
School of Computing Science

Real-Time Performance Diagnosis and
Evaluation of Big Data Systems in

Cloud Datacenters

Umit Demirbaga

Submitted for the degree of Doctor of
Philosophy in the School of Computing

Science, Newcastle University

September 2021

© 2021, Umit Demirbaga

- B -

Abstract

Modern big data processing systems are becoming very complex in terms of large-

scale, high-concurrency and multiple talents. Thus, many failures and performance

reductions only happen at run-time and are very difficult to capture. Moreover, some

issues may only be triggered when some components are executed. To analyze the root

cause of these types of issues, we have to capture the dependencies of each component

in real-time.

Big data processing systems, such as Hadoop and Spark, usually work in large-scale,

highly-concurrent, and multi-tenant environments that can easily cause hardware and

software malfunctions or failures, thereby leading to performance degradation. Sev-

eral systems and methods exist to detect big data processing systems’ performance

degradation, perform root-cause analysis, and even overcome the issues causing such

degradation. However, these solutions focus on specific problems such as stragglers and

inefficient resource utilization. There is a lack of a generic and extensible framework

to support the real-time diagnosis of big data systems.

Performance diagnosis and prediction of big data systems are highly complex as these

frameworks are typically deployed in cloud data centers that are large-scale, highly

concurrent, and follows a multi-tenant model. Several factors, including hardware

heterogeneity, stochastic networks and application workloads may impact the perfor-

mance of big data systems. The current state-of-the-art does not sufficiently address

the challenge of determining complex, usually stochastic and hidden relationships be-

tween these factors.

To handle performance diagnosis and evaluation of big data systems in cloud environ-

ments, this thesis proposes multilateral research towards monitoring and performance

diagnosis and prediction in cloud-based large-scale distributed systems by involving a

novel combination of an effective and efficient deployment pipeline.

The key contributions of this dissertation are listed below:

- i -

• Designing a real-time big data monitoring system called SmartMonit that ef-

ficiently collects the runtime system information including computing resource

utilization and job execution information and then interacts the collected infor-

mation with the Execution Graph modeled as directed acyclic graphs (DAGs).

• Developing AutoDiagn, an automated real-time diagnosis framework for big data

systems, that automatically detects performance degradation and inefficient re-

source utilization problems, while providing an online detection and semi-online

root-cause analysis for a big data system.

• Designing a novel root-cause analysis technique/system called BigPerf for big

data systems that analyzes and characterizes the performance of big data appli-

cations by incorporating Bayesian networks to determine uncertain and complex

relationships between performance related factors.

- ii -

Declaration

I declare that this thesis is my own work unless otherwise stated. No part of this thesis

has previously been submitted for a degree or any other qualification at Newcastle

University or any other institution.

Umit Demirbaga

September 2021

- iii -

- iv -

Publications

Published

1. U. Demirbaga, A. Noor, Z. Wen, P. James, K. Mitra and R. Ranjan, “Smart-

Monit: Real-time Big Data Monitoring System,” The 38th International Sym-

posium on Reliable Distributed Systems (SRDS 2019) Lyon, France, OCT 1-4,

2019, 10.1109/SRDS47363.2019.00049. [Core A Ranking]

2. U. Demirbaga, Z. Wen, A. Noor, K. Mitra, K. Alwasel, S. Garg, A. Zomaya

and R. Ranjan, “AutoDiagn: An Automated Real-time Diagnosis Framework for

Big Data Systems,” IEEE Transactions on Computers, Apr 02 2021, 10.1109/

TC.2021.3070639. [Q1, Core A* Ranking, ISI impact factor 3.131]

3. U. Demirbaga, “HTwitt: A Hadoop-based Platform for Analysis and Visualiza-

tion of Streaming Twitter Data,” Neural Computing and Applications, Springer,

Apr 14 2021, 10.1007/s00521-021-06046-y. [Q1, Core B Ranking, ISI impact

factor: 5.606]

4. K. Alwasel, D. Jha, F. Habeeb, U. Demirbaga, O. Rana, T. Baker, S. Dustdar,

M. Villari, P. James, and R. Ranjan, “IoTSim-Osmosis: A Framework for Mod-

elling & Simulating IoT Applications Over an Edge-Cloud Continuum,” Journal

of Systems Architecture, Elsevier, 28 Nov 2020, 10.1016/j.sysarc.2020.101956.

[Q2, Core B Ranking, ISI impact factor: 2.55]

5. A. Noor, K. Mitra, A. Souza, D. N. Jha, P. P. Jayaraman, Umit Demirbaga,

Ellis Solaiman, Nelio Cacho, and R. Ranjan, “Cyber-Physical Application Moni-

toring across Multiple Clouds,” Journal of Computer and Electrical Engineering,

Elsevier, July 2019, 10.1016/j.compeleceng.2019.06.007. [Q1, Core B Ranking,

ISI impact factor: 2.6]

6. U. Demirbaga and D. N. Jha, “Social Media Data Analysis using MapReduce

- v -

Programming Model and Training a Tweet Classifier using Apache Mahout,” in

Proceedings - 8th IEEE International Symposium on Cloud and Services Com-

puting, SC2 2018, 2018, 10.1109/SC2.2018.00024.

7. U. Demirbaga, D. N. Jha, N. Booth, T. Roberts, T. Shah, and R. Ranjan, “A

Batch and Real-time Data Analytics Framework for Healthcare Applications,”

Newsletter, IEEE Technical Committee on Cybernetics for Cyber-Physical Sys-

tems, Volume 3, Issue 2, August 01, 2018.

- vi -

Dedication

To those who have committed and to those who will commit their lives to science and

to all people who believe in the power of knowledge.

- vii -

- viii -

Acknowledgements

It has been a great pleasure working with the faculty, staff, and an amazing group of

talented people at Newcastle University, during my tenure as a Doctoral student.

I am very thankful to my Ph.D. advisor, Distinguished Professor Rajiv Ranjan, for

his exceptional support, encouragement, and immense knowledge throughout my PhD

study. I am very grateful to have been the student of such a knowledgeable, enthusi-

astic, and ambitious visionary and to be a part of his team.

I would also like to express sincere gratitude to Dr. Karan Mitra (Lule̊a University

of Technology) who facilitated my learning and spent countless hours reviewing my

drafts and brainstorming new research ideas.

I would like to thank my fellow lab-mates: Dr. GaganGeet Singh Aujla, Ayman Noor,

Bin Qian, Devki Nandan Jha, Khaled Alwasel, Nipun Balan, Top Phengsuwan, Yinhao

Li, and Zhenyu Wen, for their friendship and influencing my work with immeasurable

discussions.

I am highly indebted to the State of the Republic of Turkey and the Turkish Ministry

of National Education for giving me this opportunity to complete my PhD, and thanks

for their financial and emotional support.

Furthermore, I would also like to express my deepest gratitude to my parents, Rüstem

Demirbaga and Dilber Demirbaga, and my siblings, Pınar Dönmez, Duygu Sefertaş,

Sevgi Arısoy, and Eren Demirbaga, who have supported me throughout this journey

and have always believed in me.

I also would like to thank the lovely couple, Meryem & Erhan Batmaca for believing

in my success and supporting me from the beginning of my abroad journey.

A special thanks to my loving wife, Kübra Kırca-Demirbaga, who was always with me

to share my happiness, success and sorrow. I am grateful for her understanding, her

patience, and mostly for her love. She is not just a coauthor of this thesis, but the

coauthor of my life.

- ix -

- x -

Contents

1 Introduction 1

1.1 Research Motivation . 3

1.2 Research Contributions . 7

1.3 Thesis Structure . 9

2 Literature Review 11

2.1 Big Data . 12

2.2 Apache Hadoop Architecture . 13

2.2.1 YARN . 15

2.2.2 HDFS . 16

2.2.3 MapReduce . 16

2.3 Big Data Applications based on the MapReduce Technology 18

2.4 Real-Time Performance Diagnosis of Big Data Systems 21

2.4.1 What is performance diagnosis? 21

2.4.1.1 The components of performance diagnosis: 22

2.4.1.2 The methods for performance diagnosis: 23

2.4.2 Why performance diagnosis? . 24

2.4.3 Requirements for an automated performance diagnosis platform 25

2.5 Deployment Environment . 26

2.5.1 Cloud computing . 26

2.5.2 Why cloud computing for big data? 27

2.6 Commercial and Open Source Tools for Big Data Systems 28

3 SmartMonit: Real-time Big Data Monitoring System 35

3.1 Introduction . 36

3.2 Related Work . 38

3.3 System Overview . 40

3.3.1 System Architecture . 40

3.3.1.1 Information Collection 40

3.3.1.2 Computation and Storing 42

3.3.1.3 Visualization . 44

- xi -

3.4 Experimental Evaluation . 44

3.4.1 Experimental setup . 44

3.4.2 Performance and overheads . 46

3.4.3 Execution time evaluation of the benchmarks 47

3.5 Visualization . 48

3.5.1 Micro-benchmark . 49

3.5.2 Building Execution Graph . 50

3.5.3 Real-time demonstration . 54

3.6 Discussion and Future Work . 56

3.7 Conclusion . 56

4 AutoDiagn: An Automated Real-time Diagnosis Framework for Big Data
Systems 57

4.1 Introduction . 59

4.2 Related Work . 61

4.3 Requirements and design idea . 63

4.3.1 Fundamental prerequisite for diagnosing big data processing sys-
tems . 63

4.3.2 Key design idea . 64

4.3.3 The generalizability of AutoDiagn 64

4.4 AutoDiagn Architecture . 65

4.4.1 Architecture overview . 65

4.4.2 AutoDiagn monitoring framework 67

4.4.3 AutoDiagn diagnosing framework 68

4.4.4 AutoDiagn diagnosing interfaces for Hadoop 69

4.4.5 Example applications . 70

4.4.6 Parallel Execution . 72

4.4.7 Reliability analysis . 72

4.5 Case Study . 73

4.5.1 Symptom detection for outliers 73

4.5.2 Root cause analysis for outliers 75

4.5.2.1 Root cause of outliers 77

4.5.2.2 Detecting data locality issues 77

4.5.2.3 Detecting resource heterogeneity issues 79

4.5.2.4 Detecting network failure issues 79

- xii -

4.5.2.5 Decision making . 80

4.6 Evaluation . 80

4.6.1 Experimental setup . 80

4.6.2 Diagnosis detection evaluation 81

4.6.3 Performance and overheads . 83

4.7 Discussion and Future Work . 86

4.8 Conclusion . 87

5 BigPerf: Probabilistic Performance Diagnosis and Prediction for Cloud-based
Big Data Systems 89

5.1 Introduction . 90

5.2 Related Work . 92

5.3 BigPerf: Bayesian Performance Diagnosis and Prediction for Cloud-
based Big Data Systems . 94

5.3.1 BNs for Big Data QoS Diagnosis and Prediction 96

5.4 Experiment and Results Analysis . 100

5.4.1 Experiments . 100

5.4.2 Performance Diagnosis . 104

5.4.2.1 Transaction Time . 105

5.4.2.2 Mapper Performance Diagnosis 107

5.4.2.3 Reducer Performance Diagnosis 107

5.4.3 Big Data QoS Prediction . 108

5.5 Conclusion . 109

6 Conclusion 111

6.1 Thesis Summary . 112

6.1.1 Limitations . 113

6.2 Future Research Directions . 114

6.2.1 SDN-based Light-weight Monitoring Framework for Big Data
Systems . 114

6.2.2 Diagnosis Framework for Big Data Systems using AI Techniques 115

6.2.3 Online Performance Diagnosis and Prediction for Big Data Sys-
tems . 115

6.2.4 Performance Evaluation of Container-based Big Data Applica-
tions in Multiple Cloud Environments 116

References 119

- xiii -

- xiv -

List of Figures

1.1 Six big data applications are executed in a cloud-based Hadoop cluster
with two settings: 1) the input data and jobs are allocated in the same
node; 2) the input data and jobs are allocated in different nodes. In
Setting 2, the execution time of each application is delayed by
transmitting data across nodes. 4

1.2 Performance diagnosis of big data systems in cloud datacenters 5

1.3 Thesis outline . 10

2.1 Growth in worldwide stored data [1] . 13

2.2 A typical Hadoop architecture . 14

2.3 YARN architecture and its components 16

2.4 HDFS architecture . 17

2.5 MapReduce working principle . 18

2.6 High-level MapReduce processing pattern 19

3.1 Example scenario for monitoring big data systems 37

3.2 Monitoring agents model (a); Implementation of SmartMonit
mechanism in a Hadoop cluster (b). 41

3.3 The framework of SmartMonit. 42

3.4 Metrics collection completion time . 46

3.5 Resource utilization of SmartMonit. 47

3.6 The network and storage overheads of SmartMonit 48

3.7 WordCount execution time on different data size 48

3.8 Grep execution time on different data size 49

3.9 TPC-H execution time on different data size 49

3.10 TPC-DS execution time on different data size 50

3.11 K-means execution time on different data size 50

3.12 PageRank execution time on different data size 51

3.13 The algorithm of SmartWriter. 53

3.14 Execution graph in a real-time monitoring system. 55

4.1 The key design idea of root-cause analysis for big data processing systems 65

4.2 The high-level architecture of the AutoDiagn system 66

- xv -

4.3 The high-level architecture of the monitoring framework 67

4.4 Performance evaluation of the tasks . 75

4.5 Comparison of execution time of the tasks 84

4.6 The throughput of AutoDiagn . 85

4.7 The life cycle of the restarted task . 85

4.8 CPU utilization of two nodes running simultaneously. Outliers are
most likely to occur in the nodes which have less computing resource. . 86

4.9 Performance evaluation and network overhead of AutoDiagn 87

5.1 End-to-end Transaction time of a task 95

5.2 Approach for Big Data QoS diagnosis and prediction. 96

5.3 Bayesian Networks for Big Data QoS diagnosis and prediction 99

5.4 Fat-tree topology used in the simulated use-case experiments. 102

5.5 Screenshot of Bayesian Network implementation in GeNIe platform. . . 105

- xvi -

List of Tables

2.1 A comparison of the literature review to the major issues addressed in
this thesis. 33

3.1 SmartMonit monitoring interface for jobs. 43

3.2 SmartMonit monitoring interface for system. 44

3.3 The experiment environments regarding workload and system
specifications . 45

3.4 A summary of symbols used in this section 54

4.1 AutoDiagn diagnosing interface. See §4.4.4 for definitions and examples 71

4.2 A summary of symbols used in this section 74

4.3 The accuracy of symptom detection for non-local outliers in a
homogeneous cluster . 82

4.4 The accuracy of symptom detection for the outliers stemming from
resource variation in a heterogeneous cluster 82

4.5 The accuracy of symptom detection for the outliers stemming from
network failures . 83

4.6 Resource overhead caused by AutoDiagn components 85

5.1 The features supported by existing work and BigPerf 94

5.2 A summary of symbols used in this section 98

5.3 Configuration for validating BigDataSDNSim 101

5.4 Configuration for validating MapReduce application 101

5.5 Cloud Datacenter Configuration . 103

5.6 Applications Configuration for Cloud-based Big Data System 103

5.7 Statistics related to all values present in the dataset 104

5.8 QoS value states representation using hierarchal discretization for
transaction time (TT) in milliseconds 106

5.9 QoS value states representation using hierarchal discretization for
mapper execution time (MET) in milliseconds 107

5.10 QoS value states representation using hierarchal discretization for
reducer execution time (RET) in milliseconds 108

5.11 QoS value states representation using hierarchal discretization for
reducer VM MIPS (RMIPS) . 108

5.12 Big data performance prediction accuracy (%) for different type of
Bayesian Networks . 109

- xvii -

- xviii -

1
Introduction

Contents
1.1 Research Motivation . 3

1.2 Research Contributions . 7

1.3 Thesis Structure . 9

- 1 -

Chapter 1: Introduction

Introduction

Big data systems are used to efficiently process very large amounts of data that cannot

be processed with a single computer. Such systems, which use large scale distributed

cluster architecture, implement parallel programming models to process data and dis-

tributed file systems to store data [2]. The distributed parallel architecture distributes

data among multiple servers and creates turbulence, increasing data processing speeds.

Big Data systems enable to handle the collection of large and complex data classified

as structured, semi-structured, and unstructured data, generated from various data

sources. There are two types of data processing systems in use today: (1) batch

processing systems like Apache Hadoop1, Apache Spark2, Dryad3; (2) stream process-

ing systems like Apache Storm4, Apache Spark Streaming5, Apache Flink6, Apache

Kafka7, Apache Samza8 [3].

A cloud datacenter (CDC) is a physical facility comprised of numerous physical ma-

chine hosts (PMs), each of which can create multiple virtual machines (VMs) to execute

cloud-based tasks. It is expected that the datacenter is virtualized, and a high-speed

network with a fat-tree topology is used to connect clustered PM hosts [4]. Cloud

datacenters are an established Infrastructure-as-a-Service (IaaS) offering. Computing

hardware including computing unit and data storage devices, racks, routers, switches,

power, cabling system, environment system (e.g., air conditioning, humidification),

firewalls, and application-delivery controllers are the common and important compo-

nents of a datacenter [5]. Cloud datacenters are a mature IaaS solution that combines

and virtualizes resources such as compute, storage, network, and so on. Cloud data-

centers enables cloud applications to be accessed over the internet. Each VM hosted

by virtualized PMs can have its own characteristics such as computing power, stor-

age and memory capacities, network speed and cost per hour based on these features.

1https://hadoop.apache.org/
2https://spark.apache.org/
3https://www.microsoft.com/en-us/research/project/dryad/
4https://storm.apache.org/
5https://spark.apache.org/streaming/
6https://flink.apache.org/
7https://kafka.apache.org/
8https://samza.apache.org/

- 2 -

https://hadoop.apache.org/
https://spark.apache.org/
https://www.microsoft.com/en-us/research/project/dryad/
https://storm.apache.org/
https://spark.apache.org/streaming/
https://flink.apache.org/
https://kafka.apache.org/
https://samza.apache.org/

Chapter 1: Introduction

The tenants are provided satisfying services by cloud datacenters as such computing

resources can be easily isolated for each VM. QoS parameters e.g. processing power,

performance, availability, etc. have a decisive role in the selection and cost of the vir-

tual machine. Although cloud providers are located in different geographical locations,

they are accessible from most parts of the world providing almost unlimited storage

and processing power, on-demand.

Quality of Service (QoS) refers to the ability of a service to fulfil certain standards for

various aspects of the service such as performance, availability, reliability, efficiency,

cost, response time, throughput, makespan, energy consumption and so forth [6]. The

levels of such parameters provided by cloud applications as well as the infrastructure

that hosts such applications are referred to as QoS. QoS for cloud-based big data

systems includes system performance (e.g., availability, response time, throughput,

scalability), system data security, system reliability, and system robustness [7]. These

parameters are considered for QoS evaluation for a service. In cloud computing, QoS is

a critical component of a successful Service Level Agreement (SLA), which ensures the

creation of a trustworthy provider-consumer relationship. SLA is basically a contract

file that specifies the terms of the agreement between the cloud user and the cloud

service provider [8]. This contract narrates the terms and conditions for both parties.

Cloud vendors and customers negotiate an SLA to state the QoS specifications based

on the key performance indicators of customers and agree on the requirements. Cloud

vendors manage their resources easily using SLAs to guarantee the QoS requirements.

1.1 Research Motivation

Big data systems have emerged as a result of the fast increase of data created by sectors

such as e-commerce businesses, social networks, healthcare, banking sector, and media

and entertainment industries. Big data systems allow for the processing of enormous

volumes of data in a relatively short length of time. For example, Facebook runs

hundreds of real-time data pipelines in productions and processes more than 500 TB

of data daily [9]. Similarly, Netflix big data pipeline processes 11 million events and 24

gigabytes (GB) of data on a per-second basis over 500 billion user actions every day

- 3 -

Chapter 1: Introduction

to discover customer behaviour and buying patterns [10]. However, the enormousness

and complexity of the big data system runs in heterogeneous computing resources,

multiple tenant environments, as well as has many concurrent execution of big data

processing tasks, which makes it a challenge to utilize the big data systems efficiently

and reliably. For example, Fig. 1.1 shows that the performance degrades at least 10%

when the resources are not utilized efficiently with Setting 2. To manage this issue,

it is critical to continually monitor and evaluate all available system resources at all

times in a systematic, comprehensive, and automated manner. These resources include

CPU, memory, network, I/O, and software components for big data processing.

 0

 50

 100

 150

 200

 250

 300

 350

Word
Co

un
t

Gr
ep

TP
C-

H

TP
C-

DS

K-m
ea

ns

Pa
ge

Ra
nk

M
ak

es
pa

n
(s

ec
)

Big data applications

Setting 1 Setting 2

Figure 1.1: Six big data applications are executed in a cloud-based Hadoop cluster
with two settings: 1) the input data and jobs are allocated in the same node; 2) the
input data and jobs are allocated in different nodes. In Setting 2, the execution time
of each application is delayed by transmitting data across nodes.

Big data systems, especially cloud-based applications, run in large-scale computer

clusters consisting of thousands of distributed computing nodes with complex inter-

actions including a wide variety of subsets configurations and hundreds of adjustable

parameters, which has brought lots of challenges to performance diagnosis in big data

systems.

Fig. 1.2 the performance diagnosis of a high-level architecture of a large-scale data

processing system. Big data analytics architectures consist of three different layers:

data ingestion, analytics, and storage.

- 4 -

Chapter 1: Introduction

Applications (Software)

HealthcareSocial networks Entertainment

Big data analytics ecosystem (Platform)

E-commerce Banking

Distributed

streaming

systems

Batch

processing

systems

Data application programming frameworks

Large-scale

data mining

framework

Cloud service providers (Infrastructure)

Datacenter provider A Datacenter provider B Datacenter provider C

Client

Diagnostic

agent

Diagnostic

agent

Data ingestion layer

Distributed data

queuing systems
Streams

Data storage layer

NoSQL

databases

Figure 1.2: Performance diagnosis of big data systems in cloud datacenters

There are already numerous performance diagnosis frameworks, such as Datadog [11],

SequenceIQ [12], Sematext [13], TACC Stats [14], Mantri [15], DCDB Wintermute

[16], Nagios [17], Ganglia [18], Apache Chukwa [19], DMon[20], available to diagnose

cloud-based computer systems. However, some of them focus on either anomaly detec-

tion or root-cause analysis. These diagnostic systems are not able to propose a generic

and comprehensive solution for the detection of a wide variety of anomalies and root

cause analysis of performance issues in cloud-based big data systems.

Performance diagnosis in such complex environments is very challenging due to the

following reasons:

• Capturing the failures or performance reductions is very hard as they only

happen at run-time that needs capturing the dependencies of each component in

real-time [21]. In distributed systems, components work together interactively,

- 5 -

Chapter 1: Introduction

not individually, to make a progress or action, and as a result, the system is

perceived as a whole, not as a collection of individual components [22]. In order

to detect the root cause of a problem, the tasks that trigger each other must

be identified, so all these interactive components must be monitored at run-time

[23].

• Monitoring big data systems generates a large volume of logs with varying

formats [24] that makes the analysis of monitoring data for performance diagnosis

more difficult as it needs fine-grained data processing as well as fast and accurate

preprocessing to remove unnecessary information [3]. Log data is not always

homogeneous and systematic, making them difficult to analyze as it requires good

capabilities of dealing with noisy and missing data and preserving log sequence

information, such as the running state of a task at any given time [25].

• Big data systems have many simultaneous and interactive components, making

it difficult to find the root cause of the problem [26]. Big data systems have

many concurrent tasks, namely multiple tasks running at the same time but

not necessarily simultaneously and parallel tasks, namely the tasks executed by

different worker nodes at the same time [27]. In such complex systems, due to

interdependence and synchronicity of tasks, it is very challenging to find the

reasons why: tasks are slowing down, resource utilization is low, the response

time is high, or when the network latency is high [28].

• Big data systems have a large number of configuration settings, including hun-

dreds of adjustable parameters, where a change in any parameter can affect

many processes and operations, making problem localization difficult [29]. For

example, Hadoop configuration is driven by some configuration files consisting

of many parameters [30] that significantly affect the performance of MapReduce

applications, making it difficult to find the root cause of performance degradation

of such systems [31].

• The fact that big data systems are highly scalable and heterogeneous environ-

ments with diverse computing resources [32], such as different CPU, memory,

storage, and network capacity, results in a range of different completion times,

making it difficult to evaluate the performance of the whole system [33]. For in-

- 6 -

Chapter 1: Introduction

stance, the reasons for performance degradation, such as inconsistencies between

tasks, machine failures, machine overloaded, etc. are stemming from big data

clusters consisting of nodes with different compute resources and capacities [15].

• Big data applications running simultaneously on a cluster share computing

resources but may require different resource capacities [34], resulting in perfor-

mance degradation for some applications. In such a case, the diagnosis of the

exact reason for the performance issue becomes more complex as it is difficult to

determine whether the performance degradation is due to insufficient resource

allocation [35].

Taking into account these aforementioned challenges and concerns, we formulated the

following three research questions (RQ):

• (RQ1) How to collect monitoring information effectively from big data systems in

cloud environments in real-time while processing these streaming data and inter-

act the processed data with the Execution Graph of each task while visualizing

the interaction in real-time?

• (RQ2) How to detect errors, faults, performance degradation, and inefficient

resource utilization problems in big data systems while providing an online de-

tection and root-cause analysis (RCA)?

• (RQ3) How to model complex dependencies between several factors for under-

taking RCA for diagnosing and predicting reasons for performance degradation

while validating the RCA technique over a realistic, large scale test setup that

can produce usable and non-biased performance degradation data sets related to

Hadoop Applications?

1.2 Research Contributions

There are numerous tools detecting performance reduction problems in cloud-based

big data systems. These tools, however, are either for root-cause analysis or anomaly

detection and debugging, focusing on specific issues such as stragglers, or inefficient

- 7 -

Chapter 1: Introduction

use of resources. These solutions, however, are incapable of meeting the requirements

for an automated performance diagnosis platform for cloud-based big data systems. In

addition, existing tools and techniques suffer from significant technological constraints,

such as being a generic and extensible framework supporting the real-time diagnosis of

big data systems while providing holistic monitoring and detecting performance degra-

dation and enabling root-cause analysis. Furthermore, there is some work regarding

probabilistic performance diagnosis and prediction for big data systems. However,

they only consider either task status or network issues. There is some work regarding

performance diagnosis and prediction for big data systems considering only either task

status or network issues. However, there is no prior work on end-to-end performance

diagnosis and prediction (considering the impact of both task execution time and net-

work delay on job completion time) for such systems. This is because it is extremely

challenging to consider both issues in big data systems at the same time while evalu-

ating the performance of such systems as they consist of numerous factors with many

complex hidden dependencies between each other. That is why there is an urgent need

for end-to-end performance diagnosis and prediction of big data systems, taking into

consideration the execution time of each specific task and network transmission time

between each step simultaneously while uncovering the stochastic relationships among

those factors. The main contributions of this thesis are as given below:

• We design a real-time big data monitoring system called SmartMonit that ef-

ficiently collects the run-time system information including computing resource

utilization and job execution information and then interacts the collected infor-

mation with the Execution Graph modeled as directed acyclic graphs (DAGs)

[36].

• We develop AutoDiagn, an automated real-time diagnosis framework for big

data systems, that automatically detects performance degradation and inefficient

resource utilization problems, while providing an online detection and semi-online

root-cause analysis for a big data system [37].

• We propose, develop, and validate a novel root-cause analysis technique/system

called BigPerf for big data systems, incorporating Bayesian networks to model

- 8 -

Chapter 1: Introduction

uncertain and complex relationships between relevant factors, such as execu-

tion time of each specific task (mapper and reducer), network transmission time

between these tasks, data block split time (HDFS to mapper, reducer to HDFS).

1.3 Thesis Structure

This thesis is comprised of six chapters; the organisation of the thesis chapters is

presented in Fig 1.3 and the arrows here represent the flow of contents.

• Chapter 1, Introduction – This chapter explains the general background of diag-

nosis and evaluation of cloud-based big data systems. The background includes

(i) an overview of big data systems and the types of data processing systems;

(ii) a brief information about cloud datacenters; (iii) a general information about

Quality of Service (QoS). It also reveals challenges and research questions, along

with the thesis contributions.

• Chapter 2, Literature Review – This chapter is devoted to the literature review

that reviews the literature on virtualization, monitoring, performance diagnosis,

big data, Apache Hadoop ecosystem, deployment environment, and commercial

and open source tools for big data systems.

• Chapter 3, SmartMonit: Real-time Big Data Monitoring System – This chap-

ter proposes a real-time monitoring system that efficiently collects the runtime

system information including computing resource utilization and job execution

information and then interacts the collected information with the Execution

Graph modeled as directed acyclic graphs (DAGs).

• Chapter 4, AutoDiagn: An Automated Real-time Diagnosis Framework for Big

Data Systems – This chapter presents an automated system that detects perfor-

mance degradation and inefficient resource utilization problems, while providing

an online detection and semi-online root-cause analysis for a big data system.

• Chapter 5, BigPerf: Probabilistic Performance Diagnosis and Prediction for

Cloud-based Big Data Systems – This chapter proposes a system for proba-

bilistic big data performance diagnosis and prediction, incorporating Bayesian

- 9 -

Chapter 1: Introduction

networks to model uncertain and complex relationships between performance

factors.

