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In this paper, we develop a fractional-order differential model for the dynamics of immune responses to SARS-CoV-2 viral load in
one host. In the model, a fractional-order derivative is incorporated to represent the effects of temporal long-run memory on
immune cells and tissues for any age group of patients. (e population of cytotoxic T cells (CD8+), natural killer (NK) cells, and
infected viruses is unknown in this model. Some interesting sufficient conditions that ensure the asymptotic stability of the steady
states are obtained. (is model indicates some complex phenomena in COVID-19 such as “immune exhaustion” and “long
COVID.” Sensitivity analysis is also investigated for model parameters to determine the parameters that are effective in disease
control and future treatment as well as vaccine design. (e model is verified with clinical and experimental data of 5 patients
with COVID-19.

1. Introduction

(e ongoing pandemic coronavirus pandemic (COVID-19),
caused by the SARS-CoV-2 virus, started in Wuhan, China, in
December 2019 and has spread tomore than 197 countries.(e
rapid spread of this disease threatens the health of a large
number of people. As a result, immediate measures must be
taken to prevent the disease in the community. It is the seventh
member of the coronavirus (CoV) family, along with MERS-
CoV and SARS-CoV [1]. (e virus is very serious and spread
through respiratory droplets and close contact [2]. Scientists
and researchers are therefore interested in how to develop
treatment methods for such infectious diseases.(osemethods
are useful in understanding the dynamics/interactions between
pathogens and their hosts. For years, mathematical modelers
have been addressing specific aspects of infectious diseases
[3, 4]. (e majority of these efforts have been focused on
multilevel diseases and have adopted quite different compu-
tational approaches [5–9].

Humans may develop upper respiratory tract infections
as a result of COVID-19 transmission at the cellular level.
Human cells have healthy, infected, virus cells, and anti-
bodies that are input parameters, and the output will be

infected lung cells. (e transmission of CoV among groups
has been discussed in many research papers [10–12]. Despite
this, the dynamics of CoV infection in an individual (or-
ganism) [22] are not extensively explored in the literature,
which we analyze in the present paper.

In epidemiology and immunology, mathematical models
are used to understand the dynamics of infectious diseases.
In general, the coronavirus model depends on the initial
conditions, and the classical order model cannot explain the
virus perfectly because of its local nature.

Fractional-order derivatives are nonlocal in nature and
are also dependent on the initial values. Furthermore, the
fractional-order model has more advantages in terms of best
fitting data, information about its memory, and hereditary
properties. Furthermore, the hereditary properties increase
the utility of the models constructed in fractional-order
derivatives to describe the real phenomenon (see [13, 14]). In
[15], the authors studied the transmission dynamics of
fractional-order coronavirus models and compared our
results with some real data against confirmed infection and
death cases per day for the first 67 days inWuhan. According
to [16], the authors compared the results of integer and
fractional-order coronavirus (SEIRD) models, using real
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data from Italy, reported by the WHO. (e results proved
that the fractional-order case has a less root-mean-square
error of fitting the model to the real data than the classical
one, and the fractional model has a closer estimation of the
reality. Singh et al. [17] discussed the discretization com-
putational techniques to solve numerically a fractional-order
coronavirus model, and this technique is effective to show
the behavior of the solution in a very long time period which
is helpful to predict the coronavirus model accurately. Most
of the authors studied the coronavirus dynamics in the sense
of fractional-order derivatives ([18–21]). At the level of cells,
the authors in [22] studied the dynamics of a fractional-
order delay differential model for coronavirus (CoV) in-
fection to give us the best understanding of what causes the
intensity of symptoms and illness of contaminated lung and
respiratory system; see also [23–25].

As a result of the above motivation, in this paper, we
propose a fractional-order model for coronaviruses with
three compartments, such as SARS-CoV-2 density, cytotoxic
T cells, and natural killer cells. (e Caputo fractional de-
rivative has a power-law kernel, where its decaying rate
depends directly on the fractional orders. For the considered
model, we derive the positiveness of the solution and ex-
amine the local stability of existing equilibrium points. By
using the important sensitive parameters, we study the
model qualitatively to demonstrate the eradication of the
disease. As graphs, we can showmore interesting results and
their theoretical and numerical justifications.

