
Complex models for genetic sequence data

Naomi Elizabeth Hannaford

Thesis submitted for the degree of

Doctor of Philosophy

School of Mathematics, Statistics & Physics

Newcastle University

Newcastle upon Tyne

United Kingdom

May 2021





To Mam and Dad, thank you for your love and support and for always believing in me.





Acknowledgements

Firstly, I would like to thank my supervisors, Sarah Heaps and Tom Nye, for their excep-

tional guidance, kindness and encouragement. I have enjoyed our time working together

and could not ask for a better supervisory team. I would also like to thank Ben Allen

and Tom Curtis for providing interesting data for me to work with and biological insights

related to Part II of the thesis. Furthermore, I would like to thank Martin Embley and

Tom Williams for their help with the biological aspects of Part I of the thesis.

I am grateful to Oonagh McGee, Andrew Turnbull and Jen Wood for providing ex-

cellent professional and personal support during my time as a PhD student. I would also

like to thank Matt Forshaw, Paul Watson and Darren Wilkinson for their advice, help and

kindness over the past few years. I am thankful to Michael Beaty and Stephen Dowsland

for their help with computational issues. Additionally, I would like to thank my examiners

Malcolm Farrow and Gavin Gibson. I am also grateful to the Engineering and Physical

Sciences Research Council for the funding which made it possible to conduct this research.

During my time as a postgraduate student, I have met some wonderful people, whom

I am lucky enough to call my friends. I am incredibly grateful to Antonia Kontaratou,

Ashleigh McLean and Lauren Roberts for their support and for being the best company

during our (possibly too) many coffee breaks. I would like to thank Jack Aiston for his

mathematical help and for being such a kind and fun flatmate. I give my thanks to Tom

Cooper for the many occasions that he helped fix my laptop and for tolerating me as

a desk neighbour, even when I complained he was too loud. I would also like to thank

Jonny Law for sharing his statistical knowledge, running advice and enthusiasm for going

to the pub. I am grateful to Matt Edwards for his statistical help and for introducing

me to bouldering, which really helped with PhD-related stress (and also was the biggest

distraction from the PhD). With this in mind, I would like to thank Adam Cattermole

and Kathryn Garside for their friendship and support both on and off the climbing wall.

I would like to thank all my other friends for supporting me and I apologise for not being

able to mention you all by name but there are too many great people to fit onto one page.

However, whether we have battled on the badminton or squash court, climbed, frequented

Wagamama or Chilli Padi, quizzed on a Friday lunchtime or chatted at the pub or lunch,

I am truly thankful for your friendship.

I would like to thank Beth Cummins for her unwavering friendship and for always

being there for me. Finally, I would like to thank Javier Núñez Vicandi for being the best
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Abstract

In this thesis, the aim is to develop biologically motivated Bayesian models in two areas:

molecular phylogenetics and time-series metagenomics. In molecular phylogenetics, the

goal is generally to learn about the evolutionary history of a collection of species using

molecular sequence data, for example, DNA. Evolutionary history is represented graphi-

cally using evolutionary trees, where the root of a tree represents the most recent common

ancestor of all species in the tree. Substitutions in sequences are modelled through a con-

tinuous time Markov process, characterised by an instantaneous rate matrix, which stan-

dard models assume is stationary and time-reversible. These assumptions are biologically

questionable and induce a likelihood function which is invariant to a tree’s root position.

This is detrimental to inference, since a tree’s biological interpretation depends on where it

is rooted. By relaxing both assumptions, we introduce two new models whose likelihoods

can distinguish between rooted trees. These models are non-stationary, with step changes

in the rate matrix on each branch. Each rate matrix belongs to a non-reversible family

of Lie Markov models, which are closed under matrix multiplication. The two models

differ in that a different non-reversible Lie Markov model is used in each. We perform our

analysis in the Bayesian framework using Markov chain Monte Carlo methods. We assess

the performance of our models using a simulation study, before considering an application

to a Drosophila data set, where most models fail to identify a plausible root position.

In time-series metagenomics, counts of operational taxonomic units (OTUs), which

are pragmatic proxies for microbial species, are modelled over time. We have weekly

counts of different OTUs from two tanks in a wastewater treatment plant. We develop

a Bayesian hierarchical vector autoregressive model to model the dynamics of the OTUs,

whilst also incorporating environmental and chemical data. Clustering methods are ex-

plored to reduce the dimensionality of our data and mitigate the issue of large proportions

of zero-counts in the data. We use a seasonal phase-based clustering approach and a

symmetric, circulant, tri-diagonal error structure. The autoregressive coefficient matrix is

assumed to be sparse, so we explore different priors that allow for sparsity by analysing

simulated data sets before selecting the regularised horseshoe prior for our hierarchical

model. The chemical and environmental covariates are incorporated through a time vary-

ing mean. Finally, we fit the model to the data from each tank using Hamiltonian Monte

Carlo.
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A.2.5 Derivation of the FCD of Ã with Σ = τ−1IK . . . . . . . . . . . . . 197

iii



Contents

A.2.6 The FCD of λjk (VAR(1) model) . . . . . . . . . . . . . . . . . . . . 199

A.2.7 Derivation of the FCD of λjk with Σ = τ−1IK (VAR(1) model) . . . 200

A.3 Horseshoe prior FCDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

A.3.1 Derivation of the FCD of τβ . . . . . . . . . . . . . . . . . . . . . . . 201

A.3.2 Derivation of the FCD of λjk . . . . . . . . . . . . . . . . . . . . . . 202

A.4 Prior for the global shrinkage parameter . . . . . . . . . . . . . . . . . . . . 202

A.4.1 Proof for β̄j = (1− κj)β̂j . . . . . . . . . . . . . . . . . . . . . . . . 202

A.4.2 Derivation of conditional posterior for β∗ . . . . . . . . . . . . . . . 203

A.4.3 Formulating Kj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

A.4.4 Expected value for Kj,kk . . . . . . . . . . . . . . . . . . . . . . . . . 204

A.5 Conditional means and variances of ajk . . . . . . . . . . . . . . . . . . . . 205

A.5.1 Spike and slab prior . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

A.5.2 Horseshoe prior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

A.6 Reparameterisation of symmetric, circulant, tridiagonal precision matrix . . 207

B MCMC algorithms 208

B.1 Algorithms for shrinkage parameters in VAR(1) model with horseshoe prior 208

B.1.1 Metropolis-within-Gibbs step for λjk . . . . . . . . . . . . . . . . . . 208

B.1.2 Metropolis-within-Gibbs step for τA . . . . . . . . . . . . . . . . . . 209

C Code 210

C.1 Stan code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

D Additional tables 214

E Additional plots 215

E.1 Exploratory plots for taxonomic ranks . . . . . . . . . . . . . . . . . . . . . 215

E.2 Heatmaps of matrices used in metagenomics simulation study . . . . . . . . 222

iv



List of Figures

2.1 Example of a phylogenetic tree with four species. . . . . . . . . . . . . . . . 7

2.2 Examples of trace plots showing (a) a chain that has converged and (b) a

chain that has not converged. . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Diagnostic plots of two chains to assess convergence in tree space where

(a) is the posterior probabilities of clades, (b) is the cumulative relative

frequencies of clades and the different colours represent different clades, the

solid lines represent one chain and the dashed lines represent the other chain. 29

3.1 Plots of the stationary probability π1 of the RY5.6b model against ρ1 for

values of ρ sampled from the uniform distribution over S4 and various

values of α. By symmetry, plots for the other pairs (ρi, πi), i = 2, 3, 4,

display identical patterns (not shown). . . . . . . . . . . . . . . . . . . . . . 41

4.1 Directed acyclic graph for our non-homogeneous models, whereQ = {α, %1, . . . , %B−1}
under the non-homogeneous RY5.6b model and Q = {%1, . . . , %B−1} for the

non-homogeneous RY8.8 model. . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 An illustration of the NNI move. An internal branch e is chosen uniformly

at random from the set of internal branches not adjacent to the root. Either

subtree T1 or T2 descended from the vertex v is swapped with the subtree

TR descended from vR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Two possible trees resulting from the NNI move shown in Figure 4.2. In

(a) the subtree T1 is swapped with TR. In (b) the subtree T2 is swapped

with TR. The length of branch e∗ is proposed via a log normal random walk

centred on the length of e from the original tree. . . . . . . . . . . . . . . . 53

v



List of Figures

4.4 An illustration of the SPR move. (a) During the move, the branch ep

(dashed line) and the tree T evolving from it are pruned and reattached to

edge eg. The point of attachment vg is chosen by dividing the edge eg using

a random variable drawn from Beta(2, 2). (b) After the move is made, the

vertex vp disappears and the branches ea and eb are merged to form a new

edge e∗g. The grafting branch eg is split into two new edges e∗a and e∗b by a

new vertex vg which is formed after reattaching the subtree T to eg. . . . . 55

5.1 Trees used to simulate alignments on (a) 6, (b) 12, (c) 24 taxa. . . . . . . . 61

5.2 Posterior distribution over roots splits when three data sets are simulated

and analysed under the non-homogeneous RY5.6b model and the number

of taxa is (a) 6, (c) 12, (e) 24; and when three data sets are simulated and

analysed under the non-homogeneous RY8.8 model and the number of taxa

is (b) 6, (d) 12, (f) 24. The number of sites is displayed to the right of

each plot. In every plot, bars are arranged in descending order of posterior

probability and the correct root split is highlighted in black. In the plots

for 12 and 24 taxa, bars corresponding to probabilities less than 0.01 have

been removed to improve readability. . . . . . . . . . . . . . . . . . . . . . . 62

5.3 Posterior distribution over unrooted topologies when the data are simulated

and analysed under the non-homogeneous RY5.6b model and the number of

taxa is (a) 6, (c) 12, (e) 24; and when the data are simulated and analysed

under the non-homogeneous RY8.8 model and the number of taxa is (b) 6,

(d) 12, (f) 24. The number of sites is displayed to the right of each plot.

Highlighted in black is the correct unrooted topology. In the plots for 12

and 24 taxa, bars corresponding to probabilities less than 0.01 have been

removed to improve readability. . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.4 Marginal prior and posterior densities for the global model parameters (φ

and α) and a random sample of branch-specific parameters in the analysis of

a 24-taxon alignment simulated under the non-homogeneous RY5.6b model.

Posterior densities for the branch-specific parameters are conditional on the

rooted topology used to simulate the data. Indicated in the panels are the

prior ( ) and posterior when the number of sites is 500 ( ), 1000 ( )

and 2000 ( ). The true values of the parameters are indicated by vertical

lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

vi



List of Figures

5.5 Marginal prior and posterior densities for the global model parameter (φ)

and a random sample of branch-specific parameters in the analysis of a

24-taxon alignment simulated under the non-homogeneous RY8.8 model.

Posterior densities for the branch-specific parameters are conditional on

the rooted topology used to simulate the data. Indicated in the panels are

the prior ( ) and posterior when the number of sites is 500 ( ), 1000

( ) and 2000 ( ). The true values of the parameters are indicated by

vertical lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.6 Number of k : (n− k) root splits (on log-scale) for n = 16 taxa. . . . . . . . 67

5.7 Unrooted tree used in simulation experiments to investigate the effects of

different topologies and branch lengths on root inference. In the experi-

ments, the tree is rooted at the midpoint of either branch E1 or E2. The

tree is depicted with branch E1 having a “medium” length of 0.084 units. In

the experiment, this is varied to 0.237 units (“long”) or 0.018 units (“short”). 68

5.8 Posterior distribution over roots splits when three data sets are simulated

and analysed under the non-homogeneous RY8.8 model and the tree used for

simulation is Tree (a) 1 (balanced, long root branch), (b) 2 (unbalanced,

long internal branch), (c) 3 (balanced, short root branch), (d) 4 (unbal-

anced, short internal branch), (e) 5 (balanced, medium root branch), (f)

6 (unbalanced, medium internal branch). In every plot, bars are arranged

in descending order of posterior probability and the correct root split is

highlighted in black. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.9 Posterior distribution over roots splits when three data sets are simulated

and analysed under the non-homogeneous RY5.6b model and the tree used

for simulation is Tree (a) 1 (balanced, long root branch), (b) 2 (unbalanced,

long internal branch), (c) 3 (balanced, short root branch), (d) 4 (unbal-

anced, short internal branch), (e) 5 (balanced, medium root branch), (f)

6 (unbalanced, medium internal branch). In every plot, bars are arranged

in descending order of posterior probability and the correct root split is

highlighted in black. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.10 Posterior distribution over unrooted topologies when three data sets are

simulated and analysed under the non-homogeneous RY8.8 model and the

tree used for simulation is Tree (a) 1 (balanced, long root branch), (b) 2

(unbalanced, long internal branch), (c) 3 (balanced, short root branch),

(d) 4 (unbalanced, short internal branch), (e) 5 (balanced, medium root

branch), (f) 6 (unbalanced, medium internal branch). In every plot, bars

are arranged in descending order of posterior probability and the correct

unrooted topology is highlighted in black. . . . . . . . . . . . . . . . . . . . 71

vii



List of Figures

5.11 Posterior distribution over unrooted topologies when three data sets are

simulated and analysed under the non-homogeneous RY5.6b model and the

tree used for simulation is Tree (a) 1 (balanced, long root branch), (b) 2

(unbalanced, long internal branch), (c) 3 (balanced, short root branch),

(d) 4 (unbalanced, short internal branch), (e) 5 (balanced, medium root

branch), (f) 6 (unbalanced, medium internal branch). In every plot, bars

are arranged in descending order of posterior probability and the correct

unrooted topology is highlighted in black. . . . . . . . . . . . . . . . . . . . 72

5.12 Boxplots for quantiles of GC-content sampled from the prior predictive dis-

tributions of the taxa based on models (a) M4, (b) M5, (c) M6. . . . . . . 75

5.13 Majority rule consensus trees under the models (a) M1 – GTR; (b) M2 –

RY5.6b; (c) M3 – RY8.8; Numerical labels represent the posterior proba-

bility of the associated split (in (a)) or clade (in (b) and (c)). . . . . . . . . 77

5.14 Majority rule consensus trees under the models (a)M4 – non-homogeneous

GTR; (b) M5 – non-homogeneous RY5.6b; (c) M6 – non-homogeneous

RY8.8. Numerical labels represent the posterior probability of the associ-

ated clade. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.15 Box-plots of the Newton and Raftery hybrid estimates of the marginal like-

lihood for each model Mi, i = 1, . . . , 6, based on the output of 10 MCMC

chains which were initialised at different starting points. . . . . . . . . . . . 82

6.1 Time series plots of some OTUs (with their genus in brackets) that only

appear in the OTU table of the AS and (a) mainly have zero-counts, or (b)

appear at more than one or two time points. Note that the y-axis scales

are different for each plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.2 Time series plots of four OTUs (with their genus in brackets) that appear

in both tanks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.3 Time series plots of total abundances for each OTU table. . . . . . . . . . . 91

6.4 (a) time series plots and (b) stacked bar plot for the top 12 OTUs in the

AS based on median abundance . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.5 (a) time series plots and (b) stacked bar plot for the top 12 OTUs in the

SS based on median abundance. . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.6 (a) time series plots and (b) stacked bar plot for the top 12 genera based

on median abundance in the AS tank. . . . . . . . . . . . . . . . . . . . . . 95

6.7 (a) time series plots and (b) stacked bar plot for the top 12 genera in the

SS based on median abundance. . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.8 (a) time series plots and (b) stacked bar plot for the top 12 classes in the

AS based on median abundance. . . . . . . . . . . . . . . . . . . . . . . . . 98

viii



List of Figures

6.9 (a) time series plots and (b) stacked bar plot for the top 12 classes in the

SS based on median abundance. . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.10 Heatmap of the correlations between the chemical and environmental co-

variates and the 12 most abundant OTUs in the AS tank. . . . . . . . . . . 102

6.11 Heatmap of the pairwise correlations between the chemical and environ-

mental covariates in the AS tank. . . . . . . . . . . . . . . . . . . . . . . . . 103

6.12 Heatmaps of correlations between the chemical and environmental covari-

ates and the 12 most abundant OTUs in the SS tank. . . . . . . . . . . . . 103

6.13 Heatmap of the pairwise correlations between the chemical and environ-

mental covariates in the SS tank. . . . . . . . . . . . . . . . . . . . . . . . . 104

6.14 Heatmap of the correlations between the chemical and environmental co-

variates and the 12 most abundant genera in the AS tank. . . . . . . . . . . 105

6.15 Heatmaps of correlations between the chemical and environmental covari-

ates and the 12 most abundant genera in the SS tank. . . . . . . . . . . . . 105

6.16 Heatmap of the correlations between the chemical and environmental co-

variates and the 12 most abundant classes in the AS tank. . . . . . . . . . . 106

6.17 Heatmaps of correlations between the chemical and environmental covari-

ates and the 12 most abundant classes in the SS tank. . . . . . . . . . . . . 107

7.1 Time series plots of the scaled log counts for the 12 bins in the AS tank. . . 110

7.2 Time series plots of the scaled log counts for the 12 bins in the SS tank. . . 111

7.3 The density of the shrinkage coefficient κj = 1/(1 + λ2
j ). The horseshoe

shape of the density shows that the horseshoe prior favours values of either

zero or one for κj , which correspond to no shrinkage or near-total shrinkage,

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.4 Conditional on the global shrinkage parameter τβ and the error variance Σ,

marginal densities of a diagonal and non-diagonal element of Kj when Σ has

compound symmetric structure and the dimension of the response vector is

(a) K = 2, (b) K = 8 and (c) K = 14. In each case, σ = 1, N = sj = 1

and τβ = 1. A range of values for the correlation ρ is considered. . . . . . . 132

7.4 Conditional on the global shrinkage parameter τβ and error variance Σ,

pairwise bivariate densities between a pair of diagonal elements of Kj (Dg

vs Dg); a pair of off-diagonal elements (ODg vs ODg); a diagonal and off-

diagonal element within the same row (WR Dg vs ODg); and a diagonal

and off-diagonal element in different rows (AR Dg vs ODg) when Σ has

compound symmetric structure and the dimension of the response vector is

(a) K = 2, (b) K = 8 and (c) K = 14. In each case, σ = 1, N = sj = 1

and τβ = 1. A range of values for the common correlation ρ is considered. . 134

ix



List of Figures

7.5 Posterior means (◦) and 95% credible intervals ( ) for A80, with the true

values (×), under the multivariate normal prior. . . . . . . . . . . . . . . . . 139

7.6 Posterior means (◦) and 95% credible intervals ( ) for A80, with the true

values (×), under the spike and slab. . . . . . . . . . . . . . . . . . . . . . . 140

7.7 Posterior means (◦) and 95% credible intervals ( ) for A80, with the true

values (×), under the horseshoe prior. . . . . . . . . . . . . . . . . . . . . . 141

7.8 Posterior means (◦) and 95% credible intervals ( ) for A80, with the true

values (×), under the regularised horseshoe prior. . . . . . . . . . . . . . . . 141

7.9 Posterior means (◦) and 95% credible intervals ( ) for A50, with the true

values (×), under the multivariate normal prior. . . . . . . . . . . . . . . . . 142

7.10 Posterior means (◦) and 95% credible intervals ( ) for A50, with the true

values (×), under the spike and slab. . . . . . . . . . . . . . . . . . . . . . . 143

7.11 Posterior means (◦) and 95% credible intervals ( ) for A50, with the true

values (×), under the horseshoe prior. . . . . . . . . . . . . . . . . . . . . . 143

7.12 Posterior means (◦) and 95% credible intervals ( ) for A50, with the true

values (×), under the regularised horseshoe prior. . . . . . . . . . . . . . . . 144

7.13 Posterior means (◦) and 95% credible intervals ( ) for A20, with the true

values (×), under the multivariate normal prior. . . . . . . . . . . . . . . . . 145

7.14 Posterior means (◦) and 95% credible intervals ( ) for A20, with the true

values (×), under the spike and slab. . . . . . . . . . . . . . . . . . . . . . . 145

7.15 Posterior means (◦) and 95% credible intervals ( ) for A20, with the true

values (×), under the horseshoe prior. . . . . . . . . . . . . . . . . . . . . . 146

7.16 Posterior means (◦) and 95% credible intervals ( ) for A20, with the true

values (×), under the regularised horseshoe prior. . . . . . . . . . . . . . . . 147

8.1 Posterior means (◦) and 95% credible intervals ( ) for nitrate and phos-

phate (AS tank). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

8.2 Posterior means (◦) and 95% credible intervals ( ) for COD, ammonia and

pH (AS tank). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

8.3 Posterior means (◦) and 95% credible intervals ( ) for βj (AS tank). . . . 162

8.4 Posterior means (◦) and 95% credible intervals ( ) for γj (AS tank). . . . 162

8.5 Posterior means ( ) and 95% credible intervals ( ) for the time varying

means with scaled log counts ( ) for each bin (AS tank). . . . . . . . . . . 163

8.6 Heatmap of the posterior means of the autoregressive coefficients (AS tank). 165

8.7 Posterior means (◦) and 95% credible intervals ( ) of the autoregressive

coefficients (AS tank). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

8.8 Posterior means (◦) and 95% credible intervals ( ) of the lag-k correlations

ρk for k = 1, . . . , 6 (AS tank). . . . . . . . . . . . . . . . . . . . . . . . . . 168

x



List of Figures

8.9 Posterior means (◦) and 95% credible intervals ( ) for iron, fluoride and

chloride (SS tank). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

8.10 Posterior means (◦) and 95% credible intervals ( ) for silicon, phosphate,

ammonia and flow (SS tank). . . . . . . . . . . . . . . . . . . . . . . . . . . 169

8.11 Posterior means (◦) and 95% credible intervals ( ) for βj (SS tank). . . . 171

8.12 Posterior means (◦) and 95% credible intervals ( ) for γj (SS tank). . . . 171

8.13 Posterior means ( ) and 95% credible intervals ( ) for the time varying

means with scaled log counts ( ) for each bin (SS tank). . . . . . . . . . . 172

8.14 Heatmap of the posterior means of the autoregressive coefficients (SS tank). 173

8.15 Posterior means (◦) and 95% credible intervals ( ) of the autoregressive

coefficients (SS tank). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

8.16 Posterior means (◦) and 95% credible intervals ( ) of the lag-k correlations

ρk for k = 1, . . . , 6 (SS tank) . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

E.1 (a) time series plots and (b) stacked bar plot for the top 12 families in the

AS based on median abundance. . . . . . . . . . . . . . . . . . . . . . . . . 216

E.2 (a) time series plots and (b) stacked bar plot for the top 12 families in the

SS based on median abundance. . . . . . . . . . . . . . . . . . . . . . . . . . 217

E.3 (a) time series plots and (b) stacked bar plot for the top 12 orders in the

AS based on median abundance. . . . . . . . . . . . . . . . . . . . . . . . . 218

E.4 (a) time series plots and (b) stacked bar plot for the top 12 orders in the

SS based on median abundance. . . . . . . . . . . . . . . . . . . . . . . . . . 219

E.5 (a) time series plots and (b) stacked bar plot for the top 12 phyla in the AS

based on median abundance. . . . . . . . . . . . . . . . . . . . . . . . . . . 220

E.6 (a) time series plots and (b) stacked bar plot for the top 12 phyla in the SS

based on median abundance. . . . . . . . . . . . . . . . . . . . . . . . . . . 221

E.7 Heatmap of A80. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

E.8 Heatmap of A50. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

E.9 Heatmap of A20. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

xi



List of Tables

5.1 Log marginal likelihoods for each model approximated using the Newton

and Raftery hybrid estimator in which the prior weight in the importance

density was set at δ = 0.05. The models are: M1 – GTR;M2 – RY5.6b;M3

– RY8.8; M4 – non-homogeneous GTR; M5 – non-homogeneous RY5.6b;

M6 – non-homogeneous RY8.8. . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.1 Chemical and environmental covariates in the AS. . . . . . . . . . . . . . . 88

6.2 Chemical and environmental covariates in the SS. . . . . . . . . . . . . . . 88

6.3 Proportions of missing data (4 d.p.) in chemical/environmental data (AS). 89

6.4 Proportions of missing data (4 d.p.) in chemical/environmental data (SS). . 89

6.5 Proportions of missing data (4 d.p.) for each taxonomic rank in the tax-

onomy table for each tank and overall (after OTUs with zero-counts for all

time points are removed). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.6 Number of different types for each taxonomic rank in each tank, excluding

NAs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.1 Number of autoregressive coefficients not correctly identified in the simula-

tion study for each matrix and prior. . . . . . . . . . . . . . . . . . . . . . . 148

8.1 Posterior means (3 d.p) of the non-zero between-bin coefficients. . . . . . . 165

8.2 Genera of the top six OTUs in each bin based on median relative abundance

(AS tank). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

8.3 Genera of the top six OTUs in each bin based on median relative abundance

(SS tank). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

D.1 Chemical and environmental covariates with a measurement regarded as an

outlier and removed from the data, with the exception of COD, which had

three outliers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

xii



Chapter 1

Introduction

1.1 Introduction and aims

The aim of this thesis is to develop biologically motivated hierarchical Bayesian models in

two areas of biology: molecular phylogenetics and time-series metagenomics. In molecular

phylogenetics, the general goal is to learn about the evolutionary history of a collection

of individuals, for example, different species, using molecular sequence data, such as DNA

or amino acids. Bifurcating trees called evolutionary trees (or phylogenies) are used to

graphically represent this evolutionary history. The root of the tree represents the most

recent common ancestor of all species in the tree and its position is fundamental to a

phylogeny’s biological interpretation.

Generally, substitutions in molecular sequence data are modelled using continuous time

Markov processes, characterised by an instantaneous rate matrix. Standard substitution

models assume that this rate matrix is both stationary and time-reversible, which provides

mathematical convenience. However, these assumptions are biologically questionable and

can be challenged empirically. Furthermore, they give rise to a likelihood function that

is invariant to root position. As such, these standard models can only be used to infer

unrooted trees, which depict the branching pattern of speciation events without associating

direction to the branches of the tree. Models that relax at least one of the restrictive

assumptions can be used to infer rooted trees, as their likelihoods depend on the position

of the root.

In this thesis, we develop two phylogenetic models that are both non-stationary and

non-reversible. Non-stationarity is achieved by allowing step changes in the rate ma-

trix at each speciation event (internal vertex of a tree). Each rate matrix belongs to a

non-reversible family of Lie Markov models. These models are closed under matrix mul-

tiplication, which means our models possess the conceptually appealing property that a

tree and all its subtrees could have arisen from the same family of non-stationary models.
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The two models are different because we use a different non-reversible Lie Markov model

in each model.

We perform our analyses in the Bayesian framework using Markov chain Monte Carlo

(MCMC) methods. To assess the performance of our models, we conduct an extensive

simulation study. The main goal of the simulation study is to test our models’ ability to

identify root position. We examine the effect of different topologies and branch lengths

and the effect of data dimensionality on root inference. Additionally, we investigate the

identifiability of the numerical parameters in each model, as this may have an effect on

the inference of the topology (branching pattern) and root position. Finally, we consider

an application to a Drosophila data set, where the assumption of stationarity can be

empirically challenged, resulting in most models failing to identify a plausible root position.

The data analysed in phylogenetics are sequences of DNA from different species. In

metagenomic studies, DNA sequences are the primary data source too, but they are solely

from microbial species. The sequences are then clustered based on similarity into opera-

tional taxonomic units (OTUs), which we consider as pragmatic proxies for species, and

these OTUs are enumerated. It is these counts of OTUs that are modelled in metage-

nomics.

The models developed in this thesis for phylogenetic inference are theory-driven. We

identify the problems and challenges associated with standard models and thus develop our

models to address these issues. However, in our time-series metagenomics application, the

model is data-driven and designed to solve a specific problem. We have five years of weekly

counts of OTUs from two different sources in a wastewater treatment plant (WWTP): the

activated sludge and the settled sewage. Further to these counts, we have taxonomic

classifications for each OTU and weekly environmental and chemical measurements from

each source, such as temperature, pH and ammonia concentration. Our goal is to model

the dynamics of the OTUs (changes in their counts and interactions between them over

time), whilst also incorporating the chemical and environmental data.

To achieve this goal, we develop a Bayesian hierarchical vector autoregressive (VAR)

model. A VAR process models a vector of values at a current time point as a linear

regression on a fixed number of its previous values. The number of previous time points

used is defined by the order of the VAR model. We begin with a simple VAR model

of order one (VAR(1)), which we adapt to our data, based on exploratory data analysis

and theoretical considerations. As is commonly found in metagenomic studies, our OTU

data are high-dimensional and sparse (meaning there is a large proportion of zeroes).

We deal with both issues by first clustering the OTUs into a much smaller number of

bins using a seasonal phase-based clustering method. It is then these clustered data that

we model using a VAR process. A VAR(1) model is characterised by a single matrix of

autoregressive coefficients and a mean vector (which can be a zero-mean vector). Given our
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chosen clustering method, we allow our autoregressive matrix to be sparse through its prior

specification. Via a simulation study, we explore different priors that encourage shrinkage

of autoregressive coefficients towards zero before selecting a regularised horseshoe prior.

The regularised horseshoe is governed by two parameters, the global shrinkage and the

local shrinkage parameters. We use a hyperprior for the global shrinkage parameter that

considers prior information of sparsity and error variance. Our chosen clustering method

also influences our choice of error structure, which is a symmetric, circulant, tridiagonal

precision matrix. The final amendment to the VAR(1) model is the inclusion of a time

varying mean, which we fit with harmonic regression to capture seasonal variation in

our clustered data. Furthermore, we regress the intercept term on the chemical and

environmental covariates.

As in our phylogenetics work, we adopt a Bayesian approach to inference. We fit the

model to the data from each source in the WWTP separately using Hamiltonian Monte

Carlo (HMC) methods. More specifically, we utilise Stan which automatically implements

HMC given a Bayesian model.

1.2 Outline

This thesis is split into three parts: one for each application area and one to summarise

the conclusions of both applications. Before focussing on each area, Chapter 2 introduces

terminology for both topics. The chapter provides an introduction to phylogenetics, where

standard models of DNA evolution and their drawbacks are discussed. An introduction

to metagenomics is also given, where existing approaches to time-series metagenomics are

described. Furthermore, we show that a generalised Lotka-Volterra model, which is often

used in time-series metagenomics, can be approximated with a VAR(1) model. Later, we

use a VAR(1) model for our data, since linear models are easier to fit. In this chapter,

we also give a brief overview of the data and the motivation for modelling such data,

along with the associated aims and challenges. The chapter concludes with necessary

background information regarding Bayesian inference, including MCMC and HMC.

Part I covers phylogenetics and comprises three chapters. The work for these three

chapters appears in Hannaford et al. (2020). Chapter 3 describes phylogenetic models that

facilitate root inference. We discuss existing non-homogeneous models and non-reversible

models. We also introduce Lie-Markov models for DNA evolution and we describe two non-

reversible Lie Markov models, the RY5.6b and RY8.8a models, including analytic forms

for the stationary probabilities of each model. In addition to this, we identify a potential

drawback of the homogeneous RY5.6b model, namely its additive structure, which makes

it unsuitable for modelling evolutionary processes in some circumstances.

Chapter 4 concerns non-homogeneous Lie Markov models. We derive a pair of non-
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homogeneous, non-stationary, non-reversible phylogenetic models by extending the two

non-reversible Lie Markov models described in Chapter 3 in a parsimonious way. This

is done by allowing each branch of the tree to have a different RY5.6b rate matrix (in

the first model) or a different RY8.8 rate matrix (in the second model). We specify our

prior for each model, which includes a prior for the branch-specific parameters that allows

borrowing of strength between branches. We conclude the chapter with a description of

posterior inference and give a description of the MCMC scheme for generating samples

from the posterior.

In Chapter 5, we apply our non-homogeneous Lie Markov models to simulated data and

biological data. The simulations assess identifiability of the root position and parameters

in a number of controlled settings. We investigate the extent to which root inference

depends upon the dimensions of the data. We demonstrate that the root position can be

identified from the likelihood of our non-homogeneous models. Additionally, we explore

the effect of different topologies and branch lengths and show that root inference for the

non-homogeneous RY8.8 model remains strong, even when there is prior-data conflict

(resulting from an unbalanced rooted topology). Finally, we consider an application to

a real biological data set, the Drosophila data set, where many models fail to identify a

plausible root position. Using marginal likelihood estimates, we compare the fit of our

non-homogeneous models with their homogeneous counterparts, a standard (homogeneous,

stationary and reversible) model and a non-homogeneous, non-stationary version of this

model. We show that our non-homogeneous RY8.8 model is able to recover a biologically

credible rooted tree and has the best fit to the data.

Part II covers time-series metagenomics and also comprises three chapters. In Chap-

ter 6, we present the exploratory data analysis and a more detailed description of each

data set is given. We investigate possible relationships and patterns within each data set

and across the different data sets. We find evidence of seasonality in our data.

In Chapter 7, we develop our Bayesian hierarchical model for the time-series metage-

nomics data. In this chapter, we first discuss clustering methods to address the issue

of high dimensionality in our data. Due to the evidence of seasonality that we find in

Chapter 6, we use a seasonal phase-based clustering approach. We introduce a Bayesian

hierarchical VAR(1) model, before adapting it to our data. The assumption that the

autoregressive matrix is sparse leads to a discussion of three different shrinkage priors:

the spike and slab, the horseshoe and the regularised horseshoe. We give a complete

specification of our chosen prior, the regularised horseshoe, including a hyperprior for the

global shrinkage parameter that allows us to incorporate prior information on the number

of non-zero autoregressive coefficients. This is an extension of the work of Piironen &

Vehtari (2017), who originally derived the hyperprior for multiple linear regression with

a univariate response vector. To aid selection of a suitable prior, we test these priors in
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a simulation study. We show that the regularised horseshoe prior is robust to varying

degrees of sparsity and thus a suitable choice for our prior for the autoregressive matrix.

Following this, we discuss different error structures for our model, before introducing a

time varying mean, which also incorporates the chemical and environmental data. This

chapter concludes with a description of posterior inference.

In Chapter 8, we apply the model to our data and present the results of our analyses.

We draw conclusions from the posterior distributions of the model parameters, provide

potential biological explanations for some of our findings and give valuable insights into

the WWTP. Based on these findings, we remark upon the suitability of our model for these

data. There is evidence to suggest that complex, non-linear relationships are present in the

WWTP data, so we suggest that a generalised Lotka-Volterra model may more suitable

for this particular application.

Finally, Part III has only one chapter, Chapter 9, where we summarise the contribu-

tions and conclusions of this thesis and suggest topics for future work.
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Chapter 2

Background

2.1 Introduction to phylogenetics

2.1.1 Statistical phylogenetics

Phylogenetics is the study of evolutionary history and relationships among individuals or

groups of organisms, for example, different species. Evolutionary history is represented

through a bifurcating tree called a phylogenetic tree or phylogeny (Yang, 2006). A tree is

an acyclic connected graph. A graph with n vertices is a tree if, and only if, the graph

is connected and has n − 1 edges. Each vertex v in a graph has a degree deg(v); it is

the number of edges connected to it. The leaves (external vertices) of a phylogenetic tree

represent extant species (species that currently exist) and have degree one. Trees can be

rooted or unrooted. For an unrooted tree, all internal vertices have degree three. The

same applies for a rooted tree, except for the root vertex, which has degree two. The root

represents the most recent common ancestor (MRCA) of all species (or taxa) in the tree.

It fixes the direction of ancestry and provides a tool for tracing the evolution of important

traits along the tree. Therefore, it is fundamental to the biological interpretation of a tree.

Internal vertices represent speciation events or cladogenesis, which is the splitting of a

population into two new clades or groups. A clade is a subset of taxa obtained by cutting

a rooted tree on a branch and selecting only those leaves which are descendants of the split

lineage; or, in biological terms, an ancestor and all its descendants. The corresponding

concept for unrooted trees is a split, which is a bipartition of the taxa into two disjoint

sets, induced by cutting a branch (Bryant, 2003). Phylogenetic trees are leaf labelled with

species’ names, for example, in Figure 2.1 there are four species, A, B, C and D. The

branches (edges) of the tree are typically weighted and these branch lengths represent

evolutionary time or duration between speciation events. Note that this is generally not

proportional to clock time as the rate of evolution can vary from branch to branch. The

closer two species are on a tree, the more closely related they are. In Figure 2.1, for
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example, B is more closely related to D than it is to C because D and B share a more

recent common ancestor than B and C. Discarding leaf labels and branch lengths from a

tree gives us the topology (branching pattern).

C
A

D
B

Figure 2.1: Example of a phylogenetic tree with four species.

Data usually consist of an alignment of DNA or amino acids from 16S/18S ribosomal

RNA (rRNA) genes. In this thesis, we focus on sequences of DNA, with its four-character

alphabet Ω = {A, G, C, T}. All living cells have ribosomes, which are responsible for bio-

logical protein synthesis (Lafontaine & Tollervey, 2001). Each ribosome is composed of a

large subunit and a small subunit, and 16S (for prokaryotes)/18S (for eukaryotes) rRNA

is a component of the small subunit. The genes coding for rRNA evolve at a slow rate

(Woese & Fox, 1977). This, coupled with their universal presence, is why the 16S/18S

genes are used in phylogenetics studies. An example of an alignment for n species is

Species 1 G T T A T A C C A T . . .

Species 2 A C A T C G C T A G . . .
...

...
...

...
...

...
...

...
...

...
... . . .

Species n T T A C C C C T G G . . .

where each column is referred to as a site and we assume that each site has originated

from the same nucleotide of the MRCA.

During reproduction, when an organism passes a copy of its DNA to its offspring,

point mutations can occur in molecular sequences. When a point mutation becomes fixed

in a population it is referred to as a substitution. Now consider the nucleotide (letter) at

a single genomic site in the MRCA at the root of the tree. Over time, substitutions may

have accumulated at that site such that the corresponding sites in the n taxa at the leaves

of the tree are occupied by (possibly) different nucleotides. Equivalently, the substitutions

(at site i) over time lead to (possibly) different nucleotides in column i of the alignment.

The ensuing assignment of A, G, C or T to each taxon is referred to as the DNA character

at that site. There are clearly 4n possible DNA characters for a phylogeny on n taxa

and we denote this set by Ωn. We assume that the molecular sequences of each of the n

taxa have been aligned such that the columns can be regarded as observations of a DNA

character.
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2.1.2 Standard models of DNA evolution

Denote by τ a phylogeny, with branch lengths `, representing the evolutionary relation-

ships among a collection of n taxa (species) and suppose that we have an alignment of

data y = (yij), with n rows, representing the n species at the leaves, and m columns,

representing genomic sites in the MRCA. Denote by Y (t) ∈ Ω the nucleotide at time t at

a single genomic site and consider evolution along a single branch of the phylogeney τ .

Most phylogenetic models assume that substitutions can be modelled using a continuous

time Markov process (CTMP) (Yang, 2006), characterised by an instantaneous rate ma-

trix Q = (quv). Over some interval of time `, the transition probabilities between pairs

of nucleotides are obtained by taking the matrix exponential P(`) = exp (−`Q′), where

Q′ = Q/ (−
∑

u quuπu) and π ∈ S4, SK = {x = (x1, . . . , xK) : xi ≥ 0 ∀i,
∑
xi = 1}, is the

stationary distribution of the process, satisfying πQ = 0T . This rescaling of the rate ma-

trix allows the branch length ` to be interpreted as the expected number of substitutions

per site. The (u, v)-element in P(`) is the probability of transitioning from nucleotide u to

nucleotide v along a branch of length `, puv(`) = Pr{Y (`) = v|Y (0) = u} for any u, v ∈ Ω.

Standard phylogenetic models are typically based on three assumptions. The first as-

sumption is homogeneity which assumes a single instantaneous rate matrix characterises

the evolutionary process along every branch of the tree. The second assumption is sta-

tionarity, that is that the CTMP is in its stationary distribution π and so π is also the

distribution at the root. It implies that the probability of each nucleotide does not change

over time. The final assumption is reversibility, which is the assumption that the CTMP

is time-reversible, that is

πupuv(`) = πvpvu(`) (2.1)

for all u, v ∈ Ω (Felsenstein, 1981). The instantaneous rate matrix Q of a homogeneous,

reversible process can be factorised as Q = RΠ where Π = diag(π) is the diagonal matrix

of stationary probabilities and R = (rij) is the symmetric matrix of exchangeability pa-

rameters with rij = rji ≥ 0 for i 6= j. We refer to a rate matrix as reversible if it permits

a factorisation of this form.

In the class of reversible rate matrices, the most general is that of the general time re-

versible (GTR) model (Tavaré, 1986), with six distinct exchangeability parameters, whose

rate matrix is given by

Q =


∗ κ1π2 κ2π3 κ3π4

κ1π1 ∗ κ4π3 κ5π4

κ2π1 κ4π2 ∗ κ6π4

κ3π1 κ5π2 κ6π3 ∗

 ,

where the values of each * ensure that the rows sum to zero. Other commonly used models
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are then derived as special cases. For example, ordering the nucleotides as A, G, C, T, which

we will do for any rate matrix henceforth, the HKY85 model (Hasegawa et al., 1985) is a

special case, whose rate matrix Q is given by

Q =


∗ κπ2 λπ3 λπ4

κπ1 ∗ λπ3 λπ4

λπ1 λπ2 ∗ κπ4

λπ1 λπ2 κπ3 ∗

 , (2.2)

where the values of each * ensure that the rows sum to zero. In this model, the reduction

in the number of exchangeability parameters from six to two is biologically motivated,

allowing transitions (substitutions between purines – A and G – and between pyrimidines –

C and T) to occur at a different rate to transversions (substitutions between a pyrimidine

and a purine). Transitions often occur at higher rates than transversions (Yang, 2006),

due to the two purines having a similar chemical structure, as do the two pyrimidines

(Squartini & Arndt, 2008).

To prevent arbitrary rescaling of the rate matrix Q in the transition matrix P(`) =

exp(−`Q′), an identifiability constraint is typically imposed. For reversible rate matrices,

this often entails setting one exchangeability parameter equal to one (Zwickl & Holder,

2004) so that the others can be interpreted as relative propensities for change. For example,

fixing λ = 1 in the HKY85 model in (2.2) means that κ is interpreted as the transition-

transversion rate ratio. Henceforth, we drop the prime on the normalised rate matrix Q′

for brevity.

2.1.3 Likelihood of a phylogenetic tree

In the next section, we discuss the drawbacks of standard phylogenetic models, which

relate to the assumption that the evolutionary process is stationary and reversible. A

major issue is that these assumptions render the likelihood of a tree invariant to root

position. In this section, we define the likelihood of a tree and describe a useful algorithm

to calculate the likelihood of a tree.

First, we consider a rooted tree τ with a single branch b of length `b. Denote by x the

observed nucleotide of a single site of DNA sequence and let i be the unobserved ancestral

state at the root. Assuming the process is in its stationary distribution π, the probability

that the nucleotide at the root has value i is πi. The likelihood of the tree is given by

π(x|τ) =
∑

i πipix(`b), where pix(`b) is the probability of transitioning from ancestral state

i to the observed state x at the leaf.

Now consider a rooted tree τ with vertices V and edges B, where the form of each

edge is b = (u, v) and u, v ∈ V . We denote by X(i) a nucleotide at vertex i which is

9
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only observed at the leaves and we let r be the root of the tree. If the nucleotides at the

internal vertices are known, the likelihood of the tree is given by

p(x|X, τ) = πX(r)

∏
b=(u,v)

pX(u),X(v)(`b),

where `b is the length of edge b. This is the probability associated with the root vertex

multiplied by the product of the transition probabilities associated with every edge of the

tree. However, in practice, the nucleotides at the internal vertices are unknown. Therefore,

we average over all possible nucleotides (at the internal vertices) to obtain the likelihood.

Thus, the likelihood is given by

π(x|τ) =
∑
X

πX(r)

∏
b=(u,v)

pX(v),X(w) (`b) . (2.3)

The sum is taken over all functions X from the vertices to Ω such that X(i) matches data

xi at leaf vertices. This sum can be computed efficiently using a post-order traversal of

the tree called Felsenstein’s pruning algorithm (Felsenstein, 1973, 1981). The algorithm

works by calculating the conditional probabilities at each vertex of the tree recursively

from the leaves of the tree towards the root.

First, let dj (Xi) denote the character at the vertex which is the left (j = 0) or right

(j = 1) immediate descendant of vertex i. Let l (Xi) = {l0 (Xi) , l1 (Xi)} denote the

characters at the leaf vertices which are descendants of index i. They are partitioned

according to whether they result from the left (j = 0) or right (j = 1) split at i. Then the

algorithm is as follows:

1. Initialise at the leaves. For each leaf vertex i compute Pr (Xi = xi|Xi = k) = δxi,k,

for k ∈ Ω, where δab = 1 if a = b and δab = 0 otherwise.

2. Follow the branching pattern from the leaves to the root, applying the recursion

Pr (l (Xi) |Xi = k) = Pr (l0 (Xi) |Xi = k) Pr (l1 (Xi) |Xi = k)

for each internal vertex i, where

Pr (lj (Xi) |Xi = k) =
∑
m

Pr (lj (Xi) |dj (Xi) = m) Pr (dj (Xi) = m|Xi = k) .

3. Let vertex r be the root. Compute the likelihood through

Pr (l (Xr)) =
∑
k

Pr (l (Xr) |Xr = k) Pr (Xr = k) .

10
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2.1.4 Drawbacks of standard models

The assumptions of stationarity and reversibility offer mathematical convenience. How-

ever, unfortunately, conditional on any particular (unrooted) tree, a mathematical con-

sequence is that the likelihood does not depend on the root position (Felsenstein, 1981;

Yang, 2006). We now consider a simple proof adapted from Felsenstein (1981) and Cherlin

(2016). Suppose we have a tree with only two taxa, where we denote the leaves as l0 and

l1, and their characters are A and C, respectively. Furthermore, we suppose that there are

two different positions for the root of this tree at two vertices U and V. The distances

between U and l0, U and V, and V and l1 are a, b and c, respectively. The probability of

observing the tree with the root at vertex U is

L1 =
∑
U∈Ω

πUpUA(a)pUC(b+ c)

and the probability of observing the tree with the root at the vertex V is

L2 =
∑
V ∈Ω

πV pV A(a+ b)pV C(c). (2.4)

However, pV A(a+ b) in (2.4) can be written as
∑

U∈Ω pV U (b)pUA(a). This is because the

transition probability matrix P is characterised by the Chapman-Kolmogorov equations:

pij(t1 + t2) =
∑
k∈Ω

pik(t1)pkj(t2).

This means that the probability of transitioning from state i (nucleotide) to state (nu-

cleotide) j is a sum of probabilities of changing from state i to the intermediate state

(nucleotide at the vertex) k, and then from the intermediate state k to the state j. The

sum is over all possible intermediate states k ∈ Ω. From the property of reversibility in

(2.1),

pV U (b) =
1

πV
pUV (b)πU ,

which means that

pV A(a+ b) =
∑
U∈Ω

1

πV
pUV (b)πUpUA(a). (2.5)

Substituting (2.5) into (2.4) gives

L2 =
∑
V ∈Ω

πV
∑
U∈Ω

1

πV
pUV (b)πUpUA(a)pV C(c).

11
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According to the Chapman-Kolmogorov equation,
∑

V ∈Ω pUV (b)pV C(c) corresponds to

pUC(b+ c), so

L2 =
∑
U∈Ω

πUpUA(a)pUC(b+ c) = L1.

Therefore, we have shown that, regardless of the root position, the likelihood of the tree

is the same.

Since the likelihood does not depend on the root position, traditionally, other methods

have therefore been used to root evolutionary trees. The most common strategy, called

outgroup rooting, requires inclusion of data from a set of taxa (the outgroup) which are

known to have evolved outside the subtree of interest (the ingroup) (Yang, 2006). The

root can then be placed on the branch connecting the outgroup to the rest of the tree. For

example, Jarvis et al. (2014) investigated the evolutionary history of Neoaves (modern

birds) and used two birds (an ostrich and a tinamou) that are not considered modern

birds as an outgroup. Phillips et al. (2006) used Ameridelphia (marsupials that live in

the Americas) as an outgroup when resolving interrelations among Australian marsupials.

Unfortunately, this approach to rooting can be problematic when the outgroup is only very

distantly related to the ingroup. In such cases, model assumptions become increasingly

dubious and the ensuing model misspecification can result in the identification of spurious

relationships with the outgroup. When a distantly related outgroup is used, there will be a

long branch between the ingroup and outgroup, which can result in long branch attraction

(Felsenstein, 1978; Tarŕıo et al., 2000; Williams et al., 2015). This is when long branches

in a tree group together regardless of their true evolutionary relationships. Therefore,

use of a distantly related outgroup can result in misleading inferences about the ingroup.

Additionally, outgroup rooting can not be used to resolve the universal tree of life (the

phylogenetic tree for all species on Earth) as no obvious outgroup exists (Yang, 2006;

Cherlin et al., 2017).

An alternative strategy for rooting, which has received relatively little attention in

the phylogenetic literature, is to take a model-based approach and draw inference from

a likelihood that depends on the position of the root. As the proof above shows, the

likelihood’s invariance to root position is a direct consequence of the assumptions of re-

versibility and stationarity. Therefore, relaxing at least one of these assumptions in a

model results in a likelihood that does depend on the root position. Additionally, the

assumptions of stationarity and reversibility typically do not hold up under the scrutiny

of biological examination. For example, in a stationary process, time-reversibility implies

that the direction of time is unimportant. Yet the mechanism by which substitutions in

DNA occur is very complex, comprising processes of point mutation and fixation, and

encompassing the effects of selection, and so on. Whilst most physical processes are time-

reversible, when these sub-processes combine to produce substitutions in DNA sequences,
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their complex interaction makes time-reversibility highly questionable. Correspondingly,

analysis of biological data often provides evidence to rebut the reversibility assumption

(Squartini & Arndt, 2008).

Similarly, there are various biological theories that are discordant with a stationary evo-

lutionary process, for example mutational biases in DNA replication enzymes are thought

to differ across the domains of life (Lind & Andersson, 2008). The assumption is also

easy to challenge empirically. In any particular analysis, if the taxa had evolved according

to a stationary process, one would expect the sequence composition of each taxon to be

approximately the same. Yet, in analyses of deep phylogenies, the GC-content (the total

proportion of G and C nucleotides) of 16S ribosomal RNA, the most widely used gene in

phylogenetic analysis, varies from 45% to 74% across the diversity of sampled Bacteria,

Archaea and eukaryotes (Cox et al., 2008). Similarly, heterogeneity in sequence composi-

tion has also been observed in much more recent species radiations, for example, Morgan

et al. (2013) highlighted that conflicting hypotheses regarding the root of the placental

mammals can be attributed to models failing to account for variations in nucleotide com-

position. They summarised a number of factors that could cause these variations, such as

diet, body size and disease. Phillips et al. (2006) showed that the third codon positions

of the sequences were the source of compositional heterogeneity in marsupials. (A codon

is a triplet of nucleotides that corresponds to a specific amino acid.) They found that

by removing these codon positions or using Y-coding (replacing pyrimidines with a Y)

or RY-coding (replacing pyrimidines with a Y and replacing purines with an R) reduced

compositional bias in their data sets, thus allowing them to determine interrelations of

three major marsupial groups. However, in some cases, removing third codon positions

can be undesirable, as the first and second positions alone may contain insufficient infor-

mation for resolution of short timescale relationships (Tarŕıo et al., 2000). Heterogeneity

in sequence composition is also evident in other animals, such as birds (Braun & Kimball,

2002; Phillips et al., 2009) and paraneopteran insects (Li et al., 2015). (Paraneoptera are

a superorder of insects containing over 120000 species, and a superorder is a taxonomic

category.) As a consequence, in addition to facilitating root inference, models that relax

the restrictive assumptions of stationarity and/or reversibility also provide opportunities

to incorporate further biological realism. Existing models that facilitate root inference are

discussed in Chapter 3, before we describe our own models in Chapter 4. In Chapter 5,

we test our models’ ability to infer root position with simulated data and a biological data

set that exhibits compositional heterogeneity.
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2.2 Introduction to metagenomics

2.2.1 Statistical metagenomics

A meta-analysis statistically combines separate analyses and genomics is the wide rang-

ing analysis of an organism’s genetic material. Metagenomics (also called community

genomics, environmental genomics and population genomics) can be described as the

culture-independent analysis of microbial communities, which involves directly isolating

genomic DNA from an environment and then cloning it in easily cultivable microorgan-

isms (Joshi et al., 2014). Gilbert et al. (2011) described metagenomics as directly isolating

DNA from the environment and using it to characterise the taxonomy and function of the

biological community in that ecosystem. In simple terms, metagenomics is the study of

microbial genetic material sequenced directly from environmental samples (Jonsson et al.,

2016). 16S rRNA (see Section 2.1.1) sequencing, which is used in phylogenetics, where the

16S gene is targetted and read in a sample, is often used in metagenomic studies (Fisher &

Mehta, 2014). However, referring to 16S rRNA sequencing as metagenomics is technically

a misnomer, as the entire genomic content of a sample is not targetted (Quince et al.,

2017).

