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1 Introduction

In this paper, we study existence and local uniqueness of periodic solutions of nonlinear delay
first-order equation

ẋ(t) = f (x(t − ε), t), t ∈ R (1.1)

where ε is a positive parameter, f : R2 → R and f satisfies assumptions fully specified in
Theorems 3.1 and 3.2 below. We use classical methods such as Leray–Schauder degree and a
priori estimates to prove that for sufficiently small parameters ε and under certain assump-
tions to right-hand-side function f , there is a locally unique periodic solution that depends
continuously on ε. Similar methods were used e.g., in [7, 8] where more complicated neutral
differential equations were studied. Bifurcation theory is applied for perturbed second order
case of (1.1) to get existence and non-existence results for periodic and bounded solutions with
examples in Section 4. Related results to this paper are derived in [1]. We refer the reader
to [2] for more papers dealing with the effects of small delays on the dynamical behaviors of
systems compared with differential equations without delays.
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2 Preliminaries

As we already mentioned our paper deals with periodic solutions of equation (1.1). Such
equations are usually equipped with initial condition x(t) = φ(t) for t ∈ [−ε, 0] where func-
tion φ is given. To avoid defining an initial condition for periodic solutions we introduce the
following new problem. We see that a function x is a T-periodic solution of (1.1) and ε ∈ (0, T)
if and only if it is a solution of the problem

ẋ(t) = f (x (t − ε) , t) , t ∈ [0, T],

x(t) = x(T + t), t ∈ [−ε, 0] .
(2.1)

The corresponding problem (when ε = 0) is then

ẋ(t) = f (x (t) , t) , t ∈ [0, T],

x(0) = x(T).
(2.2)

Here we introduce some notation we will use in the rest of our paper. Let X be the
space of continuous, T-periodic functions defined on R equipped with the maximum norm
∥x∥∞ := maxt∈R |x(t)|. We define the closed ball in X as

Br(y) =: {x ∈ X; ∥x − y∥∞ ≤ r}

and let I : X → X be the identical operator. For the Leray–Schauder degree of function f
on domain Ω at point 0, we will use the standard notation deg( f , Ω, 0). Properties of Leray–
Schauder degree can be found in e.g., in [4].

3 Existence results

Theorem 3.1. Let f : R × R → R, f = f (x, t) be a uniformly Lipschitz continuous function with
respect to x, T-periodic in variable t. Let there exist δ, η, K, L > 0 such that −L + η < K − η and
either

f (x, t) ≥ δ for (x, t) ∈ [−L − η,−L + η]× [0, T]

and f (x, t) ≤ −δ for (x, t) ∈ [K − η, K + η]× [0, T], (3.1)

or

f (x, t) ≤ −δ for (x, t) ∈ [−L − η,−L + η]× [0, T]

and f (x, t) ≥ δ for (x, t) ∈ [K − η, K + η]× [0, T] (3.2)

is satisfied. Then there exists ε0 > 0 such that for every ε ∈ (0, ε0], there exists a solution of problem
(2.1) that is bounded by K and −L.

Proof. Denote
Ω = {x ∈ X; x([0, T]) ⊂ (−L, K)} .

First, we assume that the condition (3.1) is valid. We define the following operator

F : [0, T]× X → X, F(ε, x)(t) = x(T) +
∫ t

0
f (x̃ (s − ε) , s) ds (3.3)
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where x̃(t) = x(t) if t ∈ [0, T], and x̃(t) = x(T + t) if t ∈ [−ε, 0). Clearly, the operator F is
well defined. Note that F is also continuous and compact due to the local boundedness and
continuity of f . In the following, we will use the notation Fε := F(ε, .) whenever ε ≥ 0 is fixed.

Our goal is to prove that if ε0 > 0 is sufficiently small then for the Leray–Schauder degree,
there holds

deg(I − Fε, Ω, 0) = deg(I − F0, Ω, 0) = 1

for ε ∈ (0, ε0].
We will prove that (I − θF0)x ̸= 0 for every x ∈ ∂Ω and θ ∈ [0, 1]. This is clearly true for

θ = 0. Assume that there exists some θ ∈ (0, 1) and a solution x ∈ ∂Ω of problem

ẋ(t) = θ f (x (t) , t) for t ∈ [0, T],

x(0) = θx(T).
(3.4)

This means that x is a fixed point of the operator θF0. Since x ∈ ∂Ω, there exists either
t0 ∈ [0, T] and x(t0) = K, or t1 ∈ [0, T] and x(t1) = −L. We will deal with the first case that x
attains maximum K > 0 at some t0, since the proof is similar in the second case.