• Chapter 6, Conclusion – This chapter summarises the main findings of the re-

search and contains a discussion, and presents future works.

Introduction

Conclusion and Future Work

Chapter
1

Chapter
3

Chapter
4

Chapter
5

Chapter
6

Chapter
2

BigPerf: Probabilistic Performance Diagnosis and
Prediction for Cloud-based Big Data Systems

AutoDiagn: An Automated Real-time Diagnosis
Framework for Big Data Systems

SmartMonit: Real-time Big Data Monitoring
System

Literature Review

Figure 1.3: Thesis outline

- 10 -

2
Literature Review

Contents
2.1 Big Data . 12

2.2 Apache Hadoop Architecture . 13

2.2.1 YARN . 15

2.2.2 HDFS . 16

2.2.3 MapReduce . 16

2.3 Big Data Applications based on the MapReduce Technology 18

2.4 Real-Time Performance Diagnosis of Big Data Systems 21

2.4.1 What is performance diagnosis? 21

2.4.2 Why performance diagnosis? 24

2.4.3 Requirements for an automated performance diagnosis platform 25

2.5 Deployment Environment . 26

2.5.1 Cloud computing . 26

2.5.2 Why cloud computing for big data? 27

2.6 Commercial and Open Source Tools for Big Data Systems 28

- 11 -

Chapter 2: Literature Review

Summary

This chapter presents some background information regarding the overall topic, in-

cluding a brief description on big data, Apache Hadoop and its main components,

big data applications based on MapReduce framework, performance diagnosis of big

data systems, cloud computing and its relationship with big data, and commercial and

open source tools for big data systems. A major focus of this thesis is to address the

challenges of performance diagnosis and evaluation of big data systems.

2.1 Big Data

Big data is a concept that first emerged in the field of astronomy and genetics, which

started to be used for the internet in time and thus became a part of our daily life

without being aware of and continuously contributing to it [38]. As a result of the

computer being so effective in every aspect of our lives, many data has been stored,

processed and managed. With the widespread use of the Internet by companies, cor-

porations and people, the circulation, processing, and proliferation of these data in

electronic media have produced another result. The data we have mentioned includes

the data entered and stored as a requirement of service, as well as a lot of data that

seem to be extremely unnecessary and useless, and they grow at an avalanche. With

the 2019 figures, over 2.5 quintillion bytes of data are produced in a day in the world,

and in 10 years, the total data size is estimated to reach 45 times the current time

[39]. So we see a garbage dump consisting of unstructured data. It was not long before

it was understood that this phenomenon, which was called as information dump, was

originally a large treasure since it could not be used because it was not structural.

As a matter of fact, this dump consisting of data such as logs of web servers, social

media sharing and publications, blogs, microblogs, internet statistics could actually be

made very functional. If interpreted with the right analysis methods, these data should

have been able to contribute to the making of important decisions correctly, managing

risks correctly and signing new discoveries and discoveries. For these crucial reasons,

big data analytics is getting more and more important in some special areas, such as

government sector [40], healthcare industry [41], entertainment industry [42], weather

- 12 -

Chapter 2: Literature Review

patterns [43], cyber physical systems [44], banking sector [45], IoT technologies [46],

natural disaster management [47].

Fig 2.1 shows the growth in the last 10 years for both structured and unstructured

stored data.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000
20

11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

Ex
ab

yt
es

 (
bi

lli
on

s
of

 G
B)

Years

Structured Data Unstructured Data

Figure 2.1: Growth in worldwide stored data [1]

2.2 Apache Hadoop Architecture

Hadoop was created by Doug Cutting and Mike Cafarella who are inspired by Google

File System and MapReduce programming model in 2005. Hadoop is an open-source

library (under Apache Hadoop license) written in Java that allows the users to process

the petabyte size of structured, semi-structured and unstructured data sets in parallel

by distributing the data across servers and clusters [48]. It has three essential parts,

namely YARN which is the cluster resource management, HDFS a distributed file

system to store large data sets, and MapReduce which is the processing component.

Fig 2.2 demonstrates Hadoop cluster architecture.

The following basic features have been taken into consideration while creating the

system architecture of Hadoop:

- 13 -

Chapter 2: Literature Review

HDFS HA Master Node

Active Name Node

Standby Name Node

Secondary Name Node
In case of Non HA

Managed by
Shared NFS or

QJM

YARN Master Node

Resource Manager

Scheduler
Application

Manager

Node Manager

Slave Node #1

Container 1
(Map/Reduce)

Container 2
(Map/Reduce)

Data Node

Node Manager

Slave Node #2

Application
Master

Container 3
(Map/Reduce)

Data Node

Node Manager

Slave Node #3

Container 4
(Map/Reduce)

Container 5
(Map/Reduce)

Data Node

Client

edit logs

Figure 2.2: A typical Hadoop architecture

Scalable. Unlike traditional data processing and storage methods, Hadoop is a highly

scalable data processing and storage platform as it consists of thousands of independent

nodes interconnected through fast networks, which enables the administrators to add

new nodes as many as they require.

Cost effective. As the amount of data to be stored and processed increases, the

need for a more powerful hardware structure increases to handle such data, which

is extremely costly in traditional methods. Hadoop provides a distributed computing

and distributed storage system that can compose of different types of machines to save

infrastructure costs.

Flexible. Hadoop comes with a set of tools that allow businesses to efficiently collect

all kinds of data types such as structured, semi-structured and unstructured, from

different sources as well as process and store them. By this means, companies derive

valuable business insights from data sources such as social networking services, blogs,

discussion forums, and customer review sites.

Fast. Hadoop’s data processing technique called MapReduce that processes data in

parallel chunks rather than in a single queue and its unique storage method bring

- 14 -

Chapter 2: Literature Review

significant advantages in terms of speed. The combination of these novelties allows

terabytes of data to be processed efficiently within minutes.

Resilient to failure. It refers to fault tolerance. While executing a job consisting of

millions of tasks, if any one of the tasks fails due to any unpredictable reasons, such

as hardware or network failures, Hadoop then reschedules that task in another node.

Moreover, with the replication feature of HDFS, Hadoop provides reliable storage in

case of any computer in the cluster fails or disconnects from the network.

The details of three main components of Hadoop are explained below:

2.2.1 YARN

YARN stands for Yet Another Resource Negotiator, responsible for resource manage-

ment and job scheduling in a Hadoop cluster. It is one of the core component of

Hadoop, used for utilization of the resource efficiently and scheduling tasks to be exe-

cuted on different worker nodes. YARN was implemented in Hadoop 2.0. that consist

of three main components, namely Resource Manager, Node Manager, Application

Master. Resource Manager is the daemon that runs on the master node of the clus-

ter that gets the submitted job by the client and schedules it over the cluster. The

resources of worker nodes are allocated to the running job by the Resource Manager.

Node Manager runs on each slave node and schedules the MapReduce tasks and tracks

the resource utilization of the node by using Application Master and Containers. It

communicates with Resource Manager to report the resource utilization of the node.

The Application Master conducts the execution of a job. It executes a single mapper

or reducer task in the obtained container from the Resource Manager. YARN spreads

the metadata regarding the running jobs over the worker nodes using the Application

Masters, which makes Hadoop fault-tolerant in the event of an error in any worker

node.

The main components of YARN and the coordination between the components are

depicted in Fig 2.3.

- 15 -

Chapter 2: Literature Review

Resource Manager

Node
Manager

App
Master

container

• • •

Node
Manager

App
Master

container

Node
Manager

App
Master

container

Node Status Resource Request MapReduce Status

Client

Figure 2.3: YARN architecture and its components

2.2.2 HDFS

HDFS stands for Hadoop Distributed File System which is designed for storing huge

amount of data, providing high aggregate data bandwidth and and scaling to hun-

dreds of node [48]. Large data sets stored are easily transformed and executed using

MapReduce algorithm. The data is stored in blocks in HDFS and sent to the DataN-

ode machines. The default value is 128 MB and can be changed by the users. In case of

any failures in a DataNode, each block is copied (default replication number is three)

on different machines to avoid data loss in machine problems, called as Replication

Factor. Fig. 2.4 demonstrates the architecture of HDFS.

2.2.3 MapReduce

Apache Hadoop framework implements this pattern and allows many machines in a

cluster to work concurrently in processing Big Data. It is used for processing heavy

data-sets including a petabyte data-sets and is deployed on numerous nodes (usually

commodity hardware machines) that process data in parallel. Most commonly the data

storage nodes are the nodes that do the computing as well (moving the computing to

the data rather than the other way around). This allows for a more effective data

- 16 -

Chapter 2: Literature Review

Rack 1 Rack 2

NameNode Metadata (Name, replicas, …)
/home/foo/data,3, …

Read
DataNodes DataNodes

blocks

Replication

Write

Block ops

Client

Client

Figure 2.4: HDFS architecture

processing as the overhead of transferring data to the computing nodes is diminished

and provides isolation (application cannot impact the progress on the other nodes).

MapReduce is a processing technique inspired from Google, which is implemented as

a Java framework in Hadoop for processing huge amount of data in parallel across

multiple machines called Hadoop cluster [49]. MapReduce splits the data into several

small part of data then converts each part into a set of tuples called key-value pairs,

then finally reduces these sets of tuples. The figure below explains the working principle

of MapReduce paradigm. MapReduce mainly consists of two main functions, Map and

Reduce and is executed in three stages, Map, Shuffle and Reduce. The input data is

partitioned by Map function and several small chunks of data is created. The workers

execute these chucks and produces key-value pairs. Shuffle phase groups these key-

value pairs by key and sends them to the responsible Reducer. Then, Reducer takes

these grouped key-value pairs and assembles these data tumples into a smaller set of

tuples. Finally, it generates a new set of output and stores them in HDFS. Based on

the data size, many of map and reduce jobs are distributed and processed concurrently.

The master-slave concept is used in MapReduce paradigm that the input file is split

into smaller pieces and then each one is fed to worker nodes which process the data,

- 17 -

Chapter 2: Literature Review

called map task. Then the outputs of the map tasks are collected by the master node,

called reduce task and finally output data is generated. Fig. 2.5 demonstrates simply

MapReduce working principle.

Mapper1 Reducer1

Mapper2

MapperN

IN
P

U
T

HDFS

Reducer2

ReducerN

O
U

TP
U

T

Structure into
(k; v) pairs

Sort by the k
Merge into

(k; v1, v2, v3, …)

Figure 2.5: MapReduce working principle

Fig. 2.6 depicts the high-level MapReduce processing pattern. The client requests the

Master node of the Hadoop cluster to execute its MapReduce program over the data,

each 128 MB, stored in a distributed manner across a cluster of worker machines.

Once the master node receives the client program, and then it schedules and assigns

the program to idle workers. Each map task is allocated to one of the data blocks

hosted in the workers by the Application Master in the master node. After the worker

nodes receive the task, namely the client program, map tasks start to read the data

and extract key-value pairs from the input data that is called intermediate data. This

data, then, is written to the local disk to be processed by reduce tasks. Once map tasks

are completed, Application Master allocates Reduce tasks in worker nodes. Reduce

tasks start to read the intermediate data. First, reduce tasks sort the data based on

the key-value pairs of the same key to cluster them together. Reduce tasks check all

the sorted key-value pairs and finally, output data belongs to unique keys is generated

by the reduce function and the partition of the output file is written on the disk.

2.3 Big Data Applications based on the MapReduce Tech-

nology

MapReduce is traditionally a batch analysis system used in applications that need

to process lots of data in parallel in an offline mode. In many big data analysis

- 18 -

Chapter 2: Literature Review

split 0

split 1

split 2

split 4

split 3

worker

worker

worker

Client
Program

worker

(4) local write(3) read

worker

Master

output 1

output 2

(5) remote read

(6) write

(1) fork

(2)
assign map

(2)
assign reduce

Input
files

Map
phase

Intermediate files
(on local disk)

Reduce
phase

Output
files

Client

Figure 2.6: High-level MapReduce processing pattern

systems, the streaming data is continuously imported and then processed in batch

at set intervals. For instance, the streaming data that belongs to the customers is

collected in storage, but the MapReduce job is only executed in a given time interval,

such as at the end of the day. This kind of data processing methods is very convenient

for a few reasons. First, processing one minute’s worth of data at once is not efficient

to predict the customer’s behaviours for marketing strategy. Second, processing such

data causes an ineffective use of computer resources. MapReduce systems reduce the

overhead of distributed computation as they typically use reasonably large block sizes.

The applications that use MapReduce technology are listed and explained in detail

below.

Social Networks. In recent years, social media platforms have generated tons of data

every second as it becomes universally accepted. Millions of people use such platforms

for different purposes, such as generating memorable experiences, accessing and provid-

ing information, communicating with each other, sharing media, researching products

and businesses, etc. This rapid growth of social media has caused some serious issues

regarding data storage and management, which has led to the emergence of big data

- 19 -

Chapter 2: Literature Review

framework technologies as the classic data process methods are insufficient to handle

such data. MapReduce technique, one of Hadoop’s main components, provides an

appropriate method to store and analyze big social media data and is convenient to

apply machine learning techniques on such valuable data as well [50]. That is why, the

most popular social networks worldwide, such as Facebook, Twitter, LinkedIn, Pinter-

est, Instagram, are deployed on Hadoop cluster in data centers and use MapReduce

technology to handle their large-scale datasets.

Entertainment. The entertainment industries are more likely to adopt new technolo-

gies so that looking at big data capabilities, reducing the cost of providing services, and

generating revenue from delivering content. The biggest international video stream-

ing services, such as Netflix, YouTube, Amazon, have to deal with a huge amount of

data for achieving those goals. They use Hadoop MapReduce for building big data

applications through the use of Cloud datacenters that consist of thousands of inter-

connected nodes to ensure consumer Quality of Service (QoS) demands. For example,

Netflix processes approximately 500 billion events and 1.3 petabytes (PB) of data per

day, further, during peak hours, it processes approximately 11 million events and 24

gigabytes (GB) of data on a per-second basis [51] for gaining valuable information,

such as discovering the most popular movies based on the customer’s watch history,

providing suggestions to customers by taking into consideration their interests. Net-

flix has built and used its own PaaS-like layer for Amazon Elastic MapReduce, called

Genie to analyze users’ logs and clicks.

Healthcare. Healthcare big data refers to heterogeneous, multi-spectral, missing and

indefinite observations (e.g., diagnosis, illness, injury, treatment, physical and men-

tal impairments, demographics, and prevention of disease) data in structured, semi-

structured and unstructured formats acquired from primary sources. The structured

data consists of ICD codes, phenotype, genotype, genomics information while unstruc-

tured data includes medical imaging, memos, environmental, clinical notes, lifestyle,

prescriptions, and health economics data [52]. The biggest challenge of big healthcare

data analytics is dealing with heterogeneous data to deliver insights for providing bet-

ter healthcare for millions of patients. MapReduce for such big and complex healthcare

data analytics helps in solving the problems of healthcare delivery systems.

- 20 -

Chapter 2: Literature Review

Electronic Commerce. E-commerce companies are a big part of the big data source

by accumulating customers’ information, such as geolocation, age, gender, interest,

buying behaviour, demand. Many e-commerce providers take advantage of the power

of big data analytics to elevate the shopping experience, increase personalization, op-

timise pricing, increase sales, predict trends, and forecast the demand. Therefore,

they have to deal with the enormous volume of data generated by internet activities.

Many popular e-commerce sites, such as Amazon, Alibaba, Walmart, and eBay, use

MapReduce to analyze their big data including site records, purchase history, user

interaction logs. In addition to that, product recommendation mechanisms are used

for personalised suggestion by them. For example, Amazon uses Apache Mahout, a

MapReduce-based machine learning library for building a recommender system for its

customer for a particular product by analyzing comments or reviews [53].

Fraud Detection. According to Association of Certified Fraud Examiners (ACFE)

report, companies lose their revenues approximately 5% to fraud in every year [54].

Fraud detection is a technique to identify fraud as soon as possible once it has been

perpetrated. However, as the amount of logs that need to be analyzed increases with

the large amount of data, the speed and precision of fraud detection decreases. The

analysis of a wide range of data points, such as location of user, details of the device

on which the account is managed, IP address, is required for fraud detection in the

financial industries, such as banks, insurance companies, investment houses, payment

locations, real estate brokers. Hadoop-MapReduce ecosystem is commonly used by

these kind of companies to analyze the customer information to be able to identify

fraud cases immediately and respond quickly.

2.4 Real-Time Performance Diagnosis of Big Data Sys-

tems

2.4.1 What is performance diagnosis?

A general definition of diagnosis: “an investigation or analysis of the cause or nature

of a condition, situation, or problem”, while performance is defined as ”the ability to

perform or the manner in which a mechanism performs” by Merriam Webster [55].

- 21 -

Chapter 2: Literature Review

Performance diagnostic is the process of identifying and explaining performance issues

that is a crucial part of parallel programming. It is a labour-intensive activity that

requires a skilled workforce, especially for big data systems in cloud environments as

such systems are commonly deployed in large scale distributed systems consisting of

thousands of machines using parallel programming [56].

Definition: Performance diagnosis is an investigation or analysis of the performing

ability or situation of the mechanism of each layer in big data systems.

2.4.1.1 The components of performance diagnosis:

Performance diagnosis consists of two main components; monitoring and root-cause

analysis (RCA) [57].

• Monitoring: Monitoring is the action of measuring the key parameter of the com-

ponents of the applications, observing the outputs and behaviour of a system,

and providing infrastructure information that influences the system performance

in each layer in big data systems [58]. Monitoring of big data systems is essen-

tial to keep these systems highly available and performing as well as mitigating

performance issues [59, 60]. Monitoring is fundamentally an operational concept

for i) management of system and hardware resources, such as computing power

and storage, and ii) collecting the run-time system information including com-

puting resource utilization and job execution information for troubleshooting the

reasons for failures and performance reduction, especially the ones propagated

from other causes [61]. Monitoring systems are commonly used to collect data

from big data systems to analyse their operation and performance to verify the

system health [62].

• Root-cause analysis: A commonly accepted definition of root-cause analysis is

given by Rooney et al. [63] as: “a process designed for use in investigating and

categorizing the root causes of events with safety, health, environmental, quality,

reliability and production impacts.” The initial use of this term in big data sys-

tems was to improve the efficiency of speculative execution of stragglers [15]. In

today’s our modern world, the RCA in big data processing systems aims to iden-

- 22 -

Chapter 2: Literature Review

tify not only what and how errors, faults or performance degradation occurred,

but also why they happened, to prevent the recurrence of such undesirable and

unpredictable events. The RCA enables faster and efficient processing while

getting more accurate results as understanding the reasons why an error or per-

formance degradation happens is the key to developing effective systems. There

are three major steps towards building an RCA system consisting of the following

[63]:

a) Problem definition: Problem definition entails determining what is exactly

going on and detection of the specific symptoms of the problem. It specifies

the gap between the current state and desired state of an operation.

b) Causal factor charting: Causal factor charting allows users to create a struc-

ture for organizing and analysis of the monitoring information and identify

the gaps and incomplete or incorrect information as the investigation pro-

gresses. It is basically a kind of flow chart with logic tests that explains the

circumstances before an occurrence as well as the circumstances surround-

ing these events.

c) Root-cause identification: In this step, a root-cause map, a kind of decision

diagram, is created to determine the reasoning for each casual factor’s un-

derlying causes. In this way, users can easily identify the underlying reasons

for any errors, faults or performance degradation.

2.4.1.2 The methods for performance diagnosis:

There are three types of performance diagnosis approaches for big data systems: sta-

tistical, data mining-based and machine learning-based as explained below:

• Statistical performance diagnosis: In this technique, a score representing the

system performance is generated by observing the system performance metrics

to diagnose the performance anomalies. A minimum threshold is set using this

score. Values below this threshold are considered anomaly scores which indicates

poor performance [64]. After describing the tasks showing poor performance,

user-defined functions (UDF) are used to perform the customized functions over

- 23 -

Chapter 2: Literature Review

the dataset obtained from the system for troubleshooting the cause of perfor-

mance degradation.

• Data mining-based performance diagnosis: Data mining techniques, such as

classification, clustering, regression, prediction, association rule mining, are used

to diagnose the performance reductions. This technique defines some boundaries

for valid activities for any system (i.e., big data systems) to discriminate between

normal and abnormal behaviour [65]. To this end, the main focus of this tech-

nique is to generate descriptions and predictions about the system through the

performance metrics.

• Machine learning-based performance diagnosis: This approach uses machine

learning to diagnose the performance of the systems by using the learning ability

of software over time. This technique creates a model on the basis of previous

results (training data) directly without relying on a predetermined equation [66].

The accuracy of machine learning-based performance diagnosis systems depends

on the training data as the number of samples available for learning increases

the pattern recognition as long as the model is overfitting [67].

Statistical performance diagnosis technique is more beneficial than other techniques.

Instead of detecting performance anomalies in individual values of metrics, the sta-

tistical technique checks all metrics simultaneously and it does not require any prior

information or parameter estimation about the dataset. Moreover, this technique is ca-

pable of detecting previously unidentified errors or anomalies without any preliminary

test after being identified by the user using UDF. Furthermore, the statistical perfor-

mance diagnosis technique ensures high accuracy of the detection of the performance

anomalies as compared to the other two techniques [68].

2.4.2 Why performance diagnosis?

The exponential technological advancement plays an important technological innova-

tion in hardware and software technology, which causes an increase in system size

and complexity growth of big data systems. As system size and complexity grows,

performance degradation highly occurs in such systems due to software and hardware

- 24 -

Chapter 2: Literature Review

related problems, and resource contraction. Therefore, big data systems increasingly

suffer from performance degradation. However, it is not possible to diagnose such

cases by examination manually as manual intervention is considerable tedious, time-

consuming and error-prone [69]. To this end, an automated real-time performance

diagnosis system is a prerequisite for efficient and accurate data analysis while reduc-

ing the cost of services and service-level agreement (SLA) violation rate of big data

systems [70].

2.4.3 Requirements for an automated performance diagno-
sis platform

The analysis of the characteristics related to the realization of an efficient and reliable

service that meets the requirements under the specified requirements and within the

maximum limits of the system parameters demonstrates the performance of a big data

system [71]. Although there is a large volume of published studies proposing solutions

to improving big data systems performance, the detection of a wide range of anomalies

and performance of root-cause analysis in big data systems remains a major challenge

that needs a generic and comprehensive solution.

The following technical challenges must be addressed for building an automated per-

formance diagnosis platform for big data systems:

• Fine-grained monitoring: A diagnosis framework needs a holistic monitoring

system for continuous information collection [72] including computing resource

utilization and job execution information from large-scale computer clusters in

real-time [73].

• Elasticity: Diagnostic systems can operate continuously without interruption or

manual reconfiguration to minimize resource consumption in complex environ-

ments [74], such as the cloud, where resources are unpredictable and architecture

is subject to rapid changes [75].

• Scalability: A diagnostic system is considered scalable when it works indepen-

dently of workload while maintaining performance efficiency [76]. The scalability

of the system indicates its ability to grow with the demands of the system [77].

- 25 -

Chapter 2: Literature Review

• Multi-tenancy: Modern big data processing systems are typically deployed in

cloud environments in which many applications share the same infrastructure

[78]. An ideal diagnosis system should be able to accurately identify how much

of the shared cloud resources and services are used by the application in order

to properly evaluate the performance of the application [79].

• Comprehensiveness: A performance diagnosis system should be capable of di-

agnosing different physical and virtual infrastructure, various platforms, and a

wide range of cloud services [80], [81].

• Generalizability: A diagnostic system should be an independent framework that

can be deployed to existing big data systems and should have the capability of

adding new APIs to gain the functionality to root cause analysis [82], [83].

• Resilience: A system is robust to the extent that it protects its essential capa-

bilities against interruption caused by adverse events and situations in a timely

and effective manner [84], [85].

• Reliability: A reliant diagnosis system can deliver its service for a certain amount

of time under specified conditions. In other words, the reliability of a system

shows the quality of performing consistently well over time [86], [87].

2.5 Deployment Environment

2.5.1 Cloud computing

Cloud computing is a novel computing term in which dynamically scalable and often

virtualized resources are delivered as services to many users over the internet. Users can

easily access a large number of devices, including programs, applications and storage

over the internet, via services offered by cloud computing providers. Cost reductions,

high availability, and simple scalability are some of the benefits of cloud computing

technologies [88]. Cloud computing is a collection of services that can be presented as a

layered architecture that consists of three main services. Software as a Service (SaaS),

which is the top layer of the system, allows users to run cloud-based applications

remotely, such as Google apps, Facebook, YouTube. Platform as a Service (PaaS)

- 26 -

Chapter 2: Literature Review

is an application development and deployment platform that allows users to develop,

run and manage applications easily, such as AWS Elastic Beanstalk, Windows Azure,

Google App Engine, OpenShift. Infrastructure as a service (IaaS) is an online service

that provides virtualized computers with guaranteed resources for both processing and

storage over the internet without management responsibilities, such as Amazon Web

Services (AWS), Google Compute Engine (GCE), Microsoft Azure, Cisco Metacloud.

There are three types of deployment models in Cloud computing [89]. First, a private

cloud is a deployment approach that provides some benefits, such as virtualization,

scalability, elasticity, and self-service but through a more restricted and proprietary

architecture. Access to private cloud resources is extremely limited and is only available

to workers of a single company. The second one is public cloud that is a deployment

paradigm that allows anyone to utilize and install its services for an ongoing fee.

It delivers similar advantages to the private cloud but through a less control and

customizable architecture. The last one is hybrid clouds that is the combination of

public and private clouds. It is one of the most robust techniques for implementing

Cloud application architecture since it incorporates the functions and features of both

the public and private cloud deployment models. Amazon AWS is one of the prominent

providers.

2.5.2 Why cloud computing for big data?

The rapid growth of data, transfer speed, diverse data in electronic environments has

led to two major big data challenges, processing and storage. Big data clusters are

the best choice to overcome the limitation imposed by the limited processing and stor-

age capacity of a single machine or computer. One of the most important feature

of cloud computing is offering an internet-based remote network of interconnected

machines along with elasticity associated with scale-out solutions. Big data clusters

interact with web services, such as AWS, Google Cloud, Microsoft Azure, for both data

processing and storage considerations in a distributed environment offered by cloud

computing technologies which aim to meet the Quality of service (QoS) requirements

of customers and ensure service level agreements (SLAs). The web services provide

thousands of virtual computing machines providing secure, resizable compute capacity

- 27 -

Chapter 2: Literature Review

(i.e. Amazon’s EC2 vs Google Compute Engine (GCE)) for processing huge amount

of data stored in a scalable, high-speed, web-based cloud storage service (i.e. Ama-

zon S3, Google Cloud Storage (GCS)). Another important and foundational element

of cloud computing is virtualization which separates the operating system from the

hardware. Users can virtualize their networks, storage, servers, data, and applications

via virtualization techniques [90]. Hadoop is the most popular big data framework

that can scale up to thousands of nodes per cluster [91]. That is why it is essential

to deploy Hadoop on a distributed cloud computing environment for getting more ac-

curate result within a short period of time as well as ensuring restoration of data in

case of data loss while increasing the resource utilization by allowing several workloads

to run on each physical host server via virtualization. Moreover, in cloud computing

deployment, the response time decreases as the number of instances increases, as the

data is distributed and processed over all the nodes via the Hadoop cluster [92].

2.6 Commercial and Open Source Tools for Big Data Sys-

tems

There are a variety of tools developed by both academia and companies for big data

systems described below:

Datadog [11] is cloud-scale monitoring and analytics solution that aggregates the data

from databases, servers and different tools to monitor Hadoop clusters in a unified

environment via the dashboard. It provides real-time tracking for the system and

alerts when a certain threshold is exceeded. Hadoop cluster can be monitored by

installing the Datadog Agent on the worker nodes in the cluster. Its agents collect the

specific metrics from each node as well as the status of each job and task. Furthermore,

Datadog is used for network and security monitoring for cloud-based systems [93].

However, Datadog shows anomalies but cannot do root-cause analysis for such cases

[94].

SequenceIQ [12], developed by Hortonworks computer software company to acceler-

ate Hadoop deployment, and is now a project under Hortonworks/Cloudera licence

[95], is yet another framework for Hadoop that its architecture is built on the ELK

- 28 -

Chapter 2: Literature Review

stack, which includes Elasticsearch, Logstash, and Kibana. It aims to achieve a clear

separation between monitoring tools and the Hadoop implementation by leveraging a

Docker-based architecture. SequenceIQ monitors applications based on resource uti-

lization (i.e., CPU, memory) by applying auto-scaling to Hadoop YARN via Service

Level Agreement (SLA) policy. SequenceIQ evaluates customers costs with the de-

tailed measurement of their MapReduce jobs. However, it is not able to do root-cause

analysis and investigation of any failures.

Sematext [13] is a tool for big data systems that allows users to collect metrics, logs,

and events from the frontend to the backend from the whole system. It provides both

real-time metrics collection and anomalies detection, such as slow transactions and

communication between systems and applications. It can be easily integrated with

existing software and tools, such as Solr, Apache Hadoop, Docker, Apache Kafka,

Apache Spark, Apache Storm, MongoDB, Nginx, Cassandra, Elasticsearch. Moreover,

users can have predefined conditions in their metrics to be notified when the conditions

are met, for example, if CPU usage reaches a certain threshold. Sematext also provides

visualization for big data tasks by a user-friendly graphical interface. However, it does

not conduct root-cause analysis for any of the systems.

