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Abstract

Expressing and extracting regularities in multi-relational data, where data points are interrelated
and heterogeneous, requires well-designed knowledge representation. Knowledge Graphs (KGs),
as a graph-based representation of multi-relational data, have seen a rapidly growing presence in
industry and academia, where many real-world applications and academic research are either
enabled or augmented through the incorporation of KGs. However, due to the way KGs are
constructed, they are inherently noisy and incomplete. In this thesis, we focus on developing
logic-based graph reasoning systems that utilize logical rules to infer missing facts for the
completion of KGs. Unlike most rule learners that primarily mine abstract rules that contain
no constants, we are particularly interested in learning instantiated rules that contain constants
due to their ability to represent meaningful patterns and correlations that can not be expressed
by abstract rules. The inclusion of instantiated rules often leads to exponential growth in the
search space. Therefore, it is necessary to develop optimization strategies to balance between
scalability and expressivity. To such an end, we propose GPFL, a probabilistic rule learning
system optimized to mine instantiated rules through the implementation of a novel two-stage
rule generation mechanism. Through experiments, we demonstrate that GPFL not only performs
competitively on knowledge graph completion but is also much more efficient then existing
methods at mining instantiated rules. With GPFL, we also reveal overfitting instantiated rules
and provide detailed analyses about their impact on system performance. Then, we propose RHF,
a generic framework for constructing rule hierarchies from a given set of rules. We demonstrate
through experiments that with RHF and the hierarchical pruning techniques enabled by it,
significant reductions in runtime and rule size are observed due to the pruning of unpromising
rules. Eventually, to test the practicability of rule learning systems, we develop Ranta, a novel
drug repurposing system that relies on logical rules as features to make interpretable inferences.
Ranta outperforms existing methods by a large margin in predictive performance and can make
reasonable repurposing suggestions with interpretable evidence.





Table of contents

List of figures ix

List of tables xi

1 Introduction 1
1.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 5
2.1 Knowledge Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Knowledge Graph Construction . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Knowledge Graph Reasoning . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Logical Rule Learning Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 Language Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3 Learning Paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Graph Path Feature Learning 17
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1 Rule Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.2 Rule Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.2 Language Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.3 Algorithm Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.4 Rule Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.5 Collective Rule Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.3 Rule Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.4 Rule Evaluation Efficiency . . . . . . . . . . . . . . . . . . . . . . . . 32



Table of contents

3.3.5 Overfitting Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.6 Knowledge Graph Completion . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Rule Hierarchy Framework 41
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3 Rule Hierarchy Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3.2 Properties of Logical Rules . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3.3 Efficient Subsumption Framework . . . . . . . . . . . . . . . . . . . . 45
4.3.4 Proper Rule Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4 Framework Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.5.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.5.2 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.5.3 Evaluation Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.5.4 Prior Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.5.5 Post Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 Learning Logical Rules for Drug Repurposing 57
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1.1 Data-driven Approaches . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.1.2 Reasoning on Biomedical Knowledge Graphs . . . . . . . . . . . . . . 59
5.1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2.2 Ranta System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.3.2 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3.3 Evaluation Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.3.4 Predictive Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.3.5 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3.6 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6 Conclusion 77

References 81

viii



List of figures

2.1 A running example knowledge graph. . . . . . . . . . . . . . . . . . . . . . . 6

3.1 A small knowledge graph for GPFL. . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Rule mining efficiency of AnyBURL on WN18RR. . . . . . . . . . . . . . . . 19
3.3 Global average precision of top-50 rules over overfitting factors . . . . . . . . . 29
3.4 Overfitting proportions over overfitting factors. . . . . . . . . . . . . . . . . . 30

4.1 A small knowledge graph and its abstraction for RHF. . . . . . . . . . . . . . . 43
4.2 An incomplete proper rule hierarchy. . . . . . . . . . . . . . . . . . . . . . . . 48
4.3 Diagrams that show the numbers of different types of OARs for prior pruning. . 52
4.4 Experiment results over different prior thresholds on the augmented GPFL. . . 53

5.1 The metagraph of the heterogeneous biomedical network Hetionet. . . . . . . . 58
5.2 Overview of Ranta system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3 Number of rules visited before reaching convergence in different settings on

Repotrial with Ranta. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

ix





List of tables

3.1 Statistics of the benchmark datasets for GPFL. . . . . . . . . . . . . . . . . . . 31
3.2 Sizes of learned rules grouped by length (len) and quality level. . . . . . . . . . 32
3.3 Runtime with different rule evaluation strategies. . . . . . . . . . . . . . . . . 33
3.4 Global average precision and quality on DBpedia3.8 and Wikidata with GPFL. 35
3.5 Experiment results for overfitting analysis with GPFL. . . . . . . . . . . . . . 36
3.6 Knowledge graph completion experiment results for GPFL in default setting. . 37
3.7 Knowledge graph completion experiment results with GPFL in random setting. 38
3.8 Knowledge graph completion experiment results in different rule composition

settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1 Statistics of benchmark datasets for RHF experiments. . . . . . . . . . . . . . 51
4.2 Post pruning experiment results. . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.1 Statistics of Hetionet and Repotrial. . . . . . . . . . . . . . . . . . . . . . . . 68
5.2 Predictive performance of various systems on Hetionet and Repotrial. . . . . . 69
5.3 Experiment results of Ranta with different number of random walkers on Het-

ionet and Repotrial. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.4 Experiment results of Ranta in different settings on Repotrial. . . . . . . . . . . 72
5.5 Top-ranked rule features in the best performing Ranta model on Repotrial. . . . 73
5.6 Top-ranked repurposed drugs for PAH. . . . . . . . . . . . . . . . . . . . . . . 74
5.7 Evidence of repurposing vardenafil for PAH. . . . . . . . . . . . . . . . . . . . 74

xi





Chapter 1

Introduction

With the recent explosion of data and the availability of more powerful ubiquitous computing
hardware, intelligent systems that aid humans’ daily lives from many perspectives are enabled
by Machine Learning approaches that make accurate predictions through the learning of the
data prepared in various forms. To address the pressing problem of information fusion [86]
which is to integrate data of different types from multiple sources for intelligent applications,
Knowledge Graphs (KGs) [33], as a graph-structured representation of knowledge, have gained
massive attention in that interrelated heterogeneous data points can be intuitively represented
and efficiently queried. In recent years, many public and private KGs have been created to
support downstream tasks, including information retrieval [112], question answering [28, 12]
and recommender systems [143, 131]. Open-source KG curation projects, such as YAGO [56],
DBpedia [4] and Wikidata [126], that aim to create collections of universal knowledge to enable
a wide range of applications, are welcomed by both industry and academia.

However, since the construction of large-scale KGs often involves some degree of automation,
the resulting KGs are inherently incomplete and noisy. Besides, the intentional definitions
of components in KGs that represent general knowledge about the domain of discourse are
often not provided. To address both of these issues, knowledge graph reasoning systems,
that formulate the identification of errors and inference of new facts as the link prediction
problem where plausibility scores are estimated for the links in KGs, have seen rapid growth
in recent years [129]. There are three classes of knowledge graph reasoning system from the
perspective of knowledge representation and learning mechanism. Distributed Representation
(DR) methods utilize geometric constraints to project the components of KGs onto a low-
dimensional embedding space. The generated embeddings can then be used for graph analytics,
clustering and classification. Graph Neural Networks (GNNs) [146] are designed to provide
end-to-end solutions to specific tasks. The specialized architectures of GNN variants usually
utilize message passing and neighbor aggregation to handle the irregularity and the lack of
topology issues appearing in graph-structured data models. Though both DR and GNN models
demonstrate competitive predictive power on link prediction tasks, their inability to provide
interpretable insights about prediction results prevents their application to many risk-sensitive
real-world scenarios, such as healthcare insurance and biomedical research. The logic-based
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Introduction

methods [39, 91, 75] that induce high-level regularities in the form of first-order logic rules from
KGs are considered one of the most promising solutions to the lack of interpretability issue.
Logical rule learning systems produce the high-quality rules that can be used to make inductive
inference for filling in missing links or provide interpretable insights about the underlying
patterns in KGs.

In addition to the choice of implementation strategies, rule learning systems require three
mechanically critical components to function. First, language bias dictates what types of rules to
learn. In particular, given a language bias, a well-formed rule must conform to the syntactic and
semantic constraints specified to balance between scalability and expressivity because complex
rules, e.g., rules containing constants, are more expressive and the allowance of their creation
often exponentially enlarges the search space, thus the system becomes less scalable. Second,
problem definition decides the success conditions required to find a solution rule set. For instance,
classic Inductive Logic Programming (ILP) works [82] employ a strict rule discovery problem
definition where the rules in the solution set must cover all of the positive and none of the negative
examples. In contrast, most recent works take an approximate strategy that allows the coverage
of negative examples in response to the inevitable noises in KGs. Third, the learning paradigm
details the specific procedure with which the rules are generated. For a rule learning system, both
the problem definition and learning paradigm must be designed to efficiently fulfil the language
bias to make the system practical in real-world applications. As demonstrated in recent works
[76, 75], utilizing a language bias that allows instantiated logical rules containing constants is
significantly beneficial to systems’ predictive performance and interpretability. However, the
development of systems optimizing the mining of instantiated rules and the studies of such
systems’ characteristics and applications are not well-researched in the community. This is
because the benefit of instantiated rules has only been discovered recently, and the rule learning
community is relatively small.

This thesis aims to develop efficient strategies to enable the optimized learning of instantiated
logical rules and explore the learned rules’ characteristics and possible applications. To such an
end, we first propose a novel rule learning system that utilizes a two-stage learning paradigm
to mine instantiated rules efficiently. Through experiments, we observed that instantiated rules
are more prone to overfitting due to being more specific than the abstract rules that contain
no constants. Therefore, we conducted a detailed analysis of the overfitting issue with the
proposed rule learning system. Then, we develop a generic optimization strategy that uses the
inherent subsumption relationships between rules to identify and prune irrelevant and redundant
rules in order to achieve better performance. Eventually, we explore the application of rule
learning systems to a crucial real-world problem, the drug repurposing problem, to test the
systems’ practicability. We design a feature engineering based system that selects a minimal set
of instantiated rules and treats the learned rules as features to generate a feature matrix for the
training of a drug-efficacy model.

2



1.1 Contribution

1.1 Contribution

This thesis is composed of the following three original works:

Graph Path Feature Learning In this work, we present GPFL, a probabilistic rule learning
system optimized to mine instantiated first-order logic rules from KGs. Instantiated rules
contain constants extracted from KGs. Compared to abstract rules that contain no constants,
instantiated rules are capable of explaining and expressing concepts in more detail. GPFL
utilizes a novel two-stage rule generation mechanism that first generalizes extracted paths
into templates that are acyclic abstract rules until a certain degree of template saturation is
achieved, then specializes the generated templates into instantiated rules. Unlike existing
works that ground every mined instantiated rule for evaluation, GPFL shares groundings
between structurally similar rules for collective evaluation. Moreover, we reveal the
presence of overfitting rules, their impact on predictive performance, and the effectiveness
of a simple validation method filtering out overfitting rules. Through extensive experiments
on public benchmark datasets, we show that GPFL 1.) significantly reduces the runtime
on evaluating instantiated rules; 2.) discovers many more quality instantiated rules than
existing works; 3.) improves the predictive performance of learned rules by removing
overfitting rules via validation; 4.) is competitive on the knowledge graph completion task
compared to state-of-the-art baselines.

Rule Hierarchy Framework In this work, we aim to address the scalability issue introduced by
the generation and evaluation of unpromising rules with bottom-up rule learning systems.
Most of the existing bottom-up systems use Flat Pruning Methods (FPMs) that filter
out low-quality rules by checking against pre-defined quality thresholds. Since the rule
hierarchies that contain subsumption relationships between rules are often not readily
available in bottom-up systems, the more effective Hierarchical Pruning Methods (HPMs)
employed by top-down systems can not be applied directly to benefit bottom-up systems.
We introduce a generic Rule Hierarchy Framework (RHF) that leverages a collection of
novel subsumption frameworks to build proper rule hierarchies from the rules produced
by bottom-up learners. Then, the rule hierarchies can enable the application of HPMs to
bottom-up systems for the better pruning of unpromising rules. As a case study, we adapt
RHF and two HPMs to GPFL and conduct extensive experiments on four public benchmark
datasets. We show that the application of HPMs effectively removes unpromising rules,
leading to significant reductions in the runtime and the number of learned rules, without
compromising predictive performance.

Learning Logical Rules for Drug Repurposing In this work, we aim to explore the applica-
bility of rule learning systems on the drug repurposing task. We propose Ranta, a novel
drug repurposing system that takes a logic-based feature engineering strategy. The drug
repurposing task is formulated as a probabilistic binary classification problem where a
conventional machine learning model learns to predict with confidence whether a drug
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has indication for a disease. We take four steps to achieve this: 1.) a base rule learner is
employed to extract both abstract and instantiated logical rules from biomedical KGs; 2.)
as the volume of instantiated rules is too large, we utilize a rule model tuner to select a
minimal subset of instantiated rules as a rule model that best represents the learning target;
3.) a feature matrix is constructed where the columns are rules, rows are examples and cell
values are relevance scores, and 4.) the feature matrix is passed to train a logistic regression
model for making drug repurposing inferences. Through extensive experiments on two
large-scale biomedical KGs, we show that Ranta significantly outperforms existing works
in predictive performance. Due to the approximation strategies employed to compute cell
values, Ranta also runs at most 10 times faster than a state-of-the-art drug repurposing
system. With a case study where we repurpose drugs for Pulmonary Arterial Hypertension,
we show that Ranta can make reasonable suggestions and provide interpretable evidence
in the form of logical rules.

The following publications and manuscripts have resulted from doing the research introduced
in this thesis:

• Gu, Y., and Missier, P. (2017). Adaptive incremental learning for statistical relational
models using gradient-based boosting. In 27th International Conference on Inductive
Logic Programming.

• Gu, Y., Guan, Y., and Missier, P. (2020). Building Rule Hierarchies for Efficient Logical
Rule Learning from Knowledge Graphs. arXiv preprint arXiv:2006.16171.

• Gu, Y., Guan, Y., and Missier, P. (2020). Towards Learning Instantiated Logical Rules
from Knowledge Graphs. arXiv preprint arXiv:2003.06071.

• Gu, Y., Skelton, J., Missier, P., & Wipat, A. (2021). Mining Logical Rules for Computa-
tional Drug Repurposing. (to be submitted)

1.2 Thesis Structure

This thesis is organized as follows: in Chapter 2, we introduce the fundamentals about KGs
where we provide background information on why KGs are inherently incomplete and noisy and
how to mitigate these issues. Then, by breaking up rule learning systems into three components,
we provide an analysis on the characteristics of various existing rule learning systems; in Chapter
3, we introduce the design idea about the GPFL system and provide a study on the effects of
overfitting rules on system performance; in Chapter 4, we introduce RHF in detail; in Chapter 5,
we first provide an introduction about the drug repurposing problem and then focus on detailing
the Ranta system and its experiments; in Chapter 6, we provide a conclusion about the work in
this thesis and a discussion about future works.
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Chapter 2

Background

This chapter provides the background information necessary to understand the methodologies
proposed in the rest of this thesis. We start by giving a review on the fundamentals about
Knowledge Graphs (KGs), where we discuss why KGs are inherently incomplete and noisy
through the lens of KG construction and how these issues can be addressed by the graph
reasoning algorithms that fill in missing links and discard contradictory facts. Then, by breaking
up rule learning systems into three mechanically important parts, namely language bias, problem
definition and learning paradigm, we provide an analysis of the characteristics of various existing
systems.

2.1 Knowledge Graphs

In 2012, Google launched the Google Knowledge Graph, an intelligent data model that under-
stands real-world entities and their relationships to one another [112]. In comparison to last
generation search engines where search operations are mainly about matching users’ queries to
keywords, Google proposed to model the keywords that appeared in users’ queries as entities
and return not only the properties of the entities as search results but also information about
other relevant entities. Along with Natural Language Processing (NLP) engines, this enrichment
in information allows Google’s augmented search engine to answer complex questions with
much higher accuracy than before [94]. Since then, the idea of exploiting the structure of
graphs to intuitively represent the domains involving interactions between entities has been
attracting increasing attention from both industry and academia [33, 97, 93]. A Knowledge
Graph (KG) is defined as a graph-based abstraction of knowledge where nodes represent entities
and edges represent relations between these entities. For instance in Figure 2.1, the fact "Bill
Gates speaks English" is represented by a triple Speak(Bill Gates,English) where Speak is the
predicate, Bill Gates the subject and English the object. Over the last decade, many large-scale
open-source KGs that contain common knowledge and real-world entities have been created,
including NELL [78], Freebase [10], DBpedia [3], Wikidata [126] and YAGO [56], to support
intelligent applications.
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Fig. 2.1 A small knowledge graph where an example social network of the entity "Bill Gates" is
presented.

A substantial number of works have been focusing on applying KGs to practical systems and
specific domains in recent years [154]. For question answering [28], Bordes et al. [12] propose
to learn low-dimensional embeddings for questions and Freebase’s entities and predicates, and
then compute a similarity score between the question and potential answers using the learned
embeddings to suggest top answers. For recommender systems [143], Wang et al. [131] use a
recurrent neural network leveraging sequential dependencies between entities and predicates
within paths in a KG to model the underlying rationale of user-item interactions. In domain-
specific applications, Qi et al. [98] built a cybersecurity KG which contains relationships between
attacks, events and alarms and is used to predict cyberattacks through an association analysis
algorithm. Liu et al. [70] constructed an enterprise KG by extracting company entities and their
business relationships from news, where the items in the KG are later translated into embeddings
and passed to a neural network for the prediction of the stock price. In particular, KGs have
been applied extensively in biomedical fields. Ernst et al. [32] automatically integrate data
from different public sources into a large-scale biomedical KG using advanced information
extraction techniques to support various downstream tasks. Himmelstein et al. [52] employ
similar method to build a KG that contains over 2 million drug and disease related facts, and
use a feature engineering strategy to extract path features from the KG to repurpose drugs for
diseases. Treating KGs as external knowledge to improve system performance is also a popular
line of research. Zhang et al. [141] noticed that the semantic associations between scenes help
humans to categorize images. Therefore, they build an image KG that encodes both real-world
semantic and scene associations to aid convolutional neural networks for image classification.
Ma et al. [71] propose to augment the LSTM network with a hierarchical attention mechanism
that incorporates the commonsense knowledge represented in a KG to improve the system’s
performance on sentiment analysis tasks.
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2.1 Knowledge Graphs

Among many aspects considered while evaluating the quality of KGs [33], completeness and
accuracy determine the usefulness of a KG [23]. Completeness refers to the degree to which
all the information of the target domain is encoded in the KG. To measure the completeness
of a specific KG, an ideal KG is required encompassing all the elements that should appear in
the KG in question. An ideal KG is often impossible to acquire due to the scale and evolution
of the target domain. In practice, by comparing with gold standard samples and measuring the
recall based on the facts inferred via meta-knowledge, a completeness score can be estimated.
Accuracy measures the extent to which the information represented in the KG correctly reflects
the corresponding concepts and facts in reality. Similar to the measurement of completeness,
accuracy can be estimated through the comparison with labelled facts or the evaluation of
extracted models. To further improve the performance of systems operating with KGs, it is
important to understand why most large-scale KGs are inherently incomplete and noisy and how
to mitigate the issues using reasoning techniques to complete and correct KGs.

2.1.1 Knowledge Graph Construction

Depending on the degree of human intervention and the types of source data, KG construction
strategies can be categorized into four groups [87]. First, the KGs built with a manual curation
strategy, such as Cyc [67], WordNet [77] and UMLS [9], contain triples that are produced by a
closed group of experts. Second, the collaboratively curated KGs, such as Wikidata [126] and
Freebase [11], are populated with triples contributed by volunteers through open knowledge
curation projects. For instance, to allow contributors to edit facts in the Freebase KG in a
collaborative manner, its developer Metaweb implemented a suite of tools, including a large
data object store, a query language, a Web user interface and a lightweight typing system [33].
Besides the workloads required to build a collaborative platform, the dependence on human
involvement makes the construction of KGs hard to scale. Studies [119] also suggest that
the collaborative strategy is not sustainable due to increasing coordination and overhead costs.
Though the accuracy of the hand-crafted triples is often very high, their inability to provide better
coverage drives the community to develop automated strategies. The third group of methods
automatically extract entities and relationships from semi-structured data sources. In particular,
YAGO [56] and DBpedia [4] extract graph-structured data from Wikipedia where the formatted
pages are processed into properties and entities. Finally, to incorporate the unstructured data on
the Web, KGs, such as NELL [78], PROSPERA [83] and PATTY [84], are constructed using
NLP methods to mine Web texts. Regardless of the choice of construction strategies, building a
KG from scratch is non-trivial. It is hard to balance accuracy and completeness at the moment of
construction in that the large-scale information extraction powered by advanced NLP algorithms
is prone to generate erroneous facts given the dynamics of Web data and the process of fact
validation often requires expensive, laborious work. Therefore, it is common to refine a KG after
its construction by training a predictive model that encodes the underlying patterns of the KG
[93].
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2.1.2 Knowledge Graph Reasoning

Knowledge graph reasoning aims to identify errors and infer new conclusions from existing data
[20]. Specifically, the task of identifying and removing existing false facts is known as Knowledge
Graph Correction and the task to infer facts that are considered correct but not given by the KG is
referred to as Knowledge Graph Completion. Algorithms for correction [108, 110, 114] normally
assign plausibility scores to existing facts and filter out the facts with unsatisfactory score values.
Similarly, given a set of potentially correct facts, completion algorithms [69, 109, 122] predict
the probability of correctness for every candidate fact and only keep top-ranked ones. The shared
problem formulation pattern between correction and completion systems, that is to estimate a
plausibility score to support the removal or addition decision, coincides with the link prediction
problem originally proposed in the area of Statistical Relational Learning [60]. Link prediction
aims to predict whether an entity shares a specific relationship with another given entity. For
instance in Figure 2.1, given a link prediction query Speak(?,English) which is to predict
who speaks English, a correction system will score the known facts Speak(Bill Gates,English)

for fact validation, whereas a completion system may try to predict the existence of a new
fact Speak(Melinda Gates,English) given that Nationality(Melinda Gates,US). Therefore,
knowledge graph reasoning can be reduced to the link prediction problem.

