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A B S T R A C T

We develop and apply a deep learning-based computer vision pipeline to automatically identify crew members
in archival photographic imagery taken on-board the International Space Station. Our approach is able to
quickly tag thousands of images from public and private photo repositories without human supervision with
high degrees of accuracy, including photographs where crew faces are partially obscured. Using the results of
our pipeline, we carry out a large-scale network analysis of the crew, using the imagery data to provide novel
insights into the social interactions among crew during their missions.
1. Introduction

"It’s been very interesting to see the perspective of being on the space
station throughout all those different regimes. I was always the one that had
arrived most recently. And now I am the lead of the US-operated segment,
and I have a little bit more responsibility because of that position. It feels a
lot more like my mission now." - Jessica Meir [1]

This paper introduces the concept of using computer vision for the
identification of astronauts in photographs taken on the International
Space Station. These photographs are the one of only a few sources
for measuring the interactions between astronauts. Using the tagging
system introduced in the article, over 240 astronauts can be identified
in photos, allowing the reconstruction of networks of astronauts that
help us define and understand intra- and inter-agency interactions in
space.

The International Space Station (ISS) is an orbital living and work-
ing environment which has been inhabited for twenty-two years
[2]. First launched in 1998, the ISS is a multinational collaborative
project involving five participating space agencies: National Aeronau-
tics and Space Administration (NASA; United States), Roscosmos State
Corporation for Space Activities (Roscosmos; Russia), Japan Aerospace
Exploration Agency (JAXA), European Space Agency (ESA), and Cana-
dian Space Agency (CSA) [3]. As of today, there have been more than
240 visitors to the ISS from nineteen countries.

A perennial question for crewed space missions, and in general for
remote research stations whether on Earth or in space, is how the social
life of the crew can be maintained in a harmonious state and contribute
to mission success. ISS serves as a research facility and laboratory
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and the astronauts and cosmonauts on board conduct experiments and
research in physical sciences, material science, life sciences, and human
studies [4]. The ISS today is inhabited by a crew of seven members [5],
each working around 6.5 hours each day, conducting experiments and
performing station maintenance [6]. While the crew follows a routine
that would not be out of the ordinary on Earth in terms of work hours,
a sleep schedule, access to food and amenities, etc, life in space can
be a fascinating spectacle. Crew members are among the best in their
fields and undergo grueling training for years in hopes for a selection
to an expedition. On the station, they live in micro-gravity and conduct
cutting-edge research on a daily basis, all the while orbiting Earth at a
speed of 7.66 km/s [5].

The International Space Station Archaeological Project (ISSAP) has
worked since 2015 to understand the social and cultural structures of
ISS, the first permanent human habitat in space [7–10]. By directing
attention to these features, we are developing data-driven insights
that can improve the experiences of future space station crews. We
categorize our approach as archaeological as it revolves around two
central themes in the contemporary study of material culture: objects
and environment (especially built spaces). We liken the environment to
the social structure on the space station, which can be defined by paired
frequencies of astronauts photographed together. Interviewing every
single astronaut that had once inhabited the space station, regarding
their interactions with their colleagues, is not feasible and, in any case,
can be marked by the fallibility of recollection common to all humans.
Anecdotes cannot compare to direct observation as a source for data.
Thus, analyzing crew behavior, and the environment, through the lens
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of interactions captured on camera, helps develop an understanding of
the material culture.

Archaeologists have traditionally been early adopters of digital
methods of recording and analysis, with the Computer Applications in
Archaeology group being established in the UK in the 1970s, which
soon evolved into a global event [11]. These applications have included
Geographical Information Systems (GIS), statistical analysis, predictive
modeling, and digital reconstruction of sites and artifacts [12]. Use of
digital technology enables large scale spatial analyses and enhanced in-
terpretation of archaeological sites. From the use of aerial photography
to map sites [13,14], to high-resolution laser scanning and 3D mod-
eling [15,16], and now the abundance of specialized computer-based
analytical tools, digital technology has opened new realms of analytical
possibilities [17]. Neural networks, which are computer models trained
to detect objects, faces, labels, and other hidden features in data, have
been developed to solve a wide range of detection and identification
problems [18]. In archaeology, neural networks are deployed to iden-
tify objects in photos from excavations and can be trained to pick
out patterns that otherwise would be laborious to identify manually.
However, machine learning techniques have rarely been used for the
analysis of the archaeology of the contemporary past. For our study,
we use neural networks that are able to identify faces of astronauts in
the photos, to make inferences about social behavior on the ISS, as a
novel addition to digital archaeology.