TACC Stats [14] is a continuous monitoring tool that collects the infrastructure infor-

mation and progress status of each individual task from HPC systems. It has been

in production use for about five years on numerous different systems and currently is

used by many HPC systems. It enables analysis and reporting through the collected

data, such as resource utilization, energy consumption, network, and I/O activity. It

is able to give insights about the performance reduction regarding job errors, system

faults, and resource needs based on resource utilization. However, TACC Stats does

not have the ability for visualization of the collected data and does not provide root-

cause analysis. Furthermore, it developed for HPC clusters and are not suitable for

big data systems.

Mantri [15] presents a real-time monitoring and systematic method that categorizes

the main reasons causing outliers in a big data system. It characterizes the prevalence

of stragglers in Hadoop systems as well as troubleshooting the cause of stragglers.

Moreover, it utilized the outputs of the root cause analysis to improve the resource

- 29 -

Chapter 2: Literature Review

allocation in Hadoop clusters. However, Mantri focuses on only the MapReduce pro-

gramming framework in the Hadoop system; does not discuss the other big processing

frameworks, such as Apache Spark1, Apache Flink2.

DCDB Wintermute [16] provides not only the feature of real-time monitoring but

also are able to identify the performance issues and troubleshoot the cause of the

issues. It provides a wide range of configuration options to meet the different needs

of Operational Data Analytics (ODA) applications on HPC systems. However, it is

not possible to monitor and debug big data systems using DCDB Wintermute as it is

suitable only for HPC systems.

Nagios [17] is an open-source platform that provides multi-layer monitoring including

systems, networks, and infrastructure for cloud-based systems, such as a number of

protocols (HTTP, ICMP, SNMP, FTP, SSH), nodes resources (CPU, memory, I/O),

as well as the information regarding host hardware. Although it requires a centralized

server to collect the metrics, this allows users to plugin their own scripts. Nagios also

provides a user-friendly dashboard based on the web that shows the system metrics

as well as the current status of the system. Nagios can work both agent-based and

agentless. It consists of many different agents performing different tasks, such as

collecting and transferring the data, when it uses the agent-based model. On the other

hand, it uses WMI and SNMP technologies for the agentless model [96]. However, it

requires a centralized server to collect the systems metrics.

Ganglia [18] is a scalable distributed monitoring system that provides a time-series

perspective regarding machine resource usage metrics, such as CPU, memory, stor-

age, and network use to provide insight into how high-performance computer systems

are used. Since it is easily scalable and distributed software, it works well with high-

performance computing (HPC), clusters of thousands of computers, and as well as grid

computing systems. Ganglia makes extensive use of technologies such as XML, XDR

and RRDtool for data representation, data transfer, and data storage and visualiza-

tion, respectively. As it provides built-in support for HBase (a non-relational NoSQL

database created as part of the Apache Software Foundation’s Hadoop project), it is a

1https://spark.apache.org/
2https://flink.apache.org/

- 30 -

https://spark.apache.org/
https://flink.apache.org/

Chapter 2: Literature Review

popular tool widely used to monitor a Hadoop cluster [97]. Ganglia’s decentralized ar-

chitecture provides high concurrency and a very low per-node overhead. The computer

system metrics are monitored and forwarded via the monitoring daemons running on

each compute node. In parallel with this process, this monitored data is pulled by meta

daemons and stored in a database. It also provides a PHP web frontend that displays

all the collected metrics properly in the browser, which helps users to understand how

the system works. However, Ganglia does not have an alert feature that can alert or

inform the user in case of an error or a slowdown in the system.

Apache Chukwa [19], released under Apache 2.0 license, is a scalable, distributed, and

open-source system for monitoring and data collecting from large-scale distributed

systems. Chukwa is built on top of the HDFS and MapReduce framework, which

makes it scalable and robust. It gives a better understanding of tasks status, resource

usage, and the system’s health by the generated results from the collected metrics

[98]. Apache Chukwa consists of three main components, namely collector, agent,

and adaptor. Agents, which has many adaptors, are deployed on each worker node.

The monitoring metrics are collected by adaptors and reported to the relevant agent.

And agents, then, transfer the collected data to the collector that sinks the data in

a Data Sink File in HDFS. Although Apache Chukwa is one of the most commonly

used monitoring frameworks for big data systems, it is not suitable for supporting a

root-cause analysis.

DMon [20] is a monitoring project designed as a Web service and developed in the

framework of the DICE project. It collects performance and quality-related metrics

from each of the sub-components in big data frameworks (i.e., Hadoop) by deploying

several sub-components. Thanks to its distributed and high availability architecture,

it can be easily integrated into the other big data systems. Similar to SequenceIQ,

DMon also uses the ELK stack as its core service, which provides a robust base for

itself, to process and ingest the unstructured logs. In addition to all these, DMon has

the ability to detect data locality issues and to repair such problems using targeted

optimizations [99]. However, it does not have alert and visualization options.

Apache Ambari [100] is an open-source tool developed by the Apache Software Foun-

dation that allows monitoring and managing a Hadoop cluster easily with the help of

- 31 -

Chapter 2: Literature Review

REST APIs. It also provides a web user interface to show the collected metrics as

well as to manage the Hadoop cluster. System administrators can select metrics and

define thresholds for them to create alerts. System administrators can easily manage

the operations in YARN (a core component of Hadoop) that comes along with the

Hadoop 2.0 as Ambari is designed for the Hadoop cluster to make its management

simpler. Apache Ambari deploys a master/slave architecture, in which the master

node manages the slave nodes to carry out specific tasks [101]. Besides, it has the

ability to notify the users when something goes wrong. However, like the other dis-

cussed monitoring tools, it cannot pinpoint the reasons why it happens. Although

Ambari is a good solution for monitoring and managing the cluster, it is not enough

for optimizing and increasing the performance of big data systems.

Table 2.1 presents a brief overview of various tools for big data frameworks with

the help of [102]. The poor/good/excellent representations for Big data frameworks

support are the indications of how many different systems the tools can run on. Poor

(*) shows that the tool can only work on Hadoop/MapReduce framework, while Good

(**) ones support Apache Spark framework as well as Hadoop/MapReduce. In the

context of Real-time monitoring, Good (**) specifies that the tool performs near real-

time tracking while Excellent (***) tracks big data systems in real-time. All these

results are obtained by comparing the experimental results in the related articles with

each other.

- 32 -

Chapter 2: Literature Review

Table 2.1: A comparison of the literature review to the major issues addressed in this
thesis.

Feature [11] [12] [13] [14] [15] [16] [17] [18] [19] [20]

Big data frame-
works support

** * ** × * × * * * **

Real-time monitor-
ing

*** *** *** *** *** *** *** ** *** **

Root-cause analysis × × × × ✓ ✓ × × × ✓

Underlying resource
monitoring

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Real-time monitor-
ing for big data
tasks

✓ ✓ ✓ × ✓ × × × ✓ ✓

Auto-scaling func-
tionality

✓ ✓ ✓ ✓ ✓ ✓ × × ✓ ✓

User-defined alerts ✓ × ✓ × × × ✓ × × ×

Visualization of big
data tasks

✓ × ✓ × × × × ✓ × ×

User-customized
root-cause analysis

× × × × × × × × × ×

Hidden/implicit re-
lations analysis

× × × × × × × × × ×

Abbreviations: ×, No; ✓, Yes; *, Poor; **, Good; ***, Excellent ;

- 33 -

Chapter 2: Literature Review

- 34 -

3
SmartMonit: Real-time Big Data

Monitoring System

Contents
3.1 Introduction . 36

3.2 Related Work . 38

3.3 System Overview . 40

3.3.1 System Architecture . 40

3.4 Experimental Evaluation . 44

3.4.1 Experimental setup . 44

3.4.2 Performance and overheads . 46

3.4.3 Execution time evaluation of the benchmarks 47

3.5 Visualization . 48

3.5.1 Micro-benchmark . 49

3.5.2 Building Execution Graph . 50

3.5.3 Real-time demonstration . 54

3.6 Discussion and Future Work . 56

3.7 Conclusion . 56

- 35 -

Chapter 3: SmartMonit: Real-time Big Data Monitoring System

Summary

This chapter presents SmartMonit, a real-time big data monitoring system, which

collects infrastructure information and process status of each task. At the same, we

develop a real-time stream process framework to analyze the coordination among tasks

to tasks and infrastructures to tasks. This coordination information is essential for

troubleshooting the reasons for failures and performance reduction, especially the ones

propagated from other causes.

3.1 Introduction

Monitoring is the key factor for cloud-based big data systems to give the idea regarding

the system health and status. The big data systems, such as Hadoop and Spark are

running in the large-scale computer cluster. For example, Fuxi [103] is an extended

implementation of YARN, which is deployed in a cluster with over 5000 nodes and

serves hundreds of millions of customers at Alibaba. For these large-scale systems,

there are two key issues that cause performance reduction and inefficiently resource

utilization. First is the task failures caused by diverse sources of software and hardware

faults, and the second is the unsuitable scheduling policies.

The fault detection in big data systems, however, is very hard due to considerable

scale, distributed environment and a large number of concurrency jobs. State-of-

the-art research is not focused on detecting emergent failures. The emergent failures

happen when the errors exceed the propagation boundaries during the interaction

among hardware and software components, and can only be identified at run-time [21].

For example, the stragglers or tailing behavior in Hadoop system; the slower execution

of a job may cause the late-time failures for many other tasks which have strict time

constraints related to service-level agreements (SLAs). Moreover, the cluster scheduler

uses some heuristics that prioritizes the important jobs and fairly allocates the resource

among the jobs [104]. However, these methods ignore the information of the job

structure (or dependencies) and schedule the jobs to the available resources without

considering the job structure in run-time [105].

- 36 -

Chapter 3: SmartMonit: Real-time Big Data Monitoring System

In order to detect the emergent failures or root the reasons for the performance reduc-

tion, we need to have a comprehensive and consistent monitoring plan to collect the

information from each individual process job, while storing, maintaining and analyzing

very large volumes of the monitoring data[44]. The monitoring tools such as Google

Cloud Monitoring1, Sparklint2, and Datadog 3 aim to collect various information such

as CPU, memory, disk, available bandwidths and execution status of each job. How-

ever, they are not able to do a real-time multiresolution analysis that narrows the

scope and increases the resolution, thereby pruning the non-important information.

A monitoring system basically consists of two main components, namely agent man-

ager and agents. Agents are plugged into each VM/container without considering the

cluster heterogeneity to collect performance metrics and send the metrics to the agent

manager placed into a separate machine. The manager is responsible for gathering,

preprocessing and filtering the data from the agents. Finally, it sends this data to

the database via a message broker (i.e., RabbitMQ4 vs Apache Kafka) to ensure data

transmission reliability [94]. Fig. 3.1 shows an effective conceptual architecture for

implementing a monitoring system for big data systems.

Computer Cluster

Master Node

Agent Manager

System
Administrator

Persistent
Storage

User
Visualization

Root-cause
analysis

User Node

Worker Node 1

Agent

…Task Task

Worker Node N

Agent

…Task Task
…

Resource Manager

Monitoring data collection Data storage and management

Queue

Message Broker

Figure 3.1: Example scenario for monitoring big data systems

1https://kubernetes.io/docs/tasks/debug-application-cluster/resource-usage-monitoring/
2https://github.com/groupon/sparklint
3https://docs.datadoghq.com/
4https://www.rabbitmq.com/

- 37 -

https://www.rabbitmq.com/

Chapter 3: SmartMonit: Real-time Big Data Monitoring System

In this chapter, we propose a real-time monitoring system that efficiently collects the

run-time system information including computing resource utilization and job exe-

cution information and then interacts the collected information with the Execution

Graph modeled as directed acyclic graphs (DAGs). For example, our system is able

to capture the job execution stages and the dependencies of each job in real-time; at

the same, the resource utilization of each job and its underlying host are monitored as

well. The main contributions are summarized as follows.

• We develop a big data monitoring system which can efficiently collect the com-

prehensive monitoring information from large-scale computer cluster in real-time.

• At the same, we process these streaming data and interact the processed data

with the Execution Graph of each task while visualizing the interaction in real-

time.

To demonstrate the effectiveness of our system, we plugged our system into a Hadoop

cluster deployed on AWS. The above mentioned monitoring information is collected

in real-time and visualized in a user-friendly interface. Additionally, we again plugged

our system in a small Hadoop cluster deployed on AWS for the visualization that is

available as a screen-cast video on YouTube [106].

The chapter is organised as follows. §3.2 discusses the related work. §3.3 presents the

system overview while §3.4 discusses the experiment and results analysis. §3.5 explains

the visualization while §3.6 discusses the limitations of this chapter and highlights our

further work. Finally, §3.7 concludes the chapter discussing the conclusion.

3.2 Related Work

There are a number of big data systems tools developed by both academia [14], [19],

companies [11], [13] as well as community tools in open repositories [12], [18].

Datadog [11] provides real-time monitoring by collecting data from databases, servers

and different tools to monitor Hadoop clusters in a unified environment via the dash-

board and alerts when a certain threshold is exceeded. Datadog agents are installed on

- 38 -

Chapter 3: SmartMonit: Real-time Big Data Monitoring System

each running node in the cluster, providing monitoring of the Hadoop cluster. Datadog

is also used for network and security monitoring for cloud-based systems [93]. How-

ever, Datadog shows only anomalies, it cannot perform root cause analysis for such

cases [94]. SequenceIQ [12] is built on the ELK stack, which includes Elasticsearch,

Logstash, and Kibana [95]. It uses a docker-based architecture that monitors resource

utilization (i.e., CPU, memory). Although it is very efficient in monitoring big data

clusters by means of auto-scaling facilities, it is not able to do root-cause analysis and

investigation of any failures. Sematext [13] is capable of collecting metrics, logs, and

events from the frontend to the backend of the whole system in real-time. It detects

anomalies, such as slow transactions and communication between systems and appli-

cations. Furthermore, customers may have specified conditions in their metrics and be

informed when the circumstances are satisfied, such as when CPU consumption hits

a specific threshold. Sematext’s user-friendly graphical interface also allows for the

visualisation of massive data jobs. It does not, however, do a root-cause analysis on

any of the systems as its system is not convenient to perform such tasks. Nagios [17]

collects logs from different layers of big data systems including systems, networks, and

infrastructure in real-time. It allows users to plugin their own scripts to monitor cen-

tralized servers. It also has a user-friendly web dashboard to show the system metrics

as well as the health status of the system [96]. However, it is not capable of monitoring

the big data tasks such as mapper, reducer, and is not able to provide an infrastructure

to do root-cause analysis for performance degradation for big data systems. Ganglia

[18] is able to collect metrics regarding resource usage, such as CPU, memory, storage,

and network use to provide information about how the system works. It is a pop-

ular tool for monitoring a Hadoop cluster since it has built-in support for HBase (a

non-relational NoSQL database produced as part of the Apache Software Foundation’s

Hadoop project) [97]. It also includes a PHP web interface that appropriately shows all

gathered metrics in the browser, allowing users to understand how the system works.

However, Ganglia lacks an alert function that can notify or warn the user in the event

of a system fault or slowness. Apache Chukwa [19] provides a better knowledge of job

status, resource utilization, and system health [98] that is scalable and resilient since

it is built on top of the HDFS and MapReduce frameworks. Despite being one of the

- 39 -

Chapter 3: SmartMonit: Real-time Big Data Monitoring System

most widely used monitoring frameworks for large data systems, Apache Chukwa is

not ideal for root-cause analysis.

Although there already exist some monitoring tools for big data systems, there is a

lack of a comprehensive and consistent monitoring tool to enable performing root-cause

analysis of the problems for those who want to optimise their big data systems.

3.3 System Overview

Monitoring systems are commonly used to collect data from any systems to analyse

their operation and performance to verify the system health [107]. The proposed

SmartMonit is an agent-based model for monitoring big data systems, which facilitates

the implementation of new data collection APIs. It consists of two agents, namely

SmartAgent and Agent. The metrics are collected via these two agents and stored in

a time-series database. SmartAgent collects the status of each task along with the

cluster information processed data while Agent collects the infrastructure information

of the system to check the health status of each worker node in the cluster. Fig. 3.2

shows the methodology of the integration of SmartMonit in a Hadoop cluster. The

details of the system architecture will be discussed in §3.3.1.

3.3.1 System Architecture

This section explains the architecture and implementation details of SmartMonit.

Fig. 3.3 shows three main components of our SmartMonit including Information Col-

lection, Computation and Storing and Visualization.

3.3.1.1 Information Collection

The Information Collection is used to collect the job and task metrics and the resource

utilization of the nodes in a large-scale computer cluster in real time via SmartAgent

and Agent. The SmartAgent is deployed on the master node collects the specific in-

formation of tasks (mappers and reducers), application (job details) and the cluster

information from worker nodes through the NodeManagers using ResourceManager

- 40 -

Chapter 3: SmartMonit: Real-time Big Data Monitoring System

+ jobStatus ()
+ taskStatus ()
+ clusterInfo ()
+ dataInfo ()

TaskAgent

+ cpuUsage ()
+ memoryUsage ()
+ diskInfo ()
+ networkInfo ()

SystemAgent

+ register ()
+ sendData ()
+ setConfiguration ()

SmartAgent

SmartMonit

Hadoop Cluster

YARN APIs

Sigar APIs

SmartMonit
configuration API

(a)

(b)

DB

Figure 3.2: Monitoring agents model (a); Implementation of SmartMonit mechanism
in a Hadoop cluster (b).

REST API’s5. Also, the SIGAR library6 is plugged into the SmartAgent to moni-

tor the utilization of the resources in the Master node, including CPU, memory and

network bandwidths. The collected all the data is filtered by using GSon Library7 to

remove the redundant information. The SmartCollector obtains the process informa-

tion that can be used to build the Execution Graph (the details is discussed in §3.5.2).

All monitoring information is sending as streaming data to the Computation and Stor-

ing. Moreover, in the slave nodes, the Agent collects the process information by using

SmartCollector and the utilization of the resources in the host node via SIGAR library.

The obtained information is directly sent to Computation and Storing.

SmartMonit exposes a set of simple interfaces for system monitoring. While Table 3.1

shows the APIs, a set of real-time stream processing functions, used to collect the jobs-

5https://hadoop.apache.org/docs/r3.2.1/hadoop-yarn
6https://github.com/hyperic/sigar
7https://github.com/google/gson

- 41 -

https://hadoop.apache.org/docs/r3.2.1/hadoop-yarn
https://github.com/hyperic/sigar
https://github.com/google/gson

Chapter 3: SmartMonit: Real-time Big Data Monitoring System

Master Node

RS

RS

ASC - - - RS ASC

Worker Node 1

COMPUTER CLUSTER Information Collection

SWSA

NM

Computation and Storing Visualization

SmartAgent (SA)

Agent (A)

Resources (RS)

NodeManager (NM)

SmartCollector (SC)

RabbitMQ

SmartWriter (SW)

InfluxDB

Worker Node 2 Worker Node N

RS ASCNMNM

Figure 3.3: The framework of SmartMonit.

related information, Table 3.2 demonstrates the APIs that collect the system-related

information from large-scale big data systems.

3.3.1.2 Computation and Storing

The RabbitMQ Server 8 is used to collect monitoring information sending from the

cluster; the RabbitMQ Server is an open source message broker system which provides

high throughput, low latency and reliable communication among the applications to

applications. Then, the SmartWriter analyzes the collected information pulling from

RabbitMQ Server in real-time and writes the processed results into InfluxDB9 which is

an open-source time series database. This database provides high-availability storage

and the retrieval of time series data, such as operations monitoring data, sensor data

and application metrics.

8https://www.rabbitmq.com/
9https://www.influxdata.com/

- 42 -

https://www.rabbitmq.com/
https://www.influxdata.com/

Chapter 3: SmartMonit: Real-time Big Data Monitoring System

Table 3.1: SmartMonit monitoring interface for jobs.

Information Collection Description

Job information

jobSubmitTime() Return the time in which job submitted.
jobResponseTime() Return the response time of the job in sec.

jobStartTime() Return the time the job started.
jobMakespan() Return the elapsed time since the job started in sec.

jobClusterUsage() Return the percentage of resources of the cluster that the
job is using.

jobProgress() Return the progress of the job in percentage.

jobMapProgress() Return the progress of the map tasks in percentage.

jobReduceProgress() Return the progress of the reduce tasks in percentage.

jobTaskPending() Return the number of the tasks still to be run.

jobTaskRunning() Return the number of the running tasks.
jobTaskCompleted() Return the number of the completed tasks.
jobState() Return the job state according to the Resource Manager.

jobScheduler() Return the type of scheduler algorithm valid in the cluster.

jobReplicaNum() Return the number of times Hadoop framework replicate each
data block.

Task (Mapper/Reducer) information

taskStartTime() Return the time in which the task started.
taskProgress() Return the the progress of the task in percentage.

taskExecTime() Return the execution time since the task started in sec.

taskHost() Return the name of the node this map runs on.

taskBlockId() Return the id of the block processed by the task.

taskState() Return the the state of the task.

taskInputData() Return the data size read by task in mb.

taskOutputData() Return the data size written by task in mb.

taskFinishTime() Return the time in which the task finished.
Cluster information

clsActiveNodes() Return the number of active nodes.
clsAvailableMem() Return the amount of memory available in mb.

clsAvailableVCores() Return the number of available virtual cores.
clsTotalMemory() Return the amount of total memory in mb.

clsTotalVCores() Return the total number of virtual cores.
clsTotalNodes() Return the total number of nodes.
clsUnhealthyNodes() Return the number of unhealthy nodes.

Container information

containerMem() Return the total of memory allocated to the job’s running
containers in mb.

containerCores() Return the number of virtual cores allocated to the job’s
running containers.

Data information

inputDataSize() Return the size of input data in mb.

outputDataSize() Return the size of output data in mb.

Input Data information

blockLocations() Return the location of the blocks the job used.

inputReplicaNum() Return the number of replication of the input file.

- 43 -

Chapter 3: SmartMonit: Real-time Big Data Monitoring System

Table 3.2: SmartMonit monitoring interface for system.

Information Collection Description

Resource information

nodeVCoreNum() Return the number of cores in the node.

nodeCpuUsage() Return the cpu usage of the node in percentage.

nodeProcCpu() Return the cpu usage by each process in the node in percentage.

nodeProcMem() Return the memory usage by each process in the node in per-
centage.

nodeMemUsage() Return the memory usage of the node in percentage.

nodeFreeMem() Return the size of free memory of the node in mb.

nodeUsedMem() Return the size of used memory of the node in mb.

nodeTotalMem() Return the size of total memory of the node in mb.

nodeUpload() Return the upload speed of the node as MB/s.

nodeDownload() Return the download speed of the node as MB/s.

diskReadSpeed() Return the disk read speed of the node as GB/s.

diskWriteSpeed() Return the disk write speed of the node as GB/s.

3.3.1.3 Visualization

The Visualization includes two parts: query engine and user interface. The query

engine queries the database in a pre-defined time interval to build the Execution Graph.

The Execution Graph and other collected monitoring information is presented in a user

friendly interface. The details will be discussed in §3.5.

3.4 Experimental Evaluation

In this section, we present the experimental results of SmartMonit to evaluate its

efficiency and applicability in large-scale data processing systems in cloud data center

environments.

3.4.1 Experimental setup

Environments. A comprehensive evaluation is conducted to evaluate our proposed

monitoring system. To this end, we deployed Hadoop 3.2.0 on a VM-based infrastruc-

ture over 31 AWS nodes with 1 master and 30 workers, each of which has a Ubuntu

18.04 LTS (HVM) operating system. All nodes have 4 CPU cores and 16 GB memory.

- 44 -

Chapter 3: SmartMonit: Real-time Big Data Monitoring System

Similar to the micro-benchmark, we deployed a VM with the same instance type out-

side the Hadoop cluster the computation and storing model. The methodology behind

collecting the monitoring information is the same as experiment setup one.

Benchmarks and workload. We used six well-known Hadoop benchmarks in our eval-

uations namely: WordCount10, Grep11, TPC-H12, TPC-DS13, K-means clustering14,

and PageRank15. We used 11 different datasets varying in size from 6 to 128 giga-

bytes. In particular, we have used the datasets, containing only text, obtained from

the PUMA16 for WordCount and Grep benchmarks. For TPC-H and TPC-DS, the

datasets are generated by executing the JAR provided at the addresses listed in the

related footnotes. Similarly, the dataset for K-means clustering is generated using the

JAR, available here17, with the specified number of dimensions and clusters. Finally,

the dataset, which consists of reviews from Amazon, for the PageRank benchmark is

generated by executing the JAR provided by Stanford University18. Table 3.3 shows

the details of the experiments conducted.

Table 3.3: The experiment environments regarding workload and system specifications

Benchmark Task number
range

Data size range
(GB)

CPU
(core)

Memory
(GB)

WordCount 48 to 1024 6 to 128 4 16

Grep 48 to 1024 6 to 128 4 16

TPC-H 20 to 435 6 to 128 4 16

TPC-DS 25 to 535 6 to 128 4 16

K-means 46 to 1022 6 to 128 4 16

PageRank 47 to 1023 6 to 128 4 16

10http://wiki.apache.org/hadoop/WordCount
11http://wiki.apache.org/hadoop/Grep
12http://www.tpc.org/tpch/
13http://www.tpc.org/tpcds/
14https://en.wikipedia.org/wiki/K-means clustering
15https://en.wikipedia.org/wiki/PageRank
16https://engineering.purdue.edu/p̃uma/pumabenchmarks.htm
17https://github.com/mameli/k-means-hadoop
18http://snap.stanford.edu/data/web-Amazon-links.html

- 45 -

http://wiki.apache.org/hadoop/WordCount
http://wiki.apache.org/hadoop/Grep
http://www.tpc.org/tpch/
http://www.tpc.org/tpcds/
https://en.wikipedia.org/wiki/K-means_clustering
https://en.wikipedia.org/wiki/PageRank
https://engineering.purdue.edu/~puma/pumabenchmarks.htm
https://github.com/mameli/k-means-hadoop
http://snap.stanford.edu/data/web-Amazon-links.html

Chapter 3: SmartMonit: Real-time Big Data Monitoring System

3.4.2 Performance and overheads

Performance evaluation. SmartMonit collects the task metrics via SmartAgent every

three seconds as the Hadoop APIs release new information every 2-3 seconds while

the infrastructure information of the system is collected via Agent every second as the

resource usage of the system changes every second. SmartAgent needs to complete

the metrics collection from all the running tasks (e.g. mapper or reducer) every three

seconds. So, we evaluate the performance of SmartAgent if it catches up with the

deadline. To this end, we evaluate the scalability and performance of our presented

SmartMonit monitoring tool by measuring the end-to-end delivery time of SmartAgent

with six different benchmark applications with different-sized datasets.

Fig. 3.4 shows the completion time of the metric collection based on the number of

tasks running in parallel in milliseconds.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

50 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Co
m

pl
et

io
n

tim
e

(m
s)

Number of tasks running in parallel

Figure 3.4: Metrics collection completion time

System overheads. We measure the CPU and memory usage of SmartMonit to eval-

uate the system overhead introduced by it. Fig. 3.5(a) shows the CPU utilization of

SmartMonit while Fig. 3.5(b) demonstrates the memory utilization of SmartMonit. In

summary, SmartMonit consumes approximately 2.58% memory and 4.53% CPU.

Moreover, Fig. 3.6 demonstrates the network and storage overheads of our tool. The

extra network load and and total storage introduced by SmartMonit are very low, but

they increase as the number of tasks running in parallel increases. For example, when

- 46 -

Chapter 3: SmartMonit: Real-time Big Data Monitoring System

 0

 1

 2

 3

 4

 5

CP
U

 u
sa

ge
 (

%
)

Timeline
((a)) CPU utilization

 0

 1

 2

 3

 4

 5

M
em

or
y

us
ag

e
(%

)

Timeline
((b)) Memory utilization

Figure 3.5: Resource utilization of SmartMonit.

the number of parallel task is 100, there are about 22.5 KB/s data sent from agents

to RabbitMQ cluster. In addition, when the jobs is completed, the total size of this

data in disk is 2.85 MB/s. The network and storage overheads increase to 223 KB/s

data and 7.2 MB/s, respectively, when the number of parallel tasks is 1000.

3.4.3 Execution time evaluation of the benchmarks

In this section, we evaluate the execution time for six well-known Hadoop benchmarks

as indicated in Table 3.3. 11 different datasets varying in size from 6 to 128 gigabytes

are the input of each benchmark application.

Fig. 3.7, Fig. 3.8, Fig. 3.9, Fig. 3.10, Fig. 3.11, Fig. 3.12, show the impact of data

set size on execution time in seconds for Hadoop benchmarks namely: WordCount,

Grep, TPC-H, TPC-DS, K-means, and PageRank, respectively. It is clearly seen

- 47 -

Chapter 3: SmartMonit: Real-time Big Data Monitoring System

 0

 50

 100

 150

 200

 250

50 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

 2

 3

 4

 5

 6

 7

 8

D
at

a
ra

te
 (

KB
/s

)

To
ta

l s
iz

e
(M

B)

Number of tasks running in parallel

Message rates
Total size (MB)

Figure 3.6: The network and storage overheads of SmartMonit

that although the sizes of the datasets are the same for each benchmark, a different

numbers of tasks are executed, resulting in different execution times. Moreover, some

benchmarks have the same number of tasks (i.e., WordCount and Grep), they have

different execution time.