There are many applications of metagenomics and microorganisms that influence hu-

man life in many ways, for example, the gut microbiome is thought to have a role in

obesity (Davis, 2016). The term microbiome refers to the community of microorganisms

living within a particular environment. The microbiome of the skin prevents colonisation

by pathogenic bacteria (Byrd et al., 2018). However, changes in this microbiome are as-

sociated with common skin diseases, such as acne and eczema, and with chronic wounds.

More pertinent to this thesis, microorganisms play a fundamental role in the treatment of

wastewater (Cydzik-Kwiatkowska & Zielińska, 2016), which is discussed in more detail in

Section 2.2.4.

Joshi et al. (2014) summarised some important applications and outcomes from metage-

nomic studies. They placed applications into two categories: ecological inferences from

microbial diversity estimation and biotechnology. Knowledge of how microorganisms live

within a community is important. Microbial biologists seek to understand how nutrients

are acquired and how energy is produced. In addition to this, they aim to learn about

the community structure by understanding the physiology of the microorganisms and the

roles they have within their ecosystem. Diversity analysis is a popular area of research

too, with developments in metagenomics helping to overcome existing barriers to esti-

mating microbial diversity. Paleogenomics is also considered an important application

of metagenomics, where phylogenetic relationships are resolved between extinct and ex-

tant animals by extracting ancient DNA from the environment. Regarding biotechnology,

metagenomics plays a crucial role, with the opportunity to revolutionise existing trends for
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industrial production of metabolites. Already microbes have been used for the production

of a multitude of products. Moreover, there is the potential to discover novel antibiotics

and new antimicrobial substances, and to learn about antibiotic resistance genes in order

to be able to combat them.

In metagenomic studies, DNA sequences are extracted from a microbial sample. Then,

decision rules are made for grouping observed sequences into classes. Often, microbial

biologists use operational taxonomic units (OTUs) to group similar sequences together

using a clustering algorithm, where typically an OTU contains sequences that are not more

than 3% different from each other (Bunge et al., 2014; Xia et al., 2018). It is crucial to note

that OTUs do not exactly represent different species but can be thought of as pragmatic

proxies for different species. Thus, the primary data structure in metagenomic studies is

an OTU table which is a matrix of counts, where the rows represent different OTUs and

the columns represent different samples (Xia et al., 2018). Note that this is different from

other fields, where rows usually represent different samples, and one can easily obtain an

OTU table that follows this more “standard” convention by simply transposing it. OTU

tables are high-dimensional and are typically sparse, which means they contain a lot of

zeroes. In this thesis, the data are primarily counts of OTUs over time (see Section 2.2.3),

so the samples are different (ordered) time points. In the following section, we discuss

some of the current approaches to modelling time-series metagenomics data.

2.2.2 Time-series metagenomics

Due to recent advances in sequencing technology, there has been a rise in longitudinal

studies of microbial communities from a large range of environments. Unique ecological

insights into response to perturbations and community stability can be gained from such

studies (Faust et al., 2015). An example of a perturbation could be the introduction of an

antibiotic to a gut microbiome, or a chemical spill in an aquatic environment. Typically,

microbial communities tend to evolve towards a stable state, although changes in the

community state can occur due to changes in the environment, such as these perturbations.

In addition to this, there are complex non-linear interactions among microbes, which can

result in alternative stable states. The existence of complex interactions among different

microbes and between different microbes and their environment contributes significantly

to microbial dynamics.

Community dynamics are often described by the generalised Lotka-Volterra (gLV)

differential equations, where changes in microbial counts are modelled as a function of

taxon-specific growth rates and pairwise interactions. For example, Mounier et al. (2008)

used a generalised Lotka-Volterra model to identify interactions in species within a cheese

microbial community. The Lotka-Volterra equations (Lotka, 1926; Volterra, 1926) are

commonly used to describe the dynamics of biological systems with two species, one of

15



Chapter 2. Background

which is the predator, and the other is the prey. Let y1(t) be the number of prey and y2(t)

be the number of some predator at time t. Under a deterministic Lotka-Volterra model,

the changes in the populations of the two species over continuous time t follow the pair of

equations:

d

dt
y1(t) = αy1(t)− βy1(t)y2(t), (2.6)

d

dt
y2(t) = −δy2(t) + γy1(t)y2(t)

where α, β, γ, δ ∈ R+ describe the growth rates and interactions of the two species.

The gLV model is an extension of (2.6) that is used to characterise the dynamics of a

K-species system, where K > 2. Changes in population of species i are described by

d

dt
yi(t) = biyi(t) + yi(t)

K∑
j=1

Aijyj(t), (2.7)

where yi(t) is the population size of species i at time t, bi is the growth rate of species i

in absence of any competition and A is a matrix of pairwise interactions.

Often, in microbiome studies, the problem of finding the growth rates and interaction

terms is simplified using linearisation. Now we describe the method based on the descrip-

tion given in Stein et al. (2013), but other approaches are possible, for example, non-linear

least squares (see Section 1.3.1 of Ramsay et al. (2007)). First we note that d
dtyi(t) can be

written as y′i(t) and that we can divide the differential equation in (2.7) by the abundance

yi(t) of OTU (species) i to give

y′i(t)

yi(t)
= bi +

K∑
j=1

Aijyj(t),

where K is the number of different OTUs. Note that
y′i(t)
yi(t)

= d
dt log(yi(t)) and that (2.7)

can be discretised and approximated using

log(yi(tk+1)− log(yi(tk))

tk+1 − tk
= bi +

K∑
j=1

Aijyj(tk), (2.8)

for successive time points k = 1, . . . , N . Considering all OTUs, each side of (2.8) can

be concatenated into a matrix form. The problem of estimating the gLV parameters b

and A is then reduced to linear regression on the differenced log-transformed counts. For

example, Stein et al. (2013) utilised ridge regression to learn about growth rates, inter-

actions and susceptibility to external perturbations of the intestinal microbial community

in mice. Additionally, Fisher & Mehta (2014) used sparse linear regression and bootstrap
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aggregation to infer the gLV parameters of microorganisms present in the human gut.

Furthermore, they argue against the correlation methods used in cross-sectional studies

and show that a correlation between two species does not necessarily imply an interaction.

A cross-sectional study pools samples from multiple environments (for example, when

studying the gut microbiome, samples are taken from different people) and correlations

between relative abundances of species are used as proxies for interactions. Bucci et al.

(2016) took a Bayesian approach (see Section 2.3.1 for a discussion of Bayesian inference)

to inference of gLV parameters, making use of a Bayesian lasso (a regularisation method)

and Bayesian variable selection, which directly models presence or absence of interactions.

While most authors opt to use gLV models, Gibbons et al. (2017) investigated microbial

dynamics in the gut by applying a vector autoregressive (VAR) model (see Section 7.2 for

a general definition). They used a sparse VAR model, which benefits, in terms of quan-

tification of uncertainty, from explicitly modelling error, unlike gLV-type models. The

key difference between the two approaches is that VAR models assume linear dynamics,

whereas gLV models assume non-linear dynamics. Moreover, under a VAR model, station-

arity can be enforced. A Gaussian process x = {xt} (t = 1, . . . N) is considered stationary

if its mean function µt does not depend on time and its autocovariance function γ(s, t)

depends on s and t only through the difference |s − t| (Shumway & Stoffer, 2017). The

autocovariance function is γ(s, t) = E [(xs − µs)(xt − µt)] for all s and t.

A VAR model of order one (VAR(1)) can be regarded as a linear approximation to the

non-linear numerical solution of a Lotka-Volterra system, which we shall now demonstrate.

First consider a stochastic Lotka-Volterra model with two species, which is

d

dt
y1(t) = αy1(t)− βy1(t)y2(t) + σ1dw1(t) (2.9)

d

dt
y2(t) = −δy2(t) + γy1(t)y2(t) + σ2dw2(t),

where α, β, γ, δ ≥ 0 and w1, w2 are independent Wiener processes (or Brownian motions).

Let Y t = (Yt,1, Yt,2)T denote an appropriate discretisation of the time series of the two

species with time step ∆t so that tN = t0 + n∆t for some initial time t0, where tN is

the last time point in the time series. The Euler approximation to the solution of the

stochastic differential equation driving the Lotka-Volterra model is

Yt+1,1 = αYt,1 − βYt,1Yt,2 + εt,1 (2.10)

Yt+1,2 = −δYt,2 + γYt,1Yt,2 + εt,2,

where α, β, γ, δ ≥ 0, εt = (εt,1, εt,2)T ∼ N2 (0,Σ) and Σ = diag(σ1, σ2). Interactions

between the two population sizes yt,1 and yt,2 arise due to the underpinning differential

equations being coupled. In the numerical solution in (2.10), the dependence of Y t+1 on
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Y t is non-linear.

Now consider a zero-mean VAR(1) model for a discrete time series with two species

{Y t : t = 0, 1, . . . . }. This can be expressed as

Yt+1,1 = αYt,1 − βYt,2 + εt,1 (2.11)

Yt+1,2 = −δYt,2 + γYt,1 + εt,2,

where α, β, γ, δ ∈ R but we could impose a positivity constraint and εt ∼ N2(0,Σ) as

above for (2.10). Here the dependence of Y t+1 on Y t is linear by construction. However,

comparison of (2.11) and (2.10) reveals that the VAR(1) model has a similar structure to

the Lotka-Volterra model. Thus, we can regard the VAR(1) as a linear approximation to

the non-linear numerical solution of the Lotka-Volterra system. Since linear models tend

to be easier to fit, we develop a VAR(1) model for our time-series metagenomics data in

Chapter 7.

2.2.3 Data overview

As mentioned in Section 1.1 of Chapter 1, we take a data-driven approach to the metage-

nomics part of this thesis, where we have specific data sets for which we develop a model.

In this section, we give a brief overview of these data sets. A description of how the data

are processed is given in Chapter 6, as well as more detailed descriptions of the data and

the exploratory analysis.

In this thesis, we have weekly counts of OTUs in a UK-based wastewater treatment

plant (WWTP) over (roughly) five years. We have counts from two different tanks, the

activated sludge (AS) and the settled sewage (SS) tanks. After wastewater enters the

reactor of a WWTP, it undergoes the physical process of primary sedimentation. This is

when large solids present in the wastewater are settled out. The wastewater that emerges

from the primary sedimentation tank is the settled sewage and is the source material

that is fed into an aerated tank. The content of this tank is the activated sludge and

is where the wastewater is treated biologically. From the AS we have counts for 9044

different OTUs over 257 time points and from the SS we have 9678 different OTUs over

251 time points. There is a taxonomy table for the OTUs with taxonomic ranks: kingdom,

phylum, class, order, family and genus. Additionally, there are weekly measurements of

chemical and environmental data. These chemical and environmental covariates are often

being changed, namely by changes made to the dilution rate and the solid retention time.

Between the two tanks, there are 35 different metrics including temperature, pH, ammonia

concentration and chemical concentrations, such as, calcium, iron and lead.
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2.2.4 Motivation, aims and challenges

Considered one of the greatest engineering successes, WWTPs are fundamental compo-

nents of infrastructure and are vital for sustainable urban existence. The AS plays a

pivotal role in the treatment of wastewater, as it is responsible for the degradation of

organic and inorganic pollutants, and comprises aerobic and anaerobic microorganisms

(Shchegolkova et al., 2016). Microbial communities within AS are complicated biosys-

tems with a network of interconnected trophic links. For example, to degrade synthetic

substances, such as oil products, or toxicants, many enzymes are required in a multi-

stage process. Several species of microorganisms are needed for complete biodegradation.

Gaining theoretical understanding of how these large biological systems work could aid in

creating better biotechnological solutions more rapidly (Curtis et al., 2003). The microor-

ganisms involved in WWTPs are delicately balanced in a stable state and understanding

how to maintain this stable state is paramount to sustaining and improving WWTPs’

function (Cydzik-Kwiatkowska & Zielińska, 2016). Furthermore, methods developed for

WWTP microbial communities could be applied to many other microbiomes.

In the metagenomics part of this thesis, the aim is to model the OTU counts in the

WWTP over time, with a particular focus on the AS. As in our phylogenetics work, we

wish to use a biologically motivated stochastic model that allows for interactions between

OTUs. Additionally, we wish to model the chemical and environmental effects on OTUs,

as these most likely influence the microbial community. For example, Shchegolkova et al.

(2016) found that chemical composition of wastewater played a major role in the formation

of taxonomic structure of AS.

The data that we wish to model are accompanied by many statistical challenges, which

will be addressed in this thesis (see Chapter 7). The first challenge is regarding the

dimensions of the data, as clearly the number of different OTUs is much larger than the

number of time points. Since we are interested in interactions between different OTUs,

fitting joint models to the counts of all OTUs would be very difficult computationally.

Furthermore, one must question whether the number of time points would be sufficiently

large to detect such interactions (see Section 7.3.1). Secondly, there is the common issue

of sparsity in the OTU tables, which is the presence of many zeroes. Failing to account

for the excess zeroes may lead to biased parameter estimation and misleading inference

(Xia et al., 2018).

In standard metagenomic studies, the goal is often to determine whether OTUs are

differentially abundant across samples. In these instances, the different library sizes need

to be accounted for. The library size or sampling depth is the total number of OTUs

detected in a sample. Library sizes can vary vastly from sample to sample, which does not

reflect true biological variation but differential efficiency of the sequencing method (Weiss

et al., 2017). For example, in the AS tank, the smallest library size is 29298 and the
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largest is more than ten times larger (692110) and in the SS tank, the library size ranges

from 2564 to 542565 (more than 200 times larger). The issue of sparsity is also linked to

sampling depth. OTUs may be absent from the majority of samples, but it might also be

that the sampling depths were insufficient for these samples (Jonsson et al., 2016).

A common approach to dealing with the issue of differing library sizes is to normalise

the data by using proportions (Paulson et al., 2013) or to rarefy the counts (McMurdie &

Holmes, 2014; Weiss et al., 2017). Rarefying counts works by choosing a minimum library

size, say Nmin, discarding any samples that are below this minimum and subsampling

the remaining samples such that they all have size Nmin. Typically, Nmin is selected

to be the size of the smallest library that is not considered “defective”, but deciding

what constitutes a defective sample is not clear cut (McMurdie & Holmes, 2014). After

normalisation, hypothesis tests are applied, such as t-tests or Wilcoxon-Mann-Whitney

tests (McMurdie & Holmes, 2014; Jonsson et al., 2016; Weiss et al., 2017; Xia et al., 2018).

Alternatively, a model-based approach can be taken, for example, the raw counts are

modelled by a negative binomial distribution, which explicitly accounts for differences in

library sizes through a linear scaling factor (Anders & Huber, 2010; McMurdie & Holmes,

2014). Hypothesis tests can then be based on these parametric assumptions. For example,

see Anders & Huber (2010).

In this thesis, we cluster OTUs into a small number of large groups (see Section 7.1)

and explicitly allow the mean log absolute abundances for each group to vary over time

(across samples). Therefore, the issues described in this section are less relevant in the

context of this thesis.

2.3 Bayesian inference

In this thesis, we work in a Bayesian framework, so in the final section of this chapter we

present an overview of Bayesian inference; see Gelman et al. (2014) for a more compre-

hensive introduction. In Bayesian inference, all unknown quantities are treated as random

variables and uncertainty in inferences based on statistical analyses can be quantified us-

ing probability, where probability is interpreted as a “degree of belief” (Farrow, 2005).

The first step in a Bayesian analysis is to define a full probability model, that is, a joint

probability distribution must be defined for the data and the unknown quantities, which

include parameters and missing observations (if applicable). Then, conditioning on the

observed data, a posterior distribution is calculated, which is the conditional probability

distribution of the unobserved quantities, given the observed data. This posterior dis-

tribution quantifies uncertainty about the parameters after observing the data and can

be interpreted to make inferences. Finally, the fit of the model can be evaluated and, if

necessary, the model may be altered to improve the fit.
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2.3.1 Bayes theorem

Let θ = (θ1, . . . , θk)
T be a set of parameters, which we wish to make inferences about,

and let y = (y1, . . . yn) be the data. First, assuming that θ is continuous, the prior

distribution with density π (θ) summarises the prior belief about the parameters. The

likelihood L (θ|y) = p (y|θ) contains information from the data y and is the joint density

(continuous y) or the joint mass function (discrete y) of the data given the parameters

θ. Using Bayes theorem, we can calculate the posterior density, which contains the prior

information, updated by the likelihood, as

π (θ|y) =
π (θ) p (y|θ)

p(y)
,

where p(y) =
∫
π (θ) p (y|θ) dθ is the marginal likelihood. This is a normalising constant

which ensures that the posterior density integrates to one. Thus, Bayes theorem is often

expressed as

π (θ|y) ∝ π (θ) p (y|θ) . (2.12)

In the case of discrete parameters θ, we speak of prior and posterior mass functions, rather

than densities, and p(y) =
∑

θ p(θ)p (y|θ), which is the sum over all possible values of θ.

In most cases, the marginal likelihood p(y) is not available in closed form, and conse-

quently neither is the posterior distribution. However, an exception to this is when the

posterior distribution is conjugate to the prior distribution, which means that both the

prior and posterior distributions have the same parametric form. To illustrate conjugacy,

we consider a simple example. Suppose we have a clinical trial that aims to test the suc-

cess rate of a new drug to reduce blood pressure. In the trial there are n patients and

let θ ∈ (0, 1) be the probability that a patient’s blood pressure is lower after taking the

drug. If we let Y be the number of patients whose blood pressure is reduced after taking

the drug (the number of successes) then we have Y ∼ Bin (n, θ). We then assign a prior

Beta (α, β) distribution to θ. The parameters of our prior distribution α and β are known

as the hyperparameters. Now, let us consider the posterior density in (2.12) for θ, that is

p (θ|y) ∝ θα−1(1− θ)β−1 × θy(1− θ)n−y

∝ θy+α−1(1− θ)n−y+β−1.

We have θ|y ∼ Beta (y + α, n− y + β) and clearly the posterior distribution has the same

form as the prior distribution. In this simple example, we can see how the data directly

updates our beliefs about the parameter θ. Moreover, we have demonstrated the compu-

tational ease and simplicity of using a conjugate prior, since the posterior density, which

includes the marginal likelihood p(y), can be calculated analytically.
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2.3.2 Markov chain Monte Carlo

Unfortunately, in practice, conjugate priors are often either not a realistic option or they

are unavailable, and thus the marginal likelihood p(y) cannot be calculated analytically.

If the number of parameters is very small, it may be possible to approximate the marginal

likelihood by numerical integration. However, for all the models considered in this the-

sis, the dimension of the parameter space is far too large for this to be computationally

tractable. In phylogenetics, for example, calculating the marginal likelihood requires in-

tegration over all parameters of the substitution model and the branch lengths, and enu-

meration over every possible topology. Similarly, as mentioned in Section 2.2.4, we wish

to model interactions between (the counts of) clusters of OTUs and interactions between

(the counts of) the clusters and the many covariates that represent their environment,

which naturally leads to numerous parameters in a model. Clearly for both examples,

obtaining the marginal likelihood (and hence posterior distribution) is not a simple task.

A remedy to the issue of analytically intractable posterior distributions is Markov

chain Monte Carlo (MCMC), which is an advanced computational technique that can be

used to generate samples from complex posterior distributions with many parameters. In

MCMC, a Markov chain is constructed whose stationary distribution is the posterior dis-

tribution (sometimes referred to as the target distibution) (Kass et al., 1998). Starting

from an initial point within the support of the posterior, dependent samples are drawn

from this distribution by sampling realisations from the Markov chain. Since the poste-

rior distribution is the stationary distribution, the chain must be run for long enough to

obtain such samples (Farrow, 2005). In the remainder of this section, we describe two

MCMC algorithms, before discussing diagnostic checks that must be made when using

such methods.

Metropolis-Hastings algorithm

Our goal is to sample from the posterior distribution π (θ|y). Suppose we have a set of

parameters θ with p components and an arbitrary transition kernel q(θ∗|θ), which we

call the proposal distribution. This is the probability density (for continuous θ) or mass

function (for discrete θ) of moving from state θ to θ∗. The steps (Gelman et al., 2014) of

the Metropolis-Hastings algorithm (Hastings, 1970) are as follows:

1. Initialise the iteration counter to j = 1, and initialise the chain with θ(0) chosen

from somewhere in the support of π (θ|y).

2. Generate a proposed value θ∗ ∼ q
(
θ∗|θ(j−1)

)
.
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3. Evaluate the acceptance probability α
(
θ∗|θ(j−1)

)
of the proposed move, which is

α
(
θ∗|θ(j−1)

)
= min

1,
π (θ∗|y) q

(
θ(j−1)|θ∗

)
π
(
θ(j−1)|y

)
q
(
θ∗|θ(j−1)

)
 .

4. Set θ(j) = θ∗ with probability α
(
θ∗|θ(j−1)

)
. Otherwise set θ(j) = θ(j−1).

5. Set j = j + 1 and return to step 2.

The posterior density π (θ|y) only appears in the acceptance probability as a ratio, and so

the algorithm can be used when the posterior density is only known up to proportionality,

as in (2.12). Thus, the acceptance probability can be expressed as

α
(
θ∗|θ(j−1)

)
= min

1,
π (θ∗) p (y|θ∗) q

(
θ(j−1)|θ∗

)
π
(
θ(j−1)

)
p
(
y|θ(j−1)

)
q
(
θ∗|θ(j−1)

)
 .

Componentwise transitions

Defining a suitable proposal distribution for θ = (θ1, . . . , θp)
T may be difficult. Further-

more, for some problems, full conditional distributions (FCDs) may be available to sample

from for a subset of the components of θ. Let π (θi|θ1, . . . , θi−1, θi+1, . . . , θp,y) be the FCD

for the i-th component of θ. This is the density of θi given all other components of θ and

the data y. We can perform componentwise transitions as follows:

1. Initialise the iteration counter to j = 1 and initialise the chain with θ(0) = (θ1, . . . , θp)
T .

2. Obtain a new value θ(j) from θ(j−1) by successively generating values:

• θ(j)
1 ∼ π

(
θ1|θ(j−1)

2 , . . . , θ
(j−1)
p ,y

)
using a Metropolis-Hastings step with pro-

posal distribution q1

(
θ∗1|θ

(j−1)
1

)
.

• θ(j)
2 ∼ π

(
θ2|θ(j−1)

1 , θ
(j−1)
3 , . . . , θ

(j−1)
p ,y

)
using a Metropolis-Hastings step with

proposal distribution q2

(
θ∗2|θ

(j−1)
2

)
.

...

• θ(j)
p ∼ π

(
θp|θ(j−1)

1 , . . . , θ
(j−1)
p−1 ,y

)
using a Metropolis-Hastings step with pro-

posal distribution qp

(
θ∗p|θ

(j−1)
p

)
.

3. Set j = j + 1 and return to step 2.
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The Gibbs sampler

When all the FCDs are available to sample from, we can obtain the Gibbs sampler (Geman

& Geman, 1984). This is a special case of the Metropolis-Hastings algorithm (Gelman

et al., 2014), where for each iteration j we perform p Metropolis-Hastings steps (one for

each component of θ), where the acceptance probability is one.

1. Initialise the iteration counter at j = 1 and initialise the state of the chain to

θ(0) =
(
θ

(0)
1 , . . . , θ

(0)
p

)T
.

2. Obtain a new value θ(j) from θ(j−1) by successively sampling from the conditional

distributions:

• θ(j)
1 ∼ π

(
θ1|θ(j−1)

2 , . . . , θ
(j−1)
p ,y

)
.

• θ(j)
2 ∼ π

(
θ2|θ(j−1)

1 , θ
(j−1)
3 . . . , θ

(j−1)
p ,y

)
.

...

• θp|θ(j)
p ∼ π

(
θp|θ(j−1)

1 , . . . , θ
(j−1)
p−1 ,y

)
.

3. Set j = j + 1 and return to step 2.

It might be the case that for some components of θ it is easy to directly simulate from

the FCD, whereas for other components this may be more difficult. In such cases, we can

use the Metropolis-within-Gibbs algorithm, where components can be updated either with

a Gibbs step (updating directly from the FCD) or with a Metropolis-Hastings step.

Diagnostic checks

The simulated draws which are obtained from running such MCMC algorithms described

above should (approximately) be from the posterior distribution and are used to make

inferences. However, several problems can occur when using MCMC simulations, namely,

issues with convergence and mixing. Here we discuss different diagnostic checks to assess

convergence and mixing.

Often simulations can take a long time to converge to the stationary distribution and

hence generate (approximate) posterior draws. Before the chain has converged, we have

values that are not sampled from the posterior. These early draws are referred to as “burn-

in” or “warm-up” and are discarded, that is, we do not use them to make inferences (Geyer,

2011). The number of burn-in iterations depends upon the convergence rate. Typically,

convergence is assessed visually via a trace plot. Figure 2.2 shows two trace plots where

convergence has and has not been achieved. If a chain has converged, the trace plot will

show the sampler stabilised and moving around the mode of the distribution, as shown in

Figure 2.2a. If a chain has not converged, there will be a trend over the sample space in the
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trace plot (Congdon, 2019), as shown in Figure 2.2b. Unfortunately, in some instances, a

chain may become stuck at a local mode without exploring the entire posterior parameter

space. Therefore, it can be useful to initialise multiple chains at different starting points

and run them simultaneously (Gelman et al., 2014; Vehtari et al., 2020). The trace plots

of the output from each chain can be compared. If the trace plots for the chains fail to

overlap then this suggests lack of convergence. Another method to detect multimodality

in the posterior distribution is to plot the marginal posterior densities for each parameter.

Multimodality in the posterior might mean that the chain(s) must be run for a long time

to ensure that the parameter space has been fully explored. In this thesis, we make use

of these visual checks described here to ensure that we have representative samples of our

posterior distributions of interest and can make accurate inferences.
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Figure 2.2: Examples of trace plots showing (a) a chain that has converged and (b) a chain that
has not converged.

A sampler suffers from poor mixing when it explores the support of the posterior

slowly. An indication of poor mixing is high autocorrelation over iterations, that is strong

correlation between successive draws of parameter values in a chain. Exploration of the

parameter space takes longer if the chain is highly correlated, so, if the sampler is not run

for long enough only part of the parameter space will be explored. To assess mixing, the

autocorrelation function can be computed and plotted against the lag (Geyer, 2011). The

(sample) autocorrelation at lag k for a parameter θp is

ρ̂pk =
γpk
γp0

, (2.13)

where γp0 is the posterior variance Var(θp|y) and γpk is the autocovariance at lag k

Cov(θ
(j)
p , θ

(j+k)
p |y) (Congdon, 2019). The values of the autocorrelation approach zero

as the lag increases if the chain is mixing well. Sometimes if an MCMC chain is mixing

poorly, assessment of convergence using graphical checks described previously becomes

more difficult. To address this problem, a useful tool is thinning, that is for some integer

k > 1 we retain every k-th iteration. Thinning is also useful for reducing computational

overheads in storing the MCMC output (Gelman et al., 2014).

In the Metropolis-Hastings algorithm, the proposal distribution q(θ∗|θ) for a parameter
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θ can be defined so that it is centred on the current value of the parameter (for example, see

Section 4.3.1). If the variance of the proposal distribution is large, many of the proposed

values will be rejected, as they will be far from the current value. This means that the

process will remain in the same state for a long time. Whereas, if the variance is small,

most of the proposed values will be accepted but the sequence of accepted states will be

close together. Both cases lead to poor mixing and high autocorrelation in the MCMC

chain. However, the variance can be tuned to achieve a desirable acceptance rate (∼ 23%),

which optimises the efficiency of the sampler (Gelman et al., 2014).

In addition to causing slow exploration of the parameter space, autocorrelation over

iterations increases the uncertainty of estimates of posterior summaries, such as the mean

or variance (Geyer, 2011; Stan Development Team, 2021). The effective sample size (ESS)

(Kass et al., 1998) is a measurement of how much the autocorrelation over iterations

increases this uncertainty and is the equivalent number of uncorrelated observations that

a chain represents. The ESS for a parameter θp is

NESS = N/

[
1 + 2

∞∑
k=0

ρ̂pk

]
, (2.14)

where ρ̂pk is the (sample) autocorrelation at lag k as defined in (2.13) and N is the number

of MCMC samples. Say we are interested in the posterior mean of a parameter which is

estimated by Ê [θp|y] = θ̄p = 1
N

∑N
j=1 θ

(j)
p (the sample mean of the MCMC samples). As

discussed in Kass et al. (1998), due to positive autocorrelation over samples, an estimate

of the standard error cannot simply use the sample variance s2
i = 1

N

∑N−1
j=1

(
θ

(j)
p − θ̄p

)
,

as it would likely be an underestimate. Thus, a measure of uncertainty for θ̄p that takes

into consideration autocorrelation over samples is a standard error based on the ESS√
s2
i /NESS . Clearly, if there are still high autocorrelations for large k, NESS decreases,

which means the standard error (and uncertainty about the estimate) increases. NESS

close to N for all parameters of interest indicates efficiency in the MCMC scheme. In

practice, NESS can only be estimated, as the autocorrelations ρ̂pk are estimated from the

sample (Vehtari et al., 2020). Noise in the autocorrelation estimates ρ̂pk increases as k

increases, so the sum in (2.14) is calculated up to a value K. The value K is chosen based

on a truncation rule (Vehtari et al., 2020), for example, choosing K such that for k > K

the autocorrelations seem to be close to zero (Kass et al., 1998; Congdon, 2019).

When running multiple chains, combined autocorrelations must be estimated to calcu-

late the ESS. These combined autocorrelations take into consideration within-chain vari-

ance and between-chain variance (via the multi-chain variance estimate) (Gelman et al.,

2014; Vehtari et al., 2020). Say we have Ñ MCMC samples from M̃ chains (after discard-

ing the burn-in iterations) and we are interested in a parameter θ. (Note that we drop the

p from θp hereinafter to simplify notation.) To calculate the multi-chain variance estimate,
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Gelman et al. (2014) recommends splitting each chain in half so that there are M chains

of size N = Ñ/2 to test mixing and stationarity (convergence). At stationarity, both

halves of a chain should be traversing the same distribution. The between-chain variance

estimate is given by

B =
N

M − 1

M∑
m=1

(
θ̄.m − θ̄..

)2
,

where θ̄.m = 1
N

∑N
j=1 θjm, θjm is draw j of chain m, θ̄.. = 1

M

∑M
m=1 θ̄.m. The within-chain

variance estimate is given by

W =
1

M

M∑
m=1

s2
m, (2.15)

where s2
m = 1

N−1

∑N
j=1

(
θjm − θ̄.m

)2
. Thus, the multi-chain variance estimate is given by

v̂ar+(θ|y) =
W (N − 1)

N
+
B

N
. (2.16)

According to Gelman et al. (2014), the combined autocorrelation at lag k is estimated by

ρ̂k = 1− Vk

2v̂ar+(θ|y)
,

where Vk = 1
M(N−k)

∑M
m=1

∑N
j=1 (θjm − θj−k,m)2 is the variogram at lag k. The ESS for

combined chains is

NESS =
NM

1 + 2
∑K

k=1 ρ̂k
,

where K is the first odd positive integer for which ρ̂K+1 + ρ̂K+2 is negative.

Another useful convergence diagnostic to calculate, when running multiple chains, is

R̂ =

√
v̂ar+(θ|y)

W
,

where W and v̂ar+(θ|y) were defined above in (2.15) and (2.16), respectively. This es-

timates the factor by which the current estimate of the marginal posterior variance of θ

might be reduced if the simulations were continued in the limit N →∞. R̂ ≈ 1 indicates

that the chains are mixing well, where MCMC samples are deemed acceptable for some

threshold, such as R̂ < 1.05 (Stan Development Team, 2020). Modified versions of NESS

and R̂ can be obtained by using rank normalised values instead of the θjm; see Vehtari

et al. (2020). Note that they also define the combined autocorrelation as

ρ̂k = 1−
W − 1

M

∑M
m=1 s

2
mρ̂k,m

v̂ar+(θ|y)
.
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Bayesian phylogenetics

Recall from Section 2.1.2 that the parameters in phylogenetic models are the tree τ with

its branch lengths ` and the DNA substitution model parameters, which we denote by Q.

However, the main parameter of interest is the tree τ . Given some alignment data y, the

posterior probability of a tree is

π (τ |y) =

∫
`

∫
Q π (τ |`,Q)π (`|Q)π (Q) p (y|τ,Q, `) dQd`∑T

i=1

∫
`

∫
Q π (τi|`,Q)π (`|Q)π (Q) p (y|τi,Q, `) dQd`

,

where T is the possible number of trees for the number of taxa in the alignment. Clearly,

this is analytically intractable, as it involves integrating over all the numerical parameters

for every possible topology and the number of rooted trees on n taxa is (2n−3)!
2n−2(n−2)!

. Thus,

MCMC techniques are used to sample from the posterior distribution of the trees. In

addition to checking for convergence in the numerical parameters of the model, checks for

convergence in tree space must be performed too.

One such method is to compare the clade frequencies between chains initialised at

different starting points. As defined in Section 2.1.1, a clade is a subset of taxa obtained

by cutting a rooted tree on a branch and selecting only the leaves descending from this

cut. Plots of the posterior probabilities of clades and cumulative relative frequencies in

each chain (Heaps et al., 2014) can also be employed to assess convergence. Figure 2.3

shows an example of where two chains have converged in tree space. In Figure 2.3a, a

scatter plot of the posterior probabilities of clades for each chain suggests that the chains

have converged as the points lie on a straight line. In Figure 2.3b, the cumulative clade

frequencies appear to be approaching the same values, which also suggests convergence.

The main goal of phylogenetic inference is to identify the tree that best describes the

evolutionary relationships amongst the species of interest. For numerical parameters, we

can easily summarise the information from the MCMC samples by reporting a numerical

summary, such as a posterior mean or mode. We can also quantify our uncertainty by

looking at how concentrated the posterior density is or calculating posterior measures

of dispersion. To summarise the posterior distribution over tree space, the most widely

used summary is the majority-rule consensus tree. As a summary of a sample of trees, it

includes only those splits (for unrooted trees) or clades (for rooted trees) which appear in

over half of the samples (Bryant, 2003), here representing those with posterior probability

greater than 0.5.

2.3.3 Hamiltonian Monte Carlo

For complicated models, the MCMC methods such as those described in Section 2.3.2 can

suffer from inefficiency due to their random walk behaviour (Gelman et al., 2014). This
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Figure 2.3: Diagnostic plots of two chains to assess convergence in tree space where (a) is the
posterior probabilities of clades, (b) is the cumulative relative frequencies of clades and the different
colours represent different clades, the solid lines represent one chain and the dashed lines represent
the other chain.

means that it can take a long time for samplers to move around the target distribution

π (θ|y). The local random walk behaviour is particularly problematic for high-dimensional

posterior distributions. Using a physical analogy of the energy of a particle moving in a

frictionless space, Hamiltonian Monte Carlo (HMC) alleviates this issue of local random

walk behaviour by generating proposals that are guided by the gradient of the posterior

density. Thus, HMC algorithms can move more quickly through the posterior distribu-

tion. In this final section of Chapter 2 we briefly describe HMC, before beginning the

phylogenetics part of the thesis.

Consider again a set of parameters θ = (θ1, . . . , θp)
T with p components in a target

space and some data y. HMC adds a momentum variable φj for each component θj . We

can think of the θ as the position of a fictitious particle in p-dimensional space and φ

as the corresponding momentum vector, where HMC algorithms simulate the trajectory

of the particle. The parameters θ and momentum variables φ are updated together in a

new Metropolis-Hastings algorithm, where proposals for θ are largely determined by φ.

The posterior density p(θ|y) is augmented by the (independent) distribution p(θ) and the

joint distribution p(θ,φ|y) is simulated. However, we are only interested in θ and φ is an

auxiliary variable that is introduced to allow the algorithm to move more quickly through

the parameter space (Gelman et al., 2014). The density for φ does not depend on the

parameters θ (Stan Development Team, 2021). Generally, the momentum vector is given
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a multivariate normal distribution with mean 0 and covariance matrix set to a “mass

matrix” M. The term mass matrix here relates to the physical analogy of Hamiltonian

dynamics, where both position and momentum evolve in continuous time.

In each iteration of an HMC algorithm, there are the following steps:

1. Update φ with a random draw from its posterior distribution, which is the same as

its prior distribution, that is φ ∼ Np (0,M).

2. Simultaneously update (θ,φ) using a discrete approximation to physical Hamiltonian

dynamics. This involves L leapfrog steps which are scaled by a factor ε. One leapfrog

step is as follows:

(a) Make a “half-update” of φ by using the gradient of the log posterior density of

θ, that is set

φ = φ̃+
1

2
ε
d log p (θ|y)

dθ
,

where φ̃ is the value of φ before the half-update.

(b) Use φ to update θ, that is set

θ = θ̃ + εM−1φ,

where θ̃ is the value of θ before the update and ε is the step size and is used

to tune the algorithm.

(c) Half-update φ with the gradient of the log posterior density of θ, that is

φ = φ̃+
1

2
ε
d log p (θ|y)

dθ
.

With the exception of the first and last leapfrog step, updates (c) and (a) can be

performed together.

3. Let θ(j−1) and φ(j−1) be the values of the parameter and momentum vectors, respec-

tively, before the leapfrog process, and θ∗ and φ∗ be the values after the L steps.

Set θ(j) = θ∗ with probability

p (θ∗|y) p (φ∗)

p
(
θ(j−1)|y

)
p
(
φ(j−1)

) .
Otherwise, set θ(j) = θ(j−1).

In addition to ε, HMC can be tuned via the mass matrix M, and the number of leapfrog

steps L per iteration. The role of the mass matrix is to transform the target parameter

space to make sampling more efficient (Betancourt, 2017; Stan Development Team, 2021).
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Typically, M is chosen to be diagonal, which means that the components of φ are indepen-

dent. It can be useful for M to roughly scale with the inverse covariance of the posterior

distribution as it helps make HMC more efficient (Gelman et al., 2014). If the inverse

M−1 is a poor estimate of the posterior covariance, the step size ε must be kept small

to maintain arithmetic precision, which means a larger number of leapfrog steps must be

taken (Stan Development Team, 2021). The performance of HMC is highly sensitive to

the tuning parameters ε and L (Hoffman & Gelman, 2014). If L is too large too much time

is wasted on computation, whereas if L is too small successive samples will be close to

each other, leading to undesirable random walk behaviour and slow mixing. Additionally,

if ε is too large, the simulation will be inaccurate and yield low acceptance rates, whereas

if ε is too small, many small steps are taken, leading to long simulation time. Tuning of

these parameters requires both expertise and time (to make preliminary runs).

In the metagenomics part of this thesis, we make use of Stan (Stan Development Team,

2021), a computer program that automatically applies HMC, given a Bayesian model.

More specifically, we use RStan (Stan Development Team, 2020), which is the R interface

for Stan. Stan requires some data and model inputs but is responsible for computing the

log posterior density and its gradients, setting the tuning parameters through a “warm-

up” phase and implementing a no-U-turn sampler (NUTS) to move through the parameter

space. In a NUTS, the number of leapfrog steps L is not fixed (nor tuned by the user)

and instead is determined adaptively at each iteration. During the warm-up phase, Stan

adaptively alters the other tuning parameters M and ε, where M−1 is set to a diagonal

estimate of the covariance and ε is optimised to match a user defined acceptance rate

target (Stan Development Team, 2021). The trajectory in each iteration continues until

there is a negative value for the dot product between the momentum vector φ and the

distance travelled from the position θ at the beginning of the iteration, that is the moment

that the trajectory turns around.

In HMC, divergent transitions occur when the simulated, discretised Hamiltonian tra-

jectory departs from the exact but analytically intractable trajectory. In practice, this

is measured by the departure of the Hamiltonian value from its initial value. When the

divergence is too high, the simulation becomes unreliable. If the posterior density is

highly curved, the (gradient-based) simulation requires very small steps sizes to be ac-

curate. Large step sizes (compared to the curvature) result in the simulation diverging

from the true Hamiltonian. In some circumstances, a reparameterisation is needed so that

the curvature of the posterior is less extreme. In other situations, it is sufficient to just

increase the target acceptance rate, which will ensure the step size remains small enough

to eliminate divergent transitions.
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Phylogenetics
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Chapter 3

Phylogenetic models facilitating

root inference

The following three chapters focus on the phylogenetics part of the thesis. Additionally,

the work for these three chapters appears in Hannaford et al. (2020). As explained in

Section 2.2.2 in Chapter 2, the assumptions of stationarity and reversibility in a homo-

geneous model are often not justifiable from a biological perspective. Instead, they are

imposed because they simplify the underpinning mathematics and computational infer-

ence. Worse still, the assumptions come at an inferential cost, giving rise to likelihood

functions that are invariant to the position of the root of the tree. As such, they can only

be used to infer unrooted trees, which depict the branching pattern of speciation events,

without associating direction to the branches of the tree. Models which relax one or both

of these assumptions can therefore offer more biological credibility, whilst also providing

a likelihood function that is informative about the direction of time. In this chapter, we

explore our own interpretation of some existing models of this type, before building on

them to derive our own in Chapter 4.

3.1 Non-homogeneous models

Most models which allow root inference are non-homogeneous, which means that the pro-

cess cannot be characterised by a single instantaneous rate matrix. Instead matrices from

a countable set {Q1,Q2, . . .} apply to different parts of the tree. In general, the Qb all be-

long to the same family of rate matrices. For example, Kaehler (2017) considered a model

in which the Qb are all strand-symmetric, meaning the rate of substitution between a pair

of nucleotides is the same as that between their Watson-Crick base pair complements (A

pairs with T and C pairs with G). For this special class of models, a mathematical proof

is provided which verifies that the root position can be identified from the likelihood.
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However, inferential methodology to fit the model to data has not yet been developed.

More often in the literature, the Qb all belong to a family of reversible rate matrices, such

as HKY85 or GTR (see Section 2.1.2), so that Qb = RbΠb for b = 1, 2, . . .. We refer to

such a non-homogeneous process as locally reversible. The resulting models are generally

non-stationary, with Πb 6= Πb′ for b 6= b′, and hence allow step changes in the theoretical

stationary distribution, sometimes termed the composition vector, across the tree.

Some authors also allow variation in the exchangeability parameters (Dutheil & Bous-

sau, 2008), although these are often constant, with Rb = R for all b. For example, Yang &

Roberts (1995) investigated two models based on the HKY85 model, N1 and N2, in which

the exchangeability parameters are constant over the tree, but the composition vectors

in the Πb vary from branch to branch. The N2 model allows for a different composition

vector on every branch of the tree. For a tree with n taxa, the N1 model assumes n + 2

composition vectors: one per branch leading to each terminal node (taxon), one for the

internal branches and one for the root. In their application, their models were able to

identify a widely accepted root for taxa with different base frequencies, although it must

be noted that the model was applied to an alignment of only four taxa. Heaps et al.

(2014) investigated a similar model in a Bayesian framework, with a prior that assumes

positive correlation among the set of composition vectors, thereby allowing information

to be shared between branches. More details on their prior and its relevance to our work

are given in Section 4.2 in the next chapter. In both of their applications, where there

was substantial evidence of compositional heterogeneity in the data, their model provided

credible topological inferences. Compositional heterogeneity means that the nucleotide

compositions (the proportions of A,G,C and T) change across the tree. Due to their

assumption of the same rate matrix (and thus stationary distribution) across the tree,

standard homogeneous models cannot account for this.

Other approaches intended to reduce the variance of parameter estimates in complex

models of this form have been largely based on the idea of dimension reduction. For in-

stance, Foster (2004) considered a mixture model in which the B branches of the tree are

allocated to one of K � B mixture components, with branches in the same component

sharing a composition vector. In an application to a problematic data set of five bacterial

16S genes (Embley et al., 1993), a model with K = 2 mixture components was used and

was able to infer the most biologically plausible tree. Similarly, Blanquart & Lartillot

(2006) introduced a model in which the step changes in the theoretical stationary distri-

bution occur according to a Poisson process, independently of the speciation events which

determine the tree’s branching structure. Their model allows for “break points” to be

added to or removed from the topology. At each break point, “compositional shift” events

occur, where a new composition vector π′ is proposed independently of the composition

vector before the break point π, which means that the successive compositional shifts
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essentially follow a 0-th order Markov process. Their model performed well when applied

to several data sets. However, one criticism highlighted by the authors was that the use

of the 0-th order Markov process was not realistic but mathematically convenient. They

suggested that using a first order Markov process would be an improvement but would

increase computational time.

The main difficulty with these mixture-type models is that the dimension of the prob-

lem – determined by the number of mixture components in the former case and the number

of break points in the latter – are not known a priori, which substantially complicates com-

putational inference. When dimension-changing moves are included in MCMC algorithms,

issues with convergence and mixing can commonly occur. Foster (2004) acknowledged that

the adding or removing of parameters could be incorporated into the MCMC, but they

instead fitted models with different values of K mixture components and compared the

fit of the models to decide the optimum number of mixture components to use. The work

of Heaps et al. (2014) does not suffer from the aforementioned MCMC-related problems,

as the dimension of their model is fixed. Foster (2004) and Blanquart & Lartillot (2006)

do not advocate using “branchwise” models and argue that overparameterisation can lead

to poor fitting models or that models with many more parameters do not substantially

improve model fit. However, these issues of overparameterisation are avoided in the model

of Heaps et al. (2014) because the prior is structured to allow information to be shared

between branches (Williams et al., 2015).

3.2 Non-reversible models

Motivated by the rooting problem, Huelsenbeck et al. (2002) investigated stationary but

non-reversible substitution models in a Bayesian framework. Their model is based on

an instantaneous rate matrix which is structurally unconstrained, representing the so-

called general Markov model of DNA evolution (Barry & Hartigan, 1987). Since a single

rate matrix is applied to the whole tree, this model is more parsimonious than the models

discussed in the previous section. They assessed the model using a non-informative uniform

prior for the off-diagonal elements of the rate matrix, with several simulated data sets of

eight taxa, with varying degrees of non-reversibility. Their model was able to identify the

correct root position with a fixed unrooted topology in the data sets when the substitution

process used to simulate the data was highly non-reversible.

Cherlin et al. (2017) built on the work of Huelsenbeck et al. (2002). Firstly, instead of

fixing the unrooted topology, Cherlin et al. (2017) allowed the rooted tree to be unknown,

assigned it a prior and fitted the model using an MCMC algorithm that included topo-

logical moves. They also considered larger data sets, including a data set with 36 taxa.

Finally, instead of using a uniform prior for the off-diagonal elements qij of the rate matrix,
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they developed two hierarchical priors that are centred on a standard reversible matrix

but allow non-reversible perturbations of the elements. Each prior treats each qij as a

log-normal perturbation of the corresponding element of the unknown rate matrix of an

HKY85 model (shown in (2.2)). Their two models, the NR and NR2 models, differ in their

number of pertubation components, with the NR model having one perturbation compo-

nent and the NR2 model utilising two components. Letting qHij denote an off-diagonal

element of an HKY85 rate matrix, the NR model for i 6= j is

log qij = log qHij + εij ,

where the εij are independent N
(
0, σ2

)
quantities. The extent to which Q departs from a

HKY85 structure is represented by the perturbation standard deviation σ, with a larger

value implying a greater degree of departure. Under the NR model, for any given data

set, if σ is found to be large a posteriori, it is not necessarily evidence of non-reversibility.

This is because departures from an HKY85 model could lead to a non-reversible model

or a GTR model and these two deviations are confounded. Thus, the NR2 model was

developed, which uses a two-stage process to perturb the underlying HKY85 rate matrix.

The first perturbation is within the space of GTR matrices and leads to a reversible rate

matrix QR, which is then perturbed within the space of general rate matrices, leading to

a general non-reversible rate matrix. Note that the first perturbation results in a GTR

matrix with probability zero, since the parameters of the perturbed matrix are modelled

as continuous quantities. Its prior simply has more mass around GTR structures. With

this model, the two deviations from an HKY85 model can be decoupled, with the extent

of each deviation represented by the variance parameters of the perturbations. Similar to

Huelsenbeck et al. (2002), their models were able to provide sensible root inferences on

data simulated with a large degree of non-reversibility. Analysis of empirical data also

recovered roots with wide biological consensus.

Simulation experiments and application to biological data sets have suggested that the

stationary, but non-reversible models described in this section can produce sensible root

inferences when the model assumptions are clearly supported. However, root inference

was found to be very sensitive to model misspecification, especially violation of the as-

sumption of stationarity (Williams et al., 2015). This limits the utility of such models

in application to data sets of biological interest, where it is common to see variation in

sequence composition across taxa due to lineage-specific compositional change.

Lie Markov models for DNA evolution have the property of closure under matrix

multiplication (Sumner et al., 2012a). Let P1 and P2 be transition matrices obtained by

taking the matrix exponential of two rate matrices from a family of Markov modelsM. M
is multiplicatively closed if and only if for all such P1, P2, the product P1P2 is obtainable as

the matrix exponential of another rate matrix from the familyM. Woodhams et al. (2015)
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defined a hierarchy of Lie Markov models capable of distinguishing pairs of nucleotides,

such as purines and pyrimidines. The general Markov model, with 12 degrees of freedom,

represents the most complex family of Lie Markov models. However, all others can be

represented by 10 degrees of freedom or fewer. Some are non-reversible and, like families

of reversible rate matrices, have a biologically interpretable structure. It is therefore

possible to combine the ideas from this section and Section 3.1 and build parsimonious

models that are non-stationary, non-homogeneous and (locally) non-reversible by using an

appropriate set of rate matrices from a family of Lie Markov models. This is the main

focus of Chapter 4.

For now, we discuss two families of non-reversible Lie Markov models which, in the

terminology of Woodhams et al. (2015), are referred to as the RY5.6b and RY8.8 Lie

Markov families. In each case, we derive a new parameterisation of the underpinning rate

matrix Q, and the relationship between the new parameters and the theoretical stationary

probabilities π. These two non-reversible models are the starting points for our own

models that are non-stationary, non-homogeneous and (locally) non-reversible, which we

will discuss in Chapter 4.

