temporal labels are given.

The frame-level prediction is first smoothed using two passes of the median filter with

event-specific window size for this framework. All frames with probabilities that exceed

the event-specific threshold are considered activated (i.e., the occurrence of an event).

Following (Kong et al., 2019a), neighboring frames are also considered activated if they

exceeded a lower bound threshold of 0.08. In addition, detected events with a duration of

shorter than 0.1s are removed as they are considered as noise. Subsequently, two similar

events are concatenated together if the difference between the first event offset and the

second event onset is shorter than 0.2s. As for the 5 mins audio clips that were split in the

preprocessing stage, we combine the detection results across the split clips.

Based on the information given in the previous sections, the entire framework can be

summarized and illustrated in Figure 3.11.

In this section, all experiments were conducted on a system using an Intel Processor

i7-6700HQ with a base frequency of 2.6GHz, 16GB ram and a GTX1060 GPU.

3.3.5. Results and Discussion

In this section, several different experiments are conducted on the validation dataset

to investigate the importance of synthetic data, consistency loss functions, and several

different hyperparameters, post-processing methods that can affect the detection accuracy.

For subsequent experiments, the accuracy of a system is measured using only the event-

based F1-score (Mesaros et al., 2016).

We began the experiment by testing the importance of using synthetic data. A system

trained based on the experiment setup described earlier in Section 3.3.4 is referred to as

92

Training a SED System Using Pseudo Strongly Labeled Data

Figure 3.11 Flowchart of experiment setup

Methodology Event-based F1-score (%)

System 1 (using only real data in
adaptation phase)

45.2

System 1 (without transfer learning) 43.4

System 2 (using both real and
synthetic data in adaptation phase)

45.7

Table 3.7 Importance of synthetic data

System 1 for the rest of this chapter. To determine the importance of synthetic data, we

first eliminate the transfer learning phase in the model training stage. As seen in Table 3.7,

model accuracy can reduce by 1.8% without the transfer learning phase. This performance

degradation is also consistent with the findings in (Lin et al., 2019). Thus, results showing

that the use of synthetic data for transfer learning can help improve the performance of the

models.

A different transition from the transfer learning phase to the adaptation phase is done

in the following experiment. Instead of replacing the training data from synthetic to real

data, models were made to train with both synthetic and real data in the adaptation phase.

A batch size of 64 is used where half of the batch consists of real unlabeled data while the

other half consists of a mixture of synthetic data and pseudo strongly labeled data. Such

setup is referred to as the combinative adaptation phase, and the system trained using this

setup is referred to as System 2 in Table 3.7. As seen in Table 3.7, using a combinative

adaptation phase can allow the detection accuracy to increase. We hypothesize that strongly

93

Training a SED System Using Pseudo Strongly Labeled Data

λ Event-based F1-score (%)

0.1 44.3

0.3 44.4

0.5 44.6

0.7 43.8

0.9 45.7

Table 3.8 Sensitivity of λ

Ptot Pmult Event-based F1-score (%) Peak accuracy at epoch

No learning rate reset 44.7 92

1 1 44.1 102

5 1 45.4 33

10 1 44.7 70

1 2 45.7 32

5 2 45.3 69

10 2 44.7 66

Table 3.9 Effects of using different Ptot and Pmult

labeled synthetic clips in the adaptation phase alleviate the complications caused by noisy

strong labels approximated using NMF, thus improving the overall detection accuracy.

Since it was found that the combinative adaptation phase can yield better detection

accuracy, we proceed with this setup for the rest of our experiment. In the subsequent

experiment, different λ values were tested to examine the sensitivity of λ . As seen in

Table 3.8, allowing lower confidence predictions to contribute to lcon and lunlabel, system

accuracy can be negatively affected. We hypothesize that at the earlier learning stage, the

TM has yet to achieve optimal detection capability (i.e., low audio tagging accuracy at the

early training stage). Thus, by enforcing SM to be consistent with TM, SM may be force

to produce incorrect predictions, which leads to performance degradation. Therefore, a

high λ value of 0.9 is required to prevent a suboptimal solution.

In the proposed framework, Ptot controls how fast the learning rate will reduce from

LRmax to LRmin. In our experiment if Ptot is smaller than 5 epochs, Pmult must be at least

2 to prevent the large fluctuation of learning rate throughout the training process. If Ptot

is larger than 5 epochs, Pmult can be set as 1 as the learning rate transition from LRmax to

LRmin can be considered slow and steady. As seen in Table 3.9, having a large fluctuation

94

Training a SED System Using Pseudo Strongly Labeled Data

of learning rate during the training process (i.e., setting Ptot and Pmult as 1) can result in a

worse solution than a system trained without learning rate reset.

Subsequently, we found that it is not a guarantee that a better solution can be found

following a learning rate reset. However, the peak accuracy of a SED system can be found

much earlier for a system trained using learning rate reset than a system trained without

learning rate reset. As seen in Table 3.9, the accuracy of a system trained without the use

of learning rate reset is at 44.7%, which is similar to a system trained using learning rate

reset with Ptot set as 10 and Pmult set as 1 as well as a system trained using learning rate

reset with Ptot set as 10 and Pmult set as 2. However, the peak accuracy of the systems

trained using learning rate reset can be found much earlier (i.e., up to 26 epochs) than the

system trained without learning rate reset. Such improvement is also consistent with the

results shown in (Loshchilov and Hutter, 2017). Thus, with appropriate Ptot and Pmult, the

overall performance of the system can benefit from learning rate reset.

We then investigate the effectiveness of our proposed NMF labeling method. As a

comparison, we experiment with three additional types of labeling methods. 1) each

remaining weakly labeled audio clip is given a zero matrix of 640 by 10, indicating that

there is no presence of any event. 2) each remaining weakly labeled audio clip is given

a binary matrix of 640 by 10 where a specific column is filled with ones based on the

given audio tags. This will indicate the presence of an event throughout an entire clip. 3)

Unsupervised NMF labeling method as proposed in Section 3.2.2. An example of the three

labels method is illustrated in Figure 3.12.

Figure 3.12 Difference in labeling method

95

Training a SED System Using Pseudo Strongly Labeled Data

Pseudo labeling approach Event-based F1-score (%)

Proposed NMF labeling 45.7

Type-1 labeling 30.7

Type-2 labeling 34.1

Unsupervised NMF labeling 44.5

Table 3.10 Comparison against different labeling method

As seen in Table 3.10, our proposed NMF labeling method can significantly increase

the frame-level prediction. A system trained with pseudo strongly labeled data using

type-1 and type-2 labeling methods can only achieve a detection accuracy of 30.7% and

34.1%, respectively. In contrast, our proposed NMF labeling method can obtain a detection

accuracy of 45.7%, which translates to an increment of up to 15% compared to the two

simple labeling methods. Compared to the unsupervised labeling method, our supervised

labeling approach also has a higher detection accuracy of 1.2%. Since assuming activated

frames to contain all events can induce noise, one may wonder why the difference in

accuracy is not as significant as the type-1 and type-2 labeling methods. This is because we

propose using two models for SED, one for clip-level prediction and one for frame-level

prediction; this alleviates the impact of the assumption.

In order to investigate how much weakly labeled data should be labeled using our

proposed NMF labeling method, we varied the amount of weakly labeled data being

labeled. It is essential to point out that all remaining weakly labeled data are still being

used in the training stage. Since all remaining weakly labeled data are used, they are either

labeled using the type-1 or type-2 labeling method. The left column in Table 3.11 and

Table 3.12 indicates the percentage of weakly labeled data labeled using our proposed

NMF labeling method, while the center column indicates the percentage of weakly labeled

data labeled using the type-1 or type-2 labeling method. Naturally, the percentages of the

two columns at each row add up to 100%.

Based on the results shown in Table 3.11 and Table 3.12, accuracy tends to increase

when more pseudo strongly labeled data labeled using our proposed NMF method were

used for training. Thus, one should always use pseudo strong labels for all weakly labeled

audio clips to achieve the best possible accuracy.

We then performed an ablation study to investigate the impact of ablating lcon and

lunlabel on the detection accuracy with and without the use of cyclic learning. As seen in

Table 3.13, the ablation of lunlabel can cause the detection accuracy to reduce to 45.1%, and

by further ablating lcon, the accuracy can further reduce to 43.7%. As seen in Table 3.13,

96

Training a SED System Using Pseudo Strongly Labeled Data

Amount of proposed
NMF labeled data (%)

Amount of type-1
labeled data (%)

Event-based F1-score
(%)

0 100 30.7

25 75 40.5

50 50 43.3

75 25 44.6

100 0 45.7

Table 3.11 Model trained with pseudo strongly labeled data and weak labeled data labeled with
type-1 labeling

Amount of proposed
NMF labeled data (%)

Amount of type-2
labeled data (%)

Event-based F1-score
(%)

0 100 34.1

25 75 36.8

50 50 40.4

75 25 42.8

100 0 45.7

Table 3.12 Model trained with pseudo strongly labeled data and weak labeled data labeled with
type-2 labeling

Loss Included Event-based F1-score (%)
With LR Reset Without LR Reset

lf, lc, lcon, lunlabel 45.7 44.7

lf, lc, lcon 45.1 44.1

lf, lc 43.7 42.3

Table 3.13 Ablation of lcon and lunlabel

the ablation of lunlabel resulted in a smaller performance drop compared to the ablation of

lcon. This is due to w, which is used to regularize lunlabel. Throughout the entire training

procedure, w does not stay constant as 1 and varies between 0 to 1 in most training

iterations. Thus, the contribution of lunlabel is less significant as lcon, and therefore the

ablation of lunlabel results in a less significant performance degradation as compared to

ablating lcon. As seen in Table 3.13, the impact of ablating lcon is much higher without the

use of learning rate reset. Such results reinforce that learning rate reset can help derive

a better solution as it alleviates the impact of removing these two losses. Based on the

ablation study, the two losses are considered essential, which helps to raise our system

accuracy.

97

Training a SED System Using Pseudo Strongly Labeled Data

Pooling method in SM Event-based F1-score (%)

Max 45.7

Average 41.3

Linear Softmax 44.3

Exponential Softmax 42.6

Auto (McFee et al., 2018) 43.2

Attention 43.0

Table 3.14 Effects of different pooling approach in SM

We then experimented with different temporal pooling methods in our proposed SM.

Based on the results shown in Table 3.14, the max-pooling operator is considered the most

optimal approach, while the average pooling is the worst pooling approach. The reason for

poor accuracy when using average pooling is due to the manner of gradient propagation.

As explained in (McFee et al., 2018; Wang et al., 2019a), gradient propagation for

average pooling will assign equal weightage to all frames. Due to the presence of an event,

all frames get updated equally, leading to a large number of false positives, which reduces

the detection accuracy (Wang et al., 2019a).

As mentioned in Section 3.3.4 Experiment Setup, we propose using event-specific

median filter window sizes and thresholds for post-processing and event detection, which

can help increase overall detection accuracy. The optimal value of these window sizes

or thresholds can be found by tuning them against the validation dataset. However, the

optimal set of event-specific median filter window sizes or thresholds can differ across

different systems. We termed the set of parameters that maximize the overall detection

accuracy for only one system as the optimal local set of parameters.

In this section, instead of using an optimal local set of parameters, we propose using

an optimal global set of parameters. An optimal global set of parameters refers to a set of

parameters found to increase (but not maximize) the overall accuracy of multiple systems.

In this section, five different parameters were used for post-processing or event detection:

1) event-specific median filter window size used in the first pass, 2) event-specific median

filter window size used in the second pass, 3) event-specific frame threshold, 4) lower-

bound threshold.

The event-specific median filter window sizes were found using a random search where

the constraint set was that window sizes used in the second pass must be larger than the

window sizes used in the first pass. We found that using a smaller window size in the first

pass of filtering and larger window size in the second pass of filtering usually produced

98

Training a SED System Using Pseudo Strongly Labeled Data

Event label Event-based F1-score (%)

Speech 52.6

Dog 25.5

Cat 37.1

Alarm/bell ringing 46.1

Dishes 20.8

Frying 50.9

Blender 48.3

Running water 41.2

Vacuum cleaner 73.8

Electric shaver/toothbrush 60.5

Table 3.15 Classwise event-based F1-score (%) of System 2

higher accuracy. The event-specific frame thresholds were found using a grid search in

a range of 0.1 to 1.0 with a step size of 0.1. In contrast, the lower bound threshold was

found using a grid search in a range of 0.0 to 0.1 with a step size of 0.01. The benefits of

using an optimal global set of parameters are that it avoids the need to perform parameter

tuning every time a new system is trained and can avoid overfitting on a specific dataset.

The post-processing method in (Kong et al., 2019a) began with joining similar events

before removing noise. However, in our experiment, we found that accuracy can be higher

if the noise is removed before concatenating similar events.

One weaker aspect of our framework is the detection accuracy of the dishes. As seen in

Table 3.15, the detection accuracy of dishes is only marginally above 20%. As mentioned

in (Pellegrini and Cances, 2019), most of the training data for dishes contain other event

classes. This can make it difficult for the system to learn the unique characteristic of this

event, resulting in low accuracy.

3.3.6. Comparison against SOTA

We proposed using a non-ensembled system and two ensembled systems as a form of

comparison against the other SOTAs. The non-ensembled system is chosen as System 2, the

best system analyzed in the previous section. The first ensembled system is the ensemble

of System 1 and System 2, which are combined by averaging the posterior outputs of both

systems while using the same optimal global set of parameters. The second ensembled

system uses the same system combination as the first ensembled system. However, median

99

Training a SED System Using Pseudo Strongly Labeled Data

filter window sizes were tuned further while using the same event-specific frame threshold

and lower bound threshold.

We first compared our systems against the top 3 submissions in DCASE 2019 on the

validation dataset. Since we are also comparing the accuracy of the ensemble system, the

column which indicates "No of systems" refers to how many systems are combined to

form an ensemble system. As mentioned earlier, two proposed ensembled systems will

be compared against the SOTA; as such, the accuracies of two ensembled systems are

separated by a centerline in the following tables under the Ensembled column.

As seen in Table 3.16, even though our non-ensemble system has 2M fewer parameters

than the first place ensembled system in DCASE 2019, we can still win them by 0.3%. On

the other hand, our ensembled system can have a winning margin of up to 3.2% against

the first place ensembled system in DCASE 2019. However, we note that the number of

parameters is 3M higher in this case.

100

Training a SED System Using Pseudo Strongly Labeled Data

M
et

ho
d

V
al

id
at

io
n

N
o.

of
pa

ra
m

et
er

s
(M

)
N

o.
of

sy
st

em
s

N
on

-e
ns

em
bl

ed
E

ns
em

bl
ed

N
on

-e
ns

em
bl

ed
E

ns
em

bl
ed

E
ve

nt
-b

as
ed

F1
-s

co
re

(%
)

Pr
op

os
ed

45
.7

48
.0

|4
8.

6*
5

10
2

D
C

A
SE

20
19

1s
tp

la
ce

(L
in

et
al

.,
20

19
)

44
.5

45
.4

-
7

5

D
C

A
SE

20
19

2n
d

pl
ac

e
(D

el
ph

in
-P

ou
la

te
ta

l.,
20

20
)

43
.6

-
1

-
-

D
C

A
SE

20
19

3r
d

pl
ac

e
(S

hi
et

al
.,

20
19

)
-

42
.5

-
6

6

Ta
bl

e
3.

16
C

om
pa

ri
so

n
ag

ai
ns

tt
he

to
p

3
su

bm
is

si
on

s
fr

om
20

19
on

th
e

va
lid

at
io

n
da

ta
se

t.
(N

ot
e:

*E
ns

em
bl

ed
sy

st
em

w
ith

m
ed

ia
n

fil
te

rw
in

do
w

si
ze

s
tu

ne
d)

.

101

Training a SED System Using Pseudo Strongly Labeled Data

M
et

ho
d

V
al

id
at

io
n

E
va

lu
at

io
n

20
20

N
o.

of
pa

ra
m

et
er

s
(M

)
N

o.
of

sy
st

em
s

N
on

-e
ns

em
bl

ed
E

ns
em

bl
ed

N
on

-e
ns

em
bl

ed
E

ns
em

bl
ed

N
on

-e
ns

em
bl

ed
E

ns
em

bl
ed

E
ve

nt
-b

as
ed

F1
-s

co
re

(%
)

Pr
op

os
ed

45
.7

48
.0

|4
8.

6*
44

.4
45

.8
|4

6.
3*

5
10

2

D
C

A
SE

20
20

B
as

el
in

e
(T

ur
pa

ul
t

an
d

Se
ri

ze
l,

20
20

)

34
.8

-
34

.9
-

1
-

-

D
C

A
SE

20
20

B
as

el
in

e
w

ith
so

ur
ce

se
pa

ra
tio

n
(T

ur
pa

ul
t

et
al

.,
20

20
b)

35
.6

-
36

.5
-

1
-

-

D
C

A
SE

20
20

1s
t

Pl
ac

e
(M

iy
az

ak
i

et
al

.,
20

20
)

46
.0

50
.6

-
51

.1
2

17
8

Ta
bl

e
3.

17
C

om
pa

ris
on

ag
ai

ns
tt

he
ba

se
lin

e
sy

st
em

s
an

d
to

p
su

bm
is

si
on

fr
om

20
20

on
th

e
va

lid
at

io
n

da
ta

se
ta

nd
ev

al
ua

tio
n

20
20

da
ta

se
t.

(N
ot

e:
*E

ns
em

bl
ed

sy
st

em
w

ith
m

ed
ia

n
fil

te
rw

in
do

w
si

ze
s

tu
ne

d)
.

102

Training a SED System Using Pseudo Strongly Labeled Data

Method Augmentation used Event-based F1-score (%)

Proposed (global
obtimal set of
parameters)

Gaussian noise
injection

45.7

Proposed (local obtimal
set of parameters)

Gaussian noise
injection

47.5

DCASE 2020 1st Place
(Miyazaki et al., 2020)

Gaussian noise
injection

41.4

DCASE 2020 1st Place
(Miyazaki et al., 2020)

Time shift and mixup
(Zhang et al., 2017)

46.0

Table 3.18 Augmentations used (non-ensembled system)

Since our systems (ensembled and non-ensembled) were submitted to the DCASE

2020 challenge task 4, we then compare against the top submission in the DCASE 2020

challenge task 4 and the baseline system in the DCASE 2020 challenge task 4 on the

validation dataset. As seen in Table 3.17, our system outperforms the baseline system by

a considerable margin. A winning margin of over 10% was observed on the validation

dataset. In addition, a winning margin of over 7% was observed on the evaluation 2020

dataset.

Compared with the top submission of DCASE 2020, the difference between the non-

ensemble system is only 0.3% on the validation set. In contrast, the difference between the

ensembled system is 2%. As the non-ensembled system of Miyazaki et al. (2020) was not

submitted to the challenge, the comparison on the challenge evaluation dataset can only be

made between the ensembled systems. As seen in Table 3.17, a difference of 4.8% can be

observed between our proposed ensembled system and the first place ensembled system.

It is essential to point out that our system maintained a level of competitiveness across

different datasets despite using a much smaller ensemble with fewer parameters (lower

number of systems, 2 compared to 8, lower number of parameters 10M compared to 17M).

One interesting detail shown in Table 3.17 is that our proposed ensembled system with

median filter tuned does not seem to exhibit overfitting. Instead, it performs better than the

other ensembled system, which used the optimal global set of parameters. As the use of a

median filter helps to smooth the predicted probabilities, having a non-tuned median filter

may not achieve the desired smoothing effect. Thus, it is still necessary to tune the median

filter to achieve the best possible results.

We then proceed with the post-challenge analysis. We first investigated the cause of

performance differences. Firstly, the leading cause of the difference is the use of an optimal

103

Training a SED System Using Pseudo Strongly Labeled Data

Ensembled system Event-based F1-score (%)

Proposed 39.9

DCASE 2020 1st Place (Miyazaki et al., 2020) 2.9

Table 3.19 Accuracy on long-duration (60s) dataset (Turpault et al., 2021)

global set of parameters instead of an optimal local set of parameters. As mentioned earlier,

one benefit of using an optimal global set of parameters is to avoid overfitting. However,

as shown in Table 3.17, no sign of performance degradation can be seen on the proposed

ensembled system with median filter window sizes tuned. Thus, using the optimal local

set of parameters does not appear to cause any issue of overfitting. We then tuned our

proposed non-ensembled system using the validation dataset and obtained the optimal

local set of parameters. As seen in Table 3.18, with the optimal local set of parameters, our

system can be improved by 2.2% and became 1.5% higher than the first place submission.

The second cause of performance difference is the augmentation techniques used. In

our framework, we only attempted the Gaussian noise injection, and from the information

showed in (Miyazaki et al., 2020), they used more augmentations such as time-shift and

mixup (Zhang et al., 2017). Based on the information shown in Table 3.18, if Miyazaki

et al. (2020) only used Gaussian noise injection, our system can perform much better than

their system (4.3% to 6.1%).

Finally, we compare the duration robustness of our system against the DCASE 2020

challenge task 4 first-place submission (Miyazaki et al., 2020). Turpault et al. (2021)

explained that such a test could be meaningful because, in real-life scenarios, a SED

system is more likely to operate on sound segments that are longer than 10s. In addition,

when operating in real-life scenarios, a SED system is more likely to face scenarios where

the sound event density is much lower than the sound event density in the YouTube videos

(AudioSet), which are generally recorded because something is actually happening.

Based on the results seen in Table 3.19, the first place system (Miyazaki et al., 2020)

is not duration robust and had an abysmal performance when tested on a subset of audio

clips which are 60s long. Miyazaki et al. (2020) system only had an accuracy of 2.1%,

while our system had an accuracy of 39.9%, which is 37.9% higher than the first place

system. It is essential to point out that the results are obtained from (Turpault et al., 2021)

as challenge evaluation data is not released. Such difference indicates that our system is

much more robust on long-duration audio clips.

104

Training a SED System Using Pseudo Strongly Labeled Data

3.3.7. Summary

This chapter discussed the motivation of using pseudo strong labels to train a SED system.

The proof of concept indicated that pseudo strong labels are a viable and effective alterna-

tive to train a SED system. Although pseudo strong labels estimated using unsupervised

NMF can contain a certain amount of noise. However, results indicated that our proposed

CNN trained using such data could easily outperform the baseline system. Nevertheless,

such an issue can be alleviated by using our proposed student-teacher framework, where

the SM will provide the frame-level prediction based on the clip-level prediction provided

by the TM.

As our proposed student-teacher framework consists of several different variables and

hyperparameters, we have extensively studied different aspects of our proposed framework

and established the most optimal variables and hyperparameters to use. Experiments

include the investigation of transfer learning, cyclic learning, the effectiveness of the

proposed pseudo labeling method, ablation of consistency losses, optimal pooling method

for SM.