Execution time range (sec)

 0 200 400 600 800 1000 1200

Task number

 0

 30

 60

 90

 120

 150

D
at

a
si

ze
 (

G
B)

 0

 200

 400

 600

 800

 1000

 1200

Figure 3.7: WordCount execution time on different data size

3.5 Visualization

This section demonstrates the execution workflow of our SmartMonit by interacting it

with a micro-benchmark.

- 48 -

Chapter 3: SmartMonit: Real-time Big Data Monitoring System

Execution time range (sec)

 0 200 400 600 800 1000 1200

Task number

 0

 30

 60

 90

 120

 150

D
at

a
si

ze
 (

G
B)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

Figure 3.8: Grep execution time on different data size

Execution time range (sec)

 0 200 400 600

Task number

 0

 30

 60

 90

 120

 150

D
at

a
si

ze
 (

G
B)

 0
 50
 100
 150
 200
 250
 300
 350
 400
 450
 500

Figure 3.9: TPC-H execution time on different data size

3.5.1 Micro-benchmark

We used Hadoop 3.2.0 and deployed it over 3 AWS virtual machines (VMs). All

nodes have 2 CPU cores and 8 GB memory. Moreover, we deployed the computation

and storing model on a VM with the same instance type outside the Hadoop cluster.

The Agent and SmartAgent are deployed inside the cluster to collect the monitoring

information in real-time and the high-level deployment structure is shown in Fig. 3.3.

- 49 -

Chapter 3: SmartMonit: Real-time Big Data Monitoring System

Execution time range (sec)

 0 200 400 600

Task number

 0

 30

 60

 90

 120

 150
D

at
a

si
ze

 (
G

B)

 0
 50
 100
 150
 200
 250
 300
 350
 400
 450
 500

Figure 3.10: TPC-DS execution time on different data size

Execution time range (sec)

 0 200 400 600 800 1000 1200

Task number

 0

 30

 60

 90

 120

 150

D
at

a
si

ze
 (

G
B)

 0

 200

 400

 600

 800

 1000

 1200

 1400

Figure 3.11: K-means execution time on different data size

3.5.2 Building Execution Graph

We develop a real-time stream process module to capture the Execution Graph of an ap-

plication while it is running. This module consists of SmartCollector and SmartWriter.

The SmartCollector collects the size of each key-value pair generated from each node

and sends the collected information to RabbitMQ Server. Then, the SmartWriter

analyzes the streaming data and computes data transferring size among the mappers

and reducers. The following describes the implementation details of this module and

Fig. 3.13 illustrates the logic of the algorithm via a WordCount application.

In the map phase, each mapper is assigned more than one keys and each key has one

- 50 -

Chapter 3: SmartMonit: Real-time Big Data Monitoring System

Execution time range (sec)

 0 200 400 600 800 1000 1200

Task number

 0

 30

 60

 90

 120

 150

D
at

a
si

ze
 (

G
B)

 0

 200

 400

 600

 800

 1000

 1200

 1400

Figure 3.12: PageRank execution time on different data size

value which is equal to 1. Therefore, we use a 4-tuple to record the information of each

key-value pair, i.e., Map id, key, key-value size, App id as shown in Fig. 3.13, Step 1

and the recorded tuples is forwarded to RabbitMQ Server when it is obtained. In the

reduce phase (see Step 2), we apply a similar method but using 3-tuple to record the

information of each reducer, i.e., Reduce id, key, App id.

Finally, in Step 3 we use Key and App id to match the dependencies among the

mappers and the reducers from the same application in SmartWriter. For example,

The second and third tuple in Step 1 have the same key (“Science”), and the key

(“Science”) is shuffled to Reduce2 (see the second tuple in Step 2). As a result, we

are able to compute the size of the data that is shuffled from mappers to reducers

according to the table shown in Step 3.

The notations used in this section are summarized in Table 3.4.

Algorithm 1 shows the implementation details of the algorithm of SmartWriter. Once

map phase starts, each map id and each key of the key-value pairs generated by mapper

tasks are stored into related MultiValueMap (see Algorithm 1, Line 7). Similarly, when

reduce phase starts, each reduce id and each key of the key-value pairs generated by

reducer tasks are stored into related MultiValueMap (see Algorithm 1, Line 10). Once

outputs from reducers is received, SmartWriter starts calculating the size of the key

that matches in both MultiValueMap collections (see Algorithm 1, Line 15) and then

is presented in the result (see Algorithm 1, Line 17).

- 51 -

Chapter 3: SmartMonit: Real-time Big Data Monitoring System

Algorithm 1: SmartWriter key matcher

Input: Mp - overall map progress in percentage,

Rp - overall reduce progress in percentage,

Mid - id of map task,

Rid - id of reduce task,

Mk - key value that map task generates,

Rk - key value that reduce task generates,

K - size of the key value that map task generates.

Output: R - output.

1 // Create a MultiValueMap Mm to store the Mid

2 Mm ← Mm[0]

3 // Create a MultiValueMap Rm to store the Rid

4 Rm ← Rm[0]

5 while Mp > 0.0 ∨ Rp < 100.0 do

6 // Put Mk and Mid into Mm

7 Mm.put(Mk, Mid)

8 while Rp > 0.0 ∨ Rp < 100.0 do

9 // Put Rk and Rid into Rm

10 Rm.put(Rk, Rid)

11 for each key of Mm do

12 for each key of Rm do

13 if Mm.key contains Rm.key then

14 //Get the size of Mk

15 K ← Mk.getBytes().length

16 R ← Mk.key is going to Rm.key size= K
17 print R
18 end

19 end

20 end

21 end

22 end

- 52 -

Chapter 3: SmartMonit: Real-time Big Data Monitoring System

Map_id Key

Key-Value
_size

(in bytes)
App_id

Map1 Computer 8 1608406701350_0001
Map1 Science 7 1608406701350_0001
Map2 Science 7 1608406701350_0001
Map2 Newcastle 9 1608406701350_0001
Map3 Newcastle 9 1608406701350_0001
Map3 University 10 1608406701350_0001

Reduce_id Key App_id
Reduce1 Computer 1608406701350_0001
Reduce2 Science 1608406701350_0001
Reduce1 Newcastle 1608406701350_0001
Reduce2 University 1608406701350_0001

--- Step 1 ---

--- Step 2 ---

Map_id

Key-Value
_size

(in bytes)
Reduce_id App_id

Map1 8 Reduce1 1608406701350_0001
Map1 7 Reduce2 1608406701350_0001
Map2 7 Reduce2 1608406701350_0001
Map2 9 Reduce1 1608406701350_0001
Map3 9 Reduce1 1608406701350_0001
Map3 10 Reduce2 1608406701350_0001

--- Step 3 ---

the connection between them

Figure 3.13: The algorithm of SmartWriter.

Implementation Technologies. We build the execution graph using different tech-

nologies to fetch the gathered information from the database and visualize them in

real-time. These technologies are HTML, CSS, and PHP that help to improve the

functionality of efficiency of the graph. HTML stands for HyperText Markup Lan-

guage that is the standard markup language used to structure a page and its content

to be displayed in a web browser [108]. The sections of web pages, namely such as

sections, paragraphs, headings, links, could be structured within bullet points, images,

tables or paragraphs easily by the user. The basic structure of our execution graph

is created using HTML, such as the locations of the circles symbolizing mappers and

- 53 -

Chapter 3: SmartMonit: Real-time Big Data Monitoring System

Table 3.4: A summary of symbols used in this section

Symbols Description

Mp Overall map progress in percentage

Rp Overall reduce progress in percentage

Mid Id of map task

Rid Id of reduce task

Mk Key value that map task generates

Rk Key value that reduce task generates

K Size of the key value that map task generates

R Output of the algorithm

reducers. CSS, Cascading Style Sheets, is an essential technology for the web. It

is a style sheet language designed for differentiation of presentation and content by

changing the characteristics of the content, including layout, colors, and fonts [109].

For example, in our execution graph, CSS is primarily used to colour the fields to

highlight the data belonging to each individual mapper and reducer as well as the

arrows that indicate the communication between the mappers and reducers. PHP19

is a recursive acronym for ”PHP: Hypertext Preprocessor”. PHP is an open-source,

general-purpose and server-side scripting language widely used in web development. It

is easily embedded in HTML that performs very important functions, such as creating,

opening, reading, writing, and closing for files and adding, deleting, and modifying the

elements within a database [110]. PHP has the critical role of fetching all the metrics

stored in the InfluxDB database in a given time interval for visualization them in our

execution graph.

3.5.3 Real-time demonstration

After the experimental environment is set up based on the micro-benchmark, we ran

various configurations of WordCount application in term of input data size, number

of mappers and number of reducers to evaluate our system.

Fig. 3.14 is a screenshot that shows the real-time execution status and resource uti-

19https://www.php.net/

- 54 -

https://www.php.net/

Chapter 3: SmartMonit: Real-time Big Data Monitoring System

Figure 3.14: Execution graph in a real-time monitoring system.

lization of running a configuration of the WordCount application. In order to show

the full picture of our design, the screenshot was taken when all map jobs and reduce

jobs are completed. More details, please see our screen-cast video on [106].

In the map phase, Figure 3.14 indicates that all mappers are scheduled to slave1

and their execution status and the resource usage of the entire cluster (see cycles in

the button) are monitored by the Agents and SmartAgent, and displayed in the user

interface in real-time.

In the shuffle phase, the dependencies between mappers and reducers are obtained by

analyzing the collected information through our real-time stream process algorithm

discussed on §3.5.2. Notably, the algorithm also computes the input data size of

each reducer (see the numbers above the dependencies) in real-time in the shuffle

phase. With this information, we can diagnose the non-salient reasons that cause the

performance reduction in a Hadoop cluster. For example, if most of the reducers are

not running on the nodes contained their input data, the data shuffling will reduce the

performance significantly.

The reduce phase is very similar to the map phase, we collect the execution status

- 55 -

Chapter 3: SmartMonit: Real-time Big Data Monitoring System

of reducers and resource usage of their hosts (see Fig. 3.14). The right-hand side

summarizes the collected monitoring information of the entire Hadoop cluster.

3.6 Discussion and Future Work

SmartMonit proposes an efficient data collection system and a visualization graph

for big data systems. It is able to collect all the systems metrics as well as task-

related information. However, it is not able to monitor the reasons for performance

degradation. To this end, in the next chapter, we propose a performance diagnosis

system built on top of SmartMonit that enables root cause analysis.

3.7 Conclusion

In this chapter, we propose and validate SmartMonit, a novel tool that efficiently

monitors the big data system. The proposed system collects the run-time system

information including computing resource utilization, such as CPU, memory, disk,

and network operation as well as job-related information, such as start/finish time,

makespan, number of tasks, task/data locations. Importantly, it is able to process the

collected information to build a dynamic Execution Graph for each application while

visualizing the graph in real-time. This allows users to track whole the system and the

execution status of the jobs. Moreover, it provides a robust system to build a debugging

system for developers. SmartMonit uses agent-based architecture which ensures high

availability and scalability. Besides, it enables plug-in new APIs to develop the system

or monitoring different big data systems for developers who wants to use their own

APIs. The proposed system was evaluated by using different benchmarks along with

11 different datasets varying in size from small to large that deployed on a large-scale

cluster in AWS. Moreover, a micro-benchmark was used to evaluate the efficiency and

performance of the execution graph on a Hadoop cluster consisting of 3 AWS VMs.

The experimental results show that our proposed system, SmartMonit, can be used to

efficiently monitor big data systems consisting of thousands of tasks and nodes with

very little CPU and memory usage.

- 56 -

4
AutoDiagn: An Automated

Real-time Diagnosis Framework
for Big Data Systems

- 57 -

Chapter 4: AutoDiagn: An Automated Real-time Diagnosis Framework for Big Data
Systems

Contents
4.1 Introduction . 59

4.2 Related Work . 61

4.3 Requirements and design idea . 63

4.3.1 Fundamental prerequisite for diagnosing big data processing sys-
tems . 63

4.3.2 Key design idea . 64

4.3.3 The generalizability of AutoDiagn 64

4.4 AutoDiagn Architecture . 65

4.4.1 Architecture overview . 65

4.4.2 AutoDiagn monitoring framework 67

4.4.3 AutoDiagn diagnosing framework 68

4.4.4 AutoDiagn diagnosing interfaces for Hadoop 69

4.4.5 Example applications . 70

4.4.6 Parallel Execution . 72

4.4.7 Reliability analysis . 72

4.5 Case Study . 73

4.5.1 Symptom detection for outliers 73

4.5.2 Root cause analysis for outliers 75

4.6 Evaluation . 80

4.6.1 Experimental setup . 80

4.6.2 Diagnosis detection evaluation 81

4.6.3 Performance and overheads . 83

4.7 Discussion and Future Work . 86

4.8 Conclusion . 87

- 58 -

Chapter 4: AutoDiagn: An Automated Real-time Diagnosis Framework for Big Data
Systems

Summary

This chapter presents AutoDiagn, a generic and flexible framework that provides holis-

tic monitoring of a big data system, while detecting the symptom of performance reduc-

tion and enabling root-cause analysis. An implementation of the proposed framework

interacts with a Hadoop cluster and is evaluated with real-world benchmark applica-

tions. All experiments are conducted on AWS. Experimental results show that our

implementation has a small resource footprint, high throughput and low latency.

4.1 Introduction

The rapid surge of data generated through sectors like social media, financial services

and industries has led to the emergence of big data systems. Big data systems enable

the processing of massive amounts of data in relatively short time frames. For in-

stance, the Netflix big data pipeline processes approximately 500 billion events and 1.3

petabytes (PB) of data per day, further, during peak hours, it processes approximately

11 million events and 24 gigabytes (GB) of data on a per-second basis. Facebook has

one of the largest data warehouses in the world, capable of executing more than 30,000

queries over 300 PB data every day. However, the enormousness and complexity of

the big data system runs in heterogeneous computing resources, multiple tenant en-

vironments, as well as has many concurrent execution of big data processing tasks,

which makes it a challenge to utilize the big data systems efficiently and reliably[44].

To overcome this, it is imperative to continuously monitor and analyze all available

system resources at all times in a systematic, holistic and automated manner. These

resources include CPU, memory, network, I/O and the big data processing software

components.

Most of the commercial [11][12][13] and academic big data monitoring systems mainly

focus on visualizing task progress, and the system’s resource utilization [14]. However,

they do not focus on the interaction between multiple factors and performing root-

cause analysis for performance degradation [102][99]. Moreover, works such as [111,

112] aim to find the best parameters to optimize the performance of big data processing

systems, they do not focus on the root-cause analysis that may indicate the viable

- 59 -

Chapter 4: AutoDiagn: An Automated Real-time Diagnosis Framework for Big Data
Systems

reasons behind performance degradation and may provide intuitions for parameter

tweaking.

Mantri [15] presents a systematic method that categorizes the main reasons causing

outliers in a big data system. The authors’ work was focused on the MapReduce

programming framework in the Hadoop system; they do not discuss how Mantri can be

applied to other big processing frameworks (e.g., Apache Spark1, and Apache Flink2).

Garraghan et al. [113] proposed an online solution to detect long-tail issues in a

distributed system. However, these solutions were built for specific scenarios with

much scope left for analyzing a variety of problems that can exist in a large scale big

data processing system.

To the best of our knowledge, there is a lack of a generic and comprehensive solution

for the detection of a wide range of anomalies and performance of root-cause analysis

in big data systems. Developing a general and extensible framework for diagnosing

a big data system is not trivial. It requires well-defined requirements which could

enable the broader adoption of root-cause analysis for the big data systems, flexible

APIs to interact with an underlying monitoring system and integration of multiple

solutions for detecting performance reduction problems while enabling the automatic

root-cause analysis. In this chapter, we tackle this research gap, and design and develop

AutoDiagn to automatically detect performance degradation and inefficient resource

utilization problems, while providing an online detection and semi-online root-cause

analysis for a big data system. Further, it is designed as a microservice architecture

that offers the flexibility to plug a new detection and root-cause analysis module for

various types of big data systems.

The contributions of this chapter are as follows:

• An online and generic framework: We develop a general framework called Au-

toDiagn which can be adapted for the detection of a wide range of performance

degradation problems while pinpointing their root-causes in big data systems.

• A case study: We develop a novel real-time stream processing method to detect

1https://spark.apache.org/
2https://flink.apache.org/

- 60 -

https://spark.apache.org/
https://flink.apache.org/

Chapter 4: AutoDiagn: An Automated Real-time Diagnosis Framework for Big Data
Systems

symptoms regarding outliers in a big data system. After that, we develop a set

of query APIs to analyze the reasons that cause the outlier regarding a task.

• A comprehensive evaluation: We evaluate the feasibility, scalability and accuracy

of AutoDiagn through a set of real-world benchmarks over a real-world cloud

cluster.

The chapter is organized as follows. We discuss the related work in §4.2. The design

requirements and idea are outlined in §4.3. In §4.4, we illustrate the high-level system

architecture. §4.5 presents a case study that we implemented and the case study is

evaluated in §4.6. §4.7 discusses the limitations of this chapter and highlights our

further work. Before drawing a conclusion in §4.8.

4.2 Related Work

Much recent work in big data systems focuses on improving workflows [114–116], pro-

gramming framework [117–119], task scheduling [120–122].

Root-cause analysis. There is a large volume of published studies describing the role

of root-cause analysis. The authors of [15, 123, 124] take the next step of understand-

ing the reasons for performance reduction. Mantri [15] characterizes the prevalence of

stragglers in Hadoop systems as well as troubleshooting the cause of stragglers. Dean

and Barroso [123] analyze the issues causing tail latency in big data systems. Gar-

raghan et al. [113, 125] proposed a new method to identify long tail behavior in big

data systems and evaluated in google data trace. The authors in [126] use offline log

analysis methods to identify the root cause of outliers in a large-scale cluster consisting

of thousands of nodes by tracking the resource utilization. Similarly, Zhou et al. [127]

use a simple but efficient rule based method to identify the root cause of stragglers.

Along with these similar works, there are some researchers using statistical and ma-

chine learning methods for root-cause analysis. The authors of [28] introduce a Regres-

sion Neural Network (RNN) based algorithm to trouble-shoot the causes of stragglers

by processing Spark logs. More algorithms such as the associated tree and fuzzy data

envelopment analysis [128] and Reinforcement Learning [129] are applied for finding

the reasons of stragglers in Hadoop and Spark.

- 61 -

Chapter 4: AutoDiagn: An Automated Real-time Diagnosis Framework for Big Data
Systems

In [130], a Pearson coefficient of correlation is used for root cause analysis to measure

linear correlation between system metrics, workload and latency. However, these works

lack a systematic solution for root cause analysis for big data processing systems and

the proposed methods are not applicable for real-time systems.

Different to other work, the authors of [131] propose a new algorithm that aims to

reduce the proportion of straggler tasks in machine learning systems that use gradient-

descent-like algorithms. This work offers an idea to develop new Diagnosers for ma-

chine learning systems using our framework.

Anomaly detection and debugging. The authors in [132] propose a rule-based ap-

proach to identify anomalous behaviors in Hadoop ecosystems by analyzing the task

logs. This work only analyzes the task logs, which fails to capture the performance

reduction issues caused by inefficient utilizing the underlying resources. Next, Khous-

sainova et al. [133] build a historical log analysis system to study and track the MapRe-

duce jobs which cause performance reduction based on their relevance, precision and

generality principles. However, this cannot be performed for real-time anomaly detec-

tion. Du et al. [134] train a machine learning model from the normal condition data by

using Long Short-Term Memory (LSTM) and this trained model is used for detecting

in Hadoop and OpenStack environments. Our AutoDiagn provides infrastructure into

which the trained models can be plugged to enrich the applications.

Real-time operational data analytic system. Agelastos et al. [135] propose a moni-

toring system for HPC systems, which can capture the cases of applications competing

for shared resources. However, this system does not consider root-cause analysis of

the performance reduction. The authors of [14, 16] do not only provide the feature of

real-time monitoring, but are also able to identify the performance issues and trouble-

shoot the cause of the issues. In addition to them, [136] uses a type of artificial neural

network called autoencoder for anomaly detection. They first monitor the system in

real-time and collect the normal data for training the model used to discern between

normal and abnormal conditions in an online fashion. However, these systems are

developed for HPC clusters and are not suitable for big data systems.

- 62 -

Chapter 4: AutoDiagn: An Automated Real-time Diagnosis Framework for Big Data
Systems

4.3 Requirements and design idea

In this section, we analyze the key requirements of the real-time big data diagnosis

system, extracting the essential features from the literature. Next, we present the key

idea of the framework design.

4.3.1 Fundamental prerequisite for diagnosing big data pro-
cessing systems

In order to design a generic framework for diagnosing big data processing systems, we

classified the fundamental requirements of building a diagnosis system on such systems

as follows:

• Infrastructure monitoring: Collecting the information about the underlying sys-

tem, such as network conditions, CPU utilization, memory utilization, and disk

I/O status.

• Task execution monitoring: Collecting the task information, including execution

time, progress, location, location of its input data, input data size, output data

size, CPU/memory usage, and process state (running, waiting, succeeded, failed,

killed).

• Abnormal behavior or fault detection: Detecting abnormal behaviors in big data

processing systems, such as slowing tasks, failed tasks, very high/low resource

usage, and experiencing very high response time for the requests.

• Root-cause analysis: Finding the root cause of performance reduction in big data

processing systems, such as the reasons why: tasks are slowing down, resource

utilization is low, the response time is high, or when the network latency is high.

• Visualization: Visualizing the collected metrics and the results of root-cause

analysis of any failures causing performance reduction in the cluster with a user-

friendly interface in real-time.

- 63 -

Chapter 4: AutoDiagn: An Automated Real-time Diagnosis Framework for Big Data
Systems

4.3.2 Key design idea

Motivated by the above-mentioned requirements and inspired by medical diagnosis, we

highlight the design idea of root-cause analysis for big data processing systems as shown

Fig. 4.1, which aims to provide holistic monitoring and root cause analysis for big

data processing systems. First, a set of Symptom Detectors is defined and developed

in Symptom Detection to detect the abnormalities of the big system by processing

collected system information stream in real-time. Once a symptom (abnormality) is

detected, the Diagnosis Management may launch the corresponding Diagnosers to

troubleshoot the cause of the symptom. One symptom may correspond to root causes.

Finally, the decisions are made based on the root-cause analysis results.

4.3.3 The generalizability of AutoDiagn

Modern big data processing systems consists of two main types: Big data analytics

(e.g., Hadoop, Spark) and Stream processing (e.g., Flink, Spark Stream). Based on our

design idea, our AutoDiagn is an independent framework that can be deployed along-

side existing big data cluster management systems (e.g., Apache YARN), and ideally

it is suitable for root-cause analysis of any big data processing system. However, for

the scope of this chapter and practical certainty, the implementation of AutoDiagn fo-

cuses on debugging root causes of performance degradation (e.g., slow task execution

time) in Hadoop due to faults such as data locality, cluster hardware heterogeneity,

and network problems (e.g., disconnection). Although we have validated the func-

tionality of AutoDiagn in the context of Hadoop and considering different classes of

workload (e.g., WordCount, Grep, TPC-H, TPC-DC, K-means clustering, PageRank),

it is generalizable to other big data processing systems executing similar classes of

workload.

- 64 -

Chapter 4: AutoDiagn: An Automated Real-time Diagnosis Framework for Big Data
Systems

Symptom Detection Diagnosis Management Decision Making

Symptoms
(N)

Root-cause 1

•

•

•

•

•

•

Root-cause 2

Root-cause M

•

•

•

Root-cause 3

Diagnosis
(M)

Root-cause 4

Symptom
Detector 2

Symptom
Detector N

Symptom
Detector 1

Diagnoser 1

Diagnoser 2

Diagnoser 3

Diagnoser 4

Diagnoser M

Decision 1

Decision 2

•

•

•

Decision N
Root-cause M-1Diagnoser M-1

Metrics

Figure 4.1: The key design idea of root-cause analysis for big data processing systems

4.4 AutoDiagn Architecture

Following the design idea laid out in §4.3, we introduce AutoDiagn, a novel big data

diagnosing system. We first illustrate the high-level system architecture and then

describe the details of each component. AutoDiagn is implemented in Java and all

source code is open-source on GitHub3.

4.4.1 Architecture overview

AutoDiagn provides a systematic solution that automatically monitors the perfor-

mance of big data systems while troubleshooting the issues that cause performance

reduction. Fig. 4.2 shows its two main components: AutoDiagn Monitoring and Au-

toDiagn Diagnosing. AutoDiagn Monitoring collects the defined metrics (logs) and

feeds AutoDiagn Diagnosing with them in real-time. Once the abnormal symptoms

are detected by analyzing the collected metrics, a deeper analysis is conducted to

troubleshoot the cause of abnormal symptoms.

AutoDiagn Monitoring. AutoDiagn Monitoring is a decentralized real-time stream

processing system that collects comprehensive system information from the big data

system (e.g., Hadoop Cluster). The Collected Metrics is a set of pre-defined monitoring

3https://github.com/umitdemirbaga/AutoDiagn

- 65 -

https://github.com/umitdemirbaga/AutoDiagn

Chapter 4: AutoDiagn: An Automated Real-time Diagnosis Framework for Big Data
Systems

AutoDiagn Diagnosing

Diagnoser Plugins

Diagnoser 1

Task

Input

Output

…

Diagnoser N

Task

Input

Output

A
u

to
D

ia
gn

M
o

n
it

o
ri

n
g

Symptom
Detection

Engine

Diagnosis
decisions

Collected
metrics

Detected
Symptoms

Root-causes of the symptoms

Diagnoser
Manager

Figure 4.2: The high-level architecture of the AutoDiagn system

entities (e.g., CPU usage, memory usage, task location, task status) used to detect the

abnormal symptoms. Moreover, the system information, required for understanding

the cause of detected abnormal symptoms, is collected in this modular.

AutoDiagn Diagnosing. AutoDiagn Diagnosing is an event based diagnosing system.

First, the carefully crafted metrics are injected into the Symptom Detection Engine, a

real-time stream processing module, to detect the abnormal symptoms in a big data

system. In this chapter, we use the outlier, a common symptom for performance re-

duction in a Hadoop cluster, as a case study to demonstrate the proposed framework.

§4.5.1 illustrates the details of technology that we developed for symptom detection.

Moreover, our system follows the principle of modular programming; the new symp-

tom detection method can be easily plugged in. Diagnoser Plugins is a component

for trouble-shooting the reasons behind the detected symptom. A set of Diagnosers

is instantiated by the Diagnoser Manager when their corresponding symptoms are

detected. Then the instantiated Diagnosers query a time series database to obtain the

required input and their outputs illustrate the cause of the detected symptoms.

- 66 -

Chapter 4: AutoDiagn: An Automated Real-time Diagnosis Framework for Big Data
Systems

Computer Cluster

Master Node

PublisherFilter

Collector Agent

Task
Information

…

Message
Broker

AutoDiagn
Diagnosing

Management Node

User
Visualization Storage

Consumer

Consumer

Worker Node 1

Publisher

CollectorA
ge

n
t

Resource
Information

…Task 1 Task N

Worker Node 2

Publisher

CollectorA
ge

n
t

Resource
Information

…Task 1 Task N

Worker Node N

Publisher

CollectorA
ge

n
t

Resource
Information

…Task 1 Task N

Resource
Information

Figure 4.3: The high-level architecture of the monitoring framework

4.4.2 AutoDiagn monitoring framework

AutoDiagn monitoring framework is a holistic solution for continuous information col-

lection in a big data cluster. The framework needs to have a fast, flexible and dynamic

pipeline to transfer the collected data as well as a high performance, large scale storage

system. We now describe an implementation of the framework for a big data computer

cluster, and the high-level system architecture is shown in Fig. 4.3.

Information Collection. In each compute node, we develop and deploy an Agent to

collect real-time system information. For the worker node, the Agent collects the usage

of computing resource via SIGAR APIs4, including CPU, memory, network bandwidth,

and disk read/write speeds. Moreover, the Agent in the master node collects the

usage of computing resource as well as the job and tasks information. The Filter is

developed by using Gson Library5 to remove the less important information obtained

4https://github.com/hyperic/sigar
5https://github.com/google/gson

- 67 -

https://github.com/hyperic/sigar
https://github.com/google/gson

Chapter 4: AutoDiagn: An Automated Real-time Diagnosis Framework for Big Data
Systems

from ResourceManager REST API’s6, thereby reducing the size of data transmission.

The collected information is sent to RabbitMQ7 cluster which is a lightweight and

easy-to-deploy messaging system in each time interval via Publisher.

Storage. The acquired information is time series data, we therefore choose InfluxDB8

for data storage. InfluxDB is a high performance, scalable and open source time

series database which provides a set of flexible open APIs for real-time analytics. The

Consumer subscribes the related stream topics from RabbitMQ and interacts with

InfluxDB APIs to inject the information to the database.

Interacting with AutoDiagn Diagnosing. The information required for symptom de-

tection is directly forwarded and processed in AutoDiagn diagnosing via a consumer.

If a symptom is detected, InfluxDB will be queried by AutoDiagn diagnosing for root-

cause analysis. Finally, the analysis results are sent back to the database to be stored.