NASA uses various social media platforms to engage with the public
regarding the life on the ISS. The space station’s Twitter account
(@Space_Station) posts videos and updates regularly about the day-to-
day activities on board the ISS and boasts 5.5 million followers [19].
The station’s Instagram account (iss) has 7.8 million followers [20],
where routinely-posted photos of the ISS and crew shed light into
the intriguing life in space. NASA also conducts educational programs
where crew members are able to have a live chat with students,
answering questions related to research, space exploration, and their
daily routine. Public engagement of this extent shows a deep level of
interest about the life of humans on board the ISS. For those more
interested about the photographs capturing the lives of astronauts on
board the space station, the NASA Johnson Space Center Flickr account
(nasa2explore) manages a significant collection of photos from space
missions and expeditions dating back to the 1960s. The account has so
far posted 56,169 photos that have received a total of 179.8 million
views worldwide [21]. Capturing training on Earth and missions dock-
ing on the ISS, and portraying astronauts working in the space station,
these photos provide a visual timeline for each space mission.

If we focus only on the photos taken inside the ISS, we manage to
see how astronauts use the space around them, what they work on,
and who they work with. Each photo on Flickr is accompanied by a
caption that explains the context and lists the astronauts photographed.
Parsing this information makes it possible to construct a database that
helps answer questions such as which astronauts are photographed on
board the ISS, in what locations, and who are they photographed with
most. These questions help us understand the social environment on the
ISS and can shed some light on how astronauts from different agencies
interact with each other while they work on their designated tasks.

The photos posted on Flickr, however, are just a subset of an entire
collection of photos taken on board the space station, numbering in
the millions [22]. The rest of the collection is not shared with the
public because it contains duplicate photos, photos showing materi-
als or equipment that is sensitive or proprietary, or simply because
the photos do not communicate the desired message about the ISS
project. Protecting crew privacy is also a major concern in selecting
the images which can be released to the public. As part of an ongoing
effort to study the material culture of the International Space Station,
NASA provided us access to a previously unpublished set of photos
from the first seventeen expeditions to the ISS. These photos can be
used to further validate the social structures gleaned from the Flickr
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photos. The informative captions provided, however, for NASA photos
on Flickr, are not available for the unpublished photos. So in order to
conduct an analysis on astronaut presence in photos and what sets of
astronauts are photographed most in these images, we use a machine
learning technique to automatically tag each astronaut in a photograph.
Machine learning is a branch of artificial intelligence (AI) and an
important component of data science which focuses on the use of data
and algorithms to imitate human intelligence. Through this imitation,
machine learning algorithms gradually improve accuracy and adapt to
new data. With the help of machine learning, our study now becomes
an application of digital archaeology with a set of unlabeled photos as
the source we want to catalog. Correctly labeling these photos will help
us further extend our knowledge on life on board ISS and how new and
returning crew members develop social relationships with each other.

As will be seen, this study not only extends the capabilities of
archaeology by providing a new method for others to use, it also
provides a window into the significance of the timing of crew arrivals
and departures for formation of relationships between individuals, as
well as the relationships between crew from different agencies on the
same missions. It therefore should be taken into account by current
and future mission planners who want to optimize crew well-being and
productivity.

2. Data

As mentioned previously, the NASA Johnson Flickr account contains
a substantial collection of photos that are arranged in separate albums
by expedition. Not only does the account host photos of astronauts on
board the space station, the albums also contain photos taken during
press conferences, preflight protocols, mission launch and undocking,
and photos of Earth taken from ISS. From these albums, 8,291 photos
show the interior of the space station, and of those, 7416 have captured
at least one astronaut. To automate image and caption extraction of
these 7416 photos, we designed and implemented a web scraping
tool, using the Java programming language [23]. A web scraping tool
processes web contents, finds data of interest, and stores them [24].
Using the Flickr API [25], we requested photo data and parsed the
caption to recognize astronaut names. Images that did not contain any
astronaut names were discarded.