Due to the assumption (3.1), we see that ẋ0(t0) ≤ −δ and hence x is decreasing in some
neighbourhood of t0. Then necessarily t0 = 0, otherwise x would attain higher values for
some t < t0. The solution x satisfies the problem (3.4), hence x(T) ≥ K. This is not possible,
since x is decreasing in some neighbourhood of 0 and decreases whenever x reaches value K
due to (3.1). Thus, we proved deg(I − θF0, Ω, 0) = deg(I, Ω, 0) = 1.

Finally, we will prove that (I − θF0 − (1 − θ)Fε)x ̸= 0 for every x ∈ ∂Ω and θ ∈ [0, 1]. This
means we have to show that there are no solutions of problem

ẋ(t) = θ f (x (t) , t) + (1 − θ) f (x (t − ε) , t) , t ∈ [0, T],

x(t) = x(T + t), t ∈ [−ε, 0]
(3.5)

that lie on the boundary of Ω. Let there exist a solution x of (3.5) that attains its maximum
K at some t0 ∈ [0, T] (the case when x attains minimum −L would be treated similarly).
This solution can be periodically extended to the whole real line. Moreover, x is Lipschitz
continuous with some Lipschitz constant M that is a bound for f on set Ω. For some ε0 > 0
sufficiently small and dependent on x, there holds x(t0 − ε) ∈ [K − η, K] for ε ∈ (0, ε0] and so
ẋ(t0) ≤ −δ. This is a contradiction, since x is periodic and attains maximum at t0.

The next step is to remove the dependence of ε0 on solution x. For every x ∈ Ω, there
holds

|x(t0)− x(t0 − ε)| ≤ Mε0 for all ε ∈ [0, ε0].

If we choose ε0 = η
M then both values x(t0) and x(t0 − ε) stay in the interval [K − η, K] for

ε ∈ [0, ε0]. Therefore since x satisies the problem (3.5), we get ẋ(t0) ≤ −δ what contradicts the
fact that x attains its maximum at t0. Thus we proved deg(I − Fε, Ω, 0) = deg(I − F0, Ω, 0) = 1
for ε ∈ (0, ε0].

Next, we assume that the condition (3.2) is valid. In this case, our goal is to prove the
existence of T-periodic solution of problem

ẏ(t) = − f (y (t + ε) ,−t) , t ∈ [0, T],

y(t) = y(T + t), t ∈ [0, ε] .
(3.6)

for all ε > 0 sufficiently small, since then we just set s = −t and x(s) := y(−s). Then x will be
a T-periodic solution of the original problem (2.1).
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We define the following operator

G : [0, T]× X → X, G(ε, x)(t) = x(T)−
∫ t

0
f (x̃ (s + ε) ,−s) ds

where x̃(t) = x(t) if t ∈ [0, T], and x̃(t) = x(t − T) if t ∈ (T, T + ε]. Note that the right-hand-
side function in problem (3.6) satisfies the assumption (3.1). Using the notation Gε := G(ε, .)
for ε ≥ 0 fixed and using similar arguments as in the previous part of the proof, we come to
conclusion

deg(I − Gε, Ω, 0) = deg(I − G0, Ω, 0) = 1

for ε ∈ (0, ε0] with ε0 > 0 sufficiently small.

Theorem 3.2. Let f : R × R → R, f = f (x, t) be a bounded continuous function, T-periodic in
variable t and there exist K, L, δ > 0 such that either∫ T

0
f (x, t) dt ≥ δ for x ≥ K and

∫ T

0
f (x, t) dt ≤ −δ for x ≤ −L (3.7)

or ∫ T

0
f (x, t) dt ≤ −δ for x ≥ K and

∫ T

0
f (x, t) dt ≥ δ for x ≤ −L. (3.8)

Then for every ε > 0 there exists a solution of problem (2.1).