Link prediction systems based on Distributed Representation (DR), Graph Neural Networks
(GNNs) and logical rules are among the most popular in the community. DR approaches [129]
project the components in KGs into low-dimensional continuous space to preserve the structural
information while simplifying the manipulation. The typical steps of DR approaches include
1.) representing entities and predicates with initial embedding values; 2.) defining a scoring
function that measures the plausibility scores for given facts, and 3.) learning the embeddings
by maximizing the total plausibility score of observed facts. DR models can be divided into
translational distance models and semantic matching ones depending on the scoring functions.
Translational distance models use distance-based scoring functions, whereas the scoring functions
of semantic matching models are based on similarities between entities. One of the most
representative translational distance models is TransE [13]. For a given entity or predicate i, we
denote by ε(i) the embedding of i. Consider we are given a fact Speak(Bill Gates,English),
TransE treats the embedding of predicate Speak as a translation vector so that ε(Bill Gates)+

ε(Speak) ≈ ε(English) holds in the embedding space. After training, if ε(Melinda Gates)+

ε(Speak)≈ ε(English) also holds, the new fact Speak(Melinda Gates,English) can be inferred
to complete the KG. RESCAL [88] is one of the most popular semantic matching models where
each predicate is associated with a matrix that models pairwise interaction between entities to
capture the latent semantics of KGs. DR works suffer from two main drawbacks. First, most
of the works can only perform transductive inference where when the prediction involves a
previously unseen entity, the whole system needs to be re-trained to generate an embedding for
the new entity. This inability to infer inductively limits the usefulness of DR systems given the
volatile nature of real-world data. Second, the semantic mappings of symbols to interpretable
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concepts have lost during the process of projecting KG components onto a continuous space,
thus the learned model is not explainable.

GNNs [133] have become a hot topic in data mining and machine learning communities in
recent years. Though both DR and GNN methods utilize latent representations for modeling, the
embeddings produced by DR systems are often streamlined to aid subsequent graph analytics
tasks including clustering and classification while GNNs are end-to-end models designed for
specific tasks. In comparison to images, graphs are irregular because nodes have different
numbers of neighbors and it is impossible to decide the topology of neighbors. Therefore,
traditional neural network layers, such as convolution, can not be conveniently applied to graphs.
To address such problem, early GNN works [40, 106, 44] propose an architecture where the
representation of a node is learned by propagating and aggregating neighbor information in
an iterative manner until a stable status is reached. Recent GNN models, including R-GCN
[107] and GraphSAGE [49], have demonstrated competitive performance on link prediction
tasks compared to DR methods while being able to make inductive inferences. However, even
with recent attempts [139] through the identification of sub-graph patterns with high relevance
scores to provide limited insights in model interpretability, GNN models are, in general, not
explainable.

Rule learning methods [140, 39, 90, 75] that generate first-order logic rules based on ontolog-
ical and relational information presented in KGs have gained their popularity by being inductive,
interpretable and transferable. Rule learners are often categorized as a type of the Graph Feature
Models where high-level regularities or explicit patterns are extracted as features from the
observed facts [87]. As rule learning is a symbolic method, it takes as input a KG and produces
a symbolic hypothesis composed of logical rules, the learned model is fully interpretable and
can be used to support prediction results for expert verification. For instance, a rule:

Nationality(X ,Y )← Found(X ,V0),Headquarter(V0,V1),City(V1,Y )

states that if a person X founds a company V0 and V0 is headquartered at V1 which is a city in
a country Y , then X has the nationality of Y , where X , V0, V1 and Y are variables. This rule is
abstracted from the observation in Figure 2.1 where Bill Gates, who has the nationality of the
US, founded Microso f t at Redmond in the US. Because the variables in rules are universally
quantified, rules can be used to infer new facts with previously unseen entities and even shared
between the KGs in similar domains [151]. Compared to DR and GNN methods that employ
numerical optimization for learning, rule learning systems that explore discrete rule space in
order to retrieve high-quality rules are less robust to noise and less effective in generalizing the
underlying data distribution. Nevertheless, recent works demonstrate that well-designed rule
learning systems [75, 74] perform very competitively on link prediction tasks compared to other
methods, and the idea of incorporating logical rules as additional knowledge to augment DR and
GNN models has proven successful in improving system performance [64]. Therefore, further
advancing the front of rule learning systems has a potentially significant impact on the data
mining and machine learning community.
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2.2 Logical Rule Learning Systems

In this section, we analyze the characteristics of existing rule learning systems by investigating
three mechanically important components, including language bias, problem definition and
learning paradigm. For the completeness of discussion, our focus is not limited to learning
rules only from KGs. Formalism and conventions employed by systems mining rules from
more general data models, including Knowledge Bases (KBs), are also included [31]. First and
foremost, we introduce a set of notations that are used in this chapter and simplified from clausal
logic [25]. In the formalism of definite Horn clause [89], a rule is written as:

Lh← L1, ...,¬Li, ...,Ln

where← expresses logical consequence, and Lh is the head atom and the rest are body atoms.
An atom can be represented in the form of r(t0, ..., tn) where t j is an argument of the predicate r.
The arguments in predicates are also known as terms that can be variables, constants or functions.
A definite Horn clause has exactly one head atom, and if not specifically stated, all rules that are
discussed in this thesis follow the convention of definite Horn clauses. We use upper-case letters
to express variables and lower-case letters for constants. A function, denoted by f (t), maps a
term to a set of terms based on a specific pattern. Consider we are given a rule that contains only
binary atoms as:

rt(X ,Y )← r1(X ,V0), ...,rn(Vn−1,Vn)

and an instantiation or a grounding of it, that is all variables in the rule are replaced with constants
by instantiating each of the atoms over a background knowledge, is:

rt(e0,e1)← r1(e1,e2), ...,rn(en−1,en)

we call (e0,e1) the head grounding of the rule and (e1, ...,en) the body grounding. We denote by
Hp a set containing all possible head groundings of a rule p, and define the coverage of p for a
given set of pairs of constants E as:

Cp(E) = {(x,y)|(x,y) ∈ (Hp∩E)} (2.1)

and correspondingly, the coverage of a rule set P is:

CP(E) =
⋃
p∈P

Cp(E) (2.2)

Formally, given a target predicate r, a background knowledge B and sets of positive and negative
instances of r, denoted by I+ and I− respectively, a rule learning algorithm aims to produce a set
of rules P. When rules in P are grounded over B, CP(I+) and CP(I−) are satisfactory to specific
criteria. The learned model is thus the rule set P.
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2.2.1 Language Bias

One factor that drastically differentiates one rule learning system from another in terms of
scalability and expressivity is the types of rules that a system can produce, which is governed
by language bias. Language bias imposes constraints on the syntax and semantics of the
language employed to express the learned rules. In other words, the rule space of a rule learner
only contains well-formed rules according to a given language bias. In early Inductive Logic
Programming (ILP) works where knowledge is represented as KBs that allow predicates with
arbitrary arities [81], mode declaration [30] is widely used to specify language bias. For instance,
to produce the rule:

p0 : Locate(X ,Y )← Headquarter(X ,V0),city(V0,Y )

which states that if a company X is headquartered at a city V0 that is in a country Y , then X is
located in Y , we need to manually declare all the predicates that appeared in the rule before
learning. In addition, the specifications of which variables are input variables that must be
instantiated before predicate grounding and which ones are output variables instantiated at the
moment of predicate grounding are required. If not constrained in the language, the size of rule
space will grow exponentially with the inclusion of predicates with large arities. For instance,
given two predicates r0(V0,V1,V2) and r1(V3,V4,V5), to form a rule, r0 and r1 can be connected in
many ways, e.g., r0(V0,V1,V2),r1(V0,V4,V5) or r0(V0,V1,V2),r1(V1,V4,V5) and so on. Therefore,
it is considered necessary in early ILP systems to specify argument types in language biases and
by enforcing type matching to restrict the rule space such that the learning procedures can be
executed in a reasonable time.

In comparison to ILP, recent rule learning works [103] focus more on extracting logical
rules from KGs where the implicit syntactic constraint is that only binary predicates are allowed.
The adoption of the use of only binary predicates for knowledge representation is because a
predicate with large arity can often be broken into a set of interrelated binary predicates. For
instance, a tabular data {name : Alice;age : 18;gender : f emale} can be converted into the fact
Entity(Alice,18, f emale) where the property names are encoded as entity types. This ternary
fact can be expressed by binary facts Age(Alice,18) and Gender(Alice, f emale) without the loss
of information given that the meta-knowledge is well-managed. Seemingly, the conversion from
a predicate with large arity to a set of binary predicates introduces redundancies to data storage,
but in well-designed graph databases, this overhead is often trivial [43]. Although the restriction
to only allow binary predicates makes the mining of rules from KGs easier than from general
KBs, language bias which dictates what types of rules to include is still needed to achieve better
scalability. The systems proposed in this thesis take the conventions from recent works and work
only with binary predicates.

It is common that a rule learning system produces various types of rules such that different
rule types complement one another in the sense of expressing concepts of different abstraction
levels. We here provide a discussion about the major or unique rule types that are proposed
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by popular rule learning systems. Most rule learning systems, including QuickFOIL [140] and
ScaLeKB [21], mine positive rules for the deduction of facts that are unknown to the given KGs.
The rule:

Speak(X ,Y )← Nationality(X ,V0),Language(V0,V1)

is a positive rule where new facts can be inferred through the grounding of the universally
quantified variables in the rule [25]. For example, the fact Speak(Boris Johnson,English) can
be inferred with a confidence score through the grounding of the rule based on the triples
Nationality(Boris Johnson,UK) and Language(UK,English). This rule is also abstract in that
it contains no constants. Correspondingly, AMIE+ [39] and AnyBURL [75] propose to mine
instantiated rules that contain constants to enrich the expressivity of the learned rule space. An
instantiated version of rule p0 can be:

Locate(X ,Y )← Headquarter(X ,Redmond),city(Redmond,Y )

or:

Locate(X ,Y )← Headquarter(X ,V0),city(V0,US)

where Redmond and US are constants. Many discussions about what types of instantiated rules
to learn are provided by recently published works [39, 76, 91, 75]. In general, it has been proven
that the inclusion of instantiated rules helps improve systems performance. However, it also
exposes rule learners to a much larger rule space compared to learners that only include abstract
rules due to the size of instantiated rules proportional to that of entities. The development
of methods optimizing the mining of instantiated rules and the study of the characteristics of
instantiated rules are not well researched at the moment.

The monotonicity of logical rules describes the pattern where with increasing rule complexity,
e.g., addition of atoms or instantiation of variables, the coverage of the rule can either stay the
same or decrease. Rules that have no negative body atoms conform to the monotonicity and
are known as monotonic rules [37, 54]. Non-monotonic rules that contain negative body atoms
are proven useful in expressing the inverse concepts of known predicates. For instance, the
statement "married people live in the same place unless one is jailed" can be expressed by the
non-monotonic rule:

LiveIn(X ,Y )←Marry(X ,V0),LiveIn(V0,Y ),¬Status(Y,Jailed)

RuLES [54] is a system that mines non-monotonic rules for exception handling. Moreover,
through the modelling of counter-examples, RuDiK [2] proposes to produce negative rules for
the identification of contradictions in the data. By allowing the head atom to be negative, negative
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rules describe logical inconsistencies and thus identify erroneous triples. A negative rule:

¬Nationality(X ,Y )← Nationality(X ,China),Y ̸=China

states that if a person X has the nationality of China, then X can not have other nationalities. In
addition to form rules with existing predicates, RuDiK also augments the expressivity of rule
spaces by automatically constructing the comparison relationships between the literals in KGs.
For instance, a rule:

BigBrother(X ,Y )← Brother(X ,Y ),DOB(X ,e0),DOB(Y,e1),e0 > e1

contains the operator > to compare between ages e0 and e1 with DOB standing for "Date of
Birth". The choice of language biases has significant impacts on both the downstream tasks a
learning system aims to tackle and the system’s performance in terms of scalability, predictive
power and interpretability. Therefore, the design of rule learning systems requires one to first
pick the right language bias for the given task and then implement other components to fulfil the
language bias efficiently.

2.2.2 Problem Definition

Problem definition specifies the success conditions required to terminate the learning procedure.
Rule learning is mostly formulated as a discovery problem where a learning system aims to
produce a solution rule set that is satisfactory to some criteria. Various stopping criteria have
been employed in existing works to handle certain tasks. Classic ILP systems, such as FOIL
[99] and Aleph [116], find a solution set P′ that is a subset of the rule space and satisfies the
following criterion:

CP′(I
+) = I+∧CP′(I

−) = /0 (2.3)

where I+ and I− are positive and negative instances of a target predicate, respectively. When
applied to a complete and noise-free KG, a rule learning system that employs Equation 2.3 as its
problem definition will end up with a perfect solution set that covers all of the positive instances
and none of the negative ones. We call this problem definition an exact approach as it has zero
tolerance to the coverage of negative instances. However, as reasoned in previous sections,
real-world KGs are inherently incomplete and noisy. Exact systems often perform poorly at
retrieving informative rules in practice. To mitigate this issue, probabilistic or soft approaches
have been proposed where a solution set that covers negative instances is acceptable. It is also
important to notice that Equation 2.3 acts as a global criterion, which indicates it is applied
to the solution set P′. Local criteria that put constraints on the quality of individual rules are
not compulsory in early ILP systems. Systems with a global criterion usually aim to produce a
concise solution set that includes a relatively small number of rules and is optimized to satisfy the
global criterion. In contrast, a comprehensive solution set contains all the qualified rules under
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certain local criteria. We denote by φ(P′) an indicator function that returns true if for any p ∈ P′,
p is considered satisfactory to a collection of pre-defined local criteria, e.g., the coverage of
positive instances or prediction confidence. Popular KG rule mining systems, including AMIE+
[39], ScaLeKB [21] and AnyBURL [75], all employ a probabilistic and comprehensive problem
definition that can be formally defined as:

argmax
P′

(|P′|;φ(P′)) (2.4)

which is to extract all qualified rules. In general, a comprehensive solution set provides better
predictive performance and interpretability than a concise set at the expense of model size and
management overhead. The improvements in performance are mainly attributed to the fact
that the rules in a comprehensive set can provide a more complete knowledge about target
concepts. It is also common to employ both global and local criteria to form a problem definition.
RuDiK [91] takes a concise and probabilistic approach where the solution set P′ is constructed
to optimize a weighted loss function w(P′) which considers the impacts of the coverage of both
positive and negative instances. Its problem definition can be described as:

argmin
P′

(w(P′);CP′(I
+) = I+∧φ(P′)) (2.5)

which indicates that RuDiK aims to find a concise set that satisfies the global conditions with
qualified rules.

2.2.3 Learning Paradigm

The Learning paradigm decides the procedural details on how rules are generated. There are
three types of learning paradigm in existing works. The top-down paradigm starts the search
from an empty rule covering all instances. By iteratively performing refinements to specialize the
empty rule and the rules derived from the empty rule, a rule set is populated with the specialized
rules. For instance, AMIE+ [39] utilizes refinement operators to extend rules with: 1.) dangling
atoms that introduce a new variable, 2.) instantiated atoms that contain constants, and 3.) closing
atoms that share all variables with the rule to make the rule cyclic. As the proposition of new
rules with the top-down paradigm often does not require background knowledge and training
instances, it is prone to generate groundless rules that cover none of the instances and need to be
grounded to be identified. On large-scale KGs, the grounding procedure is expensive to execute.
Groundless rules that invoke the grounding procedure while not contributing to inference often
introduce non-negligible overheads.

The bottom-up paradigm populates a rule set by generalizing the concrete paths extracted
from KGs. For instance in Figure 2.1, given the target predicate Nationality(X ,Y ), the path:

US
Nationality←−−−−−− Bill Gates Found−−−→Microso f t Locate−−−→US
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can be abstracted into the rule:

Nationality(X ,Y )← Found(X ,V0),Locate(V0,Y )

by treating the originating triple Nationality(Bill Gates,US), which is a positive instance of the
target predicate, as the head atom and replacing all the constants with variables. In such a way,
the generated rules are guaranteed to cover at least one instance. Bottom-up systems, including
RuDIK [91], RuleN [76] and AnyBURL [75], are not required to know the metagraph or schema
of a KG beforehand to generate rules. Instead, they chart the metagraph while producing rules.
Because bottom-up systems sample paths by initiating graph traversal from instances, which
can be achieved by only loading the neighbourhood of the originating instances into memory, it
avoids the memory-hungry practice employed by top-down methods where the entire KG is often
required to be pre-loaded into memory. Therefore, many memory-efficient bottom-up systems
that can run on commodity computers have been proposed [90, 91].

Some of the traditional ILP systems, such as Progol [80], Aleph [116] and CILP++ [36],
utilize a top-down-bottom-up strategy where an empty rule is first specialized into a bottom clause
which is a compact representation of a positive instance and then the rule space is populated
by generalizing the bottom clause. For instance in Figure 2.1, a bottom clause for the instance
Nationality(Bill Gates,US) can be:

Nationality(Bill Gates,US)←Found(Bill Gates,Microso f t),

Marry(Bill Gates,Melinda Gates),

...,City(Redmond,US)

and by repeatedly abstracting constants and discarding atoms, a set of specialized rules can be
generated. This paradigm also guarantees that all mined rules are non-groundless in that the
bottom clause is created by consulting background knowledge. Interestingly, the top-down-
bottom-up paradigm can be seen as a complex version of the bottom-up strategy in that they both
aim to extract rules by initiating a search around positive instances, one instance at a time.
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Chapter 3

Graph Path Feature Learning

As shown in recent works [76, 75], systems mining instantiated logical rules demonstrate stronger
predictive power and interpretability than ones that only include abstract rules. Motivated by
this observation, we in this chapter introduce the GPFL (Graph Path Feature Learning) system
which is a probabilistic logical rule learner optimized to mine instantiated rules from Knowledge
Graphs (KGs). GPFL utilizes a novel two-stage rule generation mechanism with a higher-order
function to control the progress of learning. Unlike existing works that ground every mined
instantiated rule for evaluation, GPFL shares groundings between structurally similar rules for
collective evaluation, thus is more efficient than existing works. Moreover, we investigate the
presence of overfitting rules, their impact on predictive performance, and the effectiveness of a
simple validation method filtering out overfitting rules. Through extensive experiments on public
benchmark datasets, we show that GPFL is much more efficient than existing works in mining
instantiated rules, and the prevalence of overfitting instantiated rules is too severe to be ignored
by instantiated rule learners, thus must be suppressed properly.

3.1 Introduction

We consider the rule space of a rule learner as a set containing all possible rules that can be
produced by the learner under various constraints. The balance between rule space complexity
for model expressivity and scalability for system practicability remains one of the core challenges
in rule learning. The complexity of a rule space is determined by the choice of language bias [25],
which dictates what types of rules to learn. As reasoned in Chapter 2, different language biases
often render rule spaces differing drastically in size. Let us take the evolution of Path Ranking
Algorithms (PRAs) as an example. PRA [66] uses random walkers to extract a specific type
of rules, the Closed Abstract Rules (CARs) that are cyclic sequences of predicates connecting
entity pairs. For instance in Figure 3.1, given predicate Capital_o f (X ,Y ) as the learning target,
and entity pair (Bei jing,China) as a positive instance, we can manually induce the CAR:

p0 : Capital_o f (X ,Y )←City_in(X ,Y )
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Fig. 3.1 A small knowledge graph.

which translates as: if a city X is in a country Y , then X is the capital of Y . It is apparently
too general to describe the idea about capital. To explain ideas in more detail, Cor-PRA [65]
proposes to include Tail Anchored Rules (TARs), a type of instantiated rule with the last variable
being substituted by a constant. Again in Figure 3.1, we can induce the TAR:

p1 : Capital_o f (X ,Y )← Is_a(X ,PoliticalCenter)

which contains the constant "Political Center". The conjunction of p0 and p1 can be translated as:
if a city X is in a country Y , and X is a political center, then X is the capital of Y . Although still
too general to describe the concept about the capital city in large countries, it is precise enough
to describe the defining characteristics about the capital city in the small countries that make up
the majority of countries in the world. The inclusion of instantiated rules comes with improved
expressivity and often predictive power. However, it also exposes the system to a much larger
rule space than only including the abstract rules that are not subject to the constants in the KG.
For instance, assume the cardinality of V1 in atom Is_a(X ,V1) is m, from a simple abstract rule:

p2 : Capital_o f (X ,Y )← Is_a(X ,V1)

that subsumes TAR p1 with respect to generality, we can derive m TARs by replacing variable V1

with constants, which is a m times growth in rule space size from one abstract rule. On large KGs
with millions of relationships and entities, the scale of their rule space with instantiated rules
included makes most of the existing rule learning strategies infeasible. Therefore, optimization
and approximation approaches for efficient rule generation and evaluation are needed for scaling
up instantiated rule miners.

