
Music Encoding Conference Proceedings 2021 31

Alleviating the Last Mile of Encoding: The  
mei-friend Package for the Atom Text Editor
MEC 2021 BEST PAPER AWARD

Werner Goebl       David M. Weigl 
Department of Music Acoustics –     Department of Music Acoustics – 
Wiener Klangstil (IWK),  mdw –      Wiener Klangstil (IWK), mdw –  
University of Music and Performing Arts     University of Music and Performing Arts 
Vienna, Austria        Vienna, Austria    
goebl@mdw.ac.at      weigl@mdw.ac.at

Abstract
Though MEI is widely used in music informatics and digital musicology research, the relative lack of authoring 
software and the specialised nature of its community have limited the availability of high-quality MEI encod-
ings. Translating to MEI from other encoding formats, or generating MEI via optical music recognition pro-
cesses, is thus a typical component of many MEI-project workflows. However, automated translations rarely 
achieve results of sufficient quality, a problem well-known in the community and documented in the litera-
ture. Final correction and validation by hand is therefore a common requirement. In this paper, we present  
mei-friend, an extension to the Atom text editor, which aims to relieve the degree of manual labour required 
in this process. The tool facilitates most common MEI editing tasks including the insertion and manipulation 
of MEI elements, makes the encoded score visible and interactively accessible to the user, and provides qual-
ity-of-life conveniences including keyboard shortcuts for editing functions as well as intelligent navigation of 
the MEI hierarchy. We detail the tool’s implementation, describe its functionalities, and evaluate its responsive-
ness during the editing process, even when editing very large MEI files.

Introduction
The manual encoding of non-trivial music scores using MEI currently requires extensive specialist knowledge, 
both of XML syntax, processes, and workflows more broadly, and of the MEI schema in particular. Even with 
such expertise in place, the encoding activity is laborious and is usually frequently interrupted to re-render and 
inspect the notation corresponding to the encoding, typically using the Verovio1 MEI engraving toolkit.

There are alternatives to manual encoding from scratch, though none afford the same level of control over 
the quality of the final encoding outcome. Pre-existing encodings in other formats, e.g., MusicXML, or the 
Humdrum **kern data format, may be identified and translated to MEI, though this is liable to introduce con-
version issues; or, optical music recognition (OMR) tools may be used to generate encodings from score im-
ages, though these tend to be error-prone and usually do not produce MEI natively; or, scores may be typeset 
using the graphical user interfaces of commercial notation software, albeit with similar limitations on native 
MEI-support (though in the case of Sibelius, the Sibmei2 extension may be used to accomplish this).

In each of these approaches, once the rough process of generating or bootstrapping digital score encodings 
and converting them to MEI is accomplished, a manual editing phase is required in which the MEI is checked 
for errors and inconsistencies, polished, and finalised if high-quality encodings are to be achieved.

1   https://www.verovio.org (accessed January 12, 2022).
2   https://github.com/music-encoding/sibmei (accessed January 12, 2022).

© Published in 2022 with Humanities Commons under a CC BY-NC-ND 4.0 (https://creativecommons.org/licenses/by-nc-nd/4.0/) license.

https://www.verovio.org
https://github.com/music-encoding/sibmei
https://creativecommons.org/licenses/by-nc-nd/4.0/


32

Background

Imperfect Nature of Encoding Format Conversion 

Challenges of translating between encoding formats are well known in the community and have been the 
subject of research in recent years:

 - [7] surveys the classes of problems arising in conversion between music encodings in **kern, Lilypond, 
MEI, and MusicXML formats; 

 - [6] demonstrates how apparently equivalent encodings in different encoding formats can lead to discrep-
ancies in the outcomes of music analyses;

 - [8] considers how methodological choices undertaken during the generation and processing of music 
encodings may impact on conversion success in unintuitive ways.