Proof. In our proof, we will proceed under the case (3.7) only since the case (3.8) would be
dealt with similarly as in the proof of Theorem 3.1 under the assumption (3.2). We define the
following operators

H : X → X, T : R × X → R × X,

H(x)(t) =
∫ t

0
f (x(s − ε), s) ds − t

T

∫ T

0
f (x(s − ε), s) ds,

T(r, x)(t) =
(∫ T

0
f (x(s − ε), s) ds, x(t)− r − H(x)(t)

)
.

Observe that T(r, x) = 0 for some r ∈ R and x ∈ X if and only if x is a solution of (2.1) and
x(0) = r.

As in the proof of Theorem 3.1, we will use the Leray–Schauder degree to prove the
assertion. Let M > 0 be a global bound of right-hand-side function f and let α = max{K, L}+
2MT + 1, β = α + 2MT + 1. We define the domain

Ω := {(r, x) ∈ R × X; |r| < α, ∥x∥∞ < β}

and the homotopy

Tθ(r, x) =
(∫ T

0
f (r + θH(x)(s − ε), s) ds, x(t)− θ(r + H(x)(t))

)
where θ ∈ [0, 1]. Our goal is to prove that

deg(T1, Ω, 0) = deg(T0, Ω, 0) = 1

which means that there exist (r, x) ∈ Ω such that T1(r, x) = 0. One can easily prove that
T1(r, x) = 0 if and only if T(r, x) = 0.
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Now, we prove that Tθ(r, x) ̸= 0 for (r, x) ∈ ∂Ω and θ ∈ [0, 1]. Note that H(x)(0) = 0 and
H(x) ∈ X for every x ∈ X. Since

|Ḣ(x)(t)| =
∣∣∣∣ f (x(t − ε), t)− 1

T

∫ T

0
f (x(s − ε), s) ds

∣∣∣∣ ≤ 2M

due to the boundedness of f , we have |H(x)(t)| ≤ 2MT for every x ∈ X and t ∈ R. Next,
assume by contradiction that there is some (r, x) ∈ ∂Ω and θ ∈ [0, 1] such that Tθ(r, x) = 0.
Then it holds

|x(t)| = θ|r + H(x)(t)| ≤ α + 2MT < β, t ∈ R

for every r ∈ [−α, α]. Then necessarily r = ±α, otherwise (r, x) /∈ ∂Ω. For the case r = α, we
obtain

r + θH(x)(s − ε) ≥ α − 2MT ≥ K,

so due to the assumption (3.7), it holds

∫ T

0
f (r + θH(x)(s − ε), s) ds ≥ δ.

This means that Tθ(α, x) ̸= 0 and this is a contradiction. For the case r = −α, we obtain a
similar estimate

r + θH(x)(s − ε) ≤ −α + 2MT ≤ −L

and using (3.7) leads to a contradiction. Thus deg(T1, Ω, 0) = deg(T0, Ω, 0).
The identity deg(T0, Ω, 0) = 1 follows from the basic properties of the Leray–Schauder

degree. In fact, the domain Ω can be represented as a Cartesian product of interval and a ball
in the maximum norm. Hence

deg(T0, Ω, 0) = deg ((g, I), Ω, 0) = deg(g, (−α, α), 0)

where g = g(r) =
∫ T

0 f (r, s) ds. Since g(−α) < 0 < g(α) due to the assumption (3.7), we can
define homotopy gθ(r) = θg(r) + (1 − θ)r and we conclude that deg(g, (−α, α), 0) = 1.

Lemma 3.3. Let f : R × R → R, f = f (x, t) be a uniformly Lipschitz continuous function with
respect to x, T-periodic in variable t. Denote by M a Lipschitz constant for function f and let L > M
be a given constant. Then for any ε > 0 such that

ε <
L − M

L
e−LT, (3.9)

(periodic) solutions of problem (2.1) do not intersect each other.