3.2.1 The RY5.6b Model

Motivated by its simplicity and similarity to the widely used HKY85 model defined in (2.2)

in Section 2.1.2, the first Lie Markov model we consider is the (non-reversible) RY5.6b

model. Following the formulation presented in Woodhams et al. (2015), its rate matrix Q

can be represented as

Q =


∗ α+ ρ2 β + ρ3 β + ρ4

α+ ρ1 ∗ β + ρ3 β + ρ4

β + ρ1 β + ρ2 ∗ α+ ρ4

β + ρ1 β + ρ2 α+ ρ3 ∗


where α, β, ρ1, ρ2, ρ3, ρ4 ≥ 0 and the *s ensure that the rows sum to zero. As indicated by

the prefix of its name, the model has the symmetry condition of purine-pyrimidine (RY)

pairing, with rates of change for transversions sharing a parameter and rates of change

for transitions sharing a different parameter. However, the six parameters are plainly not

identifiable since we can replace α and β with α + δ and β + δ, and ρi with ρi − δ for

i = 1, 2, 3, 4, and obtain exactly the same rate matrix. In the reversible HKY85 case,

the off-diagonal elements in each column of the rate matrix share a stationary probability

πi with π ∈ S4. In the RY5.6b model, they each share a parameter ρi. By choosing

the analogous constraint, ρ = (ρ1, ρ2, ρ3, ρ4)T ∈ S4, we can eliminate the parameter

redundancy. We note that the 5 and 6 in the name of the RY5.6b model arise from it
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being a five-dimensional model whose rate matrices form a polyhedral cone with six rays

(Fernández-Sánchez et al., 2015). These allow it to be expressed through six non-negative

parameters.

Although the simplex constraint removes the additive identifiability issue, the overall

scale of the rate matrix is still arbitrary since it appears only in its normalised form,

Q′ = Q/(−
∑

u quuπu), in the transition matrix. To resolve this problem, it is convenient

to fix the scale of the rate matrix by constraining its trace to be equal to -7 as this limits

the support of the remaining parameters so that (α, 2β) ∈ S2 or, equivalently, α ∈ [0, 1]

and then β = (1 − α)/2. This, in turn, simplifies the process of specifying a prior. See

Appendix A for the proof that this additional constraint on the trace of Q is required.

The stationary probabilities π associated with this rate matrix are given by

π1 =
−α2 + (5− α)ρ1 + (3α− 1)ρ2 − α+ 2

2(3− 2α)(α+ 2)
,

π2 =
−α2 + (5− α)ρ2 + (3α− 1)ρ1 − α+ 2

2(3− 2α)(α+ 2)
,

π3 =
−α2 + (5− α)ρ3 + (3α− 1)ρ4 − α+ 2

2(3− 2α)(α+ 2)
,

π4 =
−α2 + (5− α)ρ4 + (3α− 1)ρ3 − α+ 2

2(3− 2α)(α+ 2)
.

(3.1)

This is found using formulae provided in the supplementary material of Woodhams et al.

(2015) for the stationary probabilities in terms of their parameterisation. First, we note

that all rate matrices for the Lie Markov models can be expressed using a linear combi-

nation (or subset) of 12 basis matrices, which are listed in Table 1 of Woodhams et al.

(2015). Thus, the RY5.6b rate matrix is also written as

Q =


∗ a+ a1 + d− e1 a− d+ e2 a− d− e2

a+ a1 + d+ e1 ∗ a− d+ e2 a− d− e2

a+ d+ e1 a+ d− e1 ∗ a+ a1 − d− e2

a+ d+ e1 a+ d− e1 a+ a1 − d+ e2 ∗

 (3.2)

under their canonical parameterisation which expresses Q as a linear combination of basis

matrices A,A1,D,E1,E2. They work with the columns summing to zero rather than the

rows, so for the RY5.6b model we have QT = aA + a1A1,+dD + e1E1 + e2E2, which we

transpose to get Q in (3.2). Then we let

ρ1 = d+ e1 + z, ρ3 = −d+ e2 + z,

ρ2 = d− e1 + z, ρ4 = −d− e2 + z,

α = a+ a1 − z, β = a− z.
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Here
∑4

i=1 ρi = 4z, but we chose the constraint that
∑4

i=1 ρi = 1 so we have

4z = 1⇔ z =
1

4
.

Now α+ 2β = a+ a1− z+ 2a− 2z = 3a+ a1− 3z and we chose the constraint α+ 2β = 1,

so we have

3a+ a1 − 3z = 1

3a+ a1 −
3

4
= 1

3a+ a1 =
7

4

⇔ a1 =
7

4
− 3a.

So we have

ρ1 = d+ e1 + 1
4 , ρ2 = d− e1 + 1

4 , ρ3 = −d+ e2 + 1
4

and

α = a+ (a1 −
1

4
)

= a+
7

4
− 3a− 1

4

= −2a+
3

2
.

Solving for d, e1, e2 and a gives

a = −α
2

+
3

4
,

d =
1

2
(ρ1 + ρ2)− 1

4
,

e1 =
1

2
(ρ1 − ρ2) ,

e2 =
1

2
(2ρ3 + ρ1 + ρ2 − 1) .

These values need to be substituted into

p = 4a3 + 4a2a1 + aa2
1, r = 4a2e1 + 2aa1e1,

q = 4a2d+ 4aa1d+ a2
1d, s = 4a2e2 + 2aa1e2

to find
π1 = 1

4 + q+r
4p , π3 = 1

4 + −q+s
4p ,

π2 = 1
4 + q−r

4p , π4 = 1
4 + −q−s

4p .
(3.3)
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Substituting our values into the above formulae gives us the stationary probabilities given

in (3.1). For example, the first stationary probability is

π1 =
1

4
+

4a2d+ 4aa1d+ a2
1d+ 4a2e1 + 2aa1e1

16a3 + 16a2a1 + 4aa2
1

=
1

4
+

(2a+ a1)2 d+ (2a+ a1) 2ae1

4a (2a+ a1)2

=
1

4
+

1

4 (2a+ a1)

(
2d+

da1

a
+ 2e1

)
=

1

4
+

1

7− 4a

(
−d+

7d

4a
+ 2e1

)
(substituting in a1)

=
1

4
+

1

(4a− 7) 4a
(−7d+ 4ad− 8ae1)

=
(4a− 7) a+ (−7d+ 4ad− 8ae1)

4a (4a− 7) 4a

=
4a2 − 7a− 7d+ 4ad− 8ae1

(4a− 7) 4a
,

which we can substitute the values of a, d and e1 into to obtain

π1 =
4
(

3
4 −

α
2

)2
+ 7α

2 −
21
4 − 7 (ρ1+ρ2)

2 + 7
4 + 4

(
3
4 −

α
2

) ( (ρ1+ρ2)
2 − 1

4

)
− 8

(
3
4 −

α
2

) (ρ1−ρ2)
2

4
(

3
4 −

α
2

)
(−2α− 4)

=

(
3
2 − α

)2
+ 7(α−ρ1−ρ2)

2 − 14
4 + (3− 2α)

(
(ρ1+ρ2)

2 − 1
4

)
− (6− 4α) (ρ1−ρ2)

2

−2 (3− 2α) (α+ 2)

=
α2 − 3α+ 7(α−ρ1−ρ2)

2 − 5
4 − α (ρ1 + ρ2) + α

2 + 3(ρ1+ρ2)
2 − 3

4 + (2α− 3) (ρ1 − ρ2)

−2 (3− 2α) (α+ 2)

=
−α2 − α+ 2 + 5ρ1 − ρ2 − αρ1 + 3αρ2

2 (3− 2α) (α+ 2)
,

which is equivalent to π1 in (3.1). The remaining stationary probabilities π2, π3 and π4

are found in the same way.

For ease of interpretation, it might seem more natural to reparameterise the model

directly in terms of α ∈ [0, 1] and the stationary distribution π ∈ S4. However, given

a fixed value for α, the mapping πα : S4 → S4, where πα(ρ) = π, is not surjective. For

example, if α = 0.5 and π1 = 1, then we require

8.75 = 4.5ρ1 + 0.5ρ2,

which is not possible since ρ ∈ S4. A value of π1 = 1 is not possible for any fixed value

of α. Therefore, for any fixed value of α, not all points on the simplex can be represented

as the stationary distribution under the RY5.6b model. Parameterisation using α and π
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would substantially complicate inference and so we retain the original parameterisation,

in terms of α and ρ.
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Figure 3.1: Plots of the stationary probability π1 of the RY5.6b model against ρ1 for values of ρ
sampled from the uniform distribution over S4 and various values of α. By symmetry, plots for
the other pairs (ρi, πi), i = 2, 3, 4, display identical patterns (not shown).

Seeking an interpretation of ρ, the relationship between each πi and the corresponding

ρi is complicated by the simplex constraints, which preclude isolation of the effect of a

change in ρi on πi, whilst all the other ρj remain fixed. However, from (3.1), because

5−α > 3α−1, it is clear that for any fixed α ∈ [0, 1], there is a positive linear relationship

between, say, ρ1 and π1. The slope and intercept depend on how a simplex-preserving

decrease in ρ2 + ρ3 + ρ4 is shared between ρ2 and ρ3 + ρ4 when ρ1 is increased. To

illustrate the relationships numerically, we simulate a sample of ρ vectors from a uniform

distribution over S4 and then compute the corresponding stationary distribution π for

various values of α. Plots of πi against ρi are displayed in Figure 3.1, where they show a

strong positive relationship. We therefore interpret the parameter vector ρ as playing a

role similar to the stationary distribution π in the HKY85 model. The parameter α then

allows for differences between the rates of transition and transversion.
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Chapter 3. Phylogenetic models facilitating root inference

3.2.2 The RY8.8 Model

The structure of the RY5.6b model is biologically appealing because of its simplicity and

parallels with the widely used HKY85 model. However, it suffers a number of drawbacks.

First, the model only has five degrees of freedom, which makes it inflexible compared with

more complex Lie Markov models. Second, the additive structure of the instantaneous

rates of change in the RY5.6b, as well as various other Lie Markov models, can cause

problems in the analysis of biological data. In many alignments, the empirical proportions

of A, G, C and T are all reasonably close to 0.25 (Bohlin et al., 2017). If we imagine that the

data arose from a stationary CTMP, this would demand πi ' 1/4 for all i = 1, . . . , 4. With

reference to the RY5.6b model, with stationary distribution (3.1), arguments of symmetry

imply that for any α ∈ [0, 1], we can only achieve πi = 1/4 for all i if ρi = 1/4 for all i. In

this case, the ratio of the rates of change for transitions and transversions is given by

(α+ 1/4)/{(1− α)/2 + 1/4} = (4α+ 1)/(3− 2α) ≤ 5.

However, experience suggests that for some alignments, we would expect a value much

larger than this (Rosenberg et al., 2003). In mammalian genomes, for example, this

can occur due to 5-methylcytosine deamination to thymine at some sites, causing high

rates of C to T point mutation (Hodgkinson & Eyre-Walker, 2011). (5-methylcytosine is

a methylated form of cytosine which has several biological roles including regulation of

gene transcription. Deamination is the removal of an amino acid from a compound or

amino acid group and when this happens to 5-methylcytosine it becomes thymine.) This

provides a possible explanation for the conclusions drawn in Woodhams et al. (2015),

based on analyses of seven data sets, that the fit of the RY5.6b model is notably worse

than that of the structurally similar HKY85 model. We therefore investigate a second

(non-reversible) Lie Markov model, the RY8.8 model, which is more highly parameterised

than RY5.6b and free from its additive structure. It has also been found to fit well in

analyses of biological data (Woodhams et al., 2015).

As its RY-prefix suggests, the RY8.8 rate matrix is based on the symmetry condition

of purine-pyrimidine pairing and has eight degrees of freedom which can be represented

by eight non-negative parameters. A representation of its rate matrix is given by

Q =


∗ ρ2 ρ̃7 ρ̃8

ρ1 ∗ ρ̃7 ρ̃8

ρ̃5 ρ̃6 ∗ ρ4

ρ̃5 ρ̃6 ρ3 ∗

 (3.4)

where ρ1, ρ2, ρ3, ρ4, ρ̃5, ρ̃6, ρ̃7, ρ̃8 ≥ 0 and the values of each * ensure that the rows sum to

zero and ρ1, ρ2, ρ3, ρ4, ρ̃5, ρ̃6, ρ̃7, ρ̃8 ≥ 0. In order to fix the scale of the rate matrix, it is
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convenient to fix the trace as -1, then we can take ρi = 2ρ̃i for i = 5, . . . , 8, and restrict

ρ ∈ S8.

The analytic forms for the stationary probabilities π are given by

π1 =
(2ρ1 + ρ7 + ρ8)ρ5 + 2ρ1ρ6

k1k2
, π2 =

(2ρ2 + ρ7 + ρ8)ρ6 + 2ρ2ρ5

k1k2
,

π3 =
(2ρ3 + ρ5 + ρ6)ρ7 + 2ρ3ρ8

k2k3
, π4 =

(2ρ4 + ρ5 + ρ6)ρ8 + 2ρ4ρ7

k2k3
,

(3.5)

where

k1 = ρ8 + 2ρ2 + ρ7 + 2ρ1, k2 = ρ5 + ρ6 + ρ7 + ρ8, k3 = 2ρ3 + 2ρ4 + ρ5 + ρ6.

As with the stationary probabilities for the RY5.6b model, these are found using the for-

mulae in the supplementary material of Woodhams et al. (2015). To use these formulae we

must write the original parameters in terms of our parameters. First, we note that the orig-

inal rate matrix given by the linear combination of basis matrices A,A1,D,D1,E1,E2,F1

and F2 (see Table 1 in Woodhams et al. (2015)) is

Q =


∗ ã+ d+ d1 − e1 − f1 a− d+ e2 + f2 a− d− e2 − f2

ã+ d+ d1 + e1 + f1 ∗ a− d+ e2 + f2 a− d− e2 − f2
a+ d+ e1 − f1 a+ d− e1 + f1 ∗ ã− d− d1 − e2 + f2

a+ d+ e1 − f1 a+ d− e1 + f1 ã− d− d1 + e2 − f2 ∗

 ,

(3.6)

where ã = a+a1 and the *s ensure that the rows sum to zero. Setting (3.4) equal to (3.6)

and using the fact that ρi = 2ρ̃i for i = 5, . . . , 8, we get

ρ1 = a+ a1 + d+ d1 + e1 + f1, ρ5 = 2 (a+ d+ e1 − f1) ,

ρ2 = a+ a1 + d+ d1 − e1 − f1, ρ6 = 2 (a+ d− e1 + f1) ,

ρ3 = a+ a1 − d− d1 + e2 − f2, ρ7 = 2 (a− d+ e2 + f2) ,

ρ4 = a+ a1 − d− d1 − e2 + f2, ρ8 = 2 (a− d− e2 − f2) .

Due to the simplex constraint on ρ, we get

a1 =
1

4
− 3a (3.7)

and calculating
∑8

i=5 ρi gives us

8a = ρ5 + ρ6 + ρ7 + ρ8

⇒ a =
1

8
(ρ5 + ρ6 + ρ7 + ρ8) . (3.8)
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It can be shown that

e1 =
1

8
(2ρ1 − 2ρ2 + ρ5 − ρ6) , (3.9)

e2 =
1

8
(2ρ3 − 2ρ4 + ρ7 − ρ8) . (3.10)

Substituting (3.9) into ρ1 − ρ2 and (3.10) into ρ4 − ρ4 gives us

f1 =
1

8
(2ρ1 − 2ρ2 − ρ5 + ρ6) (3.11)

f2 =
1

8
(2ρ4 − 2ρ3 + ρ7 − ρ8) .

To find d we substitute (3.8), (3.9) and (3.11) into ρ5 to get

d =
1

8
(ρ5 + ρ6 − ρ7 − ρ8) .

Finally, to find d1, we substitute our values for a, a1, d, e1 and f1 into ρ1 to get

d1 =
1

8
(2 (ρ1 + ρ2 − ρ3 − ρ4)− ρ5 − ρ6 + ρ7 + ρ8) .

For the RY8.8 model we use

p = 4a3 + 4a2a1 + aa2
1 − ad2

1

q = 4a2d+ 4aa1d+ a2
1d− dd2

1

r = 4a2e1 + 2aa1e1 − 2ad1e1 + 4adf1 + 2a1df1 − 2dd1f1

s = 4a2e2 + 2aa1e2 + 2ad1e2 + 4adf2 + 2a1df2 + 2dd1f2

in (3.3). Using the simplify() function in the software Maple (Maplesoft, 2020) and

a few algebraic simplifications we obtain the stationary probabilities given in (3.5). For

example, the formula for the first stationary probability yields

π1 =
−ρ2

5 + (3ρ1 − ρ2 − ρ4 − 2ρ6 + ρ7 + ρ8 + 1) ρ5

2 (ρ1 + ρ2 − ρ3 − ρ4 − ρ5 − ρ6 + 1) (ρ5 + ρ6 + ρ7 + ρ8)

+
(3ρ1 − (ρ2 + ρ3 + ρ4 + ρ6 + ρ7 + ρ8 + 1)) ρ6

2 (ρ1 + ρ2 − ρ3 − ρ4 − ρ5 − ρ6 + 1) (ρ5 + ρ6 + ρ7 + ρ8)
,

which can be simplified to the form shown in (3.5) by exploiting the constraint ρ ∈ S8.

Similar to the RY5.6b model, direct parameterisation in terms of π and, say, the rates

of transition (ρ1, ρ2, ρ3, ρ4), or the (scaled) rates of transversion (ρ5, ρ6, ρ7, ρ8), would

complicate inference because for fixed (ρi+1, ρi+2, ρi+3, ρi+4) where i = 0 or i = 4, we

cannot invert the mapping from the remaining elements in ρ ∈ S8 to π ∈ S4. However,
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the parameters in the RY8.8 model have clear interpretations as instantaneous rates of

change between different pairs of nucleotides and so we parameterise the model in terms

of the single interpretable stochastic vector ρ.

3.3 Assumption across sites

The previous sections have described substitution models for evolution at a single genomic

site. In order to extend this to a joint model for the whole alignment, sites are generally

assumed to evolve independently, but with their own rates γi, i = 1, . . . ,m, which scale

the normalised rate matrix Q′ linearly. Biologically, this reflects the idea that rates of

evolution vary according to functional or structural pressures acting at a site: important

sites are subject to higher selective constraints and hence evolve more slowly (Yang, 1996).

These site-specific parameters γi are modelled as multiplicative random effects, where γi is

often given a gamma distribution (Yang, 1993). This is γi|φ ∼ Ga(φ, φ) for i = 1, . . . ,m,

where the common shape and rate φ give the distribution a unit mean. The value of

φ controls the manner and extent to which evolutionary rates vary across sites. For

example, φ > 1 results in a bell-shaped distribution, which means that most sites have

intermediate rates, while few sites have very high or low rates. Meanwhile, φ ≤ 1 gives an

L-shaped distribution, implying that most sites have very low substitution rates (almost

“invariable”) and a few sites have very high rates (Yang, 1996).

During model-fitting, discretising the continuous gamma distribution allows interme-

diate likelihood calculations to be cached, which substantially speeds up computation.

Therefore, in keeping with standard practice in the phylogenetic literature, we adopt a

discrete approximation to the gamma distribution with four rate classes (Yang, 1994). Un-

der this distribution, the rate γi at site i is equal to rk(φ), k = 1, 2, 3, 4, with probability

pk = 1/4 and rk(φ) taken as the (k − 0.5)/4 quantile in the Ga(φ, φ) distribution.
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Non-homogeneous Lie Markov

models

In this chapter, we derive a pair of non-homogeneous, non-stationary, non-reversible phy-

logenetic models. These models extend the RY5.6b and RY8.8 models described in the

previous chapter by incorporating compositional heterogeneity. We discuss the prior spec-

ification for each model, before finally describing posterior inference.

4.1 Non-homogeneous RY5.6b and RY8.8 models

As explained in Section 2.1.1, there are often both theoretical and empirical arguments

for building non-stationarity into models for substitutions in molecular sequences. We

therefore propose non-homogeneous and non-stationary extensions of the (non-reversible)

RY5.6b and RY8.8 models outlined in the previous chapter. A bifurcating rooted tree on

n taxa has B = 2n − 2 branches and its underpinning unrooted topology has one fewer.

We construct a non-homogeneous RY5.6b model by allowing evolution along every branch

b of the associated unrooted topology to be controlled by its own rate matrix Qb which

belongs to the RY5.6b family. Rooting this tree on branch r of the unrooted topology

divides the branch into two. The rate matrix Qr is associated with the two new branches

on either side of the root, whilst its stationary distribution is used as the distribution

at the root. We define our non-homogeneous RY8.8 model in an analogous fashion. It

is worth mentioning that an alternative, though less parsimonious, way to formulate the

models would be to allow the branches on either side of the root to have their own rate

matrix with a simplex-valued parameter describing the distribution at the root of the tree.

Computational inference is greatly simplified if the number of parameters which vary

from branch to branch is kept small. For example, when Heaps et al. (2014) and Williams

et al. (2015) developed non-homogeneous, non-stationary extensions of the (reversible)
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HKY85 and GTR models, this was achieved by keeping the exchangeability parameters

fixed across the tree, so that only the stationary probabilities varied. For the RY5.6b

model, we take a similar approach, allowing only the parameter ρ ∈ S4, which serves as a

proxy for the stationary distribution, to vary across branches. The parameter α, control-

ling the differences between the rates of transition and transversion, is held constant. For

the RY8.8 model, there is no corresponding partition of the parameters, and so we allow

all parameters in ρ ∈ S8 to vary from branch to branch.

This yields non-homogeneous RY5.6b and RY8.8 models in which a set of branch-

specific simplex-valued parameters {ρ1, . . . ,ρB−1} induce corresponding heterogeneity in

the theoretical stationary distribution across branches. The models are therefore non-

stationary, with step-changes in the stationary distribution at each speciation event. This

enables us to capture changes in sequence composition over evolutionary time.

Our non-homogeneous, non-stationary, locally non-reversible models offer two main

advantages over locally reversible counterparts, such as the non-homogeneous HKY85

model. First, as we investigate further in Section 5.2 of Chapter 5, the property of non-

reversibility can provide an additional source of likelihood information about the direction

of time, and hence the position of the root. Second, if we prune n0 taxa from a tree

on n-species, the non-homogeneous Lie Markov model on DNA characters in Ωn induces

a distribution on the reduced DNA characters in Ωn−n0 . Due to Lie Markov models

being closed under matrix multiplication, this distribution could, in most cases, have been

constructed directly from a non-homogeneous Lie Markov model over the (n − n0)-taxa

subtree. (We note that this cannot be guaranteed in all cases because it is theoretically

possible for the product of two Lie Markov rate matrices Q1,Q2 ∈M, to yield a rate matrix

Q = log{exp(Q1) exp(Q2)} ∈ M which is not stochastic; see Woodhams et al. (2015) for an

empirical investigation.) Non-homogeneous, non-stationary but locally reversible models

generally lack this property of mathematical consistency, for example, the GTR model

does not possess this property (Sumner et al., 2012a,b).

4.2 Prior

In a homogeneous model, the instantaneous rate matrix which characterises the evolu-

tionary process is the same on all branches of the phylogeny. In our non-homogeneous

models, it can change from branch to branch. Letting K = 4 and K = 8 for the RY5.6b

and RY8.8 models, respectively, we adopt a prior in which the branch-specific parameter

vectors, ρ1, . . . ,ρB−1 ∈ SK , are positively correlated. This provides flexibility, whilst

retaining some of the benefits of the homogeneous model, by allowing information to be

shared between branches. As we move from one branch to its descendants, we do not

anticipate a substantial change in the evolutionary process. We therefore build explicit
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dependence on recent ancestors into our joint prior through the assignment of a stationary,

first order autoregression over a reparameterised set of vectors %b ∈ RK−1, b = 1, . . . , B−1,

each of which is related to the corresponding ρb ∈ SK through a linear mapping, followed

by multinomial logit transformation. This prior was developed by Heaps et al. (2014),

where it was used for the composition vectors πb on each branch of a tree.

Following their formulation but with ρb rather than πb, we have

p (ρr, . . . ,ρB|τ) = p (ρr|τ)

B∏
b=1

p
(
ρb|ρa(b), τ

)
,

where r is the index of the rooting branch and a(b) is the index of the branch (or root)

which is ancestral to branch b and τ is the topology. To construct a prior distribution

with this structure and which is exchangeable over the components of ρ, a multinomial

logit reparameterisation is used in which, for branch j

ρbk =
eαbk∑K

m=1 e
αbm

, k = 1, . . . ,K,

where
∑K

k=1 αbk = 0 and αbk ∈ R for k = 1, . . . ,K. An exchangeable prior for ρ implies

that the elements of ρ have common mean, common variance and common covariance.

This is a desirable property because it means there is nothing in our prior beliefs to

distinguish between A,G,C and T in the non-homogeneous RY5.6b model and rates of

change in the non-homogeneous RY8.8 model. To construct an exchangeable prior for

the elements of ρb = (ρb1, . . . , ρbK)T an exchangeable prior must be used for the ele-

ments of αb = (αb1, . . . , αbK)T . It is difficult to construct an exchangeable prior for

αb because of the constrained nature of its space. Therefore, we use new parameters

%b = (%b1, . . . , %b,K−1)T ∈ RK−1 through the linear mapping αb = H%b, where H is a

K × (K − 1) matrix with (j, k)-th entry

hjk =


0 if j < k,

dk if j = k

−dk/(K − k) if j > k,

(4.1)

for j = 1, . . . ,K, k = 1, . . . ,K − 1. Here d1 = 1 and dk = dk−1

√
1− 1/(K − k + 1)2 for

k = 2, . . . ,K − 1. For example, when K = 4, the corresponding matrix would be

H =


1 0 0

−1/3 2
√

2/3 0

−1/3 −
√

2/3
√

2/3

−1/3 −
√

2/3 −
√

2/3

 .

48



Chapter 4. Non-homogeneous Lie Markov models

Noting that AR(p) denotes an autoregressive process of order p, we take independent

stationary AR(1) processes for each of the collections (%rk, . . . , %Bk), k = 1. . . . ,K − 1, so

that

p (%r, . . . ,%B|τ) =

K−1∏
k=1

[
p (%rkτ)

B∏
b=1

p
(
%bk|%a(b),k, τ

)]
, (4.2)

where

%rk|τ ∼ N
(
0, v%/(1− p2

%)
)

and %bk|%a(b),k, τ ∼ N
(
p%%a(b),k, v%

)
in which p% ∈ [0, 1] and v% ∈ R+ are fixed hyperparameters that control the marginal

variances and covariances of the % and hence ρ. This is a prior for %b that is exchangeable

over its elements and given the topology τ , %b1, . . . , %b,K−1 have zero prior mean and are

uncorrelated with variance v%/(1 − p2
%). This prior with the choice of H defined above in

(4.1) is an exchangeable prior on the elements of αb and hence on those of ρb.

In the RY5.6b model, the instantaneous rate matrix Qb on branch b depends on the

parameter α ∈ [0, 1] in addition to the stochastic vector ρb ∈ S4. Conditional on τ , we

factorise the joint prior of α and the ρb as π(α,ρ1, . . . ,ρB−1|τ) = π(α)π(ρ1, . . . ,ρB−1|τ)

and assign a flat distribution to α, that is, α ∼ Beta(1, 1). Additionally, both models

also have the branch lengths ` = (`1, . . . , `B)T ∈ RB+, the shape parameter φ ∈ R+ in the

discretised gamma distribution for the rate variation across sites (see Section 3.3) and the

rooted tree topology τ . We assign a prior `b ∼ Exp (λ) to the branch lengths and choose

λ = 10, which reflects a strong prior belief that the expected number of substitutions per

site is 0.1 (and thus the branch lengths are short). The joint prior for the branch lengths

is π (`) =
∏B
i=1 π (`i). We assign a distribution φ ∼ Ga (gφ, hφ), with gφ = hφ = 10, for

the shape parameter in the discretised gamma distribution. This gives a marginal mean of

1 for the site-specific substitution rates. Conditionally on φ, the square of their coefficient

of variation is IG(10, 10). This is roughly centred at 1 with most (97%) of its mass below

2. The rooted topology is given a prior according to the Yule model of speciation, which

assumes that at any given time each of the species is equally likely to undergo a speciation

event. Defining a root type of size j : (n − j), j ∈ {1, . . . , bn/2c}, as the set of all rooted

trees with j taxa on one side of the root and n− j on the other, the Yule model generates

a distribution in which near equal probability is assigned to root types of all sizes (Cherlin

et al., 2017). Under the Yule model, the probability of generating an n-taxa tree T is

2n−1

n!

∏
v∈V0

λv

−1

, (4.3)

where λv is the number of internal vertices that are descendants of v (including v), which is

one less than the number of leaves descending from v, and V0 is the set of internal vertices

(Steel & McKenzie, 2001). This probability is the number of associated labelled histories
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(n − 1)!/
∏
v∈V0 λv for a rooted binary tree with n taxa divided by the total number of

labelled histories for n taxa n!(n− 1)!/2n−1.

4.3 Posterior inference via MCMC

The unknowns in the model comprise the rooted tree topology τ , the branch lengths

` = (`1, . . . , `B)T ∈ RB+ and the shape parameter φ ∈ R+ in the discretised gamma

distribution for rate variation across sites. Additionally, we have the set of substitution

model parameters, denoted by Q, where Q = {α,%1, . . . ,%B−1} for the non-homogeneous

RY5.6b model and Q = {%1, . . . ,%B−1} for the non-homogeneous RY8.8 model. These

parameters govern the distribution at the root of the tree, say π0, and the instantaneous

rate matrices, Q1, . . . ,QB, on each branch. A directed acyclic graph for our hierarchical

models is shown in Figure 4.1. As this graph demonstrates, the rooted topology τ , the

branch lengths ` and the gamma shape parameter φ are treated as independent in the prior

distribution. The individual branch lengths `1, . . . , `B are independent and identically

distributed. Note that α is conditionally independent of %1, . . . ,%B−1 given τ in the prior

distribution of the RY5.6b model.

Figure 4.1: Directed acyclic graph for our non-homogeneous models, where Q = {α, %1, . . . , %B−1}
under the non-homogeneous RY5.6b model and Q = {%1, . . . , %B−1} for the non-homogeneous
RY8.8 model.

The posterior distribution for the unknowns can be expressed as

π(τ, `, φ,Q|y) ∝ p(y|τ, `, φ,Q)π(τ, `, φ,Q),

in which p(y|τ, `, φ,Q) is the likelihood of the alignment y and π(τ, `, φ,Q) is the prior

density, which can be written as π(Q|τ)π(τ)π(`)π(φ). The likelihood is calculated as

p(y|τ, `, φ,Q) =
∏m
i=1 p(Y i = yi|τ, `, φ,Q) in which Y i ∈ Ωn is the DNA character at site

i and m is the total number of sites. The probability of the observed character yi at site

i is given by

Pr(Y i = yi|τ, `, φ,Q) =
1

4

4∑
k=1

∑
X

π0,X(0)

∏
edges b=(v,w)

pb,X(v),X(w){rk(φ)`b}.
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Here v and w are the vertices (nodes) at the two ends of edge b with length `b, X(u) is the

character at vertex u, u = 0 denotes the root vertex and Pb{rk(φ)`b} = [pbhi{rk(φ)`b}] =

exp{rk(φ)`bQ
′
b} is the transition matrix associated with edge b for discretised site rate

category k. The outer sum is over the four rate categories of the discretised gamma

distribution for rate variation across sites. The inner sum is the likelihood of observing

the characters at the leaves at site i, which was given in (2.3) (without the consideration of

different rate categories) in Section 2.1.3 and can be calculated using Felsenstein’s pruning

algorithm (Felsenstein, 1973, 1981) (also given in Section 2.1.3).

The posterior density π(τ, `, φ,Q|y) is not available analytically. Therefore, we build up

a numerical approximation by generating samples from the posterior using a Metropolis-

within-Gibbs sampling scheme, which iterates through a series of updates for each un-

known. A general description of such a scheme was given in Section 2.3.2 and we describe

the specific scheme for our models in Section 4.3.2. Before doing so, we describe the

various proposal distributions used in the scheme.

4.3.1 Proposal distributions

Parameters which lie in R or R+ are updated using standard proposal distributions. Gaus-

sian random walks are used for the reparameterised branch-specific parameters %b. We

have %∗b |%b ∼ NK−1

(
%b, s

2IK−1

)
, where IK−1 is a (K − 1)× (K − 1) identity matrix, %b is

the current value and s2 is the innovation standard deviation, which is a tuning parameter.

For the parameter α ∈ [0, 1] in the non-homogeneous RY5.6b model we generate propos-

als α∗ from a Beta distribution which is roughly centred at the current value α, namely

α∗|α ∼ Beta (s1α+ s2 , s1(1− α) + s2). Here s1 ∈ R+ and s2 ∈ R+ are tuning parameters.

The first affects the variance of the proposal and should be tuned to adjust the acceptance

rate. The second helps to prevent the sampler from sticking at the boundaries of the unit

interval and should be set close to zero; for example, s2 = 0.005 (Germain, 2010). Both

the branch lengths ` and the shape parameter φ in the discretised gamma distribution for

the rate variation across sites are updated using log normal random walk proposals. That

is, a new branch length is proposed with a `∗b |`b ∼ LN
(
log(`b), s

2
`

)
distribution, where `b is

the current branch length’s value and s` is the tuning parameter. Similarly, a new shape

parameter value is proposed via a φ∗|φ ∼ LN
(

log(φ), s2
φ

)
distribution, where φ is the

current value and sφ is the tuning parameter. Both s` and sφ are used to alter acceptance

rates in their respective proposals.

Finally, the rooted topology τ is updated using standard proposals for topological

moves, the nearest neighbour interchange (NNI), subtree prune and regraft (SPR) and

proposals to alter the root position. We base our descriptions of these proposals on the

descriptions given in Heaps et al. (2014) and Cherlin (2016). The NNI algorithm works

by swapping two subtrees on the two sides of a branch. First, an internal branch e is
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T
R

T
1

T
2

e

v
R

v

Figure 4.2: An illustration of the NNI move. An internal branch e is chosen uniformly at random
from the set of internal branches not adjacent to the root. Either subtree T1 or T2 descended from
the vertex v is swapped with the subtree TR descended from vR.

selected uniformly at random, excluding the two branches adjacent to the root of the tree.

We denote the vertex on e which is closest to the root as vR and the vertex closest to the

leaves as v. There are two subtrees descending from v, which we denote as T1 and T2, and

a subtree TR descending from vR. In NNI, there are two possible moves, each occurring

with probability of 0.5. Either subtree T2 is swapped with TR, or subtree T1 is swapped

with TR resulting in a new rooted tree topology τ∗. This is illustrated in Figure 4.2 and

the two possible resulting trees are shown in Figure 4.3. The branch e is replaced with a

new branch e∗, where its length `e∗ is proposed via a log normal random walk. We also

propose a new value for the branch-specific parameter %e∗ using a Gaussian random walk.

All other branch lengths and branch-specific parameters %b (b 6= e) remain unchanged.

For the NNI proposal, the acceptance probability is the product of the prior ratio, the

observed data likelihood ratio and the proposal ratio. Thus, the probability of accepting

an NNI move is min {1, A}, where

A =
π (τ∗)

π (τ)
× π (%∗e|τ∗)

π (%e|τ)
× π (`∗)

π (`)
× p (y|τ, `∗, φ,Q)

p (y|τ, `, φ,Q)
× q (`e|`e∗)
q (`e∗ |`e)

× q (%e|%∗e)
q (%∗e|%e)

=
π (τ∗)

π (τ)
× π (%∗e|τ∗)

π (%e|τ)
× exp {λ (`e − `∗e)} ×

p (y|τ, `∗, φ,Q)

p (y|τ, `, φ,Q)
× `∗e
`e
. (4.4)

Note that q denotes a proposal density and that we have calculated A above using the
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e*
T
R

T
1

T
2

(a)

e*

T
R

T
1

T
2

(b)

Figure 4.3: Two possible trees resulting from the NNI move shown in Figure 4.2. In (a) the subtree
T1 is swapped with TR. In (b) the subtree T2 is swapped with TR. The length of branch e∗ is
proposed via a log normal random walk centred on the length of e from the original tree.

53



Chapter 4. Non-homogeneous Lie Markov models

general rate parameter λ for the prior exponential distribution for the branch lengths for

completeness, rather than substituting in our chosen value of λ = 10. The prior ratio for

the topology τ is calculated using (4.3) in Section 4.2. Additionally, the proposal ratio

given above in (4.4) does not include the topology because every tree topology has the

same number of neighbouring topologies obtained by a single NNI operation (Heaps et al.,

2014; Allen & Steel, 2001), that is q (τ∗|τ) = q (τ |τ∗), so their ratio is 1.

The SPR topological operation involves pruning off a subtree and grafting it to a

different branch of the tree. An illustration of the SPR move is shown in Figure 4.4.

Firstly, two internal branches which are not adjacent to the root nor each other are chosen

uniformly at random. We denote by ep the branch which is farther away from the root

and let eg be the branch closer to the root. Additionally, we let vp be the vertex closest

to the root on the branch ep and let ea and eb be the branches containing the vertex vp.

We denote by T the tree evolving from the vertex vp, where T includes the branch ep.

The subtree T is pruned from the tree and reattached to a point vg on branch eg. The

reattachment of T divides the branch eg into two new branches: e∗a and e∗b and thus vg

becomes a new vertex which is shared by these two branches. The branches ea and eb

merge to form a new edge e∗g and vertex vp disappears. New branch lengths are proposed

for e∗a and e∗b subject to the constraint `e∗a + `e∗b = `eg . First, a random variable is sampled

u ∼ Beta (2, 2) and we set `e∗a = u × `eg . The length of branch e∗b is then set so that the

overall branch length (`eg) is preserved, that is `e∗b = (1−u)×`eg . Our choice of parameters

for the beta distribution means that E[u] = 0.5, which means the expected regrafting point

is the middle of branch eg. New values are proposed for %ex for x ∈ {a, b, g, p} as described

above for the NNI proposal. The acceptance probability of the SPR move is min {1, A},
where

A =
π (τ∗)

π (τ)
×
π
(
%e∗a ,%e∗b

,%e∗g ,%e∗p |τ
∗
)

π
(
%ea ,%eb ,%eg ,%ep |τ

) × π (`∗)

π (`)
× p (y|τ, `∗, φ,Q)

p (y|τ, `, φ,Q)
× q (u∗)

q (u)

×

∣∣∣∣∣∣
∂
(
`e∗a , `e∗b , `e∗g , u

∗
)

∂
(
`ea , `eb , `eg , u

)
∣∣∣∣∣∣×

q
(
%ea ,%eb ,%eg ,%ep |%

∗
ea ,%

∗
eb
,%∗eg ,%

∗
ep , τ

∗
)

q
(
%∗ea ,%

∗
eb
,%∗eg ,%

∗
ep |%ea ,%eb ,%eg ,%ep , τ

)
=
π (τ∗)

π (τ)
×
π
(
%e∗a ,%e∗b

,%e∗g ,%e∗p |τ
∗
)

π
(
%ea ,%eb ,%eg ,%ep |τ

) × π
(
`e∗a , `e∗b , `e∗g

)
π
(
`ea , `eb , `eg

) × p (y|τ, `∗, φ,Q)

p (y|τ, `, φ,Q)
× u∗(1− u∗)

u(1− u)

×
`eg

`ea + `eb
×
q
(
%ea ,%eb ,%eg ,%ep |%

∗
ea ,%

∗
eb
,%∗eg ,%

∗
ep , τ

∗
)

q
(
%∗ea ,%

∗
eb
,%∗eg ,%

∗
ep |%ea ,%eb ,%eg ,%ep , τ

) , (4.5)
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u∗ = `ea/(`ea + `eb) is the auxiliary variable for the reverse move and∣∣∣∣∣∣
∂
(
`e∗a , `e∗b , `e∗g , u

∗
)

∂
(
`ea , `eb , `eg , u

)
∣∣∣∣∣∣ =

`eg
`ea + `eb

is the Jacobian. We also note that

π
(
`e∗a , `e∗b , `e∗g

)
π
(
`ea , `eb , `eg

) = exp
{
λ
(
`ea − `e∗a

)}
× exp

{
λ
(
`eb − `e∗b

)}
× exp

{
λ
(
`eg − `e∗g

)}
= exp

{
λ
(
`ea + `eb + `eg − `e∗a − `e∗b − `e∗g

)}
.

Again, the proposal ratio does not include the topology in (4.5) above because every

tree topology has the same number of neighbouring topologies obtained by a single SPR

operation (Heaps et al., 2014; Allen & Steel, 2001). Again, the prior ratio for the topology

τ is calculated using (4.3) in Section 4.2.

T

e
g

v
g

v
p

e
a

e
b

e
p

(a)

(b)

Figure 4.4: An illustration of the SPR move. (a) During the move, the branch ep (dashed line) and
the tree T evolving from it are pruned and reattached to edge eg. The point of attachment vg is
chosen by dividing the edge eg using a random variable drawn from Beta(2, 2). (b) After the move
is made, the vertex vp disappears and the branches ea and eb are merged to form a new edge e∗g.
The grafting branch eg is split into two new edges e∗a and e∗b by a new vertex vg which is formed
after reattaching the subtree T to eg.
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The root proposal is very similar to the SPR proposal. A branch eg is selected uniformly

at random, with the exception of the two branches adjacent to the root, which we denote

by ea and eb. We form a new root position by insertion of a new degree two vertex

somewhere on eg and replacing eg with two new branches e∗a and a∗b . Then the branches ea

and eb are merged to form a single branch e∗g. New branch lengths are proposed for e∗a and

e∗b in the identical way as in the SPR proposal. Recall from Section 4.1 that the branches

on each side of the root have the same rate matrix Qr. Therefore, %e∗a = %e∗b
(= %r) and

we propose new values for %e∗a and %e∗g in the same way as in the SPR proposal. The

acceptance probability is also calculated in a similar way as in the SPR proposal in (4.5).

In practice, the acceptance rates for all three moves (NNI, SPR and root) are very

low and the proposals cannot be tuned to achieve the desirable acceptance rate (see Sec-

tion 2.3.2). As a result of this, the posterior samples have high autocorrelations, leading to

poor mixing of the chain(s). To allow the sampler to move more per overall iteration, we

perform multiple NNI, SPR and root moves per MCMC iteration. Acceptance rates are

often about an order of magnitude lower for topological moves than the desired acceptance

rate for random walk type moves (see Section 2.3.2). Thus, if we perform ten of each topo-

logical move per fixed sweep of our algorithm and make the (implausible) assumption that

the outcomes of proposals are independent of each other, we can approximately match the

expected number of topological moves and random walk type moves.

4.3.2 Metropolis-within-Gibbs sampling scheme

Before applying our models to simulated data and empirical data in Chapter 5, we con-

clude this chapter by describing our Metropolis-within-Gibbs sampling scheme, which we

implement in Java. At each iteration of our MCMC algorithm, we update the substitution

model parameters Q and φ, the topology τ and the branch lengths `. Recall that under the

non-homogenous RY5.6b model Q =
{
α,%1, . . . ,%B−1

}
and under the non-homogeneous

RY8.8 model Q =
{
%1, . . . ,%B−1

}
.

Our MCMC scheme is a series of Metropolis-Hastings steps (one for each parameter),

where one iteration of the entire scheme is as follows:

1. Update %b one at a time, so for b = 1, . . . , B − 1:

(a) Propose a new value %∗b |%b ∼ N
(
%b, s

2IK−1

)
.

(b) Accept %∗b with probability min {1, A}, where

A =
π (%∗b |τ)

π (%b|τ)
× p (y|τ, `, φ,Q∗)

p (y|τ, `, φ,Q)
×
q (%b|%∗b)
q
(
%∗b |%b

)
=
π (%∗b |τ)

π (%b|τ)
× p (y|τ, `, φ,Q∗)

p (y|τ, `, φ,Q)
,
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Q contains the current value %b, Q∗ contains the proposed value %∗b and the

prior density π (%b|τ) can be found using (4.2). Note that the proposal ratio is

1 as we have a symmetric proposal, that is q (%b|%∗b) = q (%∗b |%b).

2. If the non-homogeneous RY5.6b model is used, update α, otherwise move to step 3.

(a) Propose a new value α∗|α ∼ Beta (s1α+ s2, s1(1− α) + s2).

(b) Accept α∗ with probability min {1, A}, where

A =
π (α∗)

π (α)
× p (y|τ, `, φ,Q∗)

p (y|τ, `, φ,Q)
× q (α|α∗)
q (α∗|α)

=
p (y|τ, `, φ,Q∗)
p (y|τ, `, φ,Q)

× αs1α
∗+s2−1(1− α)s1(1−α∗)+s2B (s1α+ s2, s1(1− α) + s2)

α∗s1α+s2−1(1− α∗)s1(1−α)+s2B (s1α∗ + s2, s1(1− α∗) + s2)
,

Q contains the current value α,Q∗ contains the proposed value α∗ andB (a, b) =
Γ (a)Γ (b)
Γ (a+b) . Here Γ denotes the gamma function, where Γ (n) = (n − 1)!. Since

the prior distribution is α ∼ Beta(1, 1), both prior densities in the prior ratio

are 1 and hence the prior ratio is 1.

3. Update φ.

(a) Propose a new value φ∗|φ ∼ LN
(

log(φ), s2
φ

)
.

(b) Accept φ∗ with probability min {1, A}, where

A =
π (φ∗)

π (φ)
× p (y|τ, `, φ∗,Q)

p (y|τ, `, φ,Q)
× q (φ|φ∗)
q (φ∗|φ)

=

(
φ∗

φ

)gφ−1

exp {hφ (φ− φ∗)} × p (y|τ, `, φ∗,Q)

p (y|τ, `, φ,Q)
× φ∗

φ

and recalling that gφ = hφ = 10.

4. Update ` one branch at a time. For b = 1, . . . , B:

(a) Propose a new value `∗b |`b ∼ LN
(
log(`b), s

2
`

)
.

(b) Accept `∗b with probability min {1, A}, where

A =
π (`∗b)

π (`b)
× p (y|τ, `∗, φ,Q)

p (y|τ, `, φ,Q)
×
q (`b|`∗b)
q
(
`∗b |`b

)
= exp {λ (`b − `∗b)} ×

p (y|τ, `, φ∗,Q)

p (y|τ, `, φ,Q)
×
`∗b
`b

`∗ is the vector of branch lengths containing `∗ and recalling that λ = 10.
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5. Update τ .

(a) Propose multiple, say ten, NNI moves as described in Section 4.3.1, where each

move is accepted with probability min {1, A} and A was given in (4.4).

(b) Propose multiple, say ten, SPR moves as described in Section 4.3.1, where each

move is accepted with probability min {1, A} and A was given in (4.5).

(c) Propose multiple, say ten, root moves as described in Section 4.3.1, where each

move is accepted with probability min {1, A} and A is calculated similarly to

(4.5).
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Chapter 5

Phylogenetics application

Now that our non-homogeneous, non-stationary, non-reversible phylogenetic models have

been fully specified, along with a detailed description of posterior inference, we can apply

the models to some data. To show that our models are able to identify root position, we

first test our models with simulated data and present the results in this chapter. Finally,

we conclude this part of the thesis with a discussion of the results for a biological data set

that exhibits compositional heterogeneity.

5.1 Simulation study

For the results of model-based inference on the root position to offer biological insight, the

position of the root has to be identifiable under the likelihood. Proving that this is the

case for models that are non-stationary, non-reversible, or both, is extremely challenging,

except in very special cases (Kaehler, 2017). On the other hand, carefully designed sim-

ulation experiments can readily be used to provide empirical evidence of identifiability,

and to investigate the conditions under which inference more closely reflects the data-

generating mechanism. Therefore, we adopt a simulation-based approach to investigate

the identifiability of the root position and underlying topology in our non-homogeneous

RY5.6b and RY8.8 models. Specifically, we consider the effects of: (i) different numbers

of taxa and sites; (ii) different topologies and branch lengths.

The prior for both models was described in Section 4.2 of Chapter 4. For each analysis,

we use the MCMC algorithm described in Section 4.3.2. Two chains are initialised at

different starting points and run for 1M iterations. The first 500K are discarded as burn-

in and to reduce computational overheads the remaining output is thinned to obtain every

100-th iteration. The standard graphical and numerical diagnostics used in phylogenetic

inference (Lartillot et al., 2004) (discussed in Section 2.3.2) are used to assess convergence

and mixing.
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5.1.1 Different numbers of taxa and sites

To assess the extent to which root inference depends upon the dimensions of the data being

analysed, we simulate alignments under the non-homogeneous RY5.6b and RY8.8 models,

varying the number of taxa (6, 12, 24) and the number of sites (500, 1000, 2000). First an

unrooted tree on 24 taxa is simulated by random resolution of a star tree. (A star tree for n

taxa has a single vertex with n branches.) This is then rooted to form a balanced tree, that

is, a tree with an equal number of taxa on either side of the root, and then branch lengths

are sampled from a Ga(2, 20) distribution. The branch-specific parameter vectors ρb are

simulated from Dirichlet D4(10, 10, 10, 10) and Dirichlet D8(3, 3, 3, 3, 3, 3, 3, 3) distributions

for the RY5.6b and RY8.8 models, respectively. This gave a degree of heterogeneity which

is consistent with what we have inferred in analyses of biological data. For the non-

homogeneous RY5.6b model, α is set as 0.5, the mean of its symmetric prior. Likewise,

the shape parameter φ in the discretised gamma distribution for rate variation across sites

is set to the mode of its prior, 0.9. Using this rooted tree and these parameter values, three

alignments of 2000 sites were simulated under each model. Taxa, sites, or taxa and sites

are then removed from the alignments to give three data sets for each combination of sites

and taxa specified above. The taxa that are pruned are chosen uniformly at random, but

constrained so that the corresponding tree for each resulting alignment is balanced. This

is to avoid any potential confounding with the effect of balance in the rooted topology,

which we examine separately in Section 5.1.2. The rooted topologies on 6, 12 and 24 taxa

are displayed in Figure 5.1.

For the trees on 6, 12 and 24 taxa, Figures 5.2a, 5.2c and 5.2e, respectively, display

the posterior distribution over root splits for the alignments simulated and analysed under

the non-homogeneous RY5.6b model. Recall from Section 4.2 that a root type of size

j : (n − j), j ∈ {1, . . . , bn/2c} is the set of all rooted trees with j taxa on one side of

the root and n − j on the other. For example, a root type of size 1 : (n − 1) represents

a root split on a pendant branch (a branch connected to a leaf), whereas a root type

of size 3 : (n − 3) represents a root split between three taxa and the remaining taxa.

A root split can inform us of which taxa lie on each side of the root, for example, the

correct root split for the six-taxa alignment is (2, 16, 8) : (10, 22, 15). Figures 5.3a, 5.3c

and 5.3e show the analogous plots for the posterior distribution over unrooted topologies.

The black bars highlight the (true) root split or unrooted topology from the tree used

to simulate the data. The corresponding plots for the non-homogeneous RY8.8 model

are shown in Figures 5.2b, 5.2d and 5.2f and Figures 5.3b, 5.3d and 5.3f respectively.

As expected, irrespective of the model or number of taxa, the posterior support for the

correct root split tends to increase as the number of sites increases, and the correct root

split is more frequently identified as the posterior mode. The same is true for unrooted

topologies. Indeed, when there are 2000 sites in the alignment and the non-homogeneous

60



Chapter 5. Phylogenetics application

Taxon 10
Taxon 22

Taxon 15
Taxon 2

Taxon 16
Taxon 8

0.2

(a)

Taxon 7
Taxon 11

Taxon 10
Taxon 12

Taxon 22
Taxon 15

Taxon 2
Taxon 9

Taxon 1
Taxon 16
Taxon 8

Taxon 23
0.2

(b)

Taxon 7
Taxon 13
Taxon 24

Taxon 3
Taxon 11

Taxon 10
Taxon 19

Taxon 12
Taxon 22

Taxon 18
Taxon 15
Taxon 5

Taxon 4
Taxon 6
Taxon 2

Taxon 9
Taxon 1

Taxon 16
Taxon 14

Taxon 20
Taxon 8

Taxon 21
Taxon 17

Taxon 23
0.2

(c)

Figure 5.1: Trees used to simulate alignments on (a) 6, (b) 12, (c) 24 taxa.