The problems outlined in these studies can in part be addressed by improving the conversion processes them-
selves, particularly where whole classes of problems arise from flawed conversion of frequently used encod-
ing constructs. We have worked in this direction by improving Verovio’s MusicXML to MEI conversion process 
and have promoted community involvement by participating in the organisation of a “Developing Verovio” 
workshop at the 2020 Music Encoding Conference. But even when the conversion process is improved as far 
as possible, there will be certain aspects benefiting from final manual ‘polishing’, due to semantic inconsisten-
cies between encoding formats. Conducting such manual MEI finalisation in a text editor is labour intensive. 
Schema-aware but music-naive XML editors, such as Oxygen, partially alleviate the process by automating val-
idation tasks. Like plain text editors, however, they (somewhat unintuitively) situate all interactions with music 
notation in the text (XML) domain, placing the cognitive load of navigating and modifying the MEI encodings 
in a musically-informed way squarely on the user. Specialised MEI editors provide further assistance by incor-
porating interactive, dynamically-rendered scores as additional means of navigation and interaction and by 
providing shortcuts to accomplish the most frequent notation-editing operations. 

Editing MEI

Verovio’s affordances for graphical interaction with encoded music notation [9] have resulted in the creation of 
several score editors incorporating its JavaScript toolkit to render and manipulate encoded scores. 

Neon is a web-based square-notation editor aimed at correcting encodings of neume notation generated via 
OMR [10]. Alongside support for essential elements of square-notation music, including neumes (punctums, 
virgas, custos), basic neume groupings (e.g., pes, clivis, torculus), and C and F clefs and custos, there is also built-
in support for displaying and editing text (lyrics) and interactive integration of source image facsimiles using 
the International Image Interoperability Framework (IIIF) [11]. Another editor for MEI encodings of neume 
notation, monodi+ [1], focuses on incorporating editorial variants and capturing hierarchical structures in me-
dieval monophonic music, and it employs a custom rendering engine in place of Verovio. Both editors pro-
vide powerful tools for the transcription, validation, and finalisation of MEI encodings, but they are limited to 
neume notation and consequently do not support the comparatively more complex notation context of CMN. 

Verovio-Humdrum-Viewer [12] is an elaborated editor for CMN and mensural notation developed for **kern. 
It supports a variety of basic editing operations through a graphical user interface, alongside an integrated text 
editor for more complex changes.3 It has been used to generate a substantial corpus of encodings, a notable 
ongoing endeavor being the encoding of the entire Chopin first editions.4 Beside its native support for **kern, 
the tool is able to import encodings in MEI and MusicXML and to export encodings to MEI and (subsequently) 
render them as SVG using Verovio. However, it does not support editing of MEI directly; all editing operations 
are performed in **kern prior to MEI conversion. This limits the editor’s applicability for finalising MEI encod-
ings, as the restriction of the editing functionality to the **kern format means that it cannot be used to address 
post-MEI-conversion issues or inconsistencies. Further, this division into ‘read-write’ **kern and ‘read-only’ MEI 
introduces addressability issues into the generated MEI encodings. In converting from **kern, the tool mints 

3   See documentation at https://doc.verovio.humdrum.org/ (accessed January 12, 2022).
4   https://chopin.nifc.pl/en/chopin/dziedzictwo (accessed January 12, 2022).

https://doc.verovio.humdrum.org/
https://chopin.nifc.pl/en/chopin/dziedzictwo


Music Encoding Conference Proceedings 2021 33

new @xml:id (local XML identifier) attributes for the created MEI elements according to their corresponding 
**kern-native line and column numbers. As a consequence, any (**kern) editing operations that affect the 
number of lines (e.g., adding a new note) will re-assign the identifiers in the corresponding MEI to potentially 
different elements. While this is not a problem in terms of local addressability within the updated MEI file as 
the new identifiers retain their internal consistency, it does violate the persistence of identifiers for use in a 
global context, as required, e.g., in Linked Data applications, where MEI elements may be externally addressed 
using fragment URIs [16]. 

Verovio has been integrated into the Atom5 text editor desktop application using an extension called mei-
tools-atom [5]. This tool embeds a dynamically updating Verovio score SVG within an editor pane displayed 
alongside the MEI (XML) text buffer. It offers basic navigation aides, such as clicking a rendered score element 
to jump to the corresponding line of MEI or selecting a line of MEI to highlight the corresponding rendered 
score element on the current page. However, its functionality is otherwise limited, the integrated version of 
Verovio is outdated, the code has not been updated for two years, and the GitHub code repository of the  
project has recently been archived (set to read-only) by its owner. 