Proof. Let x, y be two (periodic) solutions of (2.1) that intersect at some t0 ∈ [0, T]. Introduce
the norm ∥x∥L := maxt∈[t0,t0+T] e−L(t−t0)|x(t)|. Let z =: x − y and t ∈ [t0, t0 + T]. Using
standard estimates, the Lipschitz continuity of f (and M denotes the Lipschitz constant), the
periodicity of function z and the equality

z(t) =
∫ t

t0

(ẋ − ẏ)(s)ds =
∫ t

t0

f (x(s − ε), s)− f (y(s − ε), s)ds,
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we obtain the following estimation

e−L(t−t0)|z(t)| ≤ M
∫ t

t0

e−L(t−s+ε)e−L(s−ε−t0)|z(s − ε)| ds

≤ M
(∫ t

t0+ε
e−L(−s+ε+t)e−L(s−ε−t0)|z(s − ε)| ds

+
∫ t0+ε

t0

e−L(−s+ε+t)e−L(s−ε−t0)|z(s − ε)| ds
)

≤ M
L

(
e−Lε − e−L(t−t0+ε)

)
∥z∥L

+
∫ t0+ε

t0

eL(s+T−t−ε)e−L(s−ε+T−t0)|z(s − ε + T)| ds

≤
(

M
L

+ εeLT
)
∥z∥L .

Hence z ≡ 0 due to the assumption (3.9) and this concludes the proof of the lemma.

Now, we are ready to prove the following Theorem 3.4. The proof relies on Theorem 3.1,
however, Theorem 3.4 can be proven also using Theorem 3.2.

Theorem 3.4. Let f : R × R → R, f = f (x, t) be a uniformly Lipschitz continuous function with
respect to x, T-periodic in variable t and let x0 be a (T-periodic) solution of problem (2.2). Assume
that there exists a constant η > 0 such that function f is either increasing, or decreasing in variable
x for every t ∈ [0, T] and x ∈ [x0(t)− η, x0(t) + η]. Then there exists ε0 > 0 such that for every
ε ∈ (0, ε0], there exists a locally unique solution xε of problem (2.1) and xε depends continuously on ε.

Proof. Assume that f is increasing in variable x for every t ∈ [0, T] and x ∈ [x0(t)− η, x0(t) + η].
We define a new right-hand-side function

g(x, t) :=


f (x0(t)− η, t) + x − x0(t) + η, (x, t) ∈ (−∞, x0(t)− η)× [0, T] ,

f (x, t), (x, t) ∈ [x0(t)− η, x0(t) + η]× [0, T] ,

f (x0(t) + η, t) + x − x0(t)− η, (x, t) ∈ (x0(t) + η, ∞)× [0, T] .

Since g is increasing in variable x, the function x0 ∈ X is the only periodic solution of equation

ẋ(t) = g (x, t) , t ∈ [0, T]. (3.10)

In fact, since x0 is the periodic solution of (3.10) then necessarily
∫ T

0 g(x0(t), t) dt = 0. Due
to the Lipschitz continuity of g, we know that any other solution y does not cross x0, hence
either y(t) > x0(t) or y(t) < x0(t) for all t ∈ [0, T]. In both cases due to the strict monotonicity
of g, we get

∫ T
0 g(y(t), t) dt ̸= 0 so y cannot be periodic.

The new right-hand-side function g satisfies the assumptions of Theorem 3.1 and thus
there exists ε0 > 0 such that for every ε ∈ (0, ε0], there exists at least one (periodic) solution xε

of problem
ẋ(t) = g (x (t − ε) , t) , t ∈ [0, T],

x(t) = x(T + t), t ∈ [−ε, 0] .
(3.11)

Moreover, all such solutions are uniformly bounded independently of ε. We need to verify that
for some ε0 > 0 sufficiently small, the solution xε of (3.11) is also a solution of original problem
(2.2). More precisely, we prove that there exists some ε0 > 0 such that for every ε ∈ (0, ε0],



Periodic and bounded solutions of FDEs with small delays 7

there holds xε ∈ Bη(x0). Assume that this is not true, i.e. there exists a sequence of positive
parameters {εn}n∈N such that εn → 0 and for every n ∈ N, it holds xεn /∈ Bη(x0). Recall that
the solutions xεn are fixed points of the operator F defined by (3.3) and due to the compactness
of F and the uniform boundedness of functions xεn , the set {xεn}n∈N is relatively compact in
X. Hence some subsequence converges uniformly to a periodic solution of equation (3.10)
(since εn → 0) that is not equal to x0. This contradicts the uniqueness of periodic solution x0.