(is paper is organized as follows: in Section 2, we
propose a virus infection model and study the positivity
solution and local stability results. In Section 3, we discuss

parameter estimation. Section 4 provides numerical simu-
lations to validate the obtained theoretical results. Section 5
provides sensitivity analyses. (e conclusion is in Section 6.

2. The Mathematical Model

Herein, we develop a fractional-order mathematical model
for the immune system response to the SARS-CoV-2 virus in
COVID-19 patients. We consider the RNA SARS-CoV-2
viral load (S), a cell population of the innate immune system:
natural killer (NK) cells, and a cell population of the adaptive
immune system: cytotoxic (CD8+) T cells (T). Also, we
assume that t represents the variable time (day). (e as-
sumptions of the model are as follows:

(i) (e population of infected cells and the SARS CoV 2
virus concentration are assumed same

(ii) (e SARS-CoV-2 virus in the absence of an immune
response grows logistically that is based on the
fitting of the data [26]

(iii) (e infected virus can be cleared by both NK and
CD8+ cells [26, 27]

(iv) (e virus promotes an initial activation of NK and
CD8+ cells at the beginning of the disease [28, 30]

(v) (e total number of NK cells was decreased in
patients after some number of encounters with
SARS-CoV-2 infection [30]

Based on the above assumptions, the system of fractional
differential equations for representing interactions of the
SARS-CoV-2 virus and the immune system is given by

D
α
S(t) � a1S(t)(1 − bS(t)) − dstS(t)F(S, T) − dsnS(t)N(t) − d1S(t),

D
α
T(t) � bt + rG(S)T(t) + e1N(t)S(t) − qT(t)S(t) − dtT(t),

D
α
N(t) � bn + kG(S)N(t) − dnsN(t)S(t) − dnN(t),

(1)

where Dα � dα/dtα defined in Caputo sense. In the equa-
tions, three cell populations are denoted by S (t)� density of
SARS-CoV-2 (copies/ml), T (t)� total cytotoxic T cells
population (cell/ ml), and N (t)� total natural killer cells
(cell/ml).

(e term F(S, T) � (T/S)α/z + (T/S)α is fractional
viral clearance rate of rational form by activated cytotoxic
T cells which is based on de Pillis–Radunskaya Law [36].
However, G(S) � Sn/cn

1 + Sn is a modified Michaelis-
Menten term for T cells activation and NK cell recruit-
ment by SARS-CoV-2. S(0) � S0 > 0, T(0) � T0 > 0, N(0) �

N0 > 0 are initial conditions of the system (1), and 0< α≤ 1
is derivative order.

(e dynamics of the SARS-CoV-2 is represented by the
first equation of the system (1). Infected virus growth is
logistical with replication rate a1 and carrying capacity b.
Virus lysis by CD8+ Tcells is shown by dstSF, and the term
dsnSN represents the virus death by NK cells. (e viral
clearance rate is presented by d1.

(e second equation shows the dynamic of the CD8+

Tcells against infected virus. Birth and death of CD8+ Tcells
are represented by bt and dtT terms [31]. (e term rRT

shows amount of CD8+ T cells activation by infected virus.
(e term e1NS represents recruitment of CD8+ Tcells by the
debris from virus lysed by NK cells [32]. Inactivation of
CD8+ T cells by infected virus is shown by qTS term. Be-
havior of NK cells is represented by third equation. NK cells
activation by SARS-CoV-2 is shown by kRN. (e term
dnsNS is inactivation terms of NK cells by infected cells.
Natural death of NK cells is represented by dnN term.