Finally, a prototype editor has been built into the Verovio toolkit. This editor has the advantage of being a 
native part of Verovio, requiring no other dependencies, and supporting the development of Web applica-
tions that interact directly with MEI encodings through the Verovio toolkit6 via vrvTk.edit({editCommand})  
function calls. However, only a small set of basic edit commands (such as inserting and deleting notes, and 
modifying or setting attributes of existing elements) is currently supported, with many functionalities import-
ant in the MEI finalisation process yet to be implemented. 

The mei-friend Package for the Atom Text Editor

Use Case: Encoding Beethoven’s Piano Works

TROMPA (Towards Richer Online Music Public-domain Archives) is a project building on the semantic affor-
dances of MEI encodings to address the music information needs of wider audiences, with distinct project 
strands focusing on music performers and enthusiasts, as well as on scholars [15]. The facilitation of the MEI 
encoding process has been one focus of research in this project, as the relatively small number of available, 
publicly licensed encodings (relative to TROMPA’s target repertoire of European classical music) necessarily 
limits the applicability of the developed user-facing prototypes.

One avenue of research has been into the crowd-generation of MEI by parcelling up the process of validating 
and fixing OMR-generated encodings into smaller (e.g., measure-level) units and farming these out to larger 
communities. This approach is relevant where a larger group of music experts share a time-sensitive interest in 
the generation of a new encoding and thus was developed with a focus on orchestra use cases [3]. TROMPA’s 
development of this approach is partly informed by the OpenScore Initiative [2] which has applied comparable 
crowd-based processes in the generation of MSCX (MuseScore) format score encodings.

However, such crowdsourced encodings still benefit from a finalisation step, and other use-case contexts do 
not necessarily include ready access to a motivated crowd and so stand to benefit all-the-more from a facilita-
tion of the encoding process by individuals using an MEI editor. 

To illustrate our requirements, we briefly describe the generation of solo-piano encodings for TROMPA’s in-
strumental players use-case [13, 14]. The recent 250th birthday of Ludwig van Beethoven and the available en-
codings of his 32 sonatas for piano in the **kern format7 initially motivated the attempt to encode the remain-
ing piano solo works by Beethoven into MEI format. These pieces comprise several variation cycles (among 
them the Eroica Variations, Op. 35, the Diabelli Variations, Op. 120, or the C-minor Variations, WoO 80), Rondos 
(Op. 51), Bagatelles (Opp. 33, 119, 126), the Polonaise (Op. 89), Sonatinas (WoO Anh. 5), Phantasie (Op. 77), 
and pieces, such as Rondo a Capriccio, Op. 129, and Clavierstück “Für Elise”, WoO 59. As the target edition to 
encode, we chose Breitkopf and Härtel’s first complete edition from 1862–1868, fully available as scanned, 

5   https://github.com/atom/atom (accessed January 12, 2022).
6   Demonstration available at https://editor.verovio.org (accessed January 12, 2022).
7   https://github.com/craigsapp/beethoven-piano-sonatas (accessed January 12, 2022).

https://github.com/atom/atom
https://editor.verovio.org
https://github.com/craigsapp/beethoven-piano-sonatas


34

publicly licensed images at IMSLP.8 The aim of the encoding was to follow the target edition as closely as pos-
sible using the current version 4.0.1 of MEI as engraved by Verovio (currently version 3.3). The corpus encoded 
now comprises 18 works by Beethoven spanning over 220 pages, all published under open license on GitHub.9

In encoding this corpus, we began by scanning a modern commercial edition of each score using a Konica 
Minolta C308 printer at 300dpi grayscale at A3 landscape with the saturation set 2 steps darker; this provided 
considerably better OMR results than when we started with the publicly licensed PDFs of the target edition 
directly. The derived PDFs were rotated, and black margins cropped, using Adobe Acrobat Pro (Version 9). The 
proprietary Neuraton PhotoScore application (Version 2018 8.8.7) was used to import the rotated and cropped 
PDFs at highest resolution and to perform OMR. Evident OMR errors, such as incorrect key signatures, meter 
indications, triplets, or notes, were fixed in-application, and the outcomes were exported to uncompressed 
MusicXML format. The resulting files were imported into MuseScore (Version 3.1.22425) to clean up further 
OMR errors and to adjust the encoding to the target edition. 