3.1.1 Rule Generation

The rule generation procedure dictates how the rule space is traversed and when to stop the
exploration. In other words, it is decided by the choices of problem definition and learning
paradigm. Many existing works [66, 39, 76] that take a comprehensive problem definition
explore the entirety or randomly sampled sub-spaces of the rule space. As the rule space that
includes instantiated rules is often enormous, it is either too expensive or infeasible to search
the entire rule space for high-quality rules. Besides, instantiated rules mined from randomly
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Fig. 3.2 Rules mined by AnyBURL [75] on WN18RR [121] over a period of time. Each bar
represents the composition of rules mined by AnyBURL per 20 seconds, where a rule can either
be known or new.

sampled sub-spaces are often subject to the locality issue. AnyBURL [75] proposes the use of a
higher-order function to control the progress of rule generation. Specifically, rules of length n are
mined in batches where the rules learned in previous batches are considered as known rules, and
if the proportion of known rules in the current batch is above a saturation threshold, the system
either progress to mine rules of length n+1 or terminates. Although the use of rule saturation
for automatically extending the search space is desirable in that the search is exposed to the
entire rule space to mitigate sampling bias, and the search early-stops when enough frequent
regularities are extracted, it is inefficient at generating instantiated rules because to reach the
saturation for progress, it needs to repeatedly visit the same set of frequent rules until a few less
frequent yet informative rules are discovered. For instance, in Figure 3.2, the ratio between the
known and new rules is relatively reasonable at the beginning of the search or after the trigger
of a progression. However, the ratio drops significantly as the system runs where over 90% of
the newly discovered rules are known. Therefore, the system has trouble progressing to learn
long rules. This inefficiency is caused by the overwhelmingly large rule space over which the
saturation is measured meaning that it is hard to converge.

3.1.2 Rule Evaluation

The rule evaluation procedure decides what rule quality measure to use and how to plan rule
evaluation executions. Most of the existing works employ statistical measures such as confidence
and support [39] to indicate rule quality. Statistical measures are costly to compute in that
they require systems to ground rules using a backward chaining algorithm that is exponentially
complex. Despite the inefficiency, most existing works ground every mined rule individually for
evaluation, which leads to the main scalability bottleneck. Recent works propose incorporating
pre-trained embeddings into the measure of rule quality to mitigate the scalability issue. For
instance, RLvLR [90] uses quality measures based on embedding similarities to score rules. The
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disadvantage of embedding-augmented methods is that the training of embedding models on
large KGs itself is often not trivial.

3.1.3 Approach

In this chapter, we propose the GPFL system, a novel probabilistic rule learner optimized to
mine instantiated rules. We use templates that are acyclic abstract rules to optimize both rule
generation and evaluation. Specifically, GPFL utilizes a two-stage rule generation mechanism.
In the generalization stage, GPFL optimizes AnyBURL’s higher-order function by saturating
the template space that contains all possible templates to create a set of frequent templates. As
the template space is usually smaller in size by orders of magnitude than the entire rule space
over which AnyBURL measures its saturation, template saturation is much easier to converge.
Thus the system can learn long rules with ease. Inspired by the idea of Query Pack [8], in
the specialization stage, GPFL makes optimized use of template groundings for both deriving
and evaluating instantiated rules. In particular, as instantiated rules derived from the same
templates are structurally similar, instead of grounding every mined rule individually, GPFL
only grounds templates and uses the templates’ groundings to evaluate the derived instantiated
rules collectively. In such a way, GPFL significantly reduces the number of the invocations of
expensive grounding procedures than in existing works. These optimizations allow GPFL to
learn instantiated rules much more efficiently than existing approaches in terms of quality and
quantity. Moreover, as instantiated rules are more specialized than abstract ones, they are more
likely to overfit the training set. GPFL removes the overfitting rules via a simple validation
method to further improve predictive performance. Our contributions can be summarized as
follows:

• We propose a novel probabilistic rule learner optimized to mine instantiated rules via the
use of a two-stage rule generation mechanism.

• To the best of our knowledge, this is the first work that studies the overfitting issue of
instantiated logical rules in depth.

• Through extensive experiments on public benchmark datasets, we observe that GPFL: sig-
nificantly reduces the runtime on evaluating instantiated rules; is much more efficient than
AnyBURL at mining instantiated rules; improves the predictive performance of learned
rules by removing overfitting rules via validation and shows competitive performance on
knowledge graph completion task in comparison to state-of-the-art baselines.

3.2 Methodology

In this section, we introduce in detail how the proposed system works. First, we define a set of
notations that will be used throughout this thesis. Second, we specify the language bias employed
in this work. Finally, after giving an overview about the design of the system, we elaborate on the
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system’s core components, including the two-stage rule generation mechanism and the collective
rule evaluation strategy.

3.2.1 Preliminaries

We denote by G = (E ,R,T ) a KG. A ground atom in G is in the form of a triple r(ei,e j) ∈T

where r ∈R is a predicate representing concepts in the domain, and ei,e j ∈ E are entities also
known as constants in logic terms. For a ground atom r(ei,e j), ei is the subject of the triple and
e j the object. We denote by Subr and Ob jr the sets that contain all the subjects and objects of
the ground atoms with predicate r in a KG, respectively. A non-ground logical rule, that contains
at least one variable, is the following:

p3 : rt(X ,Y )← r1(X ,V0), ...,rn(Vn,Y )

where rt(X ,Y ) is the head atom with a target predicate rt and target variables X and Y , and the
rest are body atoms. We use lower-case letters for constants and upper-case letters for variables.
The length of a rule is the count of body atoms. Rule p3 states that if the conditions in the body
can be grounded in the KG, then the head atom can be inferred as a fact. A path is a sequence
of ground atoms extracted by traversing a KG. When a non-ground rule is instantiated into a
path, that is all atoms in the rule are grounded, the path is known as an instance of the rule. For
example, the path:

p4 : rt(e0,e1)← r1(e0,e2), ...,rn(en,e1)

is an instance of p3 and this instantiation relationship between p3 and p4 is denoted by p4 ∈ In(p3)

where In(p) returns a set containing all of the instantiation of a rule p over a KG. The pair (e0,e1)

that instantiates the target variables in the head of p3 is called a head grounding and is denoted by
hp3 , and the ordered sequence bp3 = (r1(e0,e2), ...,rn(en,e1)) is a body grounding, that explains
the existence of rt(e0,e1). For closed rules where all of the target variables also occur in body
atoms, head groundings can be generated by simply grounding the rule body. However, for open

rules where only a subset of target variables occur in the body, head groundings are generated
through the Cartesian product of the groundings of the target variable instantiated in the body
and that of the target variable in the head. For instance, given an open rule:

p5 : rt(X ,Y )← r1(X ,V0), ...,rn(Vn,Vn+1)

a body grounding that includes r1(e0,e1), and Ob jrt = {e2,e3}, the head groundings of p5

thus are {(e0,e2),(e0,e3)}. Given a non-ground rule p, we define a set containing all the head
groundings of p over a KG as:

Hp = {(x,y)|(x,y) = hp′, p′ ∈ In(p)} (3.1)
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In this work, we aim to mine probabilistic first-order logic rules. Specifically, a probabilistic rule
is one that does not hold exactly and is assigned a confidence score to reflect the probability of it
being true for a given KG. For instance, a probabilistic rule is:

rt(X ,Y )← r1(X ,V0), ...,rn(Vn,Vn+1) [0.6]

where [0.6] indicates that the facts covered by the rule have a probability of 60% to be true.

3.2.2 Language Bias

As introduced in Chapter 2, Language bias, as a prior knowledge along with semantic bias, is
used extensively in rule learning systems to restrict rule space by specifying the desired types of
rules to include [25]. For rule learners that generate rules based on paths extracted from KGs, the
implicit syntactic restrictions are that only binary atoms are allowed, and adjacent atoms share
the same variables or constants. In this work, we only consider straight rules where a variable or
constant can occur at most twice in the body atoms to avoid cycles. Also, we do not generate
trivial rules that self-loop, such as:

rt(X ,Y )← r1(X ,V0), ...,rn(Vn,X)

Now, we introduce some of the terms used throughout this work. Given a rule:

rt(X ,Y )← r1(X ,V0),r2(V0,V1), ...,rn(Vn,Vn+1)

we call the variable X the original variable in that the body atoms are originated from it; the
variable Y the free variable; variables such as V0 the connecting variables in that they connect
adjacent atoms, and the non-connecting variable Vn+1 in the last body atom the tail variable. In
this terminology, a rule is closed if the free variable Y is also the tail variable, and is open if the
free variable does not occur in the body atoms.

In this work, we use the following types of rules to make up our language bias:

Template :rt(X ,Y )← r1(X ,V0), ...,rn(Vn,Vn+1)

HAR :rt(X ,ek)← r1(X ,V0), ...,rn(Vn,Vn+1)

BAR :rt(X ,ei)← r1(X ,V0), ...,rn(Vn,e j)

CAR :rt(X ,Y )← r1(X ,V0), ...,rn(Vn,Y )

where a template is an open abstract rule; a Head Anchored Rule (HAR) is a specialization of a
template where the free variable is substituted with a constant; a Both Anchored Rule (BAR) is a
specialization of a HAR where the tail variable is replaced with a constant, and a CAR is a closed
abstract rule. Collectively, abstract rules include CARs and templates, and instantiated rules
include HARs and BARs. In particular, templates are used as intermediate rules for generating
HARs and BARs only, and will not be included in the learned rule set for inference. This is
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because templates as rules are too general to differentiate predictions. A HAR characterizes
potential candidates that share relationships of type rt with an entity ek by a pattern, whereas a
BAR highlights a pattern involving the co-occurrence between entities ei and e j. The CAR is a
base rule type included in language biases employed by most of the existing works in that it is
often small in size but provides a good base predictive performance.

For instance, consider we have a template:

Speak(X ,Y )← BornIn(X ,V0),Country(V0,V1)

which states that if a person X is born in a city V0 of a country V1, then X speaks language Y ,
it is noticeable that the free variable Y is not connected to any of the body atoms. When this
template is grounded, the variable Y can be instantiated to any valid entities in the target KG,
and the instantiation of it is irrelevant to the grounding choice of the body atoms. Therefore,
template as a type of rule is too general to describe insightful regularities. By anchoring the free
variable to an entity, a HAR that is possibly useful can be created. One possible instantiation is:

Speak(X ,English)← BornIn(X ,V0),Country(V0,V1) [0.8]

which states that there is a probability of 80% that a person who involves in the BornIn and
Country facts in the KG speaks English. Generally, the pattern represented by this HAR is false
as the language a person speaks is often related to the person’s birthplace or where the person
lives. However, when the target KG is biased or incomplete where most persons included in the
KG speaks English, the discovery of this HAR can be used to make accurate predictions in the
context of the KG or reveal the bias to the database administrator. By further instantiating the tail
variable, a BAR that specifies co-occurrence can be constructed. A BAR based on the previous
HAR can be:

Speak(X ,English)← BornIn(X ,V0),Country(V0,UK) [0.95]

which states that it is highly possible that a person who is born in a city of the UK speaks
English. BARs with high confidence score can provide interesting insights between pairs of
entities, which is not possible with abstract rules. CARs represent alternative explanations of a
concept. For instance, a CAR:

Speak(X ,Y )← BornIn(X ,V0),Country(V0,V1),Language(V1,Y ) [0.9]

states that if a person X is born in a city V0 of a country V1 in which the language Y is spoken,
then it is highly possible that the person X speaks the language Y . The pattern expressed by this
CAR can be seen as an explanation of the concept Speak. The inclusion of constants makes the
patterns represented by the instantiated rules, including HARs and BARs, much more specific
than that represented by abstract rules, which in turn implies that the instance coverage of
instantiated rules is generally less broad than that of abstract rules. With small coverage, it
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seems that instantiated rules are more precise than abstract ones, and the exact approach can
be employed. However, due to the inherently incomplete and noisy nature of KGs, it is still
necessary to measure instantiated rules in a probabilistic manner to counter the existence of false
positive and negative triples.

The reason for selecting these rule types is based on the assumptions of concept stratification
and deconstruction. Concept stratification assumes that learning targets usually have different
explanatory complexities. Thus rule types of different complexities should be included in the
rule space to adapt to different targets. For instance, given a correct prediction rt(e0,e1) and an
incorrect one rt(e2,e1), both are suggested by the HAR:

rt(X ,e1)← r1(X ,V0) [α1]

As they are suggested with the same confidence α1, the system can not distinguish one from
another. This is a case where the rule space is too general for the learning target. When we allow
the more specific BAR in the rule space, and we know that the BAR:

rt(X ,e1)← r1(X ,e3) [α2]

predicts rt(e0,e1) with confidence α2, the system then can treat the predictions differently. The
inclusion of both HAR and BAR is an attempt to stratify the concepts that can be expressed by
the system for better adaptivity.

Concept deconstruction assumes a complex concept can be expressed by the combination of
simple concepts. For instance, a complex rule that has more than one constant in its body atoms
is as follow:

rt(X1,e)← r1(X1,e0),r2(e0,e1)

and it can be expressed by the conjunction of BARs:

rt(X2,e)← r1(X2,e0)

rt(X3,e)← r1(X3,V0),r2(V0,e1)

in that X1 has the same domain as X2∩X3. The meaning of the concept deconstruction assumption
is that: as complex concepts concisely expressed by more specific rules can be described through
the conjunctions of less specific rules, we do not need to invent new learning frameworks for the
mining of more specific rules, instead, it is enough for us to learn a comprehensive set of less
specific rules under the existing learning frameworks.

We here provide a discussion about the instantiated rule types employed in existing works.
Mining association rules from RDF databases [1, 17, 6] is a line of research that treats the
subjects, predicates and objects as conditions to form a zeroth-order logic rule. For instance, an
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association rule:

{Speak,English}← {BornIn,London,Country,UK} [0.95]

indicates that if an entity is related to predicates BornIn and Country and entities London and
UK, it is also involved in predicate Speak and entity English. In comparison to first-order logic
rules, association rules are not parameterized where the explicit relations between entities and
predicates in the body atoms are not encoded. Specifically, the body of an association rule is
an itemset where predicates and entities are treated as same-class citizens, which introduces
ambiguity in interpretation. For example, given {BornIn,London,Country,UK}, one can infer
triples BornIn(X ,London) or BornIn(X ,UK). Therefore, first-order logic rules that are more
expressive and stable than association rules have attracted more attentions in the KG rule mining
community. RuleN [76] uses an instantiated rule type with existential quantifier in the body
atom. It is formally defined as:

R(X ,e0)←∃V0 R(X ,V0) [α]

and an example of it is:

Speak(X ,English)←∃V0 Speak(X ,V0) [0.6]

which states that if for a person X there exists a triple Speak(X ,V0), then there is a probability of
60% that X speaks English. This type of rule serves as a statistical function that can be replaced
with global analysis. AMIE+ [39] allows the addition of instantiated atoms to closed rules. For
instance, AMIE+ allows the rule:

Speak(X ,Y )← Gender(X ,Male),BornIn(X ,V0),Country(X ,V1),Language(V1,Y ) [0.8]

where the instantiated atom Gender(X ,Male) describes a property of the entity represented by X .
The requirement of the rules being closed makes AMIE+’s rule space less broad and expressive
than ours. RuDiK [91] allows the inclusion of constants under the condition that there is only
one possible instantiation of a variable in the rule. For instance, given an abstract rule:

President(X ,Y )← BornIn(X ,V0),Country(X ,Y )

RuDiK allows the instantiated version of it as:

President(X ,US)← BornIn(X ,V0),Country(X ,US)

which states that over all possible groundings, only if a person X is born in the US, X can be
the President of the US. Our choice of the language bias is largely inspired by AnyBURL [75],
where HAR and BAR are employed to improve the predictive power and interpretability. In
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contrast to their bottom-up learning mechanism, we utilize the proposed template to enable a
two-stage learning mechanism that optimizes the generation and evaluation of instantiated rules.

3.2.3 Algorithm Overview

Now we introduce the GPFL algorithm and discuss the design idea in detail. Above all, GPFL is
designed to be a discriminative learner that mines a comprehensive set of rules for one target
predicate at a time. For a given target predicate rt ∈R, we denote by I+, I+v and I+t the sets
of positive training, validation and test instances of rt in G . As shown in Algorithm 3.1 which
generates rules for a target rt , GPFL starts by initializing the rule set F , and then by calling the
Generalization procedure, a rule frequency map M is returned. Map M stores key-value
pairs where the key is an abstract rule and the corresponding value is the occurrences of the rule
counted during generalization. In our design, we allow the use of time and space constraints to
terminate the system prematurely to accommodate tasks with diverse requirements. Therefore,
it is important to sort the abstract rules in M in order to make rules that are more likely to be
frequent patterns visited first in the specialization loop. The Sort procedure resolves this by
first dividing rules into CARs and instantiated rules of different lengths, then sorting rules in
each division by frequency in descending order, and eventually assembling the sorted divisions
into a list P by adding CAR division first and then divisions of instantiated rules with increasing
length.

For each abstract rule p ∈ P, GPFL grounds it over G to produce groundings G. Groundings
can be used to score the abstract rule p if p is a CAR, or to derive and evaluate instantiated rules.
We define a scoring procedure Score that first measures the quality of a rule and then decides
if the rule is good enough to be included in the rule set. Various rule quality measures have
been proposed in existing works. In this work, we employ three popular measures, namely the
standard confidence [39], the smooth confidence [75] and the Partial Completeness Assumption
(PCA) [39]. First, we define the support of a rule p as:

supp(p) = |Hp∩ I+| (3.2)

which counts the number of positive instances covered by the rule. Then, the standard confidence
is defined as:

sc(p) =
supp(p)
|Hp|

(3.3)

and smooth confidence as:
smc(p) =

supp(p)
η + |Hp|

(3.4)

where η is an offset used to cope with the bias which tends to assign high confidence value to
rules that only make a few predictions. In contrast to sc(p) and smc(p) that operate under the
Closed World Assumption (CWA), PCA assumes functionality in target predicates. In particular,
given a target rt , for every ei such that rt(ei,e j) ∈T , PCA only treats triples rt(ei,ek) ̸∈T with
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Algorithm 3.1: Rule Generation for a Target Predicate
Input :G , I+,sat,bs, len
Output : learned rule set F

1 Initialize empty set F ;
2 M← Generalization(G , I+,sat,bs, len);
3 P← Sort(M);
4 for p ∈ P do
5 G← Ground(G , p);
6 if p is a CAR then
7 if Score(p,G) then
8 F ← F ∪ p;
9 end

10 else
11 S← Specialization(p,G, I+);
12 for s ∈ S do
13 if Score(s,G) then
14 F ← F ∪ s;
15 end
16 end
17 end
18 if Constraints() then
19 Break;
20 end
21 end
22 return F ;

ek ∈ E as negative examples. Formally, the negative examples of PCA is defined as:

I−pca =
⋃

x∈Subrt

{(x,y)|y ∈ E ,rt(x,y) /∈T } (3.5)

and the corresponding PCA confidence thus is:

pca(p) =
supp(p)

Hp∩ (I−pca∪ I+)
(3.6)

In addition, we define the head coverage of a rule as:

hc(p) =
supp(p)
|I+|

(3.7)

which measures the recall of p. From line 11 to 16 in Algorithm.3.1, GPFL specializes a template
p with distinct constants occurred in G and I+ into HARs and BARs, and scores each instantiated
rule s ∈ S with G which is the groundings of p instead of that of s itself. In such a way, GPFL
evaluates instantiated rules collectively without the need of grounding each instantiated rule
individually. At the end of the loop, the system checks whether the time and space constraints
are met or not. If Constraints returns true, the system terminates.
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Algorithm 3.2: Generalization Procedure
Input :G , I+,sat,bs, len
Output :rule frequency map M

1 Initialize empty set T and map M;
2 c,sat ′← 0;
3 do
4 i← randomly sample an instance from I+;
5 A← PathSampler(G , i, len);
6 for a ∈ A do
7 c← c+1;
8 p← Abstraction(a);
9 P← P∪ p;

10 Update M with p;
11 if mod(c,bs) = 0 then
12 sat ′← |M.keys∩P|

|P| ;
13 T ← /0;
14 if sat ′ > sat then
15 Break;
16 end
17 end
18 end
19 while sat ′ < sat;
20 Return M;

3.2.4 Rule Generation

Rule generation in GPFL takes two stages: the generalization phase for the discovery of abstract
rules and the specialization phase for the derivation of instantiated rules. Algorithm.3.2 details the
Generalization procedure. It takes a KG G , positive instances I+, a saturation threshold sat,
a batch size bs and the maximum length of rules len as inputs, and produces the rule frequency
map M. GPFL randomly samples an instance i ∈ I+ where the entities in i are treated as starting
nodes. Then, PathSampler is called to traverse the len-hop neighbourhood of i to sample a set
of paths A. GPFL is designed as an in-disk system, which does not require the loading of entire
KG into memory, to enable the application to large-scale KGs. Specifically, given an instance i,
GPFL requests the len-hop neighbourhood of i from a graph database hosting the KG, loads the
neighbourhood into memory and then uses random walkers to extract valid paths originated from
i. In comparison to AnyBURL’s approach that samples one path at a time, GPFL samples a batch
of paths at a time to avoid the excessive calling of queries operated on the in-disk graph database.
Each path a ∈ A is turned into an abstract rule p by the procedure Abstraction in which all
of the constants in a are replaced with distinct variables. The abstract rule p is then added to
the current batch P and used to update map M by logging p as its key and the occurrences of p

seen so far as its value. Therefore, the known rules in current batch P is the intersection of P

and the rules in M. When the path counts c is a multiple of the pre-defined batch size bs, current
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Fig. 3.3 Global average precision of top-50 rules over overfitting factors.

saturation sat ′ is updated to the ratio of the known rules to all rules in the current batch, and if
sat ′ is greater than the saturation threshold sat, the Generalization procedure terminates.