Through extensive comparison and evaluation, we established that our proposed frame-

work could be competitive with the SOTA. However, one notable weakness is that the

classwise accuracy of impulse/short sounds such as Dishes is relatively low compared to

the other event classes. In the next chapter, we explore the possibility of integrating the

Transformer encoding layer (Vaswani et al., 2017) into the architecture to examine if the

detection accuracy can be improved.

105

Chapter 4. Improved Pseudo Labeling Approach and Integration of
Macaron Net

4.1. Supervised CNMF for Pseudo Labeling

In the previous chapter, we established that NMF could be a helpful tool for estimating

pseudo strong labels for each weakly labeled clip. In this chapter, we attempt to further

improve the quality of the pseudo strong labels through the use of CNMF.

Smaragdis (2007) explained that while NMF is useful for analyzing data, it ignores

the potential dependencies across successive columns of its input. The fact that there is a

sequence would not be apparent by examining the bases but would only be discovered by

careful analysis of the basis weights (Smaragdis, 2007). Thus, CNMF was proposed to

resolve this issue, and 2.1 is extended as follow

V̈≈
K−1

∑
k=0

Ẅk

k→
Ḧ (4.1)

Where V̈ represents a nonnegative matrix. Ẅ and Ḧ represent the basis and activation

matrix, respectively. Ẅk represents Ẅ at k-step shift.
k→
Ḧ represents Ḧ which is shifted k

steps. → is the shift operator in the right direction. Thus, the operator
k→
(.) indicates that the

column of the argument is shifted to the right by k steps. For each shift, the input argument

is padded with vectors of 0 to maintain the same size. For clarity, a simple example is

given as follows.

x =

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

 ,
0→
x =

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

 (4.2)

1→
x =

0 0 1 2

0 0 1 2

0 0 1 2

0 0 1 2

 ,
2→
x =

0 0 0 1

0 0 0 1

0 0 0 1

0 0 0 1

 (4.3)

107

Improved Pseudo Labeling Approach and Integration of Macaron Net

Whereas for an operator
←k
(.), it represents that an input argument is shifted to the left by k

steps which is the opposite of
k→
(.). For clarity, a simple example is given as follows.

x =

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

 ,
←0
x =

0 1 2 3

0 1 2 3

0 1 2 3

0 1 2 3

 (4.4)

←1
x =

1 2 3 0

1 2 3 0

1 2 3 0

1 2 3 0

 ,
←2
x =

2 3 0 0

2 3 0 0

2 3 0 0

2 3 0 0

 (4.5)

Based on Equation 4.1, the use of CNMF would result in k number of Ẅ but with only

one Ḧ. Smaragdis (2007) then proposed to update Ẅ and Ḧ as follow

Ẅk,t = Ẅk,t−1⊗
V̈

Ṽt−1

1n(
k→

Ḧ⊤t−1)

(4.6)

Ḧt = Ḧt−1⊗
Ẅ⊤k,t−1

←k

(V̈
Ṽt−1

)

Ẅ⊤k,t−11m
(4.7)

where Ẅk,t represents Ẅ at k-step shift and time step t. Ẅk,t−1 represents Ẅ at k-step

shift and time step t− 1.
k→
Ḧt represents Ḧ which is shifted k steps at time step, t.

k→
Ḧt−1

represents Ḧ which is shifted k steps at time step, t−1. Ṽt−1 represents an estimated V̈ at

time step t−1. 1m and 1n are m and n dimensional vectors of one, respectively.

As mentioned earlier, CNMF only produces one Ḧ (i.e., Ḧ is shared across all k), while

it is possible to update Ẅk and Ḧ at each k, this would result in a biased estimate of Ḧ

with the update at K−1 dominating over the other updates (Smaragdis, 2007). Thus, in

practice it would be better to use the average of Ḧ at all k (Smaragdis, 2004).

Smaragdis (2007) demonstrated that such an extension could allow a better separation

of audio mixtures. Therefore, it should also allow a better and more accurate basis matrix

to be extracted, which improves the quality of pseudo labeling.

As shown in the earlier chapter, a SED model trained using pseudo strongly labeled

data estimated in a supervised manner could be more accurate than pseudo strongly labeled

data estimated in an unsupervised manner. We continue to provide pseudo labels in a

108

Improved Pseudo Labeling Approach and Integration of Macaron Net

supervised manner. Thus, the pseudo labeling process remains similar to the labeling

process as described in Chapter 3.3.2, where the only change is in the algorithm used (i.e.,

instead of NMF, in this chapter, we propose the use of CNMF).

4.2. Macaron Net

4.2.1. Motivation

As discussed in Chapter 2, the most popular hybrid architecture used for SED is the

CRNN which can learn filters that are shifted in time and frequency and consider long-term

temporal context information (Cakir et al., 2017). However, the sequential nature of RNN

can make it difficult for parallel computing (Kong et al., 2020; Vaswani et al., 2017).

One possible solution is to replace RNN with a newer SOTA known as the Transformer

(Vaswani et al., 2017). A transformer is an architecture that can also consider long-term

dependency of sequences and was found to outperform RNN in various domains such as

language translation (Vaswani et al., 2017) and speech recognition (Karita et al., 2019).

Such a combination was demonstrated in (Kong et al., 2020); however, it could not

outperform CRNN in the SED subtask. On the other hand, the combination of CNN

with a variant of Transformer known as the Conformer (Gulati et al., 2020), proposed by

Miyazaki et al. (2020), could obtain first-place in the DCASE 2020 challenge task 4. Such

results lead us to believe that Transformer variants can be better than vanilla Transformer,

and in this chapter, we propose combining CNN with Macaron Net (Lu et al., 2019).

4.2.2. Preliminaries of Transformer and Macaron Net

Before describing Macaron Net, we first provide the preliminaries of Transformer (Vaswani

et al., 2017). The entire architecture of a Transformer is illustrated in Figure 4.1. As seen

in Figure 4.1, there are two shaded boxes; the enclosed components in the Blue box made

up a module known as the encoding layer, whereas the enclosed components in the Gray

box made up another module known as the decoding layer. Depending on the application,

a Transformer can be made up of several encoding layers and several decoding layers.

As seen in Figure 4.1, both the encoding and decoding layers require an input or output.

We use a straightforward translation task to illustrate why both the encoding and decoding

layers require an input. Given that the task is to translate an English sentence into a

Japanese sentence, the encoding layer would take the text in the original language (i.e.,

English). In contrast, the decoder would take the text in the target language (i.e., Japanese).

Thus, given “Thank You” as the input, the output should be “Arigato” (refers to “Thank

109

Improved Pseudo Labeling Approach and Integration of Macaron Net

Figure 4.1 Architecture of a Transformer (Vaswani et al., 2017)

110

Improved Pseudo Labeling Approach and Integration of Macaron Net

You” in Japanese). The output probabilities from the decoding layer would then contain

the probabilities of different Japanese words given “Thank You”. Ideally, “Arigato” should

have a probability of 1.

However, in the SED domain, usually, only the encoding layer is utilized (Kong et al.,

2020; Miyazaki et al., 2020). Therefore, as seen in Figure 4.1, one only needs to be

concerned with the left side of the Transformer.

If a CNN is stacked over the encoding layer, the input of the encoding layer would

naturally represent the output from the last convolutional layer. As Transformer contains

no recurrent and convolutional operations, it does not contain the sequence information

of an input (Vaswani et al., 2017). Thus, a positional encoding module is used to inject

sequence information of the input. Given that xFM represents the feature maps from the last

convolutional layer and x̂ represents the resulting output after the injection of positional

information. x̂ can be represented as

x̂ = xFM +PE (4.8)

where PE represents the positional encoding and is defined as (Vaswani et al., 2017)

PEpos,d =

sin(pos/100002d/dmodel) if d is even

cos(pos/100002d/dmodel) if d is odd
(4.9)

Where pos is the position and d is the dimension. dmodel represents the dimension of model

and is equal to the output dimension of the last convolutional layer. Based on Equation 4.9,

each dimension of the PE would correspond to a sinusoid (Vaswani et al., 2017).

For better clarity, we use a simple example of a 5 by 4 PE. Based on the image shown

in Figure 4.2, the first row would correspond to the first dimension while the first column

would corresponding to the first position. Thus, the odd dimension of the PE (highlighted

in Blue) would use the first equation in Equation 4.9 to calculate the position information.

In contrast, the even dimension of the PE (highlighted in Orange) would use the second

equation in Equation 4.9 to calculate the position information. By referring to Figure

4.1, after obtaining x̂, the next step is to pass x̂ into the encoding layer. Given that Yen

represents the output from the encoding layer, the operations conducted in the encoding

layer to derive Yen can be mathematically expressed using the following equations.

x̄ = LN(x̂+MHA(x̂)) (4.10)

111

Improved Pseudo Labeling Approach and Integration of Macaron Net

Figure 4.2 Example of a PE

Yen = LN(x̄+FF(x̄)) (4.11)

MHA represents the multi-head attention module which contains the following operations.

Multihead(Q,K,V) = Concat(H1, · · · ,HNh)W
O (4.12)

Hi = Attention(QWQ
i ,KWK

i ,VWV
i) (4.13)

Attention(Q,K,V) = softmax(
QK⊤√

dk
)V (4.14)

where Q, K, V represent query, key and value which in this application, all three represent

x̂. Nh represents the number of heads and Hi represents the i head. WQ
i , WK

i and WV
i

represent the parameter matrices for the i-th head and WO represents the final parameter

matrix applied on the concatentated feature vector. Finally, dk represents the dimension of

the key.

On the other hand, FF represents the positionwise feedforward module and performs

the following operation.

FF(x̂) = W2(f (W1x̂+b1))+b2 (4.15)

where W1, b1, W2, b2 represent the learnable parameters of the first and second FFN. f (.)

represents the activation function. In the SED domain, Yen is then subsequently passed to

other modules to obtain the frame-level probabilities. However, Lu et al. (2019) suggested

that the use of only one FF module in the encoding layer can bring bias and lead to higher

local truncation error. Nevertheless, this can be mitigated if two FF modules with half-step

residual connection are used, thus leading to the proposal of the Macaron Net encoding

layer. The difference between the two encoding layers can be seen in Figure 4.3. For a

112

Improved Pseudo Labeling Approach and Integration of Macaron Net

Figure 4.3 Difference between a Transformer encoding layer (Vaswani et al., 2017) and a Macaron
Net encoding layer (Lu et al., 2019)

Macaron Net encoding layer, Yen can be obtained through the following equations.

x̃ = LN(x̂+FF(x̂)) (4.16)

x̄ = LN(x̃+MHA(x̃)) (4.17)

Yen = LN(x̃+FF(x̃)) (4.18)

Subsequent experiments conducted by Lu et al. (2019) then indicated that the Macaron Net

could achieve higher accuracy than the Transformer on different tasks, which motivates us

to use it in the SED domain.

4.3. Experimentation using CNMF and Macaron Net

In this section, experimentation using CNMF and Macaron Net encoding layer is conducted.

The primary focus is to identify if CNMF can provide better pseudo labels and how will

the system accuracy be affected if a Macaron Net encoding layer is added to the SM

and TM. The secondary focus of the experimentation is to investigate ways to improve

the utilization of unlabeled data, to which we propose the use of curriculum consistency

cost and interpolated consistency training. The subsequent subsections will describe the

relevant components in detail.

113

Improved Pseudo Labeling Approach and Integration of Macaron Net

The experimentation results were published as workshop paper; Chan, T. K., and Chin,

C. S. (2021). Detecting Sound Events Using Convolutional Macaron Net With Pseudo

Strong Labels. In Proceeding of the IEEE 23rd Workshop on Multimedia Signal Processing,

Tampere, Finland.

4.3.1. Proposed Semi-Supervised Learning Framework

Based on the models described in Section 3.3.3, the SM will provide the frame-level

prediction, and the TM will provide the clip-level prediction. The positional encoding

and Macaron Net encoding layer are added to the last convolutional layer in both models.

Details of the models can be seen in Figure 4.4 and Figure 4.5. In addition, we propose

Figure 4.4 SM with Macaron Net (Lu et al., 2019) for frame-level prediction

the use of Mish (Misra, 2019) as the activation function for our models. Unlike ReLU,

Mish is continuously differentiable. Such a characteristic is preferable because it avoids

singularities and undesired side effects when performing gradient-based optimization.

Moreover, Mish was shown to be better in terms of performance and stability than the

other activations functions across different image-related tasks (Misra, 2019). Mish can be

defined as (Misra, 2019)

f (x) = x · tanh(softplus(x)) (4.19)

where tanh represents hyperbolic tangent and softplus is defined as

softplus(x) = ln(1+ ex) (4.20)

114

Improved Pseudo Labeling Approach and Integration of Macaron Net

Figure 4.5 TM with Macaron Net (Lu et al., 2019) for clip-level prediction

Based on the student-teacher framework proposed in Section 3.3.3, four loss components

are introduced. The first loss component is the frame-level loss, lf, defined as

lf =
1

Ne×Nf

Ne

∑
i=1

Nf

∑
j=1

[gi, jlog(Si, j)+(1−gi, j)log(1−Si, j)] (4.21)

where Si, j represents the SM’s predicted probability of event i at frame j and yi, j represents

the ground truth of event i at frame j. The second loss component is clip-level loss, lc,

defined as

lc =
1

Ne

Ne

∑
i=1

[zilog(Ti)+(1− zi)log(1−Ti)] (4.22)

where Ti represents the TM’s predicted probability of event i in an audio clip and zi

represent the grouth truth of event i in the same audio clip.

Similar to the earlier framework, we enforce the prediction of SM to be consistent with

TM. As observed in Chapter 3.3.5, if TM has yet to achieve optimal detection capability

(i.e., low audio tagging accuracy at the early training stage), SM may be forced to produce

incorrect predictions at the early stage if the threshold is low. Such enforcement can lead to

performance degradation. However, setting a high threshold throughout the training phase

may restrict the consistency loss to be calculated on a small number of training examples.

115

Improved Pseudo Labeling Approach and Integration of Macaron Net

Therefore, instead of using a constant threshold to regulate the consistency loss, we

propose a curriculum consistency loss where the confidence threshold will be adjusted

according to the learning stage. More specifically, we propose to adjust the confidence

threshold from a high value to a lower value. Such implementation is based on the

observation in (Mangalam and Prabhu, 2019) where DNN begins learning the easier

example before moving to a more difficult example.

Consider that the predicted probability of an event occurring in an easier example

should be higher than the predicted probability of an event occurring in a difficult example.

Thus, adjusting the confidence threshold from a high value to a lower value restricts the

models to consider the high confidence (lower difficulty) examples first before the low

confidence (higher difficulty) examples. Such implementation avoids the scenario that

SM has to learn from TM when TM has yet to achieve optimal detection accuracy on

all examples. At the same time, it allows more training examples to be included for

loss calculation, which we hypothesize can help the model increase its accuracy. As the

prediction output of SM is in frame level, we apply a global max pooling on the time axis

of SM’s prediction to obtain the clip level prediction. Thus, the consistency loss, lcon, is

given as

lcon =

1

Ne
∑

Ne
i=1(S

c
i −Ti)

2 if max(T)> λcurr

0 otherwise
(4.23)

where Sc
i and Ti represent the SM’s and TM’s predicted probability of event i in an audio

clip and T represents the vector containing the TM’s predicted probabilities of all events

present in an audio clip. λcurr is the current confidence level used to regulate the loss. The

definition of λcurr will be discussed in detail in the experiment setup.

The fourth loss component is the interpolated consistency cost (Verma et al., 2019)

between the two models’ predictions on the unlabeled data. The purpose of this loss is

driven by the theoretical analysis provided in (Verma et al., 2019). Verma et al. (2019)

explained that interpolated consistency training corresponds to a certain type of data-

adaptive regularization with unlabeled points, reducing overfitting to labeled points under

high confidence values.

Given that UA
1 and UA

2 represent the augmented feature representation of unlabeled

sample 1 and 2. The interpolated consistency cost, li, can be defined as

S̃mc = M(SM(mixup(UA
1 ,U

A
2))) (4.24)

T̃m = mixup(TM(UA
1),TM(UA

2)) (4.25)

116

Improved Pseudo Labeling Approach and Integration of Macaron Net

li =
1

Ne

Ne

∑
i=1

(S̃mc
i − T̃ m

i)2 (4.26)

where S̃mc represents the vector that contains the events’ probabilities from SM on the

mixed unlabeled sample. M(.) represents the max pooling operator. mixup(UA
1 ,U2)

A is

defined as (Zhang et al., 2017)

mixup(UA
1 ,U

A
2) = ψUA

1 +(1−ψ)UA
2 (4.27)

where ψ is the mixing factor in a range of 0 to 1 and is generated from a beta distribution

(i.e., Beta(0.2,0.2)). T̃m represents the vector that contains the interpolated events’ proba-

bilities which are mixed using the probabilities of the predicted events in UA
1 and UA

2 . S̃mc
i

and T̃i is the i element in S̃mc and T̃m which represent the probability of event i. Based on

the formulation given in Equation 4.26, li is the MSE between S̃mc and T̃m.

However, we only allow li to be calculated if interpolated probabilities from TM exceeds

the confidence threshold. Thus, li is extended as a regularized interpolated consistency

cost, lri which can be defined as

lri =

w
Ne

∑
Ne
i=1(S̃

mc
i − T̃ m

i)2 if max(T̃m)> λcurr

0 otherwise
(4.28)

where w is an additional weighing parameter which is also used in our previous framework

in Chapter 3.3.3. w is defined as (Laine and Aila, 2017)

w = exp(−5(1−P)2) (4.29)

where P is a positive value representing the training progression and will be discussed in

more detail in the next subsection.

4.3.2. Experiment Setup

The dataset used for the subsequent experiments is the DESED 2020 dataset (Turpault

et al., 2019), and the data distribution can be found in Table 3.6. As the methodology was

not submitted to the DCASE challenge, results on the evaluation 2020 dataset cannot be

obtained. Thus, results are only reported on the validation dataset.

Audio preprocessing and feature extraction remains similar, as described in Chapter

3.3.4. As mentioned in Chapter 4.1, the pseudo labeling process remains similar to the

117

Improved Pseudo Labeling Approach and Integration of Macaron Net

labeling process described in Chapter 3.3.2. The only change is in the algorithm used (i.e.,

NMF is replaced with CNMF).

We began our experiment using only 1 layer of Macaron Net encoding layer with 4

heads and the models are trained in 2 different phases; 1) warm-up phase and 2) adaptation

phase. In the first phase, models are trained using only synthetic and pseudo strongly

labeled data, where they are augmented with Gaussian noise, time mask, and frequency

mask. A batch size of 32 is used and is evenly split between the two data types.

In the warm-up phase, models are trained with an increasing learning rate. The

calculation of the learning rate at each iteration is modified from Equation 3.10 and is

given as

LRcurr = LRmin +0.5(LRmax−LRmin)(1+ cos(
Pw−Pcurr

Pw
π)) (4.30)

where LRmax and LRmin are set as 0.0014 and 1e-6, respectively. Pw represents the total

iterations during the warm-up phase which we set as the total number of iterations in 10

epochs. As unlabeled data is not utilized in this phase, the total loss is the summation of

lf, lc and lcon. In the warm-up phase, we do not apply the curriculum consistency cost as

such, λcurr is set as 0.9 throughout the warm-up phase. Based on the losses calculated,

models are updated using Lookahead (Zhang et al., 2019) with an alpha of 0.5 and step

size of 20 with Adam (Kingma and Ba, 2015). As mentioned earlier, P is a positive value

representing the training progression. Thus, P is defined as

P =
Pw−Pcurr

Pw
(4.31)

In the adaptation phase, models are trained with all types of data. Augmentation

techniques remain the same for synthetic and unlabeled data, while unlabeled data is only

augmented with Gaussian noise injection. A batch size of 64 is utilized where half of

them is a mixture of synthetic and pseudo strongly labeled data while the other half is the

unlabeled data. The calculation of the learning rate at each iteration is similar as Equation

3.10 and is given as (Loshchilov and Hutter, 2017)

LRcurr = LRmin +0.5(LRmax−LRmin)(1+ cos(
Pcurr

Ptot
π)) (4.32)

LRmax and LRmin remains as 0.0014 and 1e-6. As cyclic learning scheme is not applied,

Ptot is simply set as the total number of iterations in 100 epochs. In this phase, λcurr does

not remain fixed and is annealed using the same cosine function used to calculate LRcurr in

118

Improved Pseudo Labeling Approach and Integration of Macaron Net

Equation 3.10 and Equation 4.32 (Loshchilov and Hutter, 2017). Thus λcurr is defined as

λcurr = λmin +0.5(λmax−λmin)(1+ cos(
Pcurr

Ptot
π)) (4.33)

where λmax and λmin represent the maximum and minimum confidence level and is set as

0.9 and 0.6, respectively. Thus, λcurr will slowly decrease along the cosine curve from 0.9

to 0.6. It is important to point out that although the cosine function is designed initially

to anneal the learning rate, the equation is only bounded by the maximum and minimum

value, thus can be easily adapted and applied to other applications. Based on the losses

calculated, models are updated using Lookahead (Zhang et al., 2019) with an alpha of 0.5

and step size of 20 with Adam (Kingma and Ba, 2015). P is then given as

P =
Pcurr

Ptot
(4.34)

In the inference stage, both models are used for audio tagging and SED. The method

of detection and post-processing steps remain largely similar, as described in Chapter

3.3.4. We consider an event to be present if the clip-level prediction by TM exceeds 0.5.

The corresponding frame-level prediction is then smoothed using the median filter with

event-specific window size. Frames are considered activated if they exceed the event-

specific threshold, and neighboring frames are considered to be activated if they exceed

the event-specific lower bound threshold. Note that these event-specific parameters are

tuned using the validation dataset. Subsequently, events with a duration shorter than 0.1s

are removed. Finally, similar events are joined together if the difference between the offset

of the first event and the onset of the second event is smaller than 0.2s.

In this section, all experiments were conducted on a system using an Intel Processor

i7-10875H with a base frequency of 2.3GHz, 32GB ram and a RTX3070 GPU.

4.3.3. Results and Discussion

In this section, several different experiments are conducted on the validation dataset to

investigate different aspects of the proposed system, and accuracy is measured using only

the event-based F1-score (Mesaros et al., 2016). As mentioned earlier, the primary focus is

to identify if CNMF can provide better pseudo labels and how will the system accuracy

be affected if a Macaron Net encoding layer is added to the SM and TM. In contrast, the

secondary focus of the experimentation is to investigate ways to improve the utilization

119

Improved Pseudo Labeling Approach and Integration of Macaron Net

of unlabeled data. Thus experiments are planned according to the primary and secondary

focus.