RY8.8 model is used, the posterior probability for the correct root split is close to one for

all tree sizes and the posterior probability of the correct unrooted topology is 0.758 on

average across the three 24-taxa alignments. Although increasing the number of taxa leads

to quadratic growth in the number of possible root splits and super-exponential growth

in the number of possible unrooted topologies, it does not seem to have a detrimental
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Figure 5.2: Posterior distribution over roots splits when three data sets are simulated and analysed
under the non-homogeneous RY5.6b model and the number of taxa is (a) 6, (c) 12, (e) 24; and
when three data sets are simulated and analysed under the non-homogeneous RY8.8 model and the
number of taxa is (b) 6, (d) 12, (f) 24. The number of sites is displayed to the right of each plot.
In every plot, bars are arranged in descending order of posterior probability and the correct root
split is highlighted in black. In the plots for 12 and 24 taxa, bars corresponding to probabilities
less than 0.01 have been removed to improve readability.
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Figure 5.3: Posterior distribution over unrooted topologies when the data are simulated and anal-
ysed under the non-homogeneous RY5.6b model and the number of taxa is (a) 6, (c) 12, (e) 24;
and when the data are simulated and analysed under the non-homogeneous RY8.8 model and the
number of taxa is (b) 6, (d) 12, (f) 24. The number of sites is displayed to the right of each
plot. Highlighted in black is the correct unrooted topology. In the plots for 12 and 24 taxa, bars
corresponding to probabilities less than 0.01 have been removed to improve readability.
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effect on inferential performance for the non-homogeneous RY8.8 model. Unfortunately,

the same is not true for the RY5.6b model, under which inference of the root position is

generally worse, particularly for larger trees. For example, when the number of taxa is 12

or 24, the correct root split is not recovered as the posterior mode in any simulations. The

better rooting performance of the RY8.8 model is likely explained by two factors. First,

the model has more parameters that can vary across the tree and induce non-stationary

behaviour. Second, identifiability of branch-specific parameters in each model also plays

a role, which we explore in the following section.

Parameter identifiability

By design, the non-homogeneous Lie Markov models are highly parameterised. Although

of secondary interest in its own right, identifiability of the quantitative model parameters in

the posterior is likely to impact on inference of the root position and topology. In the most

highly parameterised case, where data are simulated under a 24-taxon tree, we therefore

investigate the extent to which the true values of the model parameters can be identified

in the posterior. For one of the three alignments, results are summarised in Figures 5.4

and 5.5 for the non-homogeneous RY5.6b and RY8.8 models, respectively, and show the

effect of varying the number of sites from 500 through 1000 to 2000. Results for the other

two alignments show the same patterns and are not shown. The posterior densities for

the global parameters φ, in the discretised gamma distribution for rate variation across

sites, and α, from the RY5.6b rate matrix, are based on draws from the joint posterior

of all unknowns. The branch lengths `1, . . . , `B and branch-specific parameter vectors

ρ1, . . . ,ρB−1 are only meaningfully labelled on the tree in Figure 5.1c used to simulate the

data, say τtrue. The densities for the branch-specific parameters are therefore based on

draws from the conditional posterior of the model parameters given the topology τ = τtrue.

Posterior densities are visualised for a representative, random selection of branch-specific

parameters.

For both models, the true values of the global parameters and branch lengths are

identified with high posterior support, even with only 500 sites in the alignment. In

nearly all cases, the true values of the branch-specific ρbk lie within the main body of the

posterior density, and the posterior becomes more concentrated around the true value as

the number of sites in the alignment increases. However, it is clear that the posteriors

for the ρbk are much more concentrated under the non-homogeneous RY8.8 model than

the RY5.6b model. This may be because the additive structure of the RY5.6b rate matrix

makes the likelihood less sensitive to changes in the ρb and is likely to be partly responsible

for the poorer rooting performance of the non-homogeneous RY5.6b model.
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Figure 5.4: Marginal prior and posterior densities for the global model parameters (φ and α) and
a random sample of branch-specific parameters in the analysis of a 24-taxon alignment simulated
under the non-homogeneous RY5.6b model. Posterior densities for the branch-specific parameters
are conditional on the rooted topology used to simulate the data. Indicated in the panels are the
prior ( ) and posterior when the number of sites is 500 ( ), 1000 ( ) and 2000 ( ). The
true values of the parameters are indicated by vertical lines.

5.1.2 Different topologies and branch lengths

When investigating their homogeneous, stationary, non-reversible model, Cherlin et al.

(2017) found root inference to be sensitive to some of the prior-data conflicts that occur

commonly in the analysis of biological data. Typically these arise due to incongruent prior

and likelihood information about branch lengths and the rooted topology. In our analyses

we adopt the near ubiquitous prior for the set of branch lengths, which structures beliefs
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Figure 5.5: Marginal prior and posterior densities for the global model parameter (φ) and a
random sample of branch-specific parameters in the analysis of a 24-taxon alignment simulated
under the non-homogeneous RY8.8 model. Posterior densities for the branch-specific parameters
are conditional on the rooted topology used to simulate the data. Indicated in the panels are the
prior ( ) and posterior when the number of sites is 500 ( ), 1000 ( ) and 2000 ( ). The
true values of the parameters are indicated by vertical lines.

as independent Exp(10) distributions. This prior places 99.9% of its mass below 0.691

and so asserts a strong belief that branch lengths are reasonably short. As a consequence,

given an unrooted topology that contains a long branch, the prior supports rooting on

this branch in order to split it into two shorter edges. In our analyses we adopt a Yule

prior over rooted topologies. As discussed previously in Section 4.2, one of the compelling

properties of the Yule distribution is that it assigns near equal probability to root types
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of all sizes. However, a combinatorial consequence of this property is that more support

is assigned to balanced than unbalanced trees. For n taxa, if n is odd, all root types

have the same prior probability, and if n is even, all root types receive the same prior

probability except a root type of size n/2 : n/2, which has half the prior probability of

all other root types. For k 6= n/2, the number of trees with a k : (n − k) root split is(
n
k

)
× (2k−3)!

2(k−2)(k−2)!
× (2(n−k)−3)!

2(n−k−2)(n−k−2)!
, that is, the number of ways of choosing k taxa from

n multiplied by the number of possible trees for k taxa and n− k taxa. Figure 5.6 shows

the number of trees for each root split with n = 16 taxa. Clearly, as k → n/2, the

number of trees decreases, and there are many more (unbalanced) trees with a root split

on a pendant edge. However, since the prior probability of any particular root type is

the same, more prior mass is assigned to any particular balanced tree. In this section,

we analyse simulated data to explore posterior sensitivity to prior-data conflicts that arise

because of long branches in the underlying unrooted tree or an unbalanced rooted topology.
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Figure 5.6: Number of k : (n− k) root splits (on log-scale) for n = 16 taxa.

We set up this simulation experiment in the same way as Cherlin et al. (2017). Simu-

lations are based on the unrooted tree on 16 taxa depicted in Figure 5.7 whose topology

was simulated through random resolution of a star tree. Its branch lengths were simulated

from a Ga(2, 20) distribution. Based on this unrooted tree, we construct six different

rooted trees by varying the root position, which is placed at the midpoint either of branch

E1 or branch E2, and the length of the branch E1, which can be the 95%, 50% or 5%

quantile of the Ga(2, 20) distribution:

Tree 1: balanced (rooted on E1), long root branch (length 0.237);

Tree 2: unbalanced (rooted on E2), long internal branch (length 0.237);

Tree 3: balanced (rooted on E1), short root branch (length 0.018);

Tree 4: unbalanced (rooted on E2), short internal branch (length 0.018);

Tree 5: balanced (rooted on E1), medium root branch (length 0.084);

67



Chapter 5. Phylogenetics application

Taxon 7
Taxon 6

Taxon 10
Taxon 14

Taxon 5
Taxon 4
Taxon 2

Taxon 16
Taxon 9

Taxon 1
Taxon 11
Taxon 15

Taxon 13
Taxon 12

Taxon 8
Taxon 3

E1
E2

0.2

Figure 5.7: Unrooted tree used in simulation experiments to investigate the effects of different
topologies and branch lengths on root inference. In the experiments, the tree is rooted at the
midpoint of either branch E1 or E2. The tree is depicted with branch E1 having a “medium”
length of 0.084 units. In the experiment, this is varied to 0.237 units (“long”) or 0.018 units
(“short”).

Tree 6: unbalanced (rooted on E2), medium internal branch (length 0.084).

As indicated above, Trees 1, 3 and 5 have a balanced rooted topology, with root type 8 : 8,

whilst Trees 2, 4 and 6 are unbalanced, with root type 3 : 13. By substituting n = 16

into (4.3) with k = 8 and k = 3, we can calculate the prior probabilities of the balanced

and unbalanced topologies, respectively. In doing so, we find that the Yule prior offers

more than six times more mass to the balanced tree and hence the prior and likelihood are

likely to be in conflict when the tree is unbalanced. In the unrooted tree associated with

Trees 1 and 2, branch E1 is the longest, whilst for Trees 3 and 4 it is among the shortest.

Given the unrooted topology depicted in Figure 5.7, the prior support for a root on edge

E1 increases as the branch becomes longer, and hence will increasingly conflict with the

likelihood if E1 is not the root edge.

For each of the six trees, three 2000-site alignments are simulated and analysed under

both non-homogeneous Lie Markov models. The posterior distributions over root splits

for the RY8.8 model are shown in Figure 5.8. In general, root inference is good, with

the true root recovered as the posterior mode in most cases. This suggests the posterior

is reasonably robust to prior-data conflict concerning the rooted topology and branch

lengths. Moreover, for Trees 3 – 6, whose unrooted trees do not contain any very long

edges, the absence of a marked difference between the results for balanced Trees 3 and 5

and unbalanced Trees 4 and 6 suggests that the prior over rooted topologies imparts little

influence over the posterior. It is interesting to note that this was not the case in the

work by Cherlin et al. (2017) based on their homogeneous, stationary and non-reversible
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Figure 5.8: Posterior distribution over roots splits when three data sets are simulated and analysed
under the non-homogeneous RY8.8 model and the tree used for simulation is Tree (a) 1 (balanced,
long root branch), (b) 2 (unbalanced, long internal branch), (c) 3 (balanced, short root branch),
(d) 4 (unbalanced, short internal branch), (e) 5 (balanced, medium root branch), (f) 6 (unbal-
anced, medium internal branch). In every plot, bars are arranged in descending order of posterior
probability and the correct root split is highlighted in black.

model. However, comparisons between the results for these four trees and Trees 1 and 2,

which do contain a very long edge, suggest that long branches in the unrooted tree can

influence posterior inference of the root position. When the long edge is the root edge

(Tree 1), the posterior is concentrated around the true root position in the analyses of all

three alignments; see Figure 5.8a. However, when the long edge is not the root edge (Tree

2), prior-data conflict arises and the true root only has appreciable posterior support in

the analysis of one of the three alignments; see Figure 5.8b.

The corresponding plots for the non-homogeneous RY5.6b model are shown in Fig-

ure 5.9. As we found for the results in Section 5.1.1 for the larger trees on 12 or 24 taxa,
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Figure 5.9: Posterior distribution over roots splits when three data sets are simulated and anal-
ysed under the non-homogeneous RY5.6b model and the tree used for simulation is Tree (a) 1
(balanced, long root branch), (b) 2 (unbalanced, long internal branch), (c) 3 (balanced, short root
branch), (d) 4 (unbalanced, short internal branch), (e) 5 (balanced, medium root branch), (f) 6
(unbalanced, medium internal branch). In every plot, bars are arranged in descending order of
posterior probability and the correct root split is highlighted in black.

the true root rarely receives particularly appreciable posterior support. In fact, the only

cases where the true root was recovered as the posterior mode were the analyses of the

three alignments simulated under Tree 1, where the root edge is a long branch. This

further suggests that for alignments of around 2000 sites on a modest number of taxa, the

likelihood of a non-homogeneous RY5.6b model does not itself clearly identify the position

of the root. However, it is worth noting that for both models and all trees, inference of

the unrooted topology was excellent, with the true unrooted topology identified as the

posterior mode, with high support, in all cases (see Figures 5.10 and 5.11).
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Figure 5.10: Posterior distribution over unrooted topologies when three data sets are simulated
and analysed under the non-homogeneous RY8.8 model and the tree used for simulation is Tree
(a) 1 (balanced, long root branch), (b) 2 (unbalanced, long internal branch), (c) 3 (balanced, short
root branch), (d) 4 (unbalanced, short internal branch), (e) 5 (balanced, medium root branch), (f)
6 (unbalanced, medium internal branch). In every plot, bars are arranged in descending order of
posterior probability and the correct unrooted topology is highlighted in black.

5.2 The Drosophila data set

To illustrate the benefit of our non-homogeneous model in its facility to bring two sources

of information to bear on the rooting problem, we consider an application to a Drosophila

data set, taken from Tarŕıo et al. (2000). Most models fail to identify a plausible root

position. One exception is the model developed by Foster (2004), discussed in Section 3.1.

Recall that their model allows the branches of the tree to be allocated to one of K � B

mixture components, where each component has a different composition vector. They

fitted their model with K = 2, 3, 4, 5 and found that when more than two mixture com-

ponents were used the most biologically plausible root was identified.
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Figure 5.11: Posterior distribution over unrooted topologies when three data sets are simulated
and analysed under the non-homogeneous RY5.6b model and the tree used for simulation is Tree
(a) 1 (balanced, long root branch), (b) 2 (unbalanced, long internal branch), (c) 3 (balanced, short
root branch), (d) 4 (unbalanced, short internal branch), (e) 5 (balanced, medium root branch), (f)
6 (unbalanced, medium internal branch). In every plot, bars are arranged in descending order of
posterior probability and the correct unrooted topology is highlighted in black.

The alignment contains 2085 nucleotides (sites) from the xanthine dehydrogenase

(Xdh) gene of 17 different species of Drosophila. D. saltans, D. prosaltans, D. neocor-

data, D. emarginata, D. sturtevanti and D. subsaltans form a clade of saltans. Three of

the species form an outgroup: D. melanogaster, D. virilis and D. pseudoobscura. The

remaining species form a clade of willistoni. Recall that the terms clade and outgroup

were defined in Section 2.1.1. Due to differences between nucleotide compositions in the

Xdh gene of the outgroup and ingroup, many models fail to find a biologically plausible

root (Tarŕıo et al., 2000). We compare inferences obtained under six different models:

M1: homogeneous, stationary, reversible GTR model;
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M2: homogeneous, stationary, non-reversible RY5.6b model;

M3: homogeneous, stationary, non-reversible RY8.8 model;

M4: non-homogeneous, non-stationary, locally reversible GTR model;

M5: non-homogeneous, non-stationary, locally non-reversible RY5.6b model;

M6: non-homogeneous, non-stationary, locally non-reversible RY8.8 model.

We note that the likelihood for our baseline model M1 is invariant to the position of

the root and so can only distinguish between unrooted trees. However, as the data set

contains an outgroup, we can apply the standard approach of outgroup rooting to polarise

the relationships on the unrooted trees with the highest posterior support.

For the non-homogeneous Lie Markov models,M5 andM6, we use the priors described

in Section 4.2. For the remaining models,Mi, i = 1, . . . , 4, we give the prior specification

here. For models Mi, i = 1, . . . , 4, the unknowns comprise the tree topology τ , branch

lengths ` = (`1, . . . , `B)T ∈ RB+, substitution model parameters Qi for model i and the

shape parameter φ ∈ R+ in the discretised gamma distribution for rate variation across

sites. For modelM1, τ belongs to the set Un of unrooted tree topologies on n species and

there are B = 2n− 3 branches. For models M2 – M4, τ belongs to the set of rooted tree

topologies on n species and there are B = 2n− 2 branches.

Our prior takes the form π(τ, `, φ,Qi) = π(τ)π(φ)π(Qi|τ)
∏B
b=1 π(`b) for model Mi,

where the dependence of Qi on τ is dropped for the homogeneous modelsM1 –M3. As we

did for M5 and M6 in Section 4.2, we assign priors `b ∼ Exp(10) to the branch lengths,

expressing the belief that there will be E(`b) = 0.1 substitutions per site on average.

Likewise, for the shape parameter we assign φ ∼ Ga(10, 10) to give a distribution which

is modestly concentrated about E(φ) = 1, conveying the belief that the multiplicative

random effects across sites will equal 1 on average. For models M2 – M4 we assign the

rooted topology a prior according to the Yule model of speciation. For the GTR model

M1 (see Section 2.1.2) we assign the unrooted topology τ a prior which is uniform over

Un, expressing prior indifference with respect to the topology.

The substitution model parameters Q1 in M1 comprise the theoretical stationary

distribution π ∈ S4 and the exchangeability parameters κ = (κ12, κ13, κ14, κ23, κ24)T ∈
R5

+ to which we assign the prior

π(Q1) = π(π)
2∏
i=1

4∏
j=i+1

π(κij), where π ∼ D4(1, 1, 1, 1), κij ∼ Ga(1, 1).

In the homogeneous RY5.6b model M2, the substitution model parameters consist of the

stochastic vector ρ ∈ S4, which controls the theoretical stationary distribution, and the
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parameter α ∈ R+. We assign the prior

π(Q2) = π(ρ)π(α), where ρ ∼ D4(1, 1, 1, 1), α ∼ Beta(1, 1).

For the homogeneous RY8.8 model M3, the substitution model parameters simply com-

prise the stochastic vector ρ ∈ S8 and we assign the prior ρ ∼ D8(18), where 1n denotes

an n-vector of 1s.

For the non-homogeneous GTR model M4, the substitution model parameters Q4

comprise the branch-specific composition vectors πb ∈ S4 for b = 1, . . . , B − 1 and the

shared set of GTR exchangeability parameters κ = (κ12, κ13, κ14, κ23, κ24)T ∈ R5
+. We

assign the prior

π(Q4|τ) = π(π1, . . . ,πB−1|τ)
2∏
i=1

4∏
j=i+1

π(κij)

in which κij ∼ Ga(1, 1) and the πb are assigned the same joint, conditional distribution

as the ρb in M5 and M6, described in Section 4.2.

The choices of the parameters p% and v% in our priors for the branch-specific simplex-

valued parameters in models M4 – M6 are:

M4 : p% = 0.94, v% = 0.312;

M5 : p% = 0.95, v% = 2.002;

M6 : p% = 0.94, v% = 0.382.

For the non-homogeneous GTR model M4, we use the method described in Heaps et al.

(2014) to choose hyperparameters. This involves a process of trial-and-improvement, vary-

ing p% and v% until samples from the ensuing prior predictive distribution of the empirical

sequence composition matches quantiles informed by expert biological judgement. We

consider samples of the minimum, lower quartile, median, upper quartile and maximum of

the GC-content of the Drosophila data set. For the non-homogeneous Lie Markov models,

M5 and M6, we adopt the same iterative procedure. Figure 5.12 shows boxplots for the

samples for each model. A biologically credible range for mean GC-content is about 13%–

75% (Romiguier & Roux, 2017) and the prior predictive distributions of each model with

our chosen hyperparameters seem to be consistent with this range. The prior predictive

distribution of M5 appears to be less diffuse than the prior predictive distributions of

M4 and M6. Closer inspection, via a density plot (not shown), reveals some evidence

of bimodality. A possible reason for this may be that in M5 there is only one parame-

ter, α, determining the degree of imbalance in the rate matrix, whereas the other models

have several such parameters. Testing with various values for the hyperparameters dur-

ing this trial-and-improvement procedure reveals that this feature of the prior predictive

distribution remains unchanged.
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Figure 5.12: Boxplots for quantiles of GC-content sampled from the prior predictive distributions
of the taxa based on models (a) M4, (b) M5, (c) M6.

5.2.1 MCMC implementation

For each model, we run the MCMC algorithm for at least 300K iterations, omitting all

but the last 100K as burn-in and thinning the remaining output to retain every 100-th

iteration so as to reduce computational overheads. To rigorously assess convergence and

mixing we follow the methods utilised by Heaps et al. (2014). For each analysis, we run

two chains initialised at different starting states. We then consider standard graphical

diagnostics, such as trace and density plots, for the quantitative parameters and assess

mixing and convergence in tree space using plots of the cumulative relative frequencies of

sampled splits (for model M1) or clades (for models M2 – M6) over the course of the

MCMC run. Examples of these diagnostic plots were given in Section 2.3.2. These checks

give no evidence of any lack of convergence and thinning to every 100-th iterate seems to
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produce near-uncorrelated posterior samples.

5.2.2 Posterior inference

The majority-rule consensus trees (defined in Section 2.3.2) for the homogeneous and

stationary models M1 – M3 are shown in Figures 5.13a – 5.13c, in which numerical la-

bels represent the posterior probability of the associated split (M1) or clade (M2, M3).

The majority-rule consensus tree obtained using the GTR modelM1 is unrooted but has

been visualised with the root at the midpoint of the branch leading to the outgroup, in

accordance with the method of outgroup rooting. We see immediately that the branch-

ing structure of the underlying unrooted topology prevents identification of a monophyly

(clade) of willistoni. Apart from some lack of resolution in the RY5.6b consensus tree,

those for the two homogeneous and stationary Lie Markov models,M2 andM3, represent

the same unrooted topology as the majority-rule consensus tree for the GTR model M1.

As such, they also fail to isolate the willistoni as a clade. We note, however, that whilst

the RY8.8 consensus tree has a biologically implausible branching structure, its root po-

sition, within the outgroup, represents a credible evolutionary hypothesis. Indeed under

the RY8.8 modelM3, the posterior probability for a root position within the outgroup or

on its parent branch is 0.999, compared to only 0.343 for the simpler RY5.6b model M2.

The majority-rule consensus trees for the non-homogeneous and non-stationary models

M4 – M6 are shown in Figures 5.14a – 5.14c. All three trees depict the same underlying

unrooted topology. This differs from that obtained under the three homogeneous models,

and is now biologically plausible, with the willistoni, saltans and outgroup species forming

a tripartition, induced by cutting two edges. However, only the non-homogeneous RY8.8

modelM6 identifies a credible root position, with the root on the consensus tree appearing

inside the outgroup, and the marginal posterior probability for a root within the outgroup,

or on its parent branch, equal to 1.000. In contrast, the roots on the consensus trees for

the non-homogeneous GTR and RY5.6b models, M4 and M5, split the willistoni, whilst

the marginal posterior probability for a root within the outgroup, or on its parent branch,

is equal to 0.000 in each case. It is interesting to note that under modelM6, the posterior

is not only centred on a plausible tree, it is also concentrated in its vicinity, with the

posterior for rooted trees notably less diffuse than the distribution obtained under other

models. For instance, the rooted topology of the consensus tree, depicted in Figure 5.14c,

has posterior probability equal to 0.9235, compared to posterior probabilities of at most

0.6870 for the modes in other cases. This greater concentration of the posterior for the

unknowns in M6 compared with those in M5 is consistent with the results from the

analyses of simulated data in Section 5.1.
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Figure 5.13: Majority rule consensus trees under the models (a)M1 – GTR; (b)M2 – RY5.6b; (c)
M3 – RY8.8; Numerical labels represent the posterior probability of the associated split (in (a))
or clade (in (b) and (c)).
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Figure 5.14: Majority rule consensus trees under the models (a)M4 – non-homogeneous GTR; (b)
M5 – non-homogeneous RY5.6b; (c) M6 – non-homogeneous RY8.8. Numerical labels represent
the posterior probability of the associated clade.
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5.2.3 Model comparison

As is commonly observed in statistical phylogenetics (Foster, 2004; Heaps et al., 2014;

Williams et al., 2015; Cherlin et al., 2017), our phylogenetic inferences are sensitive to

the choice of substitution model. One way to arbitrate this inconsistency is through

comparisons of the fits of different models; notionally, we have less reason to refute the

conclusions of a model which shows a better fit to the data. There are several ways to

assess the fit of a model. For example, there are methods based on predictive distributions,

like cross-validation and posterior predictive checks (Gelman et al., 2014), where at each

iteration of the MCMC algorithm the data are simulated using the accepted parameter

values at that particular iteration and compared to the known real data. Another approach

is to use information criteria, such as the Bayesian information criterion (BIC) (Schwarz,

1978) or deviance information criterion (DIC) (Spiegelhalter et al., 2002). The BIC and

DIC are based on the likelihood, whose maximum increases (or at least remains the same)

with every parameter that is added into a model (Oaks et al., 2019). Thus, a penalty

is incurred when a parameter is added. The definition of the penalty is where the two

information criteria differ.

A more natural measure of model uncertainty in the Bayesian framework is the poste-

rior mass function over models, in this case Pr(Mi|y) ∝ p(y|Mi) Pr(Mi) for i = 1, . . . , 6,

which reduces to Pr(Mi|y) ∝ p(y|Mi) in the case of equal prior probabilities, Pr(Mi) =

1/6. For each model Mi, the crucial component is therefore the marginal, or integrated,

likelihood p(y|Mi), given by

p(y|Mi) =
∑

τ

∫
Θi
p(y|τ,Θi,Mi)π(τ,Θi|Mi)dΘi.

Here Θi denotes the collection of continuous-valued model parameters, `, α and Qi, for

model Mi.

Numerical calculation of the marginal likelihood is a notoriously difficult computational

challenge. This is particularly true in phylogenetics due to the discrete nature of tree space;

see Oaks et al. (2019) for a recent review. Many techniques for approximating the marginal

likelihood are based on importance sampling or reciprocal importance sampling. For the

Drosophila application, these methods would use the identities

p(y|Mi) = Eq

{
p(y|τ,Θi,Mi)π(τ,Θi|Mi)

q(τ,Θi|Mi)

}
, (5.1)

or

p(y|Mi) =

[
Eπ

{
q(τ,Θi|Mi)

p(y|τ,Θi,Mi)π(τ,Θi|Mi)

}]−1

, (5.2)

where Eq and Eπ denote expectation with respect to the importance density q(τ,Θi|Mi)
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and the posterior π(τ,Θi|y,Mi), respectively. Taking q(τ,Θi|Mi) as the prior π(τ,Θi|Mi)

in (5.1) and (5.2) leads to the widely used Monte Carlo and harmonic mean estimators,

respectively. The main advantages of these techniques are their computational simplicity,

requiring only a sample from the prior in the former case, or posterior in the latter case.

However, both are prone to large Monte Carlo error, essentially because the prior and

posterior are generally very different, with the former being substantially more diffuse.

Motivated by this observation, a number of techniques have been developed that build up

the approximation using sequences of intermediate densities that form a bridge between the

prior and posterior. Methods that have received considerable attention in the phylogenetic

literature are thermodynamic integration (Lartillot & Philippe, 2006), also called the

power posterior approach (Friel & Pettitt, 2008), and the stepping-stone method (Xie

et al., 2011). The problem with these methods is that they require samples from each of the

intermediate densities and so implementation of the algorithms is highly computationally

expensive. Indeed, we have found them to be practically infeasible for the more complex

non-homogeneous models introduced here.

Newton & Raftery (1994) discussed the use of sampling importance resampling in

conjunction with their weighted likelihood bootstrap to obtain simulation consistent sam-

ples from a posterior distribution. Further to this, they discussed methods that use such

posterior samples to estimate the marginal likelihood and identified the aforementioned

issues with the Monte Carlo and harmonic mean estimators. In an effort to stabilise the

variance of the harmonic mean estimator, they suggested a hybrid estimator, based on

combined samples from the prior and posterior. In practice, it has been found to perform

better than the Monte Carlo or harmonic mean estimators (Green, 2003). Starting with

the simulation consistent marginal likelihood estimator

M∑
m=1

π(τ [m], Θ
[m]
i |Mi)/q(τ

[m], Θ
[m]
i |Mi)× p(y|τ [m], Θ

[m]
i ,Mi)

M∑
m=1

π(τ [m], Θ
[m]
i |Mi)/q(τ

[m], Θ
[m]
i |Mi)

and taking the importance density to be

q(τ,Θi|Mi) = δπ(τ,Θi|Mi) + (1− δ)π(τ,Θi|y,Mi),
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M1 M2 M3 M4 M5 M6

-14719.55 -14750.98 -14719.95 -14531.11 -14625.97 -14508.22

Table 5.1: Log marginal likelihoods for each model approximated using the Newton and Raftery
hybrid estimator in which the prior weight in the importance density was set at δ = 0.05. The
models are: M1 – GTR; M2 – RY5.6b; M3 – RY8.8; M4 – non-homogeneous GTR; M5 –
non-homogeneous RY5.6b; M6 – non-homogeneous RY8.8.

with 0 < δ < 1 and δ small, leads to the approximation

p̂(y|Mi) =

M∑
m=1

p(y|τ [m], Θ
[m]
i ,Mi)

δp̂(y|Mi) + (1− δ)p(y|τ [m], Θ
[m]
i ,Mi)

M∑
m=1

{δp̂(y|Mi) + (1− δ)p(y|τ [m], Θ
[m]
i ,Mi)}−1

,

which can be computed by a standard iterative scheme using draws (τ [m], Θ
[m]
i ), m =

1, . . . ,M , from q(τ,Θi|Mi). The scheme requires samples from both the prior and the

posterior. For each model, we already have 1000 samples from the posterior generated

from our MCMC analyses and can augment them with δ × 1000/(1 − δ) samples from

the prior. We initialise the scheme with p̂(y|Mi)
(0) estimated using the harmonic mean

estimator given in (5.2) and run the scheme for 1000 iterations to ensure convergence.

For models M1 – M6 in the Drosophila application, the log marginal likelihoods ob-

tained using the Newton and Raftery hybrid estimator (with δ = 0.05) are displayed in Ta-

ble 5.1. The superior model fit afforded by the three non-homogeneous and non-stationary

models is immediately apparent. For instance, if we perform pairwise comparisons between

each homogeneous model and its non-homogeneous counterpart, then the log Bayes factor

ranges from 125.01 to 211.73 in favour of the non-homogeneous model. Of the three non-

homogeneous models, the non-stationary RY8.8 model seems to give the best fit to the

data. This is also the only model whose posterior supports a biologically credible rooted

tree. Reasons for its superiority over the simpler RY5.6b variant were discussed from a

theoretical and practical perspective in Sections 3.2.2 and 5.1.1, respectively, whilst the

improvement over the non-homogeneous GTR model may be attributable to the additional

source of root information gained through the non-reversible structure of the RY8.8 rate

matrix.

Although the Newton and Raftery hybrid estimator tends to be more stable than the

harmonic mean estimator (Newton & Raftery, 1994), its variance can still be large. For

each of the models M1 – M6, we therefore run ten MCMC chains, initialised at different

starting points, and repeat the calculation of the marginal likelihood. The results are sum-

marised in Figure 5.15, where the box-plots for the homogeneous and non-homogeneous
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Figure 5.15: Box-plots of the Newton and Raftery hybrid estimates of the marginal likelihood for
each model Mi, i = 1, . . . , 6, based on the output of 10 MCMC chains which were initialised at
different starting points.

models are well separated and similarly for the three non-homogeneous modelsM4 –M6.

Even after allowing for Monte Carlo error, therefore, these results do not give any cause

to question the ranking of models, and the subsequent conclusions drawn here.

In addition to model fit, we compare the computational times of the six models. Taking

as a baseline, the computational time to run a fixed number of MCMC iterations for model

M1, the computational times forM2 andM3 are broadly consistent with this time across

a range of alignment sizes. Furthermore, the three non-homogeneous models,M4,M5 and

M6, have computational times that are broadly consistent with each other and are around

double the times of their homogeneous counterparts. This shows evidence to suggest that

the additional parameters introduced with the non-homogeneous models do not have a

detrimental effect on computational time, even in the case of M6 which has the most

parameters. The doubling of computational time forM6 (compared to the homogeneous,

stationary and reversible modelM1) seems like a reasonable sacrifice to make in order to

achieve a better model fit and credible inferences.

5.3 Results summary

In this chapter we have presented the results of analyses of simulated data and biological

data (the Drosophila application). From the results of the simulation study, we have

shown that the non-homogeneous RY8.8 model is able to identify the root position from

the likelihood and increasing the number of sites in the alignments tends to lead to more
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accurate and precise inference of all unknowns. This was true for the non-homogeneous

RY5.6b model when the number of taxa was small. However, for larger trees, root inference

was generally poor. Root inference under the non-homogeneous RY8.8 model remained

strong even with the presence of prior-data conflict arising from an unbalanced rooted

topology. However, inference can be sensitive to the presence of long branches in the

unrooted topology. Interesting future work could investigate how to incorporate more

biological insight into the prior for the branch lengths ` (see Section 9.3.1 in Chapter 9).

Inference of the unrooted topology for both models was strong, with the posterior mode

being the true unrooted topology in every analysis of our simulation study.

After applying our models to the Drosophila data set, where there is evidence of

compositional heterogeneity, we found that the non-homogeneous RY8.8 model was able

to identify a plausible rooted tree. This was not the case for the non-homogeneous RY5.6b

model, most likely due to it having fewer parameters than the non-homogeneous RY8.8

model and its rate matrix having an additive structure. This property may explain why

we found (branch-specific) parameter identifiability to be weaker for the non-homogeneous

RY5.6b model. Finally, we compared our models with their homogeneous counterparts,

the GTR model and the non-homogeneous GTR model. We found evidence to suggest,

via marginal likelihoods, that our non-homogeneous RY8.8 model has a better fit to the

Drosophila data set for a relatively low computational cost.
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Exploratory data analysis

Now we focus our attention on the time series metagenomics part of the thesis. As dis-

cussed in Section 2.2.4 of Chapter 2, our goal is to model five years of weekly counts of

operational taxonomic units (OTUs) from a wastewater treatment plant (WWTP) and

their interactions with each other, whilst also incorporating chemical and environmental

data. Before a model can be developed, we need to have an in-depth understanding of

the data, which is the purpose of this chapter. In Section 2.2.3 of Chapter 2, we gave a

brief overview of the metagenomics data, but here we look at the data in more detail. We

discuss data reformatting and we present our exploratory analysis of the data sets. The

findings of the exploratory data analysis will be used to inform some of our model choices

in the next chapter.

6.1 Data description

6.1.1 Reformatting the data

The raw data consist of three tables: an OTU table, a chemical and environmental data

set and a taxonomy table, detailed in the sections which follow.

OTU tables

The OTU table comprises weekly counts of OTUs from 1st June 2011 to 1st June 2015

in each of two tanks, the activated sludge (AS) tank and settled sewage (SS) tank of a

UK-based WWTP (see Section 2.2.3). We split this table into two OTU tables, one for

each tank. There are 9044 different OTUs sampled from the AS and 9678 different OTUs

sampled from the SS. Note that some OTUs are present in both tanks, whereas some only

appear in one of the tanks. Figure 6.1 shows time series plots of some OTUs only present

in the AS. We show examples of OTUs that have mainly zero-counts (Figure 6.1a), which

are most likely OTUs that enter the system randomly and then die out quickly. However,
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as discussed in Section 2.2.4, the zeroes could be attributed to insufficient sampling depths

(see also Section 7.1). Additionally, we show examples of OTUs that seem to be in the

system for more than one or two time points (Figure 6.1b). For the OTUs that only

appear in the OTU table of the SS, time series profiles like those mentioned above can

also be seen but are not shown.
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Figure 6.1: Time series plots of some OTUs (with their genus in brackets) that only appear in the
OTU table of the AS and (a) mainly have zero-counts, or (b) appear at more than one or two time
points. Note that the y-axis scales are different for each plot.

There are 3323 OTUs present in both tanks. Figure 6.2 shows time series plots for

the counts of four different OTUs in each tank. OTU 10 from the genus Romboutsia is

an example of an OTU that is present in both tanks throughout, although it seems to be

slightly more abundant in the SS. OTU 103 from the genus Hirschia seems to be present

most of the time in the AS but mostly absent from the SS, apart from appearances every

now and then, with a particularly high count in April 2016. OTU 174 from an unknown

genus is mostly absent from the AS but is present most of the time in the SS. Finally,

OTU 7001 from the genus Leadbetterella is an example of an OTU that is mostly absent

from both tanks.

Chemical and environmental data

As we did with the OTU table, we split the chemical and environmental data set into

two tables, one for each tank. For the AS tank, we have 14 chemical and environmental

covariates measured at 257 time points and for the SS tank we have 29 covariates measured
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(a) Activated sludge tank
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Figure 6.2: Time series plots of four OTUs (with their genus in brackets) that appear in both
tanks.

at 257 time points. The covariates for each tank are listed in Tables 6.1 and 6.2. Chemical

oxygen demand (COD) is an indicative measure of the amount of oxygen that can be

consumed by reactions in the tank. It is used to quantify the oxidisable pollutants in water.

The mixed liquor suspended solids (MLSS) represent the concentration of suspended solids

in the tank. These suspended solids are mainly microorganisms and non-biodegradable

suspended matter. The mixed liquor volatile suspended solids (MLVSS) make up the

proportion of the MLSS that consume the food sources in the tank. These will be mostly

microorganisms and organic matter, implying that the MLVSS are approximately equal

to the amount of microorganisms in the water and can be used to indicate if there are

enough microorganisms present for water purification. Dissolved oxygen (DO) is a measure

of dissolved oxygen in the wastewater available to sustain life, i.e., the microorganisms, in

the tank. Total nitrogen is the sum of all sources of nitrogen in the tank, so the sum of

the nitrate-nitrogen (NO3-N), nitrite-nitrogen (NO2-N), ammonia-nitrogen (NH3-N) and

organically bonded nitrogen. The flow is the rate at which water enters the SS tank.

Taxonomy table

The taxonomy table contains the kingdom, phylum, class, order, family and genus for

every OTU present in the two tanks and does not require reformatting.
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Covariate Unit

Ammonia, Chloride, COD, DO, Fluoride, MLSS, MLVSS,
Nitrate, Nitrite, Phosphate, Sulphate

mg/L

pH -
Sludge Age days
Temperature Celsius

Table 6.1: Chemical and environmental covariates in the AS.

Covariate Unit

Aluminium, Ammonia, Arsenic, Cadmium, Calcium, Chlo-
ride, Chromium, COD, Copper, Fluoride, Iron, Lead, Mag-
nesium, Manganese, MLSS, MLVSS, Nickel, Nitrate, Nitrite,
Phosphorus, Phosphate, Potassium, Silicon, Sulphate, Sul-
phur, Total nitrogen, Zinc

mg/L

pH -
Flow L/s

Table 6.2: Chemical and environmental covariates in the SS.

6.1.2 Missing data

Now we discuss the missing data in each data set.

OTU tables

In the OTU tables, there are 257 counts per OTU in the AS tank and 251 counts per

OTU in the SS tank. The first six weeks in the SS tank are omitted and so could be

regarded as missing. However, we do not fit a joint model to the data for the two tanks

and instead simply acknowledge that we have a shorter time series for the SS tank. Each

year, measurements for one week are missing during the Christmas period. We treat the

data from these weeks as missing at random, that is, the distribution of the missing data

mechanism does not depend on the missing values (Rubin, 1976; Gelman et al., 2014;

Little & Rubin, 2019). In other words, the probability of a measurement being missing

does not depend upon its value. These missing data are accounted for in our analysis; see

Section 7.5.2.

Chemical and environmental data

Tables 6.3 and 6.4 show the proportions of missing data for each covariate in each tank.

We discard any covariates where more than 50% of the data are missing, as allowing for

uncertainty in their values would substantially complicate computational inference during

model fitting whilst potentially yielding only very imprecise inferences about their influence

on OTU abundance. This means that we disregard the sludge age for the AS tank, whereas
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for the SS tank, we disregard pH, phosphorous and total nitrogen. We account for the

small amount of missing data in the remaining variables later in Section 7.5.2, where we

describe how the missing chemical and environmental data are handled. Note that, as

with the OTU data, there also is a week missing from each year over the Christmas period

for the chemical and environmental data and this is also taken into consideration.

Covariate Proportion Covariate Proportion

COD 0.0661 Ammonia 0.0661
MLSS 0.0000 MLVSS 0.0000
Nitrate 0.0039 Nitrite 0.0039
Sulphate 0.0039 Phosphate 0.0039
Fluoride 0.0039 Chloride 0.0039
pH 0.0039 Temperature 0.0039
DO 0.0039 Sludge Age 0.5058

Table 6.3: Proportions of missing data (4 d.p.) in chemical/environmental data (AS).

Covariate Proportion Covariate Proportion

COD 0.0661 Ammonia 0.0661
MLSS 0.0000 MLVSS 0.0000
Nitrate 0.0039 Nitrite 0.0039
Sulphate 0.0039 Phosphate 0.0039
Fluoride 0.0039 Chloride 0.0039
pH 0.8482 Flow 0.0039
Phosphorus 0.7977 Total Nitrogen 0.7977
Calcium 0.0506 Magnesium 0.0506
Potassium 0.0506 Iron 0.0545
Manganese 0.0506 Aluminium 0.0506
Zinc 0.0506 Lead 0.0506
Copper 0.0506 Arsenic 0.0506
Cadmium 0.0506 Sulphur 0.0506
Silicon 0.0506 Nickel 0.0506
Chromium 0.0506

Table 6.4: Proportions of missing data (4 d.p.) in chemical/environmental data (SS).

There were a few measurements which were orders of magnitude larger than the rest.

After discussion with a biological expert, these were deemed biologically implausible, re-

moved and treated as missing. A table detailing the affected covariates is shown in Ta-

ble D.1 in Appendix D.
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Taxonomy table

Table 6.5 shows the proportions of missing data for each taxonomic rank in each tank

and for both tanks considered together. We can see that there is a larger proportion of

missing data in the AS tank than in the SS tank. The finer the taxonomic rank is, the

more missing data there are. Missing values here could be due to errors, but it is more

likely due to the known sequence database used to classify the OTUs being incomplete.

The taxonomy assignment used to give the taxonomy table presented to us is based on a

set of known sequences from 16S genes. The Ribosomal Database Project (RDP) classifier

(Wang et al., 2007) was used, which is a näıve Bayesian classifier for taxonomic assignments

from domain to genus. The most recent release of the RDP classifier was in September

2016, three months after the last measurement was recorded at the sewage treatment plant.

This release has 3356809 16S rRNA gene sequences and 125525 Fungal 28S rRNA gene

sequences (Ribosomal Database Project, 2016). An OTU in our data set was classified as

NA if its sequence did not match any of these (roughly) 3.5 million sequences. This problem

of missing taxonomic information becomes more pertinent when we discuss clustering

methods later in Section 7.1.1.

Proportion
Taxonomic Rank AS SS Both

Kingdom 0.0108 0.0033 0.0072
Phylum 0.0532 0.0282 0.0440
Class 0.1202 0.0741 0.1042
Order 0.2021 0.1342 0.1800
Family 0.3014 0.2364 0.2856
Genus 0.5409 0.4656 0.5257

Table 6.5: Proportions of missing data (4 d.p.) for each taxonomic rank in the taxonomy table for
each tank and overall (after OTUs with zero-counts for all time points are removed).

6.2 Exploratory data analysis

In this section we discuss our exploratory data analysis of the OTU tables and the tax-

onomy table. We then look at all the data together, with a particular focus on finding

possible relationships between some of the chemical and environmental covariates and rel-

ative abundances. As mentioned at the start of this chapter, our findings here help to

guide our decision making when developing our model in Chapter 7.
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Figure 6.3: Time series plots of total abundances for each OTU table.

6.2.1 OTU tables

Figure 6.3 shows the time series plots of the total abundances for each OTU table. There

is an absence of trend in both plots, except for a possible upwards trend in the last few

time points of the AS tank. The total abundance in the AS tank seems to be higher than

the SS tank on average and there is more variability in the AS tank too. However, as

discussed in Section 2.2.4 of Chapter 2, we note that total abundance at a particular time

point here is not the actual total abundance of OTUs. It is the total number of OTUs

(sequences) detected in a sample at a particular time point.

Now we look at the 12 most abundant OTUs in each tank based on median abundance.

Figure 6.4a shows time series plots of the relative abundances for the 12 most abundant

OTUs in the AS tank. OTU 15, OTU 28 and OTU 8 demonstrate clear seasonality with

peaks appearing roughly once a year. There does not appear to be a trend over time for

the top 12 OTUs, with the possible exception of OTU 15, whose relative abundance may

be increasing over time. OTU 1 has a proportion of around 0.02 most of the time but

has the occasional spike. For example, its relative abundance is about 0.19 in May 2012

and over 0.2 at the start of 2013. This OTU also seems to display seasonality, which is

clearer on the log-scale (not shown). Figure 6.4b shows a stacked bar plot for the top 12

OTUs in the AS tank over time. When we aggregate the 12 most abundant OTUs we

can clearly see seasonality with annual peaks. We also observe that these top 12 OTUs

represent about 20% of the relative abundance on average. Additionally, this plot can

help to identify when different OTUs tend to dominate. For example, at the time points

when OTU 1 spikes, the other OTUs tend to have smaller proportions.

Figure 6.5a and Figure 6.5b respectively show the time series plots and the stacked
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Figure 6.4: (a) time series plots and (b) stacked bar plot for the top 12 OTUs in the AS based on
median abundance
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Figure 6.5: (a) time series plots and (b) stacked bar plot for the top 12 OTUs in the SS based on
median abundance.
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bar plot for the 12 most abundant OTUs in the SS tank. Here, seasonality is not as clear

as we saw in the AS tank. The time series plots do not show any evidence of trends and

do not have any obvious annual peaks, with the exception of OTU 27 and possibly OTU

1, which do seem to peak roughly once per year. There is more variability in the time

series plots here compared to in the AS, suggesting that perhaps the OTU population

sizes are changing too quickly in the SS to be captured by weekly measurements. OTU

1, OTU 3 and OTU 10 are the only OTUs to be in the 12 most abundant OTUs for

both tanks. Since the two tanks perform different functions in the WWTP, it is likely

that the conditions in each tank are different, which could suggest that OTUs that thrive

in one tank will not thrive in the other. In fact, only 18 of the top 100 OTUs for each

tank appear in both tanks. The stacked bar plot for the SS tank shows that the OTUs’

proportions stay roughly the same over time without any OTU obviously dominating at

any particular time. The top 12 OTUs in the SS tank have a larger relative abundance

(∼ 0.3) on average than the top 12 OTUs in the AS tank.

6.2.2 Taxonomy table

Taxonomic Rank AS SS

Kingdom 3 3
Phylum 42 43
Class 84 89
Order 132 139
Family 272 276
Genus 713 831

Table 6.6: Number of different types for each taxonomic rank in each tank, excluding NAs.

Table 6.6 shows the unique number of kingdoms, phyla, classes, orders, families and

genera in each tank. The OTUs in the SS tank appear to be more diverse, although it

is worth remembering that there are more OTUs in this tank. With the exception of

kingdom, there are too many in each taxonomic rank to look at in great detail, so instead

we just look at the 12 most abundant genera and 12 most abundant classes based on

median abundance. For completeness, plots for the 12 most abundant families, orders and

phyla are shown in Figures E.1a to E.6b in Appendix E but are not discussed.

Figure 6.6a shows the time series plots and Figure 6.6b shows the stacked bar plot for

the top 12 genera in the AS based on median abundance. The corresponding plots for the

top 12 genera in the SS are shown in Figure 6.7a and Figure 6.7b respectively. Note that in

both tanks, missing genera, which are grouped together in a single “Unknown” group per

tank, represent a large proportion of the total abundance. McIlroy et al. (2015) surveyed

20 full-scale sewage treatment plants in Denmark and found that the top five genera in
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Figure 6.6: (a) time series plots and (b) stacked bar plot for the top 12 genera based on median
abundance in the AS tank.
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Figure 6.7: (a) time series plots and (b) stacked bar plot for the top 12 genera in the SS based on
median abundance.
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the AS, based on median abundance, were Tetrasphaera, Trichococcus, Ca. Microthrix,

Rhodoferax and Rhodobacter. All of these, except for Rhodoferax, appear in our top 12

genera. In addition to this, Dechloromonas, Flavobacterium and Ferruginibacter appear

in the top 50 genera found by McIlroy et al. (2015). There are many possibilities as to

why some of our top genera do not appear, for example, the difference in location, as our

sewage treatment plant is located in the UK. Regarding Rhodoferax, this genus is present

in the AS tank but is not one of the 12 most abundant. Additionally, the genus could

have a larger abundance as it could also be represented by OTUs with an unknown genus.

Furthermore, our data are from just one plant with weekly measurements, whereas their

data consisted of 574 samples from several sewage treatment plants with recordings taken

up to four times a year for eight years.

In the AS, Rhodobacter clearly shows seasonality with annual peaks in late Febru-

ary/early March. Flavobacterium, Ferruginibacter and Trichococcus also seem to display

seasonality, although for the latter the seasonality is clearer on the log-scale (not shown).

Turning our attention to the stacked bar plot for the AS tank in Figure 6.6b, we can

see that the 12 genera account for about 60% of the total abundance on average at each

time point. However, there are times when their relative abundance is particularly small,

for example, in early 2012, when it is under 0.2. The stacked bar plot also hints at the

presence of seasonality, although it is less clear, as the genera do not all peak in the same

weeks. This plot also suggests that when Trichococcus has a particularly large relative

abundance, for example, at the start of 2013, where it accounts for more than 20% of

the total abundance, the remaining genera have low proportions. This suggests that Tri-

chococcus (and some of the remaining 701 genera) might thrive where the other top 11

genera do not. Comparing Figure 6.4a and Figure 6.6a we can deduce that the abundance

of OTU 1 represents most of the overall abundance for the genus Trichococcus in the AS

tank.

Trichococcus is the only genus that appears in the top 12 genera for both tanks. From

Figure 6.7a we see that its relative abundance in the SS tank is a lot higher than in the

AS tank, with it being the most abundant genus in the SS tank (with the exception of

unknown genera). As we saw with the AS tank, the abundance of OTU 1 represents most

of the overall abundance for Trichococcus, thus explaining why it also displays hints of

seasonality. Otherwise, seasonality in the SS is less evident than in the AS. There seem to

be more fluctuations in the time series plots of the top 12 genera in the SS, suggesting that

the population sizes are changing at a quicker rate than in the AS. Based on Figure 6.7b,

it seems that the top 12 genera in the SS roughly represent ∼ 60% of the total abundance.

Figure 6.8a shows the time series plots for the 12 most abundant classes in the AS based

on median abundance. There are hints of seasonality in some of the classes, even at this

fairly coarse taxonomic rank, for example, Flavobacteriia, Actinobacteria and Deltapro-
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Figure 6.8: (a) time series plots and (b) stacked bar plot for the top 12 classes in the AS based on
median abundance.
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teobacteria show rough annual peaks. Clostridia and Bacilli also show seasonal behaviour,

which is clearer on the log-scale (not shown). The time series plot for Bacilli is very sim-

ilar to the plot for OTU 1 in Figure 6.4a. After further inspection, we find that Bacilli

is represented by 223 OTUs in the AS tank, one of which is OTU 1 from the genus Tri-

chococcus. On average this OTU represents about 77% of the abundance of Bacilli, thus

explaining why their profiles are so similar and why we see evidence of seasonality in the

class. Plotting Gammaproteobacteria on the log-scale (not shown) also reveals seasonal

behaviour. The most abundant class is Alphaproteobacteria and its time series profile is

very noisy without any obvious annual peaks. Alphaproteobacteria form one of the most

abundant groups of bacteria on the planet and are extremely diverse (Williams et al.,

2007), so, perhaps it is unsurprising that this class is the most abundant in the AS tank.

The diversity of Alphaproteobacteria is also reflected here, as there are 1238 different OTUs

from the class present in the AS. It seems reasonable to assume that a class as diverse as

this would have species, or OTUs in our case, that prefer different conditions and hence

have peaks in population size at different times of the year.

Figure 6.8b shows the stacked bar plot for the top 12 classes in the AS tank. We can

see that these classes represent most of the abundance in the tank and thus seasonality

is not easy to detect. The dominance of Alphaproteobacteria and Betaproteobacteria is

clear in this plot, although spikes in Gammaproteobacteria, Bacilli and Clostridia are also

visible.