The Specialization procedure in Algorithm.3.1 takes as inputs a template p, ground-
ings G and instances I+ to produce S which is a set of instantiated rules derived from p. Consider
we are given a template:

p6 : rt(X ,Y )← r1(Y,V0),r2(V0,V1)

where X is the free variable, Y the original variable, and V1 the tail variable, and positive instances
of rt :

I+ = {(e0,e1),(e0,e2),(e1,e3)}

we create HARs from p6 by substituting the free variable X with constants in Subrt = {e0,e1}
according to I+. For instance, a possible HAR that can be derived from p6 is:

p7 : rt(e0,Y )← r1(Y,V0),r2(V0,V1)

where X is substituted with e0 ∈ Subrt . HARs created in this way are likely to be groundless
because the groundings G are not involved in the creation process. To avoid the proposition of
groundless rules, we only keep the HARs from which at least one valid BARs can be derived. A
valid BAR is created by substituting the tail variable in a HAR with a constant that is linked to
the constant replacing the free variable via the grounding of the original variable. Specifically,
consider we have a grounding of p6 as:

rt(e0,e1)← r1(e1,e2),r2(e2,e4)
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Fig. 3.4 Overfitting proportions over overfitting factors.

we denote it in compact form by (e1,e4) which is the pair of constants replacing the original and
free variables. Given all of the groundings of p6 in compact form as:

G = {(e1,e4),(e2,e3),(e3,e5)}

by joining pairs in G and I+ on the constants at the position of the original variable, we can
infer {(e0,e4),(e0,e3),(e1,e5)} which contains pairs of constants linked by the grounding of the
original variable. Therefore, a BAR:

p8 : rt(e0,Y )← r1(Y,V0),r2(V0,e4)

can be derived from p7 based on (e0,e4) and is considered valid. Therefore, p7 is guaranteed to
have at least one grounding. For HARs that have no valid BARs, we do not add them in S. When
the Specialization procedure finishes, GPFL will start evaluating the instantiated rules in
S in a collective manner.

3.2.5 Collective Rule Evaluation

We observe that the instantiated rules derived from the same templates share the same sequence
of predicates. This structural similarity introduced by the deductive dependency implies that the
instantiated rules derived from the same templates share either the same set or a subset of the
deriving templates’ groundings. For instance, given the groundings G of template p6 and a new
BAR derived from p6:

p9 : rt(e1,Y )← r1(Y,V0),r2(V0,e5)

we can infer that the groundings of p7, p8 and p9 are subsets of G with that of p8 being {(e1,e4)}
and that of p9 being {(e3,e5)}. Therefore, instead of invoking the expensive grounding procedure
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Data #Entities #Relationships #Predicates

DBpedia3.8 2.20M 11.02M 650
Wikidata 4.00M 8.40M 430
FB15K-237 14.54K 310K 237
WN18RR 40.94K 93K 11

Table 3.1 Statistics of the benchmark datasets.

on every instantiated rule, which leads to the main scalability bottleneck for instantiated rule
miners, GPFL grounds only the templates and uses the groundings of the templates to evaluate
instantiated rules collectively. In such a way, we substantially reduce the runtime wasted on the
invocations of grounding procedure on large KGs to achieve better efficiency.

3.3 Experiments

In this section, we establish the effectiveness of GPFL through empirical studies on four public
benchmark datasets. By comparing the rules produced by GPFL and AnyBURL, we demonstrate
that GPFL is much more efficient than AnyBURL at mining high-quality instantiated rules.
Through evaluating rules over KGs of different sizes, we show that the collective approach
implemented in GPFL significantly reduces the runtime on evaluating instantiated rules over
the baseline approach adopted by many of existing works. We formally define the overfitting
rules and study the characteristics and effects of overfitting rules through carefully designed
experiments with GPFL. By filtering out overfitting rules with a simple validation method,
improvements on predictive performance are observed with both GPFL and AnyBURL. At
last, we report that GPFL performs competitively, with and without validation applied, on
Knowledge Graph Completion (KGC) task in comparison to state-of-the-art logic-based and
embedding-based methods.

3.3.1 Datasets

We select four publicly available benchmark datasets, including FB15K-237 [121], WN18RR
[26], DBpedia3.8 [3] and the RDF version of Wikidata [39], for experimental evaluations. The
statistics of these datasets are reported in Table.3.1. FB15K-237 and WN18RR are popular
benchmarks for evaluation on KGC task. Both FB15K-237 and WN18RR are modified versions
of the original datasets proposed in [13] to mitigate the test set leakage problem introduced by the
reverse of test triples being present in the training set. DBpedia3.8 and Wikidata are large-scale
KGs mostly used for testing the scalability and rule mining capability of rule learning systems.
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DBpedia3.8 Wikidata

Quality System All len=1 len=2 len=3 All len=1 len=2 len=3

All
GPFL 3.97M 59.89K 1.36M 2.45M 563K 18.21K 264K 280K
AnyBURL 269K 44.61K 224K 0 163K 21.92K 141K 0

High
GPFL 2.97M 22.38K 691K 2.25M 271K 8.94K 133K 129K
AnyBURL 83.31K 13.79K 69.51K 0 55.34K 9.39K 45.95K 0

Extreme
GPFL 10.83K 715 9.57K 554 12.04K 739 5.52K 5.77K
AnyBURL 1.46K 137 1.33K 0 710 25 685 0

Table 3.2 Sizes of learned rules grouped by length (len) and quality level.

3.3.2 Implementation

Unlike most of the existing works that are either implemented in memory or optimized on
relational databases, GPFL is implemented in Java on top of the Neo4j1 graph database. GPFL
uses the core Neo4j API to traverse graph databases for path sampling and rule grounding. All
experiments are conducted on AWS EC2 instances that have 8 CPU cores and 64GB RAM.
GPFL allows flexible control on scalability through the adjustments of hyper-parameters to
accommodate the specification of different running machines. For scalability-related parameters,
we set them to values that push the running machines to limit. We have made GPFL publicly
available at https://github.com/irokin/GPFL.

3.3.3 Rule Mining

In this experiment, we demonstrate that GPFL is much more efficient than AnyBURL in mining
high-quality instantiated rules. We used the smooth confidence with η = 5 as the quality measure,
and set confidence threshold to 0.001, support threshold to 3 and head coverage threshold to 0.001
to prune low-quality rules. We follow the standard used in [39, 90] to classify rules into high
quality rules (smc(p)≥ 0.1 and hc(p)≥ 0.01), and extremely high quality rules (smc(p)≥ 0.7).
We executed both GPFL and AnyBURL for 15000s with 6 threads. The sizes of rules grouped
by different lengths and quality levels are reported in Table.3.2. GPFL learns more than 10
times the amount of rules produced by AnyBURL on DBpedia3.8, and discovers much more
high-quality (High) and extremely high quality (Extreme) rules. Noticeably, AnyBURL failed to
produce any rules of length 3 because it had trouble saturating rules of length 2 on both datasets,
whereas GPFL succeeded in meeting the saturation threshold and proceeded to generate rules of
all lengths.

3.3.4 Rule Evaluation Efficiency

In this experiment, we demonstrate the superiority of the collective strategy utilized by GPFL
in evaluating instantiated rules over the baseline strategy that grounds every mined rule for
evaluation. For fair comparison, we implemented the baseline approach on the Neo4j graph

1https://github.com/neo4j/neo4j
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WN18RR FB15K-237 DBpedia3.8 WikiData

Type Baseline GPFL Baseline GPFL Baseline GPFL Baseline GPFL

All 195.89 3.63 703.16 9.45 1285.62 69.41 1024.11 48.12
CAR 0.84 0.84 2.99 2.81 21.54 21.49 16.13 16.76
len=1 11.09 0.36 52.63 0.56 499.91 13.27 371.39 8.72
len=2 33.09 0.54 123.47 0.61 537.36 15.44 467.14 10.32
len=3 150.85 1.87 524.05 5.46 294.48 22.84 169.45 12.32

Table 3.3 Runtime with different rule evaluation strategies measured in various rule groups and
reported in seconds.

database as well. We select WN18RR, FB15K-237, DBpedia3.8 and WikiData to account for
the effect of the size of KGs on experiment outcomes. For FB15K-237, DBpedia3.8, WikiData,
we randomly select 20 targets for evaluation, and for WN18RR, we evaluate all 11 relationship
types. The rule set for each benchmark dataset are prepared beforehand and divided into CARs
and instantiated rules of different lengths (e.g., len = 1) for fine-grained evaluation. To ensure
experiments can be finished in a reasonable time, we allow the evaluation of each target to run
for at most 30 minutes. We report the average runtime over all evaluated targets. As shown in
Table.3.3, GPFL runs significantly faster than the baseline on all testing datasets when evaluating
instantiated rules. For instance, it takes GPFL 1.87s to evaluate the same set of instantiated
rules of length 3 that takes the baseline 150.85s to run on WN18RR. When evaluating CARs,
the collective strategy in GPFL is reduced to the baseline strategy, thus we observe similar
performances.

3.3.5 Overfitting Analysis

In this section, we formally define the overfitting rules, study the presence and effect of overfitting
rules with GPFL, and report our observations. To understand the motivation, we first define
metrics indicating the predictive performance of learned rules. The test precision of a rule p is
defined as:

prect(p) =
suppt(p)

Hp\(I+∪ I+v )
(3.8)

where suppt(p) = |Hp ∩ I+t |. We propose and use the Global Average Precision (GAP), the
average of the average test precision of top-k rules of each target over all targets, as the perfor-
mance indicator, where the rules are sorted by a quality measure. Formally, given a set of target
predicates R, we define GAP as:

gap =
∑rt∈R(

∑p∈Prt
prect(p)
|Prt |

)

|R|
(3.9)

where Prt contains the top-k rules with the target predicate rt . Similarly, we also measure the
Global Average Quality (GAQ) over target predicates by replacing the precision function in
Equation.3.9 with a quality measure function. As shown in Table.3.4, we report the GAP and
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GAQ results over the different selections of top rules on DBpedia3.8 and Wikidata. Counter-
intuitively, by removing certain high-confidence rules via a validation method, we observe
consistent improvements on GAP on both datasets even though the GAQ drops dramatically. We
argue this phenomenon is partially caused by the presence of overfitting rules. In this rest of this
section, we show through the experiment results to support this argument.

Similar to overfitting models that over-perform on training set yet underperform on the test
set, overfitting rules are considered high-quality when measured on training set yet have low test
precision. Therefore, we consider a rule overfitting if its test precision is smaller than 10% of its
quality. The choice of 10% is based on our experimental observations. To identify and remove
overfitting rules, a simple solution is to measure the precision of rules on a validation set and
filter out rules with a validation precision smaller than θ percent of the quality. We name θ the
overfitting factor in this simple validation method and set it to 0.1 in the following experiments.
We select DBpedia3.8 and Wikidata for experiments where we randomly select 20 targets from
each dataset. We use the top 6000 rules from each target to create a collection of top rules and
conduct an overfitting analysis on this rule collection.

We set out to answer following questions:

1. Which types of rules make up the largest portion of overfitting rule.

2. Which types of rules are more likely to be overfitting.

3. The effect of different choices of quality measure on the presence of overfitting rules.

4. The effectiveness of the validation method at removing overfitting rules.

5. The effect of the removal of overfitting rules on predictive performance.

To answer these questions, we need to define a set of terms first. We consider the overfitting rule
proportion, denoted by ORPs(t), as the proportion of overfitting rules of type t to a rule space
s. The domain of t includes "All" as in all rule types, CAR and instantiated rule of different
lengths. The domain of s includes "all" as in the space of all learned rules, "or" as in the space of
all overfitting rules, and "type" as in the space of all rules of type t. For instance in Table.3.5,
with standard measure and validation on Wikidata, ORPtype(len = 1) indicates the proportion
of overfitting instantiated rules of length 1 (as t is len = 1) to all instantiated rules of length 1
(as s is type), which is 0.469. In other words, ORPtype(len = 1) states that the probability of an
instantiated rule of length 1 being overfitting is 46.9%. Similarly, we define the rule proportion,
denoted by RPall(t), as the proportion of all rules of type t to all learned rules. Again in Table.3.5,
with standard measure and validation on Wikidata, RPall(CAR) is 0.038, which indicates that
CARs make up 3.8% of all rules. We specifically name ORPall(All) the overfitting proportion
which measures the overfitting rules to all rules ratio.

By analyzing Table.3.5 horizontally, we can answer questions 1 and 2. We observe that the
ORPor, the overfitting rules of certain types to all overfitting rules ratio, of instantiated rules,
are generally much greater than that of CAR. On Wikidata with smooth measure and without
validation, ORPor(len = 2) is 0.583 and ORPor(len = 3) is 0.351, which means over 93% of
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DBpedia3.8 Wikidata

Top-k Validation Precision Quality Precision Quality

5
Yes 0.163 0.649 0.26 0.605
No 0.023 0.914 0.05 0.918

10
Yes 0.183 0.618 0.247 0.586
No 0.011 0.907 0.045 0.912

20
Yes 0.184 0.584 0.237 0.592
No 0.012 0.897 0.038 0.901

50
Yes 0.152 0.536 0.198 0.553
No 0.005 0.879 0.018 0.881

100
Yes 0.144 0.511 0.17 0.543
No 0.004 0.859 0.015 0.855

Table 3.4 Global average precision and quality over top-k rules on DBpedia3.8 and Wikidata
with and without validation applied. Smooth confidence is employed to measure rule quality and
rank rules.

overfitting rules are long (len > 1) instantiated rules. On DBpedia3.8, the proportion is also over
90%. Although we can argue the large contribution of overfitting rules made by long instantiated
rules is attributed to the fact that ORPor is proportional to RPall and long instantiated rules often
have large RPall , long instantiated rules nevertheless make up the largest portion of overfitting
rules. By comparing ORPtype with smooth confidence between CAR and instantiated rules on
both datasets, we observe that on DBpedia3.8 without validation, the instantiated rules of all
lengths have a 76% average probability of being overfitting, whereas CAR has 52%. On Wikidata,
the probability of instantiated rules becomes 82% compared to 23% of CAR. Considering long
instantiated rules are not only larger in size than CARs but also more likely to be overfitting,
it is more important for instantiated rule learners to identify and remove overfitting rules than
learners that only mine abstract rules.

To answer questions 3 and 4, we analyze Table.3.5 vertically. We consider a quality measure
better than another if it has smaller overfitting proportion while maintaining a larger rule space.
By this criterion, the smooth confidence outperforms standard confidence and PCA in that
without validation, smooth confidence has average 91.56K rules and 83% ORPall over both
datasets, whereas standard confidence has 87.16K and 88%, and PCA has 84.28K and 93%.
The advantage of smooth confidence becomes even more evident when validation is applied,
where it has 11.85K rules and an overfitting proportion of 46% in comparison to 7.5K and
51% with standard confidence and 4.3K and 64% with PCA. One perspective to evaluate the
effectiveness of the validation method is to compare the difference in overfitting proportion
before and after validation. As shown in Figure.3.4, by changing the overfitting factor from 0 to
0.1, the overfitting proportion drops dramatically. With increasing factor, it recovers gradually
partially because with higher factor, the filter removes more rules yet the overfitting rules
that have high validation precision remain untouched, thus the overfitting proportion increases.
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3.3 Experiments

FB15K-237 WN18RR

Algorithm MRR Hits@10 Hits@3 Hits@1 MRR Hits@10 Hits@3 Hits@1

DistMult [136] 0.241 0.419 0.263 0.155 0.430 0.490 0.440 0.390
ComplEx [123] 0.247 0.428 0.275 0.158 0.440 0.510 0.460 0.410
ConvE [26] 0.316 0.491 0.350 0.239 0.460 0.480 0.430 0.390
R-GCN+ [107] 0.249 0.417 0.264 0.151 - - - -
TuckER [5] 0.358 0.544 0.394 0.266 0.470 0.526 0.482 0.443
RotatE [120] 0.338 0.533 0.375 0.241 0.476 0.571 0.492 0.428
QuatE [144] 0.366 0.556 0.401 0.271 0.488 0.582 0.508 0.438

AMIE+ [39] - 0.409 - 0.174 - 0.388 - 0.358
Neural LP [137] 0.240 0.362 - - 0.435 0.566 0.434 0.371
RuleN [76] - 0.420 - 0.182 - 0.536 - 0.427
AnyBURL [75] 0.301 0.484 0.341 0.227 0.471 0.537 0.488 0.442

GPFL-ins0-car3 0.253 0.421 0.285 0.189 0.455 0.529 0.475 0.423
GPFL-ins1-car3 0.315 0.498 0.355 0.241 0.479 0.552 0.499 0.448
GPFL-ins2-car3 0.283 0.459 0.318 0.214 0.471 0.541 0.486 0.443
GPFL-ins3-car3 0.277 0.448 0.311 0.209 0.453 0.499 0.465 0.433
GPFL-Ensemble 0.322 0.504 0.362 0.247 0.480 0.552 0.500 0.449

Table 3.6 KGC experiment results in default setting. The top section contains embedding-based
methods; the middle section includes logic-based methods, and the bottom section reports the
GPFL results with various configurations. Best results in each section are underlined.

Correspondingly in Table.3.5, we also observe significant drops in ORPall and ORPtype when
the validation method is applied. At last, we investigate the effect of the removal of overfitting
rules on predictive performance. As shown in Figure.3.3, the GAP of top-50 rules increases
from near 0 to around 20% with overfitting factor being set from 0 to 0.1. In Table.3.4, we also
observe significant improvements by having validation applied to both datasets. As without
validation, the precision of top rules is extremely bad. We argue that the impact of overfitting
rules, especially on instantiated rule learners, is too significant to ignore and must be handled
properly.

In conclusion, we observe that long instantiated rules make up the largest portion of overfitting
rules; instantiated rules are more likely to be overfitting than abstract rules; the choice of quality
measure considerably affects the overfitting proportion, and the smooth confidence is better than
standard confidence and PCA according to our criterion; the proposed validation method can
effectively filter out a large portion of overfitting rules, and the predictive performance improves
significantly with validation applied. The removal of overfitting rules improves the generalization
ability of rule models. The generalization ability of a model is decided by its ability to extract the
underlying patterns and to differentiate real patterns from noises. GPFL extracts better patterns
by allowing the creation of instantiated rules, yet makes the differentiation of noises harder. With
the proposed validation method, GPFL shows better generalization ability than existing systems
as demonstrated in the following section.
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FB15K-237 WN18RR

Algorithm MRR Hits@10 Hits@3 Hits@1 MRR Hits@10 Hits@3 Hits@1

AnyBURL 0.269 0.452 0.311 0.193 0.288 0.345 0.302 0.263
AnyBURL-valid 0.273 0.458 0.323 0.199 0.291 0.352 0.305 0.265
GPFL-ins3-car3-valid 0.283 0.469 0.328 0.205 0.294 0.361 0.311 0.263
GPFL-ins3-car3 0.249 0.432 0.288 0.177 0.257 0.292 0.266 0.242

Table 3.7 KGC results in random setting. The "valid" suffix means the system is executed with
validation applied. Best results are underlined.

3.3.6 Knowledge Graph Completion

A knowledge graph completion (KGC) query takes the form of rt(ei,?) or rt(?,ei) where rt is
the target predicate, and the question mark is expected to be replaced with candidates e ∈ E

that are suggested by the learned rules such that predictions rt(ei,e) or rt(e,ei) for target rt are
proposed. We follow the evaluation protocol used in [13] to evaluate GPFL on KGC task. GPFL
answers both head queries rt(?,e) and tail queries rt(e,?) that are created by corrupting the test
triples. We use hits@1, hits@3, hits@10 and Mean Reciprocal Rank (MRR), all in the filtered
setting, to report the experiment results. As a prediction can be suggested by multiple rules, it
introduces complexity in ranking the predictions. In this work, we use the maximum aggregation
strategy proposed in AnyBURL [75] to rank predictions. In particular, predictions are sorted
by the maximum confidence of rules suggesting the predictions, and if there are ties among
predictions, the tied predictions are sorted by recursively comparing the next highest confidence
of suggesting rules until all ties are resolved.

We select FB15K-237 and WN18RR for KGC evaluation. As GPFL allows fine-tuning
on the composition of learned rule types, we evaluate GPFL over various rule composition
configurations. Specifically, the notation "insA-carB" is used to indicate the maximal length of
instantiated rules as A and that of CARs as B. For instance, "ins0-car3" depicts a configuration
that only learns CARs of maximum length of 3, whereas GPFL with "ins3-car3" learns both
instantiated rules and CARs of maximum length of 3. As we observed that the predictive
performances for target predicates differ significantly with different configurations, we created an
ensemble mode that aggregates the best performing rules of each target to form an optimal rule
set. We test GPFL in two data settings: 1.) the default setting where we use the default data splits
of FB15K-237 and WN18RR downloaded from AnyBURL’s repository2, and 2.) the random
setting where we re-split the original dataset into training/validation/test sets in a 6:2:2 ratio. This
is because to make the proposed validation method effective, we need much larger validation sets
than the ones with the original FB15K-237 and WN18RR splits. As shown in Table.3.6, GPFL-
ins1-car3 and GPFL-Ensemble demonstrate competitive performance compared to many of the
state-of-the-art embedding algorithms and all of the logic-based methods, including AnyBURL.
Noticeably, the performances of GPFL systems, such as GPFL-ins2-car3 and GPFL-ins3-car3,
deteriorate with the inclusion of long instantiated rules. This is because of the inclusion of
the overfitting rules that are mostly made up by long instantiated rules. This assumption is

2http://web.informatik.uni-mannheim.de/AnyBURL/
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3.4 Conclusion

FB15K-237 WN18RR

Rule Composition MRR Hits@10 Hits@3 Hits@1 MRR Hits@10 Hits@3 Hits@1

CAR Only 0.226 0.401 0.243 0.175 0.241 0.338 0.263 0.208
HAR Only 0.081 0.142 0.102 0.063 0.074 0.111 0.092 0.057
BAR Only 0.192 0.356 0.209 0.162 0.204 0.281 0.226 0.163
All 0.283 0.469 0.328 0.205 0.294 0.361 0.311 0.263

Table 3.8 KGC results under different rule composition settings. Experiments are tested on the
random setting with GPFL-ins3-car3-valid.

confirmed by the experiment results in Table.3.7 where GPFL and AnyBURL are evaluated in the
random setting. With the application of the proposed validation method, considerable increases
in performance are observed with GPFL, whereas AnyBURL had minor improvements due to its
inability to mine long rules. In Table.3.8, we observe that CARs and BARs contribute the most
to the predication accuracy, whereas the improvement attributed to HARs is minor. Although
logic-based methods are outperformed by some of the recent embedding-based models, most
embedding models are only capable of performing transductive inference while logic-based ones
can provide inductive and interpretable inference.

