
Arrear Quanto CMS Model 

 

An arrear quanto constant-maturity-swap (CMS) is a swap that pays coupons in a different 

currency from the notional and in arrears. The underlying swap rate is computed from a forward 

starting CMS. 

 

Assumes that, under the coupon payment currency (SEK) risk-neutral probability measure, the 

forward swap rate process corresponding to each swap rate fixing follows Geometric Brownian 

motion with drift.  Each forward swap rate process is then convexity adjusted, and is furthermore 

expressed under the notional currency (FRF) risk neutral-probability measure by means of a 

quanto adjustment. 

 

We assume that, under the SEK risk-neutral probability measure, the forward swap rate process 

follows Geometric Brownian motion with drift. The initial forward swap rate is calculated, and is 

then convexity adjusted. 

 

The initial forward swap rate is also quanto adjusted. We note that the correlation used in the 

spreadsheet is between the FRF to SEK exchange rate and the SEK swap rate. 

 

Finally the respective quanto and convexity adjusted initial forward swap rates are added 

together to produce the initial forward swap rate under the FRF risk-neutral probability measure. 

 

 



Let the observation times Ntt ,,0  , correspond to consecutive quarterly resets, where 0t  

corresponds to the start date, and Nt  corresponds to the maturity date.  Then the seller pays 

it%95.3   

at time it , for Ni ,...,1= ,  where 1−−= iii ttt .   

 

At time it , where Ni ,...,1= , we consider a three year CMS, which begins at time it  and has 

three payment times, jt i + ,  where 3,...,1=j .  Here the floating  side pays the SEKSTIBOR 

rate, 
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at time jt i + , where 3,...,1=j .  The fixed side pays a constant amount at time jt i + , where 

3,...,1=j .   The swap rate at time it , which we denote by 
it

s , is the constant fixed payment 

amount that gives the CMS zero value at time it ; that is, 
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where ( )TtPSEK ,  denotes the price at time t  of a Swedish zero coupon bond maturing at time T .   

 

From the above, the holder receives 

itist99.0  

at time it , for Ni ,...,1= . 

 

The value of our swap at time zero then equals 
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where 

• ( )tPFRF ,0  is the price at time zero of a FRF zero coupon bond maturing at time t ,  

• E  denotes the FRF risk-neutral probability measure, and 

• the swap notional is denominated in FRF. 

 

Here we have assumed that the FRF short-term interest rate is deterministic. 

 

We note that the common currency unit in Europe is now taken to be the EURO.  Furthermore, 

the exchange rate from the EURO to an associated currency (e.g., FRF) is fixed, so there is no 

foreign exchange risk.  Therefore, FP London uses a common curve, EURIBOR, for discounting; 

that is, ( )tPFRF ,0  is replaced by the equivalent discount factor 

( )tPEUR ,0 , 

which is the price at time zero of EURO denominated zero coupon bond with maturity of t . 

 

Let  i

ty , for Ni ,...,1= , denote the forward swap rate at time t  for a forward starting SEK CMS, 

which begins at time it  and has payments at times jt i +  where 3,...,1=j .  FP assumes that, 

under the SEK risk-neutral probability measure, the process   i

i

t tty ,0   satisfies a stochastic 

differential equation (SDE) of the form 
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where  

•  0 tBt  is standard Brownian motion, and 



•  i  is the volatility. 

Recall that the swap pricing formula,  
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requires the expected swap rate, 

( )
it

sE ,      (A.1) 

for Ni ,...,1= .   Since 
ii t

i

t sy = , FP’s approach towards computing (A.1) is to convexity adjust 

the initial forward swap rate, iy0
.   

 

To this end let  
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be the price of a bond, with three year maturity, where 

• c  is an annually paid coupon value, and 

• Y  is an annualized yield-to-maturity. 

FP’s convexity adjusted rate is then given by 

( ) ( )
( )

( )
Y

yybond

Y

yybond

eyyy
ii

ii

tiii i

 

; 

 

; 

1
2

1
ˆ

00

2

00

2

2

000

2









−−=
 , 

 

The yield to maturity of a bond is the internal rate of return on a bond held until maturity. In 

other words, it is the discount rate that will provide the investor with a present value V equal to 

the price of the bond. The yield to maturity does not account for the actual term structure of 

interest rates: https://finpricing.com/lib/FiZeroBond.html 

https://finpricing.com/lib/FiZeroBond.html


 

We wish to express the process   i

i

t tty ,0   under the FRF risk-neutral probability measure.  

Let SEK

tr  denote the SEK short-term interest rate.  Assume that, under the SEK risk-neutral 

probability measure, the process  0 tr SEK

t  satisfies a SDE of the form 
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where ),( tra  and )(tb  are deterministic, sufficiently regular functions. 

 

Let tX  denote the exchange rate from one SEK monetary unit to FRF.  Furthermore assume that, 

under the FRF risk-neutral probability measure, the process  0 tX t  satisfies a SDE of the 

form 

 ( )X

tX

SEK

t

FRF

ttt dWdtrrXdX +−=  

where  

• FRF

tr  is the FRF short-term interest rate, which we assume to be deterministic, 

• X  is the volatility, and 

•  0 tW X

t  is standard Brownian motion. 

Then under the FRF risk-neutral probability measure, the process  0 tr SEK

t  satisfies the SDE 
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where 

•  0 tWt  is standard Brownian motion, and 

•   is the constant instantaneous correlation coefficient between  0 tW X

t  and 

 0 tWt . 

 



Observe that, under the SEK risk-neutral probability measure, the forward swap rate process, 

  i
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t tty ,0  , is driven by the same Brownian motion,  0 tBt , as the short-term interest 

rate process,  0 tr SEK

t .  Then, under the FRF risk-neutral probability measure, the process 
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t tty ,0   satisfies the SDE 
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