Figures 6.9a and 6.9b show the time series plots and stacked bar plot for the top 12

classes in the SS, respectively. As we saw with the OTUs and genera, there do not seem

to be obvious signs of seasonality and there seems to be more variability in the SS, again

suggesting that weekly intervals are possibly not small enough to capture the changes in

population sizes here. However, Bacilli shows vague signs of seasonality, which can be

explained by the fact that on average, of the 323 OTUs in the class, OTU 1 represents

64% of the class’ total abundance. Nevertheless, clearly the microbial populations in the

two tanks differ greatly, with different classes dominating. For example, only seven of the

12 top classes are in both tanks. Furthermore, Clostridia, Bacilli and Actinobacteria are

the three most abundant classes in the SS, whereas in the AS we have Alphaproteobacteria,

Betaprotebacteria and Sphingobacteriia as the top three classes.

6.2.3 Analysis of the combined data

In this section we further our understanding of the data by combining the chemical and

environmental data with the other data sets. First, we identify potential relationships

between the 12 most abundant OTUs with the chemical and environmental covariates

in each tank. We conclude this section, and this chapter, by drawing together all three

sources of data and considering the chemical and environmental data with the relative
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Figure 6.9: (a) time series plots and (b) stacked bar plot for the top 12 classes in the SS based on
median abundance.
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abundances of the top 12 genera and the top 12 classes.

Relationships with 12 most abundant OTUs

Figure 6.10 shows a heatmap of the correlations between the covariates and the relative

abundances of the top 12 OTUs in the AS. OTU 15 shows a strong negative correlation

with temperature and its time series plots in Figure 6.4a showed seasonal behaviour. OTU

8 and OTU 28 also displayed seasonality, although their correlations with temperature are

very weak. Meanwhile, a lot of other OTUs seem to have stronger correlations with

temperature, for example, OTU 7 and OTU 36. Reviewing their time series plots again,

it would perhaps be reasonable to say that these OTUs show seasonality too.

There appear to be some correlations between some of the OTUs and chloride, nitrite,

COD, DO, phosphate, MLSS and MLVSS. Figure 6.11 shows a heatmap of the pairwise

correlations between the chemical and environmental covariates in the AS tank. From this

heatmap it would seem as if these covariates are potentially correlated with temperature.

With the exception of temperature and chloride, these correlations are fairly weak though

so it would be näıve to attribute all of the possible relationships that we see here to an indi-

rect relationship with temperature. It is important to remember that the microorganisms

in our tanks are very diverse and interact with, feed on and utilise chemical compounds

in many different ways. However, it does seem that in general for these top 12 OTUs in

the AS, if the correlation with temperature is weaker, then the correlations with other

covariates tend to be weaker too.

Figure 6.12 shows the heatmaps of the correlations between the top 12 OTUs and the

chemical and environmental covariates in the SS. Note that we have split the covariates into

two groups, putting the first 13 covariates that appear in the data set in one heatmap and

the remaining 13 covariates into another. There are quite a lot of fairly strong correlations

present in the SS. For example, OTU 5 and OTU 30 seem to be correlated with ammonia,

phosphate, potassium, calcium, flow, magnesium and nitrate. Fluoride also seems to be

weakly correlated with half of the top 12 OTUs.

Again, the correlations amongst the chemical covariates need to be considered here.

A heatmap of these correlations is shown in Figure 6.13. Nitrate has a strong positive

correlation with calcium, flow and magnesium. With their negative correlation with ni-

trate, we see that phosphate and ammonia have a negative correlation with flow, calcium

and magnesium. Phosphate and potassium are positively correlated. Potassium also has a

negative correlation with flow. Negative correlations between chemical covariates and flow

may simply demonstrate dilution, since flow is the rate at which water enters the tank.

Some of the covariates do not appear to be correlated with any of the top 12 OTUs, for

example, COD, aluminium, cadmium, copper, sulphate, arsenic, nickel and manganese,

although it is worth noting that some of these covariates have a large number of values as
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zero. For example, cadmium has a value of zero 90.66% of the time.

We do not have temperature recordings in the SS tank. However, it would be reason-

able to assume that chloride could be used as a rough proxy for temperature, given that

temperature and chloride are negatively correlated in the AS tank. From the heatmap, it

seems as if chloride does not have any strong correlations with the relative abundances of

the top 12 OTUs in the SS. We already saw that the time series plots for these OTUs did

not show any obvious signs of seasonality, other than OTU 27 and OTU 1. So, perhaps

this was to be expected.
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Figure 6.10: Heatmap of the correlations between the chemical and environmental covariates and
the 12 most abundant OTUs in the AS tank.

Relationships with 12 most abundant genera

As we did with the 12 top OTUs, we now look at heatmaps of correlations between the

covariates and the 12 most abundant genera in each tank. Figure 6.14 shows the heatmap

for the AS tank. Most of the genera have at least a weak correlation with temperature,

with the exception of Acidovorax, Ca. Microthrix and Defluviimonas. Three of the genera

appear to have a strong correlation with temperature, Rhodobacter, Ferruginibacter and

Tetrasphaera, which we already identified as showing seasonal behaviour in Section 6.2.2.

Here we see that pH has a weak correlation with Acidovorax, Ferruginibacter and

Flavobacterium. There are weak correlations present between: nitrite and Tetrasphaera;

nitrite and Rhodobacter ; and nitrate and Tetrasphaera. COD has weak correlations with a

few of the genera, as does chloride, with a stronger positive correlation with Rhodobacter.
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Figure 6.11: Heatmap of the pairwise correlations between the chemical and environmental covari-
ates in the AS tank.
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Figure 6.12: Heatmaps of correlations between the chemical and environmental covariates and the
12 most abundant OTUs in the SS tank.

This can possibly be attributed to the strong negative correlation this genus has with tem-

perature and the negative correlation that we have already observed between temperature

and chloride.

Heatmaps for the correlations between the 12 most abundant genera and the chemical
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Figure 6.13: Heatmap of the pairwise correlations between the chemical and environmental covari-
ates in the SS tank.

and environmental covariates in the SS tank are shown in Figure 6.15. The unknown genera

have a positive correlation with fluoride and a weak negative correlation with chloride.

Trichococcus has a negative correlation with fluoride but does not seem to be correlated

with any of the other covariates. Several of the genera are correlated with ammonia,

nitrate, calcium, flow, potassium, magnesium and phosphate. Additionally, Streptococcus

has a positive correlation with sulphur and Blautia has a weak negative correlation with

nitrite. Finally, MLVSS is negatively correlated with Roseburia and Ruminococcus 2.

Relationships with 12 most abundant classes

Now we look at the correlations between the top 12 classes in the AS tank and the

chemical and environmental covariates shown in a heatmap in Figure 6.16. Here the

seasonality we saw in Section 6.2.2 is confirmed with most classes having at least a weak

correlation with temperature. Actinobacteria has a fairly strong negative correlation with

temperature suggesting that the bacteria of this class present in the AS tank peak in
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Figure 6.14: Heatmap of the correlations between the chemical and environmental covariates and
the 12 most abundant genera in the AS tank.
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Figure 6.15: Heatmaps of correlations between the chemical and environmental covariates and the
12 most abundant genera in the SS tank.

winter. Flavobacteriia appears to have a negative correlation with pH and Acidimicrobiia

appears to have a weak negative correlation with pH too. Sulphate also seems to have a

weak positive correlation with Thermoleophilia. The remaining covariates do not seem to
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Figure 6.16: Heatmap of the correlations between the chemical and environmental covariates and
the 12 most abundant classes in the AS tank.

be correlated with the classes.

Figure 6.17 shows the heatmaps of the correlations in the SS tank between the 12 most

abundant classes and the covariates. As we saw with the top 12 OTUs and top 12 genera,

there seem to be stronger correlations in general. Most of the classes seem to be correlated

with flow, calcium, fluoride, phosphate, ammonia and nitrate and potassium. With the

exception of Negativicutes, there does not seem to be any correlations between the top

12 classes and chloride. This might suggest a tenuous positive relationship between tem-

perature and Negativicutes, although the time series plot for this class did not show clear

evidence of seasonality. Iron has weak correlations with Bacilli and Fusobacteriia. Magne-

sium is weakly correlated with Gammaproteobacteria, Methanobacteria and Fusobacteriia.

MLVSS has a weak positive correlation with Coriobacteriia and Thermoleophilia. Both

silicon and chromium have positive correlations with Gammaproteobacteria. For the re-

maining covariates, there does not seem to be any obvious relationships with any of the

classes.

6.2.4 Summary

From this exploratory analysis, we have identified that there are relationships between

some of the chemical and environmental covariates and the relative abundances of some

of the top 12 OTUs in the AS and SS. Relationships can also be seen at the coarser
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Figure 6.17: Heatmaps of correlations between the chemical and environmental covariates and the
12 most abundant classes in the SS tank.

taxonomic ranks of genera and classes. We have also seen that some of the chemical

and environmental covariates are correlated with each other. Finally, we have observed

signs of seasonality and absence of time trend in the relative abundances at both fine and

coarse taxonomic ranks, although seasonality is less obvious in the SS than in the AS.

All of these observations will help to inform decisions when developing our model in the

following chapter and they will also aid interpretation of our results in Chapter 8.
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Chapter 7

A Bayesian hierarchical model for

time-series metagenomics data

In this chapter, due to the dimensions of our data and the presence of sparsity, we first

discuss clustering methods, before selecting a phase-based approach to clustering. We then

introduce a Bayesian hierarchical vector autoregressive model, which is the starting point

for modelling our clustered data. In the sections that follow this, we discuss how we extend

this basic model, based on ideas from the current literature and on the findings of the

exploratory data analysis in the previous chapter. Allowing our matrix of autoregressive

coefficients to be sparse, leads to an exploration into and testing of different shrinkage

priors for this matrix-valued parameter. The starting model assumes a diagonal error

covariance matrix with common variance. However, we discuss more complicated error

structures before selecting a symmetric, circulant, tri-diagonal precision matrix for the

errors. Finally, we allow for a time varying mean which incorporates the chemical and

environmental data via regression, before discussing posterior inference for our model.

7.1 Forming subpopulations

For each tank, the data are counts of OTUs, where some OTUs have counts in the thou-

sands and others have (mostly) counts of zero throughout time (for example, see Figure 6.2

in Section 6.1.1). Kaul et al. (2017) argue that in microbiome data, zeroes can arise for

structural reasons (“hard zeroes”) or due to lack of sampling depth (“soft zeroes”), as

discussed in Section 2.2.4. As such, we would expect an excess of zeroes over Poisson

variation. Indeed, in our data, 91.515% and 93.716% of the counts are zero in the AS

tank and SS tank, respectively. Therefore, the most natural approach would be to use a

zero-inflated model. See, for example, Lee et al. (2018) and Xia et al. (2018). However,

there are over 9000 OTUs per tank, indicating that our model would have to allow for
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over 81 million pairwise interactions. To make model-fitting more manageable we instead

choose to cluster the data, following analyses by other authors (see Eiler et al. (2012);

Stein et al. (2013); David et al. (2014); Dam et al. (2016)). Choosing a small enough

number of clusters removes the problem of zeroes and allows us to make the simplifying

assumption that our data can be modelled as continuous.

7.1.1 Clustering based on taxonomy

An approach that reduces the dimensionality of the data but also retains all of the OTUs

is clustering based on taxonomy. This involves taking the n most abundant taxa at

each time point that represent a high percentage, say 90%, of the total abundance and

grouping the remaining taxa into an “other” category. The term taxa here could refer

to any taxonomic rank. For example, Stein et al. (2013) grouped OTUs into the top ten

genera and an “other” category in their work to infer gut microbiota ecology in mice and

predict the temporal dynamics under time-dependent external perturbations (introduction

of an antibiotic).

For our data, if we let gt (k) be the relative abundance for the k-th most abundant

genus at time t, then we require n such that
∑n

k=1 gt (k) ≈ 90% for each t. However, there

are two issues with this approach. Firstly, to capture 90% of abundance, n = 30, resulting

in 187 genera for the AS tank and 173 genera in the SS tank, in the union over all time

points. Secondly, unknown genera are among the most abundant, more specifically 53 of

the 187 genera are unknown in the AS tank and 29 of the 173 genera are unknown in the

SS tank. This is unsurprising, given that in our exploratory analysis we saw that 54.09%

of the OTUs in the AS tank and 46.56% in the SS tank are missing their genus in the

taxonomy table (see Table 6.5 in Section 6.1.2).

A solution to the first issue is to let g (k) be the relative abundance for the k-th

most abundant taxon over all time points and then find the smallest possible n such that∑n
k=1 g (k) ≈ 90%. Another option would be to let g(k) be the median relative abundance

of the k-th most abundant taxon over all time points. For the problem of missing genera,

we could instead consider coarser taxonomic ranks. The finest taxonomic rank that we

can use without having an unknown as a group is class, which is possibly too coarse.

This is because, as we noted in Section 6.2.2, when we looked at the top 12 classes in

each tank, Alphaproteobacteria was the most abundant class in the AS tank (with 1238

different OTUs) but this class is known to be extremely diverse in general (Williams et al.,

2007). Modelling the change in its abundance over time and its interactions with other

classes and the environment seems counter-intuitive, given that the different OTUs within

the class may prefer different conditions. With no reconciliation for these problems, we

choose not to cluster using taxonomic ranks.
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7.1.2 Time series clustering
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Figure 7.1: Time series plots of the scaled log counts for the 12 bins in the AS tank.

Dam et al. (2016) researched dynamic models of the complex microbial metapopulation

of Lake Mendota in Wisconsin, USA and suggested that, for characterising interaction

dynamics, clustering by taxonomy is not an effective strategy. They looked at the top

seven phyla, orders, classes and genera in their data and found that the abundance profiles

of OTUs in each ‘cluster’ varied widely, which is what we have found with our data (for

example, the Alphaproteobacteria in the AS tank). They proposed an alternative method

of clustering OTUs, where they define peak profiles, which involves identifying positions

in time where each OTU has its largest abundance(s). They superimposed their eleven

years of data which resulted in a single ‘collective year period’ and smoothed the data

by computing the mean value of each 30 day interval. They then identified the position

of the maximum value of each OTU to define the peak profiles. The OTUs were then

clustered into “subcommunities” based on these profiles with remaining OTUs placed

in an additional group. The rationale is that the subcommunities represent OTUs with

similar dynamics perhaps because of symbiotic relationships or shared dependence on the

environment. Since we have clear evidence of seasonality in our data we adopt a similar

approach here. Our method is as follows:

1. Calculate the scaled weekly means of each OTU.
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Figure 7.2: Time series plots of the scaled log counts for the 12 bins in the SS tank.

2. Represent the annual series for each OTU using a Fourier basis and calculate the

phase and amplitude of each harmonic, where the frequency is 2πkt/51 for the k-th

harmonic and time t. Denote the first phase of OTU i by φi.

3. Divide the interval [−π, π] into 12 equally sized intervals and assign each OTU i to

the interval in which φi lies for all i. This gives 12 clusters, which we call “bins”.

Let w̃t,i be the count of OTU i at time point t. The set of OTUs in bin j is Sj and

wt,j =
∑

i∈Sj w̃t,i is the count for bin j at time t. The counts of each bin peak once

per year, with different bins peaking in different months.

We plot a histogram (not shown) of wt,j over all t, for each bin, and find that the

counts of the bins are positively skewed. Therefore, we log-transform the counts of the

bins and set ỹt,j = log(wt,j). We then scale the log-counts of each bin so that their variance

is roughly one (see Section 7.3.3 and the end of Section 7.3.5). This is done by scaling

the ỹt,j , for each j, by dividing by the average (time series) standard deviation. Let sj be

the standard deviation of ỹ1:N,j and s̄ = (
∑12

j=1 sj)/12. We have yt,j = ỹt,j/s̄ for all t and

j = 1, . . . , 12, where yt,j denotes the scaled log-counts. Figures 7.1 and 7.2 show the time

series plots of the scaled log counts for the 12 bins in the AS tank and SS tank, respectively.

In the AS, each bin clearly shows seasonal behaviour with a peak every year, with the

exception of bins 2 and 3, where the peaks are not as obvious. We can see that for each

bin the annual peaks are different, for example, bin 6 seems to peak around September
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each year, whereas bin 12 seems to peak around March each year. Seasonality in the bins

of the SS is not so obvious, as we observed with the 12 most abundant OTUs, genera and

classes in our exploratory data analysis in Chapter 6. With the exception of bin 6, annual

peaks are hard to detect in the bins of the SS tank. As we suggested previously with the

top 12 OTUs, genera and classes, this is likely due to weekly intervals not being small

enough to capture the rapid changes in the microbial populations.

7.2 Simple VAR(1) model

As this chapter’s preamble states, the foundation of our model is a vector autoregressive

model, and so we give its general definition. Let yt be a multivariate, K-dimensional

process. We say that yt follows a zero-mean vector autoregressive model of order p,

typically denoted as VAR(p), if we can write yt as a linear regression on its last p values.

This is

yt = A1yt−1 + A2yt−2 + · · ·+ Apyt−p + εt, t = 1, . . . , N

where the Ajs are K ×K matrices of autoregressive coefficients for j = 1, . . . , p, and the

error terms are εt ∼ NK(0,Σ). The error terms are assumed to be time independent,

that is, for any times s and t, where s 6= t, εs ⊥⊥ εt (where ⊥⊥ means “is independent

of”). As discussed in Section 2.2.2 of Chapter 2, a VAR(1) model can be regarded as a

linear approximation to a Lotka-Volterra model, which is commonly used in time-series

metagenomic studies to model non-linear microbial dynamics. This, coupled with its

simplicity, makes a VAR(1) model a sensible starting point for our model. A stationary

VAR(1) model with mean µ has the form

yt = µ+ A(yt−1 − µ) + εt, t = 1, . . . , N (7.1)

where A is the single matrix of autoregressive coefficients. Technically, to enforce station-

arity, we would need to impose the constraint that the spectral radius of A is less than

one, that is max {|η1| , . . . , |ηK |} < 1, where ηi is the i-th eigenvalue of A. In our work we

leave A unconstrained but we observe in our later analyses in Chapter 8 that all posterior

mass ultimately lies within the stationary region.

In the completely general case, the error variance matrix Σ simply needs to lie in

the space of symmetric, positive definite matrices. However, very often a parsimonious

parametric form is adopted, for example, Σ = τ−1IK . Under this model specification, a
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typical (and semi-conjugate) prior would be

µ ∼ NK(mµ,Vµ),

τ ∼ Ga (g, h) ,

ajk
iid∼ N(c, d2). (7.2)

We note that in our case, each element ajk of A can be thought of as determining the

influence of the abundance of bin k at the previous time point yt−1,k on the abundance of

bin j at the current time point ytj .

7.3 Allowing for sparsity

In our clustered data we have 257 observations for 12 bins in the AS tank and 251 ob-

servations for 12 bins in the SS tank. Given the circular time-ordering of the bins, it

is unlikely that the previous abundances for all bins influence the current abundance of

any particular bin. For example, a bin that peaks in May is probably more influenced by

bins that peak in neighbouring months April and June than bins that peak five to seven

months later (and have low abundances in May). A sparse autoregressive matrix would

contain a lot of zeroes and reflects this idea that not all bins influence each other. A zero-

coefficient represents no influence, given autoregression on yt−1,k, of the count of bin k at

time t− 1 on the count of bin j at current time t, which is likely to aid in understanding

the multivariate dynamics implied by our results in Chapter 8. The prior for A described

in (7.2) is perhaps the most simple but it does not encourage shrinkage of autoregressive

coefficients towards zero. In this section, we discuss priors that allow for sparsity in the

autoregressive matrix A. Each prior is introduced in the context of simple multiple linear

regression, before being extended to the autoregressive matrix for a VAR(1) process. This

extension is straightforward since a VAR(1) model can be written as a multiple linear

regression with a multivariate response vector.

First we consider priors for β in

yi = βTxi + εi, εi ∼ N(0, σ2), i = 1, . . . , N, (7.3)

where yi is a univariate response, xi is a p-variate vector of explanatory variables for

experimental unit i, β is the vector of corresponding regression coefficients and σ2 is the

error variance. The problem of identifying regression coefficients as zero or non-zero is

essentially a variable selection problem for the covariates in the model. In the case of our

VAR(1) model, it is selecting if the count (at the previous time point) of a particular bin is

used to model the count of another bin or not. The first prior that we discuss is the spike
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and slab prior, a firm favourite for Bayesian variable selection. The second prior is the

horseshoe prior and the third is an extension of the horseshoe, the regularised horseshoe

prior. Finally, we conclude this section on sparsity, by comparing our priors and testing

our inferential procedures via a simulation study.

7.3.1 Spike and slab prior

The spike and slab (Mitchell & Beauchamp, 1988) is a popular shrinkage prior; its name

comes from its density with a spike at zero and a flat slab elsewhere. It is often written

as a two-component mixture of normal distributions (Piironen & Vehtari, 2017). In our

simple multiple linear regression example, we have

βj |λj , d, ε ∼ λjN(0, d2) + (1− λj)N(0, ε2), (7.4)

λj ∼ Bern(ψj), j = 1, . . . , p,

where the indicator variable λj ∈ {0, 1} denotes presence (λj = 1) or absence (λj = 0) of

coefficient βj , ψj is the prior inclusion probability and ε� d. Often ε is chosen to be zero,

resulting in a delta spike at the origin, which is the approach we adopt for our work. The

conditional density of βj , given λj , is

λjfN (βj ; 0, d2) + (1− λj)δβj ,

where fN (x; 0, d2) = d−1φ(x/d) is the density of a normal N(0, d2) distribution and δx is

the Dirac delta function, which takes the value 0 everywhere except at x = 0 but which

integrates to 1. We denote this as

βj |λj , d ∼ λjN
(
0, d2

)
+ (1− λj) δ0, (7.5)

λj ∼ Bern(ψj), j = 1, . . . , p.

O’Hara & Sillanpää (2009) give a comprehensive review of some Bayesian variable

selection methods in regression with spike and slab priors and suggest that, for such

methods, it is safe to only consider problems where there are at most 10 to 15 times

more candidates than observations. That is, effects can still be detected by models, even

when the number of candidates is 10 to 15 times larger than the number of observations.

However, this upper limit’s existence is problem specific and also depends on the level of

correlation between candidates.

When using certain methods to implement the spike and slab, O’Hara & Sillanpää

(2009) highlight the need for a second auxiliary variable, the effect size, which we will

call β̃j . Now we define our regression coefficient as βj = λj β̃j . The indicators and effects

are assumed to be independent a priori, which is the approach of Kuo & Mallick (1998),
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that is P(β̃j , λj) = P(β̃j)P(λj). Additionally, λj ⊥⊥ λk for j 6= k, β̃j ⊥⊥ β̃k for j 6= k and

λj ⊥⊥ β̃k ∀ j, k. In the simple multiple linear regression case the prior distributions are

β̃j ∼ N(0, d2) and λj ∼ Bern(ψj), where ψj is the chosen prior inclusion probability.

Now we consider the spike and slab prior for multiple linear regression with a multi-

variate response vector. Let yi = (yi1, . . . , yiK)T be a K-variate response vector and xi

be a p-variate vector of explanatory variables for experimental unit i. We have a multiple

linear regression model

yi = BTxi + εi, εi ∼ NK(0,Σ), i = 1, . . . , N, (7.6)

where εi = (εi1, . . . , εiK)T is the vector of errors and B = (βjk) is a p × K matrix of

regression coefficients. The elements (yij) of yi can be modelled as a linear combination of

the elements in xi, subject to normal error εij . The errors are conditionally independent

across units i, but may be correlated across variables j. The model in (7.6) can be written

in the matrix form

Y = XB + E, (7.7)

where Y is a N ×K response matrix with i-th row yTi , X is a N × p covariate matrix with

i-th row xTi and E is a N ×K matrix of errors with i-th row εTi . A spike and slab prior

extending the formulation in (7.4) is

βjk|λjk, d2 ∼ λjkN
(
0, d2

)
+ (1− λjk) δ0 (7.8)

λjk ∼ Bern (ψjk) ,

where the random variables λjk are independent of each other.

Alternatively, using the approach of Kuo & Mallick (1998), we have

βjk = λjkβ̃jk, (7.9)

β̃jk|d2 ∼ N(0, d2),

λjk ∼ Bern(ψjk),

for j = 1, . . . p, k = 1, . . .K and λjk are independent of each other.

Lei et al. (2011) considered the problem of learning the parameters and structure of

a VAR(1) model with relatively short, high-dimensional time series. For simulated data

and a time course microarray data set, their methods performed reasonably well. Their

autoregressive matrix A was assumed to be sparse, for which they implemented a spike

and slab prior using reversible jump MCMC. They used the form of prior shown in (7.8)

for ajk, the elements of A. In their simulation study, they assessed their algorithm’s ability

to detect and infer the size of non-zero elements of an autoregressive matrix with both
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a small number of variables (K = 5) and a fairly large number of variables (K = 100).

In data-poor scenarios, when the numbers of observations were small, for example, when

K = 5 and N = 10, or K = 100 and N = 30, their algorithm did not perform well.

However, when the number of observations was increased performance improved. For

example, with K = 100 and N = 150 they found that 86% of the posterior mean values

for non-zero elements were within 0.1 of their true values. The “positive predictive values”

(number of true non-zero elements divided by number of non-zero elements detected) were

99% and 100% when using a probability threshold of 0.5 and 0.7 respectively, and even

when a low threshold of 0.1 was used, the positive predictive value was 78%. Here the term

threshold relates to the posterior inclusion probabilities Ψ|Y. If the posterior inclusion

probability ψjk|Y of a particular element ajk is greater than the threshold, then ajk|Y is

considered to be a non-zero autoregressive coefficient. It must be noted that, based on

their results, it would seem that their spike and slab prior made it difficult to identify

small non-zero elements. For example, in the K = 5 case, three of the elements were given

the value 0.1, where the error variance was 0.25, and even in the most data-rich scenario

with 1000 observations, one of the three was not detected unless the probability threshold

was reduced to 0.35. Additionally, in the K = 100 case a fairly “strong” value of 0.4 was

given to all of the non-zero elements. It is possible that smaller values for the non-zero

elements may not have yielded such good results. Since we have K � N for our clustered

data, and in light of these findings, it seems we are in a “data-rich” scenario and should

be able to identify a sparse structure if there is evidence of it in the data.

Full conditional distributions

To assess this prior later in our simulation study in Section 7.3.5, the full conditional

distributions (FCDs) are required, as we will use a Gibbs sampler to fit the model with

a spike and slab prior. We derive the FCDs for our multiple linear regression (with

multivariate response vector) case before stating the prior and FCD for the VAR(1) model.

The rows of Y and BT can be stacked into NK− and Np− vectors, respectively, to

give us

y∗ = vec(YT ) = (y11, . . . , y1K , y21, . . . , yNK)T and

β∗ = vec(B) = (β11, . . . , βp1, β12, . . . , βpK)T .

Now (7.6) can be written as

yi = Wiβ
∗ + εi, (7.10)

where Wi = IK ⊗ xTi and ⊗ is the Kronecker product. Then we can rewrite (7.7) as

y∗ = Wβ∗ + e, (7.11)
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where

W =


W1

...

WN

 , e = (εT1 , . . . , ε
T
N )T .

First, we consider B̃, or in its vectorised form β̃, and note that

β∗ =
(
β̃11λ11, . . . , β̃p1λp1, β̃12λ12, . . . , β̃pKλpK

)T
.

If we let W∗ = WΛ∗, where Λ∗ = diag (λ11, . . . , λp1, λ12, . . . , λpK) and note that (IN ⊗ Σ)−1 =(
IN ⊗ Σ−1

)
then it can be shown that

β̃|y∗,Λ,Σ ∼ NpK

(
M B̃,VB̃

)
, (7.12)

where

VB̃ =
(
d−2IpK + W∗T (IN ⊗ Σ−1W∗))−1

M B̃ = VB̃bB̃, where

bB̃ = W∗T (IN ⊗ Σ−1
)
y∗.

The derivation for this is shown in Appendix A.

In the special case, where Σ = τ−1IK , it can be shown that the columns of B̃ are

independent in the posterior with the j-th column having mean(
d−2Ip + τX∗

T

j X∗j

)−1
τX∗

T

j y1:N,j (7.13)

and variance (
d−2Ip + τX∗

T

j X∗j

)−1
, (7.14)

where y1:N,j is column j of Y, X∗j = (λ1jX1:N,1, . . . , λpjX1:N,p) = XΛ∗j , where Λ∗j =

diag (λ1j , . . . , λpj) and X1:N,j = (X1j , . . . , XNj)
T . This is the multivariate analogue of the

univariate case with the assumption of independent errors with a common variance derived

by Kuo & Mallick (1998). A complete derivation of this result is given in Appendix A.
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The FCD for the indicator parameters is

λjk|y∗, B̃,Σ ∼ Bern
(
ψ̃jk

)
, (7.15)

ψ̃jk = cjk/(cjk + djk),

cjk = ψjk exp

{
−1

2
(y∗ −Wβ∗∗)T

(
IN ⊗ Σ−1

)
(y∗ −Wβ∗∗)

}
,

djk = (1− ψjk) exp

{
−1

2
(y∗ −Wβ∗∗∗)T

(
IN ⊗ Σ−1

)
(y∗ −Wβ∗∗∗)

}
,

where β∗∗ is β∗ with its {(k − 1)p + j}-th element set to β̃jk and β∗∗∗ is β∗ with its

{(k − 1)p+ j}-th element set to 0. This FCD is easily derived by noting that

ψjk = Pr(λjk = 1|Y, ·)

=
π (Y|λjk = 1, ·) Pr(λij = 1)

π (Y|λjk = 1, ·) Pr(λjk = 1) + π (Y|λjk = 0, ·) Pr(λjk = 0)

and using the formulation of the model in (7.11).

In the special case, when Σ = τ−1IK , it can be shown (see Appendix A) that

cjk ∝ ψjk exp
{
−τ

2
(Y1:N,k −Xβ∗∗k )T (Y1:N,k −Xβ∗∗k )

}
(7.16)

and

djk ∝ (1− ψjk) exp
{
−τ

2
(Y1:N,k −Xβ∗∗∗k )T (Y1:N,k −Xβ∗∗∗k )

}
, (7.17)

where β∗∗∗k =
(
β∗1k, . . . , β

∗
pk

)T
with its j-th element set to β̃jk and β∗∗∗k =

(
β∗1k, . . . , β

∗
pk

)T
with its j-th element set to 0. Now, we have a version of the Kuo & Mallick (1998)

derivation for a multivariate response vector when we assume independent errors with

common variance.

Extension to VAR(1) model

Extending this prior to the autoregressive matrix A of the VAR(1) model in (7.1) with K

bins, we have

ajk = λjkãjk,

ãjk|d2 ∼ N(0, d2),

λjk ∼ Bern(ψjk),

for j, k = 1, . . . ,K. The derivation of the FCDs for a VAR(1) model is very similar to the

derivation for a multiple linear regression with multivariate response vector, given that a
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VAR(1) model can be written as a multiple linear regression model. The FCDs are shown

in Appendix A, along with their derivations. We find in the special case, when Σ = τ−1IK ,

we obtain a result for Ã similar to the result found for B̃. However, for Ã it is the rows

that exhibit independence, rather than the columns. Likewise, we find a similar result

for the posterior of Λ too (see Appendix A for the derivations of the FCDs in the special

case).

7.3.2 Horseshoe prior

A horseshoe prior (Carvalho et al., 2009, 2010) for the regression coefficients β in (7.3) is

as follows:

βj |λj , τβ ∼ N(0, τ2
βλ

2
j ), (7.18)

λj ∼ C+(0, 1), j = 1, . . . , p,

τβ ∼ C+(0, τβ0),

where τβ is the global shrinkage parameter, the λjs are the local shrinkage parameters,

C+(0, c) is a half-Cauchy prior with scale parameter c and typically τβ0 = 1. The role of τβ

is to estimate the overall sparsity level, whereas the role of the λjs is to identify non-zero

coefficients. The heavy tails of π(λj) facilitate this. The horseshoe prior’s name comes from

the density of its shrinkage coefficient κj = 1/
(

1 + λ2
j

)
in the model y|β ∼ N

(
β, σ2Ip

)
,

where y is a p-dimensional vector and βj has the prior specified in (7.18). The posterior

mean of βj when τ2
β0

= σ2 = 1 is E [βj |y] =
∫ 1

0 (1− κj) yjP(κj |y)dκj = (1− E [κj |yj ])y,

where E [κj |y] can be interpreted as the amount of shrinkage towards zero, a posteriori.

Due to the half-Cauchy prior on λj , the shrinkage coefficient κj has a horseshoe shaped

Beta
(

1
2 ,

1
2

)
prior, hence the name of the prior. Figure 7.3 shows the density of κj . When

κj ≈ 0, there is virtually no shrinkage and it describes signals (βj is non-zero), whereas

when κj ≈ 1, there is near-total shrinkage and it describes noise (βj is close to zero).

For our multivariate linear regression model with multivariate response vector in (7.6), a

horseshoe prior for the regression coefficients is given by

βjk|λjk, τβ ∼ N
(
0, τ2

βλ
2
jk

)
, (7.19)

λjk ∼ C+ (0, 1) ,

τβ ∼ C+ (0, τβ0) ,

for j = 1, . . . , p, k = 1, . . . ,K, where the λjks are independent from each other.

The horseshoe prior is particularly well suited to sparse problems because its flat,

Cauchy-like tails allow strong signals to remain large (unshrunk) a posteriori but its

infinitely tall spike at the origin provides severe shrinkage for the zero elements of β.
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Figure 7.3: The density of the shrinkage coefficient κj = 1/(1 + λ2j ). The horseshoe shape of the
density shows that the horseshoe prior favours values of either zero or one for κj , which correspond
to no shrinkage or near-total shrinkage, respectively.

Carvalho et al. (2009) showed how other commonly used shrinkage priors, such as the

Laplacian prior and Student-t prior, do not have these properties. Additionally, they

demonstrated that in a variety of situations (experiments) the horseshoe performed simi-

larly to Bayesian model averaging across discrete mixture models, which is considered the

“gold standard” for sparse estimation and prediction.

However, Piironen & Vehtari (2017) argue that there has been no agreement on how

to perform inference for the global shrinkage parameter τβ. As its name suggests, this

parameter determines the overall shrinkage to zero for the parameter of interest, which

can be thought of as determining the overall sparsity in the vector regression coefficients

β (in linear regression) or the matrix of coefficients B in multivariate linear regression.

They dispute use of the commonly employed C+(0, 1) hyperprior for the global shrinkage

parameter τβ, as it places too much mass on large values of τβ, which means it favours

solutions with most of the coefficients unshrunk. Thus, when we assume only a small

number of variables are relevant, as is often the case, τβ needs to be strongly identified

by the data for sensible inference to occur. Therefore, Piironen & Vehtari (2017) define

a systematic way of defining a prior for the global shrinkage parameter based on prior

information of sparsity. We discuss this in more detail in Section 7.3.3 and derive a

similar result for the multiple linear regression case with a multivariate response vector.

Additionally, Piironen & Vehtari (2017) suggest that it would be useful to be able to

control the amount of shrinkage in the largest coefficients. Parameters that the likelihood

suggests could be far away from zero typically have κj ≈ 0 and so are not regularised. This

can be considered disadvantageous, especially when parameters are only weakly identified

by the data. The example they give is in logistic regression with separable data, where

the likelihood is flat. A remedy to this issue is given by their regularised horseshoe prior,

which we discuss in Section 7.3.4.
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Full conditional distributions

It can be shown (see Appendix A) that the full conditional density for τβ is

π (τβ|B, ·) =
2

πτβ0

(
1 +

τ2β
τβ0

) ∣∣2πτ2
βΛ∗

∣∣− 1
2 exp

{
−1

2

(
β∗

T 1

τ2
β

Λ∗
−1
β∗

)}
, (7.20)

where Λ∗ = diag
(
λ2

11, λ
2
21, . . . , λ

2
p1, λ

2
12, . . . , λ

2
pK

)
and here

β∗ = vec(B)

= (β11, β21, . . . , βp1, β12, . . . , βpK)T .

This is a non-standard density, which means that a Metropolis-Hastings step needs to be

incorporated into the Gibbs sampler (Metropolis-within-Gibbs) for this model.

Similarly, a Metropolis-within-Gibbs step is required for the local shrinkage parameter

λjk, as it has a non-standard conditional density given by

π (λjk|B, ·) ∝
2

π
(

1 + λ2
jk

) (λ2
jk

)− 1
2 exp

{
−1

2

(
β2
jk

τ2
βλ

2
jk

)}
. (7.21)

The derivation of this density is given in Appendix A.

Extension to VAR(1) model

A horseshoe prior on the autoregressive matrix A in the VAR(1) model in (7.1) with K

bins is given by

ajk|λjk, τA ∼ N
(
0, τ2

Aλ
2
jk

)
(7.22)

λjk ∼ C+ (0, 1) ,

τA ∼ C+ (0, τ0) ,

for j, k = 1, . . . ,K. As we found for the multivariate linear regression model, the global

shrinkage parameter τA and local shrinkage parameters λjk have non-standard full condi-

tional densities. Therefore, we must include Metropolis-within-Gibbs steps in our sampler

to make posterior draws of these shrinkage parameters. For τA, we have

π (τA|A, ·) =
2

πτ0

(
1 +

τ2A
τ0

) ∣∣2πτ2
AΛ∗

∣∣− 1
2 exp

{
−1

2

(
aT

1

τ2
A

Λ∗
−1
a

)}
, (7.23)
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where Λ∗ = diag (λ11, λ12, . . . , λ1K , λ21, . . . , λKK)

a = vec
(
AT
)

= (a11, a12, . . . , a1K , a21, . . . , aKK)T .

For λjk we have

π (λjk|A, ·) ∝
2

π
(

1 + λ2
jk

) (λ2
jk

)− 1
2 exp

{
−1

2

(
a2
jk

τ2
Aλ

2
jk

)}
. (7.24)

The derivation of these densities is very similar to the derivations shown in Appendix A

for multivariate linear regression. We use Stan to fit the model with a horseshoe prior on

A and so the FCDs and Metropolis algorithms are not needed. However, for completeness

we have stated the FCDs here and the algorithms are given in Appendix B.

7.3.3 Prior for the global shrinkage parameter

In this section, we define a prior for the global shrinkage parameter in the horseshoe prior

for βjk for our multivariate linear regression model in (7.6), based on prior information

of sparsity. To define our hyperprior, we first derive a general shrinkage factor matrix,

which indicates how much a set of regression coefficients are shrunk. This is found by

considering the conditional posterior distribution for the regression coefficients in (7.6).

Since the shrinkage factor matrix depends on the error covariance matrix Σ, we then

formulate the shrinkage factor matrix for some different cases of Σ. From the shrinkage

factor matrix, we define the effective number of non-zero coefficients meff, which is based on

the assumption that the shrinkage factor matrices tend to be diagonal with their diagonal

elements typically taking values of zero or one. We then consider the prior expectation

of the effective number of non-zero coefficients, which depends on the global shrinkage

parameter τβ. By setting this prior expectation to some prior guess of the number of

non-zero coefficients e0 and setting τβ = τβ0 , we can solve for τβ0 . This can be used as

the scale parameter for the global shrinkage parameter and thus prior information on the

number of non-zero coefficients can be incorporated into the prior.

The work in this section is an extension of the work of Piironen & Vehtari (2017).

Their work is primarily in the context of simple multiple linear regression with a univariate

response variable, defined in (7.3). For βj under the standard horseshoe prior in (7.18)

they define a shrinkage factor κj for coefficient βj and we include their formulation here

for completeness. The conditional posterior distribution for the coefficients β given the
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hyperparameters, τβ and Λ, and the data y, is

β|Λ, τβ, σ2,y ∼ N(β̄,Σ), (7.25)

where

β̄ = τ2
βΛ
(
τ2
βΛ + σ2

(
XTX

)−1
)−1

β̂,

Σ =

(
τ−2
β Λ−1 +

1

σ2
XTX

)−1

,

with Λ = diag
(
λ2

1, . . . , λ
2
p

)
, and β̂ =

(
XTX

)−1
XTy is the familiar maximum likelihood

estimate. If we assume that the covariates are uncorrelated and have zero means and

sample variances s2
1, . . . , s

2
p, then XTX ≈ Ndiag

(
s2

1, . . . , s
2
p

)
, and we can approximate

β̄j = (1− κj) β̂j , (7.26)

where

κj =
1

1 +Nσ−2τ2
βs

2
jλ

2
j

(7.27)

which is the shrinkage factor for βj . The shrinkage factor quantifies how much a coeffi-

cient βj is shrunk from its maximum likelihood estimate towards zero, with no shrinkage

represented by a value of zero and complete shrinkage represented by a value of one.

The interpretation of κj , as defined in (7.27), as a shrinkage factor for βj relies on

the assumption that XTX ≈ Ndiag
(
s2

1, . . . , s
2
p

)
. If XTX is not diagonal, the conditional

posterior mean β̄j no longer depends only on the least squares estimate β̂j . Thus, a

closed form, interpretable expression relating β̄j to β̂j is difficult to obtain, even under the

assumption of a very simple non-diagonal structure for XTX. However, we note that it is

always possible to make the covariates uncorrelated by replacing them with the set of p

principal components.

Shrinkage factor matrix

Now we extend the shrinkage factor to a shrinkage factor matrix by considering the horse-

shoe prior in (7.19) for multiple linear regression with a multivariate response vector,

which is defined in (7.6) and in its matrix form in (7.7). The rows of Y and B can be

stacked into NK− and Np− vectors, respectively, to give us

y∗ = vec(YT ) = (y11, . . . , y1K , y21, . . . , yNK)T and

β∗ = vec(BT ) = (β11, . . . , β1K , β21, . . . , βpK)T .
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It can be shown (see Appendix A) that the conditional posterior for the regression

coefficients β∗ given the shrinkage parameters, Λ∗ = diag(λ11, . . . , λ1K , λ21, . . . , λpK) and

τβ, and the error variance Σ, is given by

β∗|Λ∗, τβ,Σ,y∗ ∼ NpK(m∗,V∗) (7.28)

where

m∗ = τ2
βΛ∗

[
τ2
βΛ∗ +

{(
XTX

)−1 ⊗ Σ
}]−1

β̂
∗

V∗ =
{
τ−2
β Λ∗−1 +

(
XTX⊗ Σ−1

)}−1

in which

β̂
∗

= vec(B̂T ) =
{(

XTX
)−1

XT ⊗ IK

}
y∗

and B̂ is the least squares estimator of B.

Under the assumptions that the explanatory variables are uncorrelated with zero mean

and sample variances s2
1, . . . , s

2
p, XTX ' Ndiag(s2

1, . . . , s
2
p) and so

τ2
βΛ∗

(
τ2
βΛ∗ +

{
(XTX)−1 ⊗ Σ

})−1

= blockdiag

{
τ2
βΛ1

(
τ2
βΛ1 +

1

Ns2
1

Σ

)−1

, . . . , τ2
βΛp

(
τ2
βΛp +

1

Ns2
p

Σ

)−1
}

= blockdiag (IK −K1, . . . , IK −Kp) ,

where Λj = diag
(
λ2
j1, . . . , λ

2
jK

)
is the j-th diagonal block of Λ∗ and

Kj =
(
IK +Ns2

jτ
2
βΛjΣ

−1
)−1

, j = 1, . . . , p. (7.29)

It then follows that

m∗ = blockdiag (IK −K1, . . . , IK −Kp) β̂
∗

= vec
(
MT
)
,

where M = (mjk) = E (B|Λ∗, τβ,Σ,Y).

If we define βj = (βj1, . . . , βjK)T , β̂j = (β̂j1, . . . , β̂jK)T and mj = (mj1, . . . ,mjK)T

for j = 1, . . . , p as the (transposed) rows of B, B̂ and M, respectively, then it can be seen

that

mj = (IK −Kj)β̂j , j = 1, . . . , p

and so the posterior mean MT of BT can be constructed column-wise. The jth column,

corresponding to the coefficients of covariate j in the linear predictors of Y1 through YK ,

is a linear transformation of column j of the (transposed) least squares estimator B̂T .
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Since Λj and Σ are real and positive definite, the eigenvalues, η1, . . . , ηK , of ns2
jτ

2
βΛjΣ

−1

must be real and positive. The eigenvalues of K−1
j = IK + Ns2

jτ
2
βΛjΣ

−1 are therefore

1 + ηj > 1 for j = 1, . . . ,K, and hence the eigenvalues of Kj , 1/ (1 + ηj), must lie between

0 and 1, making it a convergent matrix. Therefore, we can regard Kj as the shrinkage

factor matrix for coefficients βj of covariate j. The extent to which the coefficients β

are shrunk towards zero is determined by the size of the eigenvalues of Kj . Since the ηj

are directly proportional to τ2
β , as τβ → 0, all eigenvalues of Kj approach 1 and we have

Kj → IK and hence complete shrinkage. When τβ → ∞ all eigenvalues of Kj approach 0

and we have Kj → 0K and hence no shrinkage. Hence, we have a result for multiple linear

regression with a multivariate response vector analogous to (7.27).

Special cases of Σ

Now we formulate the shrinkage factor matrix for special cases of Σ.

Diagonal

When Σ = diag
(
σ2

1, . . . , σ
2
K

)
, the shrinkage factor matrix in (7.29) reduces to

Kj = diag

(
1

1 +Ns2
jτ

2
βλ

2
j1σ
−2
1

, . . . ,
1

1 +Ns2
jτ

2
βλ

2
jKσ

−2
K

)
, j = 1, . . . , p (7.30)

so that each component of the posterior mean can be expressed as a product of a single

shrinkage factor and the corresponding element of the least squares estimator

mjk =

(
1− 1

1 +Ns2
jτ

2
βλ

2
jkσ
−2
k

)
β̂jk, j = 1, . . . , p, k = 1, . . . ,K.

Note that the elements in Kj have essentially the same form as κj in equation (7.27). Since

Kj is a diagonal matrix, it follows that its eigenvalues are simply its diagonal entries.

Compound symmetric

The compound symmetric variance matrix can be written as Σ = ρσ2(1K1TK+(1−ρ)/ρIK),

where σ2 > 0 and 1K is a K-vector of 1s. The eigenvalues of 1K1TK are K and 0 and

so the eigenvalues of Σ are ρσ2 (K + (1− ρ)/ρ) and σ2(1 − ρ). Therefore, Σ is positive

definite if and only if

ρ

(
K +

1− ρ
ρ

)
> 0 ⇐⇒ ρ > − 1

K − 1

and

1− ρ > 0 ⇐⇒ ρ < 1,
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i.e. −1/ (K − 1) < ρ < 1.

To derive the shrinkage factor matrix in the case of a compound symmetric variance

matrix, we need to first calculate the precision matrix Σ−1. This is found by application

of the Sherman-Morrison formula, that is

(A + uvT )−1 = A−1 − A−1uvTA−1

1 + vTA−1u
, (7.31)

where A ∈ RK×K is an invertible square matrix and u,v ∈ RK are vectors. Here uvT is

the outer product of u and v and (1 + vTA−1u) 6= 0. We note that the variance matrix

can be written as Σ = ρσ21K1TK + σ2(1 − ρ)IK . Substituting u = ρσ21K , v = 1K and

A = σ2(1− ρ)IK into equation (7.31) above, we can show that the precision matrix is

Σ−1 =
1

σ2(1− ρ)
IK −

(
1

σ2(1−ρ)

)(
ρσ2

σ2(1−ρ)

)
1K1TK

1 + 1TK
1

σ2(1−ρ)
IKρσ21K

=
1

σ2(1− ρ)
IK −

ρ
σ2(1−ρ)2

1K1TK

1 + Kρ
1−ρ

=
1

σ2(1− ρ)
IK −

(
ρ

σ2(1− ρ)2

)(
1− ρ

1− ρ+Kρ

)
1K1TK

=
1

σ2(1− ρ)

{
IK −

ρ

1 + ρ(K − 1)
1K1TK

}
.

Now we can write the shrinkage factor matrix as

Kj =
(
IK +Ns2

jτ
2
βΛjΣ

−1
)−1

=

[
IK +

Ns2
jτ

2
β

σ2(1− ρ)
Λj

(
IK −

ρ

1 + ρ(K − 1)
1K1TK

)]−1

=

[
IK +

Ns2
jτ

2
β

σ2(1− ρ)
Λj −

Ns2
jτ

2
βρ

σ2(1− ρ)(1 + ρ(K − 1))
Λj1K1TK

]−1

=

[(
IK +

Ns2
jτ

2
β

σ2(1− ρ)
Λj

)
−

Ns2
jτ

2
βρ

σ2(1− ρ)(1 + ρ(K − 1))
λj1

T
K

]−1

,

which is in the form of the Sherman-Morrison formula in (7.31), where λj = (λ2
j1, . . . , λ

2
jK)T .

Here we have

A = IK +
Ns2

jτ
2
β

σ2(1− ρ)
Λj

= diag

(
1 +

Ns2
jτ

2
β

σ2(1− ρ)
λ2
j1, . . . , 1 +

Ns2
jτ

2
β

σ2(1− ρ)
λ2
jK

)
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= diag

(
σ2(1− ρ) +Ns2

jτ
2
βλ

2
j1

σ2(1− ρ)
, . . . ,

σ2(1− ρ) +Ns2
jτ

2
βλ

2
jK

σ2(1− ρ)

)
,

u = −
Ns2

jτ
2
βρ

σ2(1− ρ)(1 + ρ(K − 1))
λj and

v = 1K .

Thus, we have

A−1 = σ2(1− ρ)diag

{
1

σ2(1− ρ) +Ns2
jτ

2
βλ

2
j1

, . . . ,
1

σ2(1− ρ) +Ns2
jτ

2
βλ

2
jK

}
, (7.32)

uvTA−1 = −
Ns2

jτ
2
βρ

(1 + ρ(K − 1))
λj1

T
K

× diag

{
1

σ2(1− ρ) +Ns2
jτ

2
βλ

2
j1

, . . . ,
1

σ2(1− ρ) +Ns2
jτ

2
βλ

2
jK

}
(7.33)

and

1+vTA−1u

= 1−
Ns2

jτ
2
βρ

(1 + ρ(K − 1))
1TKdiag

{
1

σ2(1− ρ) +Ns2
jτ

2
βλ

2
j1

, . . . ,
1

σ2(1− ρ) +Ns2
jτ

2
βλ

2
jK

}
λj

= 1−
Ns2

jτ
2
βρ

(1 + ρ(K − 1))
1TK

(
λ2
j1

σ2(1− ρ) +Ns2
jτ

2
βλ

2
j1

, . . . ,
λ2
jK

σ2(1− ρ) +Ns2
jτ

2
βλ

2
jK

)T

= 1−
Ns2

jτ
2
βρ

(1 + ρ(K − 1))

K∑
k=1

λ2
jk

σ2(1− ρ) +Ns2
jτ

2
βλ

2
jk

=
(1 + ρ(K − 1))−Ns2

jτ
2
βρ
∑K

k=1

λ2jk
σ2(1−ρ)+Ns2jτ

2
βλ

2
jk

(1 + ρ(K − 1))
(7.34)

Substituting in the values found in (7.32) to (7.34) into the Sherman-Morrison formula

we have

Kj = σ2(1− ρ)diag

{
1

σ2(1− ρ) +Ns2
jτ

2
βλ

2
j1

, . . . ,
1

σ2(1− ρ) +Ns2
jτ

2
βλ

2
jK

}

×

[
IK +

Ns2
jτ

2
βρ

(1 + ρ(K − 1))−Ns2
jτ

2
βρ
∑K

k=1

λ2jk
σ2(1−ρ)+Ns2jτ

2
βλ

2
jk

× diag

{
1

σ2(1− ρ) +Ns2
jτ

2
βλ

2
j1

, . . . ,
1

σ2(1− ρ) +Ns2
jτ

2
βλ

2
jK

}]
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= diag

{
1

1 +Ns2
jτ

2
βλ

2
j1(σ2(1− ρ))−1

, . . . ,
1

1 +Ns2
jτ

2
βλ

2
jK(σ2(1− ρ))−1

}

×

[
IK +

Ns2
jτ

2
βρ

1 + ρ(K − 1)−Ns2
jτ

2
βρ
∑K

k=1

λ2jk
σ2(1−ρ)+Ns2jτ

2
βλ

2
jk

λj1
T
K(σ2(1− ρ))−1

× diag

{
1

1 +Ns2
jτ

2
βλ

2
j1(σ2(1− ρ))−1

, . . . ,
1

1 +Ns2
jτ

2
βλ

2
jK(σ2(1− ρ))−1

}]

= diag

(
1

1 + d2
jλ

2
j1

, . . . ,
1

1 + d2
jλ

2
jK

)

×

IK +
ρd2

j

1− ρ+ ρ
∑K

k=1
1

1+d2jλ
2
jk

λj1
T
Kdiag

(
1

1 + d2
jλ

2
j1

, . . . ,
1

1 + d2
jλ

2
jK

) ,

where d2
j = Ns2

jτ
2
β

(
σ2(1− ρ)−1

)
and λj =

(
λ2
j1, . . . , λ

2
jK

)
. Therefore, the (k, `)-th ele-

ment of Kj is

Kj,k` =



1

1 + d2
jλ

2
jk

1 +
ρd2

jλ
2
jk(

1− ρ+ ρ
∑K

m=1
1

1+d2jλ
2
jm

)
(1 + d2

jλ
2
jk)

 , if k = `,

ρd2
jλ

2
jk(

1− ρ+ ρ
∑K

m=1
1

1+d2jλ
2
jm

)
(1 + d2

jλ
2
jk)(1 + d2

jλ
2
j`)

, otherwise.