Next, we will prove the local uniqueness of periodic solutions of original problem (2.2).
More precisely, the solution xε is unique in the ball Bη(x0) In fact, let y be a periodic solution
that lies in Bη(x0) and is not equal to xε. Then necessarily, there exists some t0 ∈ [0, T]
such that y(t0) = xε(t0), otherwise we would come to

∫ T
0 f (y(t), t) dt ̸= 0 due to the strict

monotonicity of f . We choose some L > M and ε0 > 0 sufficiently small so the inequality
(3.9) is valid for all ε ∈ [0, ε0]. Hence the uniqueness follows from Lemma 3.3. This completes
the proof of the local uniqueness of periodic solutions of problem (2.1) for small ε > 0.

The continuous dependence of solution xε on parameter ε is a consequence of uniform
boundedness of these solutions and compactness of the operator F defined by (3.3).

Remark 3.5. Lemma 3.3 need not to be true if the inequality (3.9) is not valid. In fact, consider
the equation

ẋ(t) = x
(

t − 3π

2

)
.

This equation possesses infinitely many 2π-periodic solutions of form a sin(x + b) for a ∈ R

and b ∈ [0, π) and every two of these solutions intersect each other.

4 Bifurcations

We consider the perturbed equation

ẍ(t) + g(x(t − εµ1)) + εµ2h(t) = 0 (4.1)

where g, h ∈ C3(R, R), µ1, µ2 ∈ R and h(t) is T-periodic.

Theorem 4.1. Assume that there is a T-periodic solution u(t) of equation

ü + g(u) = 0 (4.2)

such that v(t) = u̇(t) is the only T-periodic solution up to a scalar multiple of

v̈ + g′(u(t))v = 0.

If the function

M(α) = µ2

∫ T

0
h(t + α)u̇(t)dt − µ1

∫ T

0
g′(u(t))u̇2(t)dt

has a simple zero α0, i.e., M(α0) = 0 and M′(α0) ̸= 0, then for any ε ̸= 0 small, the equation (4.1)
has the unique T-periodic solution xε(t) that satisfies

sup
t∈R

|xε(t)− u(t − α0)|+ |ẋε(t)− u̇(t − α0)| = O(ε). (4.3)

Proof. Note that the equation (4.1) can be written in the form

ẍ(t) + g(x(t))− εµ1g′(x(t))ẋ(t) + εµ2h(t) = O(ε2).

Hence we can apply the well-known Melnikov theory (see [3, 5]) to obtain the result.
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Remark 4.2. 1. Note that M(α) is T-periodic and

M(α) = −µ1

∫ T

0
ü2(t)dt − µ2

∫ T

0
ḣ(t + α)u(t)dt. (4.4)

2. The function u(t) is embedded into a 1-parametric family of periodic solutions ua(t),
a ∈ (a1, a2) ⊂ R of (4.2) with minimal periods T(a). So ua0(t) = u(t). If T′(a0) ̸= 0 then the
assumption of Theorem 4.1 holds.

3. The existence part of Theorem 4.1 holds if

max
α∈R

M(α)min
α∈R

M(α) < 0.

4. If M(α) ̸= 0, ∀α ∈ R then there is no bifurcation.
5. If x(t) is a solution of (4.1) then x(t + kT), k ∈ Z is also a solution. So we consider in

Theorem 4.1 just α0 ∈ [0, T].

To illustrate the theory, we consider the following example

ẍ(t) + x(t − εµ1) + x3(t − εµ1) + εµ2 cos 2t = 0. (4.5)

So (4.2) is the Duffing equation

U′′(t) + U(t) + U3(t) = 0

possessing a family of periodic solutions

ua(t) = a cn(
√

1 + a2t)

for a > 0 with periods T(a) = 4K(k)√
1+a2 , k = a√

2+2a2 . Note ua(0) = a and u′
a(0) = 0. Here cn is

the Jacobi elliptic function, K(k) is the complete elliptic function of the first kind and k is the
elliptic modulus, see [6]. Moreover, we have

T′(a) =
8(E(k)− K(k))− 4a2K(k)

a
√

1 + a2 (2 + a2)
< 0,

since E(k) ≤ K(k), where E(k) is the complete elliptic function of the second kind. So T(a) is
decreasing from T(0) = 2π to 0, and hence Remark 4.2 2 can be applied. Now T = π, so we
numerically solve T(a) = π to get a0 ∼= 2.03284 and then (4.4) has the form

M(α) = −105.817µ1 + 6.17466µ2 sin 2α. (4.6)

Applying Theorem 4.1 we get the following result.