Setting Event-based F1-score (%)

Pseudo labeling using CNMF 46.3

Pseudo labeling using NMF 45.0

Table 4.1 Accuracies of systems trained using different pseudo strongly labeled data

We first examine if there is any performance gain due to a change in the pseudo labeling

algorithm. Results shown in Table 4.1 indicate that a system trained with pseudo strongly

labeled data estimated using CNMF can obtain a higher accuracy of 1.3% compared to a

system trained with pseudo strongly labeled data estimated using NMF. Such results infer

that CNMF is a better approximator; however, due to the shift operation in CNMF, the

formation of event dictionaries and the pseudo labeling process can be longer than the use

of NMF. This can be made worse when using a sizeable time-shift value such as 100. Our

preliminary studies compared several time-shift values and found that a time shift value of

10 works reasonably well without a significant increase in computation time. Considering

that the pseudo labeling process only takes place once, CNMF should replace NMF as the

pseudo labeling tool.

Warm-up epochs Event-based F1-score (%)

0 43.9

5 44.4

10 46.3

20 44.4

Table 4.2 System accuracy with different warm-up epochs

We then investigated the importance of warm-up, which is considered a critical compo-

nent to train a Transformer (Vaswani et al., 2017). As seen in Table 4.2, while models do

not fail to converge, models can benefit from warm-up, which brings a maximum accuracy

increment of 2.4%.

Subsequently, an ablation study is done to examine the importance of positional

encoding, which injects information about the relative position of an input sequence. Based

on the results tabulated in Table 4.3, it appears that the ablation of positional encoding

only results in a very marginal drop in accuracy. But since the computational overhead

120

Improved Pseudo Labeling Approach and Integration of Macaron Net

Setting Event-based F1-score (%)

With positional encoding 46.3

Without positional encoding 46.2

Table 4.3 Importance of positional encoding

of including positional encoding is negligible, one can still include such a module to

maximize the accuracy.

Setting Event-based F1-score (%)

Proposed-Mish 46.3

Proposed-ReLU 43.6

Proposed-Vanilla Transformer 42.5

Table 4.4 Architecture accuracy using different settings

We then compared the use of ReLU against Mish (Misra, 2019), and the results in Table

4.4 show that Mish does outperform ReLU. We then replace the Macaron Net encoding

layer with a vanilla Transformer encoder layer. Results in Table 4.4 indicate that a system

utilizing a vanilla Transformer encoder layer performs poorly against the system using the

Macaron Net encoder layer.

We then varied the number of attention heads and layers of the encoder layer. As seen

in Table 4.5, using a single layer with 4 heads is sufficient, and any more can degrade the

accuracy. We hypothesize that increasing the number of heads and layers can make the

models more challenging to train, which results in a decrease in accuracy.

Layer

1 2 3 4 5 6

Nh 4 46.3 45.2 44.8 42.3 43.6 44.2

8 45.1 44.9 43.2 42.5 41.9 42.1

16 45.4 44.5 44.9 43.0 42.8 44.0

32 45.1 44.1 44.3 42.9 43.3 42.9

Table 4.5 System accuracy with different numbers of encoding layer and head

121

Improved Pseudo Labeling Approach and Integration of Macaron Net

Loss included Event-based F1-score (%)

lf, lc, lcon, lri 46.3

lf, lc, lcon 45.8

lf, lc 44.9

Table 4.6 Ablation of lcon and lri

An ablation study was subsequently performed to investigate the importance of lcon and

lri. As seen in Table 4.6, the two losses are critical, and ablating them would result in an

accuracy drop, although the impact of ablating lri is lower due to the regularizing term, w.

Such results coincide with our previous study in Chapter 3.3.5, where the ablation studies

exhibit consistent behavior and show that consistency losses are critical components to

improve the frame-level prediction.

Curriculum consistency losses Constant λcurr of 0.9

46.3 44.9

Table 4.7 Comparison of accuracy with and without curriculum consistency losses

We then compare the use of curriculum consistency losses against consistency losses

with a constant confidence threshold of 0.9. As seen in Table 4.7, the use of curriculum

consistency losses can improve the system accuracy by 1.4%, which shows the importance

of including not just the confident prediction during the training process.

λmin Event-based F1-score

0 43.6

0.2 45.2

0.4 45.3

0.6 46.3

0.8 44.3

Table 4.8 Effect of λmin on accuracy

Since varying the threshold value is better than a fixed threshold, we investigate on

the optimal λmin value. As seen in Table 4.8, while it is important to include lesser

122

Improved Pseudo Labeling Approach and Integration of Macaron Net

Step size Ablate Lookahead

5 10 20

Alpha 0.1 44.7 45.6 45.5 44.8

0.5 45.5 45.2 46.3

1 44.9 45.3 45.8

Table 4.9 Parameter analysis for Lookahead

confident examples into the losses calculation but it can have a negative impact if λmin is

set lower than 0.6. On the other hand, if λmin is set too high (i.e., 0.8), it does not bring

any performance gain.

We then investigate on the effect of using different alpha and step size for Lookahead

(Zhang et al., 2019). Zhang et al. (2019) explained that Lookahead reduces the variance

and is less sensitive to suboptimal hyperparameters and can reduce the need for extensive

hyperparameter tuning. However, as shown in Table 4.9, we find that there is still a need

to tune alpha and step size. As shown in Table 4.9, while Lookahead provides accuracy

improvement, improvement will only be marginal if suboptimal parameters are used.

4.3.4. Comparison against SOTA

Methodology Event-based F1-score

Proposed 46.3

(1st in DCASE 2020) CNN+Conformer (Miyazaki et al.,
2020)

46.0

(1st in DCASE 2019) CNN (Lin et al., 2019) 44.5

Baseline with source separation (Turpault et al., 2020b) 35.6

Table 4.10 Effect of λmin on accuracy

We then compared against the non-ensembled systems from the top submission in

DCASE 2019, DCASE 2020 Challenge task 4, and the baseline system (Turpault et al.,

2020b). As seen in Table 4.10, our system outperforms the baseline by a margin of over

10% and also the 1st place submission in DCASE 2019 by 1.8%. At the same time, we

also show that using a single layer four head Macaron Net encoding layer is sufficient to

produce comparable results as the 1st place submission in DCASE 2020, which utilized a

123

Improved Pseudo Labeling Approach and Integration of Macaron Net

four layers four heads Conformer encoding layer. Such results showcase the potential of

CNN-Macaron Net architecture in the frame-level prediction.

4.4. Multi-branch Convolutional Macaron Net for SED

In Chapter 3.3.3, a novel student-teacher framework is proposed where the SM will provide

the frame-level prediction while the TM will provide the clip-level prediction. While such

a framework can be competitive against SOTA, it has one weakness: the design of two

completely different models. The need to tune two completely different models to achieve

optimal results can be very time-consuming.

As seen in the previous section, the frame-level prediction can be improved with the

inclusion of a Macaron Net encoding layer. However, in our preliminary experiments, we

found that the inclusion of a Macaron Net encoding layer to the TM can also reduce the

accuracy of the clip-level prediction.

These two issues call for a need to rethink our student-teacher framework, which should

avoid extensive model tuning and at the same time improve a SED system as a whole rather

than a single subtask (i.e., audio tagging or temporal localization). As such, we extend our

proposed student-teacher framework by incorporating several changes and improvements.

1. Instead of designing two completely different models, we develop two slightly

different networks with the inclusion of a new SOTA activation function called

meta-ACtivate Or Not (meta-ACON) (Ma et al., 2021) and Squeeze and Excite (SE)

module (Hu et al., 2020). The less complex model will provide the frame-level

prediction, while the more complex model will give the clip-level prediction. The

only differences between the two models lie in the number of convolutional layers,

the temporal compression size, and the temporal pooling methods that produce the

clip-level prediction. This minimizes the time to tune two completely different

models.

2. We propose an improved Macaron Net encoding layer that adopts the Pre-Norm

arrangement with additional FC layers. This allows us to train the models using only

a 1-layer 1-head Macaron Net encoding layer without any performance degradation.

3. We propose a triple instance-level pooling approach, also known as multi-branch

pooling, to our TM model to improve the clip-level prediction. This allows the model

to learn unique characteristics from each branch and improve the overall performance

(Huang et al., 2020b). Rather than using a combination of one main and multiple

124

Improved Pseudo Labeling Approach and Integration of Macaron Net

auxiliary branches as suggested in (Huang et al., 2020a,b), our multi-branch pooling

method weighs each branch equally and is used in both the training and inference

stage. Not only does the multi-branch pooling improves the clip-level prediction,

but it also forces the SM model to learn from a more complex model, which in turn

improves the frame-level prediction.

4. We propose an improved cyclic learning scheme. Rather than an immediate learning

rate reset as proposed in (Loshchilov and Hutter, 2017), we slowly transit the learning

rate to the maximum, which is shown to increase the model accuracy. As explained

in (Smith, 2017), such a learning scheme can allow a more rapid traversal of saddle

point plateaus.

Based on the proposed improvements, our SED system can achieve an event-based F1

score of 48.5%. By ensembling the top 5 models by averaging the posterior probabilities,

we can further raise the event-based F1-score to 50.4%. Such a result allows us to have

a minimum margin of 12% against the baseline system and only has a 0.2% difference

with the 1st place submission of DCASE 2020. The following subsections then provide an

in-depth description of the proposed improvements.

This section was summarized and published as a journal paper; Chan, T. K., and

Chin, C. S. (2021). Multi-branch convolutional macaron net for sound event detection.

IEEE/ACM Transactions on Audio, Speech and Language Processing, 29:2972-2985.

4.4.1. Improved Models Architecture

Using Figure 4.6 as a reference, the SM model only has one convolutional block before

the pooling layer, whereas the TM model has two convolutional blocks. In addition, the

SM model does not pool along the time axis, unlike the TM model. Thus, the size of the

feature map after each pooling layer is different for each model. We hypothesized that

the clip-level prediction performance could be better by allowing TM model to have more

convolution layers and more temporal compression.

Figure 4.7A and Figure 4.7B then illustrate the functions applied in the 2-dimensional

and 1-dimensional convolutional blocks. Figure 4.7C illustrates how the SM model

produces the frame-level and clip-level prediction, while Figure 4.7D explains how the AT

model produces the clip-level prediction.

As seen in Figure 4.7D, the output layer of TM model is slightly different from the

SM model as it does not produce the frame-level prediction and adopted a multi-branch

125

Improved Pseudo Labeling Approach and Integration of Macaron Net

Figure 4.6 Improved SM and TM

Figure 4.7 Modules description

126

Improved Pseudo Labeling Approach and Integration of Macaron Net

Figure 4.8 Multi-branch pooling approach

pooling scheme (which can be seen in Figure 4.8 where NBR represents the total branches)

to obtain the clip-level prediction.

Based on our models’ architecture, the number of parameters used in the SM model

and TM model would be approximately 2M and 2.5M, respectively. Thus, the total number

of model parameters is approximately 4.5M. If the Mean-Teacher approach is used to train

the TM, the total number of parameters used would be 5M, which is approximately 10%

higher. One may argue that the total number of parameters can be lesser if one chooses to

train the SM instead of the TM using the Mean-Teacher approach. However, as mentioned

earlier, one model may not be designed optimally for both frame-level prediction and

clip-level prediction. As compared to the Mean-Teacher approach, our framework does not

require two identical models to be trained synchronously and thus offers more flexibility in

the models’ design. This can allow two different models to be optimal at different subtasks

(i.e., audio tagging and temporal localization) and may offer parameter reduction.

Based on the modules shown in Figure 4.6 and Figure 4.7, there are four modules

that we consider crucial and critical, 1) meta-ACON, 2) the SE module, 3) Macaron Net

encoding Layer, and 4) the multi-branch pooling scheme. These modules will be discussed

in the following subsections.

4.4.2. Meta-ACON and SE Module

Meta-ACON is a new activation function theorized in (Ma et al., 2021) that is a simple and

effective method that learns to activate neurons or not. By allowing each neuron to adap-

127

Improved Pseudo Labeling Approach and Integration of Macaron Net

tively activate or not, such customized activating behavior can help improve generalization

(Ma et al., 2021). Ma et al. (2021) then showed that networks with this new activation

could yield significant improvements in various image recognition tasks. Thus, it can be

hypothesized that meta-ACON can also improve the detection accuracy of our models. As

suggested in (Ma et al., 2021), meta-ACON can have several different design spaces where

the best design is the channel-wise design, as shown below.

(ς1− ς2) ·σ(κ(ς1− ς2)x)+ ς2x (4.35)

where x is the input, σ is the sigmoid function, ς1 and ς2 are trainable parameters which

are initialized as 1 and 0.25, respectively. On the other hand, the switching factor, κ , is

derived using σ(W2(W1(GAP(x)))) where W1 and W2 represent the weights and GAP

represents global average pooling. Thus, the concept is to learn κ based on the input

sample (Ma et al., 2021). Interestingly, it also resembles the SE module (Hu et al., 2020).

However, in our preliminary experiments, we found that such implementation had a worse

accuracy than simply setting the switching factor as a trainable parameter initialized as

1. We then simplified the function to derive κ into σ(W1(GAP(x))) . By doing so, it is

capable of achieving better results as compared to simply initializing the switching factor

as 1.

Figure 4.9 SE module

128

Improved Pseudo Labeling Approach and Integration of Macaron Net

The SE module was developed by Hu et al. (2020), where the goal is to improve

the quality of representations produced by a network by explicitly modeling the inter-

dependencies between the channels of its convolutional features. A SE module can be

easily implemented into any network, as shown in Figure 4.9. Although simple, such an

implementation and its variants have shown positive improvements in acoustic-related

domains (Naranjo-Alcazar et al., 2020; Xia and Koishida, 2019).

4.4.3. Improved Macaron Net Encoding Layer

Figure 4.10 Difference between the encoding layers

The third critical module is the proposed Macaron Net encoding layer in Figure 4.10.

The proposed Macaron Net encoding layer consists of two significant differences as

compared to the original Macaron Net encoding layer (Lu et al., 2019). Firstly, the original

Macaron Net encoding layer consists of three LN and are positioned after the residual

connections (termed as Post-LN). Instead, we proposed only two LNs placed before the

position feedforward networks (termed as Pre-Norm). It is motivated by an analysis that

shows that a Post-LN Transformer is less robust than a Pre-Norm Transformer (Liu et al.,

2020a).

129

Improved Pseudo Labeling Approach and Integration of Macaron Net

Secondly, the original Macaron Net encoding layer does not consist of the additional

FC layers before the multi-head attention module. This is because we propose using a

single layer, single head encoding layer. Since multiple heads were found to be beneficial

(Vaswani et al., 2017), the introduction of the additional FC layers is to stabilize the

encoding layer.

The reason for using a single layer, single head encoding layer stems from the results

shown in Chapter 4.3.2 where a single Macaron Net encoding layer with four heads is

sufficient to achieve the optimal results. Moreoever, Voita et al. (2019) and Michel et al.

(2019) found that most of the heads can be safely removed without significant performance

degradation in machine translation tasks. Michel et al. (2019) even found that the number

of heads can even be reduced to one in some of the encoding layers. Thus, in our proposed

framework, a single layer single head encoding layer is utilized.

4.4.4. Multi-Branch Pooling

The last critical module is the multi-branch pooling scheme which helps to improve the

AT accuracy and avoid overfitting. As the branches are independent of each other, they

optimize the model according to their unique learning purposes. Thus, the model can obtain

different characteristics which improve the overall performance (Huang et al., 2020b).

However, there are several differences in the proposed multi-branch pooling as compared

to multi-branch pooling in (Huang et al., 2020a,b).

Firstly, we only include the multi-branch pooling scheme in the TM model instead of

the SM model as seen in (Huang et al., 2020a). This is because we found that the inclusion

of a Transformer encoding layer can reduce the clip-level prediction accuracy even though

the accuracy of the frame-level prediction can be improved. Thus, the multi-branch pooling

is only added to the TM model to improve the clip-level prediction.

Secondly, Huang et al. (2020b) approach consist of one main and multiple auxiliary

branches where the main branch is used in both the training and inference stage. In contrast,

the auxiliary branches are only used in the inference stage. In our proposed multi-branch

learning, all branches are used in both the training and inference stages and are weighted

equally.

Thirdly, the main branch in Huang et al. (2020b) approach adopts an embedding level

approach while the auxiliary branches adopt an instance-level approach. For the instance-

level approach, the pooling method aggregates the frame-level prediction by a classifier

into clip-level prediction. As for the embedding-level approach, the pooling method is

used to map the frame-level feature representation from a classifier into a lower dimension

130

Improved Pseudo Labeling Approach and Integration of Macaron Net

clip-level feature representation which is passed to another classifier to get the clip-level

prediction. Unlike (Huang et al., 2020b), in our multi-branch pooling scheme, all branches

adopt an instance-level approach. As for the number of branches, NBR, and the choice of

the temporal pooling combination, these will be discussed in the later section.

4.4.5. Proposed Semi-Supervised Learning Framework

The proposed semi-supervised learning framework remains largely similar to the semi-

supervised framework in Chapter 4.3.1. However, in this framework, we modified the two

consistency losses in Chapter 4.3.1. The first loss component is the frame-level loss, l f , is

defined as

lf =
1

Ne×Nf

Ne

∑
i=1

Nf

∑
j=1

[gi, jlog(Si, j)+(1−gi, j)log(1−Si, j)] (4.36)

where Si, j represents the SM’s predicted probability of event i at frame j and yi, j represents

the ground truth of event i at frame j. The second loss component is clip-level loss, lc, is

defined as

lc =
1

Ne

Ne

∑
i=1

[zilog(Ti)+(1− zi)log(1−Ti)] (4.37)

where Ti represents the TM’s predicted probability of event i in a sample and zi represents

the grouth truth of event i in the same sample.

The third loss component is the interpolated consistency cost. Given that UA
1 and UA

2

represent the feature representation of augmented unlabeled sample 1 and 2 and UU
1 and

UU
2 represent the feature representation of unaugmented unlabeled sample 1 and 2. The

interpolated consistency cost, li, can be defined as

S̃mc = M(SM(mixupc(U
A
1 ,U

A
2))) (4.38)

T́m = mixupc(TM(UU
1),TM(UU

2)) (4.39)

li = MSE(S̃mc, T́m) (4.40)

where S̃mc represents the vector that contains the events’ probabilities from SM on the

mixed unlabeled sample. M(.) represents the max pooling operator. Rather than the use

of mixup by linear interpolation (Zhang et al., 2017), we propose the use of mixup by

concatenation (Ebbers and Haeb-Umbach, 2020). mixupc(UA
1 ,U

A
2) is defined as

mixupc(U
A
1 ,U

A
2) = Concat(ŪA

1 , Ū
A
2) (4.41)

131

Improved Pseudo Labeling Approach and Integration of Macaron Net

where ŪA
1 and ŪA

2 represent a portion of feature representations of UA
1 and UA

2 . Mixup by

concatenation (Ebbers and Haeb-Umbach, 2020) can be illustrated in Figure 4.11.

Figure 4.11 Mixup by concatenation

For mixup by concatenation, we cannot apply interpolation to combine the clip-level

prediction of UU
1 and UU

2 . Thus, we added up the clip-level prediction of UU
1 and UU

2 . As

such, T́m represents the vector that contains the combined events’ probabilities added using

the probabilities of the predicted events in UU
1 and UU

2 .

Based on the implementation, we are restricting TM to make predictions on unaug-

mented samples, which will lower the difficulty of prediction by TM and increase the

accuracy of clip-level prediction. On the other hand, SM must make its prediction on aug-

mented samples. We hypothesize that forcing SM to learn from a more accurate prediction

can increase its frame-level prediction.

However, we only allow li to be calculated if interpolated probabilities from TM exceeds

the confidence threshold. Thus, li is extended as a regularized interpolated consistency

cost, lri which can be defined as

lri =

w
Ne

∑
Ne
i=1(S̃

mc
i − T́ m

i)2 if max(T́m)> λcurr

0 otherwise
(4.42)

where S̃mc
i and T́ m

i represent the SM’s predicted probability of event i and TM’s combined

probability of event i. λcurr represents the current confidence level and will be discussed

in the next section. w is an additional weighing parameter which is defined as (Laine and

Aila, 2017)

w = exp(−5(1−P)2) (4.43)

P represents the training progression and will also be discussed in further detail in the next

section.

132

Improved Pseudo Labeling Approach and Integration of Macaron Net

The last loss component is the self-consistency cost, ls. ls is inspired by the concept of

self-distillation proposed in (Xu and Liu, 2020). The main idea is to enforce the TM model

to be consistent with its prediction regardless of the augmentation applied. The prediction

using TM model on augmented samples is given as follows.

T̂m = TM(mixupc(U
A
1 ,U

A
2)) (4.44)

where T̂m represents the TM’s predicted probabilities in a mixed unlabeled sample.

ls is defined as

ls =

ν×w

Ne
∑

Ne
i=1(T̂

m
i − T́ m

i)2 if max(T́m)> λcurr

0 otherwise
(4.45)

where ν is the loss multiplier for ls and T̂ m
i represents the probability of event i in a mixed

unlabeled sample.

4.4.6. Experiment Setup

The dataset used for the subsequent experiments is the DESED 2020 dataset (Turpault

et al., 2019), and the data distribution can be found in Table 3.6. As the methodology was

not submitted to the DCASE challenge, results on the evaluation 2020 dataset cannot be

obtained. Thus, results are only reported on the validation dataset.

Audio preprocessing and feature extraction remain similar, as described in Chapter

3.3.4. As mentioned in Chapter 4.1, the pseudo labeling process remains similar to the

labeling process described in Chapter 3.3.2. The only change is in the algorithm used (i.e.,

NMF is replaced with CNMF).

Similar to Chapter 4.3.2, the training procedure consist of two phases, 1) the warm-up

phase and 2) the adaptation phase. The warm-up phase, which lasts 10 epochs, utilizes only

the synthetic data and pseudo-strongly labeled data to train the models with a batch size

of 32. Each batch of data is evenly split between the synthetic data and pseudo-strongly

labeled data, and feature representations are augmented with Gaussian noise and time shift.

Since the unlabeled data is not utilized in this phase, the loss component only consists of lf

and lc. Learning rate begins at 1e-6 and is increased progressively to 0.0012 along a cosine

curve which is defined as

LRcurr = LRmin +0.5(LRmax−LRmin)(1+ cos(
Pw−Pcurr

Pw
π)) (4.46)

133

Improved Pseudo Labeling Approach and Integration of Macaron Net

where LRmax and LRmin are set as 0.0012 and 1e-6, respectively. Pw represents the total

iterations during the warm-up phase which we set as the total number of iterations in 10

epochs. Based on the calculated losses, models are updated using Adam (Kingma and Ba,

2015).

The adaptation phase (i.e., from the 11th epoch onwards) utilizes synthetic data, pseudo

strongly labeled data, and unlabeled data to train the models with a batch size of 64. Each

batch of data is split into the following proportion: 25% synthetic data, 25% pseudo

strongly labeled data, and 50% weakly labeled data. Feature representations in this phase

are also augmented with Gaussian noise and time shift. With the inclusion of unlabeled

data, the loss component in this phase would consist of lf, lc, lri and ls. ν which is the loss

multiplier for ls is set as 0.1.