We see that Kj is a rank-one update of a diagonal matrix. Thus, there is no closed form

solution for the eigenvalues. As ρ → 0, we obtain Kj when the error variance matrix is

diagonal, shown in (7.30), and as ρ→ 1 we get

Kj =
1

Ns2
jτ

2
βσ
−2 +

∑K
k=1

1
λ2jk


1/λ2

j1 . . . 1/λ2
jK

1/λ2
j1 . . . 1/λ2

jK
...

. . .
...

1/λ2
j1 . . . 1/λ2

jK


which is a rank-one matrix. Its eigenvalues are

0 and
K∑
k=1

(
1/λ2

jk

)
/

{
Ns2

jτ
2
βσ
−2 +

K∑
k=1

(
1/λ2

jk

)}
.
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First order autoregressive

Consider the variance matrix of a first order autoregressive time series of length K

Σ = σ2


1 ρ ρ2 · · · ρK−1

ρ 1 ρ · · · ρK−2

...
...

...
. . .

...

ρK−1 ρK−2 ρK−3 · · · 1


for which the stationarity condition is |ρ| < 1. The inverse is given by the symmetric,

tridiagonal matrix

Σ−1 =
1

σ2(1− ρ2)



1 −ρ 0 · · · 0 0 0

−ρ 1 + ρ2 −ρ · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −ρ 1 + ρ2 −ρ
0 0 0 · · · 0 −ρ 1


.

Therefore, letting d2
j = Ns2

jτ
2
β{σ2(1− ρ2)}−1, we have

K−1
j =



1 + d2
jλ

2
j1 −d2

jλ
2
j1ρ 0 · · · 0 0 0

−d2
jλ

2
j2ρ 1 + d2

jλ
2
j2(1 + ρ2) −d2

jλ
2
j2ρ · · · 0 0 0

...
...

...
. . .

...
...

...

0 0 0 · · · −d2
jλ

2
j,K−1ρ 1 + d2

jλ
2
j,K−1(1 + ρ2) −d2

jλ
2
j,K−1ρ

0 0 0 · · · 0 −d2
jλ

2
jKρ 1 + d2

jλ
2
jK


which is tridiagonal. As it is not Toeplitz, there is no closed-form solution for its eigen-

values. A closed-form for the inverse Kj is available but its hugely complicated structure

prohibits further analytic manipulation.

Circular first order autoregressive

This special case is defined in terms of the precision matrix Σ−1 which is a symmetric,

circulant, tridiagonal matrix taking the form

Σ−1 =



ω0 ω1 0 0 · · · 0 0 0 ω1

ω1 ω0 ω1 0 · · · 0 0 0 0

0 ω1 ω0 ω1 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · 0 ω1 ω0 ω1

ω1 0 0 0 · · · 0 0 ω1 ω0


. (7.35)
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This special case is of particular interest, as we look at adopting such a precision matrix
for our errors in Section 7.4. In this case, letting d2

j = Ns2
jτ

2
βω0ω1 and λ̃jk = djλjk for

k = 1, . . . ,K we have

K−1
j =

1 + ω−1
1 λ̃2j1 ω−1

0 λ̃2j1 0 0 · · · 0 0 0 ω−1
0 λ̃2j1

ω−1
0 λ̃2j2 1 + ω−1

1 λ̃2j2 ω−1
0 λ̃2j2 0 · · · 0 0 0 0

0 ω−1
0 λ̃2j3 1 + ω−1

1 λ̃2j3 ω−1
0 λ̃2j3 · · · 0 0 0 0

...
...

...
...

. . .
...

...
...

...

0 0 0 0 · · · 0 ω−1
0 λ̃2j,K−1 1 + ω−1

1 λ̃2j,K−1 ω−1
0 λ̃2j,K−1

ω−1
0 λ̃2jK 0 0 0 · · · 0 0 ω−1

0 λ̃2jK 1 + ω−1
1 λ̃2jK


which is a tridiagonal matrix with corners. Again, as it is not Toeplitz, there is not a

closed-form solution for its eigenvalues. Moreover, there is no closed-form solution for the

inverse, Kj .

Conditional prior

When the error variance matrix Σ = diag
(
σ2

1, . . . , σ
2
K

)
is diagonal, we saw in the previous

section that the shrinkage factor matrix Kj is diagonal, with the k-th diagonal element

given by

Kj,kk =
1

1 +Nσ−2
k τ2

βs
2
jλ

2
jk

, k = 1, . . . ,K

which depends only on the local shrinkage parameter λjk. Conditional on Σ and the

global shrinkage parameter τβ, it therefore follows from the results in the univariate case

(Piironen & Vehtari, 2017) that the diagonal elements of Kj are independent a priori with

horseshoe-shaped densities given by

1

π

ajk
(a2
jk − 1)Kj,kk + 1

1√
Kj,kk

√
1−Kj,kk

,

where ajk = τβσ
−1
k

√
Nsj . Now we consider the non-trivial case when Σ is not diagonal.

Conditional on Σ and τβ, the mapping from K-dimensional λj to K2-dimensional Kj is

dimension-increasing, and so Kj must lie on a K-dimensional manifold of RK2
. As such,

the independent, unit-median half Cauchy distributions for the elements of λj induce a

joint distribution for Kj for which a density function does not exist. However, for some

parametric forms of Σ, it may, in principle, be possible to derive analytic expressions for the

marginal densities for the Kj,kl along with pairwise joint densities. Unfortunately, for the

special cases mentioned above, we cannot find a closed-form solution. Similarly, although

the mapping from K-dimensional λj to the K eigenvalues of Kj is dimension-preserving,

we are unable to derive analytic expressions for the joint density of the eigenvalues for any

of the previously considered special cases, due to closed-form solutions for the eigenvalues

130



Chapter 7. A Bayesian hierarchical model for time-series metagenomics data

being unavailable. Instead, we therefore explore the marginal and pairwise joint densities

for the elements of the Kj,kl by simulation.

For the simplest non-diagonal special case of compound symmetry, the marginal dis-

tributions for the diagonal elements of Kj will be identical and likewise for its off-diagonal

elements. Figure 7.4 shows kernel density estimates of the marginal densities for a diago-

nal and off-diagonal element when K ∈ {2, 8, 14}, σ = 1 and the correlation parameter ρ

takes a range of values:

K = 2 : − 0.50 0.00 0.50 0.95

K = 8 : − 0.12 0.00 0.50 0.95

K = 14 : − 0.07 0.00 0.50 0.95.

The negative correlation is close to its smallest permissible value for each K. In all cases,

we take N = sj = 1 and τβ = 1.

There are four distinct joint densities, between: a pair of diagonal elements; a pair

of off-diagonal elements; a diagonal and off-diagonal element within the same row; and a

diagonal and off-diagonal element in different rows. For each value of K and ρ, scatter

plots of draws from the joint density are shown in Figure 7.4. For every combination of

dimension K and correlation ρ, it is evident from the marginal and bivariate plots, that

the diagonal elements of Kj retain the horseshoe shape from the univariate (K = 1) case,

with most of the density for the off-diagonal elements lying near the mode at 0. The

horseshoe shape is evident in the marginal density plots of the diagonal elements. In the

bivariate density plots of two diagonal elements, there are fewer points for values not near

0 or 1. Moreover, it seems that the off-diagonal elements are more likely to be close to

zero, if the diagonal element in any particular row is close to one. For example, we can

see in Figure 7.4 for all combinations of K and ρ that when the diagonal element is close

to 1, there is no density at values of the off-diagonal element greater than 0. When the

diagonal element is close to 0, the off-diagonal element can take a value anywhere between

0 and ρ. This suggests that there is a high prior probability for values of Kj lying in the

vicinity of diagonal matrices with ones and zeros on the diagonal.

Effective number of non-zero coefficients

In the case of univariate linear regression, we have a single shrinkage factor κj for each

regression coefficient βj . The prior for the shrinkage factors can be derived in closed-form

and is bimodal, with most of the density concentrated around its two modes at zero and

one. Therefore a priori, the shrinkage factors are either close to zero or close to one, and
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Figure 7.4: Conditional on the global shrinkage parameter τβ and the error variance Σ, marginal
densities of a diagonal and non-diagonal element of Kj when Σ has compound symmetric structure
and the dimension of the response vector is (a) K = 2, (b) K = 8 and (c) K = 14. In each case,
σ = 1, N = sj = 1 and τβ = 1. A range of values for the correlation ρ is considered.
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Figure 7.4: Conditional on the global shrinkage parameter τβ and error variance Σ, pairwise
bivariate densities between a pair of diagonal elements of Kj (Dg vs Dg); a pair of off-diagonal
elements (ODg vs ODg); a diagonal and off-diagonal element within the same row (WR Dg vs
ODg); and a diagonal and off-diagonal element in different rows (AR Dg vs ODg) when Σ has
compound symmetric structure and the dimension of the response vector is (a) K = 2, (b) K = 8
and (c) K = 14. In each case, σ = 1, N = sj = 1 and τβ = 1. A range of values for the common
correlation ρ is considered.

so we can loosely interpret

meff =

p∑
j=1

(1− κj)

as the effective number of non-zero coefficients. As discussed earlier in this section, in

the multivariate case with diagonal Σ, the shrinkage factor matrices Kj are also diagonal,

with bimodal priors for the diagonal elements, concentrated around zero or one. Thus,

the same logic applies and we can interpret

meff =

p∑
j=1

tr (IK −Kj) (7.36)

as the effective number of non-zero coefficients.
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In the case of the general error variance Σ, the (unattainable) joint distribution for Kj
was discussed earlier. In the special case of compound symmetry, we saw that the prior

distribution assigned high probability to diagonal binary matrices. Therefore, it seems

reasonable, to continue to interpret meff as defined in equation (7.36), as the effective

number of non-zero coefficients.

Expected value

Conditional on τβ and Σ, the prior expectation of the effective number of non-zero coeffi-

cients meff is given by

EΛ|τβ ,Σ (meff) =

p∑
j=1

EΛ|τβ ,Σ {tr (IK −Kj)}

= pK −
p∑
j=1

K∑
k=1

EΛ|τβ ,Σ (Kj,kk)

where

EΛ|τβ ,Σ (Kj,kk) =

∫
· · ·
∫
Kj,kk

K∏
`=1

π(λj`|τβ,Σ)dλj1 . . . , dλjK

=

∫
· · ·
∫
Kj,kk

K∏
`=1

2

π(1 + λ2
j`)
dλj1 . . . , dλjK

for j = 1, . . . , p. Suppose we have a guess for the effective number of non-zero coefficients,

e0. If we can solve e0 = EΛ|τβ ,Σ(meff) for τβ, this gives us a candidate value, say τβ0 , to

take as some central value in the prior for τβ.

In the simple case where Σ = diag(σ2
1, . . . , σ

2
K), the shrinkage factor matrix is given by

(7.30) and so

EΛ|τβ ,Σ (Kj,kk) =

∫
· · ·
∫

1

1 +Ns2
jτ

2
βλ

2
jkσ
−2
k

K∏
`=1

2

π(1 + λ2
j`)
dλj1 . . . , dλjK

=

∫
1

1 +Ns2
jτ

2
βλ

2
jkσ
−2
k

2

π(1 + λ2
jk)

dλjk

=

∫
1

1 + a2
jkλ

2
jk

2

π(1 + λ2
jk)

dλjk,

where ajk =
√
Nsjτβσ

−1
k . By expressing the integrand as the sum of its partial fractions,
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it can then be shown (see Appendix A) that

EΛ|τβ ,Σ (Kj,kk) =
1

1 + ajk
. (7.37)

Therefore,

EΛ|τβ ,Σ(meff) = pK −
p∑
j=1

K∑
k=1

1

1 + ajk

=

p∑
j=1

K∑
k=1

ajk
1 + ajk

=

p∑
j=1

K∑
k=1

√
Nsjτβσ

−1
k

1 +
√
Nsjτβσ

−1
k

= p
K∑
k=1

√
Nτβσ

−1
k

1 +
√
Nτβσ

−1
k

(7.38)

where the last line holds if we assume that all of the explanatory variables have been

standardised to have variance equal to one, that is, s2
j = 1 for j = 1, . . . , p. A closed-form

expression for τβ which solves

e0 = p

K∑
k=1

√
Nτβσ

−1
k

1 +
√
Nτβσ

−1
k

cannot be found. However, if we make the further assumption that the diagonal elements

of Σ are all the same, say σ2
k = σ2 for k = 1, . . . ,K, then we can simplify the expression

in (7.38) to obtain

EΛ|τβ ,Σ(meff) =

√
Nτβσ

−1

1 +
√
Nτβσ−1

pK.

Setting EΛ|τβ ,Σ(meff) = e0, τβ = τβ0 and solving for τβ0 gives

τβ0 =
e0

pK − e0

σ√
N

(7.39)

as we would expect from the univariate case. We can then choose as our prior for τβ

τβ|σ ∼ C+(0, τ2
β0) (7.40)

which has median equal to τβ0 .

When Σ 6= σ2IK , it is not generally possible to compute EΛ|τβ ,Σ(Kj,kk) in closed-

form. Therefore, we introduce a hyperparameter σ such that, say, E(Σ|σ) = σ2IK or
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E(Σ−1|σ) = σ−2IK and construct our prior for (τβ,Σ, σ) or (τβ,Σ
−1, σ) hierarchically so

that

π(τβ,Σ, σ) = π(τβ|σ)π(Σ|σ)π(σ) or π(τβ,Σ
−1, σ) = π(τβ|σ)π(Σ−1|σ)π(σ)

with the conditional distribution for τβ|σ specified in (7.40). The distribution that we give

Σ|σ (or Σ−1|σ) will be considered when we specify our error structure in Section 7.4.

7.3.4 Regularised horseshoe prior

As discussed in Section 7.3.2, a major drawback of the “standard” horseshoe prior is that

the parameters far away from zero are not regularised, which is particularly problematic

when parameters are only weakly identified by the data. Furthermore, there can also

be sampling issues with the standard horseshoe prior because of the posterior possessing

an extreme funnel shape, which is problematic for MCMC methods (Piironen & Vehtari,

2017). These sampling issues manifest as divergent transitions when using the NUTS

algorithm (see Section 2.3.3). To tackle these problems with the horseshoe prior, Piiro-

nen & Vehtari (2017) proposed the regularised horseshoe prior, which for the regression

coefficients β in (7.3) is

βj |λj , τβ, c ∼ N
(

0, τ2
β λ̃

2
j

)
, (7.41)

λ̃2
j =

c2λ2
j

c2 + τ2
βλ

2
j

,

λj ∼ C+ (0, 1) , j = 1, . . . , p,

τβ ∼ C+
(
0, τ2

β0

)
,

where c > 0 can be fixed or given a prior, for example,

c2 ∼ IG (α, β) , α = ν/2, β = νs2/2. (7.42)

When τ2
βλ

2
j � c2, which implies that the coefficient βj is near to zero, then λ̃2

j → λ2
j and

(7.41) approaches the standard horseshoe. However, when τ2
βλ

2
j � c2, which means the

coefficient is far from zero, then λ̃2
j → c2/τ2

β and (7.41) approaches N
(
0, c2

)
. Therefore,

the prior can shrink irrelevant coefficients as the horseshoe does, whilst also being able to

regularise even the largest coefficients as a normal slab with variance c2 (see Piironen &

Vehtari (2017) for further explanation). The inverse-gamma prior for c2 is a reasonable

choice because it possesses both a heavy right tail and a light left tail, which prevents a

lot of mass accumulating near zero. For the coefficients far from zero, it translates to a

Student−tν
(
0, s2

)
.
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In the case of multiple linear regression with a multivariate response vector, the regu-

larised horseshoe is given by

βjk|λj , τβ, c ∼ N
(

0, τ2
β λ̃

2
jk

)
, (7.43)

λ̃2
jk =

c2λ2
jk

c2 + τ2
βλ

2
jk

,

λjk ∼ C+ (0, 1) , j = 1, . . . , p, k = 1, . . . ,K,

τβ ∼ C+
(
0, τ2

β0

)
where c2 has the prior defined in (7.42) and τβ0 is defined in (7.39). Extending this to a

VAR(1) model gives us

ajk|λjk, τA, c ∼ N
(

0, τ2
Aλ̃

2
jk

)
, (7.44)

λ̃2
jk =

c2λ2
jk

c2 + τ2
Aλ

2
jk

,

λjk ∼ C+ (0, 1) , j = 1, . . . ,K, k = 1, . . . ,K,

τA ∼ C+
(
0, τ2

0

)
, (7.45)

where c2 has the prior defined in (7.42),

τ0 =
e0

K2 − e0

σ√
N

and e0 is the expected number of non-zero autoregressive coefficients a priori. We fit the

model with a regularised horseshoe prior on A in Stan and so we do not need to derive

the FCDs.

7.3.5 Comparison of priors via simulation study

In the following section, we simulate some data to test and compare the performance of

the shrinkage priors (discussed above) and corresponding inference methods. Additionally,

we perform inference with the multivariate normal prior specified in (7.2) to see the effect

of choosing a prior that does not encourage shrinkage. We simulate three autoregressive

coefficient matrices constrained to the stationary region, with 12 groups (K = 12), and

varying degrees of sparsity, A80, A50 and A20, where the subscripts indicate the rough

percentage of zero-coefficients in the matrix. Heatmaps of A80, A50 and A20 are shown in

Figures E.7 to E.9 in Appendix E. Our simulated data have 250 time points so that the

dimensions roughly match the dimensions of our clustered WWTP data.

We assume a time invariant mean and adopt the simple diagonal error structure with
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common variance τ−1 = 1. Hyperparameters for the priors on A are chosen so that the

conditional expectations and variances are the same (or similar). All of our priors have

a conditional expectation of zero. It can be shown that the conditional variance under

the spike and slab prior is Var (ajk) = d2ψjk and under both the standard horseshoe

and regularised horseshoe prior is undefined (see Appendix A). The variance under the

multivariate normal prior is simply d2. Therefore, we choose ψjk = 0.5 for all j, k and

d2 = 200 in the spike and slab prior and d2 = 100 in the multivariate normal prior,

resulting in reasonably large (conditional) variances of 100. Stan is used to fit the majority

of models, with the exception of the spike and slab prior, as Stan is only suitable for fitting

models with continuous valued parameters. Instead, a Gibbs sampler is written in R to fit

the VAR(1) model with a spike and slab prior for A. The results presented are based on

4000 near-uncorrelated samples from four chains (1000 per chain) initialised at different

starting points.
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Figure 7.5: Posterior means (◦) and 95% credible intervals ( ) for A80, with the true values (×),
under the multivariate normal prior.

First we look at the results for the data simulated using the most sparse matrix A80.

We make comparisons with plots of the posterior means and 95% credible intervals (CIs)

for the elements of A80, in the case of each prior. With the multivariate normal prior, we

can see in Figure 7.5 that most of the true values for the elements of A80 are captured in

the 95% CIs. However, for autoregressive coefficients a8,12 and a12,3, their true values of

zero are not within the 95% CI. In addition to these, several other coefficients with true

values of zero have CIs that only just include zero, for example, see a10,7, a11,10 and a12,6.
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Given that there are a total of 144 parameters to infer, perhaps it is not surprising that

the true values of some coefficients are not capture in the CIs.

Figure 7.6 shows the plot for the spike and slab prior for the 80% sparse matrix. Here

most of the elements appear to be captured within their CIs, although a2,5 does not have

its true values contained within its CI. There is a suggestion of poor mixing in the non-

zero elements, as λjk = 1 for 100% of the posterior samples. This is a suspiciously high

percentage that may simply be the result of the sampler getting stuck at λjk = 1. The

CIs are also extremely narrow for most of the zero elements. For the majority of these

elements, λjk is typically zero in ∼ 99% of the posterior samples, which also indicates poor

mixing.
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Figure 7.6: Posterior means (◦) and 95% credible intervals ( ) for A80, with the true values (×),
under the spike and slab.

The results for the horseshoe prior are shown in Figure 7.7. All the true values for the

autoregressive coefficients in A80 have been captured in the CIs, except for one element,

a2,5, where the true value is just outside of the CI and zero is included. For many of

the elements, the posterior means are very close to the true values, indicating a good

performance by the horseshoe prior. However, even with the acceptance rate as 0.999

(which significantly reduces the step size; see Section 2.3.3), there were seven divergent

transitions. Such a low number of divergent transitions is not overly concerning, but

the small step size causes an increase in computational time. This was not an issue for

the regularised horseshoe prior, as larger step sizes could be used without yielding any

divergent transitions. Figure 7.8 shows the results for the regularised horseshoe, which
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Figure 7.7: Posterior means (◦) and 95% credible intervals ( ) for A80, with the true values (×),
under the horseshoe prior.
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Figure 7.8: Posterior means (◦) and 95% credible intervals ( ) for A80, with the true values (×),
under the regularised horseshoe prior.

are very similar to the results obtained for the standard horseshoe prior. Although not

obvious from the plot, the CI for a2,5 contains the true value of the element, but zero is
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included in the CI too. The obvious advantage here for using the regularised horseshoe

instead of the standard horseshoe is computational speed. For example, running the model

with the standard horseshoe with a smaller step size takes 26.5 minutes to perform 2000

iterations, whereas the regularised horseshoe with its larger step size (that results in zero

divergent transitions) takes 10.5 minutes to perform the same number of iterations, which

is more than twice as fast.

Next we compare the results of each prior for A50 and begin again with the results of

the multivariate normal prior, which are shown in Figure 7.9. Most elements have their

true values captured in their posterior 95% CIs but we also note that a1,12, a2,11 and a6,2

have their true values of zero outside of their CIs. This is most likely an effect of the prior

not encouraging shrinkage. Although not obvious from the plot, the true value for a9,2

also lies just outside of its CI.
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Figure 7.9: Posterior means (◦) and 95% credible intervals ( ) for A50, with the true values (×),
under the multivariate normal prior.

The result for A50 under the spike and slab prior are shown in Figure 7.10. The non-

zero autoregressive coefficient a11,3 contains zero in its CI. Additionally, the true values of

a2,3 (-0.168), a8,11 (-0.127) and a10,12 (0.122) are not captured in the posterior CIs, with

their posterior means as zero. This could be due to their true values representing weak

signals, which seemed to be an issue for Lei et al. (2011), as mentioned in Section 7.3.1.

Almost 100% of the posterior samples for these elements are zero, for example, λ10,12 = 0

in 100%, 100%, 100% and 98.8% of the posterior samples of each chain, respectively. Again,

this may indicate “stickiness” of the sampler and hence poor mixing, as we saw with A80.
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Figure 7.10: Posterior means (◦) and 95% credible intervals ( ) for A50, with the true values (×),
under the spike and slab.
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Figure 7.11: Posterior means (◦) and 95% credible intervals ( ) for A50, with the true values (×),
under the horseshoe prior.

Furthermore, many of the other elements of A50 suffer from this problem, for example,

the majority of the remaining non-zero autoregressive coefficients have their corresponding
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Figure 7.12: Posterior means (◦) and 95% credible intervals ( ) for A50, with the true values (×),
under the regularised horseshoe prior.

λjk = 1 for 100% of their posterior samples.

Figure 7.11 shows the results for A50 under the standard horseshoe prior. Again, the

horseshoe seems to perform reasonably well and captures the true values of the autore-

gressive coefficients within the CIs, with the exception of a9,2 and a4,3. The true values

of these elements lie just outside of the CIs. Comparing the results for A50 under the

regularised horseshoe (Figure 7.12) to the standard horseshoe, we can see that it performs

similarly to the standard horseshoe. However, the CI for a9,2 does contain the true value.

Additionally, we do not have any divergent transitions in our posterior samples when us-

ing the regularised horseshoe, whereas for the standard horseshoe, there were 41 divergent

transitions.

Finally, we discuss the results for the simulation study with the least sparse matrix

A20. Figure 7.13 shows the results under the multivariate normal prior. Seven of the

autoregressive coefficients (a2,11, a3,1, a3,3, a6,2, a8,12, a10,4 and a10,6) do not have their true

values in their CIs, although the true values lie just outside of the intervals. The mul-

tivariate normal prior only fails to “find” one of the zero-coefficients (a10,4) but overall

performs fairly well, as we might expect for this particular matrix.

Figure 7.14 shows the results for A20 under the spike and slab prior. Clearly from the

plots, the true values of many autoregressive coefficients have not been found, for example,

a4,6, a8,9, a8,12, a11,4 and a11,12 are all non-zero coefficients but zero is included in their CIs,

meanwhile their true values are not included. Closer inspection reveals that 16 different
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Figure 7.13: Posterior means (◦) and 95% credible intervals ( ) for A20, with the true values (×),
under the multivariate normal prior.
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Figure 7.14: Posterior means (◦) and 95% credible intervals ( ) for A20, with the true values (×),
under the spike and slab.

autoregressive coefficients do not contain their true values in their CIs and 11 non-zero

autoregressive coefficients include zero in their CIs. This is evidence to suggest that this
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prior is not well suited to data that break the assumption of sparsity. Furthermore, mixing

issues are also likely to be a problem here, with many of the λjk taking the same value for

100% of posterior samples in all four chains.

The standard horseshoe seems to perform better than the spike and slab prior when

the data are simulated using A20. However, inspecting the posterior means and CIs in

Figure 7.15 clearly shows that a8,12’s true value of −0.204 is not within the 95% CI.

Further investigation reveals that seven other autoregressive coefficients do not have their

true values contained in their corresponding CIs and a11,12’s CI contains both the true

value (0.106) and zero. As we found with the more sparse matrices, there were some

divergent transitions (seven) present when using the standard horseshoe prior for A20.

Finally, we discuss the results for A20 under the regularised horseshoe prior. As we

found with the more sparse autoregressive matrices, performance was similar to the stan-

dard horseshoe, although only six autoregressive coefficients did not have the correct value

contained in their CIs. An almost identical result was also found for a11,12 as the result

found under the standard horseshoe, both the true non-zero value and zero were in the CI.

For both this prior and the standard horseshoe, where there was evidence to suggest that

the true values had not been identified by the model, most true values were very close to

the edges of their CIs, which can be seen in Figure 7.16.
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Figure 7.15: Posterior means (◦) and 95% credible intervals ( ) for A20, with the true values (×),
under the horseshoe prior.
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Figure 7.16: Posterior means (◦) and 95% credible intervals ( ) for A20, with the true values (×),
under the regularised horseshoe prior.

Summary

Table 7.1 shows the number of incorrectly identified autoregressive coefficients for each

matrix and prior in the simulation study. We consider a coefficient incorrectly identified

if its CI does not contain its true value or for a non-zero coefficient, if zero is contained in

the CI. Solely based on these results, if we have a matrix of autoregressive coefficients A

in a VAR(1) model, where the level of sparsity is unknown (as we have with our WWTP

data) then it would seem sensible to choose a regularised horseshoe prior for A. In the case

where the data are simulated using A50, the regularised horseshoe outperforms the other

priors. For the data simulated with the least sparse matrix A20, the regularised horseshoe

performs as well as the multivariate normal. For the most sparse matrix, the spike and slab,

standard horseshoe and regularised horseshoe only fail to correctly identify one coefficient

a2,5. However, the regularised horseshoe does not have the sampling issues that the spike

and slab prior has, nor does it suffer from the problem of divergent transitions that the

standard horseshoe has. Furthermore, the regularised horseshoe performs computationally

faster than the standard horseshoe, because the step size in the NUTS algorithm can be

larger (see Section 2.3.3). The obvious choice for the prior for A in our model is the

regularised horseshoe because of these benefits and also due to its flexibility with regards

to varying degrees of sparseness in the autoregressive matrix.

Therefore, for A we use the prior specified in (7.44) with the hyperprior for the global
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Prior
Normal Spike & Slab Horseshoe Regularised Horseshoe

A80 2 1 1 1
A50 4 4 2 1
A20 7 27 8 7

Table 7.1: Number of autoregressive coefficients not correctly identified in the simulation study for
each matrix and prior.

shrinkage τA specified in (7.45). We set the scale of τA to

τ0 =
e0

K2 − e0

σ√
N
, (7.46)

where N is the number of the time points, K is the number of bins and e0 is the estimated

number of non-zero autoregressive coefficients. In Section 7.3.3, the definition of the

effective number of non-zero coefficients relies on the assumption that the covariates are

standardised to have a variance of one. This assumption was made by Piironen & Vehtari

(2017) in the case of multiple linear regression with a univariate response vector. Thus,

for τ0 in (7.46) to be a sensible value, we must scale the data to have a variance of one (see

Section 7.1.2). We note, however, that the justification for this value also relies on the

elements of yt−1 being uncorrelated. Although this will not be satisfied here, specifying

τ0 according to (7.46) is still a principled, pragmatic choice.

7.4 Error structure

Now that we have chosen a suitable prior for the matrix of autoregressive coefficients A,

we can make another alteration to the simple VAR(1) model specified in (7.1). Although

convenient, the diagonal error structure with common variance for Σ is perhaps too simple.

However, a prior for Σ must also consider our prior for A, as the scale of the global shrinkage

parameter in (7.46) depends on σ. We adopt the same approach for our VAR(1) model

as discussed at the end of Section 7.3.3 for the multivariate linear regression case. When

Σ 6= σ2IK , we let σ be a hyperparameter such that, E (Σ|σ) = σ2IK or E
(
Σ−1|σ

)
= 1/σ2IK

and construct a prior for (τA,Σ, σ) or
(
τA,Σ

−1, σ
)

so that

π (τA,Σ, σ) = π (τA|σ)π (Σ|σ)π (σ) or π
(
τA,Σ

−1, σ
)

= π (τA|σ)π
(
Σ−1|σ

)
π (σ) .

If Σ was unstructured, there would be many options for the conditional distribution

for Σ|σ. One simple possibility is the inverse Wishart distribution, that is

Σ|σ ∼ IWK

{
σ2(ν −K − 1)IK , ν

}
,
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where ν > K+3 to ensure that the distribution has the required mean and finite variance.

As it is a conjugate prior, the inverse Wishart is computationally convenient. However, it

is very restrictive and inflexible (Daniels & Pourahmadi, 2002). The main issue is that a

single hyperparameter ν is used to control the distributional properties of all elements in

Σ.

A better option for an unconstrained Σ would be to decompose Σ = DRD where

D = diag (σ1, ..., σK) is a diagonal matrix of standard deviations σi =
√

Σii and R = (Rij)

is a matrix of correlations Rij = Σij/ (σiσj). Then we could assign the prior

π (Σ|σ) = π(R)

K∏
i=1

π
(
σ2
i |σ
)
,

giving the σi some distribution on R+ with E
(
σ2
i |σ
)

= σ2 and R some distribution over

the space of K ×K correlation matrices such that E (Rij) = 0, for all i 6= j. For instance,

we could have

σi ∼ LN
{

log(a), log
(
σ2/a

)}
,

where a is the median of σi and assign to R the (proper) jointly uniform distribution,

π (R) ∝ 1. In other words, we could assign equal prior density to all possible K × K

correlation matrices. Barnard et al. (2000) found that the drawback of using this prior is

that the marginal priors for the corresponding individual correlations, rij are not uniform.

They found that as K increases, the marginal priors for individual correlations tend to be

concentrated around zero.

Instead of specifying a prior for the covariance matrix, we could instead specify a prior

for the precision matrix Σ−1. Similarly, when Σ−1 is unstructured, there is a variety

of options for the conditional distribution for Σ−1|σ. A reasonable approach would be

to reparameterise Σ−1 in terms of its square-root free Cholesky decomposition (Daniels

& Pourahmadi, 2002) Σ−1 = TTD−1T, where D = diag (σ1, . . . , σK) and T is a lower

triangular matrix with 1s on the diagonal and its (i, j)-th entry is−φi,j for i > j. This gives

a new set of real valued parameters that are unconstrained, unlike the original covariance

matrix, which must be symmetric and positive definite. However, for the parameters to

be interpretable, the data must have some order.

Recall that our clustered data have a circular time-ordering, with the OTUs in neigh-

bouring bins (or bins 12 and 1), typically peaking in abundance in neighbouring months.

Therefore, the square-root free Cholesky decomposition might be sensible for our data.

However, we choose to make our model more parsimonious by assuming a parametric

form for Σ−1, motivated by the structure of the data. Specifically, we take Σ−1 to be

a symmetric, circulant, tridiagonal matrix like that described in (7.35) in Section 7.3.3.

Under this structure, we want E (ω0|σ) = 1
σ2 and E (ω1|σ) = 0. To ensure that Σ−1 is
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positive definite, it is convenient to reparameterise in terms of ω0 = ($0 +$1) /
√

2 and

ω1 = ($0 −$1) /2
√

2. The precision matrix is then positive definite if and only if $i > 0

for i = 0, 1. The full derivation of this is given in Appendix A. Therefore, using these new

parameters, we want

E(ω0|σ) =
E($0|σ) + E($1|σ)√

2
=

1

σ2
and E(ω1|σ) =

E($0|σ)− E($1|σ)

2
√

2
= 0

and hence

E($0|σ) = E($1|σ) =

√
2

2σ2
.

For example, for i = 0, 1, independently, we could take

$i|σ ∼ Ga

(
1

c2
ω

,

√
2σ2

c2
ω

)
.

Or, perhaps, we could set the median, rather than mean equal to
√

2/(2σ2) and take

$i|σ ∼ C+

(
0,

1

2σ4

)
.

This particular precision structure appears in Gaussian conditional autoregression,

which can be used to model spatial dependence in data. We now discuss this model (see

Chapter 13 of Gelfand et al. (2010) for a more detailed discussion), as it aids interpretation

of our errors. Suppose we have a random vector X = (X1, . . . , Xn)T , where each compo-

nent Xi is located at a fixed “site” i ∈ 1, . . . , n. These sites can represent a particular point

in two-dimensional (or higher) space, or a particular geographical location, for example. If

we wish to specify a joint distribution p(x) forX, in the temporal context, under a Markov

assumption, a first-order autoregressive model p(x) = p(x1)p(x2|x1) . . . p(xn|xn−1) can be

used, or can be generalised for higher dimensions. However, if we are handling spatial

data, such a model is not useful, since the indices are arbitrary and could easily be per-

muted. Instead the full conditional distribution p(xi|x−i) can be specified, that is the

conditional distribution of Xi at a particular site, given the values at all other sites. The

Gaussian conditional autoregression is a well studied model, which assumes that p(x) is

multivariate normal and p(xi|x−i) is univariate normal. With the inclusion of a Markov

property, they are also known as Gaussian Markov random fields.

Suppose that, Xi|x−i for i = 1, . . . , n is normal with conditional mean and variance

E [Xi|x−i] = µi +
∑
j 6=i

βij(xj − µj), (7.47)

Var (Xi|x−i) = γ−1
i . (7.48)
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Typically, µi is modelled by regression but here we assume that µi = 0 for all i ∈ {1, . . . , n}.
Under the additional assumption of symmetry, that is γiβij = γjβji for all i 6= j, the above

conditional distributions then correspond to a multivariate joint Gaussian distribution with

mean 0 and precision matrix Σ−1, with (i, i)-th element γi and (i, j)-th element −γiβij
(i 6= j), assuming that Σ−1 is symmetric and positive definite.

For many applications, the coefficients βij will be non-zero for only a few “neighbours”

of Xi. With the zero mean assumption, we can write (7.47) as

E [Xi|x−i] =
∑
j∈di

βijxj ,

which illustrates that the conditional mean of Xi depends only on its neighbours di. Now

we take the example of a circular first-order autoregressive model from Gelfand et al.

(2010), that allows the Xis to follow a zero-mean Gaussian conditional autoregression

with

E [Xi|xi] = φ


0.5 (x2 + xn) for i = 1

0.5 (xi−1 + xi+1) for 1 < i < n

0.5(x1 + xn−1) for i = n

,

where φ ∈ [0, 1) and Var (Xi|x−i) = γ−1. The precision matrix of X is

Σ−1 =
γ

2



2 −φ 0 0 · · · 0 0 0 −φ
−φ 2 −φ 0 · · · 0 0 0 0

0 −φ 2 −φ · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · 0 −φ 2 −φ
−φ 0 0 0 · · · 0 0 −φ 2


,

which has the same structure as our precision matrix in (7.35). The first column (or row)

of Σ−1 is the base of Σ−1, which we will denote as e1. A base of a circular matrix is a

single vector that you can create the matrix from. The first column is set to the base then

each subsequent column is formed by performing the forward shift operator on the current

column. A forward shift moves every element of a vector one space down (or to the right,

for a row vector), for example, a forward shift of a vector x = (x1, x2, . . . , xN−1, xN )T is

(xN , x1, x2, . . . , xN−2, xN−1)T . The covariance matrix Σ of x is also circular, where its

base e2 can be calculated via a transformation involving the discrete Fourier transform

of e1. e2 is the autocovariance function of X and from this the autocorrelations can be

easily found. Naturally, the autocorrelation function must be symmetric, for example,

the correlation between x1 and x2 must be equal to the correlation between x1 and xn.

Recalling that ytk is the count of bin k at time t and taking the correlation matrix that
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corresponds to our symmetric, circular, tridiagonal precision matrix of the error terms

in (7.35), at any time t ∈ {1, . . . , N} we can interpret the following: (i) for j 6= k, the

errors of ytk have stronger correlations with the errors of ytj when j is closer to k; (ii) the

correlation between the errors of yt1 and yt2 is the same as the correlation between the

errors of yt1 and ytK .

We select the symmetric, circulant, tridiagonal precision matrix for our errors defined in

(7.35) because it complements our chosen clustering method well (see Section 7.1.2). Such

a precision matrix requires that an assumption of circular data holds and our clustering

method that incorporates seasonality gives the resulting subpopulations an order that

satisfies this assumption.

7.5 Time varying mean

From our exploratory data analysis and the plots of our bins in Figures 7.1 and 7.2 in

Section 7.1.2, a time invariant mean does not seem realistic, so we adopt a time varying

mean. Now our model is

yt = µt + A
(
yt−1 − µt−1

)
+ εt, (7.49)

where εt is normally distributed with zero-mean and has the precision matrix described in

(7.35) in Section 7.4 and A is unstructured, but assumed sparse and given a regularised

horseshoe prior described in (7.44). To capture the seasonal variation for each bin, we use

a harmonic regression to fit a time varying mean, that is

µt = α+
J∑
j=1

βj sin

(
2πtj

52

)
+ γj cos

(
2πtj

52

)
, (7.50)

where J is the number of harmonics and βj ∼ NK(0,Vβ) and γj ∼ NK(0,Vγ). After

fitting the model with J = 1, . . . , 4 harmonics, we select J = 2 for our final model because

there was little evidence of βj and γj being non-zero for j = 3, 4.

7.5.1 Incorporating the chemical and environmental data

Now we wish to incorporate the chemical and environmental data into our model. A

sensible approach is to regress the intercept term of the mean µt on the chemical and

environmental covariates. Under the guidance of a biological expert, we regress the in-

tercept term at time t on the measurements of the covariates at the previous time point

t − 1, as the effect of any environmental conditions is unlikely to be instantaneous. We

let X be the N × L matrix of the covariates, where N is the number of time points and

L is the number of covariates. We find that the covariate data are skewed, so we apply a
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square-root transformation. In addition to this, we standardise each column (covariate)

and denote the resulting matrix as X̃. Now the intercept term α in equation (7.50) above

becomes αt, where

αtk = B0k +B1kx̃t−1,1 + · · ·+BLkx̃t−1,L, (7.51)

for t = 2, · · · , N and k = 1, 2, · · · ,K where x̃t` is the measurement of covariate ` at time

t and B`k is the regression coefficient for bin k and covariate `, noting that B0k is the

intercept term for bin k.

For each ` = 0, 1, · · · , L, we adopt a hierarchical prior for B`k, such that

B`k|B`, σ2
B`
∼ N

(
B`, σ

2
B`

)
,

B` ∼ N
(
aα, b

2
α

)
,

σ2
B`
∼ IG (cα, dα)

and each B`k is conditionally iid. Using the law of total expectation, law of total variance

and law of total covariance, it can be shown that, marginally,

E [B`k] = aα, Var (B`k) =
dα

cα − 1
+ b2α,

Cov (B`j , B`k) = b2α, Corr (B`j , B`k) =
b2α

dα(cα − 1)−1 + b2α
, j, k = 1, · · · ,K, j 6= k,

for each ` = 0, 1, · · · , L. We select values so that the expectation of B`k is zero and

Corr (B`j , B`k) = 0.95, so we have aα = 0, bα =
√

95, cα = 2.25 and dα = 6.25.

To select which covariates to include, we fit the model without any chemical and

environmental covariates in (7.49) with µt in (7.50). Then we check to see which covariates

have a lag-one correlation with the (mean of the) model residuals at each time point. These

are calculated by simulating from the posterior predictive distribution for each time point,

at each iteration, and subtracting the true values. This is a convenient yet simple way

to select our covariates. A more rigorous approach might be to use a variable selection

method instead. For example, we could make use of the regularised horseshoe prior again

(see Section 9.3.2). In the AS tank, five covariates seem to be correlated with the residuals

and are selected: nitrate, chemical oxygen demand (COD), ammonia, pH and phosphate.

This selection of covariates is supported by our exploratory data analysis. In Section 6.2.3

of Chapter 6, we found that several of the top 12 OTUs in the AS appeared to have a

(contemporary) correlation with COD, ammonia and phosphate. We also found that one

of the top 12 genera seemed to be correlated with nitrate and two of the top 12 classes

had weak negative (contemporary) correlations with pH. In the SS tank, eight covariates

are selected: iron, chloride, fluoride, silicon, phosphate, ammonia, flow and MLVSS. As

we found with the AS tank, this selection of covariates for the SS tank also agrees with
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the findings of the exploratory data analysis in Section 6.2.3.

7.5.2 Handling missing values

As stated in Section 2.2.3 there are missing data for some of the environmental and

chemical covariates. Like the missing values of Yt, we therefore treat these missing values

as unknowns and average over our uncertainty in their values, which requires specification

of a model for the (transformed) covariates X̃. We define x̃t = (x̃t1, . . . , x̃tL)T and have

x̃t = Φx̃t−1 + ε̃t (7.52)

for t = 2, . . . , N , where

Φ = diag(φ1, . . . , φL),

φ` ∼ Beta (αφ, βφ) , for ` = 1, . . . , L,

ε̃t ∼ N
(
0,ΣX̃

)
,

ΣX̃ ∼ W
−1
(
ΨX̃ , νX̃

)
.

Essentially, we are using a first-order autoregression to model the missing values.

7.6 Posterior inference

7.6.1 Model and prior specification

In this chapter, we have developed our Bayesian hierarchical VAR(1) model for modelling

the counts of the OTUs in our WWTP. Before we describe posterior inference for our

model, we summarise the key elements of our model and prior. The OTUs are clustered

using a seasonal phase-based approach to form 12 bins, with OTUs in different bins peaking

at different months and the data are logged to make an assumption of normality more

plausible. After a comprehensive simulation study, we select a regularised horseshoe prior

for the matrix of autoregressive coefficients A which allows this matrix to be sparse. As

a consequence of the scale chosen for our half-Cauchy hyperprior for the global shrinkage

parameter of A, we scale our data to have a variance of around one. We adopt a symmetric,

circulant, tridiagonal precision matrix for the errors, as such a matrix assumes circular

data, which holds for our clustered data. Finally, we use harmonic regression to fit a time

varying mean µt and incorporate the chemical and environmental covariates in an additive

fashion.

For either the AS tank or the SS tank, let yt be the scaled log counts of our K = 12

bins at time t and let X̃ be our (N × L) matrix of standardised, square rooted chosen
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chemical and environmental covariates. Thus, our final model specification is as follows:

yt = µt + A
(
yt−1 − µt−1

)
+ εt, for t = 2, . . . , N,

where

µt = αt +
2∑
j=1

βj sin

(
2πtj

52

)
+ γj cos

(
2πtj

52

)
and

αtk = B0k +B1kx̃t1 + · · ·+BLkx̃tL

with βj ∼ NK (0, 100IK), γj ∼ NK (0, 100IK) and for ` = 0, 1 . . . , L, B`k|B`, σ2
B`
∼

N
(
B`, σ

2
B`

)
, B` ∼ N (0, 95) and σ2

B`
∼ IG (2.25, 6.25). For the matrix of autoregressive

coefficients, for j = 1, . . . ,K and k = 1, . . . ,K, we have

ajk|λjk, τA, c ∼ N
(

0, τ2
Aλ̃

2
jk

)
,

λ̃2
jk =

c2λ2
jk

c2 + τ2
Aλ

2
jk

λjk ∼ C+ (0, 1) ,

τA|σ ∼ C+
(
0, τ2

0

)
,

where c2 ∼ IG(2, 8) and τ0 = e0
K2−e0

σ√
N

, where e0 is our prior guess for the number of

non-zero autoregressive coefficients. We select e0 = 12 but several other plausible values

of e0 were tested with little effect on the results (omitted). The errors εt are normally

distributed with zero-mean and precision matrix

Σ−1 =



ω0 ω1 0 0 · · · 0 0 0 ω1

ω1 ω0 ω1 0 · · · 0 0 0 0

0 ω1 ω0 ω1 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · 0 ω1 ω0 ω1

ω1 0 0 0 · · · 0 0 ω1 ω0


,

with a reparameterisaton where ω0 = ($0 +$1) /
√

2 and ω1 = ($0 −$1) /2
√

2 and for

i = 1, 2, $i|σ ∼ Ga
(
1,
√

2σ2
)
, where σ ∼ LN (0, 10).
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7.6.2 Posterior inference via HMC

There are several parameters in the model. First, there is the matrix of autoregressive

coefficients A with its global shrinkage parameter τA ∈ R+, the matrix of local shrinkage

parameters Λ and the regularising parameter c2. Additionally, there are the parameters for

the precision matrix Σ−1 of the errors, denoted by ω = (ω0, ω1) ∈ R2
+ and the parameter σ.

There are the harmonic regression coefficients for each µt, denoted by θ = {β1,β2,γ1,γ2}.
We also have the coefficients of the chemical and environmental covariates X̃ and the

intercepts B, with mean B` and variance σ2
B`

for each Blk in B. Finally, we have the

parameters Φ and ΣX̃ in the missing data model.

The prior density is given by

π
(
A, τA,Λ, c

2,ω, σ,θ,B, B`, σ
2
B`

)
= π

(
A|Λ, τA, c2

)
π (τA|σ)π(σ)π(Λ)π(c2)π (ω|σ)

× π (θ)π
(
B|B`, σ2

B`

)
π (B`)π

(
σ2
B`

)
× π (Φ)π

(
ΣX̃

)
.

The posterior of the unknowns is therefore given by

π
(
A, τA,Λ, c

2,ω, σ,θ,B, B`, σ
2
B`
,Φ,ΣX̃ |Y

)
∝ π

(
A, τA,Λ, c

2,ω, σ,θ,B, B`, σ
2
B`
,Φ,ΣX̃

)
× π (Y|A,θ,B,ω) ,

where π (Y|A,θ,B,ω) is the data likelihood. Since our model has a Markovian structure,

the likelihood can be written as

π (Y|A,θ,B,ω) = π (y1|A,θ,B,ω)
N∏
t=2

π
(
yt|yt−1,A,θ,B,ω

)
.

Following the same arguments presented by Lei et al. (2011), we ignore the contribution

of the marginal model π (y1|A,θ,B,ω), as we have large enough sample sizes for each

tank that little information will be lost in doing so. Our likelihood is conditioned on the

observed value of y1 and is

π (Y|A,θ,B,ω) =

N∏
t=2

π
(
yt|yt−1,A,θ,B,ω

)
,

where the conditional distributions yt|yt−1,A,θ,B,ω ∼ NK

(
µt + A

(
yt−1 − µt−1

)
,Σ
)

and K = 12.

This distribution is analytically intractable, so we make use of MCMC methods to

generate samples from the posterior. More specifically, we fit the model in Stan (see

Appendix C for the Stan model) which uses the NUTS algorithm (see Section 2.3.3). The
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model is run for each data set for 10K iterations with a warm-up period of 3000 iterations.

In the interests of saving memory, the output is thinned to leave us with 1000 samples

from the posterior. The usual graphical and numerical diagnostic checks (see Section 2.3.2)

gave no evidence of any lack of convergence and mixing was good. We present the results

in the next chapter based on these posterior samples.
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Chapter 8

Metagenomics application

Now that we have presented the details of our model, we present the results of our analyses.

Recall that for the AS tank and the SS tank we have two different (transformed) data

sets of scaled log counts for 12 subpopulations of OTUs, or 12 bins, as we described

in Section 7.1.2, where bin 1 peaks in February, bin 2 peaks in January, bin 3 peaks

in December and so on. For each tank we have a different set of standardised, square

rooted chemical and environmental covariates in our model. The selection process for

these covariates was described and the rationale for transforming the covariate data was

explained in Section 7.5.1. In this chapter, we look at the posterior distributions for the

parameters in our model and provide biological explanations for some of our findings.

8.1 Activated sludge tank results

First we look at the results for the AS tank. Regarded as the tank of more biological

interest (see Section 2.2.4), we discuss this tank in more detail than the SS tank.

8.1.1 Time varying mean

We begin with the time varying mean µt of our model, which is modelled with harmonic

regression with two harmonics. Recall that we have

µt = αt +
2∑
j=1

βj sin

(
2πjt

52

)
+

2∑
j=1

γj cos

(
2πjt

52

)
,

where

αt = BTXt

= B0 +B1X1t + . . .+BLXLt
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and Xt are the transformed measurements of our chosen chemical and environmental

covariates at time t.

Chemical and environmental covariates

In the AS tank, we have five covariates in our model: nitrate, chemical oxygen demand

(COD), ammonia, pH and phosphate. Figure 8.1 and Figure 8.2 show the posterior means

and the 95% credible intervals (CIs) for the regression coefficients for each bin in the

model. When looking at the results of our analyses, we take zero lying in the CI of a

particular parameter as a quick discriminator to suggest that the parameter’s value may

be (close to) zero. However, this does not necessarily mean that there is not considerable

support for a positive or negative coefficient (for example, see phosphate below). For all

12 bins, the CIs for nitrate and phosphate shown in Figure 8.1 all include zero, suggesting

that neither of these covariates has a linear relationship with the time varying mean of

any of our bins, although for phosphate we note that the CIs for bins 2 and 3 only just

overlap zero. Despite all of the CIs overlapping zero, there is a clear pattern for phosphate,

with “winter blooming” bins showing a positive relationship and “summer blooming” bins

showing a negative relationship, though this might just be an artefact of how the data

were binned.