Subsequently, the encodings were re-exported as MusicXML and converted to MEI using Verovio. During 
this step, we developed fixes for several classes of conversion error, including: support for ending elements, 
improvements in handling slurs, ties, hairpins, clef changes, cross-staff notes, pedals, arpeggios, turns, and 
backup elements. These systematic errors were addressed at source through contributions to Verovio’s open-
source C++ codebase. The MEI encodings were then processed algorithmically to remove duplicated @accid 
and @accid.ges attributes, insert missing @xml:ids, and to renumber the measures, taking into account 
measures that do not conform to the meter signature (@metcon=“false”) and measures inside multiple 
endings. 

Having arrived at this stage, the MEI encodings were largely complete, correct, and faithful to the target edi-
tion; but further laborious steps were required to undertake final editing of details, such as inserting slurs and/
or precisely placing their beginnings and endings, and adjusting their direction of curvature, inserting or fixing 
dynamics markings, directives, ornaments, pedal markings, etc. To illustrate: The insertion of a slur requires 
the @xml:id attributes of the target notes at two distinct positions in an encoding to be identified and a line of 
code to be added to the end of the measure containing the first note or chord. Manually, this operation is quite 
time consuming and repetitive, as slurs are often misplaced or completely missed during the OMR workflow 
described above. 

Implementation of mei-friend

Specialised MEI editing software was required to ease this finalisation process, but none of the currently avail-
able editors (see Editing MEI) fulfilled the requirements of our use-case for CMN notation. We gratefully made 
use of the existing open-source (MIT-licensed) code for mei-tools-atom, forking it with a new name (to reflect 
the new project direction) and housing it in a new GitHub repository [4] under the same license.

mei-friend is written in JavaScript using the Atom package framework and automatically loads the latest 
release version of Verovio as a dependency using the Node package manager (npm). Through the provided 
text-Editor object, mei-friend interacts with Verovio’s JavaScript toolkit to ingest the text buffer (MEI) content 
and to render the corresponding SVG, displaying it in a repositionable panel within the Atom application win-
dow, alongside the panel displaying the text buffer. User interactions with both panels are supported, allowing, 
e.g., for the selection of a line of text to highlight the corresponding rendered score element(s), and vice versa. 
Atom also provides tight git integration, supporting easy and fast interaction with MEI encodings hosted on 
GitHub.

8   https://imslp.org/wiki/Ludwig_van_Beethovens_Werke_(Beethoven,_Ludwig_van) (accessed January 12, 2022).
9   https://github.com/trompamusic-encodings/ (accessed January 12, 2022).

https://imslp.org/wiki/Ludwig_van_Beethovens_Werke_(Beethoven,_Ludwig_van)
https://github.com/trompamusic-encodings/


Music Encoding Conference Proceedings 2021 35

Figure 1: Annotated screenshot of the mei-friend package for the Atom text editor, showing an excerpt of the encoding of Beethoven’s Dia-
belli Variations (top), its automatic rendering with Verovio (middle) and the same system in the target edition by Breitkopf & Härtel (bottom, 
another window outside the Atom editor).

Figure 1 illustrates the actions for display, navigation, and editing available to the user through the main menu 
bar (from left to right):

 - viewing controls to scale the score in the notation panel and to invert the notation colours (black on 
white, or white on black);

 - controlling page turning (jump to first, previous, next and last page) and flipping the score page to corre-
spond to the current cursor position in the text buffer;

 - setting Verovio’s --breaks option, and toggling between normal and speed mode;
 - setting the updating (score re-rendering) behaviour: automatic, after each edit to the text buffer; or, man-
ually, upon clicking the ‘update’ button;

 - selecting SMuFL font for notation;
 - navigating through the notation by modifying the currently-selected note or rest, via button clicks or 
key-bindings (note-wise back-/forwards, measure-wise back-/forwards, page-wise back-/forwards, layer-/
staff-wise up/down);

 - re-processing (loading and serialising) the MEI XML text-buffer contents through Verovio to standardise 
the order of encoded elements and insert missing @xml:ids (or remove unnecessary @xml:ids);

 - displaying Verovio’s current version, and the key bindings help panel (see Figure 2).