User Visualization. The user visualization allows the users to have a visible way to

monitor their big data system. We utilize InfluxDB’s client libraries and develop a set

of RESTful APIs to allow the users to query various information, including resource

utilization, job and task status, as well as root cause of performance reduction.

4.4.3 AutoDiagn diagnosing framework

In this section, we discuss the core components of the AutoDiagn Diagnosing frame-

work (see Fig. 4.2), as well as the interactions with each other and the AutoDiagn

Monitoring framework.

Symptom Detection Engine. The symptom detection engine subscribes a set of metrics

from the real-time streaming system. §4.5.1 illustrates the technique that we developed

for outlier detection. This component follows microservices architecture to which new

symptom detection techniques can be directly attached to our AutoDiagn, interacting

with other existing techniques to detect new symptoms.

Diagnoser Manager. The diagnoser manager is the core entity responsible for se-

lecting the right diagnosers to find the reasons that cause the detected symptoms.

6https://hadoop.apache.org/docs/r3.2.1/hadoop-yarn
7https://www.rabbitmq.com/
8https://www.influxdata.com/

- 68 -

https://hadoop.apache.org/docs/r3.2.1/hadoop-yarn
https://www.rabbitmq.com/
https://www.influxdata.com/

Chapter 4: AutoDiagn: An Automated Real-time Diagnosis Framework for Big Data
Systems

Additionally, the diagnoser manager is developed as a front-end component, triggered

by various detected symptoms (events) via a RESTful API, exposing all diagnosing

actions within our framework. The API includes general actions such as starting, stop-

ping or loading a diagnoser dynamically, and specific actions such as retrieving some

metrics. Importantly, the diagnoser manager is able to compose a set of diagnosers to

complete the diagnosing jobs that may require the cooperation of different diagnosers.

Diagnoser Plugins. The diagnoser plugin contains a set of diagnosers; and a diagnoser

is the implementation of the specific logic to perform root-cause analysis of a symptom.

Each diagnoser refers to a set of metrics stored in a time series database as the input of

its analysis logic. Whenever it is activated by the diagnoser manager, it will perform

an analysis, querying the respective metrics, executing the analytic algorithm, and

storing the results. §4.5.2 discusses the algorithms to detect the outlier problems, for

example, in a Hadoop cluster. The diagnoser plugin is also designed as a microservice

architecture which has two advantages: i) a new diagnoser can be conveniently plugged

or unplugged on-the-fly without affecting other components; ii) new root-cause analysis

tasks can be composed by a set of diagnosers via RESTful APIs.

4.4.4 AutoDiagn diagnosing interfaces for Hadoop

AutoDiagn exposes a set of simple interfaces for system monitoring, symptom detec-

tion and root-cause analysis. Table 4.1 shows that two types of APIs are defined:

high-level APIs and low-level APIs. The high-level APIs consist of Symptom Detec-

tion, Diagnoser and Decision Making. The Symptom Detection APIs are a set of

real-time stream processing functions used to detect the defined symptoms causing the

performance reduction in the Hadoop system. Each Diagnoser is a query or a set of

queries, which aim to find one of the causes of a symptom. For example, QueryNon-

Local() tries to find all non-local tasks within a time interval, which is one of the

reasons that causes an outlier. Finally, the Decision Making APIs are used to ana-

lyze the results from each Diagnoser and make the conclusion. These high-level APIs

have to interact with the low-level APIs (Information Collection) to obtain system

information including resource usage, and the execution information of the big data

system (e.g., ask and job status in a Hadoop system). Based on this flexible design,

- 69 -

Chapter 4: AutoDiagn: An Automated Real-time Diagnosis Framework for Big Data
Systems

users can define and develop their own Symptom Detection, Diagnoser and Decision

Making APIs and plug them into AutoDiagn.

4.4.5 Example applications

We now discuss several examples for big data system root cause applications using

AutoDiagn API.

Outliers. Outliers are the tasks that take longer to finish than other similar tasks,

which may prevent the subsequent tasks from making progress. To detect these tasks,

the real-time stream query QueryOutlier() is enabled in the Symptom Detection

Engine. This function consumes each task’s completion rate (i.e., progress) and the

executed time to identify the outlier tasks (detailed in §4.5.1). Next, three APIs

QueryNonlocal(), QueryLessResource() and QueryNodeHealth(), corre-

sponding to three Diagnosers that are used to analyze the reasons causing the de-

tected symptom, are executed. QueryNonlocal() queries whether the input data

is allocated on the node on which an outlier task is processed. In addition, Query-

LessResource() investigates whether outlier tasks are running on the nodes that

have less available resource. Moreover, QueryNodeHealth() examines if an outlier

task had to be restarted due to the disconnected nodes from the network. Finally,

RootcauseOutlier() is used to process the results from the three Diagnosers and

make the conclusion. All the APIs are shown in Table 4.1 and the technical details

are illustrated in §4.5.

Inefficient resource utilization. In our case this means that some tasks are pending

(or waiting) to be on worker nodes; at the same time, some worker nodes are idle,

e.g., low CPU and memory usage. There are many reasons that cause this issue,

but here we consider two key causes: task heterogeneity and resource heterogeneity.

The type of tasks in a big data system are various, including CPU intensive tasks,

IO intensive tasks and memory intensive tasks. However, the underlying computing

resources are typically equally distributed to these tasks, thereby causing inefficient

resource utilization. The latter is caused by the heterogeneous underlying computing

resources due to the multiple concurrent processing task environments and the queues

are built on the saturated nodes.

- 70 -

Chapter 4: AutoDiagn: An Automated Real-time Diagnosis Framework for Big Data
Systems

Table 4.1: AutoDiagn diagnosing interface. See §4.4.4 for definitions and examples

Symptom Detection
(High-level APIs)

Description

QueryOutlier() Execute a Query that returns the list of outliers if any.

QueryResourceUtil() Execute a Query that returns the list of the worker nodes in
which the computing resources are not utilized
effectively if any.

Diagnoser
(High-level APIs)

Description

QueryNonLocal() Execute a Query that return the list of non-local tasks if any.

QueryLessResource() Execute a Query that returns false if the cluster is not homoge-
neous in terms of having resource capacity (CPU/memory).

QueryNodeHealth() Execute a Query that returns the list of disconnected worker
nodes in the cluster if any.

QueryOversubscribed() Execute a Query that returns the list of the oversubscribed
tasks if any.

QueryDiskIOboundTasks() Execute a Query that returns the list of the disk- or IO-
bound tasks if any.

Decision Making
(High-level APIs)

Description

RootcauseOutlier() Execute a Query that illustrate the main reason of the cause of
the outlier.

RootcauseResInef() Execute a Query that illustrate the main reason of the cause of
inefficient resource utilization.

Information Collection
(Low-level APIs)

Description

taskExecTime() Return the execution time since the task started in sec.

taskProgress() Return the progress of the running task as a percentage.

taskInput() Return the input data size of the running task in mb.

taskBlock() Return the block id this task process.

taskHost() Return the name of the node this task ran on.
taskCPUusage() Return the CPU usage of the task.
taskMemoryUsage() Return the memory usage of the task.
taskContainerCPU() Return the allocated CPU to the container this task ran on.
taskContainerMemory() Return the allocated memory to the container this task ran

on.
blockHost() Return the names of the nodes that host the block.
pendingTasks() Return the number of the tasks waiting to be run.
nodeTotalCoreNum() Return the number of the CPU core number of the node.

nodeCPUUsage() Return the CPU utilization of the node.

nodeTotalMem() Return the total memory capacity of the node.

restartedTasks() Return the name of the restarted tasks due to nodes that
got disconnected from the network.

nodeMemUsage() Return the memory utilization of the node.

nodeDiskReadSpeed() Return the disk read speed of the node.

nodeDiskWriteSpeed() Return the disk write speed of the node.

nodeUploadSpeed() Return the network upload speed of the node.

nodeDownloadSpeed() Return the network download speed of the node.

- 71 -

Chapter 4: AutoDiagn: An Automated Real-time Diagnosis Framework for Big Data
Systems

To detect the inefficient resource utilization in a big data system, the real-time stream

query QueryResourceUtil() is used within a defined time interval. We compute

the mean and standard deviation of the usage resources of the whole cluster. If the

standard deviation is far from the mean, we will further query whether the tasks are

queued on the nodes which have high resource usage rates. If inefficient resource

utilization is detected, two Diagnosers, QueryOversubscribed() and Query-

DiskIOboundTasks(), which are the root-cause analysis APIs shown in Table 4.1,

are executed to perform root-cause analysis. QueryOversubscribed() checks the

type of tasks queuing on the saturated nodes. The QueryDiskIOboundTasks()

checks whether the saturated nodes have less available computing resource, while pro-

cessing the allocated tasks. The conclusion of the cause of inefficient resource utiliza-

tion is made in RootcauseResInef().

4.4.6 Parallel Execution

Following the key design idea, the diagnosers are triggered by the corresponding de-

tected symptom. However, we are able to parallelize the execution of each symptom

detector and its diagnosers by partitioning the input data. For example, if one symp-

tom detector needs to process too many data streams, we can use two of the same

instances of the symptom detector to process the data streams and aggregate the re-

sults from two symptom detectors. The diagnoser can follow the same strategy for

parallel execution.

4.4.7 Reliability analysis

AutoDiagn follows the centralized design for data collection, which simplifies the im-

plementation of the Symptom Detection, Diagnosis Management and Decision Making.

They can easily obtain the required information from one place, instead of interact-

ing with the entire big data system. Moreover, the centralized design does not mean

unreliability, due to the high-availability of RabbitMQ. The RabbitMQ cluster can

overcome the node fail in the message queuing system while ensuring scalability.

- 72 -

Chapter 4: AutoDiagn: An Automated Real-time Diagnosis Framework for Big Data
Systems

4.5 Case Study

In the previous section, we have discussed that our framework supports detection of

multiple types of symptoms (e.g., outliers, inefficient resource utilization). However,

detecting these symptoms is non-trivial; and each symptom can be detected by using

different algorithms with different input metrics. In this section, we present a case

study that details the technology of detecting outliers and the root-causes analysis for

the detected outliers. The notations used in this section are summarized in Table 5.2.

4.5.1 Symptom detection for outliers

Ananthanarayanan et al. [15] defined the outlier tasks’ run-time to be 1.5 times higher

than that of the median task execution time; their method is based on the assumption

that all tasks are started at the same time and are the same type (i.e., the same input

data and the same processing code), which is not suitable for real-time symptom

detection, because in a time interval the tasks may be submitted at different times;

the input data size of the tasks and the code for tasks are not always the same. In

this section, we use Performance (P) to measure the outlier as shown in Eq 4.1. O

represents the normalized value of the task progress in terms of percent work complete,

and T is the normalized value of the task execution time.

P =
O
T

(4.1)

Eq 4.2 is used to normalize the O and T , where xmin and xmax are the minimal and

maximal values of the given metrics (e.g., task progress and execution time) in a time

interval. We set b = 1 and a = 0.1 to restrict the normalized values within the range

from 0.1 to 1 [137].

xnorm = a +
(x− xmin)(b− a)

xmax − xmin

(4.2)

Moreover, we define the outlier tasks which have 1.5 times less performance value than

the median performance value in each time interval. Fig. 4.4 shows a snapshot of a

- 73 -

Chapter 4: AutoDiagn: An Automated Real-time Diagnosis Framework for Big Data
Systems

Table 4.2: A summary of symbols used in this section

Symbols Description

Jp Job progress

N Name of the task

Nl List of N
P Performance of the N
Pl List of P
O Progress of the N
Ol List of O
T Execution time of the N
Tl List of T
med The performance of median task

D Non-local tasks

Dl List of Non-local task

R Task running on the node with less resources

Rl List of R
W Restarted tasks due to the nodes’ network failure

Wl List of W
Sl List of outlier task

Sd Non-local outlier

Sdl List of Sd

Sr Outlier stemming from the resource variation

Srl List of Sr

Sw Outlier stemming from disconnected nodes

Swl List of Sw

F Factor value of 1.5 used to find the S

- 74 -

Chapter 4: AutoDiagn: An Automated Real-time Diagnosis Framework for Big Data
Systems

Progress (%)Execution time (sec)

 0

 1

 2
Outliers

Median=1.11

Performance levels

 30 35 40 45 50 55 60 65 14 16 18 20 22 24 26 28 30 32

Pe
rf

or
m

an
ce

 0.2
 0.4
 0.6
 0.8
 1
 1.2
 1.4

Figure 4.4: Performance evaluation of the tasks

time interval (e.g., three seconds), and two mappers are identified as outliers. More

evaluations will be discussed in §4.6.

Algorithm 2 demonstrates the proposed ASD (automated symptom detection) algo-

rithm in the AutoDiagn system. It is fed by the streaming data provided by the

AutoDiagn Monitoring system during job execution. First, the performance of each

running task is calculated (see Algorithm 2, Line 11) using Eq 4.1. Next, the me-

dian value of the performance of all tasks is taken to be used to detect outliers (see

Algorithm 2, Line 16). Then, the tasks whose performance is 1.5 times less than the

performance of the median task are selected as outliers (see Algorithm 2, Line 20).

As a final step, these tasks detected as outliers are sent to the Diagnosis Generation

component for root-cause analysis (see Algorithm 2, Line 24).

4.5.2 Root cause analysis for outliers

When the detected symptoms are passed to the Diagnoser Manager, the corresponding

Diagnosers are executed for trouble-shooting. The following subsection illustrates the

technologies that we have developed for analyzing the causes of outliers in a Hadoop

cluster.

- 75 -

Chapter 4: AutoDiagn: An Automated Real-time Diagnosis Framework for Big Data
Systems

Algorithm 2: Automated symptom detection for outliers

Input: Jp - job progress in percentage,

F - factor,

N - name of the running task,

Nl - list of N ,

O - progress of the task,

Ol - list of O,

T - execution time of the task,

Tl - list of T .

Output: Sl - list of outliers S.

1 // Create a list Sl to store the S
2 Sl ← Sl[0]

3 // Initialize the med

4 med ← med[0]

5 while Jp < 100.0 do

6 //Clear the Sl and Pl

7 Sl ← Clear (Snew
l , Sl)

8 Pl ← Clear (P new
l , Pl)

9 for each N in Nl do

10 //Compute P
11 P = O

T
12 //Insert the P into the Pl

13 Pl.add(P)

14 end

15 //Get the med from the Pl

16 med ← Median value of Pl

17 for each value of Pl do

18 if (P * F) < med then

19 //Insert the N into the Sl

20 Sl.add(N)

21 end

22 end

23 //Update the Sl in Diagnosis Generation component

24 Sl ← Update (Snew
l , Sl)

25 //Update the Nl, Ol, Tl, Jp

26 Nl ← Replace (Nnew
l , Nl)

27 Ol ← Replace (Onew
l , Ol)

28 Tl ← Replace (T new
l , Tl)

29 Jp ← Replace (Jnew
p , Jp)

30 end

- 76 -

Chapter 4: AutoDiagn: An Automated Real-time Diagnosis Framework for Big Data
Systems

4.5.2.1 Root cause of outliers

In this section, we follow the three main reasons that cause outliers, discussed in [15],

i.e., Data locality, Resource heterogeneity, and Network failures.

Data locality. Hadoop Distributed File System (HDFS) stores the data in a set of

machines. If a task is scheduled to a machine which does not store its input data,

moving data over the network may introduce some overheads to cause the outliers

issue.

Resource heterogeneity. The machines in a Hadoop cluster may be homogeneous

with the same hardware configuration, but the run-time computing resources are very

heterogeneous due to the multiple talents environment, multiple concurrent processing

task environment, machine failures, machine overloaded etc. If a task is scheduled

to a bad machine (e.g., has less computing resource) it may cause an outlier issue.

Moreover, resource management systems for a large-scale cluster like YARN split the

tasks over the nodes equally without considering the resource capacities of the nodes in

the cluster, but only takes into account sharing the node’s resources among the tasks

running on the node equally by default [138]. That is more likely to raise an outlier

problem in the cluster.

Network failure.

In Hadoop clusters, the network disconnection can cause the running tasks allocated

on a disconnected node to be restarted on other nodes, which may lead to the task

becoming an outlier, and increase the completion time. The following illustrates the

three algorithms that we developed to identify the outliers caused by the three reasons.

The following illustrates the three algorithms that we developed to identify the outliers

caused by the three reasons.

4.5.2.2 Detecting data locality issues

We assume that a non-local task (D) (e.g., mapper) is executed on a node where its

input data is not stored (In the following, we use Sd to represent non-local outliers).

To detect these tasks, we develop Algorithm 3 to check whether a set of outliers is

- 77 -

Chapter 4: AutoDiagn: An Automated Real-time Diagnosis Framework for Big Data
Systems

Algorithm 3: Root-cause analysis of outliers

Input: Sl - list of outliers in time interval from t to t + 1

Output: Sdl - list of non-local outliers Sd,

Srl - list of outliers stemming from resource variation Sr,

Swl - list of outliers stemming from disconnected nodes Sw.

1 // Find all D within the given time interval

2 Dl ← QueryNonLocal(t, t+1)

3 //Find the common elements in the Dl and Sl, and add them into the Sdl

4 Sdl ← RetainAll (Dl, Sl)

5 // Find all R within the given time interval

6 Rl ← QueryLessResource(t, t+1)

7 //Find the common elements in the Rl and Sl, and add them into the Sll

8 Srl ← RetainAll (Rl, Sl)

9 // Find all W within the given time interval

10 Wl ← QueryNodeHealth(t, t+1)

11 //Find the common elements in the Wl and Sl, and add them into the Swl

12 Swl ← RetainAll (Wl, Sl)

caused by a data locality issue. The input of our algorithm is a list of detected outliers

during the time interval from t to t+ 1 and one of its outputs is a list of outliers which

also belongs to the non-local tasks. First, we query our time series database to obtain

all non-local tasks within the given time interval (see Algorithm 3, Line 2).

Here, QueryNonLocal(), a root-cause analysis API, is used to find the non-local

ones among the running tasks in that period of time. It compares the location where

the task is running (host node of the task) with the nodes where the data block

is replicated for fault tolerance via information collection APIs shown in Table 4.1,

taskHost() and blockHost(). If the task is not running on any of these nodes

(nodes hosting a copy of the block), this task is marked as a non-local task. In the

second step (Algorithm 3, Line 4), we obtain the common elements of list Dl and Sl.

These elements symbolize the non-local outliers stemming from a data locality issue.

- 78 -

Chapter 4: AutoDiagn: An Automated Real-time Diagnosis Framework for Big Data
Systems

4.5.2.3 Detecting resource heterogeneity issues

Algorithm 3 is designed to identify the outliers caused by the resource heterogeneity.

The tasks running on the nodes which have less computing resource (R) tend to be

outliers [33] (in the following, we use Sr to represent outliers running on the nodes

which have less computing resource). In Algorithm 3, the list of detected outliers

during the time interval from t to t + 1 is used as input and one of the outputs of the

algorithm is a list of outliers which also belongs to the tasks running on the node with

less computing resource. The time series database is queried to obtain all the tasks

running on the node with less computing resource within the given time interval (see

Algorithm 3, Line 6).

Here, QueryLessResource(), a root-cause analysis API, is used to check the het-

erogeneity of the nodes that host only the running tasks based on the resource specifica-

tions of them in that period of time. It detects the nodes with less resource capacity in

terms of CPU core numbers and the total amount of memory among the nodes hosting

the running tasks. The resource specifications of the nodes (i.e., CPU core numbers,

total amount of memory) are obtained from each node via information collection APIs

shown in Table 4.1, nodeTotalCoreNum() and nodeTotalMem() APIs. As a

second step (Algorithm 3, Line 8), we obtain the common elements of list Rl and Sl.

These elements symbolize the outliers stemming from a cluster heterogeneity issue.

4.5.2.4 Detecting network failure issues

Since Sl is obtained from Algorithm 2, a Diagnoser is executed via QueryNode-

Health() to find all restarted tasks due to the nodes disconnected by network fail-

ure within the given time interval (see Algorithm 3, Line 10). The low-level API

restartedTasks() is called which distinguishes the restarted tasks due to network

failure from the speculation of straggler tasks by analyzing the information of the tasks

that is provided by the monitoring agent. Thereafter, we compute the list Swl that

contains the outlier tasks caused by the network failure (see Algorithm 3, Line 12).

- 79 -

Chapter 4: AutoDiagn: An Automated Real-time Diagnosis Framework for Big Data
Systems

4.5.2.5 Decision making

In this case study, we use a simple decision make method that compares the lists

Sdl, Srl and Swl and the probability of the reasons causing the outliers by using

the number of the elements of a list divided the total number of outlier tasks. For

instance, the probability of the performance reduction caused by data locality is |Sdl|
|Sl|

.

More advanced methods such as deep learning models can be used for processing more

complicated decision making tasks in future work.

4.6 Evaluation

In this section, we present a comprehensive evaluation showing the capacity and the

accuracy rate of AutoDiagn, as well as a analysis of its resource consumption and

overheads.

4.6.1 Experimental setup

Environments. We set up the Hadoop YARN clusters over 31 AWS nodes with 1

master and 30 slaves with the Operating system of each node being Ubuntu Server

18.04 LTS (HVM). The Hadoop version is 3.2.1 and the Hive version is 3.1.1. To meet

our experimental requirements, we built two types of cluster. In Type I each node has

the same configuration (i.e., 4 cores and 16 GB memory). In Type II, 25 nodes have

4 cores and 16 GB memory and 6 nodes have 2 cores and 4 GB memory.

Benchmarks and workload. We used four well-known Hadoop benchmarks in our

evaluations namely WordCount9, Grep10, TPC-H11, TPC-DS12, K-means clustering13,

and PageRank14. The input of each benchmark application is 30GB.

Methodology. Our experiments aim to evaluate the effectiveness of AutoDiagn. To this

end, we manually inject the above-mentioned three main reasons to cause the outliers,

9http://wiki.apache.org/hadoop/WordCount
10http://wiki.apache.org/hadoop/Grep
11http://www.tpc.org/tpch/
12http://www.tpc.org/tpcds/
13https://en.wikipedia.org/wiki/K-means clustering
14https://en.wikipedia.org/wiki/PageRank

- 80 -

http://wiki.apache.org/hadoop/WordCount
http://wiki.apache.org/hadoop/Grep
http://www.tpc.org/tpch/
http://www.tpc.org/tpcds/
https://en.wikipedia.org/wiki/K-means_clustering
https://en.wikipedia.org/wiki/PageRank

Chapter 4: AutoDiagn: An Automated Real-time Diagnosis Framework for Big Data
Systems

which can be summarized as four types of execution environment. Env A: we perform

all benchmark experiments in the cluster Type I. Env B: we perform all benchmark

experiments in the cluster Type I, but skew the input size stored on different nodes.

Env C: we perform all benchmark experiments in the cluster Type II (a heterogeneous

cluster). Env H: we perform all benchmark experiments in the cluster Type I, and

disconnect some nodes’ network during execution. Each benchmarking is repeated 5

times and results are reported as the average and standard deviation. In total, there

are 90 experiments conducted in our evaluation.

4.6.2 Diagnosis detection evaluation

In this section, we evaluate the accuracy of our symptom detection method. To this

end, we execute our benchmarks in Env B to increase number of Sd tasks (see §4.5.2.2).

Next, to increase the issue of resource heterogeneity (Sr referring to §4.5.2.3), we run

the benchmarks in Env C. Thereafter, we run the benchmarks in Env H to emulate the

network failure (Sw referring to §4.5.2.4). Finally, we compare the detected Outlier

tasks with the ground truths that are the data locality, resource heterogeneity, and

network failure issues observed by the AutoDiagn diagnosing system.

Table 4.3, Table 4.4, and Table 4.5 summarize all the results. All benchmarks achieve

high accuracy by using our proposal symptom detection method. The highest accuracy

for both Sd and Sr are 92.3%, and for Sw is 94.7% and the overall accuracy for outlier

detection is 91.3%, where the Error represents the variation of the accuracy depending

on the repeated experiments.

We compute the accuracy of our symptom detection method by using the number of

detected outlier tasks divided by the actual number of the tasks that can cause the

outlier issue. Table 4.3, for example, D is the total number of non-local tasks and

Outliers (Sd) is the number of detected outlier tasks that belong to non-local task.

Therefore, the accuracy is Sd
D . Table 4.4 and Table 4.5 follow the same approach to

compute the accuracy.

Outlier verification. To further verify the Sd , Sr , and Sw are the main reasons

causing the outliers, we conduct the following comparison experiments: 1) comparing

- 81 -

Chapter 4: AutoDiagn: An Automated Real-time Diagnosis Framework for Big Data
Systems

Table 4.3: The accuracy of symptom detection for non-local outliers in a homogeneous
cluster

Benchmark Total tasks D Outliers
(detected as Sd)

Accuracy
(%)

Error
(σ)

WordCount 234 32 29 90.63 3.9

Grep 236 37 33 89.19 4.8

TPC-H 102 13 12 92.31 6.72

TPC-DS 126 13 12 92.31 6.1

K-means 234 34 29 85.29 1.25

PageRank 235 28 25 89.29 6.2

Table 4.4: The accuracy of symptom detection for the outliers stemming from resource
variation in a heterogeneous cluster

Benchmark Total tasks R Outliers
(detected as Sr)

Accuracy
(%)

Error
(σ)

WordCount 234 37 33 89.19 2.77

Grep 236 26 24 92.31 4.77

TPC-H 102 9 8 88.89 5.47

TPC-DS 126 13 12 92.31 6.9

K-means 234 36 33 91.67 2.88

PageRank 235 30 28 93.33 5.35

the execution time of local tasks and non-local tasks; 2) comparing the execution time

of the tasks running in Env A and Env C; and 3) comparing the execution time of

normal tasks and restarted tasks due to network failure. Fig. 4.5(a) proves that non-

local tasks consume more time than local tasks due to the overload introduced by data

shuffling. Additionally, we compare the throughput of the local tasks and non-local

tasks in terms of how much data can be processed in each second. Fig. 4.6 reveals that

the throughput of non-local tasks is only 70% that of local tasks.

Moreover, Fig. 4.5(b) shows that the execution time of the tasks running on Env A

is less than that on Env C. This is because the tasks are equally distributed to all

computing nodes and the less powerful nodes are saturated. Furthermore, Fig. 4.8(a)

shows that the CPU usage of less powerful hosts reaches 100%, thereby building a

task queue in these hosts, increasing the overall execution time. However, Fig. 4.8(b)

- 82 -

Chapter 4: AutoDiagn: An Automated Real-time Diagnosis Framework for Big Data
Systems

Table 4.5: The accuracy of symptom detection for the outliers stemming from network
failures

Benchmark Total tasks W Outliers
(detected as Sw)

Accuracy
(%)

Error
(σ)

WordCount 234 11 10 90.91 1.83

Grep 236 13 12 92.31 6.73

TPC-H 102 13 12 92.31 6.54

TPC-DS 126 15 14 93.33 5.43

K-means 234 17 16 94.12 4.33

PageRank 235 19 18 94.74 4.23

reveals that the powerful hosts have sufficient computing resources for processing the

allocated tasks.

Furthermore, Fig. 4.5(c) shows that the execution time of the restarted tasks are longer

than the normal tasks. As Fig. 4.7 illustrates, we compute the execution time of the

restarted task by adding the execution time of the task in the disconnected node and

that in the rescheduled node.

4.6.3 Performance and overheads

Performance evaluation. We evaluate the performance of AutoDiagn by measuring

the end-to-end response time of symptom detection and root-cause analysis. Since

they are not affected by the types of benchmark, we report the average of the response

time. Fig. 4.9(a) shows that the real-time symptom detection can achieve a low re-

sponse time, which only has 96 milliseconds and 1059 milliseconds with 100 tasks and

1000 tasks, respectively. Although the response time increases linearly, the parallel

execution method discussed in §4.4.6 can be applied to reduce the latency. The re-

sponse time for root cause analysis is higher than that of symptom detection. For

100 tasks and 1000 tasks, their response times are 0.354 seconds and 5.974 seconds,

respectively. Unlike the symptom detection which is very sensitive to latency because

of the follow-up processes, triggering the further root-cause analysis or alerting the

system managers, Root-cause analysis aims to provide a holistic diagnosing of a big

system and the analysis results may help to improve the system performance in future.

- 83 -

Chapter 4: AutoDiagn: An Automated Real-time Diagnosis Framework for Big Data
Systems

 0

 5

 10

 15

 20

 25

 30

 35

 40

Word
Co

un
t

Gr
ep

TP
C-

H

TP
C-

DS

K-m
ea

ns

Pa
ge

Ra
nk

Ex
ec

ut
io

n
tim

e
(s

ec
)

Types of Benchmarking

Local tasks running on Env A
Non-local tasks (D) running on Env B

((a)) Local tasks vs Non-local tasks

 0

 5

 10

 15

 20

 25

 30

 35

 40

Word
Co

un
t

Gr
ep

TP
C-

H

TP
C-

DS

K-m
ea

ns

Pa
ge

Ra
nk

Ex
ec

ut
io

n
tim

e
(s

ec
)

Types of Benchmarking

Tasks running on Env A
Tasks (R) running on Env C

((b)) Homogeneous cluster vs Heterogeneous cluster

 0

 10

 20

 30

 40

 50

 60

Word
Co

un
t

Gr
ep

TP
C-

H

TP
C-

DS

K-m
ea

ns

Pa
ge

Ra
nk

Ex
ec

ut
io

n
tim

e
(s

ec
)

Types of Benchmarking

Tasks running on Env A
Tasks (W) running on Env H

((c)) Normal tasks vs Restarted tasks caused by net-
work failure

Figure 4.5: Comparison of execution time of the tasks

As a result, the real-time root-cause analysis is not compulsory.