In this phase, we propose an improved cyclic learning scheme to train the models. At

the start of the adaptation phase, Pcurr is reset to 0. The learning rate begins at 0.0012 and

is annealed according to the following cosine function (Loshchilov and Hutter, 2017)

LRcurr = LRmin +0.5(LRmax−LRmin)(1+ cos(
Pcurr

Ptot
π)) (4.47)

LRmax and LRmin remain at 0.0012 and 1e-6, respectively. Ptot represents the maximum

training iterations before a learning rate reset. Based on the framework of learning rate

reset (Loshchilov and Hutter, 2017), the learning rate will be reset when Pcurr equals Ptot

and Pcurr will revert to 0 while Ptot is multiplied with an integer, Pmult, which can delay the

next restart if Pmult is larger than 1.

Instead of an immediate learning rate reset, we propose to increase the learning rate

slowly from the minimum to the maximum whenever the learning rate reaches its minimum.

Thus, the learning rate during the increase phase can be calculated using Equation 4.46 but

with a different Pw. Unlike Ptot, Pw will not be multiplied by Pmult and will always remain

the same throughout the entire phase 2.

For clarity, the difference in the original cyclic learning scheme and our proposed

cyclic learning scheme is illustrated in Figure 12. The two graphs are based on the

following settings: LRmax as 0.0012, LRmin as 1e-6, an initial Ptot of 100 iterations, Pw as

100 iterations and Pmult as 2.

Since the models are trained using this proposed cyclic learning scheme, P which is

used to calculate w which in turn affect lri and ls is proposed to follow the cyclic learning

134

Improved Pseudo Labeling Approach and Integration of Macaron Net

Figure 4.12 Difference in cyclic learning scheme

scheme. Thus, when the learning rate is decreasing, P is defined as

P =
Pcurr

Ptot
(4.48)

And if learning rate is increasing, P is defined as

P =
Pw−Pcurr

Pw
(4.49)

Using the same setting to illustrate the proposed learning rate transition, the regularizing

parameter, w, which is affected by the value of P, will follow the pattern shown in Figure

4.13.

Figure 4.13 Transition of w in the proposed cyclic learning scheme

λcurr is also designed to follow the cyclic pattern. Thus, λcurr can be defined as

λcurr = λmin +0.5(λmax−λmin)(1+ cos(Pπ)) (4.50)

where λmax is set as 0.9 and λmin is set as 0.6. P is calculated using Equation 4.48 or

Equation 4.49 depending on the transition of learning (i.e., increasing or decreasing).

In this phase, Ptot is set as 1 epoch, Pmult is set as 2 while Pw is set as 1 epoch. The

cyclic learning phase will end when Ptot reaches 64 epoch. This effectively means the total

135

Improved Pseudo Labeling Approach and Integration of Macaron Net

Pooling method AT Event-based
in both models F1-score (%) F1-score (%)

Max 74.1 45.8

Avg 74.8 44.4

LSM 74.8 43.2

ESM 76.1 45.9

Power 75.1 45.7

Auto 76.1 45.1

Att 75.9 45.9

Table 4.11 AT and event-based F1 score using different pooling methods

number of epochs in this phase is 133 epochs. Similar to the warm-up phase, models are

updated using Adam (Kingma and Ba, 2015) based on the calculated losses.

In the inference stage, both models are used for audio tagging and SED. The method

of detection and post-processing steps remain similar, as described in Chapter 4.3.2.

In this section, all experiments were conducted on a system using an AMD Ryzen

Processor 5900x with a base frequency of 3.7GHz, 32GB ram and a RTX3090 GPU.

4.4.7. Results and Discussion

In this section, we provide an in-depth analysis of the proposed model layout and hyperpa-

rameters. The primary evaluation metric is the event-based F1-score (Mesaros et al., 2016)

that determines the accuracy of the frame-level prediction. We then compare our models

against the other SOTA.

The first experiment was to investigate the combinations of different temporal pooling

methods for our multi-branching pooling scheme. Using a diverse variety of temporal

pooling methods, the effects on both SM and TM are examined. To establish a baseline on

whether the combination of multi-branch pooling is effective and superior to the single

pooling method, the Audio Tagging (AT) and event-based F1-score are tabulated using the

single temporal pooling method. A total of 7 different pooling methods was tested. They

are namely: Max, Average (Avg), Linear Softmax (LSM), Exponential Softmax (ESM),

Power (PP) (Liu et al., 2020b), Auto (AP) (McFee et al., 2018), and Attention (Att).

As seen in Table 4.11, ESM and Auto pooling produce the highest AT F1-score, while

ESM and Att pooling generate the highest event-based F1 score. Ideally, with the inclusion

of the multi-branch pooling scheme, we should see an increase in AT F1-score while

maintaining the event-based accuracy.

136

Improved Pseudo Labeling Approach and Integration of Macaron Net

NBR Combination AT Event-based
of branches F1-score (%) F1-score (%)

2 Max-Avg 76.0 46.2

3 Max-Avg-LSM 76.4 47.1

4 Max-Avg-LSM-ESM 75.9 46.7

Table 4.12 Effects of NBR on accuracy

In order to determine the optimal NBR, we conducted experiments using different

NBR. Based on the results shown in Table 4.12, the use of three branches yielded the best

result and is the only option that produces an increase in performance for both AT and

event-based F1-score. Thus, we combine only three different temporal pooling methods

out of the seven other pooling methods for our subsequent experiments. With the use

of only three branches, our pooling method can then be termed as a triple instance-level

pooling approach.

Figure 4.14 Accuracy chart using different multi-branch combinations

This results in 35 different combinations and the respective AT and event-based F1

score can be seen in Table 4.13 and Figure 4.14. Interestingly, there is no guarantee if good

AT accuracy will give a good event-based F1-score. However, some combinations can

improve the AT by a more considerable margin. Based on the criteria set, there are a total

of 19 combinations that provide a higher AT F1-score of 76.1% and a higher event-based

F1-score of 45.9% (shaded in grey in Table 4.13). Since the primary evaluation metric

is based on the event-based F1-score, ESM-AP-Att exhibits the best combination for

multi-branch pooling. It achieves an AT F1-score and event-based F1-score of 76.7% and

48.5%, respectively.

137

Improved Pseudo Labeling Approach and Integration of Macaron Net

Max Max Max Max Max
Avg Avg Avg Avg Avg
LSM ESM PP AP Att

76.4 77.3 76.5 75.9 77.6
47.1 46.3 46.5 44.6 46.9

Max Max Max Max Max
LSM LSM LSM LSM ESM
ESM PP AP Att PP

76.0 76.0 76.3 76.0 76.2
46.5 46.4 47.2 47.0 46.7

Max Max Max Max Max
ESM ESM PP PP AP
AP Att AP Att Att

76.5 77.2 74.9 75.2 76.7
47.8 47.5 45.8 45.6 47.6

Avg Avg Avg Avg Avg
LSM LSM LSM LSM ESM
ESM PP AP Att PP

75.2 75.6 76.0 77.4 77.2
45.7 46.0 47.1 45.8 46.8

Avg Avg Avg Avg Avg
ESM ESM PP PP AP
AP Att AP Att Att

76.4 76.5 76.3 76.1 76.8
46.6 46.8 47.5 47.0 45.5

LSM LSM LSM LSM LSM
ESM ESM ESM PP PP
PP AP Att AP Att

75.5 76.1 76.9 75.5 75.6
45.5 46.4 47.6 46.2 46.2

LSM ESM ESM ESM PP
AP PP PP AP AP
Att AP Att Att Att

76.3 76.4 75.4 76.7 76.7
47.1 46.9 45.1 48.5 46.7

Table 4.13 AT (first row) and event-based F1-score (second row) (%) using different pooling
combinations

Further experiments using the combination of ESM-AP-Att are then conducted. We

first ablate the use of lri to investigate the hypothesis that frame-level prediction can be

improved if the prediction of the SM is near to the prediction of TM. As seen in Table 4.14,

without the use of lri, accuracy can drop by 4%.

138

Improved Pseudo Labeling Approach and Integration of Macaron Net

With Lri Without Lri

48.5 44.5

Table 4.14 Effects of Lri on event-based F1-score

ν AT F1-score (%)

0 76.7

0.1 76.7

0.5 74.4

1.0 70.0

Table 4.15 Sensitivity analysis of ν

Multi-branch combination Event-based F1-score

Multi-branch Multi-branch
in TM in both models

ESM-AP-Att 48.5 46.1

Table 4.16 Effect of having multi-branch pooling

Pooling method in SM Event-based F1 score (%)

Max 48.5

Avg 43.6

LSM 46.0

ESM 44.8

Power 45.0

Auto 45.4

Att 46.4

Table 4.17 Accuracy using different pooling methods in SM and ESM-AP-Att in TM

We then investigate the sensitivity of ν on the AT accuracy, and the results of setting

different values of ν are analyzed in Table 4.15. Using ls in the proposed framework

has no merit. In fact, AT accuracy can degrade with higher ν . This degradation can be

due to the overconfident predictions by the AT model. It may also be due to how the

clip-level predictions are combined (clip-level predictions are added together for mixup

by concatenation). As the event-based evaluation is our primary evaluation, only the

event-based accuracy will be considered in our subsequent tests.

To raise the accuracy of the frame-level prediction, the multi-branch pooling into the

SM model is included. However, as seen in Table 4.16, event-based accuracy cannot be

139

Improved Pseudo Labeling Approach and Integration of Macaron Net

improved with multi-branch pooling. Instead, it can decrease. Since the multi-branch

pooling scheme does not work well with the SM, the best pooling method for the SM is

being investigated. Based on the results in Table 4.17, max-pooling is the best pooling

operator.

In contrast, average pooling performed the worst among the other pooling operators.

This is also seen in Chapter 3.3.5. The nature of average pooling is to assign equal weights

to all frames (McFee et al., 2018; Wang et al., 2019a); as such, during the backpropagation,

the gradient is distributed evenly across all frames (Wang et al., 2019a). For negative clips

(clips that do not contain an event of interest), this will suppress the frames’ probabilities,

which is the correct behavior (Wang et al., 2019a). But for positive clips (clips containing

an event of interest), not all frames should be boosted, and the average pooling function

can produce many false-positive frames (Wang et al., 2019a). Such behavior can explain

why using average pooling to obtain the clip-level prediction from the SM model and

forcing it to be consistent with the clip-level prediction from TM may not be a good idea.

By considering only the event-based F1 score, max-pooling also works relatively well

in a single temporal pooling setting (i.e., no multi-branch module included in any model)

as seen in Table 4.11. These results contradict the earlier comparative study (Wang et al.,

2019a) where LSM was shown to be the best pooling operator while max-pooling was the

worst pooling operator for temporal localization. Our results coincide with the findings

shown in (Kao et al., 2020), where the best pooling operator is the max pooling. Kao et al.

(2020) hypothesized that the difference in the results is due to the dataset’s difference.

However, we find that the difference in the model and/or the post-processing method

can also contribute to the difference in pooling performance. As explained in (McFee

et al., 2018; Wang et al., 2019a), one possible limitation of max-pooling is that during the

backpropagation, only one value gets updated (i.e., the maximum value), which can cause

many frame-level false negatives. Recall that we use an event-specific frame threshold in

our post-processing method to decide if a frame is activated (i.e., containing an event of

interest) and subsequently using a lower-bound threshold to decide if neighboring frames

should be activated. Thus, the use of a lower bound threshold may help circumvent the

issue of false negatives, which may explain why max-pooling appears to work relatively

well.

After the optimal choice of pooling methods is established, a sensitivity test is done

on the number of heads and encoding layers. As seen in Table 4.18, there is no benefit in

having more heads or more encoding layers as the accuracy does not increase with the

increased complexity. In our experiment, using a single head single encoding layer is the

140

Improved Pseudo Labeling Approach and Integration of Macaron Net

No. of Ablation of
layers encoding layer

1 2 3 4

Nh 1 48.5 47.0 46.5 47.0 46.0

4 47.0 47.2 47.8 47.3

8 47.3 46.8 46.6 47.8

16 47.0 47.5 48.1 47.1

Table 4.18 Accuracy of model using different number of heads and encoding layer

Norm arrangement Event-based F1 score (%)

(a) Pre-Norm 2 times (proposed) 48.5

(b) Post-Norm 2 times 47.1

(c) Pre-Norm 3 times 45.6

(d) Post-Norm 3 times 46.9

(e) Pre-Norm 2 times without additional FC
layers

46.2

(f) Post-Norm 2 times without additional FC
layers

44.3

(g) Pre-Norm 3 times without additional FC
layers

45.7

(h) Post-Norm 3 times without additional FC
layers

45.6

Table 4.19 Effects of LN and proposed feedforward networks

optimal choice. It coincides with the previous study (Michel et al., 2019) that more heads

do not improve accuracy. Instead, it could reduce the accuracy.

Such a conclusion then raises the question of whether the encoding layer is beneficial

or redundant. We then ablate the encoding layer in both models, but the result shown in

Table 4.18 indicates that using an encoding layer is still beneficial to the overall detection

accuracy.

The effects of the different numbers of LN and their positions are then studied. The

need for having additional FC layers in the encoding layer to stabilize the architecture

is also examined. A total of 4 different LN positions were tested, (a) as proposed in

Figure 4.10, (b) having normalization after the position-wise feedforward network residual

connections, (c) as proposed in Figure 4.10 with extra LN before the proposed additional

FC layers and (d) having LN after each residual connection. These tests were repeated

without the proposed additional feedforward network.

141

Improved Pseudo Labeling Approach and Integration of Macaron Net

Type of SE arrangements Event-based F1 score (%)

(a) SE module in every 48.5
convolutional block

(b) SE module in every two
46.5

convolutional block

(c) No SE module 45.9

Table 4.20 Effects of SE modules

Type of cyclic learning rate Event-based F1 score (%)

None 46.1

Ptot = 1, Pw = 0, Pmult = 2 46.8

Ptot = 5, Pw = 0, Pmult = 2 47.4

Ptot = 10, Pw = 0, Pmult = 2 45.3

Ptot = 1, Pw = 1, Pmult = 2 48.5

Ptot = 5, Pw = 1, Pmult = 2 47.7

Ptot = 10, Pw = 1, Pmult = 2 47.7

Table 4.21 Effects of different Ti and proposed slow learning rate transition

From the results tabulated in Table 4.19, having Pre-Norm encoding layer can result in

better accuracy with or without the proposed additional networks, which is consistent with

the analysis shown in (Liu et al., 2020a). But with the inclusion of additional FC layers,

there is no need for another LN after the first residual connection. From the results shown

in Table 4.19, an increase in performance can be observed with the additional FC layers

except for the three LN in a Pre-Norm setting.

The contribution of the SE module is also analyzed. Three different SE placements are

performed. They are namely: a) having SE module as proposed in Figure 4.6, b) having

only 1 SE module after 2 convolution operations in TM, and c) having no SE module. As

seen in Table 4.20, the SE module can increase the accuracy of the SM. Without the use

of SE, the model can result in an accuracy drop of 2.6%. Although we only varied the

number of SE in the TM, there is also a drop in accuracy of 2%. It validates that the SM

generally learns better from a more complex TM. With this improvement, the use of a

more sophisticated SE module (Naranjo-Alcazar et al., 2020; Xia and Koishida, 2019) may

yield even better performance.

A test with different values of Ptot (in terms of epoch) while setting Pw as 1 epoch

and Pmult as 2 is also performed. As seen in Table 4.21, having a slow transition to the

maximum learning rate is beneficial, although the benefit diminishes as Ptot increases.

142

Improved Pseudo Labeling Approach and Integration of Macaron Net

Pseudo labeling method Event-based F1 score (%)

Type-1 Labeling (Set all frames of weakly
labeled data as 0)

29.7

Type-2 Labeling (All frames are assumed to
contain the annotated event labels)

29.8

NMF 45.8

CNMF 48.5

Table 4.22 Effectiveness of CNMF for pseudo labeling (Illustration of type-1 and type-2 labeling is
given in Section 3.3.5)

Nevertheless, models trained using cyclic learning rate perform better than models trained

without cyclic learning rate. As suggested in (Loshchilov and Hutter, 2017), reducing the

LRmax and LRmin after every restart may yield even better results. However, a longer model

tuning time is required to obtain the optimal reduction factor.

Finally, we conducted additional experiments to investigate on the usefulness of pseudo

labels. Based on the results shown in Table 4.22, models trained with pseudo labels can

obtain better accuracy. The results also indicate that the use of CNMF for pseudo labeling

is more effective than the use of NMF, which is consistent with our previous finding in

Chapter 4.3.3. However, using naïve labeling method (all frames are assumed to contain the

annotated event labels) may not be very useful due to the large amount of noise introduced.

One interesting question about training with pseudo labels is why it works so well,

given that pseudo labels will still contain a certain level of noise. One common perspective

and understanding is that maximizing accuracy on noisy labels can lead to overfitting.

However, recent studies have shown that training with noisy labels can increase the model

generalizing ability (Chen et al., 2020; Li et al., 2020). Thus, based on the results shown

in Table 4.22, as long as the pseudo labels are not of inferior quality (i.e., naïve labeling

method), they can be used for model training.

4.4.8. Comparison against SOTA

We then compared the proposed model with the top three submissions from DCASE 2020,

DCASE 2019 Challenge Task 4, and the baseline of DCASE 2020 Challenge Task 4.

Without using any ensembling techniques, the proposed model can achieve an event-based

F1-score of 48.5% on the validation dataset. As seen in Table 4.23, it translates to the best

among the top submissions. The proposed model can outperform the ensembled system in

143

Improved Pseudo Labeling Approach and Integration of Macaron Net

2019. When compared to the baseline systems, the proposed method provides a margin of

over 12%.

144

Improved Pseudo Labeling Approach and Integration of Macaron Net

M
et

ho
do

lo
gy

E
ve

nt
-b

as
ed

F1
sc

or
e

(%
)

N
o.

of
pa

ra
m

et
er

s
Tr

ai
ni

ng
H

ar
dw

ar
e

N
on

-e
ns

em
bl

ed
E

ns
em

bl
ed

N
on

-e
ns

em
bl

ed
(M

)
E

ns
em

bl
ed

(M
)

tim
e

(H
r)

Pr
op

os
ed

48
.5

50
.4

4.
5

22
.5

6
1

R
T

X
30

90

C
N

N
+C

on
fo

rm
er

(M
iy

az
ak

ie
ta

l.,
20

20
)

1s
tD

C
A

SE
20

20

46
.0

50
.6

2
17

12
1

T
IT

A
N

X
P

C
R

N
N

(Y
an

g
et

al
.,

20
20

)2
nd

D
C

A
SE

20
20

48
.3

-
2

-
-

-

FB
C

R
N

N
(E

bb
er

s
an

d
H

ae
b-

U
m

ba
ch

,2
02

0)
3r

d
D

C
A

SE
20

20

46
.4

49
.2

2
20

24
4

R
T

X
20

80

C
N

N
(L

in
et

al
.,

20
19

)
1s

tD
C

A
SE

20
19

44
.5

45
.4

-
7

3
1

G
T

X
10

80
Ti

C
R

N
N

(D
el

ph
in

-P
ou

la
t

et
al

.,
20

20
)2

nd
D

C
A

SE
20

19

43
.6

-
1

-
21

1
G

T
X

10
80

C
R

N
N

(S
hi

et
al

.,
20

19
)

3r
d

D
C

A
SE

20
19

42
.5

-
-

6
24

1
T

IT
A

N
X

P

B
as

el
in

e
C

R
N

N
(T

ur
pa

ul
ta

nd
Se

ri
ze

l,
20

20
)

34
.8

-
1

-
3

1
G

T
X

10
80

Ti

B
as

el
in

e
C

R
N

N
W

ith
So

ur
ce

Se
pa

ra
tio

n
(T

ur
pa

ul
te

ta
l.,

20
20

b)

35
.6

-
1

-
3

1
G

T
X

10
80

Ti

Ta
bl

e
4.

23
C

om
pa

ri
so

n
of

sy
st

em
ag

ai
ns

to
th

er
SO

TA

145

Improved Pseudo Labeling Approach and Integration of Macaron Net

The top five models are ensembled (models that use the following multi-branch combi-

nations: ESM-Auto-Att, Max-ESM-AP, LSM-ESM-ATT, Max-AP-Att, and Max-ESM-

Att) by averaging the posterior probabilities; and this can raise the event-based F1-score to

50.4%. In summary, the proposed framework has shown to be competitive as compared to

the SOTA.

In terms of system parameters, the proposed methodology has a higher number of

parameters used. This is because, during the inference stage, we are using two models

for inference, one for clip-level prediction while the other for frame-level prediction. On

the other hand, other methodologies are using only one model for inference. However, it

should be pointed out that other methodologies that utilized the Mean-Teacher (Delphin-

Poulat et al., 2020; Miyazaki et al., 2020; Shi et al., 2019; Turpault and Serizel, 2020;

Turpault et al., 2020b) or guided learning (Lin et al., 2019) approach also utilizes more than

one model during the training stage. Thus, the number of parameters for methodologies

(Delphin-Poulat et al., 2020; Miyazaki et al., 2020; Shi et al., 2019; Turpault and Serizel,

2020; Turpault et al., 2020b) that utilized the Mean-Teacher approach should multiply by

2 during the training phase. In this sense, the number of parameters used by the proposed

methodology is comparable to the top 3 submissions from DCASE 2020 during the training

phase.

In terms of training time, our system took a much shorter time than the top submis-

sions from DCASE 2020. While it may be argued that we are training the system using

better hardware but based on the information given in (Dettmers, 2020), the performance

difference using an RTX 3090 as compared to the RTX 2080 and Titan XP is not too

huge. Compared to the other methodologies (Lin et al., 2019; Turpault and Serizel, 2020;

Turpault et al., 2020b) our system took a longer training time. However, we argue that the

gain in accuracy justified the longer training time.

As for our system inference time on the validation set, it took around 32s to complete

the prediction on 1168 audio clips where each clip has a duration of 10s. This shows that it

can be suitable for online or streaming applications.

We then performed an analysis of the classwise accuracy of our proposed method.

Based on the results shown in Table 4.24, our method does not have good detection

accuracy on Dog and Dishes as compared to the other event labels. We hypothesis that

there may be several reasons for this observation. Firstly, our method performs better

for background sound with a longer duration while it does not perform well for short

impulse sound. Secondly, our post-processing method may also be a cause for such a

result. As we remove events with a duration shorter than 0.1s, there may be a chance that

146

Improved Pseudo Labeling Approach and Integration of Macaron Net

Event label Classwise event-based F1 score (%)

Non-ensembled Ensembled

Speech 51.4 52.2

Dog 34.5 35.3

Cat 45.6 45.4

Alarm Bell Ringing 50.2 52.3

Dishes 24.8 27.4

Frying 47.7 47.7

Blender 51.9 54.9

Running Water 48.9 50.7

Vacuum Cleaner 70.7 75.9

Electric Shaver/Toothbrush 59.1 63.0

Mean 48.5 50.4

Table 4.24 Classwise accuracy of proposed methodology

such short impulsive noise is removed. Since we concatenate two similar events, if the

difference between the first event offset and the second event onset is shorter than 0.2s,

successive short impulse sound may be concatenated together, which reduces the detection

accuracy. As observed, Dishes achieve a much lower accuracy as compared to Dog. It may

be because the Dishes events co-occur with other events such as Frying most of the time,

which increases the training and detection difficulty. Although the ensembling technique

can help increase the accuracy, there is a need to further improve the detection accuracy

for short impulse sound.