36

Figure 2: The mei-friend help panel lists the implemented key bindings for navigating through the notation, selecting elements, and per-
forming several basic insert operations (control elements, such as slurs, hairpins and ornaments) and manipulating them (inverting the 
placement, curve direction, or stem direction of multiple selected elements). Bindings illustrated for Mac OSX; adjusted to native OS-con-
ventions on other platforms.

The tool’s editing capabilities currently comprise inserting control elements (slur, tie, hairpin, dynamics, di-
rective, tempo indication, fermata, trill, mordent, turn, arpeggio, glissando, pedal, octave) or layer elements 
(beam) on selected elements and manipulating some of their properties (curve direction, placement, and stem 
direction). This is achieved using specialised keyboard shortcuts as listed in the help panel (Figure 2). The un-
derlying logic is to select one or two notes and to use a keyboard shortcut to insert new control elements into 
the MEI code. For example, pressing the S key with two selected notes inserts a slur at the end of the measure 
containing the first selected note, the slur spanning from the first to the second selected note. Subsequent 
key-presses of X toggle the placement (@curvedir) of the slur from automatic (attribute not set) to “above” to 
“below”. 

Combining the keyboard shortcut with the CTRL key inserts the control element with the @curvedir attri-
bute pre-set to “below”. There are specialised key-bindings for other elements: e.g., crescendo versus dimin-
uendo hairpins, or starting versus ending pedal markings. Some insertion operations are more complex: for 
example, when inserting an octave shift element spanning two selected notes in the same staff, the @oct.ges 
attributes of all notes falling between the two selected will be modified accordingly to ensure valid MEI (and 
will be reset when a selected octave element is deleted). The complete list of key bindings is given in Figure 2 
showing the help panel of mei-friend.

Further functionalities include: 

 - toggling of articulation elements (staccato, marcato, …) on selected notes, chords, or higher-level units 
containing those, such as beams. Following the logic mentioned above, the placement of articulations 
can be inverted by pressing the X key; 

 - deleting inserted elements with the DELETE or BACKSPACE key. Currently supported are all control ele-
ments, beam, clef change, accidentials, and articulation, moving elements up and down in pitch changing 
the @pname/@oct for notes or the @ploc/@oloc attributes for rests (including mRest and multiRest), 
and moving elements up and down staffwise to realise cross-staff notation of piano scores;

 - support for specific encoding manipulations, such as re-assigning measure numbers, which are liable to 
be misattributed during OMR and encoding conversion processes where incomplete measures may be 
missed, or removing doubled @accid.ges attributes when an @accid attribute is present.



Music Encoding Conference Proceedings 2021 37

// 1. load all data and do layout...
vrvTk.loadData(whole MEI)
// 2. render page N (e.g., 19 of 98)
vrvTk.renderToSVG(page N)

score

scoreDef section

section ending ending

measurepbmeasuremeasure measuremeasure
// parse entire MEI to DOM
DOMParser.parseFromString(whole MEI) sb

// generate valid 3-page MEI excerpt
vrvTk.loadData(MEI excerpt)
// always render page 2 of 3
vrvTk.renderToSVG(page 2)

a. Normal mode

b. Speed mode

93
94

95
96

97

section

...... measure

98

Beside supporting control element insertion, mei-friend improves upon mei-tools-atom by supporting: better 
dependencies management (now loading the latest release version of Verovio via the Node package manager, 
and showing the Verovio version number in the user interface to help diagnose conversion issues), user inter-
face improvements (introduction of tooltips, a help panel and documentation, keyboard shortcuts, grouping 
of icons, and navigation inside the notation panel through buttons or key-bindings), and facilitated interaction 
with Verovio (setting breaks options; selecting SMuFL font; re-processing the MEI XML through Verovio to pro-
vide consistent formatting, fix ordering, and generate any missing @xml:ids).