Next, we manually checked each image and its caption to ensure
that the astronauts mentioned in the caption could in fact be seen in
the photo. Fig. 1 is a photograph from Expedition 26 and its caption
reads "European Space Agency astronaut Paolo Nespoli, Expedition 26 flight
engineer, is pictured in the Cupola of the International Space Station. Nespoli
and NASA astronaut Catherine (Cady) Coleman (out of frame), flight
engineer, operated the Canadarm2 controls inside the Cupola to relocate
the Japanese Kounotori2 H-II Transfer Vehicle (HTV2) from the Harmony
node nadir port to Harmony’s zenith port’’ [26]. It is clear that astronaut
Catherine Coleman cannot be seen in the captured image. For such
instances, we discarded the names of astronauts that were not present
in the photos. This was an important step as we looked to create an
automated process to label the astronauts found in photos of the ISS.
These images, combined with their captions, act as the ground truth for
our algorithm, and are henceforth termed as the Flickr captioned photos.

Between 2019 and 2021, we were able to procure an additional set
of photographs from NASA, for Expeditions 1–17. These photographs
are a subset of all photos captured related to the expeditions but were
not released to the public. As these photographs are not accompanied
by captions, they act as the validation set for our algorithm. We want
to first ensure that the algorithm performs well identifying astronauts
in the Flickr captioned photos, before it can be run on these photographs.

We will use the term unpublished photos to reference these images.
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Fig. 1. NASA Johnson. ‘‘iss026e028062’’ 18 Feb 2011. Online image. Flickr. 17 Oct
2021.

3. Methodology

3.1. Neural networks

Identification and comparison of human faces is a problem that is
relatively easy to solve using neural networks. Recent research has
shown that neural networks are able to make predictions on face
identification with an accuracy of 98.98% [27]. Neural networks are
complex mechanisms that require a great deal of attention when it
comes to training them to solve a particular problem. The architecture
of the network, the nature of the data, the targets to be identified, and
the technical capabilities of the machine being used, all have equal
importance in successfully training a neural network to perform a task
accurately. With image classification and object detection becoming
more mainstream, there is an abundance of architectures one can use
to create a simple classifier [28]. Processing powers of computers are
no longer an issue, with Graphic Processing Units (GPU) optimized to
aid the training process. While large images can be resized to smaller
dimensions to speed up the training process, it is the size of the data set
that now proves to be an issue that, at times, cannot be resolved at all.
Data augmentation can be employed to increase the size of an image
data set, which involves slightly manipulating the image (cropping,
rotating, changing colors etc.) to create a new data point for the set.

When training a neural network, the computer model is given a set
of ‘‘ground truth’’ images so that the network can make predictions
about an image and measure how accurate it was in its prediction. As
the network predicts and measures its accuracy, it is able to update
weight values, through a process called Backpropagation [29], so that
it can predict at a slightly higher accuracy the next time it sees the
ground truth images. The number of ground truth images required for
this training process scales with the number of objects, or in our case,
astronauts, that we are trying to identify in each photo. In order to
identify more than 242 faces, training a neural network from scratch
would require significantly more than the 7416 Flickr captioned photos
available.

To add to our ground truth image set, we considered scraping
photos of astronauts from the web; but it was clear early on that we
would not be able to procure a diverse set of photos for each astronaut
that would boost our image data significantly. The possibility also
existed of using transfer learning: a process that allows pre-trained
neural networks, with updated weight values, to be modified slightly to
cater to a different dataset [30]. So while the original neural network
could be trained to identify faces in a set of images, it could easily
be retrained to do the same for a completely different set of images.
This step would still require a training process, albeit using fewer
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images. However, the orientation of astronauts’ faces in photos taken
on board the ISS made it a similarly difficult task. Fig. 2 shows a
set of photos where astronaut Luca Parmitano was mentioned in the
respective captions but his face has varying degrees of visibility. Face
detection and identification with different levels of visibility, mainly
due to the orientation of the face, is a relatively new field of research
and has been shown to require a large set of input data for an accurately
trained neural network [31]. We will describe the effectiveness of our
approach with varying orientation of astronauts’ faces in a later section.

Given these limitations, we opted for Amazon’s Rekognition API [32]
for our face detection task. This API provides scalable machine learning
functionalities that can be used to identify people, objects, texts, and
activities in images and videos. One of the core offerings of the API is
facial recognition and analysis, which is done using neural networks
that have been trained on millions of photos. A transfer learning stage
is not required as the networks are trained to identify faces using pose-
invariant (i.e, irrespective of orientation) features. With the ability to
not only identify where a face is in a photograph but also to whom it
belongs, as well as comparing that face with a set of other faces, if direct
identification is not possible, the Amazon Rekognition API becomes the
backbone of our tagging system.