4.5. Summary

Based on the results shown in this chapter, there are several critical take-home points.

Firstly, pseudo strong labels provided using supervised CNMF appear to be of better quality

than the pseudo strong labels provided using supervised NMF since models trained using

the former can obtain a higher detection accuracy. However, due to the shift operations

in CNMF, the formation of event dictionaries and the pseudo-labeling process can take a

much longer time. Nevertheless, since the feature extraction process is only a one-time

process, CNMF should replace NMF in the pseudo labeling framework.

The inclusion of the Macaron Net encoding layer does provide an improvement in

the frame-level prediction. However, it can also reduce the clip-level prediction. To

147

Improved Pseudo Labeling Approach and Integration of Macaron Net

this end, we propose a triple instance pooling approach to allow the TM to learn unique

characteristics from each branch which allows the clip-level prediction to improve.

Subsequently, based on the observation that DNN learns an easier example before

moving to a more difficult example, we propose a curriculum consistency loss where the

confidence threshold is adjusted according to the learning stage. Adjusting the confidence

threshold from a high value to a lower value restricts the models to consider the high

confidence (lower difficulty) examples first before the low confidence (higher difficulty)

examples. Such implementation avoids the scenario that SM has to learn from TM when

TM has yet to achieve optimal detection accuracy on all examples. At the same time,

it allows more training examples to be included for loss calculation, which is shown to

improve the model’s accuracy.

While our proposed student-teacher framework can be competitive against the SOTA,

the design of two completely different models can be tedious and time-consuming. Chapter

4.4 provides a more straightforward design for the two models where the differences only

lie in the number of convolutional layers, pooling size, and temporal pooling method.

Together with our proposed ideas, such as the use of meta-ACON, SE module, an improved

Macaron Net encoding layer, triple instance-level pooling approach, and improved cyclic

learning scheme, we show that even with a straightforward design, it can still be effective

for SED where our system can achieve an event-based F1-score of 48.5%. By ensembling

the top five models, the event-based F1-score can be increased to 50.4%. Such results

allow our model to have a minimum margin of over 12% against the baseline system and

be competitive against the other SOTA.

148

Chapter 5. Lightweight Convolutional-iConformer For SED

5.1. Motivation

As seen in the previous chapters, deep learning can be considered the gold standard for

modeling a SED system. However, deep learning does have its limitations.

Figure 5.1 Accuracy versus parameter used by the top 3 submissions in the annual DCASE
challenge task 4 (evaluation dataset)

Firstly, deep learning approaches are highly parameterized. As seen in Figure 5.1,

while deep learning approaches have allowed participants to produce models with higher

accuracy each year in the annual DCASE challenge task 4, the models’ complexities have

also increased significantly over the years.

Although the use of larger models can achieve higher accuracy, they can have several

drawbacks. Larger models may require a higher hardware investment cost due to the

need for multiple dedicated hardware such as the Graphics Processing Unit (GPU) to

perform model training and tuning purposes. In addition, larger models may also incur

a longer training time as compared to smaller models. This can result in a larger carbon

footprint due to the energy required to power the hardware for a longer duration (Strubell

149

Lightweight Convolutional-iConformer For SED

et al., 2019). Subsequently, large models may also face deployment issues in many real-

world applications as recognition tasks need to be carried out in a timely fashion on a

computationally limited platform (Howard et al., 2017).

As mentioned earlier, to maximize the potential of a SED system trained using deep

learning approaches, there may be a need for a large set of strongly labeled data for model

development. Unlike image categorization, annotating the onset and offset of an acoustic

event can be difficult and subjective due to the fade in and fade out effect (Chan and Chin,

2020). Even with the use of the multi-annotator approach, the resolution may, at best, be

up to 0.1s (based on an informal spot check) (Hershey et al., 2021). As such, perfect onset

and offset annotation can be considered unrealistic, and in fact, with the increase in data

size, the issue of label noise is inevitable (Fonseca et al., 2020). The issue of label noise is

naturally extended to pseudo labels as well. Although noisy labels are found to improve

generalization (Chen et al., 2020; Li et al., 2020), too much label noise can significantly

degrade the mode’s performance.

In this chapter, we attempt to address the challenges as discussed earlier. Firstly,

in order to reduce the number of parameters and make our SED system as lightweight

as possible, we adopted depthwise separable convolutions (Chollet, 2017b) to replace

the conventional convolutions in our models. A depthwise separable convolution is a

form of factorized convolution that factorize a standard convolution into a depthwise

convolution and a 1×1 convolution called a pointwise convolution (Howard et al., 2017).

The differences between the convolutions can be seen in Figure 5.2 where Nc represents the

number of channels. As seen in Figure 5.2A, a 3 x 3 filter will span through all the channels

in the conventional convolution. In constrast, a depthwise convolution will require Nc 3 x

3 filters where each filter will only convolve with one input channel, which can be seen

in Figure 5.2B. As mentioned earlier, in a depthwise separable convolution, a pointwise

convolution is then applied with a 1 x 1 filter which is illustrated in Figure 5.2C.

These two operations are usually implemented sequentially without nonlinearities

(Chollet, 2017b). In our implementation, we added BN and Swish (Ramachandran et al.,

2017) after the first depthwise convolution, which can increase the overall detection

accuracy. With a lesser number of parameters, not only is the model computationally

cheaper to train and run but is also less prone to overfitting.

We then propose a new Conformer encoding layer which we termed as improved-

Conformer (iConformer). This encoding layer will only be added to the shallower model

to improve the frame-level prediction. As compared with the original Conformer (Gulati

150

Lightweight Convolutional-iConformer For SED

Figure 5.2 Differences between the conventional convolution and depthwise separable convolution

151

Lightweight Convolutional-iConformer For SED

et al., 2020), our encoding layer consists of the multi-branch feedforward module, lesser

convolution operation, and also utilizes lesser parameters.

Since the presence of label noise is inevitable, we propose to extend the BCE loss

function by including the Reverse Binary Cross Entropy (RBCE) to combat the label noise

caused by pseudo labeling.

Thus, the key contributions of this chapter can be summarized as follow

1. A lightweight SED system using modified depthwise separable convolutions which

only has 509k parameters.

2. An improved Conformer (iConformer) encoding layer.

3. The extension of BCE with RBCE to combat label noise.

Based on the proposed idea, our lightweight system can obtain an event-based F1-score

of 52%, and the ensemble of four systems can further improve the accuracy to 53.5%.

Such results indicate a minimum margin of 16% against the DCASE 2020 challenge task

4 baseline system. Compared to the first-place system of the DCASE 2020 challenge

task 4, our non-ensembled system can achieve a higher event-based F1-score of 6%

with 75% lesser parameters. In terms of the performance of the ensembled system, our

system remains competitive and has a winning margin of 2.9% despite using 15 million

lesser parameters. Comparison with other state-of-the-art also indicates that our system

performance is better despite using a lightweight system. The following subsections then

present an in-depth explanation and discussion of our proposed methodology.

This chapter was summarized as journal paper and is currently under review.

5.2. Preliminaries of Conformer and Symmetrical Cross Entropy

5.2.1. Conformer

As mentioned earlier, a Transformer is a good candidate for sequence modeling and was

found to outperform RNN in various domains such as language translation (Vaswani et al.,

2017) and speech recognition (Karita et al., 2019). However, they are less capable of

extracting fine-grained local feature patterns (Gulati et al., 2020). One solution to this

issue is to combine convolution and Transformer, which is found to improve the overall

performance instead of using them individually (Bello et al., 2019). As such, Gulati et al.

(2020) proposed Conformer, which is an improved variant of Macaron Net (Lu et al.,

2019).

152

Lightweight Convolutional-iConformer For SED

Figure 5.3 Difference between the encoding layers

In Figure 5.3, the architectures of the encoding layer of a Transformer (Vaswani et al.,

2017), Macaron Net (Lu et al., 2019), and a Conformer (Gulati et al., 2020) are illustrated.

The key differences of each implementation (i.e., Macaron Net and Conformer) with the

Transformer encoding layer are highlighted with red dotted boxes in Figure 5.3. As seen

from Figure 5.3 to Figure 5.11, the critical differences for Conformer are 1) the use of

relative positional encoding (Shaw et al., 2018) instead of absolute positional encoding

(Vaswani et al., 2017), 2) the position of layer normalization, and 3) the inclusion of

convolution module.

A relative positional encoding can be considered a carefully designed bias term incor-

porated inside the self-attention module to encode the distance between any two positions

(Ke et al., 2021), allowing the self-attention module to generalize better on different input

lengths (Gulati et al., 2020) . The resulting encoder can be more robust to the variance of

the utterance length (Gulati et al., 2020) and Shaw et al. (2018) demonstrated that such

encoding could improve the translation quality on two machine translation tasks.

As seen in Figure 5.3, layer normalization is placed after the residual connection for

Transformer (Vaswani et al., 2017) and Macaron Net (Lu et al., 2019). In contrast, based

on the information given in Figure 5.4, Figure 5.5, and Figure 5.6, Conformer adopts a

Pre-Norm architecture, which may be motivated by an analysis that shows that a Pre-Norm

Transformer is less robust than a Post-Norm Transformer (Liu et al., 2020a).

The convolutional module adopted in the Conformer starts with a layer normalization

followed by a pointwise convolution and a GLU (Dauphin et al., 2018) activation function.

This is followed by a single 1-D depthwise convolution layer with Swish (Ramachandran

153

Lightweight Convolutional-iConformer For SED

Figure 5.4 Positionwise feedforward module in a Conformer

Figure 5.5 Multi-head attention with relative positional encoding in Conformer

Figure 5.6 Convolutional module in Conformer

154

Lightweight Convolutional-iConformer For SED

et al., 2017) activation function. BN is applied after the final convolution, which aids the

training of deep models (Gulati et al., 2020). Notice that they are using a lightweight con-

volution in this module instead of the conventional convolution to reduce the computational

cost.

Based on such an arrangement, Gulati et al. (2020) reported significant improvements

over the Transformer (Vaswani et al., 2017) for language modeling. Moreover, the first

place submission in the DCASE 2020 challenge task 4 was a CNN with Conformer

(Miyazaki et al., 2020). Such results motivate us to proceed with the experimentation using

Conformer.

5.2.2. Symmetrical Cross Entropy

In a typical multiclass classification problem (i.e., one sample can only belong to one

class), the use of the Cross Entropy (CE) to calculate the loss can be considered one of

the most commonly used functions (Wang et al., 2019b). Consider a Ne-class dataset, a

sample’s ground truth and predicted probability for the i class can be represented as zi and

ẑi, respectively. The CE loss, lce, can be defined as

lce =−
1

Ne

Ne

∑
i=1

zilog(ẑi) (5.1)

However, as shown in (Wang et al., 2019b), lce can exhibit overfitting to noisy labels on

easier classes and suffers from significant under-learning on harder classes. Thus, Wang

et al. (2019b) extend the idea of symmetric Kullback-Leibler divergence to lce. This leads

to a Symmetric Cross Entropy (SCE) loss, lsce, that consider both lce and Reverse Cross

Entropy (RCE) loss, lrce. Formally, lsce is defined as (Wang et al., 2019b)

lsce = µlce + τlrce (5.2)

where µ and τ represent two hyperparameters for controlling the contribution of each loss

term. lrce is defined as

lrce =−
1

Ne

Ne

∑
i=1

ẑilog(zi) (5.3)

As lrce was proven to be noise robust (Wang et al., 2019b), the use of lsce can strike a

balance between sufficient learning and robustness to noisy labels. Thus, lsce can allow

overall learning to be improved in all classes.

155

Lightweight Convolutional-iConformer For SED

Given that lsce can be a promising loss function to combat noisy labels, we attempt to

extend such loss function to a multi-label scenario (i.e., one sample can belong to multiple

class). In a multi-label scenario, the lce is extended to BCE loss, lbce, and is defined as

lbce =−
1

Ne

Ne

∑
i=1

(zilog(ẑi)+(1− zi)log(1− ẑi)) (5.4)

Thus, the RBCE, lrbce, would be defined as

lrbce =−
1

Ne

Ne

∑
i=1

(ẑilog(zi)+(1− ẑi)log(1− zi)) (5.5)

Following the implementation of lsce loss, the Symmetric Binary Cross Entropy (SBCE),

lsbce, loss can be defined as

lsbce = µlbce + τlrbce (5.6)

Notice that the log terms will become infinity in Equation 5.4 and Equation 5.5 when zi or

ẑi is equal to 1 or 0. In such cases, the log terms are clipped to -100, which is similar to the

PyTorch implementation of BCE loss. In this chapter, we propose using SBCE to calculate

the loss between the frame-level prediction and the pseudo strong labels to combat the

noise contained in the pseudo strong labels.

5.3. Model Layout

Figure 5.7 SM and TM

We adopted the framework as proposed in Chapter 3 and Chapter 4, where two models

are designed differently but trained synchronously. By referring to Figure 5.7, one would

156

Lightweight Convolutional-iConformer For SED

Figure 5.8 Modules description

notice that the model designs are based on the proposed idea in Chapter 4 (refer to Figure

4.6), where the differences in models are in the number of convolutional layers, pooling

size, temporal pooling method. Similar to before, the SM will provide two outputs, the

frame-level prediction, and the clip-level prediction. In contrast, the TM only provides the

clip-level prediction. TM model adopts a triple instance-level pooling which combines

exponential softmax, auto pooling (McFee et al., 2018), and attention pooling to obtain

the clip-level prediction. SM only adopts a max pooling operation to obtain the clip-level

prediction. Such settings are based on the experiment done in Chapter 4, which yielded

the best results.

However, by comparing the modules proposed in this chapter (Figure 5.8) and the mod-

ules proposed in Chapter 4 (Figure 4.7), one would notice the difference in the convolution

operations. In Chapter 4, the use of the conventional convolution method is proposed.

In contrast, this chapter proposed an improved depthwise separable convolution. Unlike

the conventional depthwise separable convolution (Chollet, 2017b), which only applies

a depthwise convolution followed by a pointwise convolution without any nonlinearities,

our proposed depthwise separable convolution consists of BN and Swish (Ramachandran

et al., 2017) activation function.

In addition, we do not propose the use of positional encoding and iConformer in both

models but only integrating it in the SM. The reason for excluding the positional encoding

and iConformer in TM is because we hypothesized that the use of the Transformer layer

has little effect on AT performance. This is because we believe that the sequence of an

event does not affect or change the nature of an event. For example, the following two

sentences, “I am happy” and “happy am I” will still belong to the Speech category.

157

Lightweight Convolutional-iConformer For SED

Figure 5.9 Difference between Conformer and iConformer

Figure 5.10 Difference between positionwise feedforward module in Conformer and iConformer
(LN represents layer normalization and FF represents feedforward)

Figure 5.11 Difference between the convolutional module in Conformer and iConformer

158

Lightweight Convolutional-iConformer For SED

The differences between the proposed iConformer and Conformer (Gulati et al., 2020)

are highlighted with dotted red boxes from Figure 5.9 to Figure 5.11. Firstly, the relative

positional encoding (Shaw et al., 2018) is utilized in Conformer (Gulati et al., 2020);

however, such a module is not included in iConformer. Instead, we propose the use of the

absolute positional encoding (Vaswani et al., 2017).

Secondly, we propose a multi-branch positionwise feedforward module where the

differences between the modules are illustrated in Figure 5.10. In Conformer (Gulati et al.,

2020), the input dimension is expanded using the first feedforward layer (the degree of

expansion is denoted as Expansion Factor (EF) in Figure 5.10, and Conformer uses an EF

of 4) followed by reducing the expanded dimension using the second feedforward layer. In

iConformer, we reduce the input dimension using the first feedforward layer (the degree of

reduction is denoted as Reduction Factor (RF) in Figure 5.10, the optimal value will be

examined in the subsequent section) followed by expanding the reduced dimension using

the second feedforward layer.

By reducing the input dimension instead of expanding, the number of parameters can be

reduced. With the reduced number of parameters, we increase the number of positionwise

feedforward modules (thereby multi-branch positionwise feedforward module) where the

outputs are averaged. We hypothesize that a higher number of branches (the optimal

number of branches, NFBR, will be discussed in the later section) can act as a small

ensemble of positionwise feedforward modules, which in turn increases the detection

accuracy.

Such design is also related to (Mehta et al., 2021; Tan et al., 2021). While Mehta

et al. (2021) also applied the reduction of input dimension through the feedforward layers,

they did not apply the multi-branch concept, and they propose to improve Transformer

(Vaswani et al., 2017) instead of Conformer (Gulati et al., 2020). On the other hand,

Tan et al. (2021) applied the multi-branch concept to both the positionwise feedforward

and multi-head attention modules. In their implementation, they then applied a gating

mechanism where only one branch will be used. In contrast, our implementation is only

applied to the feedforward module, and all branches are weighed equally.

The next difference lies in the sequence of modules. In Conformer (Gulati et al., 2020),

the convolutional module is positioned after the multi-head attention module. Whereas in

iConformer, the convolutional module is positional before the multi-head attention module.

Such an arrangement was also proposed in (Li et al., 2021). In addition, our convolution

module has lesser operations (without a pointwise convolution and GLU (Dauphin et al.,

2018)).

159

Lightweight Convolutional-iConformer For SED

In the following subsection, we then discuss the type of loss functions used in our

semi-supervised learning framework.

5.4. Proposed Semi-Supervised Learning Framework

In this section, we present the proposed semi-supervised learning framework. The first

loss component is the frame-level loss, lf calculated using SBCE. Based on Equation 5.4

to Equation 5.6, lf is defined as

lf = µlbce + τlrbce (5.7)

where lbce is defined as

1
Ne×Nf

Ne

∑
i=1

Nf

∑
j=1

[gi, jlog(Si, j)+(1−gi, j)log(1−Si, j)] (5.8)

And lrbce is defined as

1
Ne×Nf

Ne

∑
i=1

Nf

∑
j=1

[Si, jlog(gi, j)+(1−Si, j)log(1−gi, j)] (5.9)

where Si, j represents the SM’s predicted probability of event i at frame j and gi, j represents

the ground truth of event i at frame j. µ and τ represent the hyperparameter that control

the contribution of each loss term and will be given in the next section.

On the other hand, the BCE is used to calculate the clip-level loss, lc, is defined as

lc =
1

Ne

Ne

∑
i=1

[zilog(Ti)+(1− zi)log(1−Ti)] (5.10)

where Ti represents the TM’s predicted probability of event i in an audio clip and zi

represents the grouth truth of event i in the same audio clip.

The third loss component is the interpolated consistency cost, lL
i , calculated on labeled

samples (i.e., pseudo strongly labeled data) and can be defined as

Smc = M(SM(mixup(RA
1 ,R

A
2))) (5.11)

Tm = mixup(TM(RA
1),TM(RA

2)) (5.12)

lL
i = MSE(Smc,Tm) (5.13)

160

Lightweight Convolutional-iConformer For SED

where RA
1 and RA

2 represent the augmented feature representations of labeled sample 1 and

2, respectively. Smc represents the vector that contains the events’ probabilities from SM

on the mixed labeled sample. M(.) represents the max pooling operation. mixup(RA
1 ,R

A
2)

is defined as (Zhang et al., 2017)

mixup(RA
1 ,R

A
2) = ψRA

1 +(1−ψ)RA
2 (5.14)

where ψ is the mixing factor. Tm represents the vector that contains the TM’s interpolated

predicted probabilities on a labeled sample. However, lL
i is regularized and extended as lL

ri

and is defined as follow

lL
ri =

1

Ne
∑

Ne
i=1(S

mc
i −T m

i)2 if max(Tm)> λcurr

0 otherwise
(5.15)

where T m
i represents the TM’s interpolated predicted probablity for event i. λcurr represents

the current confidence level which will be explained in further detail in the next section.

The final loss component is also the interpolated consistency loss but applied on the

unlabeled sample. This loss is represented by li and is defined as

S̃mc = M(SM(mixup(UA
1 ,U

A
2))) (5.16)

T̃m = mixup(TM(UU
1),TM(UU

2)) (5.17)

li = MSE(S̃mc, T̃m) (5.18)

where UA
1 and UA

2 represent the augmented feature representations of unlabeled sample

1 and 2, respectively. UU
1 and UU

2 represent the unaugmented feature representations of

unlabeled sample 1 and 2, respectively. S̃mc represents the vector containing the SM’s

predicted probabilities for all events in a mixed sample. T̃m represents the interpolated

predicted probabilities for all events. Similarly, li is also regularized and extended as lri

and is defined as

lri =

w
Ne

∑
Ne
i=1(S̃

mc
i − T́ m

i)2 if max(T́m)> λcurr

0 otherwise
(5.19)

w which is a weighing parameter is given as (Laine and Aila, 2017)

w = exp(−5(1−P)2) (5.20)

161

Lightweight Convolutional-iConformer For SED

P represents the training progression and will also be discussed in further detail in the next

section.

5.5. Experiment Setup

The dataset used for the subsequent experiments is the DESED 2020 dataset (Turpault

et al., 2019), and the data distribution can be found in Table 3.6. As the methodology was

not submitted to the DCASE challenge, results on the evaluation 2020 dataset cannot be

obtained. Thus, results are only reported on the validation dataset.

Audio preprocessing and feature extraction remains similar, as described in Chapter

4.4.6. Similar to Chapter 4.4.6, the training procedure consists of two phases, 1) the

warm-up phase and 2) the adaptation phase. The warm-up phase, which lasts 10 epochs,

utilizes only the synthetic data and pseudo-strongly labeled data to train the models with

a batch size of 32. Each batch of data is evenly split between the synthetic data and

pseudo-strongly labeled data, and feature representations are augmented with Gaussian

noise, time mask, and time shift. Since the unlabeled data is not utilized in this phase, the

loss component only consists of l f , lc, and lL
ri . µ and τ which are used to calculate lf are

set as 1 and 0.1, respectively. On the other hand, lL
ri is affected by λcurr which is defined as

λcurr = λmin +0.5(λmax−λmin)(1+ cos(Pπ)) (5.21)

where λmax represents the maximum confidence threshold and is set as 0.9. λmin represents

the minimum confidence threshold and is set as 0.6. P, which represents the training

progression is defined as

P =
Pw−Pcurr

Pw
(5.22)

Pw represents the total iterations during the warm-up phase, which we set as the total

number of iterations in 10 epochs. Pcurr represents the current confidence threshold. Thus,

on the definition of P, the confidence threshold will increase progressively from 0.6 to 0.9.