The interpretability of GPFL is achieved through a rule application procedure. For abstract
rule learners, such as AMIE+ [63] and RuDIK [91], the rule application procedure is straight-
forward as the number of mined rules is often small. Specifically, given a set of queries and
learned rules, the rule learning procedures utilized in previous works ground every learned rule
over the background knowledge to produce a set of new facts that answer the queries. As a
result, each new fact is associated with its triggering rules and these rules serve as evidences that
justify the proposition of the new fact. However, for learners that mine instantiated rules, such as
GPFL and AnyBURL [74], the large volume of mined rules makes it impossible to ground every
rule. Therefore, two rule application steps are introduced in GPFL to allow the rule application
procedure to be finished in a reasonable time. First, a filtering step that removes irrelevant rules
by matching the head constants in queries and rules is installed. For instance, given a query
rt(e1,?) and rules rt(e1,Y )← r1(Y,e2) and rt(e2,Y )← r1(Y,e1), the second rule is irrelevant to
the given query. When the number of remaining rules is still too large, we set a time constraint
on the rule application procedure. For experiment results reported in Table.3.6 and Table.3.7,
the time constraint is set to 1000 seconds. For different datasets, the choice of time constraint is
decided by the requirements of execution time and prediction accuracy.

3.4 Conclusion

In this chapter, we presented the GPFL system, a probabilistic rule learner optimized to mine
instantiated rules. In comparison to abstract rule learners, the inclusion of instantiated rules
significantly improves a system’s predictive power and interpretability. To overcome the prob-
lems appeared in AnyBURL that prevent the system to extract complex rules in an efficient
manner, GPFL utilizes a novel two-stage rule learning mechanism that enables the collective
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rule evaluation and optimized saturation satisfaction, which leads to significant reduction in rule
evaluation time and easy mining of complex rules compared to AnyBURL. Although instantiated
rules bring many benefits to a rule learning system, they are more prone to be overfitting than
abstract rules in that the quality of instantiated rules are often decided by a small number of
instances and can be greatly affected by noise. Therefore, it is important to identify and remove
overfitting instantiated rules. Through experiments, we demonstrated that complex instantiated
rules have greater tendency than abstract or simple ones to be overfitting, and negatively affect
the prediction accuracy. We introduced a simple validation method to remove overfitting rules
and observed improvements in prediction accuracy. One important future direction of research is
the design of effective methods that differentiate valuable rules from irrelevant or noisy ones.
Although it is already an active research area, most of the recent researches focus on incorporat-
ing KG embeddings into the rule quality measure instead of devising novel end-to-end methods
that jointly learn rules and embeddings. Reinforcement learning is one promising framework to
achieve such goals.
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Chapter 4

Rule Hierarchy Framework

In the previous chapter, we have introduced the rule generation and evaluation strategies employed
by GPFL to make the mining of instantiated logical rules more efficiently than existing works.
However, the overhead caused by the generation and evaluation of unpromising rules is left
undiscussed. Existing bottom-up learners employ only Flat Pruning Methods (FPMs) that set
rule quality thresholds to filter out unpromising rules. Because of the unavailability of rule
hierarchies, the more effective Hierarchical Pruning Methods (HPMs) used in top-down learners
are not utilized by bottom-up systems. In this chapter, we introduce a generic Rule Hierarchy
Framework (RHF) that leverages a collection of novel subsumption frameworks to build proper
rule hierarchies from the rules produced by bottom-up learners. Then, the rule hierarchies
can be used to enable the application of HPMs to bottom-up learners for the better pruning of
unpromising rules. As a case study, we adapt RHF and two HPMs inspired by top-down learners
to GPFL and conduct extensive experiments on four public benchmark datasets. We show that
the application of HPMs effectively removes unpromising rules, leading to significant reductions
in the runtime and the number of learned rules, without compromising predictive performance.

4.1 Introduction

Rule learning systems often waste a large number of computational resources on creating and
evaluating unpromising rules. For learners that only produce abstract rules, this issue is not
apparent as the size of the rule space is often small. Thus the number of unpromising rules is
neglectable. However, for instantiated logical rule learners that produce rules in the number
of millions, the presence of unpromising rules severely affects the system’s performance and
scalability. Therefore, rule pruning techniques are in urgent need. Two types of rule pruning
techniques are widely employed in existing works. Flat Pruning Methods (FPMs) filter out
rules by checking against a set of pre-defined rule quality thresholds, and Hierarchical Pruning
Methods (HPMs) make use of rule hierarchy, which contains the subsumption relationships
between rules, to prevent the creation of descendant rules if their ancestors are considered
unpromising by some criterion. HPMs are mostly employed by top-down learners that generate
rules by simultaneously constructing and exploring a rule hierarchy. By contrast, because
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bottom-up learners generate rules by abstracting randomly sampled paths in Knowledge Graphs
(KGs), the rule hierarchies of the generated rules are not readily available. As a result, the
HPMs successfully employed in top-down learners can not be conveniently applied to bottom-up
systems. In this chapter, we propose the Rule Hierarchy Framework (RHF) that efficiently builds
a proper rule hierarchy from a set of learned rules by leveraging the properties of logical rules
to simplify the process of deciding the subsumption relationships between rules. Unlike most
existing works using exponentially complex subsumption frameworks to resolve subsumption
relationships, we propose a position-constrained subsumption framework with linear complexity.
Moreover, by further specifying the proposed subsumption framework, a proper rule hierarchy
which contains no redundant subsumption relationships inferred via transitivity can be efficiently
constructed from rules mined by bottom-up instantiated rule learners to scale the systems up
through rule pruning.

Our contributions in this work are summarized as follows:

• We propose the RHF which is the first work that aims to build proper rule hierarchies from
rules mined by bottom-up learners.

• We adapt RHF to GPFL where we design and implement two HPMs to effectively remove
irrelevant and redundant rules.

• We demonstrate the effectiveness of the application of HPMs through experiments on four
public benchmark datasets.

4.2 Related Work

In this section, we review some of the top-down and bottom-up systems, where we focus on the
discussion about what and how rule pruning methods, including both flat and hierarchical ones,
are implemented in existing works. FPMs that remove a rule if the rule fails some criterion are
used extensively in both top-down and bottom-up methods to control the number and quality of
mined rules. We here take the FPMs used in bottom-up learners for example. PRA [65] uses
precision and coverage as criteria to filter out unqualified rules, and in RuleN [76] and AnyBURL
[75], a rule is pruned if it is evaluated as unsatisfactory in terms of confidence and its coverage
of positive examples. HPMs aim to prune a rule and its descendants in a hierarchy if the rule
fails some criterion. The main benefit of HPMs over FPMs is that the pruning decision on a
rule can be made by merely examining the ancestors of the rule, which makes the pruning of
unpromising rules even before their creation possible. By avoiding the creation and evaluation of
unpromising rules, a considerable amount of computational resources are saved. We take the
HPMs used in top-down learners for example. QuickFOIL [140] prevents the creation of a rule
and its specializations if the rule is considered as a syntactical duplicate; AMIE3 [63] makes
a hierarchical pruning decision on a rule if the rule covers the insufficient amount of positive
examples; ScaLeKB [21] uses a type of functional constraint to trigger the pruning, and RuLES
[54] uses a hybrid quality measure that takes both statistical measures and a measure computed
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(a) Knowledge graph (b) Abstraction

Fig. 4.1 A small knowledge graph and its abstraction.

over embeddings into consideration as the pruning criterion. Because of the unavailability of
rule hierarchies in bottom-up learners, the more effective HPMs can not be conveniently adopted.
Therefore, we need to first build a rule hierarchy from the rules mined by bottom-up learners,
and then implement the HPMs to achieve improved efficiency.

4.3 Rule Hierarchy Framework

In this section, we present a Rule Hierarchy Framework (RHF) that constructs a proper rule
hierarchy from a set of rules, where two main problems are addressed: 1.) how to efficiently
decide the subsumption relationships between rules and 2.) what subsumption relationships
to include in the rule hierarchy. We achieve this by proposing a collection of subsumption
frameworks and an approach to compose a proper rule hierarchy that contains no redundancies.

4.3.1 Preliminaries

We here briefly review the notations used in the previous chapter and re-define some of them
in the new context. A Knowledge Graph (KG) G = (E ,R,T ) is a directed multi-graph that
represents relationships as triples denoted by r(ei,e j) ∈T where r ∈R is a relationship type
and ei,e j ∈ E are entities. As we use clausal logic for knowledge representation and reasoning,
we also call a relationship r(ei,e j) a ground atom that is composed of a predicate r and constants
ei and e j. The task of mining high-level patterns from KGs can be formulated as searching for
first-order logic rules that express the regularities explaining the concepts presented in the KGs.
In particular, the concepts are represented as predicates, and intuitively, the rules abstracted from
the paths originated from the instances of the predicates are considered as the regularities. A
path or a propositional rule, denoted by:

rt(e0,e1),r1(e1,e2), ...,rn(en,en+1)
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is a sequence of ground atoms that starts from an instance of a target predicate rt . In the
formalism of definite Horn clause, we can rewrite the path as:

rt(e0,e1)← r1(e1,e2), ...,rn(en,en+1)

which expresses a pattern where if body atoms r1(e1,e2), ...,rn(en,en+1) can be found in a KG,
the existence of head atom rt(e0,e1) in the KG can be inferred.

Example 4.3.1. Illustrated in Figure.4.1a is a small knowledge graph. Consider we want to

find primitive patterns for the target predicate "Advises", and an instance of the predicate

is Advises(alice,bob) which states the fact that "alice advises bob", by traversing over its

neighbourhood, we can extract a set of propositional rules as the primitive patterns. For instance,

an extracted propositional rule is:

p1 : Advises(alice,bob)← Publishes(alice, paper),Publishes(bob, paper)

which suggests that as alice and bob have published a paper together, the statement "alice

advises bob" can be inferred.

4.3.2 Properties of Logical Rules

By replacing constants with variables in a propositional rule, we can convert it into first-order
logic rules. We consider a rule closed, such as p1, if all of the terms, which can be variables or
constants, in the head atom also occur in the body atoms, otherwise a rule is considered open.
A rule is instantiated if it contains at least one constant, otherwise it is an abstract rule. Now,
we define three types of first-order logic rules that are considered useful in existing works, as
follows:

CAR : rt(X ,Y )← r0(X ,V1), ...,rn(Vn,Y )

OAR : rt(X ,Y )← r0(X ,V1), ...,rn(Vn,Vn+1)

IR : rt(X ,Y )← r0(X ,ei), ...,rn(Vn,e j)

where CAR and OAR stand for Closed Abstract Rule and Open Abstract Rule, respectively, and
Instantiated Rules (IRs) are open rules that contain at least one constant. An OAR is also known
as a template in Chapter.3. For an IR p, we use the deduction level, denoted by d(p), to indicate
the number of constants it contains. By convention, we use upper-case letters for variables and
lower-case letters for constants, and symbols X and Y are reserved for the variables in the head
atom.

Example 4.3.2. From Figure.4.1a, in addition to closed rule p1, we can also extract open rules:

p2 : Advises(alice,bob)← Is_A(alice, pro f essor)

p3 : Advises(alice,bob)← Is_A(bob,student)
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and by replacing all of or a part of constants with variables in rules p1, p2 and p3, we have:

p4 : Advises(X ,Y )← Publishes(X ,V0),Publishes(Y,V0)

p5 : Advises(X ,Y )← Is_A(X ,V1) p6 : Advises(X ,Y )← Is_A(Y,student)

where p4 is a CAR abstracted from p1; p5 is an OAR converted from p2, and p6 is an IR

abstracted from p3 and d(p6) = 1.

Unlike logical rules mined using classic Inductive Logic Programming (ILP) [82] approaches
with relaxed syntactic biases, the form of the rules extracted from KGs is restricted in accordance
with the ontology of the KGs and the nature of paths. In particular, we define two important
properties about the logical rules generated from paths.

Definition 4.1 (Connectedness). As the paths in KGs are connected, in the sense that adjacent

ground atoms share a constant, the rules that are generalized from the paths are also connected,

where adjacent atoms are connected via a connecting term.

The connectedness of rules is desirable in that it ensures the body atoms of a rule are tied to
each other and to the head atom via a chain of connections.

Definition 4.2 (Straightness). A rule is considered straight if for any term t in the rule, t occurs

at most twice.

As in other works [75, 45], the straightness of rules prevents the generation of cycles and
syntactical equivalence that compromises system performance. In addition, we restrict our
discussion to the KGs that only contain binary predicates. The rule space of a rule learner
is a set containing all possible rules that can be produced by the learner. We denote by F a
set of rules or a rule space. We model a rule hierarchy as a set of subsumption relationships
Φ = {φ0, ...,φn} where a subsumption relationship φ = (p, p′) implies that p subsumes p′. We
also use notation (F ,⪯) to conveniently describe a hierarchy which contains the subsumption
relationships resolved by a subsumption framework ⪯ over the rules in F . To efficiently build a
rule hierarchy from a set of rules, the subsumption frameworks with efficient proof procedure
and the approach that constructs rule hierarchies with minimum redundancy are needed.

4.3.3 Efficient Subsumption Framework

In this section, we present a subsumption framework that leverages the connectedness and
straightness of rules to simplify the proof procedure of a variant of the θ -subsumption [72] for
improved efficiency.

θ -subsumption, as a decidable approximation of logical entailment, is one of the most
important subsumption frameworks employed in ILP works. A rule p θ -subsumes rule p′,
denoted by p⪯θ p′, iff:

∃θ : pθ ⊆ p′ (4.1)
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where θ is a substitution that replaces variables by terms. For instance, we have p5 ⪯θ p6 with
θ = {V1\student}. θ -subsumption is inconsistent with our assumption that all mined rules are
straight in that it allows different variables to refer to the same entities. For consistency, we
instead employ θ -subsumption under Object Identity (OI-subsumption) [34], denoted by ⪯OI . A
rule p OI-subsumes rule p′ iff p⪯θ p′ and all variables in p after substitution refer to different
entities.

Example 4.3.3. Figure.4.1b illustrates an abstraction of the KG in Figure.4.1a. In Figure.4.1b,

only CARs and OARs are explicitly demonstrated as paths while IRs are implied by replacing

variables with corresponding constants. Given the target predicate "Advises", we extract rules:

p7 : Advises(X ,Y )← p8 : Advises(X ,Y )← Publishes(X ,V0)

where p7 is known as the top rule that subsumes all of the rules having target predicate

"Advises". Consider we have a rule set F = {p4, p7, p8}, rule hierarchy (F ,⪯OI) is then

{(p8, p4),(p7, p8),(p7, p4)}.

The proof procedure of deciding whether a rule p OI-subsumes rule p′ can be summarized
as follows: p′ is first grounded by having all of its variables replaced with the constants not
occurring in p and p′. We denote by S(p′) the grounded p′. Then an atom in p, denoted by p[i]

where [i] is an element accessor that returns the i-th atom in a rule, is tested for elimination,
that is if p[i] subsumes an atom in S(p′) with a substitution that assigns variables to different
entities, p[i] is eliminated from p. This process is recursively performed until all atoms in p are
eliminated and then we conclude p⪯OI p′. If the elimination test fails, it backtracks to test p[i]

against another atom in S(p′), and if all comparable atoms in S(p′) fail the test, we conclude that
p ̸⪯OI p′.

Example 4.3.4. Given rules:

p9 : rt(X ,Y )← r0(X ,V0)

S(p10) : rt(c0,c1)← r1(c0,c2),r0(c2,c3),r0(c3,c4)

we want to know whether p9 ⪯OI p10. We first apply θ = {X\c0,Y\c1} to p9 such that p9[0]
is eliminated because p9[0]θ = S(p10)[0]. With p9[1]θ = r0(c0,V0), the proof procedure first

tests p9[1]θ against S(p10)[2] because they share the same predicate r0, which fails because c0

can not be reduced to c2. Then, the proof procedure backtracks to test p9[1]θ against S(p10)[3],
which also fails. Therefore, we conclude p9 ̸⪯IO p10.

The backtracking process introduces unnecessary complexities to the resolution of OI-
subsumption among straight and connected rules. We propose a constrained version of OI-
subsumption that simplifies the proof procedure by replacing the backtracking process with a
position constraint. Also, it is sound and complete w.r.t OI-subsumption.
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Definition 4.3 (SA-Subsumption). Sequence-aware subsumption (SA-Subsumption) is defined

as: given rules p and p′, we consider p SA-subsumes p′, denoted by p⪯SA p′, iff:

∀i ∈ [0, |p|] : p[i]θ = p′[i] (4.2)

where notation | · | indicates the number of atoms in a rule, and variables substituted in θ refer

to different entities.

In comparison to the proof procedure of OI-subsumption that backtracks when the elimination
test fails, SA-subsumption only needs to check if atoms at the same positions in rules p and p′

are the same after substitution to decide the subsumption relationship between p and p′.

Proposition 4.1. On connected and straight rules, SA-subsumption is sound and complete w.r.t

OI-subsumption.

Proof. Consider we have connected and straight rules p and p′ where |p| ≤ |p′|, we want to know
whether p⪯OI p′. We eliminate p[i−1] = r0(V0,V1) by matching S(p′)[i−1] = r0(c0,c1) with
θ = {V0\c0,V1\c1} where the next atom p[i] = r0(V1,V2) is instantiated into p[i]θ = r0(c1,V2).
Due to the straightness of rules, c1 can only occur at most once in the rest of S(p′) except
for S(p′)[i−1], and according to the connectedness of rules, c1 can only occur in S(p′)[i]. To
eliminate p[i], we need p[i]θ ′ = S(p′)[i] or simply p[i]θ ′ = p′[i] where θ ′ is extended from θ .
Therefore, we prove when p⪯OI p′, p⪯SA p′. One special case is that, with rules p9 and:

p11 : rt(X ,Y )← r0(Y,V0), ...,r0(X ,Vn) p12 : rt(X ,Y )← r0(X ,Vn), ...,r0(Y,V0)

we can prove p9 ⪯OI p11 yet p9 ̸⪯SA p11. We preserve the completeness by reversing the order
of the body atoms in p11 to create an equivalent rule p12 that have p9 ⪯OI p12 and p9 ⪯SA p12.
It is obvious that SA-subsumption is sound w.r.t OI-subsumption as when p ⪯SA p′, we have
∃θ : pθ ⊆ p′, thus p⪯OI p′.

4.3.4 Proper Rule Hierarchy

According to Proposition 4.1 and Example 4.3.3, we can infer that ({p4, p7, p8},⪯SA) is also
{(p8, p4),(p7, p8),(p7, p4)}. As SA-subsumption is transitive, knowing (p7, p8) and (p8, p4),
relationship (p7, p4) can be inferred via transitivity. We call a subsumption relationship redundant

if it can be inferred via transitivity, and a rule hierarchy proper if it contains no redundant
relationships. We here introduce an approach that builds a proper rule hierarchy Φ from a rule
set F w.r.t SA-subsumption, that is ∀(p, p′) ∈Φ : p⪯SA p′.

To build a proper rule hierarchy, we take inspirations from the top-down methods [39] that
simultaneously construct and explore rule hierarchies by repeatedly applying atomic specializa-
tion operators. An atomic specialization operator produces a rule p′ from another rule p such
that p⪯ p′ by modifying at most one element in p′ at a time. By employing the subsumption
frameworks that only identify the subsumption relationships corresponding to the relationships
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Fig. 4.2 An incomplete proper rule hierarchy generated based on the knowledge graph in
Figure.4.1a. We use abbreviations for lengthy predicate names, where A for "Advises", I for
"Is_a" and P for "Publishes". Dashed lines represent I-subsumption relationships and solid lines
represent A-subsumption relationships.

implied by atomic specialization operators, we can map a set of rules to a proper rule hierarchy.
By assuming the continuity of rule sets, that is, for instance, if rule p4 exists, its generalization
p8 also exists in the rule set, we here propose two subsumption frameworks that are derived
from SA-subsumption and correspond to the atomic specialization operators that perform atom
addition and variable instantiation, respectively.

Definition 4.4 (A-Subsumption). Addition subsumption (A-Subsumption) identifies the relation-

ship between rules p and p′ implied by a specialization operator which adds a new atom that

shares a connecting variable with the last atom in p to p to create p′. p A-subsumes p′, denoted

by p⪯A p′, iff p⪯SA p′, d(p) = d(p′) and |p′|= |p|+1.

Definition 4.5 (I-Subsumption). Instantiation subsumption (I-Subsumption) identifies the re-

lationship between rules p and p′ implied by a specialization operator which instantiates a

variable in p to create p′. p I-subsumes p′, denoted by p⪯I p′, iff p⪯SA p′, d(p) = d(p′)+1
and |p|= |p′|.