Definition 1. [14] Caputo derivative of fractional-order α for
a function f(t) is described as

D
α
f(t) �

1
Γ(n − α)

􏽚
t

0
(t − τ)

n− α− 1
f

n
(τ)dτ, (2)

where n − 1< α< n ∈ Z+, Γ(·) is the Gamma function.
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(e Laplace transform of the Caputo derivative is de-
scribed as

L D
α
f(t); s􏼈 􏼉 � s

α
F(s) − 􏽘

n− 1

i�1
s
α− i− 1

f
(i)

(0), (3)

where F(s) � L f(t)􏼈 􏼉. In particular, when
f(i)(0) � 0, i � 1, 2, . . . , n − 1, then L Dαf(t); s􏼈 􏼉 �

sαF(s).
(e basic reproductive rate/ratio R0 is defined as the

expected number of secondary infections arising from a
single individual during his or her entire infectious period,
in a population of susceptible. Epidemiology and pathogen
dynamics within hosts are both based on this concept.
Furthermore, R0 is used as a threshold parameter that
predicts whether an infection will spread. However, related
parameters that share this threshold behavior may or may
not give the true value of R0. It also denotes as the number
of secondary infection due to a single infection in a com-
pletely susceptible population. We derive the expression of
R0, allied to the disease-free equilibrium
E0(S0 � 0, T0 � 0, N0 � 0). (e recovery rate from the virus
and transmission rate of the virus from infected individuals
to susceptible individuals are described by the following
matrices:

D �

d1 0 0

0 0 0

0 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

B �

a1 0 0

0 − dt 0

0 0 − dn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(4)

(us, the basic reproduction number R0 � ρ(D− 1B),
calculated as the spectral radius of the next generation
matrix [33], is then defined by

R0 �
a1dtdn

d1
. (5)

(e disease is eradicated if R0 ≤ 1 and will persist as t

goes to infinity if R0 > 1; see [34].

2.1. Nonnegativity of the Model Solutions. Herein, we in-
vestigate the nonnegativity of the model solutions.

Lemma 1 (Generalized Mean Value Theorem [35]). Let the
function f(t) ∈ C[a, b] and its fractional derivative
Dαf(t) ∈ C(a, b] for 0< α≤ 1 and a, b ∈ R, then we have

f(t) � f(a) +
1
Γ(α)

D
α
f(ξ)(t − a)

α
, 0≤ ξ ≤ t, for every t ∈ (a, b]. (6)

Remark 1. Assume that the function f(t) is α-differentiable
on (a, b), then we have the following results [14]:

(i) If Dαf(t) < 0 for all t ∈ (a, b), then f(t) is de-
creasing on (a, b)

(ii) If Dαf(t)> 0 for all t ∈ (a, b), then f(t) is in-
creasing on (a, b)

(iii) If Dαf(t) � 0 for all t ∈ (a, b), then f(t) is constant
on (a, b)

Lemma 2. 5e solutions of model (1) with nonnegative initial
values are nonnegative.

Proof. To show this Lemma, we ought to consider that the
domain Ω � (S, T, N) ∈ R3: S≥ 0, T≥ 0, N≥ 0􏼈 􏼉 is a posi-
tively invariant region. (en, on the hyperplanes of the
region Ω, we have

D
α
S(t)S�0 � 0,

D
α
T(t)T�0 � bt + e1NS≥ 0,

D
α
N(t)N�0 � bn ≥ 0.

(7)

If S(0), T(0), N(0){ } ∈ Ω according to Lemma 1 and
Remark 1, the solution (S (t), T (t),N (t)) cannot escape from
the hyperplanes Ω. (us, the solutions of the fractional-
order model (1) are nonnegative if the initial conditions are
nonnegative for all t> 0. □ □

2.2. Stability of the Steady States. (e underlying model (1)
has the following equilibrium points: (i) disease-free with
immunity equilibriumE1(S1, T1, N1) � (0, bt/dt, bn/dn), (ii)
endemic equilibrium point E2(S2, T2, N2), if they exist,
satisfy the following equalities:

F S2, T2( 􏼁 �
a1 1 − bS2( 􏼁 − dsnN2 − d1

dst

,

kN2T2 qS2 + dt( 􏼁 + bnrT2 � rT2N2 dnsS2 + dn( 􏼁 + kN2 e1N2S2 + bt( 􏼁.