Learning rate is also increased progressively along a cosine curve which is defined as

LRcurr = LRmin +0.5(LRmax−LRmin)(1+ cos(Pπ)) (5.23)

where LRmax and LRmin are set as 0.0012 and 1e-6, respectively. Based on the calculated

losses, SM is updated using Adam (Kingma and Ba, 2015), and TM is updated using

Adabelief (Zhuang et al., 2020).

162

Lightweight Convolutional-iConformer For SED

The adaptation phase (i.e., from the 11th epoch onwards) utilizes synthetic data, pseudo

strongly labeled data, and unlabeled data to train the models with a batch size of 64. Each

batch of data is split into the following proportion: 25% synthetic data, 25% pseudo

strongly labeled data, and 50% weakly labeled data. Similar to the warm-up phase, feature

representations are augmented with Gaussian noise, time mask, and time shift. With the

inclusion of unlabeled data, the loss component in this phase would consist of l f , lc, lL
ri

and lri. µ and τ which are used to calculate l f remain as 1.0 and 0.1, respectively. In the

adaptation phase, we adopt the improved cyclic learning scheme as proposed in Chapter

4. Thus, P, which represents the training progression, becomes a critical component that

affects the calculation of LRcurr, λcurr and w.

In the adaptation phase, P has two states. At the start of the adaptation phase, Pcurr is

reset to 0, and the learning rate is set to decrease progressively from LRmax to LRmin. Thus,

P is defined as

P =
Pcurr

Ptot
(5.24)

where Ptot represents the maximum training iterations before a change in state (i.e., from

decreasing learning rate to increasing learning rate). Based on our proposed cyclic learning

scheme in Chapter 4, when Pcurr =Ptot, the learning rate is set to increase from the minimum

to the maximum and Pcurr will revert back to 0. Thus, when the learning rate is increasing,

P is defined similarly to Equation 5.22. On the other hand Ptot is multiplied with an integer,

Pmult, which can delay the next change of state (i.e., from decreasing learning rate to

increasing learning rate) if Pmult is larger than 1. Note that our proposed cyclic learning

scheme does not multiply Pw with Pmult. Thus during the state of increasing learning rate,

LRmin will always transit back to LRmax in a fixed number of iterations. The reader may

refer to Figure 4.12 and Figure 4.13 for more information.

In this phase, LRmax and LRmin remains as 0.0012 and 1e-6, respectively. λmax and

λmin will also remain at 0.6 and 0.6. Ptot is set as 1 epoch, Pmult is set as 2 while Pw is set as

1 epoch. The cyclic learning phase will end when Ptot reaches 64 epoch. This effectively

means the total number of epochs in this phase is 133 epochs. Similar to the warm-up

phase, SM is updated using Adam (Kingma and Ba, 2015), and TM is updated using

Adabelief (Zhuang et al., 2020).

In the inference stage, both models are used for audio tagging and SED. The method

of detection and post-processing steps remain similar, as described in Chapter 4.3.2.

In this section, all experiments were conducted on a system using an AMD Ryzen

Processor 5900x with a base frequency of 3.7GHz, 32GB ram and a RTX3090 GPU.

163

Lightweight Convolutional-iConformer For SED

Kernel size

3 7 15 31

Filter size 128 52.0 49.6 49.0 48.5

256 50.2 49.6 48.1 45.4

512 51.4 49.2 49.1 46.2

Table 5.1 Effects of filter size and kernel size on event-based F1-score (%)

NFBR

1 2 4 8

RF 1 49.2 50.2 49.5 51.1

2 49.4 49.8 49.5 49.6

4 49.7 49.7 52.0 50.1

8 49.5 50.2 51.6 49.7

Table 5.2 Effects of NFBR and RF on event-based F1-score (%)

5.6. Results and Discussion

In this section, various experiments and ablation studies are carried out to examine different

aspects of the proposed model. The primary evaluation metric is the event-based F1-score

(Mesaros et al., 2016) which determines the optimal setting and hyperparameters.

The first experiment we conducted investigates the effect of filter size and kernel size

of the convolution module in iConformer. As seen in Table 1, using a larger number of

filters generally does not produce a higher accuracy. However, it can be observed that a

large kernel size usually reduces the detection accuracy. As mentioned in (Xia et al., 2020),

smaller kernels are preferred when input features have high variability, while larger kernels

are more suitable for input features with low variability. An audio clip can contain multiple

events that may overlap or similar events but with different sound characteristics (i.e.,

the barking sound of a chihuahua and husky is different). Therefore, the time-frequency

representation of an audio clip can be considered to be a high variability input. Thus, this

can explain why the use of smaller kernel size produces better accuracy than bigger kernel

size.

We then examine the effect of NFBR and RF on the detection accuracy. Although it

was hypothesized that increasing the dimension of the input through the positionwise

feedforward module may increase a Transformer’s expressivity and capacity (Mehta et al.,

164

Lightweight Convolutional-iConformer For SED

Event-based F1-score (%)

Additional pointwise convolution and GLU 51.0

Proposed 52.0

Table 5.3 Importance of additional pointwise convolution and GLU

2021) but, as seen in Table 5.2, the reduction of the input dimension does not reduce the

accuracy drastically, but, can in fact, increase the accuracy marginally.

We hypothesized that the macaron-style positionwise feedforward modules (two posi-

tionwise feedforward modules with half-step residual connection) (Lu et al., 2019) might

play a part in this phenomenon. As suggested in (Lu et al., 2019), the use of only one

positionwise feedforward module can bring bias and leads to higher local truncation error.

However, it can be mitigated if two positionwise feedforward modules with half-step

residual connection are used. Such arrangement can then lead to higher order accuracy in

terms of truncation error. We hypothesized that this in turn allows the input dimension to

be reduced without sacrificing accuracy. Also, in (Lu et al., 2019), the expansion factor in

the Macaron Net encoding layer was set to half of the original Transformer (Vaswani et al.,

2017) (in order to use the same number of parameters) and was found to perform better

in various dataset. This may also suggest that expanding the input dimension may not be

necessary.

As seen in Table 5.2, while multi-branch positionwise feedforward module can gener-

ally produce higher accuracy than using only a single branch positionwise feedforward

module, we find that the increment in accuracy is only marginally in most cases and

increasing NFBR may not necessarily produce a higher accuracy (i.e., NFBR=8 may not

perform as well as NFBR=4). We hypothesize that the multi-branch positionwise feedfor-

ward module can be improved by using different activation functions or RF in each branch.

This promotes diversity and can allow different characteristics to be learned, which may

increase the accuracy. Such an idea is similar to the triple instance-level pooling (Chan

and Chin, 2021). Based on the results in Table 5.2, the best result is obtained by setting

NFBR and RF as 4, therefore, we continue with the same setting.

We then investigate the effects of ablating the pointwise convolution and GLU (Dauphin

et al., 2018) in the convolution module of iConformer (refer to Figure 5.9). Based on the

results shown in Table 5.3, the two operations can be safely ablated without sacrificing

accuracy.

The effect of using a different number of encoding layers and heads is then examined.

Based on the results shown in Table 5.4, the accuracy does not always improve with

165

Lightweight Convolutional-iConformer For SED

No. layers

1 2 3 4 Ablate encoding layer

No. heads

1 52.0 48.9 48.7 50.1 48.0

4 49.8 49.1 49.4 49.2

8 48.8 48.1 49.6 50.6

16 50.5 48.9 50.1 50.3

Table 5.4 Accuracy using different number of encoding layers and heads

Type of positional encoding Event-based F1-score (%)

None 49.6

Absolute 52.0

Relative 46.9

Absolute + Relative 45.7

Table 5.5 Effect of using different positional encoding

additional layers or additional heads. Also, some settings only provide marginal gain as

compared to a SED system trained without iConformer.

Such a phenomenon may be due to the fact that very deep Transformer can be difficult

to train. Moreover, as explained in (Michel et al., 2019), multiple heads may not always

leverage its theoretically superior expressiveness over a single head to the fullest extent.

As the accuracy of a SED system can be improved by up to 4% using iConfomer, such

a module may still be considered to be necessary for onset-offset estimation.

We then examine the use of different positional encoding. Based on the results shown

in Table 5.5, the use of absolute positional encoding (sinusoidal positional encoding)

(Vaswani et al., 2017) produces the best result. In our case, learnable positional encoding

(Shaw et al., 2018) does not provide any benefits. Similar to the results shown in (Shaw

et al., 2018), we find that combining two encoding modules does not provide any further

improvement and would produce a lower accuracy compared to using only one mode of

positional encoding. Although the convolution module in the encoding layer may implicitly

provide relative positional information (Li et al., 2021), accuracy can be improved with

absolute positional encoding.

We then compared the performance of iConfomer and Conformer in the SED domain.

In this comparison, the settings of Conformer are set according to the illustrations given

in Figure 5.9 to Figure 5.11, with an EF of 4 in the positionwise feedforward module,

a kernel size of 3 in the convolutional module. As shown in Table 5.6, Conformer with

166

Lightweight Convolutional-iConformer For SED

Event-based F1-score (%)

iConformer 52.0

Conformer (EF=4, Relative) 46.3

Conformer (EF=1, Absolute) 49.0

Table 5.6 Comparison between iConformer and Conformer

Event-based F1-score (%)

Proposed depthwise-separable 52.0

Ablate Swish Retain BN 47.4

Retain Swish Ablate BN 48.0

Ablate Swish and BN 47.8

Conventional convolution 49.6

Table 5.7 Analysis on depthwise-separable module

AT F1-score (%)

Without encoding layer 79.2

With encoding layer 77.1

Table 5.8 Importance of encoding layer for AT model

the original setting performs poorly as compared to iConformer. Based on the earlier

experiments, we deduced that the causes are due to the large EF used in the positionwise

feedforward module and the relative positional encoding. We then set EF as 1, and proceed

with the use of absolute positional encoding instead of relative position encoding. Based

on the proposed setting, Conformer performs much better but still has a margin of 3%

against iConformer.

As seen in Table 5.7, due to the reduction in parameters, conventional convolution

can outperform depthwise separable convolution, even though it was hypothesized that

mapping cross channel correlations and spatial correlations separately is more efficient than

mapping them at once (Chollet, 2017b). In our experiment, the efficiency of mapping cross

channel correlations and spatial correlations separately can be increased if nonlinearities

and normalization are added, which leads to higher accuracy.

One interesting finding is that the use of nonlinearities should be accompanied by

normalization and vice versa; otherwise, there is little to no performance gain compared to

the conventional depthwise separable module.

167

Lightweight Convolutional-iConformer For SED

µ

0.01 0.05 0.1 0.5 1

τ 0 33.7 38.9 44.9 47.2 49.3

0.1 33.1 40.3 46.0 49.3 52.0

Table 5.9 Effects of different µ

µ

1

τ 0 49.3

0.01 50.1

0.05 50.5

0.1 52.0

0.5 50.0

1 48.5

Table 5.10 Effects of different τ

As it was hypothesized that encoding layer use does not help improve the AT perfor-

mance, we conducted an experiment to verify this hypothesis. As seen in Table 5.8, the

encoding layer can be safely removed from the TM without the risk of a drastic perfor-

mance drop. In fact, removing the encoding layer can make the model less difficult to train,

and, in our experiment, the AT F1-score is shown to be better by excluding the use of the

encoding layer in TM.

We then investigate the effects of different µ and τ in the range of [0.0,1.0]. It should

be pointed out that when τ = 0, this becomes the BCE. It can be observed in Table 5.9 that

accuracy is low when µ = 0.01, which indicates poor convergence (this is also observed

in (Wang et al., 2019b)). The addition of RBCE does not provide any benefit at low µ .

However, when the value of τ increases, an improvement with the addition of RBCE can

be seen.

As seen in Table 5.10, the benefit of adding RBCE may not reach its full potential when

τ is small, and the maximal gain occurs when τ = 0.1. However, it can also be observed

that accuracy can start to decrease when τ is above 0.1. Such results suggest the need to

finetune these two values.

A comparison of the proposed loss function is made against the theoretical noise-

robust Mean Abosolute Error (MAE) (Ghosh et al., 2017). The results shown in Table

5.11 indicate that the use of MAE is suboptimal, which is consistent with the finding

168

Lightweight Convolutional-iConformer For SED

Loss function Event-based F1-score (%)

Proposed 52.0

MAE 22.0

Table 5.11 Loss functions use for calculating frame-level loss

Loss function Event-based F1-score (%)

With lrc and lru 52.0

Ablate lru 49.0

Ablate lrc and lru 47.1

Table 5.12 Importance of lrc and lru

in (Fonseca et al., 2019). Studies suggested that the cause of this issue might be due to

gradient saturation which can be challenging to use for model training (Ghosh et al., 2017;

Wang et al., 2019b).

We then conduct an ablation study on the importance of lrc and lru. Results in Table

5.12 show that ablating them would result in a drop in accuracy and are considered essential

components in our training scheme.

5.7. Comparison against SOTA

We then compare our system with the SOTA. We first compare the accuracy for non-

ensembled systems. As shown in Table 5.13, Kim and Kim system (Kim and Kim, 2021) is

considered the best in the literature. However, our system can achieve a higher event-based

F1-score of 1.4%.

Compared to the first-place submissions in DCASE 2020 challenge task 4 (Miyazaki

et al., 2020), our system outperforms them by 6%. Compared to the second-place (Yang

et al., 2020) and third-place submissions (Ebbers and Haeb-Umbach, 2020), our system

outperforms them by 3.7% and 5.6%, respectively.

Finally, by comparing our system against the DCASE 2020 challenge task 4 baseline

systems (Turpault and Serizel, 2020; Turpault et al., 2020b), we can have a winning

margin of over 16%. In terms of models parameters used, the SM model utilized 245,595

parameters, and TM model utilized 263,634 parameters. The total number of parameters

used is 509,229 parameters.

169

Lightweight Convolutional-iConformer For SED

Despite using two models to perform SED, our system utilized the least number of

parameters despite utilizing two models for inference. One provides the frame-level

prediction, and the other provides the audio tags.

We then compare the performance of the ensembled systems. We combined four

models by averaging the posterior probabilities. Note that all models are trained using the

same setting that produced the best results in the previous analysis.

Compared with Kim and Kim system (Kim and Kim, 2021), our system can win by

1.9%. As only the first-place (Miyazaki et al., 2020) and third-place (Ebbers and Haeb-

Umbach, 2020) submissions have the ensembled system, we only compared our ensembled

system against them. Compared to the first-place (Miyazaki et al., 2020) and third-place

(Ebbers and Haeb-Umbach, 2020) ensembled system, we can still maintain a winning

margin of 2.9% and 4.3%, respectively.

By ensembling models, model parameters can increase drastically. In our case, the

ensemble of four models would result in 2,036,916 parameters. The number of parameters

utilized by our ensembled system may still be considered low since it is still comparable to

the non-ensembled system proposed by the top-3 submissions in DCASE 2020 challenge

task 4 (Ebbers and Haeb-Umbach, 2020; Miyazaki et al., 2020; Yang et al., 2020).

However, for the ensembled system proposed by Miyazaki et al. (2020) and Ebbers and

Haeb-Umbach (2020), the total number of parameters used are 17M and 20M, respectively.

Compared to our ensembled system, they are using up to 18M more parameters.

170

Lightweight Convolutional-iConformer For SED

M
et

ho
do

lo
gy

E
ve

nt
-b

as
ed

F1
sc

or
e

(%
)

N
o.

of
pa

ra
m

et
er

s

N
on

-e
ns

em
bl

ed
E

ns
em

bl
ed

N
on

-e
ns

em
bl

ed
(M

)
E

ns
em

bl
ed

(M
)

Pr
op

os
ed

52
.0

53
.5

0.
51

2

C
on

fo
rm

er
(M

iy
az

ak
ie

ta
l.,

20
20

)1
st

D
C

A
SE

20
20

46
.0

50
.6

2
17

C
R

N
N

(Y
an

g
et

al
.,

20
20

)2
nd

D
C

A
SE

20
20

48
.3

-
2

-

FB
C

R
N

N
(E

bb
er

s
an

d
H

ae
b-

U
m

ba
ch

,2
02

0)
3r

d
D

C
A

SE
20

20
46

.4
49

.2
2

20

B
as

el
in

e
C

R
N

N
(T

ur
pa

ul
ta

nd
Se

ri
ze

l,
20

20
)

34
.8

-
1

-

B
as

el
in

e
C

R
N

N
W

ith
So

ur
ce

Se
pa

ra
tio

n
(T

ur
pa

ul
te

ta
l.,

20
20

b)
35

.6
-

1
-

Ta
bl

e
5.

13
C

om
pa

ri
so

n
of

sy
st

em
ag

ai
ns

to
th

er
SO

TA

171

Lightweight Convolutional-iConformer For SED

5.8. Summary

In this chapter, we present a lightweight system for polyphonic SED. The key idea is to

use the depthwise separable convolution, which factorizes the conventional convolution

into a depthwise convolution followed by a pointwise convolution. However, we found

that such implementation may yield a worse accuracy than a conventional convolution,

where the most probable reason is the significant reduction in parameters. Nevertheless,

we found that such an issue can be mitigated by adding nonlinearities and BN.

This chapter also proposes iConformer, which further improves on Conformer by re-

moving the redundant modules and the inclusion of multi-branch positionwise feedforward

module. While multi-branch positionwise feedforward module can generally produce

higher accuracy than using only a single branch positionwise feedforward module, we

find that the increment in accuracy is only marginally in most cases. We hypothesize

that this can be improved by using different activation functions or RF in each branch,

which promotes diversity. Such an implementation can allow different characteristics to be

learned, which may further increase accuracy.

Finally, we also explore the use of SBCE, which is the extension of BCE by considering

RBCE. Based on the results, the use of SBCE to calculate the frame-level loss does help to

increase the system accuracy, which showcases its potential. However, we found that the

weighing parameters for BCE and RBCE have to be tuned appropriately; otherwise, it can

degrade the accuracy.

Based on our proposed ideas and framework, our lightweight system can obtain an

event-based F1-score of 52%, and the ensemble of four systems can further improve the

accuracy to 53.5%. Such results indicate a minimum margin of 16% against the DCASE

2020 challenge task 4 baseline system. Compared to the first-place system of the DCASE

2020 challenge task 4, our non-ensembled system can achieve a higher event-based F1-

score of 6% with 75% lesser parameters. In terms of the performance of the ensembled

system, our system remains competitive and has a winning margin of 2.9% despite using

15 million lesser parameters. Comparison with other state-of-the-art also indicates that our

system performance is better despite using a lightweight system.

172

Chapter 6. Conclusion

6.1. Summary and Contributions

In this thesis, the topic of SED was studied. An ideal SED system is a system that can

accurately predict the presence of an event as well as the annotation of the identified

event’s onset and offset. However, the development of a SED system is by no means trivial

and can be hindered by many different obstacles. In the following paragraphs, we listed

various issues or problems faced and possible room for improvement during the model

development phase and provided a point-by-point summarized contribution made in this

thesis.

The first and foremost is the lack of strongly labeled data. While the use of weakly

labeled data can help alleviate this issue, it was found that strongly labeled data can

improve the accuracy of audio classification (Hershey et al., 2021), which infers the need

for strongly labeled data to maximize a SED system’s performance.

• To this end, we propose a pseudo-labeling method using NMF to provide a pseudo

strong label for a weakly labeled audio clip. In Chapter 3, we demonstrate that the

use of pseudo strong labels can effectively increase the accuracy of the frame-level

prediction.

As mentioned earlier, weakly labeled data can be an alternative to train a SED system.

However, most of the SOTA utilized the Mean-Teacher approach (Tarvainen and Valpola,

2017), which requires training two identical models in a semi-supervised manner. Such

methodology can have two critical limitations. Firstly, it can be computationally expensive

if a very deep model is designed. Secondly, a model designed might only be optimal for

either audio tagging or frame-level prediction but not both.

• In order to achieve optimal performance at both subtasks, in Chapter 3, we propose

training two different models synchronously using a novel student-teacher framework

so that the developed SED system is adept at both audio tagging and temporal

localization. By comparing against the SOTA, our system is shown to be competitive.

173

Conclusion

With the proof of concept that pseudo strong labels can effectively increase the accuracy

of temporal localization, we further improve the quality of pseudo labeling. At the same

time, we investigate the effectiveness of adding the Macaron Net encoding layer (Lu et al.,

2019) into our system, which was found to perform relatively well in several speech-related

tasks.

• To improve the quality of pseudo labels, we propose an improved pseudo labeling

method using supervised CNMF, which is demonstrated to be better than NMF in

Chapter 4. In addition, extensive experiments were also carried out to investigate

various aspects of a Macaron Net. We found that there is no need to implement a

large Macaron Net with many heads to achieve SOTA performance.

As our proposed framework utilized two completely different models for SED, this

may increase the overall model and hyperparameter tuning time. Thus, it would be ideal

if the design of models can be simplified and yet maintain the level of competitiveness

against the SOTA.

• In Chapter 4, we improve on the design of our framework by proposing a more

straightforward design for the two models where the differences only lie in the

number of convolutional layers, pooling size, and temporal pooling method. Together

with our newly proposed ideas, such as the use of meta-ACON, SE module, an

improved Macaron Net encoding layer, triple instance-level pooling approach, and

improved cyclic learning scheme, we show that even with a straightforward design,

it can still be effective and competitive against the SOTA.

While the use of deep learning models can be considered a norm in the current research

landscape, it should be pointed out that deep learning models are highly parameterized.

A very deep model not only requires multiple dedicated hardware for training purposes

but can also face deployment issues in a resource-constrained environment. As mentioned

earlier, strongly labeled data may be required to maximize the potential of a SED system;

however, annotation of events’ timestamps is prone to error and prone to disagreement

due to the difference in perception of when the onset and offset should be. Thus, strongly

labeled data will inevitably contain a certain level of noise.

• Chapter 5 proposes a lightweight system for SED, which comprises an improved

depthwise separable convolution and an improved Conformer encoding layer. At the

same time, to combat label noise, we propose the extension of BCE with RBCE. Our

extensive experiments show that our lightweight system can outperform the SOTA

despite using a much lesser number of parameters.

174

Conclusion

6.2. Future Work

This thesis aims to address 1) the issue caused by the lack of strongly labeled data and 2)

the issues caused by the use of the Mean-Teacher approach (Tarvainen and Valpola, 2017).

Although we have proposed several proposals to address the issues mentioned above, there

are various research directions that can be extended from the work presented in this thesis.

These include:

1. Improved granularity of detection. In this thesis, we tested our proposed ideas on

the DESED dataset (Turpault et al., 2019) which comprises sound events commonly

heard in a domestic environment. Each event class has a general label that classifies

all sounds made by the subject or object in the same category (i.e., a dog barking

and a dog growling is grouped under the Dog category). Naturally, a SED system

trained based on the given labels can only predict the general label of the sound made.