Given a rule set F , as the individual hierarchies Φa = (F ,⪯A) and Φi = (F ,⪯I) are
proper and resolved by the constrained versions of SA-subsumption, the combined hierarchy
Φ = Φa∪Φi is proper w.r.t SA-subsumption.

Example 4.3.5. Illustrated in Figure.4.2 is the union of hierarchies ordered by A-Subsumption

and I-Subsumption. It is a proper hierarchy w.r.t SA-subsumption. For instance, although the

subsumption relationship A(X ,Y )←⪯SA A(X ,bob)← P(bob,V0) is valid, it is not explicitly

linked in the hierarchy as it can be inferred via transitivity by considering A(X ,Y )←⪯SA

A(X ,Y )← P(Y,V0) and A(X ,Y )← P(Y,V0)⪯SA A(X ,bob)← P(bob,V0).

4.4 Framework Adaptation

In this section, we adapt RHF to GPFL, and design and implement two HPMs, namely prior
pruning and post pruning, that utilize generated rule hierarchies to remove irrelevant and redun-
dant rules, respectively. GPFL is a discriminative rule learner that takes the bottom-up strategy
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Algorithm 4.1: Augmented GPFL with Prior and Post Pruning
Input :G , I+, len
Output :Mined rule set F

1 Initialize empty set F
2 L← Generalization(G , I+, len)
3 Φa← A-Subsumption(L)
4 L′← PriorPruning(Φa)
5 for l ∈ L′ do
6 if l is a CAR then
7 Check quality of l and add l to F if it is relevant
8 end
9 else

10 S← Specialization(l,G , I+)
11 Filter out irrelevant rules in S
12 if S is not empty after filtering then
13 Φi← I-Subsumption(S)
14 S′← PostPruning(Φi)
15 Add all rules in S′ to F

16 end
17 end
18 end
19 Return F

to generate abstract rules and then specializes OARs into IRs in a top-down manner. Two types
of IRs are produced by GPFL, including:

HAR : rt(X ,ei)← r0(X ,V1), ...,rn(Vn,Vn+1)

BAR : rt(X ,ei)← r0(X ,V1), ...,rn(Vn,e j)

A Head Anchored Rule (HAR) is a specialization of an OAR where the non-connecting variable in
the head atom is substituted with a constant, and a Both Anchored Rule (BAR) is a specialization
of a HAR where the non-connecting variable in the last body atom is replaced by a constant. The
two-stage rule generation mechanism allows GPFL to efficiently create and evaluate IRs where
structurally similar IRs are collectively evaluated over shared groundings. It also presents an
opportunity, by adopting RHF, to perform stage-wise hierarchical pruning to effectively remove
unpromising rules.

In Algorithm.4.1, we introduce an augmented GPFL where we closely align the construc-
tion of rule hierarchies and the application of HPMs to the two-stage rule generation mech-
anism employed in GPFL. The system takes as inputs a knowledge graph G , a set of pos-
itive instances of a target predicate I+, and the maximum length a rule can have len and
outputs a rule set F . The length of a rule is the number of its body atoms. In the proce-
dure Generalization(G , I+, len), the system generalizes a set of paths originated from
I+ within length len into OARs and CARs and adds them to a rule set L. It then applies A-
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subsumption to L to build a rule hierarchy Φa that only contains the subsumption relationships
between abstract rules.

Before proceeding to discuss the prior pruning, we review some of the rule quality indicators
introduced in Chapter.3. Consider we have a rule p, the support [39] of p is defined as:

supp(p) = |Hp∩ I+| (4.3)

where Hp is the head grounding of p defined in Equation.3.1. We define the head coverage of a
rule as:

hc(p) =
supp(p)
|I+|

(4.4)

and smooth confidence [75] as:

smc(p) =
supp(p)
η + |Hp|

(4.5)

where η is an user-defined offset. We call a rule p relevant iff supp(p)> supp f , hc(p)> hc f

and smc(p) > smc f where supp f , hc f and sc f are pre-defined thresholds for corresponding
measures. We aim to use the procedure PriorPruning(Φa) to remove irrelevant IRs before
their creation. More specifically, as IRs are generated by specializing OARs, the system can
avoid the creation and evaluation of irrelevant IRs by identifying and pruning the OARs that
potentially create irrelevant IRs. Therefore, the problem is reduced to the efficient identification
of unpromising OARs. In the PriorPruning(Φa), the system traverses the hierarchy Φa

starting from the top rule, which is the rule that does not have any ancestors, in a breadth-first
fashion. A visited rule p and all of its descendants are pruned if supp(p)< supph where the prior
threshold supph is a pre-defined threshold on support. This makes sense because the support
of rules is a monotonic measure that tends to become smaller with increasing depth in a rule
hierarchy.

After the application of prior pruning, the system iterates over rules in the filtered rule set L′.
For a rule l in L′, if it is a CAR and considered relevant after evaluation, it will be added to the
rule set F . If l is an OAR, the procedure Specialization(l,G , I) is applied where a set
of HARs and BARs S are derived from l by instantiating certain variables in l. Irrelevant rules
in S are then filtered out. We call an OAR informative if its S is not empty after the removal
of irrelevant rules, otherwise it is uninformative. Inspired by the hierarchical feature selection
approaches proposed in Ristoski and Paulheim [102], we utilize a simple mechanism to identify
and prune redundant rules. Given a rule hierarchy (F ,⪯) over G , we consider a rule p redundant

if:

∃p′ ∈F : p′ ⪯ p,smc(p′)> smc(p) (4.6)
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#Triples

Dataset #Entities #Predicates #Train #Valid #Test #Total

FB15K-237-LV 14.54K 237 185K 62.02K 62.12K 310K
NELL995-LV 75.49K 200 92.44K 30.84K 30.92K 154K
WN18RR-LV 40.94K 11 55.79K 18.60K 18.60K 93K
OBL-PE 180K 28 4.19M 183K 180K 4.55M

Table 4.1 Statistics of the benchmark datasets.

We argue that as Hp ⊆ Hp′ because of p′ ⪯ p, and smc(p′) > smc(p), the existence of p does
not provide new information to the reasoning over G . We corroborate the argument via the
experiment results in the following section. By applying I-subsumption to S, the generated
hierarchy Φi contains pairs of HARs and BARs that share subsumption relationships. In the
procedure PostPruning(Φi), by removing the BARs that have smaller confidence than the
HARs subsuming them, the system creates a set S′ free of redundant rules, and then adds all
rules in S′ to F . Eventually, F is returned as the learned rule set where irrelevant and redundant
rules are removed by the prior and post pruning, respectively.

4.5 Experiments

In this section, we use the augmented GPFL as an example to demonstrate the effectiveness of
the application of HPMs through experiments on four publicly available datasets in two settings.
By enabling the application of the prior and post pruning, we observe considerable reductions in
the runtime and the number of learned rules without compromising the predictive performance.

4.5.1 Datasets

We select four publicly available datasets for experiments, including FB15K-237 [121], WN18RR
[26], NELL995 [134] and OBL-PE [15]. FB15K-237, WN18RR and NELL995 are popular
datasets for evaluating the performance of methods on Knowledge Graph Completion (KGC)
task, and OBL-PE is a subset of OBL dataset [15] that only contains positive triples. FB15K-237,
NELL995 and OBL-PE are created in such a way that their validation and test sets contain
no triples that are the reverse of known triples in the training set. These reverse triples allow
models with trivial rule rt(X ,Y )← rt(Y,X) to perform exceptionally well, which makes it hard
to understand the true performance of different approaches. WN18RR has around 35% of the
triples in validation and test sets that are reverse triples.

As pointed out in the previous chapter, the performance of instantiated rule learners suffers
greatly from the appearance of overfitting rules, and to remove overfitting rules through validation,
large validation set is needed. However, the sizes of validation sets in the default splits of FB15K-
237, NELL995 and WN18RR are too small to be useful for validation. Specifically, the validation
triples to total triples ratio is 5% for FB15K-237, 0.3% for NELL995 and 3% for WN18RR. In
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Fig. 4.3 Diagrams that show the numbers of different types of OARs in the sets of learned rules
over experiment datasets, where P-OARs stands for pruned OARs; I-OARs for informative
OARs, and U-OARs for uninformative OARs. The prior threshold is set to 10.

this work, we re-split FB15K-237, NELL995 and WN18RR into training/validation/test sets in a
6:2:2 ratio, and rename them by adding a "-LV" suffix that stands for large validation. Based on
our observations, the performance of the re-split OBL-PE is similar to that of the original splits,
so we keep the original OBL-PE for experiments. After re-splitting, the proportion of reverse
triples is 6.5% for FB15K-237-LV, 19% for WN18RR-LV, and 6% for NELL995-LV. Statistics
about these datasets is listed in Table.4.1.

4.5.2 Experiment Setup

We implemented RHF and the HPMs on top of the GPFL codebase1. GPFL is implemented in
Java and deeply integrated with the Neo4j2 graph database. We configure GPFL to run in both
constrained and unconstrained settings. For the majority of rule learners, it is often not possible
to explore the entire rule space in a reasonable time on large KGs. Therefore, various time and
space constraints are adopted to terminate systems prematurely to meet specific time and space
requirements. For experiments on FB15K-237-LV and OBL-PF, we set time constraints on the
generalization and specialization procedures, that is when the time constraints are reached, the
system stops the running procedure and proceeds. For WN18RR-LV and NELL995-LV, we
configure the system to run without constraints. For all experiments, we use the following setting
of parameters: len for CARs and IRs is set to 3, and the filtering of overfitting rules is turned on
where the overfitting threshold is set to 0.1. Except for WN18RR-LV, we set supp f to 3, hc f to
0.001 and sc f to 0.001. For WN18RR-LV, we set supp f to 2, hc f to 0.0001 and sc f to 0.0001. All
experiments were conducted on the AWS EC2 instances that have 8 CPU cores and 64GM RAM.
We have made our codebase and datasets available at https://github.com/irokin/RuleHierarchy.

4.5.3 Evaluation Protocol

We evaluate the predictive performance of the system by tasking it with the KGC problem.
Specifically, A KGC query takes the form of rt(ei,?) or rt(?,ei) where rt is the target predicate,
and the question mark is expected to be replaced with the candidates e ∈ E that are suggested

1https://github.com/irokin/GPFL
2https://github.com/neo4j/neo4j
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(a) NELL995-LV (b) WN18RR-LV

(c) FB15K-237-LV (d) OBL-PE

Fig. 4.4 Experiment results over different prior thresholds on the augmented GPFL. When the
threshold is 0, it reports the results of the original GPFL.

by learned rules such that predictions rt(ei,e) or rt(e,ei) for rt are proposed. We follow the
evaluation protocol proposed in Bordes et al. [13] where both head query rt(ei,?) and tail query
rt(?,ei) are answered. For ranking the predictions of a query, we adopt the maximum aggregation
strategy proposed in Meilicke et al. [75] where predictions are sorted by the maximum of the
confidence of rules suggesting the predictions, if there are ties, the tied predictions are resolved by
recursively comparing the next highest confidence of suggesting rules until all ties are resolved.
We report experiment results in Mean Reciprocal Rank (MRR) in filtered setting [13]. For
FB15K-237-LV and NELL995-LV, we randomly select 20 target predicates for experiments, and
for WN18RR-LV and OBL-PE, all predicates are used for experiments.

4.5.4 Prior Pruning

In this section, we show that the prior pruning is able to effectively remove irrelevant rules. All
experiments are conducted without the application of the post pruning where when the prior
threshold is set to 0 or turned off, the augmented GPFL is reduced to the original GPFL which
serves as the baseline.

As prior pruning removes irrelevant rules by identifying and pruning unpromising OARs,
and uninformative OARs (U-OARs) are the most unpromising OARs in that none of the rules
derived from U-OARs are relevant, we use the number of U-OARs as an indicator to the
effectiveness of the prior pruning. We start by discussing the experiment results on NELL995-LV
and WN18RR-LV that are conducted in the unconstrained setting. As illustrated in Figure.4.3,
on both NELL995-LV and WN18RR-LV, the numbers of U-OARs drop significantly while the
numbers of informative OARs (I-OARs) stay more or less the same. The application of prior
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Dataset PostPrune MRR #R-Rules RAT(s)

FB15K-237-LV
No 0.215 6.07M 4.17K
Yes 0.216 5.11M 3.56K

OBL-PE
No 0.202 8.69M 2.75K
Yes 0.202 7.63M 2.67K

NELL995-LV
No 0.214 5.59M 4.78K
Yes 0.214 4.08M 4.27K

WN18RR-LV
No 0.291 28.9K 39.5
Yes 0.291 28.8K 38.7

Table 4.2 Post pruning experiment results. #R-Rules is the number of relevant rules and RAT
stands for the rule application time measured in seconds.

pruning succeeds in removing large portions of U-OARs on both datasets. Accordingly, as shown
in Figure.4.4a and Figure.4.4b, the removal of U-OARs by the prior pruning results in significant
decrease in the runtime where the predictive performance fluctuates within a small range. In
the constrained setting, the effect of the removal of irrelevant rules is more complicated due to
the interactions among various factors. In Figure.4.3, on both OBL-PE and FB15K-237-LV, the
total number of visited OARs with the prior pruning applied is considerably larger than that
of the baseline, which results in the discovery of more informative rules within a fixed time
frame. This phenomenon is attributed to that the runtime, which would be wasted on creating and
evaluating irrelevant rules if the prior pruning is turned off, is now allocated to further explore
the rule space. In particular on FB15K-237-LV, the saved runtime leads to a 72% growth in
the number of I-OARs, whereas on OBL-PE, most of the newly discovered rules are U-OARs.
In Figure.4.4c and Figure.4.4d, as in constrained setting the runtime of the experiments with
different thresholds is always the same, we instead compare the number of I-OARs. Specifically,
we observe on FB15K-237-LV that the growth in I-OARs contribute to the improvements in the
predictive performance, and on OBL-PE, because most of the I-OARs are already discovered
with the baseline, its performance gain is negligible. It is worth noting that the prior pruning
is much more effective on the datasets with large amount of predicates. This is reasonable
because the prior pruning operates in the space of abstract rules and the amount of abstract rules
is proportional to that of predicates.

4.5.5 Post Pruning

In contrast to the prior pruning that aims to remove irrelevant rules, the post pruning aims to
remove relevant rules that are considered redundant. We demonstrate the validation of our
definition of redundant rules and the effectiveness of the post pruning by examining if the
predictive performance is affected by the removal of relevant rules. As demonstrated in Table.4.2,
the removal of relevant rules has negligible impact on the predictive performance. One expected
benefits from the removal of redundant rules is that the time used for rule application (RAT)
decreases with the drops in the number of relevant rules. It is worth noting that on FB15K-237-
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LV, 15% of the relevant rules are removed by the post pruning at the expense of a decrease by
0.01 in MRR, which consequently reduces the RAT by around 600s. Post pruning is much less
effective on WN18RR-LV because most of its relevant rules have larger confidence than their
ancestors.

4.5.6 Discussion

By indexing OARs and instantiated rules, the construction of rule hierarchies for prior and
post pruning via A-subsumption and I-subsumption, respectively, is of linear complexity. The
execution time and memory expense of prior and post pruning are neglectable compared to that
of the learning of rules. It is ideal to turn on both prior and post pruning when the bottom-up
learner is compatible. However, it is important to notice that, as prior pruning works on the rule
hierarchy after the system has discovered all of the qualified OARs, it is reduced to a flat pruning
method for learners that score OARs at the time of discovery. For post pruning, as it requires the
rules in a hierarchy are already scored to work, it can be applied to any type of bottom-up rule
learners.

4.6 Conclusion

In this chapter, we aim to apply HPMs to bottom-up instantiated rule learners for better predictive
performance and scalability. To achieve this, we first introduced RHF that constructs a proper
rule hierarchy from a set of rules using a collection of novel subsumption frameworks, and
then adapted RHF to GPFL where we designed and implemented two HPMs that utilize the
generated rule hierarchies to remove unpromising rules. Through experiments on four datasets
with the augmented GPFL, we demonstrated the effectiveness of the application of HPMs, where
we observed significant reductions in the runtime and the number of learned rules without
compromising the predictive performance. This successful adaptation demonstrates the potential
benefits and practicability when applying HPMs to bottom-up learners. By taking this work as a
foundation, developing advanced HPMs that make use of the rule hierarchies produced by RHF
are beneficial to the scaling up of existing bottom-up learners.
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Chapter 5

Learning Logical Rules for Drug
Repurposing

So far, we have introduced the development of systems and optimization approaches that enable
the efficient mining of instantiated rules from large-scale Knowledge Graphs (KGs). In this
chapter, by incorporating the techniques from previous chapters and state-of-the-art symbolic
graph reasoning methods, we develop a novel drug repurposing system that takes a feature
engineering strategy where a feature matrix with both abstract and instantiated rules as features
and drug-disease pairs as rows is generated from biomedical KGs and then passed to train a
conventional machine learning model for the prediction of potential drug-disease therapeutic
associations. Through extensive experiments on two large-scale biomedical KGs, we demonstrate
that the proposed system outperforms existing methods by a large margin. We also conducted a
case study where we repurpose drugs for Pulmonary Arterial Hypertension (PAH) to show that
the proposed system is capable of suggesting reasonable repurposing opportunities supported
with interpretable evidences.

5.1 Introduction

According to a 2016 study [27], the process of bringing a new therapeutic drug to market is
estimated to cost $1.6 billion. Over the average development cycle of 15 years [100], the
majority of candidate compounds selected by screening for biological targets fails to progress
to clinical trials due to toxicity issue or low efficacy [50]. With the increase in development
cost and time due to high attrition rate and the drop in the number of approved drugs in
recent years [105], innovative approaches for efficacy prediction and target identification are
in urgent need. Drug repurposing, a strategy for identifying new indications for approved or
investigational drugs, offers fast and cost-effective solutions for therapeutic development [96].
The advantages of drug repurposing mainly attribute to the knowledge of existing drugs where
the safety of these drugs has already been tested in clinical trials for other applications and
their pharmacological analyses are often available for research [149]. The accelerated drug
development cycle enabled by the repurposing strategy has made a significant impact on the
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Fig. 5.1 The metagraph of the heterogeneous biomedical network Hetionet1.

advancement of healthcare. Specifically, drug repurposing provides a feasible solution for
finding therapeutic treatments for rare or emerging diseases where conventional drug discovery
paradigms struggle to succeed [92]. There are over 8000 rare diseases affecting approximately
350 million people. Only 5% of rare diseases have authorized treatments. However, the low
morbidity makes the investment in developing treatments for rare diseases through de novo drug
discovery risky for large pharmaceutical companies [35]. Although with known concerns [14],
drug repurposing allows for the therapeutic development of rare diseases to progress in a much
faster pace with significantly less cost. For example, to test efficacy for Cushing’s syndrome, the
repurposed compound, mifepristone, required a cohort of fewer than 30 patients, whereas a new
compound, levoketoconazole, required more than 90 participants [51]. Drug repurposing also
plays an increasingly important role in the development of treatment for emerging diseases. A
large body of research into repurposing existing drugs for COVID-19 [18] has been carried out in
a short time [113, 62, 111]. Top-ranked candidates, including mefuparib [42], toremifene [147]
and melatonin [148], are suggested by various systems based on machine learning algorithms and
to be tested in clinical trials. With the acknowledgement of the significance of drug repurposing,
research on developing novel drug repurposing systems has attracted increasing attention [96].

5.1.1 Data-driven Approaches

The rapid advancement in computing hardware and machine learning algorithms and the avail-
ability of a large amount of public biomedical databases have facilitated the development of
data-driven approaches for the modelling of pharmacological processes [38]. In comparison to
the experimental drug repurposing approaches relying on the screening of repositories of existing
chemical compounds for the interactions with targets of certain diseases [125], Computational

1©Hetionet in Neo4j licensed under CC BY 4.0.
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5.1 Introduction

Drug Repurposing (CDR) aims to model drug efficacy for the prediction of new drug-disease
treatment associations in a data-driven manner [55]. To such end, two fundamental assumptions
underlying the design of CDR systems are established: 1.) because it is common for drugs to
have multiple target proteins, it is reasonable that a multi-target drug might be used in multiple
therapeutics, and 2.) a drug that acts on the shared phenotypic, genomic and clinical factors of
different diseases might also be beneficial to more than one disease [153]. In the ground of the
first assumption, many computational frameworks that extract insights from a single type of data
have been proposed for drug repurposing. For instance, Zhao and Li [145] used protein target
interaction networks for efficacy modeling, and Stanfield et al. [117] predicted the treatment
relationship between diseases and drugs by consulting gene expression activation following
different drug treatment regimes. However, given the complexity of the pathogenesis of diseases
and the mechanism of action of drugs, no single data type can capture all of the factors necessary
to understand the interplay that contributes to an effective therapeutics. Data integration has thus
been proposed to account for the incompleteness of mining from a single type of source and
support the realization of the second assumption by fusing multiple types of data for modelling
[153]. The majority of CDR systems that adopt this idea models the integration of different types
of data as a Knowledge Graph (KG) where biomedical entities are nodes and their interactions
are links between nodes [52, 15, 57]. Modelling data from multiple sources as KGs opens up
opportunities for the application of advanced graph reasoning systems [20] to drug repurposing
task.