Performance Considerations

Large MEI encodings (of about 25,000 lines and more) cause performance issues with Verovio, affecting both 
mei-tools-atom and mei-friend (in its default “normal mode”). This is because the entire MEI encoding must be 
parsed and laid out by Verovio on import before the rendered SVG for a given requested page can be returned 
for display in the user interface (see Figure 3a). As the current implementations of both Atom extensions are 
single threaded, the corresponding time-intensive loading and re-rendering operations make the user inter-
face increasingly unresponsive with larger files. When editing the MEI directly in the text buffer, automatic 
updating of the rendered notation involves repeating this intensive process after each edit. To circumvent this 
issue, automatic updates may be disabled in mei-friend’s interface, instead allowing the user to request re-ren-
dering of the notation manually on button click.

Figure 3: Processing flow chart from encoding to notation engraving. a) In “normal mode”, the entire content of the encoding is passed to 
the Verovio toolkit. After the notation layout for the entire encoding is processed, a selected page is rendered as SVG. b) In “speed mode”, the 
MEI encoding is loaded into the Document Object Model (DOM). To render the requested page, its corresponding MEI elements are extract-
ed from the DOM and used to generate an artificial MEI encoding with dummy pages placed around the requested page that incorporate 
single-note ‘anchors’ for spanning elements. Verovio is then used to render the requested (middle) page.

To further ease the loading and reprocessing requirements posed by large files, we have implemented a 
“speed mode” (see Figure 3b), which currently operates only with encodings containing break elements (page 
and system breaks) and requires a correspondingly set --breaks option in the interface. Instead of requiring 
the entire MEI encoding to be processed, speed mode only transfers a single-page excerpt encompassing the 
most recently selected element in the text buffer to Verovio. Two additional ‘dummy’ MEI pages are generated 



38

to surround the MEI excerpt to be displayed. The preceding page contains a score definition that is updated to 
the latest clef, meter, and key signature change preceding the MEI excerpt. Both dummy pages each contain a 
measure with staff and layer elements, and a single note from and to which time spanning elements (such as 
slurs and hairpins) are connected, so that the middle page (corresponding to the excerpt) is able to show these 
elements correctly. These excerpting and inserting operations are performed on an XML DOM (Document Object 
Model) representation of the MEI encoding, allowing them to be processed very efficiently. In this mode, only a 
constantly small portion of the MEI encoding (the excerpt) is transferred to Verovio, limiting its processing load 
and thus keeping interactions swift and smooth.

We evaluated the performance using Atom’s internal Chromium profiler by measuring the difference in re-pro-
cessing time (i.e., user interface unresponsiveness) to quantify the increase in performance of our “speed mode” 
implementation, using an MEI encoding of Beethoven’s WoO 57 (Andante favori, 11.8k lines of MEI) and two arti-
ficial encodings (50k and 100k lines of MEI),10 which we generated by adding the mdiv elements of several pieces 
together. Table 1 displays the median amount of time (in ms) taken to i. open the file, ii. flip to the next page, iii. 
flip to the last page, and iv. insert a slur, in normal and speed mode, calculated across three repetitions on a 2017 
iMac with a 4.2 GHz Intel Core i7 running OS X 10.14.6, Atom 1.54.0, and mei-friend 0.3.3. Results demonstrate a 
significantly improved performance and user experience in speed mode working with large MEI encodings when 
performing initial loading of the file and re-loading after edits. Page flipping was slightly slower, performance 
deteriorating with later page numbers, as more DOM processing is required to track score definitions. 

Known issues and limitations of speed mode remaining to be addressed include potential inconsistencies with 
normal mode when rendering automatic curvature directions for slurs spanning across the excerpted measure 
and not rendering time spanning elements using time stamps rather than start-/endids. Speed mode can be 
enabled and disabled using a checkbox.

WoO 57 (11.8k lines) Beethoven (50k lines) Beethoven (100k lines)

Normal mode 666 / 37 / 40 / 625 ms 2290 / 30 / 35 / 2301 ms 6760 / 31 / 36 / 6870 ms

Speed mode 143 / 60 / 93 /  71 ms  204 / 38 / 142 / 45 ms  322 / 42 / 239 / 48 ms
Table 1: Evaluation of mei-friend performance in normal mode and speed mode for i. opening file / ii. flipping to the next page / 
iii. flipping to the last page, and / iv. inserting a slur in different MEI-encoding-size contexts.