System overheads. To evaluate the system overhead introduced by AutoDiagn, we

measure the CPU and memory usage of AutoDiagn Monitoring (agent) and Auto-

Diagn Diagnosing. Table 4.6 shows that -AutoDiagn Monitoring only consumes ap-

proximately 2.52% memory and 4.69% CPU; while -AutoDiagn Diagnosis uses 2.08%

memory and 3.49% CPU.

Fig 4.9(b) shows the network overhead of AutoDiagn. The extra communication cost

introduced by our tool is small but it increases when the number of parallel tasks

increases. For example, when the number of parallel task is 100, there are about 45

messages per second sent from agents to RabbitMQ cluster and the total size of these

- 84 -

Chapter 4: AutoDiagn: An Automated Real-time Diagnosis Framework for Big Data
Systems

 0

 1

 2

 3

 4

 5

 6

Word
Co

un
t

Gr
ep

TP
C-

H

TP
C-

DS

K-m
ea

ns

Pa
ge

Ra
nk

T
hr

ou
gh

pu
t

(M
B/

s)

Types of Benchmarking

Local tasks Non-local tasks

Figure 4.6: The throughput of AutoDiagn

 0

 20

 40

 60

 80

 100

0 5 10 15 20 25 30 35 40 45 50 55

Pr
og

re
ss

 (
%

)

Elapsed time (sec)

Figure 4.7: The life cycle of the restarted task

messages is 13.5 KB/s. The message rate and network overhead increase to 615 per

second and 223 KB/s, respectively, when the number of parallel tasks is 1000.

Table 4.6: Resource overhead caused by AutoDiagn components

Components Mem (%) CPU (%)

AutoDiagn Monitoring 2.52 4.69

AutoDiagn Diagnosing 2.08 3.49

Storage overheads. AutoDiagn needs to dump the system information to a database

which may consume extra storage resource. In our evaluation experiments, it only

cost 3.75 MB disk space in total. Obviously, increasing the types of symptom detection

and root cause analysis will also consume more storage resources.

- 85 -

Chapter 4: AutoDiagn: An Automated Real-time Diagnosis Framework for Big Data
Systems

 0

 20

 40

 60

 80

 100

CP
U

 u
sa

ge
 (

%
)

Timeline

CPU utilization Outliers

((a)) CPU utilization of less powerful hosts and outliers

 0

 20

 40

 60

 80

 100

CP
U

 u
sa

ge
 (

%
)

Timeline

CPU utilization

((b)) CPU utilization of high power hosts

Figure 4.8: CPU utilization of two nodes running simultaneously. Outliers are most
likely to occur in the nodes which have less computing resource.

4.7 Discussion and Future Work

In this chapter, we propose a general and flexible framework to uncover the perfor-

mance reduction issues in a big data system. In particular, we develop and evaluate

big data applications for outliers. AutoDiagn is able to detect the problems arising

from only network failures. The effects of bandwidth delays between nodes on job

completion time cannot be calculated as it requires an SDN-based monitoring system.

For this purpose, we propose a novel root-cause analysis techniques for cloud-based

big data systems using a well-validated simulator BigDataSDNSim [139].

- 86 -

Chapter 4: AutoDiagn: An Automated Real-time Diagnosis Framework for Big Data
Systems

 0

 1

 2

 3

 4

 5

 6

50 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Re
sp

on
se

 t
im

e
(s

ec
)

Number of tasks running in parallel

Symptom detection
Root-cause analysis

((a)) The end-to-end response time of AutoDiagn diagnosis system

 0

 100

 200

 300

 400

 500

 600

50 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

 0

 50

 100

 150

 200

 250

M
es

sa
ge

s
pe

r
se

co
nd

D
at

a
ra

te
 (

KB
/s

)
Number of tasks running in parallel

Message rates
Size (KB/s)

((b)) The message rates and network overhead

Figure 4.9: Performance evaluation and network overhead of AutoDiagn

4.8 Conclusion

In this chapter, we have presented AutoDiagn, a framework for enabling diagnosing of

large-scale distributed systems to ascertain the root cause of outliers, with the core pur-

pose of unravelling the concretization of complicated models for system management.

After making a comprehensive literature review and identifying the requirements for

real-world problems, we conceived its design. The combination of user-defined func-

tions powered by APIs and the agent-based monitoring system along with the findings

obtained from an empirical analysis of the experiments we conducted play a funda-

mental role in the development of the system. AutoDiagn can be applied to most big

data systems along with the monitoring systems. We have also presented the imple-

- 87 -

Chapter 4: AutoDiagn: An Automated Real-time Diagnosis Framework for Big Data
Systems

mentation and integration of the AutoDiagn system to the SmartMonit [36], real-time

big data monitoring system, combined in our production environment. In our imple-

mentation on a large cluster, we find AutoDiagn very effective and efficient.

Outliers are one of the main problems in big data systems that overwhelm the whole

system and reduce performance considerably. AutoDiagn embraces this problem to

reveal the bottlenecks alongside their root causes.

- 88 -

5
BigPerf: Probabilistic

Performance Diagnosis and
Prediction for Cloud-based Big

Data Systems

Contents
5.1 Introduction . 90

5.2 Related Work . 92

5.3 BigPerf: Bayesian Performance Diagnosis and Prediction for Cloud-
based Big Data Systems . 94

5.3.1 BNs for Big Data QoS Diagnosis and Prediction 96

5.4 Experiment and Results Analysis . 100

5.4.1 Experiments . 100

5.4.2 Performance Diagnosis . 104

5.4.3 Big Data QoS Prediction . 108

5.5 Conclusion . 109

- 89 -

Chapter 5: BigPerf: Probabilistic Performance Diagnosis and Prediction for
Cloud-based Big Data Systems

Summary

This chapter presents BigPerf, a novel Bayesian system for diagnosing and predict-

ing root causes of performance degradation and bottlenecks of Hadoop Applications.

BigPerf analyzes and characterizes the performance of Hadoop applications by incor-

porating Bayesian networks to determine uncertain and complex relationships while

dealing with noisy and missing data. Our extensive simulation studies validate Big-

Perf and show that it can efficiently diagnose the causes regarding the performance of

Hadoop Applications. We also show that BigPerf predicts systems performance with

high accuracy of approximately 94.04%.

5.1 Introduction

Big data systems such as Hadoop1 are typically deployed through modern virtualized

cloud computing platforms that process large-scale data in a parallel manner. Such

systems, composed of a network of hundreds of nodes, provide high reliability and high

fault tolerance under highly concurrent and stochastic application workloads using big

data programming model such as MapReduce [125].

MapReduce is a distributed programming model for processing large-scale datasets on

a cluster of commodity hardware [140]. It uses a master/slave architecture and dis-

tributes multiple tasks across the slave nodes to execute them in parallel. MapReduce

consists of two main steps, namely map and reduce. In the map step, the mappers read

the data, usually stored in Hadoop Distributed File System (HDFS), and processes it

based on a user-provided code; it then generates a set of intermediate key-value pairs

and temporarily transfers them to HDFS [141]. Once all the mappers finish process-

ing, the reduce phase starts to execute the reducers which take the above mentioned

key-value pairs as an input and produces the final output. The communication and

data traffic among these interacting software elements (mappers, reducers and HDFS),

input data volume, and infrastructure factors (hardware resource types and their pro-

cessing/storage power and dynamic network conditions) causes a complex challenges,

1https://hadoop.apache.org/

- 90 -

Chapter 5: BigPerf: Probabilistic Performance Diagnosis and Prediction for
Cloud-based Big Data Systems

such as task failures and/or application performance degradation [15], [142], [143].

Consequently, the task-structure complexity in such systems makes the problem of di-

agnosing and predicting root causes of performance degradation very challenging and

difficult.

To understand the problem in little more depth, let us consider an example to illustrate

what root-cause analysis (RCA) [144] means in the context of Hadoop applications. For

example, total job completion time in MapReduce-based Hadoop application depends

on several stochastic factors, such as network delay, processing power of the underly-

ing hardware resources (configuration of VM/container) (see Fig. 5.1). Therefore, the

core challenge is how to accurately model the relationship between these stochastic

factors and their complex interdependencies to clearly understand the issues related to

performance degradation (e.g., slow mappers/reducers and/or slow data transmission

between HDFS and mapper/reducer tasks and/or overall slow application response

time). While several past efforts have focus in developing optimal scheduling algo-

rithms for improving the overall makespan (execution times) of Hadoop applications,

limited approaches [145] [146] have considered the issue of understanding and analyz-

ing sub-optimal Hadoop application performance due to complex inter-play between

stochastic behaviours of underlying factors (e.g., hardware and network heterogeneity,

run-time network conditions).

Hence, in this chapter we want to investigate following research questions (RQ):

• (RQ1) How do we model complex dependencies between several factors for under-

taking RCA for diagnosing and predicting reasons for performance degradation?

• (RQ2) How do we validate the RCA technique over a realistic, large scale test

setup that can produce usable and non-biased performance degradation data sets

related to Hadoop Applications?

To the best of our knowledge, no prior work exists to answers the questions mentioned

above regarding building a comprehensive RCA technique for diagnosis and prediction

of performance issues by taking into consideration several, inter-dependent stochastic

factors. Motivated from this fact, and to solve the research questions mentioned above,

the contributions of this chapter are as follows:

- 91 -

Chapter 5: BigPerf: Probabilistic Performance Diagnosis and Prediction for
Cloud-based Big Data Systems

• To counter RQ1, we propose and develop a novel RCA technique/system called

BigPerf for big data systems2, incorporating Bayesian networks to model uncer-

tain and complex relationships between relevant factors, such as execution time

of each specific task (mapper and reducer), network transmission time between

these tasks, data block split time (HDFS to mapper, reducer to HDFS).

• To counter RQ2, we validate our RCA technique (BigPerf) using extensive and

well-validated simulator BigDataSDNSim [139]. Our experiments show that the

BigPerf can be used to perform a fine-grained RCA for the issues causing perfor-

mance degradation. We found that the accuracy of the proposed BigPerf system

to be approximately 94.04%. BigDataSDNSim has been rigorously validated and

evaluated against the performance of real-world Hadoop cluster test bed. The

validation against real test-bed assured us that BigDataSDNSim3 is capable of

accurately modeling and simulating Hadoop application execution environments.

The chapter is organized as follows. §5.2 discusses the related work. §5.3 presents

BigPerf. §5.4 discusses the experiment and results analysis. Finally, §5.5 presents the

conclusion.

5.2 Related Work

Since the Apache Hadoop ecosystem is the most comprehensive big data framework

and MapReduce is one of the most popular programming models, many authors have

worked on modelling their performance for efficient and optimal task scheduling. For

instance, Wang et al. [147] implement the locally weighted linear regression (LWLR)

and linear regression (LR) algorithms to create three types of prediction models based

on different characteristics to predict the execution time of large-scale data-driven

applications deployed on the Hadoop see whether the job can meet a deadline. Khan

et al. [145] propose a performance model to define the amount of resources needed for

Hadoop application completion within a certain deadline. The authors in [148] design

deep Bayesian networks called TraceAnomaly that captures the sequential behaviour

2This chapter considers the Apache Hadoop framework, an open source implementation of MapRe-
duce programming model.

3https://github.com/kalwasel/BigDataSDNSim

- 92 -

Chapter 5: BigPerf: Probabilistic Performance Diagnosis and Prediction for
Cloud-based Big Data Systems

of an application by leveraging the call paths information. However, it only focuses

on outlier detection for microservice environments and is not able to evaluate the

relationship between complex factors probabilistically. Lin et al. [146] analyze the

relationships among the Map and Reduce tasks to estimate the complexity of the

task execution. Furthermore, they estimate the task completion time based on the

monetary costs with the help of a performance model. The authors in [149] propose

an analytical model for predicting the response time of MapReduce applications that

focus on predicting delays in synchronization between map and reduce tasks. However,

their approach ignore the impact of configuration of computing resources (e.g., CPU

speed, memory size) and bandwidth capabilities on task completion time. Nonetheless,

these approaches can not take root cause analysis of performance degradation (e.g.,

slow mapper execution due to HDFS network issues).

Wang et al. [150] use a simulator called MRPerf to assess the impact of software

and hardware failures as well as inter-connect topologies and data locality issues on

the performance of MapReduce-based Hadoop Applications. However, they do not

analyze and model the relationship between the factors considered and their mutual

impact. Kambatla et al. [151] use the historical data of MapReduce jobs to predict the

performance while minimizing monetary deployment cost in public cloud computing

systems. They do so by only analyzing the Hadoop Application’s resource consumption

while ignoring inter-play between the hardware performance of computing resources,

hosting the Map and Reduce tasks, and network status. Hence, this approach is also

not suitable for undertaking RCA.

Kavulya et al. [152] use an instance-based learning technique to characterize pat-

terns for resource utilization and Map/Reduce tasks. They do so by analyzing the

historical traces of Hadoop Application execution. Ganapathi [153] predicts the per-

formance of Hadoop applications using machine learning techniques by correlating the

pre-execution properties of the workload with the performance metrics measured af-

ter execution, such as response time, resource usage. The authors in [154] propose

a machine learning-based approach to predict the performance of MapReduce tasks.

However, this work has some limitations on job performance estimation due to the

lack of formal mathematical models. Morton et al. [155] use the critical path method

- 93 -

Chapter 5: BigPerf: Probabilistic Performance Diagnosis and Prediction for
Cloud-based Big Data Systems

Table 5.1: The features supported by existing work and BigPerf

Features

Related
work

Task
performance
analysis

System
performance
analysis

Network
performance
analysis

Hidden/implicit
relations
analysis

Root-cause
analysis

[145] ✓ × × × ×

[146] ✓ ✓ ✓ × ×

[149] ✓ × × × ×

[150] ✓ ✓ ✓ × ×

[151] × ✓ × × ×

[152] ✓ ✓ ✓ × ×

[153] ✓ ✓ × × ×

[155] ✓ × × × ×

[37] ✓ ✓ ✓ × ✓

[154] ✓ ✓ ✓ × ×

BigPerf ✓ ✓ ✓ ✓ ✓

to predict the remaining time of a Map or Reduce task based on the execution time of

mappers. However, these approaches are not tailored towards undertaking root cause

analysis.

In our recent work, we [37] propose an automated fault diagnosis framework for Hadoop

application that can highlight the factors leading to slow execution time. However, our

approach is not capable of modeling the relationship between those stochastic factors.

Table 5.1 illustrates the differences and similarities of existing works as compared with

BigPerf.

5.3 BigPerf: Bayesian Performance Diagnosis and Pre-

diction for Cloud-based Big Data Systems

This section presents BigPerf – a Bayesian system for big data QoS diagnosis and

prediction. Bayesian networks (BNs) are probabilistic graphical models used to model

uncertain (often hidden) complex inter-dependencies between random variables for a

- 94 -

Chapter 5: BigPerf: Probabilistic Performance Diagnosis and Prediction for
Cloud-based Big Data Systems

HDFS

Data flow
(Splitting)

Mapper 1

VM 1

Mapper 1

VM 2

Data flow
(Shuffling)

Mapper 1

VM 4

Mapper 1

VM 5

Mapper
execution time

Reducer
execution time

METHTT MTT RET RTT BTT

Input

Block 1

Block 2

Block 3

Output 1

Output 2

Result

Data flow
(Merging)

Data flow
(Combining)

TT (Transaction Time)

Block 4

Mapper 1

Mapper 2

Mapper 1

VM 3

Mapper 3

Reducer 1

Reducer 2

Figure 5.1: End-to-end Transaction time of a task

system under consideration. BNs use a directed acyclic graph (DAG) to describe a set

of variables and their conditional relationships. BNs are ideal for taking an observed

event and estimating the likelihood that any of multiple known causes had a role.

BNs have been successfully used in a wide range of application domains ranging from

computer networks to medicine [156].

Fig. 5.1 depicts the life cycle of a MapReduce-based Hadoop Application workflow.

Although a MapReduce program basically executes in two stages, namely mapper

stage and reducer stage consisting of shuffle, sort and reduce, there are six different

stages from submitting the tasks to getting the final result. First, input data stored

in HDFS is split into a set of mapper tasks and processed by parsing the key/value

pair. The generated intermediate results are stored in HDFS. After that, the sorted

data is passed through a user-defined reduce function. Each reducer generates its own

results. Finally, all the results are combined and written to HDFS [157]. This whole

process consists of the time to distribute the input data to the mapper tasks, the time

for the mapper tasks to process the data to generate the intermediate data, the time

to distribute the intermediate data to the reducer tasks, the time for the reducer tasks

to generate the result, and the time to combine these produced results into a single

output.

- 95 -

Chapter 5: BigPerf: Probabilistic Performance Diagnosis and Prediction for
Cloud-based Big Data Systems

5.3.1 BNs for Big Data QoS Diagnosis and Prediction

We describe the steps to develop BNs for big data diagnostics and prediction systems

in this chapter. Fig. 5.2 illustrates our overall approach. First, the stakeholders gather

big data systems performance results via benchmarking studies or via simulators such

as BigDataSDNSim simulator [139]. After that, the benchmarked results are pre-

processed and stored in databases. Third, a BN is learned using the structural learning

algorithms, pre-processed data4, or the domain expert manually creates it using his/her

knowledge and experience. Fourth, the modelled BN is used for probabilistic diagnosis

by inserting evidence into the BN for determining the probability of a random variable

(or factor) taking a particular value. Lastly, this BN can be used for both diagnosis and

prediction by the stakeholders if diagnostic outcomes are deemed sufficient; otherwise,

the first three steps are repeated till the best BN is found.

We now discuss these steps in detail.

Simulating
and

Monitoring

Stakeholders

Big Data
Performance
Diagnosis and

Prediction

Data collection,
Pre-processing

and Storage

Bayesian
Network

Modelling

Figure 5.2: Approach for Big Data QoS diagnosis and prediction.

We consider BNs for big data performance analysis and prediction. We chose BNs as a

tool based on their numerous advantages over reasoning, neural networks and decision

trees, as indicated below [158]:

4https://github.com/umitdemirbaga/BigPerf

- 96 -

Chapter 5: BigPerf: Probabilistic Performance Diagnosis and Prediction for
Cloud-based Big Data Systems

• BNs can learn with scarce and sparse data.

• BNs can deal with several data types, for example, numerical, non-numerical,

binary, categorical, and ordinal, to name a few.

• BNs can incorporate domain or expert knowledge compared to neural networks,

decision trees, and linear and non-linear regression.

• Using conditional reasoning and hidden variables, BNs can uncover hidden inter-

dependencies that are impossible in other methods.

• BNs can be learned efficiently from data using structural learning algorithms. If

a BN structure is already developed, they can be learned through a well-known

expectation-maximization (EM) algorithm.

• BNs can be used efficiently in both real and non-real-time systems for prediction.

• BNs can easily be extended to Dynamic Bayesian networks (DBN) to respond

over time.

• BNs can be used with utility theory to make decisions under uncertainty.

We now illustrate how BNs can be used in modelling many variables to diagnose and

forecast a big data system output effectively. A BN can be defined as follows:

Definition: A Bayesian network (BN) is a directed acyclic graph (DAG) where random

variables form the nodes of a network. The directed links between nodes form causal

relationships. The direction of a link from X to Y means that X is the parent of Y. Any

entry in the network can be calculated using the joint probability distribution (JPD)

denoted as:

P (x1, ..., xm) =
m∏
i=1

P (xi|Parents(Xi)) (5.1)

where parent nodes Xi, is the parent of the node xi.

- 97 -

Chapter 5: BigPerf: Probabilistic Performance Diagnosis and Prediction for
Cloud-based Big Data Systems

Table 5.2: A summary of symbols used in this section

Symbols Description

MIPS Million instructions per second

HBW Bandwidth between HDFS and the VM which hosts mapper in Mbps

HTT Data transmission time between HDFS and the VM which hosts mapper
in milliseconds

MMIPS MIPS of the VM which hosts mapper

MET Mapper execution time in milliseconds

MBW Bandwidth between the VM which hosts mapper and the VM which hosts
reducer in Mbps

MTT Data transmission time between the VM which hosts mapper and the VM
which hosts reducer in milliseconds

RMIPS MIPS of the VM which hosts reducer

RET Reducer execution time in milliseconds

RBW Bandwidth between the VM which hosts reducer and the VM which hosts
output in Mbps

RTT Data transmission time between the VM which hosts reducer and the VM
which hosts output in milliseconds

BBW Bandwidth between the VM which hosts output and the VM which hosts
block in Mbps

BTT Data transmission time between the VM which hosts output and the VM
which hosts block in milliseconds

TT Transaction time in milliseconds (HTT + MET + MTT + RET + RTT
+ BTT)

BNs include a clear and thorough definition of the problem domain and a detailed ex-

planation of the causal ties between multiple nodes (random variables) [158]. Example

BNs for diagnosis and prediction of the performance of big data systems are shown in

Fig. 5.3. The notations given in the chapter are summarized in Table 5.2.

In these BNs, the oval nodes represent the random variables, which are modelled

together in order to probabilistically determine their impact on each other. In a

BN, an arc’s path from one node(s) to another node(s) is a parent-child relationship,

where the parent node is probabilistically explicitly influenced by the child node. In

Fig. 5.3(c), for instance, the arcs from the nodes RBW and BBW to RTT indicate

that these nodes are parents to the child node RTT ; and are used to determine the

effect of the RBW and the BBW on the RTT and vice versa.

- 98 -

Chapter 5: BigPerf: Probabilistic Performance Diagnosis and Prediction for
Cloud-based Big Data Systems

RBW

RMIPS

RTT

HBWHTT

MTT

MBW

MMIPS

MET

BBWBTT

RET

TT

((a)) Noisy-OR Network

RBW

RMIPS

RTT

HBWHTT

MTT

MBW

MMIPS

MET

BBWBTT

RET

TT

((b)) Näıve Bayes Network (NBN)

RBW

RMIPS

RTT

HBWHTT

MTT

MBW

MMIPS

MET

BBWBTT

RET

TT

((c)) Complex Bayesian Network

Figure 5.3: Bayesian Networks for Big Data QoS diagnosis and prediction

In several ways a BN can be created (see Fig. 5.3(a) to Fig. 5.3(c)) such as the Noisy-

Or Network, the Näıve Bayes Network, or a more complicated model (such as in Fig.

5.3(c)) Complex Bayesian Network where most nodes are interconnected based on

conditional relationships. Manual BN development can be challenging as it can be

difficult for the stakeholders/domain experts to identify causal dependencies between

the random variables. Consider nodes A and B to test the relationship between two

random variables. Suppose that the domain expert wants to determine the effect of

node A on node B, i.e., if the domain expert fixes the state (s ∈ S where S is a set of

states) of a node A, and if that does not change the belief of node B then, A is not a

cause of B [159].

A random variable (node) in a BN can be both continuous and discrete. Conditional

probability tables (CPTs) are defined for discrete nodes. Continuous probability dis-

- 99 -

Chapter 5: BigPerf: Probabilistic Performance Diagnosis and Prediction for
Cloud-based Big Data Systems

tributions (CPDs) are defined for continuous nodes. The CPTs are learned from data,

or the domain expert sets them manually based on their experience. When data is

available such as in our case, the stakeholders use structural learning algorithms such

as structural expectation maximization [159]. In this chapter, we show that even sim-

pler BNs can be efficiently applied to the modelling, diagnosis and prediction of the

performance of big data systems.

After a BN is created by learning algorithms or domain experts, it must be validated.

In order to verify accuracy and precision of a BN [159], cross validation is routinely

carried out. A portion of the testing data is to prepare the BN throughout the cross-

validation. The remaining data or test data are used for the predictive accuracy of

the model. The most commonly used expectation-maximization (EM) algorithm [159]

is considered for BN model parameter testing. After the BNs prediction accuracy

has been met, the stakeholders or domain experts can use these BNs in real world

applications.

5.4 Experiment and Results Analysis

In this section, we present the experimental results related to BigPerf. We validate Big-

Perf using GeNIe Bayesian Network development environment5. We obtained MapRe-

duce datasets that include map and reduce processing information and the data re-

garding networks among MapReduce elements (e.g., HDFS, mappers, and reducers)

using the BigDataSDNSim simulator[139].

5.4.1 Experiments

As mentioned previously, we used BigDataSDNSim [139] to simulate MapReduce appli-

cations that run in cloud datacenters. Through the simulator, we gathered fine-grained

performance-related data for the Hadoop system. BigDataSDNSim is rigorously vali-

dated and evaluated against real big data MapReduce applications that run in cloud

environments. To this end, a WordCount application was deployed on a Hadoop clus-

ter. The experiment was executed six times and the average processing and network

5https://www.bayesfusion.com/

- 100 -

Chapter 5: BigPerf: Probabilistic Performance Diagnosis and Prediction for
Cloud-based Big Data Systems

Table 5.3: Configuration for validating BigDataSDNSim

Configuration for each VM

Environment MIPS Number of
cores

Total number
of MIPS

Memory
size

Network
bandwidth

Real experiment 3592 4 14,368 4 GB 850 Mbps

BigDataSDNSim with α 3563 4 14,252 4 GB 1000 Mbps

BigDataSDNSim without α 3592 4 14,368 4 GB 1000 Mbps

Table 5.4: Configuration for validating MapReduce application

Environment
Total executed

MIPS
per mapper

Total executed

MIPS
per reducer

Number
of

mappers

Number
of

reducers

File size
(HDFS to
mappers)

Real experiment 296,939 100,576 2 1 272.7 MB

Simulated experiments 296,939 100,576 2 1 272.7 MB

transmission times were recorded. For the simulation, two different experiments were

carried out: BigDataSDNSim with α overhead and BigDataSDNSim without α over-

head. All the results obtained from the experiments were compared with each other.

Table 5.3 shows the configuration validation of the real and simulated experiments

while Table 5.4 shows the configuration parameters used in the validation for MapRe-

duce application in detail. As seen in Table 5.3, the bandwidth of the real experiment

is 850 Mbps while the bandwidth of the simulated experiments is 1000 Mbps. This

minor variance is acceptable as there are several constraints that prevent actual VMs

from reaching maximum network capacity, such as CPU speed, hard drive (I/O) speed,

and the size of RAM allotted to the MapReduce application.

The validation results assure that BigDataSDNSim efficiently mimics real environ-

ments, where the accuracy and correctness is validated against the real Hadoop sys-

tem combining MapReduce and different network types (including software-defined

networks) with an equivalent simulated environment. Additionally, BigDataSDNSim

obtains different large-scale datasets in a configurable fashion while avoiding the limita-

tions posed by real environments, such as the difficulties to obtain large-scale MapRe-

duce data under varying network and host conditions.

- 101 -

Chapter 5: BigPerf: Probabilistic Performance Diagnosis and Prediction for
Cloud-based Big Data Systems

M

R

M

R

M

R
M M M M M M M M M

NM NM NM NM NM NM NM NM NM NM NM NM

AM 1 AM N

Network ManagerResource ManagerHDFSAM Application Master

NM Node Manager

M Mapper

R Reducer

Core
switches (L4)

Aggregate
switches (L3)

Edge
switches (L2)

VMs (L1)

AM 2 …

Figure 5.4: Fat-tree topology used in the simulated use-case experiments.

Using BigDataSDNSim for running our experiments offered following clear benefits

over real testbed, that can be costly in terms of time and money:

• We were able to capture the performance data (e.g., HDFS network usage, HDFS

to mapper virtual machine data transfer delay, HDFS to reducer virtual machine

data transfer delay) at much finer granularity as compared to a real test-bed.

• We were able to model highly heterogeneous hardware and network configura-

tions.

• We were able to model highly complex MapReduce-based Hadoop application

workflows.

• The simulator offered us a simple, controlled and repeatable experimental envi-

ronment. The source code of the simulator can be found here10.

Simulation setup We simulated a large scale big data system, where our simulation

setup comprised 128 hosts, 256 virtual machines (VMs), and 20 network switches.

10https://github.com/kalwasel/BigDataSDNSim

- 102 -

Chapter 5: BigPerf: Probabilistic Performance Diagnosis and Prediction for
Cloud-based Big Data Systems

Table 5.5: Cloud Datacenter Configuration

HOST VM NETWORK

Specs Quantity Specs Quantity Link Bandwidth

CPUs 8 CPUs 4 HDFS <-> Edge switch 4 Gbps

RAM 30 GB RAM 8 GB Edge <-> Aggregate switches 1 Gbps

MIPS 10K MIPS 1250 Aggregate <-> Core switches 1 Gbps

Total Hosts 128 Total VMs 256 - -

Abbreviations: CPU, Central Processing Unit; VM, Virtual Machine.

Table 5.6: Applications Configuration for Cloud-based Big Data System

WORKLOAD TASK

Specs Quantity Specs Quantity

MIPS 450K-150K Mapper 256

NETWORK 455 GB Reducer 10

- - Block size 950 MB

While Table 5.5 presents the configuration used for simulations, Table 5.6 specifies the

configurations of the big data application. Our network design was based on a fat-tree

topology, as depicted in Fig. 5.4. The topology consisted of three layers of switches

(core, aggregate, and edge) and one layer of hosts where each host hosted several VMs

that run map and/or reduce tasks. As shown in the figure, a resource manager was

used to configure several MapReduce applications with different setup configurations

as required. The application master (AM) was used to control and manage every

requested MapReduce application separately. The node manager (NM) was used to

control a VM that resides on a host. An SDN controller controlled and managed the

network in real-time dynamically. Note that, BigDataSDNSim [139] uses a MIPS to

represent the processing speed of VMs.