Of the several features the API provides, we used the Celebrity
Recognition, Facial Analysis, and Face Comparison functionalities for our
tagging system. The Celebrity Recognition function, which is trained to
identify the faces of popular personalities, was used to check if a crew
member could be directly identified. During an initial experiment to
test the capabilities of this function on our image set, Rekognition was
able to identify only a handful of astronauts, those who have been in
the public eye for a long time. For the remaining astronauts, we used
the Facial Analysis and Face Comparison functions to identify them in
photos of the space station.

3.2. Use of expedition contexts

Our earliest approach involved identification of a face in an image
and use of the Face Comparison function of the Rekognition API to
compare that face against all astronauts in our set. Eventually, the face
would be identified; but it would require us to compare each face in
an image, against 242 faces (one per astronaut). This resulted in an
expensive and time-consuming process, given that the API costs scale
with the number of images compared. To keep the costs to a minimum
and to expedite the processing times for each image, we employed two
techniques.

First, if the astronaut in a photo was not recognized using the
Celebrity Recognition function, we passed the image to the Facial Analysis
function to extract key information about each face identified. The
Facial Analysis tool provides information on the orientation of the
face (pitch, roll, etc.) and it further gives a probability of the gender
classification of the person based on their face, with high accuracy.
Over the first 63 expeditions to the ISS, there have been 204 men and
38 women on board the space station [33]. For a face not identified
by the Celebrity Recognition function, we used its detected gender to
limit which astronauts’ faces it should be compared with. Through this
addition, we significantly lower the number of comparisons needed,
especially if the identified face is that of a female.

It is important to note that neural network based face-recognition
algorithms have shown to more accurately identify the gender of
light-skinned males, and perform worst with faces of dark-skinned
females [34]. While the pool of astronauts is predominantly represented
by Caucasian men, we threshold the gender detection (at 85%) to
ensure that the gender feature is used only when the classifier is very
confident about the detection. Furthermore, Face Comparison function
avoids face recognition entirely, and is used to compare features across
faces only.

Next, if a photo contained more than one astronaut, and some
of them were detected by the Celebrity Recognition feature, we used
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Fig. 2. NASA Johnson. Photos of astronaut Luca Parmitano with varying degrees of visibility. Online images. Flickr. 31 Oct 2021.
the information of those detected to create a small pool of potential
astronauts that also might be in the photo. To do this, we manually
created a database which stores information about each astronaut’s
travel to and from the space station. We used different Wikipedia arti-
cles and NASA records of ISS travels and expeditions to determine the
flight times of astronauts for all expeditions to date. If two astronauts
have an overlapping time range in the database, it means that they
may have interacted on board the space station and could have been
photographed together. Hence, a photo where we have identified one
astronaut could potentially also include the other astronaut. Generating
potential pools of astronauts, using flight data, allowed us to reduce the
number of comparisons we made to an average of 5, compared to the
original 242 count per photo.

Combined, these two added features enabled a tenfold decrease
in the time and costs of processing the Flickr captioned photos. Fig. 3
provides the working of the tagging system in detail. We recorded all
names of identified astronauts per photo in a file and used it to measure
the accuracy of our tagging system.