5.1.2 Reasoning on Biomedical Knowledge Graphs

Mining actionable insights from KGs for downstream analytical and predictive applications is
the core task of knowledge graph reasoning. From the perspective of knowledge representation,
we roughly classify relevant works into three groups: sub-symbolic methods [129] that aim to
learn and reason with knowledge in the form of low-dimensional embeddings; symbolic systems
[87] that represent knowledge as discrete symbols and leverage the principles of statistics and
logic for learning, and hybrid approaches, such as neural-symbolic machines [53], that use
sub-symbolic learning strategies to generate optimal symbolic outputs. Due to the easy access
of implementations of various high-performance sub-symbolic graph reasoning frameworks,
such as DGL [128], GraphVite [150] and BigGraph [68], a large number of recent CDR works
utilize sub-symbolic systems to model drug efficacy. For instance, Sosa et al. [115] built a
KG containing drug, disease and gene entities that are linked by weighted edges where the
weight associated to an edge indicates the confidence score computed by mining biomedical
literature, and an uncertain KG embedding method [19] is then applied for learning. Gysi et al.
[48] identified 81 top-ranked repurposing candidates for COVID-19 by adopting the architecture
of the graph neural network previously used for modelling polypharmacy side effects [152].
Although sub-symbolic works often demonstrate strong predictive performance, their black-box
nature presents an additional challenge for risk-sensitive biomedical applications. Inability to
meaningfully interpret mined patterns and understand correlations between graph regularities
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Fig. 5.2 Overview of Ranta system.

and task targets motivate researchers to investigate symbolic and hybrid methods that are more
explainable. Noticeably, as most of the hybrid approaches, such as RLvLR [90], RUGE [47] and
RuLES [54], are developed in the past 5 years, their applicability has not yet been explored for
drug repurposing. In contrast, several symbolic systems have been proven effective in identifying
and interpreting drug repurposing opportunities.

One representative symbolic system is the Rephetio project [52] where the authors first
constructed a KG that encodes different types of entities and relationships extracted from
millions of biomedical studies, and then built a feature matrix containing patterns that distinguish
treatments from non-treatments. Specifically, a set of abstract rules (ARs) that describe the
treatment relation between drug-disease pairs is derived from a manually declared metagraph.
For instance, illustrated in Figure.5.1 is the metagraph of the KG built in Rephetio, where
relationship type T REAT S_CtD represents the concept of treatment and a possible AR that
explains it is:

p1 : T REAT S_CtD(X ,Y )← BINDS_CbG(X ,V1),ASSOCIAT ES_DaG(Y,V1)

which states the pattern "if a compound X is bound to a gene V1 and V1 is associated to a
disease Y , then X treats Y " where X , Y and V 1 are variables that can be replaced by the concrete
entities in the KG. The generated ARs are treated as columns of the feature matrix, and drug-
disease pairs are the rows. For each cell, a specificity score indicating how likely a drug-disease
pair is connected via an instantiation of an AR is computed by traversing all ground paths
of the AR between the pair. Eventually, the filled feature matrix is utilized to train a logistic
regression model that makes repurposing suggestions. Rephetio shows promising predictive
performance under various evaluation settings, and most importantly, patterns strongly correlated
to drug efficacy can be easily identified and interpreted through the ranking of AR features by
model coefficients. However, the requirement for manually declared metagraph, the expensive
computation of cell values via complete search, the inefficient implementation and the adoption
of the top-down learning paradigm limit its practicability on learning from large-scale KGs.
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5.1.3 Contribution

As experimentally demonstrated in AnyBURL [74] and GPFL, the inclusion of instantiated
logical rules (IRs) for logical inference significantly improves predictive performance and system
expressivity. Given that Rephetio also shows promising performance by implementing a feature
engineering strategy with a degree-sensitive specificity score as feature values, it is reasonable to
assume that a feature matrix complemented with IRs as additional features can further improve
system performance. However, due to the enormous volume of IRs extracted from large-scale
KGs, it is neither practical nor beneficial to include all IRs as features. An instantiated rule
selection mechanism that only includes a small set of appropriate IRs as features is needed to
address this challenge. In this work, we propose Ranta (Random Walk Based Metapath Mining),
a symbolic knowledge graph reasoning system that integrates the ideas and implementations of
multiple state-of-the-art systems. The overall design of Ranta is illustrated in Figure.5.2. A base
rule learner is employed to generate both high quality ARs and IRs efficiently. The generated IRs
are then passed to a rule model tuner where a minimal subset of IRs is selected by optimizing
a loss function adopted from RuDIK [91] according to a set of tuning examples that decide
what specific concepts to be modeled. Eventually, a matrix builder fills the matrix cells in with
either Rephetio-style specificity scores or binary values. Similar to Rephetio and PRA [65],
the generated matrix is then used to train a logistic regression model. Through experiments
on two large-scale biomedical KGs for drug repurposing task with Ranta and recent symbolic
systems, we observe that 1.) systems based on feature engineering strategy, including Ranta
and Rephetio, outperform ones that rely on logic for inference, and 2.) with the inclusion of
IRs, Ranta largely improves predictive performance over Rephetio where models that include
multi-hop IRs (length= 2) show better performance than ones with one-hop IRs (length= 1). In
summary, our contributions are:

• We propose a novel symbolic system that builds and learns from a feature matrix with
both ARs and a subset of IRs as features.

• We conducted an empirical study where state-of-the-art symbolic systems are evaluated
for drug repurposing task in terms of predictive performance and interpretability. We show
that the proposed system outperforms existing alternatives.

• Through a case study that repurposes existing drugs for PAH, we show that Ranta is able
to prioritize valid repurposing opportunities while providing reasonable explanations that
support the predictions.

5.2 Methodology

In this section, we first introduce the necessary preliminaries and terminologies used to describe
the system, and then elaborate on the design of Ranta. The introduction of Ranta is divided
into three parts: the base rule learner in charge of producing both ARs and IRs efficiently; the
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rule model tuner that selects a subset of IRs that best represents the learning target, and the
matrix builder which constructs a feature matrix from a given set of examples and the mined and
selected logical rules.

5.2.1 Preliminaries

To better describe the system proposed in this chapter, we review some of the notations used
in previous chapters and introduce new ones. A Knowledge Graph (KG) is denoted by G =

(E ,R,T ) where a ground atom r(ei,e j) ∈T is composed of a predicate r ∈R and constants
ei,e j ∈ E . ei is known as the subject of r(ei,e j), and e j the object. We denote by Subr and Ob jr
the sets that contain all the subjects and objects of the ground atoms with predicate r in a KG,
respectively. Given a non-ground and closed logical rule:

p1 : rt(X ,Y )← r1(X ,V0), ...,rn(Vn,Y )

we call rt(X ,Y ) the head atom and the rest the body atoms of p1, and rt is the target predicate
and X and Y are the target variables. An instance of p1 is:

p2 : rt(e0,e1)← r1(e0,e2), ...,rn(en,e1)

which is a path originated from rt(e0,e1). The instantiation relationship between p1 and p2 is
denoted by p2 ∈ In(p1). The instantiation of the target variables is called a head grounding, e.g.,
(e0,e1) is the head grounding of p1 and denoted by hp1 , and the corresponding body grounding
is denoted by bp1 . For a non-ground rule p, we define a set containing all the head groundings of
p over a KG as:

Hp = {(x,y)|(x,y) = hp′, p′ ∈ In(p)} (5.1)

Given a set of entity pairs E, we define the bounded coverage of a rule p as:

Cp(E) = {(x,y)|(x,y) ∈ (Hp∩E)} (5.2)

which contains the pairs in E covered by p. Following RuDIK [91] where the incomplete and
noisy nature of KGs are taken into consideration, we further define the unbounded coverage of p

as:

Up(E) = {(x,y)|(x,y) ∈ (Hp∗ ∩E)} (5.3)

where p∗ is a modified p such that the instantiation of target variables are only subject to their
hosting body atoms instead of the connectivity of body atoms. For instance, p1 is reduced to p∗1:

p∗1 : rt(X ,Y )← r1(X ,V0),rn(Vn,Y )
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where V0 ̸= Vn such that the instantiation of X and Y are decided only by their hosting body
atoms. For a given open rule:

p3 : rt(X ,Y )← r1(X ,V0), ...,rn(Vn,Vn+1)

p∗3 then is:

p∗3 : rt(X ,Y )← r1(X ,V0)

where body atoms that contain no target variables are discarded. Given a rule p and a set E, we
can observe that Cp(E)⊆Up(E). As shown in Figure.5.2, Ranta requires two types of examples
to generate features: the learning examples passed to the base rule learner for the computation of
rule quality and the tuning examples utilized by the rule model tuner to select an instantiated
rule subset. For simplicity, we denote examples of the target predicate as I and use a super-
and sub-scripts based convention to name different types of examples. Positive and negative
examples are denoted by I+ and I−, respectively. Learning examples are denoted as Il and tuning
examples as Iu. For instance, I+l represents positive learning examples and I−u means negative
tuning examples. The definition and generation of these examples will be introduced in the
following sections.

5.2.2 Ranta System

We formulate drug repurposing as a probabilistic binary classification problem where we aim to
build a machine learning model that predicts the probability of whether there exists therapeutic
relationship between a given drug-disease pair. In addition, it can also be described under the
Knowledge Graph Completion (KGC) framework, that is to model the probability distribution of
the existence of the treatment relationships between given entity pairs. Ranta approach this issue
with a feature engineering strategy. Overall, Ranta assigns to each drug-disease pair a feature
vector with both high quality ARs and a subset of IRs as features and specificity or binary scores
as values. The logical rules are first produced by a base rule learner; then a small set of IRs,
namely a rule model denoted by P, that best describes the target predicate in certain contexts is
generated via a rule model tuner by optimizing a loss function; Both the ARs and rule model
are then passed to a matrix builder that computes feature values, and eventually, the generated
feature matrix is used to train a logistic regression model. In the rest of this section, we introduce
in detail how this process is implemented in Ranta.

Base Rule Learner

A base rule learner takes as inputs a KG G and a set of positive learning examples I+l of the
target predicate rt and produces logical rules that have head atoms with the target predicate. As
discussed in Chapter.2, Rule learners differ in the choices of language bias, problem definition
and learning paradigm. In the case of Rephetio, it generates a comprehensive set of Closed
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Abstract Rules (CARs), e.g., p1, in a top-down manner via the traversal of a manually declared
metagraph. As a metagraph encodes both ontological and semantic information about the target
concept to be modeled, the declaration of it requires domain knowledge. Moreover, the top-down
learning mechanism tends to generate groundless rules causing system overheads. To address
these issues, we instead use GPFL as the base learner in that, in addition to CARs, GPFL mines
two types of IRs (Head Anchored Rules (HARs) and Both Anchored Rules (BARs)) in an
efficient way from large-scale KGs. Detailed introduction and examination about GPFL are
elaborated in Chapter.3.

Rephetio demonstrates that the inclusion of long CARs (maximal length of 4) as features
yield the best outcome. To optimize the production of long CARs, we replace the uni-directional
traverser implemented in GPFL with a bi-directional one [118] that starts the search from
both ends of an instance. Noticeably, as GPFL uses random walkers to retrieve paths in the
neighbourhood of instances for the generation of ARs, the setting of the number of random
walkers has great impact on system performance. We review two quality measures used in Ranta
for evaluation. The standard confidence of a rule p is defined as:

sc(p) =
supp(p)

Hp
(5.4)

where supp(p) = |Cp(I+l )| is the support of p, and the smooth confidence as:

smc(p) =
supp(p)
η +Hp

(5.5)

with η being a pre-defined offset that mitigates the problem where rules with small Hp have better
quality score yet often not necessarily more valuable than rules with large Hp. Noticeably, the
computations of both sc(p) and smc(p) require only positive learning examples I+l to compute
the support, which implies the Closed World Assumption (CWA) is employed.

Rule Model Tuner

A rule model tuner takes in a list of IRs ranked by quality, denoted by P′, and positive and
negative tuning examples, and outputs a rule model P with P ⊆ P′. Positive tuning examples
I+u are provided by user and can be the same set as I+l or a set customized for specific concepts.
As I+u is used to decide what rules to include in P, the choice of elements in I+u has a significant
impact on the resultant P, thus affects the system performance. It is rare for KGs to record true
negative facts, and even in the case they do, the number of positive and negative facts is often
largely imbalanced. Therefore, negative tuning examples I−u are, in most cases, generated by a
negative sampling strategy. Here we introduce two negative sampling strategies evaluated in our
experiments. The first one is the Local-closed World Assumption (LCWA) [39] which states
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Algorithm 5.1: Rule Model Tuner
Input :I+u , I−u ,P′, th, ti
Output :A rule model P

1 Initialize an empty set P;
2 for p ∈ P′ do
3 if ∆l(p,P)< 0 then
4 P← p∪P;
5 for q ∈ (P\p) do
6 if ∆l(q,P\q)≥ 0 then
7 P← P\q;
8 end
9 end

10 end
11 if l(P)≤ th or Timer() > ti then
12 Break;
13 end
14 end
15 return P;

that, for a given target predicate rt , the elements in the set:

I−lcwa =
⋃

x∈Subrt

{(x,y)|y ∈ E ,rt(x,y) /∈T } (5.6)

are considered negative examples. LCWA assumes the target predicate is functional, that is for a
given subject x, the objects y in triples rt(x,y) ∈T are all possible entities that can be the objects
for x in rt . The RuDIK strategy [91] extends LCWA by assuming the functionality of the inverse
of rt and adopting a strict semantic constraint. We first define an auxiliary set:

I−rudikob j
=

⋃
y∈Ob jrt

{(x,y)|x ∈ E ,rt(x,y) /∈T } (5.7)

and then the set of negative examples produced by following the RuDIK strategy is:

I−rudik = {(x,y)|(x,y) ∈ I−lcwa∪ I−rudikob j
,r′(x,y) ∈T ,r′ ̸= rt} (5.8)

where the condition r′(x,y) ∈ T with r′ ̸= rt states that a pair (x,y) must be linked by a
predicate other than rt to be considered negative, otherwise the entities in the pair are less likely
semantically related. We drop the additional constraint requiring the subjects (objects) of the
generated negative examples to be of the same entity type in the original RuDIK strategy. From
our observation, it is common that entities of the types that are different but on the same branch
of a type hierarchy occur at the same position in the instances of a predicate. For instance in
Repotrial, entities of types "SmallMolecule" and "BiotechDrug" are sub-types of drug and appear
as subjects in triples with "HasIndication" predicate.
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Now we introduce a loss function adapted from RuDIK [91] that measures the fitness of a
rule p to the target predicate rt . The loss function is defined as:

l(p) = α · (1−
|Cp(I+u )|
|I+u |

)+β ·
|Cp(I−u )|
|Up(I−u )|

(5.9)

where α,β ∈ [0,1] and α +β = 1. l(p) is composed of two components where the first compo-
nent associated with α measures the proportion of positive examples not covered by the rule,
and the second component indicates the degree of the presence of errors. For a rule model P, its
loss function is then translated as:

l(P) = α · (1− |CP(I+u )|
|I+u |

)+β · |CP(I−u )|
|UP(I−u )|

(5.10)

Therefore, by tuning the composition of P such that l(P) is minimized, a subset of IRs that best
models the target predicate can be found. This can be achieved by iteratively adding rules p ∈ P′

that result in a decrease in l(P) into P until a loss threshold th or a maximal runtime ti is reached.
We define the change in l(P) after the addition of a rule p as:

∆l(p,P) =−α · (
|Cp(I+u )\CP(I+u )|

|I+u |
)+β · (

|Cp∪P(I−u )|
|Up∪P(I−u )|

− |CP(I−u )|
|UP(I−u |)

) (5.11)

Given a rule p, we consider the addition of it to P beneficial when ∆l(p,P)< 0. As shown in
Algorithm.5.1, a rule p ∈ P′ is added into P if ∆l(p,P)< 0. The for loop from line 5 to 9 acts as
a replacement mechanism that is new to the original RuDIK work. The replacement mechanism
is used to discard existing rules in P that become redundant or inappropriate because of the
addition of a new rule. For instance, given a newly added rule p and an existing rule p′, if
C′p(I

+
u ) ⊂Cp(I+u ) and Cp(I−u ) ⊂C′p(I

−
u ), then the removal of p′ after the addition of p is very

likely to further optimize the loss of P.

Matrix Builder

Once a rule model P is produced, a matrix builder takes the union of P and ARs, denoted by
R = P∪ARs, and a set of known drug-disease pairs I to create a feature matrix M ∈ R|I|×|R|

where a cell value mi j ∈M measures the relevance of a logical rule p j ∈ R to a pair (x,y)i ∈ I

and is computed by a feature value function s : G , p j,(x,y)i→ mi j. We select two feature value
functions for evaluation. The first one is a simple yet proven function:

s(G , p j,(x,y)i)bin =

1 ∃p ∈ In(p j) : hp = (x,y)i

0 otherwise
(5.12)

which uses binary values to measure the existence of an instance of p j that originates from (x,y)i.
Given p j and (x,y)i, Degree-weighted Path Count (DWPC) [52], measures the prevalence of the
instances of p j in the neighbourhood of (x,y)i. For a ground atom a = r0(e0,e1), we define the

66



5.3 Experiments

degree of e0 w.r.t a as:

da(e0) = |{y|r0(e0,y) ∈T }| (5.13)

and correspondingly, the degree of e1 w.r.t a as:

da(e1) = |{x|r0(x,e1) ∈T }| (5.14)

These degrees reflect the numbers of the one-hop neighboring entities of e0 and e1, respectively,
under the constraints of the hop direction and predicate type inferred from the ground atom a.
Given a body grounding b1 = (a0,a1) with a0 = r0(e0,e1) and a1 = r1(e1,e2), a corresponding
degree vector Db1 = {da0(e0),da0(e1),da1(e1),da1(e2)} can be generated. Now, we can define
the DWPC value for a rule p j and an entity pair (x,y) j as:

s(G , p j,(x,y)i)dwpc = ∑
b∈B(x,y)i

p j

∏
d∈Db

d−w (5.15)

where B(x,y)i
p j = {bp|p ∈ In(p j),hp = (x,y) j} is a set containing all the body groundings of the

instances of p j that have the head grounding (x,y) j, and a dumping factor w∈ [0,1] that penalizes
the occurrence of high-degree entities. Given a pair of rule p j and entity pair (x,y) j, DWPC
assigns to each instance of p j originated from (x,y) j a score which measures how specific the
path is. The idea about the path specificity is that the larger the number of high-degree entities
occurring in the path is, it is more likely that the concept expressed by the path is general
because high-degree entities often represent high-level concepts. It is expensive to compute the
exact DWPC values as it needs to retrieve all instantiation of a rule for a given pair. For better
scalability, we compute approximate DWPC values by employing random walkers to extract
only subsets of rule groundings.

5.3 Experiments

In this section, we show the experiment results of Ranta and other state-of-the-art graph reasoning
systems on two large-scale biomedical KGs for drug repurposing. We first demonstrate the
superiority of Ranta in predictive performance over existing works, then conduct a series of
internal analysis to understand the factors affecting Ranta’s performance. Eventually, a case
study where Ranta suggests known drugs with potential indication for PAH is provided.

5.3.1 Datasets

Many KGs that fuse multiple types of data from various sources have been made publicly
available for drug repurposing, including the recently published DRKG [57] and OpenBioLink
[15]. In this work, we test the proposed and state-of-the-art symbolic systems on two large-
scale biomedical KGs, the Hetionet [52] and Repotrial. Their statistics are shown in Table.5.1.
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Dataset #Entity #Entity Types #Triples #Triple Types |I+| |I−| #Drugs #Diseases

Hetionet 47k 11 2.25m 24 755 3.02k 1.5k 137
Repotrial 350k 7 14.21m 13 3.9k 1.05k 13.3k 24.12k

Table 5.1 Statistics of Hetionet and Repotrial.

Hetionet combines biological, clinical, pharmacological information from 29 public resources
to model drug efficacy. It contains 1552 small molecule drugs and 137 diseases among which
755 treatments are identified. The target predicate for Hetionet is "TREATS_CtD". Repotrial
is a private KG that is constructed under the REPO-TRIAL project aiming to explore novel
strategies for in silico drug repurposing. Repotrial compiles 13300 drugs, including 11268 small
molecule drugs and 2032 biotech drugs, and 24120 diseases in the KG. 3906 known treatment
relationships are recorded where the treatment predicate is represented as "HasIndication".
Hetionet employs a gene-centric data modeling strategy where 16 of 24 predicates involve the
participation of gene entities, which results in that the majority of mined regularities are explained
in terms of interactions with gene. In contrast to how Hetionet excludes the inclusion of protein
entities and encodes the influence of protein-related interactions in high-level relations such as
the binding association between drugs and genes, Repotrial pivots towards modeling around
protein interactions, which leads to the fact that 7 of 13 predicates are protein-related, such
as protein-protein interaction, gene-protein expression and drug-protein target. True negative
examples are not recorded in either KG. Different to the negative tuning examples generated
in a rule model tuner, true negative examples, together with true positive ones, are utilized to
train, validate and test the logistic regression model, thus must be prepared beforehand. For
Hetionet, we follow the strategy used in the original paper where 3020 unknown drug-disease
pairs are randomly selected as the negatives. For Repotrial, a set of 1052 true negative pairs
are generated by consulting a gold standard database, namely repoDB [16], that contains both
positive and negative drug-disease associations. We consider a possible drug-disease candidate
in Repotrial negative if a terminated, withdrawn or suspended trial that examines whether the
drug has indication for the disease can be found in repoDB.