(8)
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(e corresponding linearized system of the model (1) at
any steady-state (S∗, T∗, N∗) is calculated as follows:

D
α
S(t) � a1 − 2a1bS

∗
− d1 − dsnN

∗
− dst F S

∗
, T
∗

( 􏼁 + S
∗zF

zS
S
∗
, T
∗

( 􏼁􏼠 􏼡􏼠 􏼡S(t)

− dstS
∗zF

zT
S
∗
, T
∗

( 􏼁􏼠 􏼡T(t) − dsnS
∗
N(t),

D
α
T(t) � rT

∗zG

zS
S
∗

( 􏼁 + e1N
∗

− qT
∗

􏼠 􏼡S(t) + rG S
∗

( 􏼁 − qS
∗

− dt( 􏼁T(t) + e1S
∗
N(t),

D
α
N(t) � kN

∗zG

zS
S
∗

( 􏼁 − dnsN
∗

􏼠 􏼡S(t) + kG S
∗

( 􏼁 − dnsS
∗

− dn( 􏼁N(t).

(9)

Applying Laplace transform on both sides of (9), we can
get

s
α
S(s) − s

α− 1
S(0) � a1 − 2a1bS

∗
− d1 − dsnN

∗
− dst F S

∗
, T
∗

( 􏼁 + S
∗zF

zS
S
∗
, T
∗

( 􏼁􏼠 􏼡􏼠 􏼡S(s)

− dstS
∗zF

zT
S
∗
, T
∗

( 􏼁􏼠 􏼡T(s) − dsnS
∗
N(s),

s
α
T(s) − s

α− 1
T(0) � rT

∗zG

zS
S
∗

( 􏼁 + e1N
∗

− qT
∗

􏼠 􏼡S(s) + rG S
∗

( 􏼁 − qS
∗

− dt( 􏼁T(s) + e1S
∗
N(s),

s
α
N(s) − s

α− 1
N(0) � kN

∗zG

zS
S
∗

( 􏼁 − dnsN
∗

􏼠 􏼡S(s) + kG S
∗

( 􏼁 − dnsS
∗

− dn( 􏼁N(s).

(10)

Here, S(s),T(s),N(s) are Laplace transform of S(t), T(t),
and N(t) with S(s) � L(S(t)),T(s) � L(T(t)), and
N(s) � L(N(t)). (e above (10) can be written as

Δ(s)⋆

S(s)

T(s)

N(s)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

h1(s)

h2(s)

h3(s)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (11)

where

h1(s) � s
α− 1

S(0),

h2(s) � s
α− 1

T(0),

h3(s) � s
α− 1

N(0),

Δ(s) �

s
α

+ a2 a3 a4

a5 s
α

+ a6 a7

a8 0 s
α

+ a9

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

(12)
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Δ(s) is the characteristic matrix for system (3) at
(S∗, T∗, N∗), and

a2 � 2a1bS
∗

+ d1 + dsnN
∗

+ dst F S
∗
, T
∗

( 􏼁 + S
∗zF

zS
S
∗
, T
∗

( 􏼁􏼠 􏼡 − a1, a3 � dstS
∗zF

zT
S
∗
, T
∗

( 􏼁, a4 � dsnS
∗
,

a5 � qT
∗

− rT
∗zG

zS
S
∗

( 􏼁 − e1N
∗
, a6 � qS

∗
+ dt − rG S

∗
( 􏼁, a7 � − e1S

∗
,

a8 � dnsN
∗

− kN
∗zG

zS
S
∗

( 􏼁, a9 � dnsS
∗

+ dn − kG S
∗

( 􏼁.

(13)

Clearly, the eigenvalues of Δ(s) at E0 and E1 are
− dt, − dn, d1 − a1 and − dt, − dn, d1 + dsnN1 − a1, respectively,
and assume that d1 < a1, d1 + dsnN1 < a1, which confirms
that the model (1) around the equilibrium points E0 and E1
is stable.

Lemma 3. 5e endemic equilibrium point E2 is locally as-
ymptotically stable if p1 > 0, p3 > 0, p1p2 >p3.

Proof. (e characteristic equation at E2 is described by

s
3α

+ p1s
2α

+ p2s
α

+ p3 � 0, (14)

wherep1 � a2 + a6 + a9, p2 � a6a9 + a2(a6 + a9) − a3a5 − a4
a8, p3 � a8(a3a7 − a4a6) + a9(a2a6 − a3a5).