Theorem 4.3. If |µ1| < 0.058352|µ2| and ε ̸= 0 is small, then (4.5) has precisely two π-periodic
solutions orbitally near ua0(t) = 2.03284 cn(2.26549t), i.e., (4.3) holds just for two α0,1, α0,2 ∈ [0, π),
namely for roots of (4.6). If |µ1| > 17.1374|µ2| then (4.5) has no π-periodic solutions orbitally near
ua0(t) for any ε ̸= 0 small, i.e., (4.3) does not hold for any α ∈ R.

We end this paper with extending the above bifurcation results of periodic solutions to
bounded ones.
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Theorem 4.4. Assume that there are x0 and x1 such that g(x0) = g(x1) = 0 and g′(x0) < 0,
g′(x1) < 0. Suppose there is a solution u(t) of (4.2) such that limt→−∞ u(t) = x0 and limt→∞ u(t) =
x1. If the function

M(α) = −µ1

∫ ∞

−∞
ü2(t)dt + µ2

∫ ∞

−∞
h(t + α)u̇(t)dt (4.7)

has a simple zero α0 then for any ε ̸= 0 small, the equation (4.1) has the unique solution xε(t) that
satisfies (4.3).

Remark 4.5. The points 3, 4 and 5 of Remark 4.2 remain valid for this case.

To illustrate the theory, we consider

ẍ(t)− x(t − εµ1) + x3(t − εµ1) + εµ2 cos 2t = 0. (4.8)

So (4.2) is the Duffing equation

U′′(t)− U(t) + U3(t) = 0

possessing a homoclinic solution
u(t) =

√
2 sech t

to x0 = x1 = 0. Again h(t) = cos 2t. Then the Melnikov function (4.7) is now

M(α) = −28
15

µ1 + 2
√

2π sech πµ2 sin 2α. (4.9)

Applying Theorem 4.1 we get the following result.

Theorem 4.6. If |µ1| < 15π sech π
7
√

2
|µ2| and ε ̸= 0 is small, then (4.8) has precisely two bounded

solutions orbitally near
√

2 sech t, i.e., (4.3) holds just for two α0,1, α0,2 ∈ [0, π), namely for roots of
(4.9). If |µ1| > 15π sech π

7
√

2
|µ2| then (4.8) has no bounded solutions orbitally near

√
2 sech t for any

ε ̸= 0 small, i.e., (4.3) does not hold for any α ∈ R. Note 15π sech π
14
√

2
∼= 0.41065.

Finally, we consider

ẍ(t) + x(t − εµ1)− x3(t − εµ1) + εµ2 cos 2t = 0. (4.10)

So (4.2) is the Duffing equation

U′′(t) + U(t)− U3(t) = 0

possessing a heteroclinic solution

u(t) = tanh(t/
√

2).

to x0 = −1 and x1 = 1. Again h(t) = cos 2t. Then the Melnikov function (4.7) is now

M(α) = −4
√

2
15

µ1 + 2
√

2π csch
√

2πµ2 cos 2α. (4.11)

Applying Theorem 4.1 we get the following result.

Theorem 4.7. If |µ1| < 15
2 π csch

√
2π|µ2| and ε ̸= 0 is small, then (4.10) has precisely two bounded

solutions orbitally near tanh(t/
√

2), i.e., (4.3) holds just for two α0,1, α0,2 ∈ [0, π), namely for roots of
(4.11). If |µ1| > 15

2 π csch
√

2π|µ2| then (4.10) has no bolunded solutions orbitally near tanh(t/
√

2)
for any ε ̸= 0 small, i.e., (4.3) does not hold for any α ∈ R. Note 15

2 π csch
√

2π ∼= 0.554347.
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