Planned Functionalities and Future Development

Several improvements, partly requested by users through GitHub issues, have been implemented since the 
initial submission of this article. Further potential developments include support for speed mode in all break op-
tions, and porting this package to the Visual Studio Code editor,11 which tends to perform better than Atom and 
includes a similar JavaScript extension mechanism. Ultimately, we envision an integration of the functionalities 
presented here with browser-based crowdsourcing mechanisms along the lines of those developed within the 
TROMPA project. 

Conclusion
Although MEI is increasingly adopted for use in music edition and scholarship, the lack of native support by com-
mercial notation software has limited the extent of the available MEI-encoded repertoire. While the mei-friend 
package we have presented here is unlikely to suddenly open up MEI encoding to the masses (it still requires 
extensive technical expertise from its users, both in XML more broadly and in the MEI schema specifically), it 
does significantly alleviate the burdens of the final stages of MEI encoding. As most typical processes used for 
generating MEI encodings employ stages in their workflows liable to introduce errors or deviations that require 
manual intervention, we hope that mei-friend will contribute toward making validation and fixing of the corre-
sponding process outcomes less painful and more enjoyable. 

10  Available from https://github.com/trompamusic/mei-friend/tree/master/eval (accessed January 12, 2022).
11  https://github.com/Microsoft/vscode (accessed January 12, 2022).

https://github.com/trompamusic/mei-friend/tree/master/eval
https://github.com/Microsoft/vscode


Music Encoding Conference Proceedings 2021 39

We must acknowledge limitations in the work presented here. The project context that gave rise to mei-friend 
has been characterised by a predominant focus on European classical piano music, particularly Beethoven’s 
works (among others). It is likely that functionalities may have been identified as useful in other encoding con-
texts, but are currently missing because they simply didn’t arise in our use. We hope to collectively work with 
the MEI community on the continued development of mei-friend to further increase its usefulness in the future. 

Acknowledgements
This project has received funding from the European Union’s Horizon 2020 research and innovation programme 
“Study European heritage, memory, identity, integration and cultural interaction and translation, including its 
representations in cultural and scientific collections, archives and museums, to better inform and understand 
the present by richer interpretations of the past” (H2020-EU.3.6.3.1.) under grant agreement No. 770376. We 
thank Sienna M. Wood and the nCoda team for contributing the mei-tools-atom package, and Laurent Pugin for 
his valued contributions and advice in the development of mei-friend’s integration of Verovio.

Works Cited
[1] Eipert, Tim, Felix Herrmann, Christoph Wick, Frank Puppe, and Andreas Haug. “Editor Support for Digital Editions of Medieval Mono-

phonic Music” in Proceedings of the 2nd International Workshop on Reading Music Systems (WoRMS 2019), 4–7, https://sites.google.com/
view/worms2019/proceedings.

[2] Gotham, Mark, Peter Jonas, Bruno Bower, William Bosworth, Daniel Rootham, and Leigh VanHandel. “Scores of Scores: An OpenScore 
Project to Encode and Share Sheet Music” in Proceedings of the 5th International Conference on Digital Libraries for Musicology (DLfM 
2018), 87–95, https://doi.org/10.1145/3273024.3273026.

[3] Linssen, David, Cynthia C. S. Liem, Ioannis Petros Samiotis, and Gonneke de Jong. “TROMPA Deliverable 6.4.2: Working Prototype for 
Orchestras”. Technical report, 2021, https://trompamusic.eu/deliverables/TR-D6.4-Working_Prototype_for_Orchestras_v2.pdf.

[4] mei-friend repository, https://atom.io/packages/mei-friend (accessed January 12, 2022).
[5] mei-tools-atom repository, https://github.com/nCoda/mei-tools-atom/  (accessed January 12, 2022).
[6] Nápoles López, Néstor, Gabriel Vigliensoni, and Ichiro Fujinaga. “Encoding Matters” in Proceedings of the 5th International Conference 

on Digital Libraries for Musicology (DLfM 2018), 69–73, https://doi.org/10.1145/3273024.3273027. 
[7] Nápoles López, Néstor, Gabriel Vigliensoni, and Ichiro Fujinaga. “The Effects of Translation between Symbolic Music Formats: A Case 

Study with Humdrum, Lilypond, MEI, and MusicXML” presented at the Music Encoding Conference (MEC 2019), University of Vienna, 
Austria, May 29–June 1, 2019, https://music-encoding.org/conference/abstracts/abstracts_mec2019/The%20effects%20of%20transla-
tion%20between%20the%20Humdrum%20%20Lilypond%20%20MEI%20%20and%20MusicXML.pdf.