From Figure 8.2, bins 4 to 10 all have positive regression coefficients with COD, with

bin 7 having the largest regression coefficient with a posterior mean of 0.2136 (4 d.p.).

Ammonia has a positive regression coefficient with four bins (4 to 7) and, as we saw with

COD, bin 7 has the largest regression coefficient with a posterior mean of 0.1412 (4 d.p.).

Finally, bin 12 seems to have a positive relationship with pH, with its regression coefficient

having a posterior mean of 0.1167 (4 d.p.).
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Figure 8.1: Posterior means (◦) and 95% credible intervals ( ) for nitrate and phosphate (AS
tank).

As mentioned in Section 6.1.1, COD is an approximation of the amount of oxygen that

can be consumed by reactions in water. In other words, it indicates the mass of dissolved

oxygen which is required by microorganisms for degradation of organic and some inorganic

compounds. COD is used to quantify oxidisable pollutants in wastewater. Ammonia is
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Figure 8.2: Posterior means (◦) and 95% credible intervals ( ) for COD, ammonia and pH (AS
tank).

an (inorganic) pollutant that is oxidisable, and so, it creates oxygen demand. Therefore,

it is perhaps unsurprising that some of the bins have non-zero regression coefficients with

both COD and ammonia. Removal of ammonia and other pollutants is essential in the

treatment of wastewater and ammonia is removed through nitrification by bacteria. It

may be possible, that some covariates such as COD and ammonia could be driven by

the bin counts (OTU abundances). Thus, these potential relationships between the bins

and COD and ammonia identified here could suggest the presence of certain metabolic

reactions in the AS.

In the nitrogen cycle, nitrification is a two-step process of ammonia oxidation then

nitrite oxidation. Bacteria from the genus Nitrosomonas can oxidise ammonia to nitrite

(Wetzel, 2001), although there are other ammonia oxidising microorganisms (AOM) too.

(There are ammonia oxidising bacteria and Archaea, hence the use of the word ‘microor-

ganisms’ in the term rather than bacteria.) Nitrobacter bacteria from the same phylum

as Nitrosomonas oxidise nitrite to nitrate but are difficult to detect in-situ. Wagner

et al. (1996) suggested that this could be because they have a minor role in WWTPs

and although Alawi et al. (2009) agreed that their role is small, they also noted that lack

of detection does not necessarily mean lack of presence. In the AS tank, no Nitrobacter

counts are recorded. This could suggest that in our WWTP other nitrite oxidising bacteria

(NOB), for example, Nitrospira, are responsible for nitrite removal or that the Nitrobacter

bacteria simply have not been detected, as seen in the literature.

Until recently, Nitrospira were considered solely NOB (Mehrani et al., 2020). Daims

et al. (2015) and van Kessel et al. (2015) independently discovered a single microorganism

from the genus Nitrospira that can carry out complete nitrification through the comammox

(complete oxidation of ammonia to nitrate) process. Additionally, it has been found that

there is a reciprocal feeding interaction between nitrifiers. Some species of Nitrospira are

able to convert urea to ammonia and carbon dioxide, which means they can supply AOM

with ammonia and in return receive nitrite produced by ammonia oxidation (Koch et al.,

2015). We do not know exactly which microorganisms our OTUs represent but an OTU
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from the genus Nitrospira is one of the most abundant OTUs within bin 4, so this could

explain why we see the positive coefficient for COD and bin 4. Additionally, this OTU

could be capable of comammox which could provide a reasonable explanation as to why

there is a positive coefficient for ammonia and bin 4 too. In addition to this, an OTU from

the genus Terrimonas is the most abundant in bin 4, with a median within-bin relative

abundance of around 22.78%. Bacteria from this genus are strictly aerobic and assimilate

organic compounds such as sugars and proteins (McIlroy et al., 2015). This provides

another possible explanation as to why bin 4 has a positive relationship with COD.

To understand why some of the other bins may have a relationship with ammonia and

COD, we look at the top 12 OTUs within some of the bins. Of the 1274 OTUs in bin

5, the most abundant OTU based on median within-bin relative abundance (∼ 9.1%) is

from the genus Zoogloea. Bacteria from this genus are highly active oxidisers of organic

compounds (Dugan, 1981). Recalling that our covariates are incorporated into the model

via lag-one regression, the transformed COD measurement from the previous time point

is used to model the intercept of the time varying mean at the current time point. If

COD is high then this would suggest that there is a larger amount of organic compounds

available for the Zoogloea bacteria to oxidise for energy and grow, thus explaining the

positive coefficient between the bin containing Zoogloea and COD. However, this could

result in the amount of organic compounds (and COD) decreasing which in turn could

eventually slow the growth rate of the Zoogloea bacteria. More organic compounds can

migrate into the system as more wastewater enters the WWTP which could then cause the

COD to rise again. This describes a predator-prey-like dynamic and demonstrates that

the relationships between the covariates and bins (of OTUs) are unlikely to be simple.

An OTU from the genus Leptothrix is the most abundant OTU in bin 7 based on

median within-bin relative abundance (∼ 10.4%). Species from this genus typically oxidise

iron and manganese (McIlroy et al., 2015). The second most abundant OTU is from the

genus Dechloromonas with a median within-bin relative abundance of around 10%. As part

of our exploratory analysis, we saw that some of the top genera were correlated with COD

(Figure 6.14, Section 6.2.3), where Dechloromonas had a fairly weak positive correlation

and Leptothrix did not appear in the top 12 genera in the AS tank. Some species of

Dechloromonas are polyphosphate-accumulating organisms (PAOs) and some species have

a role in denitrification (McIlroy et al., 2015). PAOs are bacteria that aid the removal of

organic compounds containing phosphorus from wastewater, under certain conditions, in a

process called enhanced biological phosphorus removal. Denitrification is the reduction of

nitrate to the eventual product of nitrogen gas, following a series of intermediate gaseous

nitrogen oxide products. Ammonia, nitrate and phosphorus all contribute to the COD of

wastewater. Applying logic similar to that discussed for the Zoogloea bacteria in bin 5, a

positive and likely non-linear relationship between COD and bin 7 seems sensible.
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Finally, we focus on bin 12, which is the only bin that has a non-zero (positive)

coefficient with pH. All from the genus Rhodobacter, OTUs 15, 33 and 65 are in the

top 12 OTUs of bin 12 and together they represent about 23.90% of bin 12 on average.

Most strains of Rhodobacter grow at an optimal pH range of 6.5 - 7.5 (Imhoff, 2015).

In the AS tank, the pH range is from 5.02 to 7.5 with a median of 6.53, thus providing

a possible explanation as to why bin 12 has a positive relationship with pH. Looking

back at the heatmaps in Section 6.2.3, we see that Rhodobacter does not seem to have

a correlation with pH (Figure 6.14). However, we see that OTU 15 possibly has a weak

positive correlation with pH (Figure 6.10). It is also important to remember that the

heatmaps show correlations not lag-one correlations. Calculating both the correlation

(0.1155) and lag-one correlation (0.1679) between pH and Rhodobacter, we see that the lag-

one correlation is stronger, thus corroborating our results. Furthermore, this relationship

remains after allowing for other things, which highlights the benefit of the model, as

otherwise this relationship may go unnoticed.
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Figure 8.3: Posterior means (◦) and 95% credible intervals ( ) for βj (AS tank).
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Figure 8.4: Posterior means (◦) and 95% credible intervals ( ) for γj (AS tank).
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Figure 8.5: Posterior means ( ) and 95% credible intervals ( ) for the time varying means
with scaled log counts ( ) for each bin (AS tank).

Now we look at the harmonic regression coefficients of our model. Figures 8.3 and 8.4

show the posterior means and 95% CIs for our harmonic regression coefficients βj and γj

for j = 1, 2. The change in the values of the βjk and γjk across bins, k = 1, . . . , 12, for

the first harmonic (j = 1) can be explained by our chosen clustering method, which is

based on the idea that the OTUs display seasonal variation and peak in different months.

Recalling from Section 7.1.2, OTUs in bin 1 peak in February, OTUs in bin 2 peak in

163



Chapter 8. Metagenomics application

January, OTUs in bin 3 peak in December and so on. Based on the CIs, it would seem

that only bins 2, 3 and 4 seem to have non-zero coefficients for the second harmonic,

suggesting that their scaled log counts do not follow a pattern as simple as a sinusoid.

Recall that in the time series plots of the bins in Figure 7.1 (Section 7.1.2), we saw that

the annual peaks were not as obvious in bins 2 and 3, suggesting a sinusoid may not be

such a good descriptor. Perhaps, this is why we have non-zero coefficients for the second

harmonics for these two bins. Reviewing the time series plots again, we can also see that

in bin 4, there seem to be two peaks within 2013, with a smaller peak in the middle of

the year and a larger peak around October. This might explain why we have a non-zero

coefficient for the second harmonic in bin 4. Figure 8.5 shows posterior means of the time

varying means µt and the 95% CIs plotted over the scaled log counts for each bin. The

seasonal patterns of each bin seem to have been captured fairly well.

8.1.2 Matrix of autoregressive coefficients

The matrix of autoregressive coefficients can inform us of relationships between our bins.

Recall that ajk tells us how the scaled log count of bin k at the previous time point yt−1,k

contributes to the scaled log count of bin j at the current time point ytj . We note that for

both the AS tank and the SS tank, we find that the posterior masses of A lie within the

stationary region. This is done by checking that all the eigenvalues of A for every posterior

sample have a size smaller than one. The posterior means of the autoregressive coefficients

are shown in a heatmap in Figure 8.6 and they are also shown in Figure 8.7 with their

corresponding 95% CIs. From the heatmap, we can see that the matrix of autoregressive

coefficients based on posterior means is fairly sparse. With the exception of bin 12, all

the bins have a positive autoregressive coefficient with themselves. In other words, the

scaled log count of the previous time point seems to have a positive relationship with the

scaled log count at the current time point, which seems sensible. Bins 1, 4, 5, 9 and 11

have particularly large “within-bin” autoregressive coefficients with posterior means larger

than 0.5. It is surprising that the a12,12 is a near-zero coefficient, with a posterior mean

of 0.019 (3 d.p.). It could be that yt,12 is better explained by yt−1,1 than yt−1,12. Bin 1

peaks in February and bin 12 peaks in March and the posterior mean of a12,1 is positive

(0.276), so this does not seem unreasonable.

In addition to the within-bin autoregressive coefficients akk, we see from the CIs in

Figure 8.7 that there is evidence for a few non-zero “between-bin” posterior autoregressive

coefficients ajk, j 6= k. The posterior means for these coefficients whose CIs do not overlap

zero are listed in Table 8.1. Apart from a12,1, the non-zero between-bin coefficients are

smaller than all the non-zero within-bin coefficients.

Now we try to understand why we have non-zero coefficients between particular bins

by looking at the most abundant OTUs in each bin again. As mentioned above, the most
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Figure 8.6: Heatmap of the posterior means of the autoregressive coefficients (AS tank).

Coefficient Posterior Mean

a2,4 -0.204
a2,5 0.176
a3,11 -0.119
a4,2 -0.14
a4,7 -0.166
a4,12 -0.229
a5,6 -0.257
a6,5 -0.200
a11,10 -0.202
a12,1 0.276

Table 8.1: Posterior means (3 d.p) of the non-zero between-bin coefficients.
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Figure 8.7: Posterior means (◦) and 95% credible intervals ( ) of the autoregressive coefficients
(AS tank).

abundant OTU in bin 5 is from the genus Zoogloea. The second most abundant OTU

is from the genus Acidovorax. In bin 6, the second most abundant OTU is from the

genus Dechloromonas, which as mentioned above is capable of nitrite reduction, as well as

sulphate reduction. This is also true for Zoogloea and Acidovorax bacteria (McIlroy et al.,

2015). Perhaps these bacteria amongst others that are not in the most abundant OTUs

are competing for resources such as nitrite and sulphate, hence why we see the negative

autoregressive coefficients.

As we already stated above, an OTU from the strictly aerobic genus Terrimonas is

the most abundant in bin 4. The second most abundant OTU is from the genus Ca.

Microthrix, which is also described as aerobic in McIlroy et al. (2015). The top two OTUs

in bin 2 are from the family Rhodobacteraceae with unknown genera. According to Pujalte

et al. (2014), at the time of their publication, there were 288 known species from 99 genera

in the family Rhodobacteraceae, any of which the top two OTUs could be from. However,

the third most abundant OTU, representing on average 14.50% of bin 2, is from the genus

Haematobacter from the same family, which are aerobic bacteria. As we cannot determine

the genera of the top two OTUs in bin 2, it is impossible to determine whether they are

aerobic or not but they could be, especially as most Rhodobacteraceae are aerobic (Pujalte

et al., 2014). Perhaps there are negative autoregressive coefficients between bins 2 and 4

because these aerobic OTUs in both bins are competing for oxygen.

Exploring these other bins and their top 12 OTUs, it is hard to identify “obvious”
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explanations as to why some of the autoregressive coefficients are non-zero. However, we

can see that the scaled log counts of bins 7 and 12 at the previous time point seem to have

a negative effect on the scaled log count of bin 4 at the current time points. Additionally,

bin 5 seems to have a positive effect on bin 2 at the next time point, as does bin 1 with

bin 12 at the next time point. Finally, bin 10 seems to have a negative effect on bin 11

at the next time point. The genera of the top six OTUs in each bin are listed below in

Table 8.2. Perhaps there are some relationships between these genera corresponding to

the bins with non-zero autoregressive coefficients. However, it could be that other OTUs

or collections of OTUs that are not as abundant within the bins are responsible for the

non-zero autoregressive coefficients. Although it would be interesting to delve deeper into

the biological interpretation of our results, it is beyond the scope of this thesis.

Bin Genera

1 Tabrizicola, Rhodobacter, Methylorosula, Ruminococcus 2, Fusicatenibacter,
Albidiferax

2 Unknown (Family: Rhodobacteraceae, 2), Haematobacter, Polymorphobacter,
Thermomonas, Novosphingobium

3 Amaricoccus, Unknown (Family: Microbacteriaceae), Paracoccus (2),
CL500-29 marine group, Ca. Microthrix

4 Terrimonas, Ca. Microthrix, Zymomonas, Acinetobacter, Phenylobacterium,
Nitrospira

5 Zoogloea, Acidovorax, Ca. Microthrix, Afipia, Simplicispira, Iamia
6 Unknown (Family: Alcaligenaceae), Unknown (Family: MN67), Dokdonella,

Dechloromonas, Piscinibacter, Rhizobium
7 Leptothrix, Dechloromonas, Unknown (Family: Cytophagaceae, Hirschia,

Unknown (Family: Saprospiraceae), Iamia
8 Romboutsia, Unknown (Family: Comamonadaceae), Devosia, Lautropia, Un-

known (Family: Unknown), Lacibacter
9 Defluviimonas, Intestinibacter, Nitrosomonas, Hyphomicrobium, Ferrugini-

bacter (2)
10 Unknown (Family: Gsoil-1167), Ca. Microthrix, Rhizobacter, Defluviimonas,

Unknown (Family: Rhodobacteraceae), Ca. Nitrotoga
11 Unknown (Family: Saprospiraceae, 2), Defluviimonas, Terrimonas (2),

Rhodoferax
12 Trichococcus, Rhodobacter (3), Ornithinibacter, Subdoligranulum

Table 8.2: Genera of the top six OTUs in each bin based on median relative abundance (AS tank).
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8.1.3 Precision matrix for errors

Recall that the errors in our model εt follow a N(0,Σ) distribution and we have a sym-

metric, tridiagonal, circulant precision matrix for the errors, that is

Σ−1 =



ω0 ω1 0 0 · · · 0 0 0 ω1

ω1 ω0 ω1 0 · · · 0 0 0 0

0 ω1 ω0 ω1 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · 0 ω1 ω0 ω1

ω1 0 0 0 · · · 0 0 ω1 ω0


.

The posterior means for ω0 and ω1 are 6.7354 and -3.2183 (to 4 d.p.) respectively, with

standard deviations 0.1926 and 0.0987 (to 4 d.p.). If it is invertible, it can easily be shown

that the inverse of a symmetric, tridiagonal, circulant matrix is a symmetric, circulant

matrix. Thus the covariance matrix for the errors Σ is a symmetric, circulant matrix. The

correlation matrix associated with Σ is therefore defined by the lag-k correlations ρk for

k = 1, . . . , 6. Figure 8.8 shows the posterior means and 95% CIs for ρ1, . . . , ρ6. All of the

CIs lie above zero which provides evidence of between-bin correlation in the errors.
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Figure 8.8: Posterior means (◦) and 95% credible intervals ( ) of the lag-k correlations ρk for
k = 1, . . . , 6 (AS tank).

8.2 Settled sewage tank results

Now we discuss the results for the SS tank and make some comparisons with our findings

for the AS tank. The same model that was used for the AS tank is used for the SS tank,

with the exception of the chemical and environmental covariates selected to model the

intercept term of the time varying mean.
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8.2.1 Time varying mean

Chemical and environmental covariates
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Figure 8.9: Posterior means (◦) and 95% credible intervals ( ) for iron, fluoride and chloride (SS
tank).
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Figure 8.10: Posterior means (◦) and 95% credible intervals ( ) for silicon, phosphate, ammonia
and flow (SS tank).

In the model for the SS tank, we have eight covariates: iron, chloride, fluoride, silicon,

phosphate, ammonia, flow and MLVSS. The posterior means and 95% CIs for iron, chloride

and fluoride are shown in Figure 8.9. These covariates have non-zero coefficients with

multiple bins. Iron has a negative coefficient with bins 2, 3, 9, 10 and 11. Fluoride

has a negative coefficient with bins 2 to 4 and a positive coefficients with bins 8 and 10.

Fluoride is well known for its use in combatting oral bacteria and is toxic to many different

bacteria, but not all bacteria (Ochoa-Herrera et al., 2009), so it seems plausible that the

coefficient for fluoride varies from bin to bin. For example, perhaps a bin with a negative

coefficient contains more bacteria that are more susceptible to fluoride toxicity. Chloride
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has a negative coefficient with bins 2 to 4. Figure 8.10 shows the posterior means and 95%

CIs for covariates that have a non-zero coefficient with just one of the 12 bins. Silicon has

a negative coefficient with bin 9, phosphate has a negative coefficient with bin 3, ammonia

has a negative coefficient with bin 10 and flow has a negative coefficient with bin 6. The

plot of the posterior means and CIs for MLVSS is omitted, as the CIs for all the bins

overlap zero.

In our exploratory analysis (Chapter 6), we identified fluoride, chloride, flow, ammonia

and phosphate, as being correlated with some of the 12 most abundant OTUs, genera

and classes. We also found that iron had weak negative correlations with some of the

top classes. Silicon was not identified as a correlated covariate but MLVSS was. These

slight discrepancies between the findings of our exploratory analysis and results after

fitting our model are perfectly reasonable, given that the data are grouped differently,

contemporaneous correlations rather than lag-one correlations were used for exploratory

analysis and our model consists of many components.

Bin Genera

1 Subdoligranulum, Rumiococcus 2 (2), Anaerostipes, Coprococcus 3, Rumini-
clostridium 5

2 Proteocatella, Faecalibacterium, Unknown (Family: Ruminococcaceae), Lach-
nospira, Simplicispira, Psychrobacter

3 Acidovorax, Faecalibacterium, Pseudorhodoferax, Streptococcus, Ferrugini-
bacter, Acinetobacter

4 Faecalibacterium, Christensenellaceae R-7 group, Unknown (Family: Un-
known), Lachnospira, Coprococcus 2, Paludibacter

5 Fusicatenibacter, Escherichia/Shigella, Paracoccus, Lactobacillus, Unknown
(Family: TM146), RuminococcaceaeUCG-002

6 Leptotrichia, Acinetobacter, Arcobacter, Unknown (Family: Enterobacteri-
aceae), Shuttleworthia, Rickettsiella

7 Blautia, Subdoligranulum (2), Unknown (Family: Lachnospiraceae),
Zoogloea, Acetobacterium

8 Blautia (2), Methanobrevibacter, Unknown (Family: Coriobacteriaceae), Ru-
minococcaceae UCG-013, Lactococcus

9 Mogibacterium, Unknown (Family: Rhodocyclaceae), Ruminococcaceae
NK4A214 group, Unknown (Family: Gemmatimonadaceae), Sphingomonas,
Sellimonas

10 Unknown (Family: Gsoil-1167), Romboutsia, Lactobacillus, Unknown (Fam-
ily: Lachnospiraceae), Synergistes, Unknown (Family: Planctomycetaceae )

11 Bifidobacterium (2), Erysipelotrichaceae UCG-003, Holdemanella (2), Strep-
tococcus

12 Trichococcus, Blautia, Roseburia, Holdemanella, Dorea, Unknown (Family:
Lachnospiraceae)

Table 8.3: Genera of the top six OTUs in each bin based on median relative abundance (SS tank).
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Table 8.3 shows the genera of the six most abundant OTUs in each bin. Using this table

and biological expertise or research, one can possibly infer and explain some of the links

between the different covariates and some of the genera. However, we do not investigate

any further here, as it is beyond the scope of this thesis and the SS is of less interest than

the AS.
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Figure 8.11: Posterior means (◦) and 95% credible intervals ( ) for βj (SS tank).
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Figure 8.12: Posterior means (◦) and 95% credible intervals ( ) for γj (SS tank).

Figures 8.11 and 8.12 show the posterior means and CIs for the harmonic regression

coefficients for the SS tank. For the first harmonics, we see a sinusoidal pattern again due to

our clustering method. There are very small non-zero coefficients for the second harmonics

in bins 3 and 6. Figure 8.13 shows the posterior means and 95% CIs for the time varying

means µt plotted over the scaled log counts of each bin. The general pattern in each

bin seems to be captured fairly within the CIs. For most bins, the harmonic regression

coefficients (γj in particular) are smaller than in the AS tank, which is unsurprising

since we did not see strong evidence for seasonality in general in the SS tank during our

exploratory analysis.
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Figure 8.13: Posterior means ( ) and 95% credible intervals ( ) for the time varying means
with scaled log counts ( ) for each bin (SS tank).

8.2.2 Matrix of autoregressive coefficients

Figure 8.14 shows a heatmap of the posterior means of the autoregressive coefficients ajk for

the SS tank and they are also shown with their 95% CIs in Figure 8.15. Here we have a very

sparse matrix with most coefficients being zero. Closer inspection of Figure 8.15 reveals

that only two autoregressive coefficients have CIs that do not overlap zero, a4,4 and a10,10

with respective posterior means of 0.311 and 0.303. It seems counter-intuitive that only
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two of the within-bin coefficients are non-zero. Perhaps this and the overall sparsity of the

matrix that we see is due to the populations changing too quickly for the autocorrelations

to be detectable from weekly measurements, as we suggested in the exploratory analysis

in Chapter 6. We also have more chemical and environmental covariates in our model

with more non-zero regression coefficients than in the AS tank. These covariates possibly

explain more about the scaled log counts, although as we saw in Section 8.2.1 some of the

bins seem to have no relationship with any of the covariates.
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Figure 8.14: Heatmap of the posterior means of the autoregressive coefficients (SS tank).

8.2.3 Precision matrix

The posterior means for ω0 and ω1 in the precision matrix of the errors for the SS tank are

3.6906 and −1.7422 (to 4 d.p.) respectively with standard deviations 0.1081 and 0.0556
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Figure 8.15: Posterior means (◦) and 95% credible intervals ( ) of the autoregressive coefficients
(SS tank).

(to 4 d.p.). As we did with the AS tank, we plot the posterior means and 95% CIs for

the lag-k correlations ρk, for k = 1, . . . , 6, of the errors (Figure 8.16). The CIs are all

above zero which is evidence to suggest that there is between-bin correlation in the errors.

The posterior means are slightly smaller than those observed for the AS. For the SS, the

posterior mean for the within-bin error variance σkk is 0.8528 (to 4 d.p) with a standard

deviation of 0.0413 (to 4 d.p.). This is larger than the posterior mean of the within-bin

error variance for the AS tank (0.5337 to 4 d.p.). Perhaps this is because regression on

the previous week’s counts explains lots of variation in the AS, but not much in the SS.
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Figure 8.16: Posterior means (◦) and 95% credible intervals ( ) of the lag-k correlations ρk for
k = 1, . . . , 6 (SS tank)
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8.3 Results summary

In this chapter we have presented the results of the analysis on each tank and we now

summarise the key findings in this section. In the AS tank, we found evidence to indicate

that COD, ammonia and pH have positive relationships with some of the bins. After

looking at the most abundant genera in each bin and using findings from research in

biology, it would be reasonable to assume that these relationships are likely to be complex

and non-linear. For example, we suggested that a potential predator-prey-like dynamic

may exist between COD and some of the bins. In the SS tank, there was evidence to

suggest that iron, fluoride and chloride have relationships with several bins and silicon,

phosphate, ammonia and flow have a relationship with one bin. Overall, these findings

were supported by our exploratory analysis.

Generally, in the AS tank the seasonal variation observed for each bin was captured

fairly well by the time varying mean of our model. However, based on the posterior

distributions for the second harmonics, we found that for some bins a simple sinusoidal

shape may not be enough to describe their (transformed) counts. In the SS tank, the

general pattern for each bin was captured fairly well by the time varying mean. We

observed smaller harmonic regression coefficients too, which seems sensible given that

there seemed to be less evidence of seasonality in our exploratory analysis.

As we might expect, within-bin positive autoregressive coefficients were found for all

bins (except for bin 12) in the AS tank and we also identified several between-bin relation-

ships. These relationships can potentially be explained by OTUs in each bin competing

with each other for resources, suggesting that relationships between bins may also be

complex. However, in the SS tank, we found the autoregressive matrix based on posterior

means to be extremely sparse. We suspect that this is a result of the microbial populations

changing too rapidly for autocorrelations to be detected from weekly counts.

Additionally, we saw that there was evidence for between-bin correlations in the errors.

The within-bin error variance for the SS tank was found to be higher than for the AS

tank. This is probably because regression on the previous week’s counts explained a lot

of variation in the AS but not in the SS, given how sparse the posterior autoregressive

matrix was for the SS. Based on our results, it would seem that our model is not as useful

for modelling the microbial populations in the SS as in the AS.

We opted to use a VAR(1) model instead of a Lotka-Volterra model because of the

simplicity it offers. However, our results have shown us that both non-linear and predator-

prey-like interactions may exist within the data, suggesting that a gLV model (see Sec-

tion 2.2.2) might be more suitable for our data. This is discussed in more detail in the

future work section (Section 9.3.2) of the following and final chapter.
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Chapter 9

Conclusions and future work

The purpose of this final chapter is to highlight this thesis’ contributions to the literature,

summarise the overall conclusions and discuss potential future work.

9.1 Contributions

The main objective of this thesis was to develop biologically motivated stochastic models

in two different applications: molecular phylogenetics and time-series metagenomics. We

begin with a discussion of the contributions made by the phylogenetics part of the thesis.

The work for this part of the thesis can also be found in Hannaford et al. (2020).

The CTMP that defines standard substitution models of DNA evolution in phyloge-

netics is typically assumed to be reversible and in its stationary distribution. These as-

sumptions are made primarily for mathematical convenience, despite being refutable (by

experimental evidence and biological theory) and restrictive in generating a root-invariant

likelihood (Section 2.1.4). Both issues can be addressed by relaxing one or both simplify-

ing assumptions. Among models in the literature which facilitate root inference, the most

biologically credible are those which allow variation in sequence composition over time.

Heaps et al. (2014) introduced a class of non-homogeneous and non-stationary models

with a locally reversible structure. Conditional on a given tree, each branch of the under-

pinning unrooted topology was associated with its own matrix from a class of reversible

rate matrices. The distribution at the root of the tree was taken as the stationary dis-

tribution on the rooting branch. In this thesis, we advanced this idea so that each rate

matrix comes from a class of non-reversible Lie Markov models; either RY5.6b or RY8.8

(Section 4.1). For both models, we provided a new parameterisation and gave an interpre-

tation of the parameters (Sections 3.2.1 and 3.2.2). For the homogeneous RY5.6b model,

we showed that the additive structure of the rate matrix makes it ill-suited to modelling

evolutionary processes where the long-run proportions of each nucleotide are similar and
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the transition-transversion rate ratio is high (Section 3.2.2). This provides an explanation

for the poor fit that is reported for the RY5.6b model (Woodhams et al., 2015). To our

knowledge, this has hitherto gone unnoticed in the literature.

Our non-homogeneous Lie Markov models have a number of strengths. With fewer

parameters than an analogous non-homogeneous general Markov model, they provide

a parsimonious way of introducing local non-reversible structure into a non-stationary

model. This yields an extra source of information about the root position, whilst retain-

ing computational tractability in model-fitting. Moreover, because Lie Markov models are

closed under matrix multiplication, our non-homogeneous extensions are mathematically

consistent, meaning the distributions over DNA characters induced by a tree, and all its

subtrees, could have arisen from the same family of non-homogeneous Lie Markov models.

Taking a Bayesian approach to inference, we describe a prior for the branch-specific

parameters that encourages borrowing of strength between edges (Section 4.2). This has

a regularising effect on the posterior distribution. We additionally describe an MCMC

scheme for generating samples from the posterior (Section 4.3.2). Through extensive sim-

ulation experiments, we demonstrated, empirically, that the root position can be identified

from the likelihood of our non-homogeneous models, and that increasing the number of

sites in the alignment tends to lead to more accurate and precise inferences of all unknowns

(Section 5.1.1). Whilst root inference for the non-homogeneous RY5.6b model was gener-

ally poor for larger trees, we showed that root inference under the non-homogeneous RY8.8

model remains strong, even in the face of prior-data conflict arising from an unbalanced

rooted topology, though inference can be sensitive to the presence of long branches in the

unrooted topology (Section 5.1.2).

We utilised our model and inferential procedures in a biological application concerning

a challenging data set of Drosophila, in which simpler models typically fail to identify a

plausible root position. In this analysis, our non-homogeneous RY8.8 model identified

a rooted tree that was biologically credible (Section 5.2.2). We showed that this model

had the highest marginal likelihood, indicating better fit to the data, while only doubling

the computational time, compared to the homogeneous, stationary, reversible GTR model

(Section 5.2.3).

In the metagenomics part of the thesis, we were given an OTU table for the AS and

SS of a WWTP. The main goal was to model the counts of the OTUs and the interactions

between them over time, whilst allowing for chemical and environmental effects, with par-

ticular interest in the AS tank. Microorganisms in the AS are responsible for biologically

treating wastewater and are delicately balanced in a stable state. Understanding how this

stable state is maintained is important to ensure a WWTP can continue functioning or,

better still, be improved (Cydzik-Kwiatkowska & Zielińska, 2016). As is commonly found

in metagenomic studies, our data suffer from high-dimensionality and sparsity. Owing
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to the evidence of seasonality in our data (Section 6.2) and the unsuitability of cluster-

ing by taxonomy (Section 7.1.1), we chose a seasonal phase-based clustering approach

(Section 7.1.2) to address both issues.

Often, in time-series metagenomics, gLV differential equations are used to model non-

linear dynamics of the microbial communities of interest. However, we chose a more par-

simonious option and developed a Bayesian hierarchical VAR(1) model for our clustered

data (bins), which is a simple first-order approximation to a gLV model (Section 2.2.2).

The counts of the clustered data were positively skewed so we chose to log-transform the

data, since a VAR(1) model assumes normality. The autoregressive matrix was assumed to

be sparse, due to the circular time-ordering of the bins. Three priors that induce sparsity

were considered: the spike and slab, the horseshoe and the regularised horseshoe. Piironen

& Vehtari (2017) derived a systematic way of defining a prior that considers prior sparsity

information for the global shrinkage parameter in the horseshoe (and the regularised horse-

shoe) for simple multiple linear regression. We extended their work by deriving a similar

result in the case of a multivariate response vector (Section 7.3.3). Through simulations,

we demonstrated that the regularised horseshoe was robust to varying degrees of sparsity

and a sensible choice for our prior for the autoregressive coefficient matrix (Section 7.3.5).

This hyperprior was chosen for the global shrinkage parameter, since a VAR(1) model can

be expressed as a multiple linear regression with a multivariate response vector. Using

this global shrinkage hyperprior necessitated scaling the log counts to have a variance

roughly equal to one. We gave the errors of our model a symmetric, circulant, tri-diagonal

precision matrix to complement our chosen clustering method (Section 7.4). To capture

the seasonal variation in each bin, we used a harmonic regression to fit a time varying

mean (Section 7.5). The chemical and environmental data were incorporated through the

time varying mean.

We fitted the model to the data from each tank. We identified possible relationships

amongst bins (Sections 8.1.2 and 8.2.2) and between bins and chemical and environmental

covariates (Sections 8.1.1 and 8.2.1) by inspecting the posterior distributions obtained for

the parameters in the model. After looking at the most abundant genera in each bin and

findings from biological studies, we found evidence to suggest that these relationships are

likely complex and non-linear. Our model was found to be more useful for modelling the

microbial communities in the AS than in the SS. Our analyses also provided evidence to

suggest that a gLV model may be better suited to modelling the data, which is discussed

in Section 9.3.2. Nevertheless, our model was still able to provide an interesting insight

into the dynamics of the microbial communities present in the AS and SS of the WWTP,

which was the overarching aim of this part of the thesis.
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9.2 Conclusions

In Chapter 2, we discussed standard phylogenetic models and their drawbacks (Sec-

tion 2.1.4), namely their inability to infer the root position of a tree, and common ap-

proaches to modelling metagenomics data. We showed VAR(1) models to be a suitable

choice for modelling our WWTP data, since they can be regarded as a linear approxima-

tions to gLV models (Section 2.2.2), which are commonly used in time-series metagenomic

studies. An introduction to Bayesian inference was given, including MCMC methods,

Bayesian phylogenetics (Section 2.3.2) and a brief description of HMC and the computer

program Stan (Section 2.3.3).

Chapter 3 contained a discussion of existing models that facilitate root inference with a

focus on two non-reversible Lie Markov models, the RY5.6b and RY8.8 models. These two

models were extended in Chapter 4 by allowing each branch to have a different rate matrix,

resulting in two non-homogeneous models. After applying our models to simulated data in

Chapter 5, we showed that both models were able to infer root position, for a small number

of taxa (six) but when we increased the number of taxa (to 12 and 24), inference under the

non-homogeneous RY5.6b model was poor (Section 5.1.1). Root inference under the non-

homogeneous RY8.8 model remained strong, even with the presence of prior-data conflict

(Section 5.1.2). However, we found that inference can be sensitive to the presence of long

branches in the underlying unrooted topology, suggesting investigation into branch length

priors could be an interesting avenue of research (see Section 9.3.1). We also found that the

posterior densities for the non-homogeneous RY8.8 model were more concentrated than

the non-homogeneous RY5.6b model (Section 5.1.1) and we postulated that the additive

structure of the RY5.6b rate matrix may be partially responsible for this. Finally, both

models were shown to be useful for inferring unrooted trees as the posterior mode was the

true unrooted topology in every analysis of the simulation study.

When applying our models to the challenging Drosophila data set (Section 5.2), we

found the posterior densities for the non-homogeneous RY5.6b model to be more diffuse

than for the non-homogeneous RY8.8 model, as we found in the simulation studies. After

comparing models with marginal likelihood estimates (Section 5.2.3), we found that our

non-homogeneous RY8.8 model had the best fit to the Drosophila data set. The non-

homogeneous GTR model had the second highest marginal likelihood, followed by the non-

homogeneous RY5.6b model with the third highest marginal likelihood, showing that non-

homogeneous models have a better fit to this data set. Our results show that accounting

for compositional bias in data by using non-homogeneous models can provide credible

inferences and a reasonable fit to the data, as has been previously indicated in the literature

(Yang & Roberts, 1995; Foster, 2004; Heaps et al., 2014; Williams et al., 2015). However,

the non-homogenous RY8.8 model was the only model to infer a biologically plausible
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rooted tree, with a posterior probability of 0.9235. The non-homogeneous RY5.6b model

is inflexible because it only has five degrees of freedom and a rate matrix with an additive

structure (Section 3.2.2), which may explain why it was unable to infer a plausible tree.

Meanwhile, the non-homogeneous GTR model has reversible rate matrices on each branch.

This suggests that perhaps the non-reversible structure of the RY8.8 matrix was able

to provide an additional source of root information. Thus, we have demonstrated that

relaxing both assumptions of reversibility and stationarity can enable us to find biologically

credible rooted trees for data that exhibits compositional heterogeneity.

In Chapter 6, we performed a detailed exploratory analysis of the WWTP data, where

we identified possible relationships between chemical and environmental covariates and

the relative abundances of the most abundant OTUs, genera and classes in the AS and

SS. Temperature seemed to be correlated with many of the relative abundances of the

AS and there was evidence of seasonality in the OTU data (Section 6.2.3). This was

also observed in time-series plots of the relative abundances (Sections 6.2.1 and 6.2.2).

However, seasonality was not as obvious in the SS data. The OTUs in the AS and the SS

showed a time-varying mean but properties that seemed otherwise independent of time,

suggesting it would be reasonable to fit a VAR model to the detrended data.

Chapter 7 commenced with a discussion of clustering methods and we concluded that

a seasonal phase-based clustering approach was most suitable for our data (Section 7.1.2).

Clustering based on taxonomy was deemed inappropriate (Section 7.1.1) because, after

accounting for missing taxonomic information, the finest taxonomic rank we could cluster

with was class. This is a coarse taxonomic rank, meaning each class can encompass many

OTUs. The example we gave was the Alphaproteobacteria, which was one of the most

abundant classes present in the AS. This class is known to be extremely diverse (Williams

et al., 2007), which suggests that the OTUs clustered into this class (and OTUs clustered

by taxonomy, generally (Dam et al., 2016)) will have very different abundance profiles.

We then gave a detailed discussion of the development of our Bayesian hierarchical

VAR(1) model, where each advancement from the simple VAR(1) model (Section 7.2) was

justified. In our simulation study (Section 7.3.5), which investigated the performance of

different shrinkage priors for the matrix of autoregressive coefficients, we showed that the

regularised horseshoe was robust to varying degrees of sparsity and, thus, a suitable prior

for our model. As discussed in Section 9.1, our chosen clustering method influenced our

choice of error precision matrix and model for the time varying mean.

After fitting the model to the clustered AS and SS data in Chapter 8 we inspected the

posterior distributions of the parameters. We identified evidence to suggest that some of

the bins in the AS have positive relationships with COD and ammonia (Section 8.1.1). We

speculated on why these relationships may occur by identifying the most abundant OTUs

in each bin and using findings from research on their corresponding genera in biology. Our
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findings also suggested that predator-prey-like dynamics may occur between some of the

bins and these two covariates and that the relationships may be complex and non-linear

in nature. There was also evidence to suggest that a positive relationship between pH and

bin 12 may exist. In the SS, we found evidence for several chemical and environmental

covariates having a relationship with some of the bins (Section 8.2.1). We did not delve

too deeply into why these relationships may exist because, as explained in Section 2.2.4,

the microbial community in AS is of more interest.

We also found evidence indicating the existence of relationships amongst bins. As

we did for the relationships between bins and chemical and environmental covariates, we

looked at the most abundant OTUs in each bin and considered relevant research in the

biology literature to provide potential explanations for these relationships (Sections 8.1.2).

It is possible that negative autoregressive coefficients between bins can be attributed to

the most abundant OTUs competing for resources. For example, evidence of a negative

relationship between bin 5 and 6 of the AS was found. We suggested that this may be

due to both bins containing (a high proportion of) OTUs from genera that reduce nitrite

and sulphate, which they may be competing for. Not all relationships could be explained

in this way but knowledge of their (potential) existence still provides valuable insight into

the ecology of AS. A posteriori the matrix of autoregressive coefficients for the SS was

found to be very sparse (Section 8.2.1), which we suspect could be due to the microbial

populations changing too quickly to be detected by sampling every week.

Overall we found our model to be unsuitable for modelling the SS data but it provided

insights into the microbial community dynamics of the AS. We found evidence of non-linear

relationships in our data, which ultimately suggests that a stochastic Lotka-Volterra model

(see Section 9.3.2) may be more appropriate, where the findings from our VAR(1) model

could be used to simplify model structure.

9.3 Future work

In the final section of this thesis we discuss areas of further work that may be worth

exploring. We first discuss possible future work for the phylogenetics part of the thesis

before concluding with potential areas where our time-series metagenomics work can be

extended.

9.3.1 Phylogenetics future work

There are a few possible ways the work from the phylogenetics part of the thesis could be

extended. Firstly, in our non-homogeneous RY5.6b model, we allowed the ρb to vary from

branch to branch while treating α as a global parameter and fixing it across the tree (Sec-

tion 4.1). This model could be adapted by also allowing α to vary from branch to branch
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so that under the non-homogeneous RY5.6b model we have Q =
{
α,%1, . . . ,%B−1

}
, where

α = (α1, . . . , αB)T . We could then adopt a prior for α with an autoregressive structure to

facilitate more borrowing of information between neighbouring branches. We suspect that

this adjustment would not result in a better performing model than the non-homogeneous

RY8.8 model, as our simulation study in Chapter 5 revealed that branch-specific param-

eter identifiability was weaker for the non-homogeneous RY5.6b model (Section 5.1.1),

which we attributed to the additive structure of its rate matrix. Nevertheless, it would

still be an interesting direction to explore.

The simulation study also revealed that root inference under the non-homogeneous

RY8.8 model can be sensitive to the presence of long branches in the unrooted topology

(Section 5.1.2). Standard phylogenetic priors for branch lengths assign little prior mass

to long branches. For example, we gave our branch lengths an Exp(10) prior, which

means that the expected branch lengths are short (0.1) and 99.9% of its mass is below

0.691. Consequently, such priors favour rooting on long branches as it results in splitting

a long branch into two shorter branches. Therefore, it would be worth investigating a

joint prior for the branch lengths ` and rooted topology τ that incorporates biological

insight, for example, a prior that considers total distance from the root to the leaves, or

a prior that places atoms of mass on biologically plausible trees, with a distribution that

decays smoothly with increasing distance from these trees. Nye (2020) explored such a

distribution by constructing a normal-like distribution in tree space. Currently, evaluation

of the mass function is computationally challenging which would make its use as a prior

difficult without further work.

In this thesis, we used rate matrices from two non-reversible Lie Markov families.

However, there are 99 Lie Markov models in total (Woodhams et al., 2015), many of

which are also non-reversible. Further work could entail fitting non-homogeneous versions

of other models that Woodhams et al. (2015) found to perform well. They found the most

successful models tended to be parameter-rich, with at least eight parameters, although

only seven data sets were used to test the models, so this does not necessarily mean that

other models with fewer parameters should be immediately discounted. One of the better

performing models was the Lie Markov model with the most parameters (12), the general

Markov model, which is not the most parsimonious model. Nevertheless, it would be

worthwhile to develop a model that has a general Markov rate matrix on each branch of

the tree and compare it with our non-homogeneous models in applications to real and

simulated data.

Finally, a relatively easy extension of our work would be to use the other variants

of the RY5.6b and RY8.8 matrices. These two matrices are RY-variants, which means

that they possess the symmetry condition of purine-pyrimidine pairing and their rows

and columns are labelled in the order A, G, C, T. There are also WS-variants and MK-
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variants, where the former orders the bases as A, T, G, C and the latter orders them

as A, C, G, T. WS (Weak/Strong) models distinguish the Watson-Crick pairs AT and GC.

According to Watson-Crick base-pairing adenine pairs with thymine with two hydrogen

bonds and guanine pairs to cytosine with three hydrogen bonds, which means that the

pair GC has a stronger bond than the pair AT. MK (aMino,Keto) models distinguish AC

and GT (Woodhams et al., 2015). The terms amino and keto refer to forms that DNA

bases can take. It would be straightforward to fit MK- and WS-variants of our models, as

it would simply require reordering of the rows and columns in the rate matrices.

9.3.2 Metagenomics future work

There are two main ways that the model developed in the metagenomics part of the thesis

could be improved. Firstly, we could adapt our prior for the matrix of autoregressive

coefficients to include more levels of shrinkage. Here we consider two possible approaches

to developing the model in this way. In (7.29) in Section 7.3.3 we defined a shrinkage

factor matrix Kj for row j of the matrix of regression coefficients B in multiple linear

regression with a multivariate response vector. Since a VAR(1) model can be written as

a multiple linear regression, our findings from Section 7.3.3 hold for our VAR(1) model.

Thus, Kj can be associated to the j-th row of the matrix of autoregressive coefficients A

and the extent to which the coefficients are shrunk is determined by the eigenvalues of

Kj . These eigenvalues are directly proportional to the global shrinkage parameter τA. As

τA approaches zero, all eigenvalues of Kj approach one and Kj → IK , which is complete

shrinkage. Conversely, as τA → ∞, all eigenvalues of Kj approach zero and Kj → 0K ,

which represents no shrinkage. It might be beneficial to explore a model that allows

each row of A to have its own global shrinkage parameter. This would mean that if one

bin’s (scaled log) counts did not seem to be affected by the other bins’ (scaled log) counts

from the previous time point, it would not affect the overall shrinkage of the autoregressive

coefficients of all bins whereas, with our current model, the value of τA could be influenced

by such a bin.

Griffin & Brown (2017) investigated hierarchical priors for regression models, where

relationships between predictor covariates can be assumed and regression coefficients can

be arranged in levels. They argued that regression coefficients at higher levels add com-

plexity to a model and should be more aggressively shrunk towards zero. Furthermore,

they should depend on the importance of regression coefficients at lower levels. The priors

they developed allowed regression coefficients at one level to depend on the subset of the

effect sizes at lower levels. One example they looked at was linear regression with interac-

tion terms with strong or weak heredity. Strong heredity means that an interaction term

is only included if both corresponding main effects are included, whereas weak heredity

assumes that an interaction term is included if at least one main effect is included. They
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described the main effects as the first level of regression coefficients and the interactions

as the second level. Let yi be a response, which is observed with covariates Xi1, . . . , Xip.

A linear model with interaction terms can be written as

yi = α+

p∑
j=1

Xijβj +

p∑
j=1

j−1∑
k=1

XijXikγjk + εi, for i = 1, . . . , n,

where εi ∼ N(0, σ2). In the case of strong heredity, they use the prior

βj ∼ N (0, a1τj) and γjk ∼ N (0, a2λjkτjτk) , (9.1)

where a1 and a2 are scale parameters. The prior variance of γjk is small if at least one of

τj , τk and λjk is small, which means that the interaction term γjk will tend to be small if

either λjk is small or at least one of βj and βk are small. In weak heredity, a2λjkτjτk in

(9.1) is replaced with a2λjk
1
2 (τj + τk), which means that the interaction terms are small

if λjk is small or both τj and τk are small.

We could introduce more levels of shrinkage following this approach, for example, we

could let the diagonal elements of A be the first level of our autoregressive coefficients and

non-diagonal elements be the second level. Then assuming strong heredity, we would have

ajj ∼ N (0, a1τj) and ajk ∼ N (0, a2λjkτjτk) for j 6= k.

This would mean that the influence of the count of bin k on the count of bin j is small if

one of λjk, τj or τk is small. In other words, ajk is far from zero only if λjk, ajj and akk

are all far from zero. Under weak heredity, we would have

ajj ∼ N (0, a1τj) and ajk ∼ N

(
0, a2λjk

1

2
(τj + τk)

)
for j 6= k.

This would mean that the influence of the count of bin k on the count of bin j is small

if λjk is small or both τj and τk are small. The autoregressive coefficient between bins

j and k is far from zero if either bin j or bin k has an autoregressive coefficient with

itself that is far from zero (and λjk is far from zero). Different hyperpriors for τj , λjk,

a1 and a2 could be explored and then tested in a simulation study similar to the study

carried out in Section 7.3.5. Adopting a prior with this hierarchical structure would add

more flexibility into our model and could lead to more adaptive shrinkage of autoregressive

coefficients. This would become even more important if we chose to have a larger number

of smaller-sized bins.

A potential area for improvement in our metagenomics work was the method we used

to select chemical and environmental covariates to include in our model. As discussed in
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Section 7.5.1, we selected covariates based on lag-one correlations between covariates and

model residuals after fitting our model without any chemical environmental covariates to

each data set. Instead, we could fit a model for each data set (AS and SS) that includes all

covariates and use a shrinkage prior, such as the regularised horseshoe, to aid in identifying

which covariates might be involved in the microbial community dynamics of the WWTP.

We avoided doing this in this thesis to reduce the computational requirements of fitting

the model.

Our findings in Chapter 8 indicated that complex, non-linear dynamics are present in

the microbial communities of the AS and SS. This would suggest that a VAR(1) model,

which assumes linear dynamics and is a linear approximation to a gLV model, could

be improved upon. Moreover, our model did not prove to be useful in modelling the

microbial populations in the SS. Therefore, instead of adapting our VAR(1) model in the

ways described earlier in this section, a worthy direction of exploration would be to fit a

stochastic gLV model (defined in Section 2.2.2), which assumes non-linear dynamics. A

stochastic model, rather than a deterministic model, seems more appropriate for modelling

the microbial community dynamics in the WWTP. This is because we do not have a

complete model for the biological system and there are many other factors which can

cause biological systems to behave unpredictably (Wilkinson, 2011). For example, there

may be other environmental factors that have not been measured or microbes that have

not been detected or sampled that could influence the system.

In Section 2.2.2 we gave the stochastic gLV model for a two species system in (2.9)

and we gave the deterministic gLV model for K species in (2.7). Now we give a stochastic

gLV model for our K bins of OTUs that would form the starting point for this area of

further work. As well as the form given in (2.7), a determinstic gLV model can be written

in vector notation as

d

dt
y(t) = diag (y1(t), . . . , yk(t)) [b+ Ay(t)] , (9.2)

where y(t) = (y1(t), . . . , yK(t))T with yi(t) being the (scaled log) count of bin i, b is

the vector of growth rates and A is the matrix of pairwise interactions between bins. A

stochastic gLV model for K bins of OTUs is given by

dy(t) = diag (y1(t), . . . , yK(t)) [f (y(t)) dt+ g (y(t)) dB(t)] , (9.3)

where B(t) = (B1(t), . . . , BM (t))T is an M -dimensional Brownian motion and f : RK →
RK and g : RK → RK×M are continuous functions (see Section 1 of Yin et al. (2009)).

By stochastically perturbing b by b → B + ∆Ḃ(t) and aij → aij + σijḂj(t), where

∆ = (δij) and Σ = (σij) are two K ×K matrices and Ḃ(t) is K-dimensional white noise,

(9.2) becomes a stochastic Lotka-Volterra system with special linear functions f and g, as
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determined by (9.3).

The model in (9.3) does not take into consideration environmental factors, such as our

chemical and environmental covariates. Stein et al. (2013) introduced perturbation terms

into their deterministic gLV model for intestinal microbes in mice and Dam et al. (2016)

introduced interaction terms between environmental conditions and OTUs sampled from

a lake. Our chemical and environmental covariates could be added into the model in a

similar fashion. In a deterministic setting this would give us the following model:

d

dt
yi(t) = yi(t)

bi +
∑
j=1

Aijyj(t) +
L∑
`=1

ψi`x`(t)

 ,
where x`(t) is the measurement of covariate ` at time t and Ψ is a K × L matrix of

interaction terms between the covariates and bins. We can yield a stochastic version of

this model in a number of ways. For example, we could, again, stochastically perturb b

and A in a similar way as described above for the model without environmental factors.