By using the Routh-Hurwitz criterion, the endemic
equilibrium E2 is locally asymptotically stable if
p1 > 0, p3 > 0, p1p2 >p3. □ □

3. Parameter Estimation

(e study by Wölfel et al. [26] was done a virological
analysis on nine patients with COVID-19 for examining
the kinetics of viral load and measuring the virus rep-
lication in tissues of the upper respiratory tract. Infection
of all patients was known because they had near contact
with an index case. (e patients were admitted to a
hospital in Munich, Germany, and underwent virological
tests in collaboration with two reputable laboratories.
Both laboratories were equipped with the same tech-
nology in PCR-PT and the same standards for virus
isolation. Authors measured and analyzed viral loads
were projected to RNA copies per ml, per swab, and per g
for sputum, throat swab, and stool samples, respectively.
All samples were taken between 2 and 4 days after the
onset of symptoms. In [29], swab samples are used for
some mathematical models.

Here, data fitting is used to estimate the values of the
parameters of the model (1). (e parameters are fitted by
measured RNA viral load in sputum samples of five patients
from [26] by implementing a least-squares algorithm,
fminsearch, which is a MATLAB function. (e measured
viral load was done daily. (e results for parameter esti-
mation are presented in Table 1. Data fitting is made for
different values of α ∈ (0, 1]. In Figures 1–5, the result of the

fitting for values α � 1 and α � 0.98 is presented. Due to the
arbitrary derivative order of the model and nonlocality
properties of these derivatives, different curves may be
obtained in data fitting. (is advantage will help to find the
best fitting to the parameters of the model.

4. Simulations and Model Validation

In order to numerically solve system (1), the
Adams–Bashforth–Moulton method of fractional version
(FABM) will be used. (is method was introduced in [37].
Consider the following fractional-order differential
equation:

D
α
y(t) � K(t, y(t)). (15)

(e fractional Adams–Bashforth–Moultonmethod included
a two-step first step as a predictor.

y
pr

h tn+1( 􏼁 � 􏽘

⌈α⌉− 1

j�0

t
j
n+1
j!

y
(j)
0 +

1
Γ(α)

􏽘

n

i�0
pi,n+1K ti, yh ti( 􏼁( 􏼁. (16)

After computing, the predictor step in the second step
modifier is calculated by

y
m
h tn+1( 􏼁 � 􏽘

⌈α⌉− 1

j�0

t
j
n+1
j!

y
(j)
0 +

h
α

Γ(α + 1)
􏽘

n

i�0
qi,n+1K ti, yh ti( 􏼁( 􏼁,

(17)

where the pi,n+1 and qi,n+1 are

pi,n+1 �
h
α

α
(n + 1 − i)

α
− (n − i)

α
( 􏼁,

qi,n+1 � (n − i + 2)
α+1

+(n − i)
α+1

− 2(n − i + 1)
α+1

, 1≤ i≤ n,

q0,n+1 � n
α+1

− (n − α)(n + 1)
α
,

qn+1,n+1 � 1,

(18)

in which ti i � 0, 1, . . . , n are equally selected points with
fixed step length h.

Garrappa has written a MATLAB function for FABM,
FDE12, which is available at the MathWorks [48]. (e
FDE12 algorithms are used for numerically solving the

Complexity 5



Table 1: Information of the parameters.

Par. Description Units Value range Source
a1 S replication rate 1/day [2.86, 7.07] [29]
b Maximum S ml/(RNA copies) [1e − 010, 1e − 09] [29]
dst Virus lysis by CD8+ T cells rate 1/day [0.01, 0.4] Estimated
dsn Virus death rate by NK cells ml/cell(day) [1.2e − 11, 2e − 010] Estimated
d1 Natural death rate of virus 1/day [0.0001, 0.1] Estimated
bt CD8+ T cells proliferation cell/ml (day) [50 1500] [46]
r CD8+ T cell activation 1/day [0.001, 0.032] Estimated
e1 CD8+ T recruitment rate by virus lysed by NK ml/(RNA copies) (day) [2.1e − 06, 8.4e − 005] Estimated
q CD8+ T inactivation rate by virus ml/(RNA copies) (day) [1.1e − 10, 9.5e − 10] Estimated
dt Natural death rate of T cells 1/day [0.001, 0.08] [47]
bn NK cells proliferation cell/ml (day) [7, 200] [43]
k NK cells activation 1/day [0.001, 0.02] Estimated
dns Inactivation NK cells rate ml/(RNA copy) (day) [1.1e − 06, 9.09e − 05] Estimated
dn NK cells death rate 1/day [4.2e − 02, 0.15] [44, 45]
z Steepness coefficient of virus lysis by T cells — [0.01, 1] [43]
c1 Steepness coefficient of NK recruitment — [1e+ 03, 1e+ 06] Estimated
α Fractional virus kill power — [9.1e − 01, 9.9e − 01] Estimated
n Michaelis-Menten order — 2 [47]
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Figure 1: Data fitting for patient a.
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Figure 2: Data fitting for patient c.
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Figure 4: Data fitting for patient e.
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Figure 5: Data fitting for patient g.
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model (1).(is numerical simulation is done for five patients
a, c, d, e, g in [26] with their associated parameter values.