4. Results and discussion

Across 7416 Flickr captioned photos, in which a total of 12,484
individual faces were detected, our tagging system was able to iden-
tify astronauts with an accuracy of 78.69%. The photographs were
passed as input to our tagging system one by one, and the algorithm
automatically determined the best route to identify each face found
in them. To measure this accuracy, we compared the names of the
astronauts cited in a photo caption to the names of those detected
by the system. Here we assume that each astronaut in a photograph
was also mentioned in the image caption. We did, however, find 44
instances where an astronaut identified in the photograph was not
mentioned in the image caption. Fig. 4 was posted on Flickr with this
caption: ‘‘NASA astronaut Mike Fossum, Expedition 28 flight engineer,
works among stowage containers in the Leonardo Permanent Multipurpose
Module (PMM) of the International Space Station’’. [35] The tagging
system was able to identify astronaut Satoshi Furukawa, outlined in
red behind Fossum’s hand, in the background. This underscores the
effectiveness of our automated tagging system over manual astronaut
inclusion in image captions.
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Fig. 5 shows an illustration of the key features of a face pose. The
yaw, pitch, and roll attributes determine the orientation of a face in
three dimensions and are crucial in determining whether a face can
be identified through an automated system. If the face is turned away
from the camera, in the exact opposite direction, then a manual process
will be needed to determine to whom the face belongs to. If some key
features of the face (eyes, nose, mouth etc.) are at least partially in
view, then it becomes possible to identify the face using our system.
Flickr captioned photos do not always show astronauts looking straight
at the camera. Instead, the astronauts are often photographed working
and are focused away from the photographer. In fact, only 55% of all
faces detected were oriented towards the camera (yaw +−30, pitch
+−15). While the tagging system is able to identify a face that is
slightly oriented away from the camera, a large percentage of wrong
identifications were for faces looking away from the camera, or those
that were obscured by objects in the photograph.

To measure the accuracy of the tagging system on the unpublished
photos, we manually identified astronauts pictured in 475 images from
the set. Next, we used the tagging system to classify those photos for
astronaut identification. The tagging system identified astronauts with
an accuracy of 92% with no misclassifications. The higher accuracy is
due to the higher quality of the identification set as we had to first
manually identify astronauts, and we could only do so for images where
facial features were apparent. This small experiment was conducted to
set up a baseline of how well the tagging system will perform on all
photos and could be used in-house by NASA or any other entity to
automatically tag photos going forward.

We will now discuss some applications that are made possible by
the results of the tagging system. These applications contribute to
determining the overall social structure on board the space station, and
reveal some key points about inter-agency interactions. Note that while
the analysis relies on the identification of individuals in the images,
the data presented is anonymized as far as possible to protect crew
identities. As these analyses use the unpublished photos, we are unable
to publicize the astronauts captured in them. Furthermore, the analyses
ascertain the interactions between astronauts, and beyond the scope of
the space agency, their identities are not relevant. This type of approach
can also be used for similar studies, where interactions between entities
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Fig. 3. Overview of the tagging system. The diagram highlights how the Rekognition API features and our algorithms are connected together.
Fig. 4. NASA Johnson. ‘‘iss028e032123’’ 17 Aug 2011. Online image. Flickr. 31 Oct
2021. Astronaut Satoshi Furukawa is highlighted in the background.

Fig. 5. The yaw, pitch, and roll attributes of a face orientation [36].
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are to be analyzed, while keeping their identities protected. Social
networks can be generated by giving each entity a generic identifier
and graphs can be presented where interactions are clearly shown.
As a result, the technique can not only be used to automate tagging
processes, but can also be used to create interaction maps that help
develop an understanding of the environment, without the need to
publicize identities.

4.1. Agency interactions

Identification of astronauts in photographs enables us to determine
inter- and intra-agency relationships, and can help us draw tentative
conclusions about how astronauts from different agencies interact with
each other on board the space station. Fig. 6 shows the interaction
between astronauts from different agencies, as photographed across 63
ISS expeditions using the Flickr captioned photos. As these photos are
procured from a NASA-run Flickr account, almost half of all photos
show at least one NASA astronaut. A large percentage of NASA astro-
nauts are photographed with each other, compared to their Roscosmos
counterparts. While ESA and JAXA astronauts are occasionally pho-
tographed with Russian cosmonauts, a greater proportion of them are
photographed with NASA crew members. Interestingly, the interaction
between JAXA and ESA astronauts is minimal and most astronauts from
smaller agencies are pictured with NASA or Roscosmos astronauts only.
Interaction between those agencies are limited to when crews from
multiple missions are occupying the space station at the same time.
With availability of more photos, from all agencies, we can use the
tagging system to further give weight to the inter-agency interactions.
Identification of modules, seen in the background, would also enable
us to understand the nature of these interactions.