Dataset. Using simulations, we gathered our big data benchmark dataset, which

contains a total of 2540 records. This study includes information for 13 benchmarks

shown in Table 5.7. Bandwidth refers to the amount of data that can be transferred

from source to destination within a given timeframe [160]. The HBW benchmark is

used to measure the bandwidth value, which affects the HTT. Similarly, the MBW

benchmark is used to measure the bandwidth value which affects the MTT while

- 103 -

Chapter 5: BigPerf: Probabilistic Performance Diagnosis and Prediction for
Cloud-based Big Data Systems

the RBW benchmark is used to measure the bandwidth value, which affects the RTT.

Moreover, the BBW benchmark is used to measure the bandwidth value, which affects

the BTT. The MIPS (million instructions per second) number is a measure used to

measure computer performance and indicates the amount of work processed per unit

of time, which is used for the MMIPS and the RMIPS values that affect the MET

and the RET respectively. Finally, the TT refers to the end-to-end completion time

required for each task to be completed. For example, the blue line in Fig. 5.1 shows

the (TT) for a specific task in the whole system. The dataset is publicly available on

GitHub6.

Table 5.7: Statistics related to all values present in the dataset

Benchmark Min. Max. Mean Std. Dev. Count

HBW (Mbps) 0 11.81 7.75799 4.56164 2540

HTT (ms) 0 355.03 199.259 136.779 2540

MMIPS 652289 949556 799991 91188.4 2540

MET (ms) 765.49 1478.93 119.98 201.854 2540

MBW (Mbps) 1.49 30 5.58806 7.79096 2540

MTT (ms) 2.49 50.52 31.4074 15.1864 2540

RMIPS 150000 563904 292648 152369 2540

RET (ms) 120 480 300 180.035 2540

RBW (Mbps) 3.8 150 38.462 57.3594 2540

RTT (ms) 6.33 250.14 145.363 96.2698 2540

BBW (Mbps) 0 50 7.96 14.0595 2540

BTT (ms) 0 270.02 218.016 104.125 2540

TT (ms) 1007.64 2864.22 2014.03 379.803 2540

5.4.2 Performance Diagnosis

We now discuss how BigPerf using BNs is used to probabilistically diagnose the per-

formance of a big data system. Fig. 5.5 shows the screenshot of proposed system

implemented in GeNIe platform.

6https://github.com/umitdemirbaga/BigPerf

- 104 -

Chapter 5: BigPerf: Probabilistic Performance Diagnosis and Prediction for
Cloud-based Big Data Systems

Figure 5.5: Screenshot of Bayesian Network implementation in GeNIe platform.

5.4.2.1 Transaction Time

Table 5.2, the transaction time (TT) describes the total job completion time. In this

case, we would like to diagnose what are the most important factors that influence TT.

We created a BN using a structural learning algorithm based on the data gathered

from simulation studies. Firstly, we discretized all the random variables listed in

Table 5.2 based on hierarchical clustering and manual fine-tuning to learn a BN. Upon

discretization, we discovered several BN structures and selected the one that provided

the best results in terms of diagnosis and prediction capabilities. Fig. 5.3 shows three

such BNs.

- 105 -

Chapter 5: BigPerf: Probabilistic Performance Diagnosis and Prediction for
Cloud-based Big Data Systems

Fig. 5.5 shows a complex BN (shown in Fig. 5.3(c))implemented in the GeNIe platform

[161]. As can be observed, several random variables affect each other in a complex and

stochastic manner and may have hidden relationships that may be hard to capture.

Our BN alleviates these challenges. In particular, our BN learned using structural

learning algorithm shows that HTT, MET, RTT, RMIPS and RBW directly affect TT.

Here HTT, MET, RTT, RMIPS, and RBW are the parents to a child node TT. These

nodes are linked to each other probabilistically, where the conditional probabilities are

learned directly through simulation data.

Table 5.8: QoS value states representation using hierarchal discretization for transac-
tion time (TT) in milliseconds

State Range Counts

1 0 to 1500 241

2 1500 to 1800 527

3 1800 to 2100 668

4 2100 to 2300 504

5 greater than 2300 600

To diagnose how these factors affect each other and in turn how they affect TT, we

performed reasoning using our BN. Reasoning is performed by providing evidence by

the stakeholders in the form of degree of belief (by varying probabilities) regarding a

particular state of a random variable. For instance, if we would like to diagnose the

conditions for the best-case scenario where the TT is less than 1500 ms (see Table

5.8), we can enter the evidence of 100% for state TT below 1500 ms to determine the

states or other random variables (see Table 5.8). For instance, we diagnosed that for

the TT to be below 100 ms, RMIPS should be below 240000 with 100% probability;

further, we should have a very good HTT (i.e., it should be below 200 ms as shown

by 88% probability). So from this analysis, we determine that RMIPS and HTT have

significant impacts on the performance of TT such that we need both high capacity

CPUs and very good network conditions to have the best TT. As can be noted, our

BN gives the ability to provide evidence to any state of any random variable in the

BN to draw a large number of conclusions intuitively.

Let us consider the worst-case scenario where we enter the evidence as ”TT above 2300

ms” with 100% probability. We then perform the inference; upon which we note that

- 106 -

Chapter 5: BigPerf: Probabilistic Performance Diagnosis and Prediction for
Cloud-based Big Data Systems

RMIPS should be between 400000 and 500000 with 41% probability; further, we should

have poor RBW and it should be below 25 Mbps as showed by 100% probability. In

addition, we should have high RTT (i.e., it should above 230 ms with 55% probability).

So from this analysis, we determine that we need an excellent network conditions for

excellent TT performance of the MapReduce applications.

5.4.2.2 Mapper Performance Diagnosis

To further validate BigPerf, we studied the most important factor(s) that affect the

mapper performance. We used hierarchical discretisation method with manual fine

tuning to discretize the MET values as shown in Table 5.9.

Table 5.9: QoS value states representation using hierarchal discretization for mapper
execution time (MET) in milliseconds

State Range Counts

1 0 to 900 516

2 900 to 1150 855

3 1150 to 1350 604

4 greater than 1350 565

For diagnosing MET, we studied the impact of all the random variables on it. In

particular, we entered evidences in our BN using various combinations of random

variables. However, we found out that the CPU is the most dominant factor i.e., when

we provided the evidence in MMIPS for the range below 700000 with 100% probability,

we found that MET would be below 900 ms with 100% probability which is the best

case scenario. The rest of the factors did not influence MET evidenced by uniform

probability distribution of the states belonging to these random variable.

5.4.2.3 Reducer Performance Diagnosis

We used hierarchical discretisation method with manual fine tuning to discretize the

QoS values. In all, we created two states for this dataset as shown in Table 5.10.

We studied the most important factor(s) that affect the reducer performance. In

particular, we studied the impact of all the random variables on RET. For diagnosing

RET, we entered evidences in our BN using various combinations of random variables.

- 107 -

Chapter 5: BigPerf: Probabilistic Performance Diagnosis and Prediction for
Cloud-based Big Data Systems

Table 5.10: QoS value states representation using hierarchal discretization for reducer
execution time (RET) in milliseconds

State Range Counts

1 0 to 300 1270

2 greater than 300 1270

We started by selecting the RBW below 25 and we found the performance of RBW

to be reasonably predictable where there was 60% chance that the values will lie in

the range between 230 and up. We, then, selected RBW between 25 and 100 and we

found that most of the RBW lie in the range of below 75 Mbps. (state 1) with the

probability of 65%. Finally, we studied the performance of RBW between 100 Mbps

and up and we found that most of the RBW lie in the range of below 75 Mbps (46%

probability) lie in the range of 35 and 65 (state 1).

We selected RET below 300 ms and we found that all of the RMIPS (100% probability)

lie in the range of below 24000 (state 1, see Table 5.11). From this analysis, we diagnose

that most important factor(s) that affect the reducer performance is CPU.

Table 5.11: QoS value states representation using hierarchal discretization for reducer
VM MIPS (RMIPS)

State Range Counts

1 0 to 24000 1270

2 24000 to 400000 508

3 400000 to 500000 508

4 greater than 500000 254

Based on the results presented in this sub-section we gather that BigPerf is able to

identify the most relevant factors that can be used to efficiently diagnose the big data

system.

5.4.3 Big Data QoS Prediction

We developed three BNs: Noisy-Or (NOR), Näıve Bayes Network (NBN), and Complex

Bayesian Network (CBN) (see Fig. 5.3 and Fig. 5.5). For training the model, we used

the expectation-maximization algorithm (EM algorithm) [159]. The EM algorithm

also deals efficiently with scarce, sparse or missing data to learn the most efficient

- 108 -

Chapter 5: BigPerf: Probabilistic Performance Diagnosis and Prediction for
Cloud-based Big Data Systems

BN model [158]. Table 5.12 shows the prediction accuracy of all our BNs. As can be

observed, the CBN performs the best, followed by NOR and NBN. CBN makes the

most of conditional relationships between all the random variables and provides the

best prediction accuracy. Finally, the NOR model is the hardest to train as all the

probabilities of random variables are computed to predict the state of a single random

variable. However, it performs reasonably well in our case. In summary, our results

demonstrate that BigPerf predicts QoS efficiently with an overall prediction accuracy

score of nearly 94.04% and meet the requirement of a BN-based methodology for the

diagnosis and prediction of the performance of big data frameworks.

Table 5.12: Big data performance prediction accuracy (%) for different type of Bayesian
Networks

Type MMIPS RMIPS BBW HBW MET RET TT

NOR 66.25% 81.41% 83.66% 92.08% 81.29% 97.71% 80.71%

NBN 40.23% 59.17% 81.14% 62.99% 42.16% 80.23% 68.26%

CBN 92.63% 88.46% 100% 99.29% 93.54% 100% 84.40%

5.5 Conclusion

This chapter proposes, develops and validates BigPerf – a Bayesian system for big data

performance diagnosis and prediction. The results presented in the chapter clearly

show that BigPerf can be used to diagnose and predict the performance of big data

systems efficiently. The major highlight of BigPerf is that it can take into consideration

several factors, modelled as random variables together, such as execution time of each

specific task (mapper and reducer), network transmission time between these tasks as

well as data block split time (HDFS to mapper, reducer to HDFS) for efficient diagnosis

of the performance of big data systems. The complex and uncertain relationships

between specified factors can be modelled probabilistically by BigPerf to predict several

hypotheses regarding the performance of big data systems. We also validated the

BigPerf prediction capability and show that it predicts the performance of big data

systems with high accuracy of approximately 94.04%.

- 109 -

Chapter 5: BigPerf: Probabilistic Performance Diagnosis and Prediction for
Cloud-based Big Data Systems

- 110 -

6
Conclusion

Contents
6.1 Thesis Summary . 112

6.1.1 Limitations . 113

6.2 Future Research Directions . 114

6.2.1 SDN-based Light-weight Monitoring Framework for Big Data
Systems . 114

6.2.2 Diagnosis Framework for Big Data Systems using AI Techniques 115

6.2.3 Online Performance Diagnosis and Prediction for Big Data Sys-
tems . 115

6.2.4 Performance Evaluation of Container-based Big Data Applica-
tions in Multiple Cloud Environments 116

- 111 -

Chapter 6: Conclusion

Summary

In this chapter, we summarize the research work presented in this dissertation. Then,

we outline the contributions and propose future research directions for addressing the

existing challenges in the current state-of-the-art.

6.1 Thesis Summary

Big data systems have many simultaneous and interactive components, making it dif-

ficult to find the root cause of the problem. Big data systems have many concurrent

tasks, namely multiple tasks running at the same time but not necessarily simulta-

neously and parallel tasks, namely the tasks executed by different worker nodes at

the same time. In such complex systems, due to interdependence and synchronicity

of tasks, it is very challenging to find the reasons why: tasks are slowing down, re-

source utilization is low, the response time is high, or when the network latency is

high. Moreover, performance diagnosis and prediction of big data systems are highly

complex as these frameworks are typically deployed in cloud data centers that are

large-scale, highly concurrent, and follows a multi-tenant model. Several factors, in-

cluding hardware heterogeneity, stochastic networks and application workloads may

impact the performance of big data systems.

This thesis explored numerous challenges for the diagnosis of big data systems in cloud

datacenters and proposed solutions that ease the diagnosis process. In particular, this

thesis contributes as:

Chapter 1 presents the general background of diagnosis and evaluation of cloud-based

big data systems including an overview of big data systems and the types of data pro-

cessing systems, a brief information about cloud datacenters, and a general information

about Quality of Service (QoS). It also reveals challenges and research questions, along

with the thesis contributions.

Chapter 2 presents some background information regarding the overall topic, including

a brief description on big data, Apache Hadoop and its main components, big data ap-

plications based on MapReduce framework, performance diagnosis of big data systems,

- 112 -

Chapter 6: Conclusion

cloud computing and its relationship with big data, and commercial and open source

tools for big data systems. A major focus of this thesis is to address the challenges of

performance diagnosis and evaluation of big data systems.

Chapter 3 presents SmartMonit, a real-time Big data monitoring system, which col-

lects infrastructure information, process status of each task. At the same, we develop

a real-time stream process framework to analyze the coordination among tasks to

tasks and infrastructures to tasks. This coordination information is essential for trou-

bleshooting the reasons for failures and performance reduction, especially the ones

propagated from other causes.

Chapter 4 presents AutoDiagn, a generic and flexible framework that provides holistic

monitoring of a big data system, while detecting the symptom of performance reduc-

tion and enabling root-cause analysis. An implementation of the proposed framework

interacts with a Hadoop cluster and is evaluated with real-world benchmark applica-

tions. All experiments are conducted on AWS. Experimental results show that our

implementation has a small resource footprint, high throughput and low latency.

Chapter 5 presents BigPerf, a novel Bayesian system for diagnosing and predicting root

causes of performance degradation and bottlenecks of Hadoop Applications. BigPerf

analyzes and characterizes the performance of Hadoop applications by incorporating

Bayesian networks to determine uncertain and complex relationships while dealing

with noisy and missing data. Our extensive simulation studies validate BigPerf and

show that it can efficiently diagnose the causes regarding the performance of Hadoop

Applications. We also show that BigPerf predicts systems performance with high

accuracy of approximately 94.04%.

6.1.1 Limitations

The proposed monitoring system, SmartMonit, provides a holistic performance data

collection for big data systems while visualising the collected information with the

Execution Graph modeled as directed acyclic graphs (DAGs). However, the developed

graph is an undynamic form that works only with a specified number of nodes. Thus,

the visualization system is tested and demonstrated with a cluster consisting of three

- 113 -

Chapter 6: Conclusion

nodes. In addition, although the proposed diagnosis system called AutoDiagn is de-

signed as a microservice architecture that offers the flexibility to plug a new detection

and root-cause analysis module for various types of big data systems, it needs to be

implemented new applications including symptom detection and root-cause analysis

to populate our system. Additionally, the storage overhead increases with the number

of applications increasing. So, new techniques are required to reduce overheads.

Finally, the developed big data performance diagnosis and prediction system, BigPerf,

predicts the performance of big data systems with high accuracy of approximately

94.04% while uncovering the complex and uncertain relationships between performance

features clearly. However, the benchmark dataset is gathered using a well-validated

simulator. A real Hadoop cluster and real applications need to be used to conduct the

performance analysis with the BigPerf system.

6.2 Future Research Directions

This section provides motivation for a variety of potential areas of future research,

which can be inspired by the work done in this PhD thesis.

6.2.1 SDN-based Light-weight Monitoring Framework for
Big Data Systems

Our monitoring system, SmartMonit, is designed in a loosely-coupled manner, the

monitored information of the components can be easily scaled. However, the stor-

age overhead increases with the number of applications increasing. [162] proposed a

caching method to aggregate the information before sending to destination nodes. This

direction can be explored in future work to reduce the storage overhead and network

overhead. Moreover, SmartMonit is not able to catch the network-level information,

such as end-to-end network tracking. SDN-level data collection system is required to

populate our SmartMonit for future work.

- 114 -

Chapter 6: Conclusion

6.2.2 Diagnosis Framework for Big Data Systems using AI
Techniques

The performance diagnosis system presented in Chapter 4 proposes an automated

real-time diagnosis framework for big data systems. This system consists of two main

parts: Monitoring component to monitor big data systems, and diagnosing compo-

nent to detect the symptom of performance reduction and enable root-cause analysis.

For diagnosis, the system uses user-defined functions (UDFs) technique to analyze

the performance metrics from streaming data and from different levels in a storage

unit. Future studies can extend our framework with artificial intelligence (AI), such

as machine learning and deep learning techniques that are effective at detecting false

patterns that are not present in datasets, as they have ability to learn new patterns

from data and they increase the accuracy of both symptom detection and root cause

analysis and reduce complexity and computation time. For example, if something goes

wrong, then the AI model can improve itself and its predictive based on new coming

data.

6.2.3 Online Performance Diagnosis and Prediction for Big
Data Systems

A Bayesian system for performance diagnosis and prediction for cloud-based big data

systems presented in Chapter 5 raises an interesting point for discussion on further

work. The complex and uncertain relationships between specified factors are modelled

probabilistically by BigPerf to predict many hypotheses regarding the performance of

big data systems while taking into consideration various factors together. However,

this systems validated offline using the data generated by BigDataSDNSim simulator

[139]. A potential thread for future research is to build an online performance diagnosis

and prediction model for big data systems using Bayesian networks to identify the

most relevant factors to performance issues by uncovering the complex and uncertain

relationships between specified factors among the performance metrics in real-time.

- 115 -

Chapter 6: Conclusion

6.2.4 Performance Evaluation of Container-based Big Data
Applications in Multiple Cloud Environments

Big data analytics includes various complex operations such as storing, cleaning, or-

ganizing, modelling, analysis and presentation of data at scale. Installing big data

systems and integrating them with each other to ensure a robust big data processing

system is a major challenge in cloud computing environments. Besides, although tech-

nically correct, all cloud services are prone to failure and come with some problems,

such as cost and security risks. A lot of work has been done to handle the problems

regarding installation deployment difficulties, cost management, and security risks by

proposing Docker-based big data systems across multiple clouds [163], [164], [165].

However, the performance diagnosis and failure managements in such systems still

remain unsolved. In this thesis, we propose AutoDiagn, an automated real-time diag-

nosis framework for big data systems to diagnose performance issues on VM based big

data systems in a single cloud environment. Future work can improve our system to

perform performance diagnosis on docker container-based big data processing systems

in multiple clouds.

- 116 -

List of Abbreviations

AI Artificial Intelligence

API Application Programming Interface

CPU Central Processing Unit

DAG Directed Acyclic Graph

HDFS Hadoop Distributed File System

HTTP Hyper Text Transfer Protocol

IoT Internet of Things

I/O Input/output

OS Operating System

QoS Quality of Service

REST API Representational State Transfer API

SLA Service Level Agreement

TCP Transmission Control Protocol

VM Virtual Machine

YARN Yet Another Resource Negotiator

- 117 -

118

References

[1] Data management: In-depth guide. Accessed: 2021-06-03. [Online]. Available:
https://www.merriam-webster.com/.

[2] A. Oussous, F.-Z. Benjelloun, A. A. Lahcen, and S. Belfkih, “Big data technolo-
gies: A survey,” Journal of King Saud University-Computer and Information
Sciences, vol. 30, no. 4, pp. 431–448, 2018.

[3] R. Ren, J. Cheng, X. He, L. Wang, C. Luo, and J. Zhan, “Hybridtune: Spatio-
temporal data and model driven performance diagnosis for big data systems,”
arXiv preprint arXiv:1711.07639, 2017.

[4] B. Lebiednik, A. Mangal, and N. Tiwari, “A survey and evaluation of data center
network topologies,” arXiv preprint arXiv:1605.01701, 2016.

[5] S. Patidar, D. Rane, and P. Jain, “A survey paper on cloud computing,” in
2012 second international conference on advanced computing & communication
technologies. IEEE, 2012, pp. 394–398.

[6] W. Hussain, F. K. Hussain, O. K. Hussain, E. Damiani, and E. Chang, “For-
mulating and managing viable slas in cloud computing from a small to medium
service provider’s viewpoint: A state-of-the-art review,” Information Systems,
vol. 71, pp. 240–259, 2017.

[7] C. Tao and J. Gao, “Quality assurance for big data application-issuses, chal-
lenges, and needs.” in SEKE, vol. 2, no. 3, 2016, pp. 1–7.

[8] I. Ayadi, N. Simoni, and T. Aubonnet, “Sla approach for” cloud as a service”,” in
2013 IEEE Sixth International Conference on Cloud Computing. IEEE, 2013,
pp. 966–967.

[9] S. Rong and Z. Bao-wen, “The research of regression model in machine learning
field,” in MATEC Web of Conferences, vol. 176. EDP Sciences, 2018, p. 01033.

[10] A. K. Maheshwari, “Big data applications and architectures for emerging coun-
tries,” in Advancing Innovation and Sustainable Outcomes in International Grad-
uate Education. IGI Global, 2021, pp. 120–142.

[11] Datadog. Accessed: 2020-07-13. [Online]. Available:
https://www.datadoghq.com/.

[12] Sequenceiq. Accessed: 2020-07-14. [Online]. Available:
https://github.com/sequenceiq.

[13] Sematext. Accessed: 2020-07-13. [Online]. Available: https://sematext.com/.

- 119 -

https://www.merriam-webster.com/
https://www.datadoghq.com/
https://github.com/sequenceiq
https://sematext.com/

[14] R. T. Evans, J. C. Browne, and W. L. Barth, “Understanding application and
system performance through system-wide monitoring,” in 2016 IEEE Interna-
tional Parallel and Distributed Processing Symposium Workshops (IPDPSW).
IEEE, 2016, pp. 1702–1710.

[15] G. Ananthanarayanan, S. Kandula, A. G. Greenberg, I. Stoica, Y. Lu, B. Saha,
and E. Harris, “Reining in the outliers in map-reduce clusters using mantri.” in
Osdi, vol. 10, no. 1, 2010, p. 24.

[16] A. Netti, M. Müller, C. Guillen, M. Ott, D. Tafani, G. Ozer, and M. Schulz,
“Dcdb wintermute: Enabling online and holistic operational data analytics on
hpc systems,” in Proceedings of the 29th International Symposium on High-
Performance Parallel and Distributed Computing, 2020, pp. 101–112.

[17] Nagios. Accessed: 2020-07-15. [Online]. Available: https://www.nagios.org/.

[18] Ganglia. Accessed: 2020-07-15. [Online]. Available: http://ganglia.info/.

[19] Apache chukwa. Accessed: 2020-07-14. [Online]. Available:
https://chukwa.apache.org/.

[20] Dmon. Accessed: 2020-07-12. [Online]. Available: https://github.com/Open-
Monitor/dmon.

[21] P. Garraghan, R. Yang, Z. Wen, A. Romanovsky, J. Xu, R. Buyya, and R. Ran-
jan, “Emergent failures: Rethinking cloud reliability at scale,” IEEE Cloud Com-
puting, vol. 5, no. 5, pp. 12–21, 2018.

[22] P. Verissimo and L. Rodrigues, Distributed systems for system architects.
Springer Science & Business Media, 2001, vol. 1.

[23] L. Braubach and A. Pokahr, “Addressing challenges of distributed systems using
active components,” in Intelligent Distributed Computing V. Springer, 2011,
pp. 141–151.

[24] O. Hummel, H. Eichelberger, A. Giloj, D. Werle, and K. Schmid, “A collection
of software engineering challenges for big data system development,” in 2018
44th Euromicro Conference on Software Engineering and Advanced Applications
(SEAA). IEEE, 2018, pp. 362–369.

[25] B. Debnath, M. Solaimani, M. A. G. Gulzar, N. Arora, C. Lumezanu, J. Xu,
B. Zong, H. Zhang, G. Jiang, and L. Khan, “Loglens: A real-time log analysis
system,” in 2018 IEEE 38th international conference on distributed computing
systems (ICDCS). IEEE, 2018, pp. 1052–1062.

[26] A. Miranskyy, A. Hamou-Lhadj, E. Cialini, and A. Larsson, “Operational-log
analysis for big data systems: Challenges and solutions,” IEEE Software, vol. 33,
no. 2, pp. 52–59, 2016.

[27] D. P. Acharjya and K. Ahmed, “A survey on big data analytics: challenges, open
research issues and tools,” International Journal of Advanced Computer Science
and Applications, vol. 7, no. 2, pp. 511–518, 2016.

- 120 -

https://www.nagios.org/
http://ganglia.info/
https://chukwa.apache.org/
https://github.com/Open-Monitor/dmon
https://github.com/Open-Monitor/dmon

[28] S. Lu, X. Wei, B. Rao, B. Tak, L. Wang, and L. Wang, “Ladra: Log-based
abnormal task detection and root-cause analysis in big data processing with
spark,” Future Generation Computer Systems, vol. 95, pp. 392–403, 2019.

[29] Q. Guo, Y. Li, T. Liu, K. Wang, G. Chen, X. Bao, and W. Tang, “Correlation-
based performance analysis for full-system mapreduce optimization,” in 2013
IEEE International Conference on Big Data. IEEE, 2013, pp. 753–761.

[30] A. Jain and M. Choudhary, “Analyzing & optimizing hadoop performance,” in
2017 International Conference on Big Data Analytics and Computational Intel-
ligence (ICBDAC). IEEE, 2017, pp. 116–121.

[31] B. T. Rao, N. Sridevi, V. K. Reddy, and L. Reddy, “Performance issues of hetero-
geneous hadoop clusters in cloud computing,” arXiv preprint arXiv:1207.0894,
2012.

[32] K. Bakshi, “Considerations for big data: Architecture and approach,” in 2012
IEEE aerospace conference. IEEE, 2012, pp. 1–7.

[33] A. Rasooli and D. G. Down, “Guidelines for selecting hadoop schedulers based
on system heterogeneity,” Journal of grid computing, vol. 12, no. 3, pp. 499–519,
2014.

[34] H. Gao, Z. Yang, J. Bhimani, T. Wang, J. Wang, B. Sheng, and N. Mi, “Au-
topath: harnessing parallel execution paths for efficient resource allocation in
multi-stage big data frameworks,” in 2017 26th International Conference on
Computer Communication and Networks (ICCCN). IEEE, 2017, pp. 1–9.

[35] J. Li, Y. Wang, J. Yu, and S. Guo, “An hmm-based performance diagnosis
approach for hadoop clusters,” in 2016 18th Asia-Pacific Network Operations
and Management Symposium (APNOMS). IEEE, 2016, pp. 1–4.

[36] U. Demirbaga, A. Noor, Z. Wen, P. James, K. Mitra, and R. Ranjan, “Smart-
monit: Real-time big data monitoring system,” in 2019 38th Symposium on
Reliable Distributed Systems (SRDS). IEEE, 2019, pp. 357–3572.

[37] U. Demirbaga, Z. Wen, A. Noor, K. Mitra, K. Alwasel, S. Garg, A. Zomaya,
and R. Ranjan, “Autodiagn: An automated real-time diagnosis framework for
big data systems,” IEEE Transactions on Computers, 2021.

[38] A. Labrinidis and H. V. Jagadish, “Challenges and opportunities with big data,”
Proceedings of the VLDB Endowment, vol. 5, no. 12, pp. 2032–2033, 2012.

[39] L. Williams, “Data dna and diamonds,”Engineering & Technology, vol. 14, no. 3,
pp. 62–65, 2019.

[40] G.-H. Kim, S. Trimi, and J.-H. Chung, “Big-data applications in the government
sector,” Communications of the ACM, vol. 57, no. 3, pp. 78–85, 2014.

[41] U. Demirbaga, D. N. Jha, N. Booth, T. Roberts, T. Shah, R. Ranjan, and
A. Batch, “Tc-cps newsletter,” TC, vol. 1, no. 6, 2018.

- 121 -

[42] M. D. Smith and R. Telang, Streaming, sharing, stealing: big data and the future
of entertainment. Mit Press, 2016.

[43] K. Zhou, C. Fu, and S. Yang, “Big data driven smart energy management: From
big data to big insights,” Renewable and Sustainable Energy Reviews, vol. 56,
pp. 215–225, 2016.

[44] A. Noor, K. Mitra, E. Solaiman, A. Souza, D. N. Jha, U. Demirbaga, P. P.
Jayaraman, N. Cacho, and R. Ranjan, “Cyber-physical application monitoring
across multiple clouds,” Computers & Electrical Engineering, vol. 77, pp. 314–
324, 2019.

[45] H. Hassani, X. Huang, and E. Silva, “Digitalisation and big data mining in
banking,” Big Data and Cognitive Computing, vol. 2, no. 3, p. 18, 2018.

[46] K. Alwasel, D. N. Jha, F. Habeeb, U. Demirbaga, O. Rana, T. Baker, S. Dust-
dar, M. Villari, P. James, E. Solaiman et al., “Iotsim-osmosis: A framework for
modeling and simulating iot applications over an edge-cloud continuum,”Journal
of Systems Architecture, vol. 116, p. 101956, 2021.