All simulations were performed to evaluate the behavior
of the SARS-CoV-2 virus against immune cells 28 days after
the onset of symptoms. In these simulations, three values
α � 0.95, 0.85, 0.80 are considered as the fractional-order
derivatives of the equations in the model (1). (e results are
shown in Figures 6–8.

As can be seen in the graphs, the virus concentration is
not accurate for each patient. Simulations show that for
smaller amounts of α, the virus load is higher. It will also
reduce the virus load with less speed and longer time.

In three patients a, c, and d, the maximum load of the
virus is before the fifth day. (is may depend on the amount
of contact and the amount of primary virus that has been
transmitted to the patient. Of course, the initial behavior of
the patient’s immune system against the virus should not be
ignored.

Unlike patients a,d, in patient c, the decrease in the RNA
viral concentration to its lowest level is about 30 days after

the onset of symptoms. As the immune system and, in
particular, the NK cells exhaust themselves, viral RNA
concentrations slowly decrease. High infections usually lead
to NK cells exhaustion, so limiting the infection potential of
NK cells [27, 28]. In SARS-CoV-2 infections, exhaustion of
the NK cell was confirmed by increased frequencies of
programmed cell death protein 1 (PD-1) positive cells and
reduced frequencies of natural killer group 2 member D
(NKG2D)-, sialic acid-binding Ig-like lectin 7 (Siglec-7)-,
and DNAX ancillary molecule-1 (DNAM-1)-expressing NK
cells related to a reduced ability to spatter interferon IFN c

(see Figure 9) [27]. Furthermore, it was shown that in sera of
COVID-19 patients, IL-6 is present in large surplus. It may
downregulate NKG2D on NK cells, leading to disorder of
NK cells activity [27].

In middle-aged patient g, due to the increased load of the
virus, it leads to the NK cells exhaustion and reduces the
infection potential. Decreased immune system function
prolongs the course of the disease, so these patients need
long-term treatment and a longer quarantine period than
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Figure 6: Numerical simulation results of SARS-CoV-2 behavior in patients a, c, d, e.
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other patients. In addition, patients who show high viral
loads 10 to 11 days after the first symptoms, due to immune
exhaustion, will have symptoms of lung infection [27]. If the
limit of quantification of RNA viral load be 200 RNA copies
per ml, the concentration of the virus in the patient’s body
will reach this limit after 330 days for α � 0.8 (see
Figure 7(b)). In this case, it is said that the patient is involved
in long COVID or Post COVID phenomenon. Chronic
COVID, known in English as long COVID, is a long-term
symptoms of acute COVID disease. (e disease, which is
characterized by long-term complications, persists after a
normal recovery period. (e diagnosis of the duration or
how long these conditions last is not yet fully understood
[38]. Based on our model, duration of long COVID for
patient g is 330 days. Of note, it seems that delay in vac-
cination of immune exhaustion and long COVID individ-
uals may be necessary. In the next section, we will discuss the
process of the disease profile in the patient g.

In patient e, an increase in viral load occurs after the first
week, potentially indicating an exacerbation of symptoms
[26]. (e immune system function of these patients needs
further investigation, and more studies should be done in
future studies.