4.2. Astronaut networks

With the availability of unpublished photos from the first seventeen
expeditions, we can use the tagging system to identify astronauts in
those photos and pair that data with the identification analysis done on
the counterpart Flickr photos for those expeditions. This allows us to

build a more comprehensive visualization of the network of interactions
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Fig. 6. Interactions between agencies across 63 expeditions using photographs
published on NASA Johnson Space Center Flickr account.

between astronauts. If NASA has a criteria for which photographs are
made public, then the inclusion of the unpublished photos in our analyses
minimizes any selection bias. To understand the astronaut interactions,
we combined the data of astronauts identified in Flickr captioned photos
and unpublished photos and converted it into a paired array. This array
detailed which two astronauts were photographed together, as well as
the frequency of their interactions. We excluded all astronauts from
the data that had not been on board the space station for more than
fourteen days. Missions to ISS involve docking of the spacecraft to the
space station for a small period of time. Some crew members remain in
the spacecraft and have very limited interactions with other astronauts.
Excluding their information from the data allows us to focus on crew
members that reside in the space station for a longer period of time,
where their interactions are more meaningful.

Using R statistical language [37], we generated a network graph
that shows the interactions of all astronauts on board the space sta-
tion, during the first seventeen ISS expeditions, using both photo sets
(Fig. 7). Each node represents an astronaut with a color assigned for
their agency. An edge represents two astronauts being photographed
together, the size of which depends upon how many of such interactions
exist. We use the Fruchterman–Reingold algorithm [38] for the graph
drawing, ensuring the fewest number of overlaps between edges for an
aesthetically pleasing and analytically useful graph.

The first six expeditions had three crew members each, with NASA
and Roscosmos alternating with a 2:1 crew pattern. The next six expe-
ditions, following the loss of the Space Shuttle Columbia in February
2003, saw two astronauts paired together, one from each agency.
During Expedition 13, an additional astronaut from outside NASA or
Roscosmos was included for a long term stay on board the space
station. After that, the size of mission crews increased as well as the
variability of when each member traveled to the space station for an
expedition [39].

The network graph shows strong relationships between members of
the same expedition, from the thickness of the edges between two and
three astronaut groups. The thinner lines mostly represent photographs
taken during a crew changeover. During the first expeditions, members
of a new expedition inhabited the space station alongside the departing
crew for a week or two. For the later missions, crew flights were
staggered and members spent more time with crew from preceding or
succeeding expeditions on board the space station. The thin edges in
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the network graph represent these interactions that members from dif-
ferent expeditions might have with each other. The graph is connected,
meaning that two astronauts, through a series of other astronauts, can
be joined with each other.

Fig. 8 shows a network graph mapped on a circle to further illustrate
the interactions between the long-duration-stay astronauts. The graph
was created using both photo sets from the first twelve expeditions,
when crew flights were not staggered; that is, crew from the same
mission arrived at the space station together. Except for the instances
where astronauts were part of two different expeditions, the interac-
tions are high between crew of the same expedition and low between
crew of two different expeditions. In these photos, an astronaut was
seen with another astronaut of the same crew 64% of the time. Most
interactions with members of a different crew happened during the
changing of the occupants, across a seven- to twelve-day period, a fact
that is highlighted by the thin edges between adjacent expeditions in
the network graph.

The most photographed day, identified using the EXIF data of the
Flickr photos, was February 19, 2010, when 13 astronauts were on
board the space station, during the handover between the crew of
expeditions 22 and 23. Of the 39 photos taken that day inside the ISS,
most were group photos between members of the two expeditions taken
in the space shuttle and the space station. It has become tradition that
members of the current crew are waiting at the hatch connected to an
arriving vehicle, welcoming the new crew, who themselves become the
welcoming group for the next expedition.

Beginning with Expedition 13, crew arrival to the space station was
staggered. For each expedition from 13 to 17, one astronaut would
arrive at the space station by themselves on a Space Shuttle (excluding
the members of the shuttle flight crew), and would be added to the
next expedition. Now for the first time, an astronaut interacted with
two different crews while on board the space station. Fig. 9 presents
a circular network graph for expeditions 13 through 17, with nodes
representing astronauts with alternating colors to represent different
expeditions. Members who arrived at the space station after their fellow
expedition members, and were subsequently transferred to the next
expedition, are highlighted in red. While these astronauts spent a signif-
icant number of days with members of two expeditions, their recorded
interactions were unequally distributed: they were photographed 65%
of the time with the crew that was already on board the space station
when they arrived. The graph clearly shows this phenomenon with
thicker connections between the red nodes and the members of their
first expedition (the nodes preceding them). Being welcomed to the
space station and then becoming the welcoming party to a new crew, as
is tradition, was not enough to normalize their interaction frequency.
We can only hypothesize that perhaps focus on major work conducted
in partnership with other crew members when an astronaut first arrives
at the space station is high as new ISS inhabitants adjust to life in
space, and that the interactions dwindle, perhaps due to working more
independently as they gain more experience and get closer to leaving
the space station. For example, scenes in the film Space Explorers: The
ISS Experience, made on ISS during Expeditions 58 and 59, show NASA
astronaut Anne McClain giving an orientation tour of the station’s
facilities and both describing and showing how to position one’s body
while working in microgravity to her colleague Christina Koch soon
after Koch’s arrival on board [1]. Availability of unpublished photos
from the later expeditions will help address this hypothesis as well.