[47] J. Phengsuwan, T. Shah, P. James, D. Thakker, S. Barr, and R. Ranjan,
“Ontology-based discovery of time-series data sources for landslide early warning
system,” Computing, pp. 1–19, 2019.

[48] K. Shvachko, H. Kuang, S. Radia, R. Chansler et al., “The hadoop distributed
file system.” in MSST, vol. 10, 2010, pp. 1–10.

[49] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on large
clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113, 2008.

[50] U. Demirbaga, “Htwitt: a hadoop-based platform for analysis and visualization
of streaming twitter data,” Neural Computing and Applications, pp. 1–16, 2021.

[51] M. Rodrigues, M. Y. Santos, and J. Bernardino, “Big data processing tools: An
experimental performance evaluation,” Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery, vol. 9, no. 2, p. e1297, 2019.

[52] B. Cyganek, M. Graña, B. Krawczyk, A. Kasprzak, P. Porwik, K. Walkowiak,
and M. Woźniak,“A survey of big data issues in electronic health record analysis,”
Applied Artificial Intelligence, vol. 30, no. 6, pp. 497–520, 2016.

[53] S. G. Walunj and K. Sadafale, “An online recommendation system for e-
commerce based on apache mahout framework,” in Proceedings of the 2013 an-
nual conference on Computers and people research, 2013, pp. 153–158.

[54] S. Mardani, M. K. Akbari, and S. Sharifian, “Fraud detection in process aware
information systems using mapreduce,” in 2014 6th Conference on Information
and Knowledge Technology (IKT). IEEE, 2014, pp. 88–91.

[55] Dictionary | merriam-webster. Accessed: 2021-06-30. [Online]. Available:
https://www.merriam-webster.com/.

- 122 -

https://www.merriam-webster.com/

[56] B. R. Helm, P. Malony, and S. Fickas, “Capturing and automating performance
diagnosis: the poirot approach,” in Proceedings of 9th International Parallel
Processing Symposium. IEEE, 1995, pp. 606–613.

[57] H. Jayathilaka, C. Krintz, and R. Wolski, “Performance monitoring and root
cause analysis for cloud-hosted web applications,” in Proceedings of the 26th
International Conference on World Wide Web, 2017, pp. 469–478.

[58] M. Julian, Practical Monitoring: Effective Strategies for the Real World. ”
O’Reilly Media, Inc.”, 2017.

[59] K. Zhang, M. Wan, T. Qu, H. Jiang, P. Li, Z. Chen, J. Xiang, X. He, C. Li, and
G. Q. Huang, “Production service system enabled by cloud-based smart resource
hierarchy for a highly dynamic synchronized production process,”Advanced En-
gineering Informatics, vol. 42, p. 100995, 2019.

[60] C. Qian, Y. Zhang, Y. Liu, and Z. Wang, “A cloud service platform integrating
additive and subtractive manufacturing with high resource efficiency,” Journal
of Cleaner Production, vol. 241, p. 118379, 2019.

[61] M. Andreolini, M. Colajanni, M. Pietri, and S. Tosi, “Adaptive, scalable and
reliable monitoring of big data on clouds,” Journal of Parallel and Distributed
Computing, vol. 79, pp. 67–79, 2015.

[62] G. S. Aujla and A. Jindal, “A decoupled blockchain approach for edge-envisioned
iot-based healthcare monitoring,” IEEE Journal on Selected Areas in Commu-
nications, vol. 39, no. 2, pp. 491–499, 2020.

[63] J. J. Rooney and L. N. V. Heuvel, “Root cause analysis for beginners,” Quality
progress, vol. 37, no. 7, pp. 45–56, 2004.

[64] G. Jin, L. Song, X. Shi, J. Scherpelz, and S. Lu, “Understanding and detecting
real-world performance bugs,”ACM SIGPLAN Notices, vol. 47, no. 6, pp. 77–88,
2012.

[65] F. Castro, A. Vellido, A. Nebot, and F. Mugica, “Applying data mining tech-
niques to e-learning problems,” in Evolution of teaching and learning paradigms
in intelligent environment. Springer, 2007, pp. 183–221.

[66] O. I. Obaid, M. A. Mohammed, M. Ghani, A. Mostafa, and F. Taha, “Evaluating
the performance of machine learning techniques in the classification of wisconsin
breast cancer,” International Journal of Engineering & Technology, vol. 7, no.
4.36, pp. 160–166, 2018.

[67] T. Dietterich, “Overfitting and undercomputing in machine learning,”ACM com-
puting surveys (CSUR), vol. 27, no. 3, pp. 326–327, 1995.

[68] M. K. Ahirwar, M. K. Ahirwar, and U. Chourasia, “Anomaly detection in the
services provided by multi cloud architectures: a survey,” Int J Res Eng Technol,
vol. 3, no. 09, pp. 196–200, 2014.

- 123 -

[69] O. Tuncer, E. Ates, Y. Zhang, A. Turk, J. Brandt, V. J. Leung, M. Egele,
and A. K. Coskun, “Online diagnosis of performance variation in hpc systems
using machine learning,” IEEE Transactions on Parallel and Distributed Systems,
vol. 30, no. 4, pp. 883–896, 2018.

[70] K. Radha, B. Rao, S. M. Babu, K. Rao, V. Reddy, and P. Saikiran, “Service level
agreements in cloud computing and big data,” International Journal of Electrical
and Computer Engineering, vol. 5, no. 1, p. 158, 2015.

[71] L. E. B. Villalpando, A. April, and A. Abran, “Performance analysis model for
big data applications in cloud computing,” Journal of Cloud Computing, vol. 3,
no. 1, pp. 1–20, 2014.

[72] Y. Zheng, X. Yi, M. Li, R. Li, Z. Shan, E. Chang, and T. Li, “Forecasting fine-
grained air quality based on big data,” in Proceedings of the 21th ACM SIGKDD
international conference on knowledge discovery and data mining, 2015, pp.
2267–2276.

[73] X. Gao, F. Yang, C. Shang, and D. Huang, “A review of control loop monitoring
and diagnosis: Prospects of controller maintenance in big data era,” Chinese
Journal of Chemical Engineering, vol. 24, no. 8, pp. 952–962, 2016.

[74] I. Giannakopoulos, N. Papailiou, C. Mantas, I. Konstantinou, D. Tsoumakos,
and N. Koziris, “Celar: automated application elasticity platform,” in 2014 IEEE
International Conference on Big Data (Big Data). IEEE, 2014, pp. 23–25.

[75] I. Gorton and J. Klein, “Distribution, data, deployment: Software architecture
convergence in big data systems,” IEEE Software, vol. 32, no. 3, pp. 78–85, 2014.

[76] D. Talia, “Clouds for scalable big data analytics,”Computer, vol. 46, no. 05, pp.
98–101, 2013.

[77] H. Hu, Y. Wen, T.-S. Chua, and X. Li, “Toward scalable systems for big data
analytics: A technology tutorial,” IEEE access, vol. 2, pp. 652–687, 2014.

[78] C. Yang, Q. Huang, Z. Li, K. Liu, and F. Hu, “Big data and cloud computing:
innovation opportunities and challenges,” International Journal of Digital Earth,
vol. 10, no. 1, pp. 13–53, 2017.

[79] C. J. Guo, W. Sun, Y. Huang, Z. H. Wang, and B. Gao, “A framework for na-
tive multi-tenancy application development and management,” in The 9th IEEE
International Conference on E-Commerce Technology and The 4th IEEE In-
ternational Conference on Enterprise Computing, E-Commerce and E-Services
(CEC-EEE 2007). IEEE, 2007, pp. 551–558.

[80] Y. Li and X. Zhai, “Review and prospect of modern education using big data,”
Procedia Computer Science, vol. 129, pp. 341–347, 2018.

[81] S. Yu, “Data processing and development of big data system: A survey,” in
International Conference on Artificial Intelligence and Security. Springer, 2021,
pp. 420–431.

- 124 -

[82] C. S. Mayo, M. M. Matuszak, M. J. Schipper, S. Jolly, J. A. Hayman, and R. K.
Ten Haken, “Big data in designing clinical trials: opportunities and challenges,”
Frontiers in oncology, vol. 7, p. 187, 2017.

[83] R. Elshawi, S. Sakr, D. Talia, and P. Trunfio, “Big data systems meet machine
learning challenges: towards big data science as a service,” Big data research,
vol. 14, pp. 1–11, 2018.

[84] R. Jhawar and V. Piuri, “Fault tolerance and resilience in cloud computing en-
vironments,” in Computer and information security handbook. Elsevier, 2017,
pp. 165–181.

[85] F. H. Gebara, H. P. Hofstee, and K. J. Nowka, “Second-generation big data
systems,” Computer, vol. 48, no. 01, pp. 36–41, 2015.

[86] J. Bao, H. Wu, and Y. Yan, “A fault diagnosis system-plc design for system
reliability improvement,”The International Journal of Advanced Manufacturing
Technology, vol. 75, no. 1-4, pp. 523–534, 2014.

[87] I. Noorwali, D. Arruda, and N. H. Madhavji, “Understanding quality require-
ments in the context of big data systems,” in Proceedings of the 2nd International
Workshop on BIG Data Software Engineering, 2016, pp. 76–79.

[88] B. Furht, “Cloud computing fundamentals,” in Handbook of cloud computing.
Springer, 2010, pp. 3–19.

[89] L. Wang, R. Ranjan, J. Chen, and B. Benatallah, Cloud computing: methodology,
systems, and applications. CRC Press, 2017.

[90] Y. Xing and Y. Zhan, “Virtualization and cloud computing,” in Future Wireless
Networks and Information Systems. Springer, 2012, pp. 305–312.

[91] Z. Sun, L. Sun, and K. Strang,“Big data analytics services for enhancing business
intelligence,” Journal of Computer Information Systems, vol. 58, no. 2, pp. 162–
169, 2018.

[92] X. Dai and B. Bensaou, “Scheduling for response time in hadoop mapreduce,” in
2016 IEEE International Conference on Communications (ICC). IEEE, 2016,
pp. 1–6.

[93] W. Pourmajidi, J. Steinbacher, T. Erwin, and A. Miranskyy, “On challenges of
cloud monitoring,” arXiv preprint arXiv:1806.05914, 2018.

[94] A. Noor, D. N. Jha, K. Mitra, P. P. Jayaraman, A. Souza, R. Ranjan, and
S. Dustdar, “A framework for monitoring microservice-oriented cloud applica-
tions in heterogeneous virtualization environments,” in 2019 IEEE 12th Interna-
tional Conference on Cloud Computing (CLOUD). IEEE, 2019, pp. 156–163.

[95] S. Qanbari, A. Farivarmoheb, P. Fazlali, S. Mahdizadeh, and S. Dustdar,
“Telemetry for elastic data (ted): Middleware for mapreduce job metering and
rating,” in 2015 IEEE Trustcom/BigDataSE/ISPA, vol. 2. IEEE, 2015, pp.
104–111.

- 125 -

[96] G. Iuhasz and I. Dragan, “An overview of monitoring tools for big data and cloud
applications,” in 2015 17th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing (SYNASC). IEEE, 2015, pp. 363–366.

[97] M. Massie, B. Li, B. Nicholes, V. Vuksan, R. Alexander, J. Buchbinder, F. Costa,
A. Dean, D. Josephsen, P. Phaal et al., Monitoring with Ganglia: tracking dy-
namic host and application metrics at scale. ” O’Reilly Media, Inc.”, 2012.

[98] A. Rabkin and R. Katz, “Chukwa: A system for reliable large-scale log collec-
tion,” in Proceedings of LISA’10: 24th Large Installation System Administration
Conference, 2010, p. 163.

[99] I. Drăgan, G. Iuhasz, and D. Petcu, “A scalable platform for monitoring data
intensive applications,” Journal of Grid Computing, vol. 17, no. 3, pp. 503–528,
2019.

[100] Apache ambari. Accessed: 2019-07-15. [Online]. Available:
https://ambari.apache.org/.

[101] S. Wadkar and M. Siddalingaiah, “Apache ambari,” in Pro Apache Hadoop.
Springer, 2014, pp. 399–401.

[102] G. Iuhasz, D. Pop, and I. Dragan, “Architecture of a scalable platform for mon-
itoring multiple big data frameworks,” Scalable Computing: Practice and Expe-
rience, vol. 17, no. 4, pp. 313–321, 2016.

[103] Z. Zhang, C. Li, Y. Tao, R. Yang, H. Tang, and J. Xu, “Fuxi: a fault-tolerant
resource management and job scheduling system at internet scale,” in Proceedings
of the VLDB Endowment, vol. 7, no. 13. VLDB Endowment Inc., 2014, pp.
1393–1404.

[104] X. Sun, C. Hu, R. Yang, P. Garraghan, T. Wo, J. Xu, J. Zhu, and C. Li, “Rose:
Cluster resource scheduling via speculative over-subscription,” in 2018 IEEE 38th
International Conference on Distributed Computing Systems (ICDCS). IEEE,
2018, pp. 949–960.

[105] H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and M. Alizadeh,
“Learning scheduling algorithms for data processing clusters,” in Proceedings of
the ACM Special Interest Group on Data Communication, 2019, pp. 270–288.

[106] “Demonstration. [online]. available: https://youtu.be/Ok0iJBbC5zA.”

[107] G. S. Aujla, M. Barati, O. Rana, S. Dustdar, A. Noor, J. T. Llanos, M. Carr,
D. Marikyan, S. Papagiannidis, and R. Ranjan, “Com-pace: Compliance-aware
cloud application engineering using blockchain,” IEEE Internet Computing,
vol. 24, no. 5, pp. 45–53, 2020.

[108] P. Lubbers, B. Albers, F. Salim, and T. Pye, Pro HTML5 programming.
Springer, 2011.

[109] H. W. Lie and B. Bos, Cascading style sheets: designing for the Web. Addison-
Wesley Longman Publishing Co., Inc., 1997.

- 126 -

https://ambari.apache.org/
https://youtu.be/Ok0iJBbC5zA

[110] L. Welling and L. Thomson, PHP and MySQL Web development. Sams Pub-
lishing, 2003.

[111] S. Babu, “Towards automatic optimization of mapreduce programs,” in Proceed-
ings of the 1st ACM symposium on Cloud computing, 2010, pp. 137–142.

[112] R. S. Xin, J. Rosen, M. Zaharia, M. J. Franklin, S. Shenker, and I. Stoica, “Shark:
Sql and rich analytics at scale,” in Proceedings of the 2013 ACM SIGMOD In-
ternational Conference on Management of data, 2013, pp. 13–24.

[113] P. Garraghan, X. Ouyang, P. Townend, and J. Xu, “Timely long tail identifi-
cation through agent based monitoring and analytics,” in 2015 IEEE 18th In-
ternational Symposium on Real-Time Distributed Computing. IEEE, 2015, pp.
19–26.

[114] Z. Wen, T. Lin, R. Yang, S. Ji, R. Ranjan, A. Romanovsky, C. Lin, and J. Xu,
“Ga-par: Dependable microservice orchestration framework for geo-distributed
clouds,” IEEE Transactions on Parallel and Distributed Systems, vol. 31, no. 1,
pp. 129–143, 2019.

[115] Z. Wen, J. Ca la, P. Watson, and A. Romanovsky, “Cost effective, reliable and se-
cure workflow deployment over federated clouds,” IEEE Transactions on Services
Computing, vol. 10, no. 6, pp. 929–941, 2016.

[116] Z. Wen, R. Qasha, Z. Li, R. Ranjan, P. Watson, and A. Romanovsky, “Dynam-
ically partitioning workflow over federated clouds for optimising the monetary
cost and handling run-time failures,” IEEE Transactions on Cloud Computing,
2016.

[117] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and
G. Czajkowski,“Pregel: a system for large-scale graph processing,” in Proceedings
of the 2010 ACM SIGMOD International Conference on Management of data,
2010, pp. 135–146.

[118] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, I. Stoica et al., “Spark:
Cluster computing with working sets.”HotCloud, vol. 10, no. 10-10, p. 95, 2010.

[119] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, G. Irving, M. Isard et al., “Tensorflow: A system for large-scale machine
learning,” in 12th {USENIX} symposium on operating systems design and im-
plementation ({OSDI} 16), 2016, pp. 265–283.

[120] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A. Goldberg,
“Quincy: fair scheduling for distributed computing clusters,” in Proceedings of
the ACM SIGOPS 22nd symposium on Operating systems principles, 2009, pp.
261–276.

[121] N. J. Yadwadkar and W. Choi, “Proactive straggler avoidance using machine
learning,” White paper, University of Berkeley, 2012.

- 127 -

[122] A. Badita, P. Parag, and V. Aggarwal, “Optimal server selection for straggler
mitigation,” IEEE/ACM Transactions on Networking, vol. 28, no. 2, pp. 709–
721, 2020.

[123] J. Dean and L. A. Barroso, “The tail at scale,” Communications of the ACM,
vol. 56, no. 2, pp. 74–80, 2013.

[124] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, and B.-G. Chun, “Making
sense of performance in data analytics frameworks,” in 12th {USENIX} Sympo-
sium on Networked Systems Design and Implementation ({NSDI} 15), 2015, pp.
293–307.

[125] P. Garraghan, X. Ouyang, R. Yang, D. McKee, and J. Xu, “Straggler root-
cause and impact analysis for massive-scale virtualized cloud datacenters,” IEEE
Transactions on Services Computing, vol. 12, no. 1, pp. 91–104, 2016.

[126] X. Ouyang, P. Garraghan, R. Yang, P. Townend, and J. Xu, “Reducing late-
timing failure at scale: Straggler root-cause analysis in cloud datacenters,” in
Fast Abstracts in the 46th Annual IEEE/IFIP International Conference on De-
pendable Systems and Networks. DSN, 2016.

[127] H. Zhou, Y. Li, H. Yang, J. Jia, and W. Li, “Bigroots: An effective approach for
root-cause analysis of stragglers in big data system,” IEEE Access, vol. 6, pp.
41 966–41 977, 2018.

[128] Z. He, Y. He, F. Liu, and Y. Zhao, “Big data-oriented product infant failure
intelligent root cause identification using associated tree and fuzzy dea,” IEEE
Access, vol. 7, pp. 34 687–34 698, 2019.

[129] H. Du and S. Zhang, “Hawkeye: Adaptive straggler identification on hetero-
geneous spark cluster with reinforcement learning,” IEEE Access, vol. 8, pp.
57 822–57 832, 2020.

[130] J. P. Magalhães and L. M. Silva, “Root-cause analysis of performance anoma-
lies in web-based applications,” in Proceedings of the 2011 ACM Symposium on
Applied Computing, 2011, pp. 209–216.

[131] R. Bitar, M. Wootters, and S. El Rouayheb, “Stochastic gradient coding for
straggler mitigation in distributed learning,” IEEE Journal on Selected Areas in
Information Theory, vol. 1, no. 1, pp. 277–291, 2020.

[132] A. M. Chacko, J. S. Medicherla, and S. M. Kumar, “Anomaly detection in mapre-
duce using transformation provenance,” in Advances in Big Data and Cloud Com-
puting. Springer, 2018, pp. 91–99.

[133] N. Khoussainova, M. Balazinska, and D. Suciu, “Perfxplain: debugging mapre-
duce job performance,” arXiv preprint arXiv:1203.6400, 2012.

[134] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly detection and
diagnosis from system logs through deep learning,” in Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security, 2017,
pp. 1285–1298.

- 128 -

[135] A. Agelastos, B. Allan, J. Brandt, P. Cassella, J. Enos, J. Fullop, A. Gentile,
S. Monk, N. Naksinehaboon, J. Ogden et al., “The lightweight distributed metric
service: a scalable infrastructure for continuous monitoring of large scale com-
puting systems and applications,” in SC’14: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analy-
sis. IEEE, 2014, pp. 154–165.

[136] A. Borghesi, A. Bartolini, M. Lombardi, M. Milano, and L. Benini, “Anomaly
detection using autoencoders in high performance computing systems,” in Pro-
ceedings of the AAAI Conference on Artificial Intelligence, vol. 33, 2019, pp.
9428–9433.

[137] J. Han, J. Pei, and M. Kamber, Data mining: concepts and techniques. Elsevier,
2011.

[138] T. Renner, L. Thamsen, and O. Kao, “Coloc: Distributed data and container
colocation for data-intensive applications,” in 2016 IEEE International Confer-
ence on Big Data (Big Data). IEEE, 2016, pp. 3008–3015.

[139] K. Alwasel, R. N. Calheiros, S. Garg, R. Buyya, M. Pathan, D. Georgakopoulos,
and R. Ranjan, “Bigdatasdnsim: A simulator for analyzing big data applications
in software-defined cloud data centers,”Software: Practice and Experience, 2020.

[140] U. Demirbaga and D. N. Jha, “Social media data analysis using mapreduce
programming model and training a tweet classifier using apache mahout,” in 2018
IEEE 8th International Symposium on Cloud and Service Computing (SC2).
IEEE, 2018, pp. 116–121.

[141] H. E. Ciritoglu, J. Murphy, and C. Thorpe, “Hard: a heterogeneity-aware replica
deletion for hdfs,” Journal of big data, vol. 6, no. 1, pp. 1–21, 2019.

[142] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and I. Stoica, “Improving
mapreduce performance in heterogeneous environments.” in Osdi, vol. 8, no. 4,
2008, p. 7.

[143] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Towards predictable
datacenter networks,” in Proceedings of the ACM SIGCOMM 2011 Conference,
2011, pp. 242–253.

[144] Y. Y. Wee, W. P. Cheah, S. C. Tan, and K. Wee, “A method for root cause
analysis with a bayesian belief network and fuzzy cognitive map,”Expert Systems
with Applications, vol. 42, no. 1, pp. 468–487, 2015.

[145] M. Khan, Y. Jin, M. Li, Y. Xiang, and C. Jiang, “Hadoop performance modeling
for job estimation and resource provisioning,” IEEE Transactions on Parallel and
Distributed Systems, vol. 27, no. 2, pp. 441–454, 2015.

[146] X. Lin, Z. Meng, C. Xu, and M. Wang, “A practical performance model for
hadoop mapreduce,” in 2012 IEEE International Conference on Cluster Com-
puting Workshops. IEEE, 2012, pp. 231–239.

- 129 -

[147] N. Wang, J. Yang, Z. Lu, X. Li, and J. Wu, “Comparison and improvement
of hadoop mapreduce performance prediction models in the private cloud,” in
Asia-Pacific Services Computing Conference. Springer, 2016, pp. 77–91.

[148] P. Liu, H. Xu, Q. Ouyang, R. Jiao, Z. Chen, S. Zhang, J. Yang, L. Mo, J. Zeng,
W. Xue et al., “Unsupervised detection of microservice trace anomalies through
service-level deep bayesian networks,” in 2020 IEEE 31st International Sympo-
sium on Software Reliability Engineering (ISSRE). IEEE, 2020, pp. 48–58.

[149] E. Vianna, G. Comarela, T. Pontes, J. Almeida, V. Almeida, K. Wilkinson,
H. Kuno, and U. Dayal, “Analytical performance models for mapreduce work-
loads,” International Journal of Parallel Programming, vol. 41, no. 4, pp. 495–
525, 2013.

[150] G. Wang, A. R. Butt, P. Pandey, and K. Gupta, “A simulation approach to
evaluating design decisions in mapreduce setups,” in 2009 IEEE International
Symposium on Modeling, Analysis & Simulation of Computer and Telecommu-
nication Systems. IEEE, 2009, pp. 1–11.

[151] K. Kambatla, A. Pathak, and H. Pucha, “Towards optimizing hadoop provision-
ing in the cloud.” HotCloud, vol. 9, no. 12, pp. 28–30, 2009.

[152] S. Kavulya, J. Tan, R. Gandhi, and P. Narasimhan, “An analysis of traces from
a production mapreduce cluster,” in 2010 10th IEEE/ACM International Con-
ference on Cluster, Cloud and Grid Computing. IEEE, 2010, pp. 94–103.

[153] A. Ganapathi, “Predicting and optimizing system utilization and performance
via statistical machine learning,” Ph.D. dissertation, UC Berkeley, 2009.

[154] S. Kadirvel and J. A. Fortes, “Grey-box approach for performance prediction in
map-reduce based platforms,” in 2012 21st International Conference on Com-
puter Communications and Networks (ICCCN). IEEE, 2012, pp. 1–9.

[155] K. Morton, M. Balazinska, and D. Grossman, “Paratimer: a progress indicator
for mapreduce dags,” in Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data, 2010, pp. 507–518.

[156] E. R. Hruschka and M. do Carmo Nicoletti, “Roles played by bayesian networks
in machine learning: an empirical investigation,” in Emerging Paradigms in Ma-
chine Learning. Springer, 2013, pp. 75–116.

[157] C. Tunc, S. Hariri, and A. Battou,“A design methodology for developing resilient
cloud services,” in Handbook of System Safety and Security. Elsevier, 2017, pp.
177–197.

[158] K. Mitra, A. Zaslavsky, and C. Åhlund, “Context-aware qoe modelling, mea-
surement, and prediction in mobile computing systems,” IEEE Transactions on
Mobile Computing, vol. 14, no. 5, pp. 920–936, 2013.

[159] P. R. Norvig and S. A. Intelligence, A modern approach. Prentice Hall, 2002.

- 130 -

[160] K. Lai and M. Baker, “Measuring bandwidth,” in IEEE INFOCOM’99. Con-
ference on Computer Communications. Proceedings. Eighteenth Annual Joint
Conference of the IEEE Computer and Communications Societies. The Future
is Now (Cat. No. 99CH36320), vol. 1. IEEE, 1999, pp. 235–245.

[161] Genie software package. Accessed: 2020-04-15. [Online]. Available:
https://www.bayesfusion.com/.

[162] A. Rabkin, M. Arye, S. Sen, V. S. Pai, and M. J. Freedman, “Aggrega-
tion and degradation in jetstream: Streaming analytics in the wide area,” in
11th {USENIX} Symposium on Networked Systems Design and Implementation
({NSDI} 14), 2014, pp. 275–288.

[163] N. Naik, “Docker container-based big data processing system in multiple clouds
for everyone,” in 2017 IEEE International Systems Engineering Symposium
(ISSE). IEEE, 2017, pp. 1–7.

[164] R. Chaudhary, G. S. Aujla, N. Kumar, and J. J. Rodrigues, “Optimized big data
management across multi-cloud data centers: Software-defined-network-based
analysis,” IEEE Communications Magazine, vol. 56, no. 2, pp. 118–126, 2018.

[165] Y. Wang, Q. Wang, X. Chen, D. Chen, X. Fang, M. Yin, and N. Zhang, “Con-
tainerguard: A real-time attack detection system in container-based big data
platform,” IEEE Transactions on Industrial Informatics, 2020.

131

https://www.bayesfusion.com/

	Introduction
	Research Motivation
	Research Contributions
	Thesis Structure

	Literature Review
	Big Data
	Apache Hadoop Architecture
	YARN
	HDFS
	MapReduce

	Big Data Applications based on the MapReduce Technology
	Real-Time Performance Diagnosis of Big Data Systems
	What is performance diagnosis?
	The components of performance diagnosis:
	The methods for performance diagnosis:

	Why performance diagnosis?
	Requirements for an automated performance diagnosis platform

	Deployment Environment
	Cloud computing
	Why cloud computing for big data?

	Commercial and Open Source Tools for Big Data Systems

	SmartMonit: Real-time Big Data Monitoring System
	Introduction
	Related Work
	System Overview
	System Architecture
	Information Collection
	Computation and Storing
	Visualization

	Experimental Evaluation
	Experimental setup
	Performance and overheads
	Execution time evaluation of the benchmarks

	Visualization
	Micro-benchmark
	Building Execution Graph
	Real-time demonstration

	Discussion and Future Work
	Conclusion

	AutoDiagn: An Automated Real-time Diagnosis Framework for Big Data Systems
	Introduction
	Related Work
	Requirements and design idea
	Fundamental prerequisite for diagnosing big data processing systems
	Key design idea
	The generalizability of AutoDiagn

	AutoDiagn Architecture
	Architecture overview
	AutoDiagn monitoring framework
	AutoDiagn diagnosing framework
	AutoDiagn diagnosing interfaces for Hadoop
	Example applications
	Parallel Execution
	Reliability analysis

	Case Study
	Symptom detection for outliers
	Root cause analysis for outliers
	Root cause of outliers
	Detecting data locality issues
	Detecting resource heterogeneity issues
	Detecting network failure issues
	Decision making

	Evaluation
	Experimental setup
	Diagnosis detection evaluation
	Performance and overheads

	Discussion and Future Work
	Conclusion

	BigPerf: Probabilistic Performance Diagnosis and Prediction for Cloud-based Big Data Systems
	Introduction
	Related Work
	BigPerf: Bayesian Performance Diagnosis and Prediction for Cloud-based Big Data Systems
	BNs for Big Data QoS Diagnosis and Prediction

	Experiment and Results Analysis
	Experiments
	Performance Diagnosis
	Transaction Time
	Mapper Performance Diagnosis
	Reducer Performance Diagnosis

	Big Data QoS Prediction

	Conclusion

	Conclusion
	Thesis Summary
	Limitations

	Future Research Directions
	SDN-based Light-weight Monitoring Framework for Big Data Systems
	Diagnosis Framework for Big Data Systems using AI Techniques
	Online Performance Diagnosis and Prediction for Big Data Systems
	Performance Evaluation of Container-based Big Data Applications in Multiple Cloud Environments

	References