(e diagrams in Figure 8 show the behavior of infected
virus versus the behavior of NK and CD8+ cells one month
after the first symptom in a, c patients. Order derivative
values α � 0.95, 0.85 are considered for both cases. System
(1) solutions with α � 0.85 indicate that in patient a because
of severe NK cells depletion as the first defense factor, SARS-
CoV-2 virus growth reaches more than 107. Two weeks after
the peak viral load and with more CD8+ T cells activation,
the NK cells population increases and dominates the SARS-
CoV-2 virus population. (e solutions of model (1) for α �

0.95 show that after approximately 10 days from the peak of
infected virus concentration, the population of NK cells
increases and overcomes viruses. (erefore, it can be said

that it takes two to three weeks for the immune system to
completely overcome the disease, in the patient a.

For the patient c, the solutions of (1) with α � 0.95, 0.85
indicate that due to the greater resistance of NK cells to
increased virus load and activated T cells, the virus con-
centration is a maximum of 105. Compared to the patient a,
RNA viral had a lower burden, but due to NK cell ex-
haustion, NK cells were able to dominate SARS-CoV-2
infection with greater delay. About 25–30 days after the
onset of symptoms, NK cells can return to their original
value and completely dominate the infected virus.

(e results of [42] show that despite the same initial viral
load, innate immunity, such as NK cells and INF c, is
stronger in younger patients and is more active than in
adults in exposure to SARS-CoV-2 and quickly return to
homeostasis. (is may be seen in the solutions of model (1)
as shown in Figure 8, when the α value is closer to one, the
NK cells proliferate and become active faster. Also, the
model with smaller α values is suitable for older patients.
Here, we can call α as the age parameter.

(e response of CD8+ T cells to the COVID virus is slow
and at a constant rate. It seems that in order to reduce the peak
load of the virus, T cells need to respond more quickly to the
virus attack.(erefore, it is recommended that in the first days
of the disease, drugs that lead to faster activation of T cells be
prescribed. Rapid production of neutralizing antibodies is ef-
fective in treating the disease. In patients who made the
neutralizing antibody before day 14, they eventually recovered,
but in patients who started making the neutralizing antibody
after 14 days, the antibodies lost their protective role [41].

5. Sensitivity Analysis

Sensitivity analysis is an important tool for assessing the
dynamic behavior of the underlying biological system.
Herein, we evaluate the sensitivity of state variables to small
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Figure 7: Numerical simulation results of SARS-CoV-2 behavior in patient g (a). Schematic of SARS-CoV-2 long-term behavior in
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variations in model parameters to enable us to (i) display
how the robustness of the underlying infection model is too
small changes in the parameter values, (ii) discover in which
subinterval the model sensitive to a particular parameter to
understand significant processes and immune system
mechanisms. We evaluate the sensitivity functional
throughout studying the effect of changes in the parameters
on the period to estimate the severity of the diseases [22].

Somemodel parameters are very effective in determining
the progression and decline of SARS-CoV-2 load. To de-
termine the relationship between the parameters and model
outcomes, we use sensitivity analysis. Here, we use partially
ranked correlation coefficients (PRCC) to quantify the
sensitivity and the relationships. (e PRCC will be calcu-
lated for 1000 values of each parameter which is drawn by
running the Latin hypercube sampling method (LSH). (e
LSH technique is a type of Monte Carlo sampling described
in [39]. (e LHS scheme allows the values of all input
parameters to be changed simultaneously. (is sampling
method will be efficient if the outcome is a monotonic

function of each of the input parameters. Here, we only use
the parameters a1, dsn, dt, bt, dn, bn, T0, and N0 that are
monotonically associated with the outcomes of the model in
the sensitivity analysis.
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Figure 8: Numerical solutions of the model (1) for patient a, c.
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Sensitivity analysis of the selected parameters was per-
formed for 4 and 23 days postonset of symptoms.(e results
for SARS-CoV-2 load are presented in Figure 10. On day 4
after the first symptom, the parameter a1, which is the
replication rate of the virus, had a significant positive re-
lationship with virus load.(e PRCC value for the parameter
a1 at a significance level of 0.001 was 0.62. (e virus lysis by
CD8+ T cells rate parameter dst had a high negative cor-
relation with viral load. (e correlation coefficient for this
parameter was 0.87. (is negative correlation with viral
loading indicates that increasing the SARS-CoV-2 lysis by
CD8+ T cells may play an important role in controlling and
reducing the virus load in the first days of the disease.