These are just two of many analyses that can be conducted using
tagged photographs of astronauts on board the International Space
Station. These photographs are the only visual source of determining
and understanding the cultures on the space station. By analyzing the
frequency of interactions between astronauts, one can hypothesize the
type of collective work astronauts do, who they work with most, and

what agencies do to promote inter-agency interactions.
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Fig. 7. Network of astronauts photographed on board the space station between Expedition 1 and 17. Nodes represent an astronaut given a color based on their agency, and
edges represent frequency of two astronauts photographed together. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
Fig. 8. Circular network graph of long-duration astronauts as nodes from Expeditions
1 through 12. Alternating color palette is used to represent crew from different
expeditions. Edges denote frequency of photos taken between 2 astronauts. Arrow
indicates beginning of chronological order of expeditions starting with Expedition 1.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

5. Limitations

There are obvious limitations in using an image dataset in this way,
as it is a highly curated proxy for actual behavior. However, there are
no other accessible data sources which would enable a social analysis
of this kind and, lacking the methods developed here, NASA has not
utilized the image set to understand social relations on board the ISS.
While some of our preliminary conclusions using this analysis may be
predictable, they have never been demonstrated previously. Taking the
limitations into account, our results indicate that the spatial separation
between the Russian Orbital Segment (modules Zarya, Zvezda, Poisk,
268
Fig. 9. Circular network graph of astronauts as nodes from Expeditions 13 through
17. Alternating color palette is used to represent crew from different expeditions.
Edges denote frequency of photos taken between 2 astronauts. Astronauts who
arrived separately to the space station and were transferred to the next expedition
are represented as red nodes. Arrow indicates beginning of chronological order of
expeditions. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Rassvet in those time periods) and the US Orbital Segment (modules
Unity, Harmony, Tranquility, Destiny, Leonardo, and including the ESA
Columbus, and the JAXA Kibo), continues into and is reinforced by
social separation in crew interactions (Fig. 6). Despite the ideals of
international cooperation, national and agency affiliations are still a
major structuring influence on the creation of a space society.

There are also differences between Expeditions 1–12, when crews
were replaced at the same time, and Expeditions 13–17, when they
were staggered (Figs. 8–9). Unsurprisingly perhaps, people form stro-
nger social bonds through shared experiences, such as the training for
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a particular expedition and the journey to the ISS. However, with the
introduction of staggered crew scheduling, expedition crews socialized
as much between crews as within them. Underlying our interpretation
of these results is the assumption that a greater intensity of interac-
tions indicates sympathy and cooperation rather than indifference or
interpersonal conflict; and that the former situation has better results
in terms of productivity. These data provide an evidence base for future
space habitat planning.

In traditional archaeological studies, social relations must often be
inferred from material context alone. An advantage of the archaeology
of the contemporary past is the ability to draw on the documentary
record, oral history, and digital data and techniques. The use of ma-
chine learning applied to NASA’s photographic archives has illuminated
aspects of crew interactions on board a distinctive space habitat, as well
as developing a procedure for future investigations of the International
Space Station.

6. Conclusion

In this study we present a tagging system that leverages the Amazon
Rekognition API to automatically tag astronauts photographed in pho-
tos taken on board the International Space Station. The tagging system
is made efficient by generating pools of possible matches through the
use of gender identification and ISS travel history. Our system shows
significant accuracy on unpublished photos provided by NASA and can
be put in place to automatically tag photos as they arrive from the space
station. We also present some use cases of the tagging and generate
network graphs that show interactions between astronauts from differ-
ent agencies and expeditions. Such analyses were not possible before.
Unpublished photos from later expeditions, and from different agencies
and sources, can be efficiently parsed to gain more insight into life on
the space station as well as the social norms and interactions on ISS.
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