5.3.2 Experiment Setup

Ranta is implemented in Java on top of the Neo4j2 graph database. We employ the implementa-
tion of GPFL augmented with RHF (introduced in Chapter.4) as the base rule learner. We use the
stratified nested cross-validation strategy [61] to evaluate Ranta. Specifically, given a set I that
contains both known positive and negative examples, an external stratified 5-fold cross-validation
is applied to I to create 5 example batches where for each batch, a fold is held out as the test set It
only used for the evaluation of the logistic regression model, and the other four folds Ir are used
for rule learning and rule model tuning. In rule learning, we set I+l = I+r and further split I+l into
training and validation sets in a 6:4 ratio where the validation set is used by GPFL to mitigate
the overfitting issue. In rule model tuning, we set I+u = I+l and I−u ∈ {I−lcwa, I

−
rudik}. In matrix

2https://github.com/neo4j/neo4j
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Hetionet Repotrial

System AUPRC AUROC AUPRC AUROC

RLvLR [90] .711 .852 .952 .877
AMIE+ [39] .733 .865 .959 .891
AnyBURL [75] .807 .932 .982 .933
GPFL+IR1 .766 .894 .968 .902
GPFL+IR2 .818 .941 .982 .937

Rephetio [52] .867 .948 .981 .931
Ranta+IR1+Bin .895 .956 .981 .937
Ranta+IR1+DWPC .897 .959 .982 .941
Ranta+IR2+Bin .909 .962 .981 .943
Ranta+IR2+DWPC .932 .977 .987 .957

Table 5.2 Predictive performance of various systems on Hetionet and Repotrial, where the
top section contains systems utilizing logic inference, and the bottom section shows feature
engineering based systems. "+IRn" means the system includes IRs of maximal length n. "+Bin"
and "+DWPC" indicate that feature values are binary and DWPC values, respectively. The best
results are marked bold.

building, given a set of rule features R, we generate a matrix M ∈R|I|×|R| for all known examples.
In the training of a logistic regression model, an internal stratified 3-fold cross-validation is
applied to the rows representing examples in Ir for model selection. Eventually, the average of
system performances is reported. For the evaluation of other symbolic systems, we use a 5-fold
cross-validation strategy as they do not require the tuning of hyper-parameters. In the evaluation
of Ranta, we use the following common settings: the length of ARs is set to 4; the number of
random walkers to 600; the offset factor in Equation.5.5 to 5; α and β in Equation.5.11 to 0.7
and 0.3, respectively, and the dumping factor w in Equation.5.15 to 0.4. On Repotrial, we set the
loss threshold th to 0.07 and runtime constraint ti to 10800s, and on Hetionet, th to 0.05 and ti to
18000s. We conducted all experiments, with Ranta and other systems, on a server that has a 32
cores Intel Xeon CPU and 128GB RAM. When multi-threading is possible, we run experiments
with 16 threads.

5.3.3 Evaluation Protocol

Instead of employing popular information retrieval metrics used in rule learning works [90, 75,
45], such as hits@n and Mean Reciprocal Rank (MRR) [76], a large amount of drug repurposing
systems [138, 142, 73] evaluate system performance in AUROC (Area under the Receiver
Operator Characteristic curves) [95]. AUROC shows how true positive rate (TPR) varies with
false positive rate (FPR). However, as argued by Davis and Goadrich [24], given that TPR and
FPR are computed by having the total number of positives and negatives as the denominator,
respectively, AUROC is sensitive to data imbalance, thus can be overly optimistic about the
system performance. Considering there exists imbalance between the numbers of positive and
negative examples in Hetionet and Repotrial, in addition to AUROC, we also use AUPRC (Area
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Hetionet Repotrial

System rw Runtime AUPRC AUROC Runtime AUPRC AUROC

Ranta
200 448s .822 .935 146s .979 .929
400 2589s .848 .938 617s .980 .931
600 6774s .865 .944 991s .981 .932

Rephetio - 73376s .867 .948 12480s .981 .931

Table 5.3 Experiment results of Ranta with different number of random walkers (rw) on Hetionet
and Repotrial. In this setting, Ranta only contains AR features, thus the runtime of Ranta only
includes the time spent on rule generation and matrix building.

under Precision-Recall curves) for evaluation. AUPRC shows the changes in precision with
varying recall. As the value of precision is independent of the total numbers of positive and
negative examples, AUPRC is less sensitive to the skewness in data.

5.3.4 Predictive Performance

Stated in Table.5.2 is the predictive performance of state-of-the-art symbolic systems and Ranta
in different settings. All systems are required to mine rules with maximal length of 4. RLvLR and
AMIE+ were executed in default setting where only ARs are produced, and we ran AnyBURL
for 10000s. For systems using logic to infer new facts, it is not apparent what strategy to adopt to
assign a single confidence score to an inferred entity pair because an entity pair can be suggested
by multiple rules. Consider we have a set of rules P and an inferred pair (x,y), the subset
P′ = {p ∈ P|(x,y) ∈ Hp} contains all rules suggesting (x,y). We denote the quality measure
of rule p by score(p). A strategy is needed to score (x,y) based on score(p) with p ∈ P′. To
accommodate the difference in the choice of rule quality measures over various systems, where
RLvLR uses an embedding-based measure; AMIE+ uses a LCWA-based one and AnyBURL and
GPFL employ smc(p), we utilize the Noise-or aggregation [39] to produce a single confidence
value for each inferred pair for the computation of AUROC and AUPRC. Formally, given a pair
(x,y) and its corresponding P′, its confidence score is defined as:

con f ((x,y)) = ∏
p∈P′

score(p) (5.16)

Then, by ranking inferred examples by confidence, the AUPRC and AUROC results of logic
inference based systems are computed.

As observed in Table.5.2, the feature engineering based systems significantly outperform the
logic inference based ones with the exception that AnyBURL and GPFL show slightly better
performance than Rephetio on Repotrial. Evidently, Ranta in all settings on both Hetionet
and Repotrial outperform Rephetio, which supports our assumption that the introduction of
IRs can further improve system performance. For instance, Ranta with hop-2 IRs and DWPC
outperforms Rephetio by 7.5% and 3.1% in AUPRC and AUROC on Hetionet. The observation
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Fig. 5.3 Number of rules visited before reaching convergence in different settings on Repotrial
with Ranta.

that systems with 2-hop IRs show better performances than ones with one-hop IRs reconfirms
the assumption proposed by Himmelstein et al. [52], that is to better model drug efficacy, long
rules that represent complex biomedical concepts are needed. Another interesting observation
is that systems with DWPC as feature values show better performance than ones with binary
values, which contradicts the popular belief [41] that specificity-based values have no apparent
benefits to predictive performance compared to binary values.

5.3.5 Ablation Study

In this section, we show a series of experiment results to demonstrate the impact of the choices
of the number of random walkers, the use of the replacement mechanism, the negative sampling
strategy and the quality measure on predictive performance, runtime and the convergence of rule
model tuning.

Random Walkers

As discussed in Section.5.2, the choice of the number of random walkers, denoted by rw, has a
considerable impact on predictive performance and runtime. This is because random walkers
are used not only for the generation of rules, but also the estimation of DWPC values. In
Table.5.3, we observe that the runtime and predictive performance on Hetionet vary drastically
with different rw, whereas on Repotrial, the improvements with increasing rw are more subtle.
The reason for capping rw at 600 is that we observed the changes in runtime and predictive
performance become stable on Hetionet with rw at around 600, and on Repotrial, the system
performance stabilized with rw at around 400. On the surface, it is counter-intuitive that Repotrial
requires less time to run than Hetionet given that Repotrial has a much larger collection of entities
and triples. As measured in experiments, because Hetionet has more predicates than Repotrial,
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Settings Replacement #IRs Runtime AUROC

LCWA+SC
Yes 631 9437s .953
No 671 6921s .949

LCWA+SMC
Yes 509 8815s .956
No 517 6432s .951

RuDIK+SC
Yes 362 5810s .952
No 469 5644s .948

RuDIK+SMC
Yes 305 5532s .957
No 332 5319s .953

Table 5.4 Experiment results of Ranta in different rule model tuning settings on Repotrial. SC and
SMC stand for sc(p) and smc(p), respectively. #IRs means the number of IRs in the generated
rule model, and the runtime indicates the time used to finish the rule model tuning. Best results
are marked bold.

Hetionet had 1072 AR features which is much larger than Repotrial’s 139 AR features. When
we factored in the number of examples, Hetionet needed to fill 4.04 million DWPC values in the
matrix, whereas Repotrial only needed to compute 687 thousands. Therefore, Hetionet required
much more time to run than Repotrial. Moreover, because the DWPC values with Ranta are
estimated based on the paths extracted by random walkers, the smaller rw is, less time is required
to compute DWPC values. Thus, we observe that although the number of AR features is similar
between systems in different rw settings, runtime differs significantly. Impressively, compared to
Rephetio that computes the exact DWPC values, Ranta with estimated DWPC values take much
less time to build models that perform slightly worse than Rephetio, which implies that properly
estimated DWPC values are enough to make good predictions.

Rule Model Tuning

Table.5.4 shows the experiment results of Ranta with a rule model tuner configured in different
settings. One observation we make is that, in comparison to LCWA strategy, the use of RuDIK
strategy for negative sampling significantly reduces the runtime needed for tuning the rule model
without compromising the predictive performance. This is because RuDIK strategy requires
the entities in negative examples to be semantically related, thus results in a much smaller set
of negative examples than that produced by LCWA. In experiments, we had |I−lcwa| in the size
of millions and |I−rudik| in thousands on Repotrial. Smaller set of negative examples means
the operations, such as union and interaction, on the set become cheaper to execute, thus the
decrease in runtime. We also observe that rule models with less IRs often show relatively better
performances. We attribute this to the removal of redundant and noisy rules because given
the different sizes of rule models over experiments with the same negative sampling strategies
in Table.5.4, they share the same loss value, which implies that they cover the same set of
positive and negative examples. The activation of the replacement mechanism further removes
and replaces redundant and noisy rules, which leads to the improvement in performance. As
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Type Rule Coef

CAR Indication(X ,Y )← Indication(X ,V0), Indication(V1,V0), Indication(V1,Y ) 1.082
CAR Indication(X ,Y )←Contraindication(X ,V0),Contraindication(V1,V0), Indication(V1,Y ) 0.806
CAR Indication(X ,Y )← Indication(X ,V0), IsDisorder(V0,V1), IsDisorder(Y,V1) 0.684
BAR Indication(X ,breast carcinoma)← Indication(X ,V0), Indication(V0,neuroblastoma) 0.561
BAR Indication(X ,rheumatoid arthritis)← Indication(X ,V0), IsDisorder(V0,AMD) 0.558
BAR Indication(X ,acute myeloid leukemia)← Indication(X ,V0), IsDisorder(V0,myeloid leukemia) 0.532
CAR Indication(X ,Y )← HasTarget(X ,V0),HasTarget(V1,V0), Indication(V1,Y ) 0.525
BAR Indication(X ,Y )←Contraindication(X ,V0),Comorbid(V1,V0),Contraindication(V2,V1), Indication(V2,Y ) 0.516
BAR Indication(Doxorubicin,Y )← Indication(V0,Y ),HasTarget(V0,T ERT _HUMAN) 0.514
CAR Indication(X ,Y )← Similar(X ,V0),Similar(V0,V1),Similar(V2,V1), Indication(V2,Y ) 0.509

Table 5.5 Top-ranked rule features in the best performing Ranta model on Repotrial. AMD
stands for autoimmune musculoskeletal disease.

illustrated in Figure.5.3, we observe that the combination of RuDIK and smc(p) drastically
reduces the size of rule model, and the number of visited rules before convergence is dependent
only on the choice of quality measures.

Interpretability

One of the most important advantages of Ranta and other symbolic systems is that the learned
model is interpretable. Illustrated in Table.5.5 is a set of top rule features ranked by coefficients of
the trained logistic regression model. Each feature represents a pattern that explains a statistically
important aspect of the drug efficacy model underlying Repotrial. For instance, the first rule
states that if drugs X and V1 have shared indications, then the diseases Y that can be treated
by V1 can also be treated by X . This learned pattern expresses, in logic form, one of the most
commonly adopted guilt-by-association strategy stating that similar drugs may treat common
diseases. In comparison to Rephetio, Ranta also includes IRs as features. For instance the rule:

Indication(X ,breast cancer)← Indication(X ,V0), Indication(V0,neuroblastoma)

is a BAR and states that drugs X for neuroblastoma also have indication for breast cancer.
Neuroblastoma is one of the most common childhood tumours that arise from nerve cells
in either the chest or the abdomen. A recent study [59] suggests that the PARP inhibitors
conventionally used for ovarian and breast cancers are effective in treating neuroblastoma, which
confirms the potential correlation between breast caners and neuroblastoma as suggested by the
proposed BAR.

5.3.6 Case Study

To further demonstrate that Ranta can make reasonable repurposing suggestions, we conducted
a case study that aims to identify top repurposing opportunities for Pulmonary Arterial Hyper-
tension (PAH). We first created a set of candidate drug-disease pairs where the drugs are not
already in a known therapeutic relationship with PAH in the KG. Then, we built a feature matrix
for the candidate pairs and passed the matrix to an existing model trained by Ranta with IRs to
assign an estimated probability to each pair. Table.5.6 lists the top repurposing opportunities
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Rank Status Drug

1 Unknown Vardenafil
2 Unknown Dinoprostone
3 In-trial Udenafil
4 In-trial Tadalafil
5 Unknown Mirodenafil
6 Unknown Dinoprost Tromethamine
7 In-trial Carvedilol
8 Unknown Phenylpropanolamine
9 Unknown Phenylephrine
10 Unknown Travoprost

Table 5.6 Top-ranked repurposed drugs for PAH. The in-trial status is retrieved from the Clinical-
Trials.gov database. Unknown indicates the existence of the drug’s indication for PAH is not
recorded in ClinicalTrials.gov and the KG.

Type Rule Coef Value

CAR Indication(X ,Y )← Indication(X ,V0), Indication(V1,V0), Indication(V1,Y ) 1.082 0.041
CAR Indication(X ,Y )←Contraindication(X ,V0),Contraindication(V1,V0), Indication(V1,Y ) 0.806 0.052
CAR Indication(X ,Y )← HasTarget(X ,V0),HasTarget(V1,V0), Indication(V1,Y ) 0.525 0.072
CAR Indication(X ,Y )← SimilarMolecule(X ,V0),SimilarMolecule(V1,V0), Indication(V1,Y ) 0.279 0.076
BAR Indication(X ,′PAH ′)← Indication(X ,V0), Indication(slidena f il,V0) 0.136 0.143

Table 5.7 Evidence of repurposing vardenafil for PAH. Value is the DWPC value for the rule
feature and (vardena f il, pah) pair.

ranked by probability. 3 of the top 10 repurposed drugs are already in trial according to the
ClinicalTrials.gov database. Moreover, the effectiveness of vardenafil and mirodenafil for PAH is
supported by literature [58, 124]. In Table.5.7, we demonstrate Ranta’s capability of supporting
predictions with IRs, which explains specific evidences that can not be expressed by ARs. For
instance, the rule:

Indication(X ,PAH)← Indication(X ,V0), Indication(slidena f il,V0)

states that if a drug X has shared indications with slidenafil [7], an approved PDE-5 inhibitor
used for the treatment of PAH, then X treats PAH. Through this case study, we show that Ranta
is capable of making reasonable suggestions supported with interpretable evidences.

5.4 Conclusion

In this chapter, we have introduced the importance of drug repurposing and the necessity of
developing interpretable knowledge graph reasoning systems that can be applied on biomedical
KGs with information integrated from different sources for computational drug repurposing.
To such end, we have developed a feature engineering based system that converts examples
and the logical rules mined from KGs into a feature matrix and trains a logistic regression
model with the matrix to make repurposing predictions. Unlike existing works that either
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employ features of simple path types or binary feature value, we use an optimization approach
to identify a minimal set of IRs as additional features to complement simple features. In
addition, we use a degree-based feature value to measure the plausibility of features. Together,
the system has achieved impressive improvements in execution time, prediction accuracy and
interpretability. Specifically, through the use of random walkers and the implementation of
a bi-directional graph traverser, Ranta runs more than 10 times faster than Rephetio without
compromising predictive performance on certain tasks. Over experiments on two biomedical
KGs, we confirmed our assumption that the introduction of informative IRs could further improve
the predictive performance of feature engineering based symbolic methods, where Ranta with
IRs significantly outperforms other state-of-the-art systems. The interpretability of Ranta is
exhibited through the exploration of the top-ranked logical features in a trained model, and a
case study where we repurposed drugs for PAH. A large number of the top ranked drugs for PAH
are either in trial or known to be effective to PAH.

Ranta shows what well-designed biomedical knowledge graphs can do when combined with a
strong algorithm. Making drug repurposing predictions is merely one application of Ranta. Ranta
can also be used to predict what a new drug can treat or correct errors in biomedical knowledge
bases. The interpretability of Ranta is valuable when practitioners attempt to understand the
reasoning and evidence behind machine’s predictions. However, feature engineering based
methods work less well on modeling molecule structure to enable virtual screening [127].
Graph neural networks (GNNs) have been successfully employed for in-silico drug discovery
[135, 132]. The unification of symbolic methods and GNNs for drug discovery is a promising
research direction where both good generalization ability and interpretability can be achieved.
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Chapter 6

Conclusion

In this thesis, we have introduced three contributions that aim to progress the research of the
logical rule learning systems operating on Knowledge Graphs (KGs). First, we proposed GPFL,
a novel probabilistic rule learning system utilizing a two-stage rule generation mechanism to
optimize the mining of instantiated rules. Starting from the problems with AnyBURL, where
rule evaluation is the bottleneck of system’s scalability and the saturation-based higher-order
function that controls the learning procedure prevents the system to mine complex rules, we
utilized a novel two-stage rule learning mechanism to solve the above mentioned problems.
Through experiments, we showed that GPFL significantly reduces the runtime on evaluating
instantiated rules, discovers much more high-quality rules than existing works and performs
competitively on knowledge graph completion task compared to existing methods. As the quality
of instantiated rules is often decided by a much smaller group of groundings than that of abstract
rules, instantiated rules are more prone to be overfitting. Based on this point, we conducted a
series of experiments with GPFL to demonstrate the prevalence of overfitting instantiated rules
and their adverse impacts on systems’ performance where we provide a simple validation method
to mitigate the issue.

Second, we proposed RHF, a generic framework that leverages a collection of novel sub-
sumption frameworks to build proper rule hierarchies from a given set of rules. By defining
the SA-subsumption which reduces the complexity of classic OI-subsumption from exponential
to linear, we developed two derived subsumption frameworks, namely A-subsumption and
I-subsumption, to enable the efficient construction of proper rule hierarchies. Along with Hierar-
chical Pruning Methods (HPMs), we applied RHF to GPFL to evaluate the effectiveness of the
proposed design. With experiment results on four benchmark KGs, we demonstrated that the
application of RHF and HPMs effectively removes redundant and irrelevant rules, which results
in significant reductions in the runtime and the number of learned rules, without compromising
predictive performance. In comparison to recent works [63, 54] that aim to develop pruning
technologies for top-down rule learners, RHF aims to provide HPMs support to bottom-up rule
learners that overtake the top-down approaches in recent years.

Finally, we designed Ranta, a novel drug repurposing system that converts examples and the
logical rules extracted from biomedical KGs into a feature matrix and trains a logistic regression
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model with the matrix to model drug efficacy and make drug repurposing inferences. Through
extensive experiments on two large-scale biomedical KGs, we demonstrated that Ranta largely
outperforms existing methods and executes much faster than a state-of-the-art system. The case
study where we ask Ranta to repurpose drugs for Pulmonary Arterial Hypertension showed that
Ranta is capable of making reasonable suggestions and providing interpretable evidence which
is often impossible for sub-symbolic methods that operate as a black-box.

As discussed in previous chapters, one of the main reasons that drives us to research rule
learning systems is their ability to make interpretable inferences. The interpretability of Machine
Learning models has been a hot research topic in recent years [29, 79] because many real-
world scenarios require the prediction results to be accompanied with human-understandable
explanations, whereas most of the Deep Learning models have trouble doing so. For learning
from multi-relational data such as KGs and Knowledge Bases (KBs) [31], the feature engineering
strategy where features, such as sub-graphs and logical rules, are extracted from the multi-
relational data and used to train a conventional interpretable model is still one of the widely
employed methods to approach the interpretable multi-relational machine learning problem.
Ranta is one example of such systems. In contrast, Statistical Relational Learning (SRL)
[60] methods, such as MLN [101] and RDN [85], are often too computationally expensive to
be applied to real-world tasks. The dependence on the externally generated rules makes the
feature engineering based methods subject to the lack of robustness of the conventional rule
learning systems. Thus, the learning results are often not optimal. The neural-symbolic methods
[64] sprouted in recent years is a rising line of research which is promising to address the
lack of robustness issue. In general, a neural-symbolic system uses numerical optimization to
simultaneously build the structure of and assign the confidence score to rules. For instance,
Neural LP [137] and DRUM [104] are neural-symbolic rule learners based on the differentiable
logic formulation TensorLog [22] where the traversals over a KG are formulated as sequences
of matrix multiplications, and logical inferences are compiled into sequences of differentiable
operations on matrices. Currently, most of the neural-symbolic works can only generate abstract
rules due to the limitations on architecture design.

In addition to interpretability, rules are often used as external knowledge or additional
information to augment Distributed Representation (DR) systems. For instance, Wang et al.
[130] proposed to generate potentially missing entity pairs utilizing embeddings and then use
externally generated rules as constraints to filter out inconsistent pair candidates. Moreover,
recent works, including KALE [46] and RUGE [47], manage to use a joint model to embed the
components in KGs and external rules simultaneously. Most of these works only use abstract
rules for augmentation because the effect of instantiated rules is not well-understood. Meilicke
et al. [75] argued that our understanding of the correlation between the choice of the types
of rules and the systems’ predictive performance is still in the early stage. Therefore, it may
be necessary to explore and experiment more on rule learning before investigating integration
works. Consequently, we propose two future work directions: 1.) designing a unified analytics
framework for rule learning systems to understand what types of rules contribute the most
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to the predictive performance under various conditions and why, and 2.) developing efficient
neural-symbolic systems that produce instantiated rules.
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