On day 23 postonset of symptoms, in addition to dst and
a1 parameters, the dt parameter, which indicates the natural
death rate of CD8+ Tcells, had a significant correlation with
SARS-CoV-2. (is correlation is positive with PRCC value
0.62, which indicates that in the fourth week of the disease,

death and consequently a decrease in the volume of cyto-
toxic Tcells have great impact on the persistence of the virus,
and the disease is exacerbated.

Furthermore, to show the effect of dst and dt parameters
on SARS-CoV-2 behavior in long COVID patients, we
solved the model (1) with α � 0.8 for patient g, separately.
According to Figure 11(a), the maximum RNA viral for
dst � 0.0275 is 1.2 × 107 copies per ml, and the time for
complete clearance of the virus is 330 days after the onset of
symptoms. For dst � 0.0285, the maximum RNA viral is
5.2 × 106 copies per ml, and the clearance time of the virus
is 180 days after the onset of symptoms, and for
dst � 0.0295, maximum RNA viral and clearance time are
2.6 × 106 copies per ml and 140 days after the onset of
symptoms, respectively. As shown in Figure 11(b), the
maximum RNA viral for dt � 0.01 is 1.2 × 107 copies per
ml, and the time for complete clearance of the virus is 330
days after the onset of symptoms. So if we assume that
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Figure 10: Sensitivity analysis for 4 (a) and 23 (b) days postonset of symptoms.
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vaccination increases the virus removal rate by CD8+ Tcells
dst by 0.002, then vaccination of COVID-19 reduces the
severity and effect of long COVID for 140 days. (is is due
to the induction of T cells with the vaccine.

For dt � 0.006, the maximum RNA viral is 6.26 × 106
copies per ml, and the clearance time of the virus is 120 days
after the onset of symptoms, and for dt � 0.001, maximum
RNA viral and clearance time are 3.5 × 106 copies per ml and
65 days after the onset of symptoms, respectively.

(us, by increasing the lifespan of CD8+ T cells by 0.005
and inducing long-term responses of these cells by vacci-
nation, the long COVID period can be reduced to 65 days. Of
note, this feature will be challenging for vaccine technology.

(e findings published in [40] confirm the results of our
model. In [40], it is shown that the symptoms and severity of
long COVID among patients with persistent symptoms are
significantly reduced 120 days after vaccination.

6. Conclusion

(e coronavirus associated with severe acute respiratory
syndrome-2 (SARS-CoV-2) interacts dynamically with many
components of the immune system. (ese interactions are
poorly understood because of their complexity. Using reliable
mathematical models is one way to understand the mecha-
nism of SARS-CoV-2 viral behavior. (is paper presents a
fractional-order mathematical model of the immune system
responses to SARS-CoV-2 viral load in 5 patients with
COVID-19. In this model, the population of cytotoxic T cells
(CD8+) and natural killer cells is taken into account.

By sufficient conditions, nonnegativity of the solution and
asymptotic stability of the steady states are guaranteed. Simu-
lation results shed light on the dynamics of SARS-CoV-2 and
the immune system of the patients. Depending on the immune
system, the dynamics of SARS-CoV-2 differ from person to
person. It is possible for patients to develop so-called long
COVID due to immuno-exhaustion. In Model 1, innate im-
munity, includingNK cells, waswell demonstrated. It is possible
to achieve more results by developing the model and adding
other parts of the immune system, such as helper Tcells (CD4+).

A major advantage of the model was the fractional-
order, which illustrated how age affects disease. In this case,
the fractional-order value was 0< α≤ 1. Model (1) with α
values closer to one is suitable for younger people and with
smaller values is suitable for older people.

We performed a sensitivity analysis on some parameters
to determine their effect on the model. SARS-CoV-2 load was
closely correlated with some model parameters, such as the
replication rate, virus removal rate by CD8+ Tcells, and death
rate of Tcells. In addition to vaccine design, these parameters
are useful in disease control and future treatments.

In the future, vaccine-related variables and parameters
could be added to the model to prevent SARS-CoV-2 from
spreading.
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