However, a SED can be more useful if the detection granularity is improved. One

would know precisely the type of scenario that had happened and act accordingly.

For example, a SED system can trigger a distress call when it detected an old lady

who fell in the bathroom groaning in pain instead of classifying the sound made by

the old lady as Speech. This is an exciting direction to determine how a detected

event can be further segregated into a more precise event even if such labels are not

present in the training labels.

2. Deployment of the SED system into real-life application. In a real-life scenario,

a SED system is more likely to operate on sound segments that are longer than

10s, where the sound event density will be much lower than the sound density of

the validation clips. This would indicate that a considerable segment of a real-life

recording may not contain any events at all. In addition, an event recorded may

occur far away from the microphone deployed. It would be interesting to find out

the system’s robustness in low event density audio clips and how well the system

can perform on events with varying loudness.

3. The generation of synthetic audio samples using GAN (Goodfellow et al., 2014).

GAN (Goodfellow et al., 2014) is currently one of the dominant paradigms for

generating virtual images, which are almost indistinguishable from real images

(Binkowski et al., 2019). It may also be the next SOTA to produce synthetic audio

samples that are almost indistinguishable from real audio samples. This direction

175

Conclusion

can effectively alleviate the problem caused by a lack of strongly labeled data and

also be a valuable technique to rebalance an imbalanced dataset.

4. Further improvement to the SED system. Although the proposed system can

achieve the SOTA performance based on the event-based F1-score. It should be noted

that the SOTA event-based F1-score is still at the 40% to 50% range. Compared to

the audio tagging F1-score, which is generally in the 70% to 80% range, there is

still a large room for improvement for temporal localization. As a start, we could

further improve on the multi-branch feedforward module in the proposed iConformer.

The use of different activation functions in each branch can be attempted, which

promotes diversity and may allow different characteristics to be learned, increasing

accuracy.

Another interesting direction would be the incorporation of source separation, which

was demonstrated in (Heittola et al., 2013b; Turpault et al., 2020b). Heittola et al.

(2013b) proposed the use of NMF Lee and Seung (1999) for source separation,

which acts as a preprocessing step before feature extraction. In contrast, Turpault

et al. (2020b) proposed using a universal source separation algorithm (Kavalerov

et al., 2019; Tzinis et al., 2020) and integrated it into a SED system in three different

manners. Both studies (Heittola et al., 2013b; Turpault et al., 2020b) suggest that

source separation has the potential to improve the SED performance.

Finally, the exploration of CapsNet as the SED system. As mentioned earlier, inter-

capsules are connected through a process known as dynamic routing. This can be

viewed as a parallel attention mechanism that allows each capsule at one level to

attend to some active capsules at the level below and to ignore others (Sabour et al.,

2017). Such a process is hypothesized to allow the model to recognize multiple

objects in the image even if objects overlap. The issue of overlapping objects

in the image resembles the SED problem, where multiple events can coincide.

Therefore, the use of CapsNet may very well address the overlapping issues, and as

demonstrated in (Iqbal et al., 2018; Vesperini et al., 2019), the use of CapsNet can

be promising.

176

References

Adavanne, S., Parascandolo, G., Pertila, P., Heittola, T., and Virtanen, T. (2016). Sound
event detection in multichannel audio using spatial and harmonic features. In Proceed-
ings of the Workshop on Detection and Classification of Acoustic Scenes and Events,
pages 1–5, Budapest, Hungary.

Adavanne, S., Pertila, P., and Virtanen, T. (2017). Sound event detection using spatial
features and convolutional recurrent neural network. In Proceedings of the IEEE
International Conference on Acoustics, Speech and Signal Processing, pages 771–775,
New Orleans, LA, USA.

Adavanne, S., Politis, A., and Virtanen, T. (2018). Multichannel sound event detection using
3d convolutional neural networks for learning inter-channel features. In Proceedings
of the International Joint Conference on Neural Networks, pages 1–7, Rio de Janeiro,
Brazil.

Baker, J. M., Deng, L., Glass, J., Khudanpur, S., hui Lee, C., Morgan, N., and
O’Shaughnessy, D. (2009). Developments and directions in speech recognition and
understanding, part 1. IEEE Signal Processing Magazine, 26(3):75–80.

Bello, I., Zoph, B., Vaswani, A., Shlens, J., and Le, Q. V. (2019). Attention augmented
convolutional networks. In Proceedings of the IEEE International Conference on
Computer Vision, pages 3286–3295, Seoul, South Korea.

Binkowski, M., Donahue, J., Dieleman, S., Clark, A., Elsen, E., Casagrande, N., Cobo,
L. C., and Simonyan, K. (2019). High fidelity speech synthesis with adversarial networks.
arXiv preprint arXiv:1909.11646, pages 1–15.

Bisot, V., Essid, S., and Richard, G. (2017). Overlapping sound event detection with
supervised nonnegative matrix factorization. In Proceedings of the IEEE International
Conference on Acoustics, Speech and Signal Processing, pages 31–35, New Orleans,
LA, USA.

Bregman, A. (1990). Auditory Scene Analysis: The Perceptual Organization of Sound.
MIT Press, London.

Bui, M.-Q., Duong, V.-H., Mathulaprangsan, S., Pham, B.-T., Lee, W.-J., and Wang,
J.-C. (2016). A survey of polyphonic sound event detection based on nonnegative
matrix factorization. In Proceedings of the International Computer Symposium, pages
351––354, Chiayi, Taiwan.

Cai, M., Shi, Y., and Liu, J. (2014). Stochastic pooling maxout networks for low-resource
speech recognition. In Proceedings of the IEEE International Conference on Acoustics,
Speech and Signal Processing, pages 3266–3270, Florence, Italy.

Cakir, E., Heittola, T., Huttunen, H., and Virtanen, T. (2015a). Multi-label vs. combined
single-label sound event detection with deep neural networks. In Proceedings of the
23rd European Signal Processing Conference, pages 2551–2555, Nice, France.

177

References

Cakir, E., Heittola, T., Huttunen, H., and Virtanen, T. (2015b). Polyphonic sound event
detection using multi label deep neural networks. In Proceedings of the International
Joint Conference on Neural Networks, pages 1–7, Killarney, Ireland.

Cakir, E., Parascandolo, G., Heittola, T., Huttunen, H., and Virtanen, T. (2017). Convo-
lutional recurrent neural networks for polyphonic sound event detection. IEEE/ACM
Transactions on Audio, Speech, and Language Processing, 25(6):1291–1303.

Carreira-Perpinan, M. A. and Hinton, G. E. (2005). On contrastive divergence learning.
In Proceedings of the International Conference on Artificial Intelligence and Statistics,
pages 33–40, Bridgetown, Barbados.

Castaneda, G., Morris, P., and Khoshgoftaar, T. M. (2019). Evaluation of maxout activations
in deep learning across several big data domains. Journal of Big Data, 6(72):992–1006.

Chan, T. K. and Chin, C. S. (2019). Health stages diagnostics of underwater thruster
using sound features with imbalanced dataset. Neural Computing and Applications,
31:5767–5782.

Chan, T. K. and Chin, C. S. (2020). A comprehensive review of polyphonic sound event
detection. IEEE Access, 8:103339–103373.

Chan, T. K., Chin, C. S., and Li, Y. (2019). Non-negative matrix factorization-convolutional
neural network (nmf-cnn) for sound event detection. In Proceedings of the Detection
and Classification of Acoustic Scenes and Events 2019 Workshop, pages 40–44, New
York, NY, USA.

Chaudhary, M., Prakash, V., and Kumari, N. (2018). Identification vehicle movement
detection in forest area using mfcc and knn. In Proceedings of the International
Conference on System Modeling and Advancement in Research Trends, pages 158–164,
Moradabad, India.

Chen, P., Ye, J., Chen, G., Zhao, J., and Heng, P.-A. (2020). Robustness of accuracy metric
and its inspirations in learning with noisy labels. arXiv preprint arXiv:2012.04193,
pages 1–11.

Cho, K., van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H.,
and Bengio, Y. (2014). Learning phrase representations using rnn encoder–decoder for
statistical machine translation. In Proceedings of the Conference on Empirical Methods
in Natural Language Processing, pages 1724–1734, Doha, Qatar.

Chollet, F. (2017a). Deep Learning with Python. Manning Publications.

Chollet, F. (2017b). Xception: Deep learning with depthwise separable convolutions.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 1800–1807, Honolulu, HI, USA.

Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. (2014). Learning phrase representa-
tions using rnn encoder–decoder for statistical machine translation. arXiv preprint
arXiv:1412.3555, pages 1–9.

Clavel, C., Ehrette, T., and Richard, G. (2005). Events detection for an audio-based
surveillance system. In Proceedings of the IEEE International Conference Multimedia
and Expo, pages 1–4, Amsterdam, Netherlands.

Dauphin, Y. N., Fan, A., Auli, M., and Grangier, D. (2018). Language modeling with
gated convolutional networks. In Proceedings of the 34th International Conference on
Machine Learning, pages 933–941, Sydney, Australia.

178

References

Delphin-Poulat, L., Nicol, R., Plapous, C., and Peron, K. (2020). Comparative assessment
of data augmentation for semi-supervised polyphonic sound event detection. In Pro-
ceedings of the 27th Conference of Open Innovations Association, pages 46–53, Trento,
Italy.

Dettmers, T. (2020). Which gpu(s) to get for deep learning: My experience
and advice for using gpus in deep learning. https://timdettmers.com/2020/09/07/
which-gpu-for-deep-learning/.

Diment, A., Heittola, T., and Virtanen, T. (2013). Sound event detection for office live and
office synthetic aasp challenge. Technical report.

Ding, W. and He, L. (2020). Adaptive multi-scale detection of acoustic events. IEEE/ACM
Transactions on Audio, Speech and Language Processing, 28:294–306.

Du, J., Tu, Y., Xu, Y., Dai, L., and Lee, C.-H. (2014). Speech separation of a target speaker
based on deep neural networks. In Proceedings of the 12th International Conference on
Signal Processing, pages 473–477, Hangzhou, China.

Ebbers, J. and Haeb-Umbach, R. (2020). Forward-backward convolutional recurrent
neural networks and tag-conditioned convolutional neural networks for weakly labeled
semi-supervised sound event detection. In Proceedings of the Workshop on Detection
and Classification of Acoustic Scenes and Events, pages 41–45, Tokyo, Japan.

Ferroni, G., Bonfigli, R., Principi, E., Squartini, S., and Piazza, F. (2015). A deep neural
network approach for voice activity detection in multi-room domestic scenarios. In
Proceedings of the International Joint Conference on Neural Networks, pages 1–8,
Killarney, Ireland.

Florentin, J., Dutoit, T., and Verlinden, O. (2016). Identification of european woodpecker
species in audio recordings from their drumming rolls. Ecological Informatics, 35:61–
70.

Fonseca, E., Favory, X., Pons, J., Font, F., and Serra, X. (2020). Fsd50k: an open dataset
of human-labeled sound events. arXiv preprint arXiv:2010.00475, pages 1–24.

Fonseca, E., Plakal, M., Ellis, D. P. W., Font, F., Favory, X., and Serra, X. (2019). Learning
sound event classifiers from web audio with noisy labels. In Proceedings of the IEEE
International Conference on Acoustics, Speech and Signal Processing, pages 21–25,
Brighton, UK.

Forney, G. D. (1973). The viterbi algorithm. Proceedings of the IEEE, 61(3):268–278.

Gales, M. and Young, S. (2007). The application of hidden markov models in speech
recognition. Foundations and Trends in Signal Processing, 1(3):195–304.

Gemmeke, J. F., Ellis, D. P. W., Freedman, D., Jansen, A., Lawrence, W., Moore, R. C.,
Plakal, M., and Ritter, M. (2017). Audio set: An ontology and human-labeled dataset
for audio events. In Proceedings of the IEEE International Conference on Acoustics,
Speech and Signal Processing, pages 776–780, New Orleans, LA, USA.

Gencoglu, O., Virtanen, T., and Huttunen, H. (2014). Recognition of acoustic events
using deep neural networks. In Proceedings of the 22nd European Signal Processing
Conference, pages 506–510, Lisbon, Portugal.

Ghosh, A., Kumar, H., and Sastry, P. S. (2017). Robust loss functions under label noise
for deep neural networks. In Proceedings of the 31st AAAI Conference on Artificial
Intelligence, pages 1919–1925, San Francisco, California, USA.

179

https://timdettmers.com/2020/09/07/which-gpu-for-deep-learning/
https://timdettmers.com/2020/09/07/which-gpu-for-deep-learning/

References

Gong, M., Xu, Y., Li, C., Zhang, K., and Batmanghelich, K. (2019). Twin auxiliary
classifiers gan. In Proceedings of the 33rd Conference on Neural Information Processing
Systems, pages 1–10, Vancouver, Canada.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press.

Goodfellow, I., Warde-Farley, D., Mirza, M., Courville, A., and Bengio, Y. (2013). Maxout
networks. In Proceedings of the 30th International Conference on Machine Learning,
pages 1319–1327, Atlanta, GA, USA.

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., and Bengio, Y. (2014). Generative adversarial nets. In Proceedings
of the 27th Conference on Neural Information Processing Systems, pages 2672–2680,
Montreal, Canada.

Graves, A., Jaitly, N., and rahman Mohamed, A. (2013). Hybrid speech recognition with
deep bidirectional lstm. In Proceedings of the IEEE Workshop on Automatic Speech
Recognition and Understanding, pages 273–278, Olomouc, Czech Republic.

Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., and Schmidhuber, J. (2015).
Lstm: A search space odyssey. IEEE Transactions on Neural Networks and Learning
Systems, 28(10):2222–2232.

Grollmisch, S., Abeber, J., Liebetrau, J., and Lukashevich, H. (2019). Sounding industry:
Challenges and datasets for industrial sound analysis. In Proceedings of the 27th
European Signal Processing Conference, pages 1–5, A Coruna, Spain.

Gulati, A., Qin, J., Chiu, C.-C., Parmar, N., Zhang, Y., Yu, J., Han, W., Wang, S., Zhang,
Z., Wu, Y., and Pang, R. (2020). Conformer: Convolution-augmented transformer for
speech recognition. In Proceedings of the Interspeech, pages 5036–5040, Shanghai,
China.

Hayashi, T., Watanabe, S., Toda, T., Hori, T., Roux, J. L., and Takeda, K. (2016). Bidi-
rectional lstm-hmm hybrid system for polyphonic sound event detection. Technical
report.

Heck, M., Sakti, S., and Nakamura, S. (2016). Iterative training of a dpgmm-hmm acoustic
unit recognizer in a zero resource scenario. In Proceedings of the IEEE Spoken Language
Technology Workshop, pages 57–63, San Diego, CA, USA.

Heittola, T., Mesaros, A., Eronen, A., and Virtanen, T. (2013a). Context-dependent
sound event detection. EURASIP Journal on Audio, Speech, and Music Processing,
2013(1):1–13.

Heittola, T., Mesaros, A., Virtanen, T., and Gabbouj, M. (2013b). Supervised model
training for overlapping sound events based on unsupervised source separation. In
Proceedings of the IEEE International Conference on Acoustics, Speech and Signal
Processing, pages 8677–8681, Vancouver, BC, Canada.

Hershey, S., Ellis, D. P. W., Fonseca, E., Jansen, A., Liu, C., Moore, R. C., and Plakal,
M. (2021). The benefit of temporally-strong labels in audio event classification. In
Proceedings of the IEEE International Conference on Acoustics, Speech and Signal
Processing, pages 366–370, Toronto, ON, Canada.

Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-R., Jaitly, N., Senior, A.,
Vanhoucke, V., Nguyen, P., Sainath, T. N., and Kingsbury, B. (2012). Deep neural net-
works for acoustic modeling in speech recognition. IEEE Signal Processing Magazine,
29(6):82–97.

180

References

Hinton, G., Sabour, S., and Frosst, N. (2018). Matrix capsules with em routing. In
Proceedings of the 6th International Conference on Learning Representations, pages
1–15, Vancouver, BC, Canada.

Hinton, G., Vinyals, O., and Dean, J. (2015). Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, pages 1–9.

Hoffman, M. D. (2012). Poisson-uniform nonnegative matrix factorization. In Proceedings
of the IEEE International Conference on Acoustics, Speech and Signal Processing, pages
5361–5364, Kyoto, Japan.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto,
M., and Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, pages 1–9.

Hu, J., Shen, L., Albanie, S., Sun, G., and Wu, E. (2020). Squeeze-and-excitation networks.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(8):2011–2023.

Huang, Y., Lin, L., Ma, S., Wang, X., Liu, H., Qian, Y., Liu, M., and Ouchi, K. (2020a).
Guided multi-branch learning systems for sound event detection with sound separation.
In Proceedings of the Workshop on Detection and Classification of Acoustic Scenes and
Events, pages 61–65, Tokyo, Japan.

Huang, Y., Wang, X., Lin, L., Liu, H., and Qian, Y. (2020b). Multi-branch learning
for weakly-labeled sound event detection. In Proceedings of the IEEE International
Conference on Acoustics, Speech and Signal, pages 641–645, Barcelona, Spain.

Iqbal, T., Xu, Y., Kong, Q., and Wang, W. (2018). Capsule routing for sound event
detection. In Proceedings of the 26th European Signal Processing Conference, pages
2255–2259, Rome, Italy.

Jiang, X., Wang, Y., Liu, W., Li, S., and Liu, J. (2018). Capsnet, cnn, fcn: Comparative
performance evaluation for image classification. International Journal of Machine
Learning and Computing, 9(6):840–848.

Jung, S., Park, J., and Lee, S. (2019). Polyphonic sound event detection using convolutional
bidirectional lstm and synthetic data-based transfer learning. In Proceedings of the IEEE
International Conference on Acoustics, Speech and Signal Processing, pages 885–889,
Brighton, UK.

Kao, C.-C., Sun, M., Wang, W., and Wang, C. (2020). A comparison of pooling methods
on lstm models for rare acoustic event classification. In Proceedings of the IEEE
International Conference on Acoustics, Speech and Signal Processing, pages 316–320,
Barcelona, Spain.

Karita, S., Chen, N., Hayashi, T., Hori, T., Inaguma, H., Jiang, Z., Someki, M., Soplin, N.
E. Y., Yamamoto, R., Wang, X., Watanabe, S., Yoshimura, T., and Zhang, W. (2019).
A comparative study on transformer vs rnn in speech applications. In Proceedings of
the IEEE Automatic Speech Recognition and Understanding Workshop, pages 449–456,
Singapore.

Kavalerov, I., Wisdom, S., Erdogan, H., Patton, B., Wilson, K., Roux, J. L., and Hershey,
J. R. (2019). Universal source separation. In Proceedings of the IEEE Workshop on
Applications of Signal Processing to Audio and Acoustics, pages 175–179, New Paltz,
NY, USA.

Ke, G., He, D., and Liu, T.-Y. (2021). Rethinking positional encoding in language pre-
training. In Proceedings of the International Conference on Learning Representations,
pages 1–14, Vienna, Austria.

181

References

Kim, B. and Pardo, B. (2019). Sound event detection using point-labeled data. In
Proceedings of the IEEE Workshop on Applications Signal Processing to Audio and
Acoustics, pages 1–5, New Platz, NY, USA.

Kim, N. K. and Kim, H. K. (2021). Polyphonic sound event detection based on residual
convolutional recurrent neural network with semi-supervised loss function. IEEE Access,
9:7564–7575.

Kim, S., Park, S., Lim, S., and Kim, D. (2018). Classification performance analysis
of weight update method applied to various convnet models. In Proceedings of the
International Conference on Control and Robots, pages 78–83, Hong Kong.

Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic optimization. In
Proceedings of the 3rd International Conference on Learning Representations, pages
1–15, San Diego, USA.

Kong, Q., Cao, Y., Iqbal, T., Xu, Y., Wang, W., and Plumbley, M. D. (2019a). Cross-task
learning for audio tagging, sound event detection and spatial localization: Dcase 2019
baseline systems. arXiv preprint arXiv:1904.03476, pages 1–5.

Kong, Q., Xu, Y., Sobieraj, I., Wang, W., and Plumbley, M. D. (2019b). Sound event
detection and time–frequency segmentation from weakly labelled data. IEEE/ACM
Transactions on Audio, Speech, and Language Processing, 27(4):777–787.

Kong, Q., Xu, Y., Wang, W., and Plumbley, M. D. (2020). Sound event detection of weakly
labelled data with cnn-transformer and automatic threshold optimization. IEEE/ACM
Transactions on Audio, Speech and Language Processing, 28:2450–2460.

Kothinti, S., Imoto, K., Chakrabarty, D., Sell, G., Watanabe, S., and Elhilali, M. (2019).
Joint acoustic and class inference for weakly supervised sound event detection. In
Proceedings of the IEEE International Conference on Acoustics, Speech and Signal
Processing, pages 36–40, Brighton, UK.

Laine, S. and Aila, T. (2017). Temporal ensembling for semi-supervised learning. In
Proceedings of the 5th International Conference Learning Representations, pages 1–13,
Toulon, France.

Lee, D., Lee, S., Han, Y., and Lee, K. (2017). Ensemble of convolutional neural networks
for weakly-supervised sound event detection using multiple scale input. In Proceedings
of the Detection and Classification of Acoustic Scenes and Events 2017 Workshop, pages
1–6, Munich, Germany.

Lee, D. D. and Seung, H. S. (2000). Algorithms for non-negative matrix factorization. In
Proceedings of the 13th International Conference on Neural Information Processing
Systems, pages 535–541, Denver, CO, USA.

Lee, D. D. and Seung, S. (1999). Learning the parts of bbjects by non-negative matrix
factorization. Nature, 401:788–791.

Li, B., Gulati, A., Yu, J., Sainath, T. N., Chiu, C.-C., Narayanan, A., Chang, S.-Y., Pang, R.,
He, Y., Qin, J., Han, W., Liang, Q., Zhang, Y., Strohman, T., and Wu, Y. (2021). A better
and faster end to end model for streaming asr. In Proceedings of the IEEE International
Conference on Acoustics, Speech and Signal Processing, pages 5634–5638, Toronto,
Canada.

Li, J., Zhang, M., Xu, K., Dickerson, J. P., and Ba, J. (2020). Noisy labels can induce good
representations. arXiv preprint arXiv:2012.12896, pages 1–27.

182

References

Lin, L., Wang, X., Liu, H., and Qian, Y. (2019). Guided learning convolution system for
dcase 2019 task 4. In Proceedings of the Workshop on Detection and Classification of
Acoustic Scenes and Events, pages 134–138, New York, NY, USA.

Lin, L., Wang, X., Liu, H., and Qian, Y. (2020). Guided learning for weakly-labeled semi-
supervised sound event detection. In Proceedings of the IEEE International Conference
on Acoustics, Speech and Signal Processing, pages 641–645, Barcelona, Spain.

Liu, L., Liu, X., Gao, J., Chen, W., and Han, J. (2020a). Understanding the difficulty of
training transformers. arXiv preprint arXiv:2004.08249, pages 1–5.