Inference would be more complex for this model than our VAR(1) model because we would

need to introduce and tune approximations in the solution to the stochastic differential

equations.
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Additional proofs and derivations

A.1 Constraint on trace of the RY5.6b rate matrix

Recall that our instantaneous rate matrix for the RY5.6b model is given by

Q =


∗ α+ ρ2 β + ρ3 β + ρ4

α+ ρ1 ∗ β + ρ3 β + ρ4

β + ρ1 β + ρ2 ∗ α+ ρ4

β + ρ1 β + ρ2 α+ ρ3 ∗

 . (A.1)

with the constraint ρ = (ρ1, ρ2, ρ3, ρ4)T ∈ S4. Suppose we set the parameters in (A.1) as

α = b1, β = b2 and ρ = (r1, r2, r3, r4)T , where we have imposed the constraint ρ ∈ S4.

Suppose, without loss of generality (wlog), that the branch length is t = 1. Taking

α = a1, β = a2, ρ = (p1, p2, p3, p4)T and branch length t = 1
c would then result in the

same (valid) branch-length-scaled rate matrix (i.e. tQ) if we set

a1 = cb1 +
c

4
− 1

4

a2 = cb2 +
c

4
− 1

4

pi =
1

4
− c

4
+ cri, i = 1, . . . , 4, (A.2)

where c ∈
(
[4 min{b1, b2}+ 1]−1, [1− 4 min{r1, r2, r3, r4}]−1

)
. Thus, an additional con-

straint is needed.
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A.1.1 Proof for boundary conditions of c

Upper bound

Suppose, wlog, r1 = min{r1, r2, r3, r4} then (A.2) becomes

p1 =
1

4
− c

4
+ cr1.

By definition p1 ∈ [0, 1], so we have 1
4 −

c
4 + cr1 ∈ [0, 1].

We require

c < (1− 4 min{r1, r2, r3, r4})−1 = (1− 4r1)−1. (A.3)

p1 ≥ 0 =⇒ 1

4
− c

4
+ cr1 ≥ 0

=⇒ 1

4
≥ c

4
− cr1

=⇒ 1 ≥ c− 4cr1

=⇒ 1 ≥ c(1− 4r1)

=⇒ (1− 4r1)−1 ≥ c, as required.

Lower bound (proof by contradiction)

Suppose c ≤ (4 min{b1, b2} + 1)−1 and suppose that, wlog, b1 = min{b1, b2}. In other

words,

c ≤ (4b1 + 1)−1 =⇒ c−1 ≥ 4b1 + 1. (A.4)

a1 = cb1 + c
4 −

1
4 and by definition a1 ≥ 0.

So cb1 +
c

4
− 1

4
≥ 0

=⇒ cb1 +
c

4
≥ 1

4

=⇒ 4cb1 + c ≥ 1

=⇒ c(4b1 + 1) ≥ 1

=⇒ c ≥ (4b1 + 1)−1. (b1 ≥ 0 so 4b1 + 1 6= 0)

This is a contradiction to (A.4), hence c > (4 min{b1, b2}+ 1)−1.
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Understanding the range

We have α = b1, β = b2, ρ = (r1, r2, r3, r4)T ∈ S4 and b1, b2,≥ 0. In (A.3), min{r1, r2, r3, r4} ∈
[0, 0.25] and suppose, wlog, r1 = min{r1, r2, r3, r4}. For the case where r1 = 0, we have

(1− 4r1)−1 = (1− 0)−1 = 1. For the case where r1 = 0.25, we have (1− 4r1)−1 = (1− 4×
0.25)−1 →∞. So the range for the upper bound is [1,∞). Now take (4 min{b1, b2}+ 1)−1,

where b1, b2 ∈ [0,∞) and suppose, wlog, b1 = min{b1, b2}. We then have (4b1 + 1)−1. For

the case where b1 = 0, we have (4b1 + 1)−1 = (0 + 1)−1 = 1. For the case where b1 →∞,

we have (4b1 + 1)−1 → 0. The range for the lower bound is (0,1]. Therefore we have

(4 min{b1, b2}+ 1)−1 < (1− 4 min{r1, r2, r3, r4})−1

=⇒ (4 min{b1, b2}+ 1)−1 < c < (1− 4 min{r1, r2, r3, r4})−1.

A.1.2 Setting the trace

We apply a constraint on the trace to fix the scale of Q. This prevents compensatory

rescaling of the branch lengths and overall scale of Q. Under our constraint that ρ ∈ S4,

we have,

tr (Q) = −(4α+ 8β + 3). (A.5)

Since α, β ≥ 0, tr(Q) ≤ 3, we impose the constraint that the tr (Q) = −7 so that

4α+ 8β = 4. (A.6)

Now we can replace β in (A.1) with
1− α

2
. To summarise, we have ρ lying on the four

dimensional simplex and α+ 2β lying on the two dimensional simplex.

190



Appendix A. Additional proofs and derivations

A.2 Spike and slab prior FCDs

A.2.1 Derivation of the FCD of β̃

The prior density for β̃ is

π
(
β̃
)

=
(
2πd2

)− pK
2 exp

{
−1

2
β̃
T (
d−2IpK

)
β̃

}
.

The likelihood is given by

π
(
y∗|β̃,Λ,Σ

)
= (2π)−

N
2 |IN ⊗ Σ|−

N
2 exp

{
−1

2

(
y∗ −W∗β̃

)T (
IN ⊗ Σ−1

) (
y∗ −W∗β̃

)}
.

Thus, the full conditional density is given by

π
(
β̃|y∗,Λ,Σ

)
∝ π

(
β̃
)
π
(
y∗|β̃,Λ,Σ

)
∝ exp

{
−1

2
β̃
T (
d−2IpK

)
β̃

}
× exp

{
−1

2

(
y∗ −W∗β̃

)T (
IN ⊗ Σ−1

) (
y∗ −W∗β̃

)}
∝ exp

{
−1

2
β̃
T
(
d−2IpK + W∗T (IN ⊗ Σ−1

)
W∗
)
β̃ − 2β̃

T
W∗T (IN ⊗ Σ−1

)
y∗
}
.

This is (proportional to) the full conditional density corresponding to the FCD given in

(7.12) in Section 7.3.1.

A.2.2 Derivation of the FCD of β̃ with Σ = τ−1IK

In the special case when Σ = τ−1Iq, In ⊗ Σ−1 = τ INK . Then

VB̃ =
(
d−2IpK + τW∗TW∗

)−1

=
(
d−2IpK + τΛ∗

T
W∗TW∗Λ∗

)−1
.

Now,

WTW =
(
WT

1 , . . . ,W
T
N

)
W1

...

WN


=

N∑
i=1

WT
i Wi
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=
N∑
i=1

(
IK ⊗ xTi

)T (
IK ⊗ xTi

)
=

N∑
i=1

(IK ⊗ xi)
(
IK ⊗ xTi

)
=

N∑
i=1

IK ⊗ xixTi

= IK ⊗
N∑
i=1

xix
T
i (using (A⊗ B)(C⊗D) = AC⊗ BD)

= IK ⊗XTX

= blockdiag

XTX, . . . ,XTX︸ ︷︷ ︸
K times

 .

Let Λ∗j = diag (λ1j , . . . , λpj), so that Λ∗ = blockdiag (Λ∗1, . . . ,Λ
∗
K). Then

Λ∗
T

W∗TW∗Λ∗ = blockdiag (Λ∗1, . . . ,Λ
∗
K) blockdiag

(
XTX, . . . ,XTX

)
blockdiag (Λ∗1, . . . ,Λ

∗
K)

= blockdiag
(
Λ∗1XTXΛ∗1, . . . ,Λ

∗
KXTXΛ∗K

)
.

Therefore

VB̃ = blockdiag
{(
d−2Ip + τΛ∗1XTXΛ∗1

)−1
, . . . ,

(
d−2Ip + τΛ∗KXTXΛ∗K

)−1
}

= blockdiag

{(
d−2Ip + τX∗

T

1 X∗1

)−1
, . . . ,

(
d−2Ip + τX∗

T

p X∗p

)−1
}
,

where

X∗j = (λ1jX1:N,1, . . . , λpjX1:N,p)

= XΛ∗j ,

and X1:N,j = (X1j , . . . , XNj)
T .

Similarly

bB̃ = τW∗T y∗

= τΛ∗
T

WTy∗,

192



Appendix A. Additional proofs and derivations

where

WTy∗ =
(
WT

1 . . . ,WT
N

)
y1
...

yN


=

N∑
i=1

WT
i yi

=
N∑
i=1

(
IK ⊗ xTi

)T
yi

=
N∑
i=1

(IK ⊗ xi) (yi × 1)

=

N∑
i=1

(yi ⊗ xi) (using (A⊗ B)(C⊗D) = (AC⊗ BD))

=


∑N

i=1 yi1xi
...∑N

i=1 yiKxi



=


XTy1:N,1

...

XTy1:N,K

 ,
where y1:N,j is column j of Y, and so

bB̃ = τ


Λ∗1XTy1:N,1

...

Λ∗KXTy1:N,K



= τ


X∗

T

1 y1:N,1
...

X∗
T

K y1:N,K

 .
Hence

M B̃ =


(
d−2IpτX∗

T

1 X∗1

)−1
τX∗

T

1 y1:N,1

...(
d−2IpτX∗

T

K X∗K

)−1
τX∗

T

K y1:N,K

 .
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Recall that β∗ =
(
β̃11λ11, . . . , β̃p1λp1, β̃12λ12, . . . , ˜βpKλpK

)T
, so

β̃ =
(
β̃11, . . . , β̃p1, β̃12, . . . , ˜βpK

)T
= vec

(
B̃
)
,

thus we have shown that the columns of β̃ are independent with mean given in (7.13) and

variance given in (7.14) shown in Section 7.3.1.

A.2.3 Derivation of the FCD of λjk with Σ = τ−1IK

In the special case, when Σ = τ−1IK , we can write (y∗ −Wβ∗)T
(
IN ⊗ Σ−1

)
(y∗ −Wβ∗)

as τ (y∗ −Wβ∗)T (y∗ −Wβ∗), where

y∗ −Wβ∗ =


y1
...

yN

−


W1β
∗

...

WNβ
∗



=


y1
...

yN

−



xT1 β
∗
1

...

xT1 β
∗
K

...

xTNβ
∗
1

...

xTNβ
∗
K



=



y11 − xT1 β∗1
...

y1K − xT1 β∗K
y21 − xT2 β∗1

...

y2K − xT2 β∗K
...

yNK − xTNβ
∗
K


,

in which

β∗ =
(
β∗

T

1 , . . . ,β∗
T

K

)T
and β∗k = (β1k, β2k, . . . , βpk)

T .
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Now τ (y∗ −Wβ∗)T (y∗ −Wβ∗) can be written as τ
∑N

i=1

∑
`=1

(
yi` − xTi β

∗
`

)2
. Returning

to the FCD of λjk, we have

cjk = ψjk exp
{
−τ

2
(y∗ −Wβ∗∗)T (y∗ −Wβ∗∗)

}
= ψjk exp

{
N∑
i=1

(
yik − xTi β∗∗k

)2}× exp

−τ2
N∑
i=1

∑
` 6=k

(
yi` − xTi β∗∗`

)2 ,

where β∗∗ is β∗ with β̃jk as the {(k − 1)p+ j}-th term and β∗∗k is β∗k with its j-th com-

ponent as β̃jk. Similarly, we have

djk = (1− ψjk) exp
{
−τ

2
(y∗ −Wβ∗∗∗)T (y∗ −Wβ∗∗∗)

}
= (1− ψjk) exp

{
N∑
i=1

(
yik − xTi β∗∗∗k

)2}

× exp

−τ2
N∑
i=1

∑
`6=k

(
yi` − xTi β∗∗∗`

)2 ,

where β∗∗∗ is β∗ with 0 as the {(k − 1)p+ j}-th term and β∗∗∗k is β∗k with its j-th com-

ponent set to 0. Thus,

cjk ∝ ψjk exp

{
τ

2

N∑
i=1

(
yik − xTi β∗∗k

)2}
,

which is equivalent to (7.16) shown in Section 7.3.1, and

djk ∝ (1− ψjk) exp

{
τ

2

N∑
i=1

(
yik − xTi β∗∗∗k

)2}
,

which is equivalent to (7.17) shown in Section 7.3.1.

A.2.4 Derivation of the FCD of Ã

To calculate the FCDs for Ã and λjk, it is convenient to write our model in (7.1) in a

different way. First, we let zt = yt−µ, so that our model can be written, for t = 2, . . . , N ,

as

zt = Azt−1 + εt, εt ∼ NK (0,Σ) (A.7)

which can be written in matrix form as

Zt = Zt−1AT + E, (A.8)
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where

Zt =


zT2
...

zTN

 , Zt−1 =


zT1
...

zTN−1

 E =


εT2
...

εTN

 .

Note that (A.7) can be written as

zt = Wta+ εt, (A.9)

where

a = vec(AT ) = (a11, a12, . . . , a1K , a21, . . . , aKK) and

Wt = IK ⊗ zTt−1.

We can rewrite (A.8) as

Z = Wa+ e, (A.10)

where

Z = (zT2 , . . . ,z
T
N )T , W =


W2

...

WN

 , e = (εT2 , . . . , ε
T
N )T .

Firstly, note that a = (ã11λ11, . . . , ã1Kλ1K , ã21λ21, . . . , ãKKλKK)T . Letting W∗ = WΛ∗,

where Λ∗ = diag(λ11, . . . , λ1K , . . . , λ21, . . . , λKK), and using the fact that (IN−1 ⊗Σ)−1 =

(IN−1 ⊗ Σ−1), the likelihood can be written as

π(Z|ã, λ,Σ) = (2π)−
(N−1)

2 |IN−1 ⊗ Σ|−
(N−1)

2 (A.11)

× exp

{
−1

2
(Z −W∗ã)T (IN−1 ⊗ Σ−1) (Z −W∗ã)

}
.

The prior density for ã is

(2πd2)−
K2

2 exp

{
−1

2
ãT
(
d−2IK2

)
ã

}
. (A.12)

The FCD for ã is given by

ã|Z,Λ,Σ ∼ NK2(M ã,Vã), where (A.13)

Vã =
(
d−2IK2 + W∗T (IT−1 ⊗ Σ−1

)
W∗
)−1

,

M ã = Vãbã,

bã = W∗T (IN−1 ⊗ Σ−1
)
Z.
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Proof

The full conditional density for ã is given by

π(ã|Z, ·) ∝ π(ã)π(Z|ã, ·)

∝ exp

{
−1

2
ãT (d−2IK2)ã

}
exp

{
−1

2
(Z −W∗ã)T

(
IN−1 ⊗ Σ−1)(Z −W∗ã

)}
∝ exp

{
−1

2
(ãT (d−2IK2)ã)

}
× exp

{
−1

2

(
ãTW∗T (IN−1 ⊗ Σ−1

)
W∗ã− 2ãTW∗T (IN−1 ⊗ Σ−1

)
Z
)}

= exp

{
−1

2

[
ãT
(
d−2IK2 + W∗T (IN−1 ⊗ Σ−1

)
W∗
)
ã− 2ãTW∗T (IN−1 ⊗ Σ−1

)
Z
]}

.

From the full conditional density of ã we can see that we have the multivariate normal

FCD described above in (A.13).

A.2.5 Derivation of the FCD of Ã with Σ = τ−1IK

In the special case when Σ = τ−1IK , we have

IN−1 ⊗ Σ−1 = τ IK(N−1)

and so

Vã =
(
d−2IK2 + τW∗TW∗

)−1

=
(
d−2IK2 + τΛ∗

T
WTWΛ∗

)−1
.

Now,

WTW =
(
WT

2 , . . . ,W
T
N

)
W2

...

WN


=

N∑
t=2

WT
t Wt

=

N∑
t=2

(
IK ⊗ zTt−1

)T (
IK ⊗ zTt−1

)
=

N∑
t=2

(IK ⊗ zt−1)
(
IK ⊗ zTt−1

)
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=
N∑
t=2

IK ⊗ zt−1z
T
t−1

= IK ⊗
N∑
t=2

zt−1z
T
t−1

= IK ⊗ ZTt−1Zt−1

= blockdiag

ZTt−1Zt−1, . . . ,Z
T
t−1Zt−1︸ ︷︷ ︸

K times

 .

Let Λ∗j = diag (λj1, . . . , λjK) so that Λ∗ = blockdiag (Λ∗1, . . . ,Λ
∗
K). Then

Λ∗
T

WTWΛ∗ = blockdiag (Λ∗1, . . . ,Λ
∗
K) blockdiag

(
ZTt−1Zt−1, . . . ,Z

T
t−1Zt−1

)
× blockdiag (Λ∗1, . . . ,Λ

∗
K)

= blockdiag
(
Λ∗1ZTt−1Zt−1Λ∗1, . . . ,Λ

∗
KZTt−1Zt−1Λ∗K

)
.

Therefore

Vã = blockdiag
{(
d−2IK + τΛ∗1ZTt−1Zt−1Λ∗1

)−1
, . . . ,

(
d−2IK + τΛ∗KZTt−1Zt−1Λ∗K

)−1
}

= blockdiag

{(
d−2IK + τZ1∗

t−1
T

Z1∗
t−1

)−1
, . . . ,

(
d−2IK + τZK∗t−1

T
ZK∗t−1

)−1
}
,

where

Zj∗t−1 = (λj1Z1:N−1,1, . . . , λjKZ1:N−1,K)

= Z∗t−1Λ∗j .

Note that here Z1:N−1,k = (Z1k, . . . ,ZN−1,k)
T .

Similarly

bã = τW∗TZ

= τΛ∗TWTZ,

where

WTZ =
(
WT

2 , . . . ,W
T
N

)
z2

...

zN


=

N∑
t=2

WT
t zt
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=
N∑
t=2

(
IK ⊗ zTt−1

)T
zt

=
N∑
t=2

(IK ⊗ zt−1) zt

=

N∑
t=2

(IK ⊗ zt−1) (zt ⊗ 1)

=

N∑
t=2

(zt ⊗ zt−1)

=


∑N

t=2 zt1zt−1

...∑N
t=2 ztKzt−1

 =


ZTt−1z2:N,1

...

ZTt−1z2:N,K


and so

bã = τ


Λ∗1ZTt−1z2:N,1

...

Λ∗KZTt−1z2:N,K

 = τ


Z1∗
t−1

T
z2:N,1

...

ZK∗t−1
T
z2:N,K

 .
Hence

M ã =


(
d−2IK + τZ1∗

t−1
T

Z1∗
t−1

)−1
τZ1∗

t−1
T
z2:N,1

...(
d−2IK + τZK∗t−1

T
ZK∗t−1

)−1
τZK∗t−1

T
z2:N,K

 ,
and so the rows of Ã are independent in the posterior distribution with the j-th row hav-

ing mean
(
d−2IK + τZj∗t−1

T
Zj∗t−1

)−1
τZj∗t−1

T
z2:N,j and variance

(
d−2IK + τZj∗t−1

T
Zj∗t−1

)−1
.

Hence we have a result for the VAR(1) model that is similar to what we found for the

multivariate linear regression, except here, instead of the columns, it is the rows of Ã that

exhibit independence.

A.2.6 The FCD of λjk (VAR(1) model)

The FCD for the (j, k)-th indicator parameter is given by

λjk|Z ∼ Bern(p̃jk), with (A.14)

p̃jk = cjk/(cjk + djk), where

cjk = pjk exp

{
−1

2
(Z −Wa∗)T (IN−1 ⊗ Σ−1) (Z −Wa∗)

}
djk = (1− pjk) exp

{
−1

2
(Z −Wa∗∗)T (IN−1 ⊗ Σ−1) (Z −Wa∗∗)

}
,
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where a∗ is a with its {(j − 1)K + j}-th element set to ãjk and a∗∗ is a with its {(j −
1)K + k}-th element set to 0.

A.2.7 Derivation of the FCD of λjk with Σ = τ−1IK (VAR(1) model)

Similarly, in the special case, when Σ = τ−1IK , we can write

(Z −Wa)T
(
IN−1 ⊗ Σ−1

)
(Z −Wa) = τ (Z −Wa)T (Z −Wa) ,

where

Z −Wa =


z2

...

zN

−


W2a
...

WNa



=


z2

...

zN

−



zT1 a1

...

zT1 aK
...

zTN−1a1

...

zTN−1aK



=



Z21 − zT1 a1

...

Z2K − zT1 aK
Z31 − zT1 a1

...

ZNK − zTN−1aK


,

in which a =
(
aT1 , . . . ,a

T
K

)
and aj = (aj1, Aj2, . . . , ajk)

T . And so

τ (Z −Wa)T (Z −Wa) = τ

N∑
t=2

K∑
`=1

(
Zt` − zTt−1a`

)2
.

Suppose we are interested in the FCD for λjk. Then we have

cjk = pjk exp
{
−τ

2
(Z −Wa∗)T (Z −Wa∗)

}
= pjk exp

{
−τ

2

N∑
t=2

(
Ztj − zTt−1a

∗
i

)2}
exp

−τ2
N∑
t=2

∑
`6=j

(
Zt` − zTt−1a`

)2 ,
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where a∗ is a with ãjk in its {(j − 1)K + k}-th term. Note that this only differs from a

in the k-th component of aj .

We also have

djk = (1− pjk) exp
{
−τ

2
(Z −Wa∗∗)T (Z −Wa∗∗)

}
= (1− pjk) exp

{
−τ

2

N∑
t=2

(
Ztj − zTt−1a

∗∗
j

)2}
exp

−τ2
N∑
t=2

∑
` 6=j

(
Zt` − zTt−1a`

)2 ,

where a∗∗ is a with 0 in its {(j − 1)K + k}-th term. Note that this only differs from a in

the k-th component of aj .

Thus

cjk ∝ pjk exp

{
−τ

2

N∑
t=2

(
Ztj − zTt−1a

∗
j

)2}
= pjk exp

{
−τ

2
(Z2:N,j − Zt−1a

∗
i )
T (Z2:N,j − Zt−1a

∗
i )
}

and

djk ∝ (1− pjk) exp
{
−τ

2

(
Z2:N,j − Zt−1a

∗∗
j

)T (
Z2:N,j − Zt−1a

∗∗
j

)}
.

This is analogous to the result found for multivariate linear regression.

A.3 Horseshoe prior FCDs

A.3.1 Derivation of the FCD of τβ

To calculate the full conditional density of τβ, we treat the density π (B|τβ, ·) as the

likelihood and let β∗ = vec (B). Then we have

π (β∗|τβ, ·) =
∣∣2πτ2

βΛ∗
∣∣− 1

2 exp

{
−1

2

(
β∗T

1

τ2
β

Λ∗−1β∗

)}
, (A.15)

where Λ∗ = diag
(
λ2

11, λ
2
21, . . . , λ

2
p1, λ

2
12, . . . , λ

2
pK

)
. The prior density for τβ is

π (τβ) =
2

πτβ0

(
1 +

τ2β
τβ0

) . (A.16)

Substituting (A.15) and (A.16) into π (τβ|B, ·) ∝ π (τβ)π (β∗|τβ, ·) gives the density in

(7.20) in Section 7.3.2. In the case of our VAR(1) model in (7.1) with a horseshoe prior

for the matrix of autoregressive coefficients, the derivation for the FCD of τA shown in

(7.23) is very similar to the derivation given here.
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A.3.2 Derivation of the FCD of λjk

As we did for the global shrinkage parameter τβ, we treat the density π (B|λjk, ·) as the

likelihood. However, instead of using the vectorised form of B, we can think of each

element βjk as being independent univariate normal quantities. Thus, we have

π (B|·) =

p∏
j=1

K∏
k=1

(
2πτ2

βλ
2
jk

)− 1
2 exp

{
−1

2

β2
jk

τ2
βλjk

}
.

The prior for density for λjk is given by

π (λjk) =
2

π
(

1 + λ2
jk

) .
The full conditional density for λjk, for j = 1, . . . , p, and k = 1, . . . ,K, is

π (λjk|B, ·) ∝ π (λjk)π (B|·)

=
2

π
(

1 + λ2
jk

) p∏
a=1

K∏
b=1

(
2πτ2

βλ
2
ab

)− 1
2 exp

{
−1

2

β2
ab

τ2
βλab

}
,

which is proportional to the density shown in (7.21) in Section 7.3.2.

In the case of our VAR(1) model in (7.1) with a horseshoe prior for the matrix of

autoregressive coefficients, the derivation for the FCD of λjk shown in (7.24) is very similar

to the derivation given here.

A.4 Prior for the global shrinkage parameter

A.4.1 Proof for β̄j = (1− κj)β̂j

Here we show the proof for (7.26) in Section 7.3.3.

β̄j = τ2
βλ

2
j

(
τ2
βλ

2
j + σ2N−1s−2

j

)−1
β̂j

= τ2
βλ

2
j

(
1

τ2
βλ

2
j + σ2N−1s−2

j

)
β̂j

=

(
1−

σ2N−1s−2
j

τ2
βλ

2
j + σ2N−1s−2

j

)
β̂j

=

(
1− 1

τ2
βλ

2
jσ
−2Ns2

j + 1

)
β̂j

= (1− κj) β̂j .
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A.4.2 Derivation of conditional posterior for β∗

The likelihood for Y is given by

π (Y|B,Σ) = π(E|Σ)

= (2π)−pK/2|Σ|−N/2 exp

{
−1

2
tr
[
Σ−1(Y −XB)T (Y −XB)

]}
= (2π)−pK/2|Σ|−N/2

× exp

{
−1

2
tr

[
Σ−1

(
Y −XB̂

)T (
Y −XB̂

)
+ Σ−1

(
B− B̂

)T
XTX

(
B− B̂

)]}
,

using the fact that B̂ = (XTX)−1XTY. The prior density for B is

π (B) = π (β∗)

= (2π)−pK/2|τ2
βΛ∗|−

1
2 exp

{
−1

2
β∗T (τ2

βΛ∗)−1β∗
}
.

The posterior density for B is proportional to π(B)π(Y|B,Σ). Note that

π(Y|B,Σ) ∝ (2π)−pK/2|Σ|−N/2 × exp

{
−1

2
tr

[
Σ−1

(
B− B̂

)T
XTX

(
B− B̂

)]}
.

We wish to find π(β∗|Y,Σ,Λ∗, τβ) ∝ π(β∗)π(Y|β∗,Σ,Λ∗, τβ). Up to a constant of propor-

tionality the likelihood π(Y|β∗,Σ,Λ∗, τβ) can be written as

exp

{
−1

2

(
β∗ − β̂∗

)T ((
XTX

)−1 ⊗ Σ
)−1 (

β∗ − β̂∗
)}

.

Thus we have

π(Y|β∗,Σ,Λ∗, τβ)

∝ exp

{
−1

2

(
β∗T

((
XTX

)−1 ⊗ Σ
)−1

β∗
)
− 2β∗T

((
XTX

)−1 ⊗ Σ
)−1

β̂
∗
}
.
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The posterior density for β∗ is given by

π(β∗|Y,Σ,Λ∗, τβ)

∝ exp

{
−1

2
β∗T (τ2

βΛ∗)−1β∗
}

× exp

{
−1

2

(
β∗T

((
XTX

)−1 ⊗ Σ
)−1

β∗
)
− 2β∗T

((
XTX

)−1 ⊗ Σ
)−1

β̂
∗
}
.

= exp

{
− 1

2

[
β∗T

(
(τ2
βΛ∗)−1 +

((
XTX

)−1 ⊗ Σ
)−1

)
β∗

− 2β∗T
((

XTX
)−1 ⊗ Σ

)−1
β̂
∗
]}

.

This is the density corresponding to the posterior distribution described in (7.28) in Sec-

tion 7.3.3.

A.4.3 Formulating Kj

τ2
βΛj(τ

2
βΛj +

1

Ns2
j

Σ)−1 = τ2
βΛjΣ

−1

(
τ2
βΛjΣ

−1 +
1

Ns2
j

IK

)−1

= Ns2
jτ

2
βΛjΣ

−1
(
τ2
βΛjΣ

−1Ns2
j + IK

)−1

= IK −
(
IK +Ns2

jτ
2
βΛjΣ

−1
)−1

A.4.4 Expected value for Kj,kk

We wish to find the prior expected value for the diagonal elements Kj,kk conditional on τβ

and Σ. Recall that we have

EΛ|τβ ,Σ (Kj,kk) =

∫
1(

1 + a2
jkλ

2
jk

) 2

π
(

1 + λ2
jk

)dλjk,
where ajk =

√
Nsjτβσ

−1
k . This can be found by writing the integrand as a sum of its

partial fractions. First note that we can write the integrand as 1

(1+a2jkλ
2
jk)

2/π

(1+λ2jk)
. We

need to find P (λjk) and Q(λjk) such that

P (λjk)(
1 + a2

jkλ
2
jk

) +
Q(λjk)(
1 + λ2

jk

) =
1(

1 + a2
jkλ

2
jk

) 2/π(
1 + λ2

jk

) .
It then follows that

P (λjk) +Q (λjk) +
[
P (λjk) + a2

jkQ (λjk)
]
λ2
jk =

2

π
,

204



Appendix A. Additional proofs and derivations

which gives us

P (λjk) +Q (λjk) =
2

π
and (A.17)

P (λjk) + a2
jkQ (λjk) = 0. (A.18)

Subtracting (A.18) from (A.17) we get

(
1− a2

jk

)
Q (λjk) =

2

π
=⇒ Q (λjk) =

2

π
(

1− a2
jk

) .
From this, we get

P (λjk) =
2

π

(
1− 1

1− a2
jk

)

=
2

π

(
−a2

jk

1− a2
jk

)
.

Now we can write our integrand as a partial fraction and solve the integral to find our

prior expected value for Kj,kk as follows:

EΛ|τβ ,Σ (Kj,kk) =
2

π
(

1− a2
jk

) {∫ ∞
0

1

1 + λ2
jk

dλjk −
∫ ∞

0

a2
jk

1− a2
jkλ

2
jk

dλjk

}

=
2

π
(

1− a2
jk

) {[ arctan (λjk)
]∞

0
−
[
ajk arctan (ajkλjk)

]∞
0

}
=

2

π
(

1− a2
jk

) (π
2

(1 + ajk)
)

=
1

1 + ajk
,

which is result (7.37) stated in Section 7.3.3.

A.5 Conditional means and variances of ajk

A.5.1 Spike and slab prior

If we have X|Y ∼ F (Y ), then the conditional expectation and variance of X given Y are

E[X] = EY {EX [X|Y ]} and (A.19)

Var(X) = EY {VarX(X|Y )}+ VarY {EY [X|Y ]}. (A.20)
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Applying (A.19) to ajk under a spike and slab prior we get the following conditional

expectation for ajk:

E[ajk] = Eλjk [Eajk(ajk|λjk)]

= E(ajk|λjk = 0) Pr(λjk = 0) + E(ajk|λjk = 1) Pr(λjk = 1)

= 0

The conditional expectation of ajk is zero under the spike and slab prior. Using (A.20)

we get the following conditional variance for ajk:

Var(ajk) = Eλjk{Varajk(ajk|λjk)}+ Varλjk{Eλjk [ajk|λjk]}

= Var(ajk|λjk = 0) Pr(λjk = 0) + Var(ajk|λjk = 1) Pr(λjk = 1) + Var (0)

= 0 + d2p+ 0

= d2p

A.5.2 Horseshoe prior

The conditional expectation for Aij under the horseshoe prior is

E[ajk] = EV [Eajk(ajk|V )], where V = (λjkτA)

= EV [0]

= 0.

The conditional variance for ajk under the horseshoe prior is:

Var(ajk) = EV {Varajk(ajk|V )}+ VarV {EV [ajk|V ]}

= EV [V 2] + VarV (0)

= E[(λjkτA)2],

which is undefined. The conditional variance is undefined because the expectation and

variance of a Cauchy distribution is undefined. The same is also true for the regularised

horseshoe due to its Cauchy hyperpriors for τA and λjk.
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A.6 Reparameterisation of symmetric, circulant, tridiago-

nal precision matrix

Recall that a (K×K) symmetric, circulant, tridiagonal precision matrix has the following

form:

Σ−1 =



ω0 ω1 0 0 · · · 0 0 0 ω1

ω1 ω0 ω1 0 · · · 0 0 0 0

0 ω1 ω0 ω1 · · · 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 · · · 0 ω1 ω0 ω1

ω1 0 0 0 · · · 0 0 ω1 ω0


.

Its eigenvalues are ηj = ω0 + 2ω1 cos (2πj/K) for j = 0, 1, . . . ,K− 1. It is positive definite

if

ηj > 0⇔ ω0 > −2ω1 cos (2πj/K) for all j.

Suppose that ω1 < 0, then we require

−ω0/(2ω1) > cos (2πj/K) .

This is true if −ω0/(2ω1) > 1, which can only occur when ω0 > 0. Now suppose ω1 > 0.

Then we require

−ω0/ (2ω1) < cos (2πj/K) .

This is true if −ω0/ (2ω1) < −1, i.e. ω0/ (2ω1) > 1, which can only occur when ω0 > 0.

Altogether, this means we require ω0/ (2 |ω1|) > 1, i.e. ω0 > 2 |ω1|, whilst ω1 ∈ R.

Parameterisations over fixed regions are generally nicer, so we parameterise in terms of ω̄0

and ω̄1, where

ω0 = ($0 +$1) /
√

2

ω1 = ($0 −$1) /2
√

2

$0 =
√

2 (ω0 + 2ω1) /2

$1 =
√

2 (ω0 − 2ω1) /2,

where −∞ < ω1 <∞, ω0 > 2 |ω1|, which is equivalent to $0 > 0, $1 > 0.
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MCMC algorithms

B.1 Algorithms for shrinkage parameters in VAR(1) model

with horseshoe prior

B.1.1 Metropolis-within-Gibbs step for λjk

1. Initialise chain with λ
(0)
jk . Set counter i = 1.

2. Generate a proposed value λ∗jk ∼ LN
(

log(λ
(i−1)
jk ), σ2

λ

)
.

3. Evaluate acceptance probability

α
(
λ∗jk|λ

(i−1)
jk

)
= min

1, log

 π(λ∗jk|A)q(λ
(i−1)
jk |λ∗jk)

π(λ
(i−1)
jk |A)q(λ∗jk|λ

(i−1)
jk )

 .

Dropping the (i−1) notation, we have α
(
λ∗jk|λ

(i−1)
jk

)
= min {1, A}, where

A = log


2

π(1+λ∗jk
2)

(λ∗jk)
−1 exp

{
−1

2

(
ajk
τAλ

∗
jk

)2
}

1
λjkσλ

√
2π

exp

{
−(log(λjk)−log(λ∗jk)2

2σ2
λ

}
2

π(1+λjk2)
(λjk)−1 exp

{
−1

2

(
ajk
τAλjk

)2
}

1
λ∗jkσλ

√
2π

exp
{−(log(λ∗jk)−log(λjk)2

2σ2
λ

}


= − log(1 + λ∗jk
2) + log(1 + λ2

jk) +
1

2

( ajk
τAλjk

)2

−

(
ajk
τAλ∗jk

)2


4. Set λ
(j)
jk = λ∗jk with probability α

(
λ∗jk|λ

(i−1)
jk

)
, otherwise set λ

(j)
jk = λ

(i−1).
jk

5. Set i = i+ 1. Go to step 2.
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B.1.2 Metropolis-within-Gibbs step for τA

1. Initialise chain with τ
(0)
A . Set counter i = 1.

2. Generate a proposed value τ∗A ∼ LN(log
(
τ

(i−1)
A

)
, σ2

τA
).

3. Evaluate the acceptance probability

α(τ∗A|τ
(i−1)
A ) = min

{
1, log

(
π(τ∗A|A)q(τA|τ∗A)

π(τA|A)q(τ∗A|τA)

)}

Dropping the (i−1) notation, we have α(τ∗A|τ
(i−1)
A ) = min {1, A}

A = log

(
2

πτ0(1 + τ∗A
2/τ0)

)
− log

(
2

πτ0(1 + τ2
A/τ0)

)
− 0.5 log

K2∏
k=1

Λ∗kk


− K2

2
log(2πτ∗A

2) + 0.5 log

K2∏
k=1

Λ∗kk

− 0.5

(
1

τ∗A
2
aTΛ∗−1a

)

+ 0.5

(
1

τ2
A

aTΛ∗−1a

)
+ log

(
1

τAστA
√

2π

)
− log

(
1

τAστ∗A
√

2π

)

= − log

(
1 +

τ∗A
2

τ0

)
+ log

(
1 +

τ2
A

τ0

)
+
K2

2

(
log(τ2

A)− log(τ∗A
2)
)

− log(τA) + log(τ∗A) + 0.5

(
1

τ2
A

− 1

τ∗A
2

)(
aTΛ∗

−1
a
)}

= log

(
1 +

τ2
A

τ0

)
− log

(
1 +

τ∗A
2

τ0

)
+
(
K2 − 1

) (
log(τA)− log(τ∗A)

)
+ 0.5

(
1

τ2
A

− 1

τ∗A
2

)(
aTΛ∗

−1
a
)
.

4. Set τ
(i)
A = τA∗ with probability α

(
τ∗A|τ

(i−1)
A

)
, otherwise set τ

(i)
A = τ

(i−1)
A .

5. Set i = i+ 1.
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Code

C.1 Stan code

Listing C.1: Code for the VAR(1) model used for the AS tank. The code for the SS tank is very

similar.

functions { // No f u n c t i o n s

}

data {
int<lower = 1> K; // No . o f b i n s / columns in data

int<lower = 1> N; // No . o f t ime p o i n t s / rows in data

int<lower = 1> N miss ; // No . t ime p o i n t s mi s s ing from data

matrix [N−N miss ,K] y obs ; // Observed data

int<lower = 1 , upper = N> which y miss [ N miss ] ; // I n d i c e s o f mi s s ing t ime p o i n t s

int<lower = 1 , upper = N> which y obs [N−N miss ] ; // I n d i c e s o f o b s e r v ed t ime p o i n t s

row vector [N] in t e r c ept X ; // I n t e r c e p t term f o r d e s i gn matr ix

int<lower=1> L ; // No . o f chemica l / env i ronmenta l

// c o v a r i a t e s + 1 ( f o r i n t e r c e p t )

int<lower=0> N Nitrate obs ; // Number o f o b s e r v ed N i t r a t e v a l u e s

int<lower=0> N COD obs ; // Number o f o b s e r v ed COD va l u e s

int<lower=0> N Ammonia obs ; // Number o f o b s e r v ed Ammonia v a l u e s

int<lower=0> N pH obs ; // Number o f o b s e r v ed pH va l u e s

int<lower=0> N Phosphate obs ; // Number o f o b s e r v ed phospha te v a l u e s

row vector [ N Nit rate obs ] N i t r a t e ob s ; // Observed v a l u e s f o r N i t r a t e

row vector [ N COD obs ] COD obs ; // Observed v a l u e s f o r COD

row vector [ N Ammonia obs ] Ammonia obs ; // Observed v a l u e s f o r Ammonia

row vector [ N pH obs ] pH obs ; // Observed v a l u e s f o r pH

row vector [ N Phosphate obs ] Phosphate obs ; // Observed v a l u e s f o r phospha te

// I n d i c e s o f mi s s ing v a l u e s f o r each c o v a r i a t e

i n t <lower = 1 , upper = N> which Ni t ra te mi s s [N−N Nitrate obs ] ;

i n t <lower = 1 , upper = N> which COD miss [N−N COD obs ] ;

i n t <lower = 1 , upper = N> which Ammonia miss [N−N Ammonia obs ] ;

i n t <lower = 1 , upper = N> which pH miss [N−N pH obs ] ;

i n t <lower = 1 , upper = N> which Phosphate miss [N−N Phosphate obs ] ;

// I n d i c e s o f o b s e r v ed v a l u e s f o r Phosphate

i n t <lower = 1 , upper = N> which Ni t ra te obs [ N Nit rate obs ] ;

i n t <lower = 1 , upper = N> which COD obs [ N COD obs ] ;

i n t <lower = 1 , upper = N> which Ammonia obs [ N Ammonia obs ] ;

i n t <lower = 1 , upper = N> which pH obs [ N pH obs ] ;

i n t <lower = 1 , upper = N> which Phosphate obs [ N Phosphate obs ] ;

int<lower=1> Nh; // Number o f harmonics f o r mu

real<lower = 0> g l o b a l s c a l e ; // t au 0 ( s c a l e f o r g l o b a l s h r i n k a g e )

real<lower=0> s l a b s c a l e ; // S l a b s c a l e f o r t h e r e g u l a r i s e d hor s e shoe
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real<lower=0> s l a b d f ; // S l a b DOF f o r t h e r e g u l a r i s e d hor s e shoe

real m beta ; // Pr ior mean f o r b e t a

real<lower=0> v beta ; // Pr ior va r i ance f o r b e t a

real m gamma ; // Pr ior mean f o r gamma

real<lower=0> v gamma // Pr ior va r i ance f o r gamma

real<lower=1> nu l o c a l ; // Degrees o f freedom f o r ha l f−t p r i o r f o r tau A

real<lower=1> nu g loba l ; // Degrees o f freedom f o r ha l f−t p r i o r f o r lambdas

// n u g l o b a l = n u l o c a l = 1 g i v e s h a l f−Cauchy .

real<lower=0> s s igma ; // Pr ior sd f o r lognorma l f o r sigma

real<lower=0> c e r r o r ; // Pr ior c o e f f i c i e n t o f v a r i a t i o n f o r p r e c i s i o n parameters .

real a B ; // Pr ior mean f o r means B

real<lower=0> b B ; // Pr ior sd f o r means B

real<lower=2> c B ; // Pr ior shape f o r s i gma sq B

real<lower=0> d B ; // Pr ior s c a l e f o r s i gma sq B

real<lower=0> a lpha ph i ; // Shape 1 f o r b e t a p r i o r f o r ph i

real<lower=0> beta ph i ; // Shape 2 f o r b e t a p r i o r f o r ph i

real<lower = (L−2)> nu ; // Pr ior d e g r e e s o f freedom f o r Sigma X

cov matrix [ ( L−1)] Sigma Sigma X ; // Pr ior s c a l e matr i x f o r Sigma X

}

transformed data {
// s i n . and cos . v a l u e s f o r mu

matrix [Nh,N] s in mat ;

matrix [Nh,N] cos mat ;

real p i c on s t = (2∗ pi ( ) ) / 5 2 ;

for ( j in 1 :Nh) {
for ( t in 1 :N) {

s in mat [ j , t ] = p i c on s t ∗ j ∗ t ;

cos mat [ j , t ] = sin mat [ j , t ] ;

}
}
s in mat = s in ( s in mat ) ;

cos mat = cos ( cos mat ) ;

}

parameters {
matrix [K,K] z ;

matrix [Nh,K] beta ; // Beta params ( s i n . f o u r i e r c o e f f i c i e n t ) f o r mu

matrix [Nh,K] gamma; // Gamma params ( cos . f o u r i e r c o e f f i c i e n t ) f o r mu

matrix [ N miss , K] y miss ; // Miss ing y v a l u e s

real<lower=0> d0 ;

real<lower=0> d1 ;

real<lower=0> caux ;

real<lower=0> aux1 g loba l ;

real<lower=0> aux2 g loba l ;

matrix<lower=0>[K,K] aux1 l o ca l ;

matrix<lower=0>[K,K] aux2 l o ca l ;

real<lower=0> sigma ;

vector [ L ] means B ; // Pr ior means f o r a l pha

real<lower=0> s igma sq B [L ] ; // Pr ior va r i ance parameters f o r a l p ha s

matrix [ L ,K] B t i l d e ;

row vector [N−N Nitrate obs ] N i t r a t e m i s s ;

row vector [N−N COD obs ] COD miss ;

row vector [N−N Ammonia obs ] Ammonia miss ;

row vector [N−N pH obs ] pH miss ;

row vector [N−N Phosphate obs ] Phosphate miss ; .

vector<lower=0, upper=1>[L−1] phi ;

cov matrix [ L−1] Sigma X ;

}

transformed parameters {
real<lower=0> tau A ; // G loba l s h r i n k a g e parameter

matrix<lower=0>[K,K] lambda ; // Loca l s h r i n k a g e parameter

matrix<lower=0>[K,K] lambda t i lde ; // ’ Truncated ’ l o c a l s h r i n k a g e parameter

real<lower=0> c ;

matrix [K,K] A; // Au t o r e g r e s s i v e c o e f f i c i e n t matr ix

real<lower=0> c0 ;

real c1 ;

matrix [K,K] prec mat ; // Pr e c i s i on matr ix o f e r r o r s

matrix [N,K] alpha ; // Alpha ( i n t e r c e p t f o r mu)

matrix [N,K] mu; // Time va ry in g mean

matrix [ L ,K] B; // Regre s s i on c o e f f i c i e n t s f o r a l pha

matrix [ L ,N] X; // Design matr ix ( chem . and env . c o v a r i a t e s )

matrix [N,K] y ; // Data c on s t r u c t e d from y ob s and y mis s
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y [ which y obs , ] = y obs ;

y [ which y miss , ] = y miss ;

X[ 2 , wh i ch Ni t ra te mi s s ] = Ni t r a t e m i s s ;

X[ 2 , wh ich Ni t ra te obs ] = Ni t ra t e ob s ;

X[ 3 , which COD miss ] = COD miss ;

X[ 3 , which COD obs ] = COD obs ;

X[ 4 , which Ammonia miss ] = Ammonia miss ;

X[ 4 , which Ammonia obs ] = Ammonia obs ;

X[ 5 , which pH miss ] = pH miss ;

X[ 5 , which pH obs ] = pH obs ;

X[ 6 , which Phosphate miss ] = Phosphate miss ;

X[ 6 , which Phosphate obs ] = Phosphate obs ;

X[ 1 , ] = in te r c ept X ;

// Error p r e c i s i o n matr ix

c0 = (d0+d1 )/ sq r t ( 2 ) ; // c0 main d i a g ona l o f p r e c i s i o n

c1 = (d0−d1 )/(2∗ sq r t ( 2 ) ) ; // c1 super −, sub−d i a g ona l s o f p r e c i s i o n .

// top r i g h t , bottom l e f t co rne r s

prec mat = rep matr ix ( 0 . 0 , K,K) ;

prec mat [ 1 ,K] = c1 ;

prec mat [K, 1 ] = c1 ;

prec mat [K,K] = c0 ;

for ( j in 1 : (K−1)) {
prec mat [ j , j ] = c0 ;

prec mat [ j , ( j +1)] = c1 ;

prec mat [ ( j +1) , j ] = c1 ;

}

// mu

for ( l in 1 :L) {
B[ l , ] = B t i l d e [ l , ] ∗ s igma sq B [ l ] ;

}
for ( i in 1 :N) {

alpha [ i , ] = (B’∗X[ , i ] ) ’ ;

mu[ i , ] = alpha [ i , ] ;

for ( j in 1 :Nh) {
mu[ i , ] += ( beta [ j , ] ∗ s in mat [ j , i ] + gamma[ j , ] ∗ cos mat [ j , i ] ) ;

}
}

// A

c = s l a b s c a l e ∗ sq r t ( caux ) ;

tau A = aux1 g loba l ∗ sq r t ( aux2 g loba l ) ∗ g l o b a l s c a l e ∗ sigma ;

for ( i in 1 :K) {
lambda [ i , ] = aux1 l o ca l [ i , ] .∗ sq r t ( aux2 l o ca l [ i , ] ) ;

l ambda t i lde [ i , ] = sq r t ( c ˆ2∗ square ( lambda [ i , ] ) . / ( c ˆ2 +tau Aˆ2∗ square ( lambda [ i , ] ) ) ) ;

A[ i , ] = z [ i , ] .∗ l ambda t i lde [ i , ] ∗ tau A ;

}
}

model {
real c inv = 1/ c e r r o r ˆ2 ;

vector [ L−1] mean X ;

// Pr ior f o r e r r o r p r e c i s i o n matr ix ( r e p a r ame t e r i s a t i o n )

sigma ˜ lognormal (0 , s s igma ) ;

d0 ˜ gamma( c inv , sq r t (2)∗ sigmaˆ2∗ c inv ) ;

d1 ˜ gamma( c inv , sq r t (2)∗ sigmaˆ2∗ c inv ) ;

// Chem . / env . c o v a r i a t e s

phi ˜ beta ( a lpha phi , be ta ph i ) ;

Sigma X ˜ inv w i sha r t (nu , Sigma Sigma X ) ;

for ( i in 2 :N) {
mean X = phi .∗ X[ 2 : L , i −1] ;

X[ 2 : L , i ] ˜mult i normal (mean X , Sigma X ) ;

}

// Pr ior f o r B ( a l pha )

means B ˜ normal ( a B , b B ) ;

212



Appendix C. Code

s igma sq B ˜ inv gamma ( c B , d B ) ;

for ( l in 1 :L) {
B t i l d e [ l , ] ˜ normal (means B [ l ] , 1 ) ;

}

// Pr ior f o r b e t a and gamma

for ( j in 1 :Nh) {
beta [ j , ] ˜ normal (m beta , sq r t ( v beta ) ) ;

gamma[ j , ] ˜ normal (m gamma, sq r t (v gamma ) ) ;

}

// Ha l f t−p r i o r s f o r lambdas and tau , and inve r s e−gamma f o r c ˆ2

// Hal f−Cauchy i f n u l o c a l = n u g l o b a l = 1

for ( i in 1 :K) {
z [ i , ] ˜ normal ( 0 , 1 ) ;

aux1 l o ca l [ i , ] ˜ normal ( 0 , 1 ) ;

aux2 l o ca l [ i , ] ˜ inv gamma (0 .5∗ nu loca l , 0 .5∗ nu l o c a l ) ;

}
aux1 g loba l ˜ normal ( 0 , 1 ) ;

aux2 g loba l ˜ inv gamma (0 .5∗ nu globa l , 0 .5∗ nu g loba l ) ;

caux ˜ inv gamma (0 .5∗ s l ab d f , 0 .5∗ s l a b d f ) ;

// Mu and L i k e l i h o o d

for ( i in 2 :N) {
y [ i , ] ˜ mul t i normal prec (mu[ i , ] ’+A∗(y [ ( i −1) ,] ’−mu[ i −1 , ] ’ ) , prec mat ) ;

}
}
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Additional tables

Covariate Tank

COD AS
Fluoride AS
Phosphate AS
Chloride AS
Cadmium SS
Lead SS
Manganese SS

Table D.1: Chemical and environmental covariates with a measurement regarded as an outlier and
removed from the data, with the exception of COD, which had three outliers.
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Additional plots

E.1 Exploratory plots for taxonomic ranks
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Figure E.1: (a) time series plots and (b) stacked bar plot for the top 12 families in the AS based
on median abundance.
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Figure E.2: (a) time series plots and (b) stacked bar plot for the top 12 families in the SS based
on median abundance.
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Figure E.3: (a) time series plots and (b) stacked bar plot for the top 12 orders in the AS based on
median abundance.
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Figure E.4: (a) time series plots and (b) stacked bar plot for the top 12 orders in the SS based on
median abundance.
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Figure E.5: (a) time series plots and (b) stacked bar plot for the top 12 phyla in the AS based on
median abundance.
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Figure E.6: (a) time series plots and (b) stacked bar plot for the top 12 phyla in the SS based on
median abundance.
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Figure E.7: Heatmap of A80.
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Figure E.8: Heatmap of A50.
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Figure E.9: Heatmap of A20.
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Irlinger, F. 2008 Microbial interactions within a cheese microbial community. Applied

and Environmental Microbiology 74 (1), 172–181.

Newton, M. A. & Raftery, A. E. 1994 Approximate Bayesian inference by the

weighted likelihood bootstrap (with discussion). Journal of the Royal Statistical Society:

Series B 56, 3–48.

Nye, T. M. 2020 Random walks and Brownian motion on cubical complexes. Stochastic

Processes and their Applications 130 (4), 2185 – 2199.

Oaks, J. R., Cobb, K. A., Minin, V. N. & Leaché, A. D. 2019 Marginal likelihoods
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