Liu, Y., Chen, H., and Zhang, P. (2020b). Power pooling operators and confidence learning
for semi-supervised sound event detection. arXiv preprint arXiv:2005.11459, pages
1–5.

Loshchilov, I. and Hutter, F. (2017). Sgdr: Stochastic gradient descent with warm restarts.
In Proceedings of the 5th International Conference of Learning Representations, pages
1–16, Toulon, France.

Lu, J. (2018). Mean teacher convolution system for dcase 2018 task 4. Technical report.

Lu, Y., Li, Z., He, D., Sun, Z., Dong, B., Qin, T., Wang, L., and Liu, T. (2019). Under-
standing and improving transformer from a multi-particle dynamic system point of view.
arXiv preprint arXiv:1906.02762, pages 1–15.

Ma, N., Zhang, X., Liu, M., and Sun, J. (2021). Activate or not: Learning customized
activation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 8032–8042, Vancouver, Canada.

Mangalam, K. and Prabhu, V. (2019). Do deep neural networks learn shallow learnable
examples first? In Proceedings of the Workshop on Identifying and Understanding Deep
Learning Phenomena at 36th International Conference on Machine Learning, pages
1–6, Long Beach, California, USA.

Martin, E. and Cundy, C. (2018). Parallelizing linear recurrent neural nets over sequence
length. In Proceedings of the 6th International Conference on Learning Representations,
pages 1–9, Vancouver, BC, Canada.

Mayorga, P., Ibarra, D., Zeljkovic, V., and Druzgalski, C. (2015). Quartiles and mel
frequency cepstral coefficients vectors in hidden markov-gaussian mixture models
classification of merged heart sounds and lung sounds signals. In Proceedings of
the International Conference on High Performance Computing and Simulation, pages
298–304, Amsterdam, Netherlands.

McFee, B., Salamon, J., and Bello, J. P. (2018). Adaptive pooling operators for weakly
labeled sound event detection. IEEE/ACM Transactions on Audio, Speech, and Language
Processing, 26(11):2180–2193.

Mehta, S., Ghazvininejad, M., Iyer, S., Zettlemoyer, L., and Hajishirzi, H. (2021). Delight:
Deep and light-weight transformer. In Proceedings of the International Conference on
Learning Representations, pages 1–19, Vienna, Austria.

Mesaros, A., Diment, A., Elizalde, B., Heittola, T., Vincent, E., Raj, B., and Virtanen, T.
(2019). Sound event detection in the dcase 2017 challenge. IEEE/ACM Transactions on
Audio, Speech, and Language Processing, 27(6):992–1006.

Mesaros, A., Heittola, T., Dikmen, O., and Virtanen, T. (2015). Sound event detection
in real life recordings using coupled matrix factorization of spectral representations
and class activity annotations. In Proceedings of the IEEE International Conference
on Acoustics, Speech and Signal Processing, pages 151–155, South Brisbane, QLD,
Australia.

183

References

Mesaros, A., Heittola, T., Eronen, A., and Virtanen, T. (2010). Acoustic event detection in
real life recordings. In Proceedings of the 18th European Signal Processing Conference,
pages 1267–1271, Aalborg, Denmark.

Mesaros, A., Heittola, T., and Virtanen, T. (2016). Metric for polyphonic sound event
detection. Applied Sciences, 6(6):1–17.

Michel, P., Levy, O., and Neubig, G. (2019). Are sixteen heads really better than one. In
Proceedings of the 33rd Conference on Neural Information Processing Systems, pages
164–171, Vancouver, Canada.

Miech, A., Laptev, I., and Sivic, J. (2018). Learnable pooling with context gating for video
classification. arXiv preprint arXiv:1706.06905, pages 1–8.

Misra, D. (2019). Mish: A self regularized non-monotonic activation function. In
Proceedings of the 31st British Machine Vision Conference, pages 1–14, Shanghai,
China.

Miyazaki, K., Komatsu, T., Hayashi, T., Watanabe, S., Toda, T., and Takeda, K. (2020).
Conformer-based sound event detection with semi-supervised learning and data aug-
mentation. In Proceedings of the Workshop on Detection and Classification of Acoustic
Scenes and Events, pages 100–104, Tokyo, Japan.

Mnih, V., Larochelle, H., and Hinton, G. E. (2011). Conditional restricted boltzmann
machines for structured output prediction. In Proceedings of the 27th Conference on
Uncertainty in Artificial Intelligence, pages 514–522, Barcelona, Spain.

Mukhometzianov, R. and Carrillo, J. (2018). Capsnet comparative performance evaluation
for image classification. arXiv preprint arXiv:1805.11195, pages 1–14.

Naranjo-Alcazar, J., Perez-Castanos, S., Zuccarello, P., and Cobos, M. (2020). Acoustic
scene classification with squeeze-excitation residual networks. IEEE Access, 8:112287–
112296.

Newell, A., Yang, K., and Deng, J. (2016). Stacked hourglass networks for human pose
estimation. In Proceedings of the European Conference on Computer Vision, pages
483–499, Amsterdam, Netherlands.

Nguyen, C. and Tran, D. D. (2013). Sound classification for event detection: Applica-
tion into medical telemonitoring. In Proceedings of the International Conference on
Computing, Management and Telecommunications, pages 330–333, Ho Chi Minh City,
Vietnam.

Ohishi, Y., Mochihashi, D., Matsui, T., Nakano, M., Kameoka, H., Izumitani, T., and
Kashino, K. (2013). Bayesian semi-supervised audio event transcription based on
markov indian buffet process. In Proceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing, pages 3163–3167, Vancouver, BC, Canada.

Okewu, E., Adewole, P., and Sennaike, O. (2019). Experimental comparison of stochas-
tic optimizers in deep learning. In Proceedings of the International Conference on
Computational Science and Its Applications, pages 704–715, Saint Petersburg, Russia.

Pan, S. J. and Yang, Q. (2010). A survey on transfer learning. IEEE Transactions on
Knowledge and Data Engineering, 22(10):1345–1359.

Parascandolo, G., Huttunen, H., and Virtanen, T. (2016). Recurrent neural networks for
polyphonic sound event detection in real life recordings. In Proceedings of the IEEE
International Conference on Acoustics, Speech and Signal Processing, pages 6440–6444,
Shanghai, China.

184

References

Patrick, M. K., Adekoya, A. F., Mighty, A. A., and Edward, B. Y. (2019). Capsule networks
– a survey. Journal of King Saud University - Computer and Information Sciences, pages
1–16.

Pellegrini, T. and Cances, L. (2019). Cosine-similarity penalty to discriminate sound
classes in weakly-supervised sound event detection. In Proceedings of the International
Joint Conference on Neural Networks, pages 1–8, Budapest, Hungary.

Pellegrini, T. and Masquelier, T. (2021). Fast threshold optimization for multi-label audio
tagging using surrogate gradient learning. arXiv preprint arXiv:2103.00833, pages 1–5.

Piczak, K. J. (2015). Environmental sound classification with convolutional neural net-
works. In Proceedings of the IEEE 25th International Workshop on Machine Learning
for Signal Processing, pages 1–6, Boston, MA, USA.

Rabiner, L. R. (1989). A tutorial on hidden markov models and selected applications in
speech recognition. Proceedings of the IEEE, 77(2):257–286.

Rajapakse, M. and Wyse, L. (2005). Generic audio classification using a hybrid model
based on gmms and hmms. In Proceedings of the 11th International Multimedia
Modelling Conference, pages 1–6, Melbourne, VIC, Australia.

Ramachandran, P., Zoph, B., and Le, Q. V. (2017). Searching for activation functions.
arXiv preprint arXiv:1710.05941, pages 1–13.

Renals, S. and Swietojanski, P. (2014). Neural networks for distant speech recognition.
In Proceedings of the 4th Joint Workshop on Hands-free Speech Communication and
Microphone Arrays, pages 172–176, Villers-les-Nancy, France.

Sabour, S., Frosst, N., and Hinton, G. E. (2017). Dynamic routing between capsules. In
Proceedings of the 31st Conference on Neural Information Processing Systems, pages
1–11, Long Beach, CA, USA.

Salamon, J. and Bello, J. P. (2017). Deep convolutional neural networks and data aug-
mentation for environmental sound classification. IEEE Signal Processing Letters,
24(3):279–283.

Salamon, J., MacConnell, D., Cartwright, M., Li, P., and Bello, J. P. (2017). Scaper: A
library for soundscape synthesis and augmentation. In Proceedings of the Workshop on
Applications of Signal Processing to Audio and Acoustics, pages 344–348, New Paltz,
NY, USA.

Schroder, J., Moritz, N., Anemuller, J., Goetze, S., and Kollmeier, B. (2017). Classifier
architectures for acoustic scenes and events: Implications for dnns, tdnns, and perceptual
features from dcase 2016. IEEE/ACM Transactions on Audio, Speech, and Language
Processing, 25(6):1304–1314.

Serizel, R. and Turpault, N. (2019). Sound event detection from partially annotated data:
Trends and challenges. In Proceedings of the International Conference on Electrical,
Electronic, and Computing Engineering, pages 1–11, Srebrno Jezero, Serbia.

Shaw, P., Uszkoreit, J., and Vaswani, A. (2018). Self-attention with relative position
representations. arXiv preprint arXiv:1803.02155, pages 1–5.

Shi, L., Ahmad, I., He, Y., and Chang, K. (2018). Hidden markov model based drone
sound recognition using mfcc technique in practical noisy environments. Journal of
Communications and Networks, 20(5):509–518.

185

References

Shi, Z., Liu, L., Lin, H., Liu, R., and Shi, A. (2019). Hodgepodge: Sound event detection
based on ensemble of semi-supervised learning methods. In Proceedings of the Workshop
on Detection and Classification of Acoustic Scenes and Events, pages 224–228, New
York, NY, USA.

Smaragdis, P. (2004). Non-negative matrix factor deconvolution; extracation of multiple
sound sources from monophonic inputs. Technical report, Mitsubishi Electric Research
Laboratories.

Smaragdis, P. (2007). Convolutive speech bases and their application to supervised speech
separation. IEEE Transactions on Audio, Speech, and Language Processing, 15(1):1–12.

Smaragdis, P. and Brown, J. C. (2003). Non-negative matrix factorization for polyphonic
music transcription. In Proceedings of the IEEE Workshop on Applications of Signal
Processing to Audio and Acoustics, pages 177–180, New Pallz, NY, USA.

Smith, L. N. (2017). Cyclical learning rates for training neural networks. In Proceedings
of the IEEE Winter Conference on Applications of Computer Vision, pages 464–472,
Santa Rosa, CA, USA.

Snyder, D., Garcia-Romero, D., and Povey, D. (2015). Time delay deep neural network-
based universal background models for speaker recognition. In Proceedings of the
IEEE Workshop on Automatic Speech Recognition and Understanding, pages 92–97,
Scottsdale, AZ, USA.

Strubell, E., Ganesh, A., and McCallum, A. (2019). Energy and policy considerations for
deep learning in nlp. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 3645–3650, Florence, Italy.

Stuttle, M. N. (2003). A Gaussian Mixture Model Spectral Representation for Speech
Recognition. PhD thesis, Cambridge University, Cambridge, UK.

Swietojanski, P., Li, J., and Huang, J.-T. (2014). Investigation of maxout networks for
speech recognition. In Proceedings of the IEEE International Conference on Acoustics,
Speech and Signal Processing, pages 7649–7653, Florence, Italy.

Swietojanski, P. and Renals, S. (2014). Learning hidden unit contributions for unsupervised
speaker adaptation of neural network acoustic models. In Proceedings of the IEEE
Spoken Language Technology Workshop, pages 171–176, South Lake Tahoe, NV, USA.

Takahashi, N., Gygli, M., and Gool, L. V. (2018). Aenet: Learning deep audio features for
video analysis. IEEE Transactions on Multimedia, 20(3):513–524.

Tan, Z., Sun, M., and Liu, Y. (2021). Dynamic multi-branch layers for on-device neural
machine translation. arXiv preprint arXiv:2105.06679, pages 1–7.

Tarvainen, A. and Valpola, H. (2017). Mean teachers are better role models: Weight-
averaged consistency targets improve semi-supervised deep learning results. In Proceed-
ings of the 31st International Conference on Neural Information Processing Systems,
pages 1195–1204, Long Beach, California, USA.

Thewissen, J. G. M. H. and Nummela, S., editors (2008). Sensory Evolution on the
Threshold: Adaption in Secondarily Aquatic Vertebrates. University of California Press.

Toth, L. (2015). Phone recognition with hierarchical convolutional deep maxout networks.
EURASIP Journal on Audio, Speech, and Music Processing, 6(25):1–13.

Turpault, N. and Serizel, R. (2020). Training sound event detection on a heterogenous
dataset. In Proceedings of the Workshop on Detection and Classification of Acoustic
Scenes and Events, pages 200–204, Tokyo, Japan.

186

References

Turpault, N., Serizel, R., Shah, A., and Salamon, J. (2019). Sound event detection
in domestic environments with weakly labeled data and soundscape synthesis. In
Proceedings of the Workshop on Detection and Classification of Acoustic Scenes and
Events, pages 253–257, New York, NY, USA.

Turpault, N., Serizel, R., and Vincent, E. (2020a). Limitations of weak labels for embedding
and tagging. In Proceedings of the IEEE International Conference on Acoustics, Speech
and Signal Processing, pages 131–135, Barcelona, Spain.

Turpault, N., Serizel, R., Wisdom, S., Erdogan, H., Hershey, J., Fonseca, E., Seetharaman,
P., and Salamon, J. (2021). Sound event detection and separation: A benchmark on
desed synthetic soundscapes. In Proceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing, pages 840–844, Toronto, Canada.

Turpault, N., Wisdom, S., Erdogan, H., Hershey, J. R., Serizel, R., Fonseca, E., Seethara-
man, P., and Salamon, J. (2020b). Improving sound event detection in domestic envi-
ronments using sound separation. In Proceedings of the Workshop on Detection and
Classification of Acoustic Scenes and Events, pages 205–209, Tokyo, Japan.

Tzinis, E., Wisdom, S., Hershey, J. R., Jansen, A., and Ellis, D. P. W. (2020). Improving
universal sound separation using sound classification. In Proceedings of the IEEE
International Conference on Acoustics, Speech and Signal Processing, pages 96–100,
Barcelona, Spain.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,
L., and Polosukhin, I. (2017). Attention is all you need. In Proceedings of the 31st
Conference on Neural Information Processing Systems, pages 6000–6010, Long Beach,
CA, USA.

Verma, V., Lamb, A., Kannala, J., Bengio, Y., and Lopez-Paz, D. (2019). Interpolation con-
sistency training for semi-supervised learning. In Proceedings of the 28th International
Joint Conference on Artificial Intelligence, pages 3635–3641, Macao, China.

Vesperini, F., Gabrielli, L., Principi, E., and Squartini, S. (2019). Polyphonic sound event
detection by using capsule neural networks. IEEE Journal of Selected Topics in Signal
Processing, 13(2):310–322.

Virtanen, T., Plumbley, M. D., and Ellis, D., editors (2017). Computational Analysis of
Sound Scenes and Events. Springer.

Voita, E., Talbot, D., Moiseev, F., Sennrich, R., and Titov, I. (2019). Analyzing multi-head
self-attention: Specialized heads do the heavy lifting, the rest can be pruned. In Pro-
ceedings of the 57th Annual Meeting of the Association for Computational Linguistics,
pages 5797–5808, Florence, Italy.

Wang, Y., Li, J., and Metze, F. (2019a). A comparison of five multiple instance learning
pooling functions for sound event detection with weak labeling. In Proceedings of
the IEEE International Conference on Acoustics, Speech and Signal Processing, pages
31–35, Brighton, UK.

Wang, Y., Ma, X., Chen, Z., Luo, Y., Yi, J., and Bailey, J. (2019b). Symmetric cross entropy
for robust learning with noisy labels. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 322–330, Seoul, South Korea.

Xia, W. and Koishida, K. (2019). Sound event detection in multichannel audio using
convolutional time-frequency-channel squeeze and excitation. In Proceedings of the
Interspeech, pages 3629–3633, Graz, Austria.

187

References

Xia, X., Togneri, R., Sohel, F., and Huang, D. (2018). Confidence based acoustic event
detection. In Proceedings of the IEEE International Conference on Acoustics, Speech
and Signal Processing, pages 306–310, Calgary, AB, Canada.

Xia, X., Togneri, R., Sohel, F., and Huang, D. (2019). Auxiliary classifier generative
adversarial network with soft labels in imbalanced acoustic event detection. IEEE
Transactions on Multimedia, 21(6):1359–1371.

Xia, X., Togneri, R., Sohel, F., Zhao, Y., and Huang, D. D. (2020). Sound event detection
using multiple optimized kernels. IEEE/ACM Transactions on Audio, Speech, and
Language Processing, 28:1745–1754.

Xu, T. B. and Liu, C. L. (2020). Deep neural network self-distillation exploiting data
representation invariance. IEEE Transactions on Neural Networks and Learning Systems,
Early Access:1–13.

Xu, Y., Kong, Q., Wang, W., and Plumbley, M. D. (2018). Large-scale weakly supervised
audio classification using gated convolutional neural network. In Proceedings of the
IEEE International Conference on Acoustics, Speech and Signal Processing, pages
121–125, Calgary, AB, Canada.

Yang, L., Hao, J., Hou, Z., and Peng, W. (2020). Two-stage domain adaptation for sound
event detection. In Proceedings of the Workshop on Detection and Classification of
Acoustic Scenes and Events, pages 41–45, Tokyo, Japan.

Zeiler, M. D. (2012). Adadelta: An adaptive learning rate method. arXiv preprint
arXiv:1212.5701, pages 1–6.

Zeyer, A., Doetsch, P., Voigtlaender, P., Schlüter, R., and Ney, H. (2017). A comprehensive
study of deep bidirectional lstm rnns for acoustic modeling in speech recognition. In
Proceedings of the IEEE International Conference on Acoustics, Speech and Signal
Processing, pages 2462–2466, New Orleans, LA, USA.

Zhang, B., Xiong, D., and Su, J. (2018a). Accelerating neural transformer via an average
attention network. In Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 1789–1798, Melbourne,
VIC, Australia.

Zhang, H., Cisse, M., Dauphin, Y. N., and Lopez-Paz, D. (2017). mixup: Beyond empirical
risk minimization. arXiv preprint arXiv:1710.09412, pages 1–13.

Zhang, M. R., Lucas, J., Hinton, G., and Ba, J. (2019). Lookahead optimizer:k steps
forward, 1 step back. In Proceedings of the 33rd Conference on Neural Information
Processing Systems, pages 1–19, Vancouver, Canada.

Zhang, X.-L. and Wang, D. (2016). A deep ensemble learning method for monaural speech
separation. IEEE/ACM Transactions on Audio, Speech, and Language Processing,
24(5):967–977.

Zhang, Y., Xiang, T., Hospedales, T. M., and Lu, H. (2018b). Deep mutual learning. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 4320–4328, Salt Lake City, Utah, United States.

Zhao, Z., Zhang, S. H., Xu, Z. Y., Bellisario, K., Dai, N. H., Omrani, H., and Pijanowski,
B. C. (2017). Automated bird acoustic event detection and robust species classification.
Ecological Informatics, 39:99–108.

188

References

Zhuang, J., Tang, T., Ding, Y., Tatikonda, S., Dvornek, N., Papademetris, X., and Duncan,
J. S. (2020). Adabelief optimizer: Adapting stepsizes by the belief in observed gradients.
In Proceedings of the 34th Conference on Neural Information Processing Systems, pages
1–30.

Zohrer, M. and Pernkopf, F. (2017). Virtual adversarial training and data augmentation for
acoustic event detection with gated recurrent neural networks. In Proceedings of the
Interspeech, pages 493–497, Stockholm, Sweden.

189

	Table of Contents
	List of Figures
	List of Tables
	Nomenclature
	1 Introduction
	1.1 Background
	1.2 Challenges for SED
	1.3 Contributions of This Thesis
	1.4 Thesis Outline

	2 Literature Review
	2.1 Non Neural Network Based Methodology
	2.1.1 Gaussian Mixture Model-Hidden Markov Model
	2.1.2 Nonnegative Matrix Factorization
	2.1.3 Summary of Non-Neural Network Based Methodologies

	2.2 Neural Network Based Methodology
	2.2.1 Non Hybrid Models
	2.2.2 Summary of Non Hybrid Models
	2.2.3 Hybrid Models
	2.2.4 Summary of Hybrid Models
	2.2.5 Models Utilizing Weakly Labeled Data
	2.2.6 Summary of Models Utilizing Weakly Labeled Data

	3 Training a SED System Using Pseudo Strongly Labeled Data
	3.1 Motivation
	3.2 Proof of Concept
	3.2.1 Dataset Used
	3.2.2 Unsupervised NMF for Pseudo Labeling
	3.2.3 Proposed SED Model
	3.2.4 Experiment Setup
	3.2.5 Evaluation Metric
	3.2.6 Results and Discussion

	3.3 Semi-supervised NMF-CNN For SED
	3.3.1 Dataset Used
	3.3.2 Supervised NMF for Pseudo Labeling
	3.3.3 Proposed Semi-supervised Learning Framework
	3.3.4 Experiment Setup
	3.3.5 Results and Discussion
	3.3.6 Comparison against SOTA
	3.3.7 Summary

	4 Improved Pseudo Labeling Approach and Integration of Macaron Net
	4.1 Supervised CNMF for Pseudo Labeling
	4.2 Macaron Net
	4.2.1 Motivation
	4.2.2 Preliminaries of Transformer and Macaron Net

	4.3 Experimentation using CNMF and Macaron Net
	4.3.1 Proposed Semi-Supervised Learning Framework
	4.3.2 Experiment Setup
	4.3.3 Results and Discussion
	4.3.4 Comparison against SOTA

	4.4 Multi-branch Convolutional Macaron Net for SED
	4.4.1 Improved Models Architecture
	4.4.2 Meta-ACON and SE Module
	4.4.3 Improved Macaron Net Encoding Layer
	4.4.4 Multi-Branch Pooling
	4.4.5 Proposed Semi-Supervised Learning Framework
	4.4.6 Experiment Setup
	4.4.7 Results and Discussion
	4.4.8 Comparison against SOTA

	4.5 Summary

	5 Lightweight Convolutional-iConformer For SED
	5.1 Motivation
	5.2 Preliminaries of Conformer and Symmetrical Cross Entropy
	5.2.1 Conformer
	5.2.2 Symmetrical Cross Entropy

	5.3 Model Layout
	5.4 Proposed Semi-Supervised Learning Framework
	5.5 Experiment Setup
	5.6 Results and Discussion
	5.7 Comparison against SOTA
	5.8 Summary

	6 Conclusion
	6.1 Summary and Contributions
	6.2 Future Work

	References