[8] Parada-Cabaleiro, Emilia, and Álvaro Torrente. “Preventing Conversion Failure across Encoding Formats: A Transcription Protocol and 
Representation Scheme Considerations“ in Music Encoding Conference Proceedings (MEC 2020), 105–107, https://doi.org/10.17613/
etwb-m434.

[9] Pugin, Laurent.  “Interaction Perspectives for Music Notation Applications” in Proceedings of the 1st International Workshop on Semantic 
Applications for Audio and Music (SAAM 2018), 54–58, https://doi.org/10.1145/3243907.3243911. 

[10] Regimbal, Juliette, Zoé McLennan, Gabriel Vigliensoni, Andrew Tran, and Ichiro Fujinaga. “Neon2: A Verovio-based Square Notation 
Editor” presented at the Music Encoding Conference (MEC 2019), University of Vienna, Austria, May 29–June 1, 2019, https://music-en-
coding.org/conference/abstracts/abstracts_mec2019/Neon2.pdf.

[11] Regimbal, Juliette, Gabriel Vigliensoni, Caitlin Hutnyk, and Ichiro Fujinaga. “IIIF-based Lyric and Neume Editor for Square-Notation 
Manuscripts” in Music Encoding Conference Proceedings (MEC 2020), 15–18, https://doi.org/10.17613/d41w-n008. 

[12] Sapp, Craig. “Verovio Humdrum Viewer” presented at the Music Encoding Conference (MEC 2017),  Tours, France, May 16–19, 2017. 
Slides available from http://bit.ly/mec2017-vhv. Tool available from http://verovio.humdrum.org/.

[13] Weigl, David  M., and Werner Goebl. “Rehearsal Encodings with a Social Life” in Music Encoding Conference Proceedings (MEC 2020), 
51–53, https://doi.org/10.17613/5ae5-8387.

[14] Weigl, David M., and Werner Goebl. “TROMPA Deliverable 6.5-2: Working Prototype for Instrumental Players.” Technical report, 2021,  
https://trompamusic.eu/deliverables/TR-D6.5-Working_Prototype_for_Instrument_Players_v2.pdf. Demonstration available at https://
clara.trompamusic.eu.

[15] Weigl, David  M., Werner Goebl, Tim Crawford, Aggelos Gkiokas, Nicolas F. Gutierrez, Alastair Porter, Patricia Santos, Casper Karre-
man, Ingmar Vroomen, Cynthia C. S. Liem, Álvaro Sarasúa, and Marcel van Tilburg. “Interweaving and Enriching Digital Music Collec-
tions for Scholarship, Performance, and Enjoyment” in Proceedings of the 6th International Conference on Digital Libraries for Musicology 
(DLfM 2019), 84–88, https://doi.org/10.1145/3358664.3358666.

[16] Weigl, David M., and Kevin R. Page. “A Framework for Distributed Semantic Annotation of Musical Score: ‘Take it to the bridge!’” in 
Proceedings of the 18th International Society for Music Information Retrieval Conference (ISMIR 2017), 221–228, https://archives.ismir.net/
ismir2017/paper/000190.pdf.

https://sites.google.com/view/worms2019/proceedings
https://sites.google.com/view/worms2019/proceedings
https://doi.org/10.1145/3273024.3273026
https://trompamusic.eu/deliverables/TR-D6.4-Working_Prototype_for_Orchestras_v2.pdf
https://atom.io/packages/mei-friend
https://github.com/nCoda/mei-tools-atom/
https://doi.org/10.1145/3273024.3273027
https://music-encoding.org/conference/abstracts/abstracts_mec2019/The%20effects%20of%20translation%20between%20the%20Humdrum%20%20Lilypond%20%20MEI%20%20and%20MusicXML.pdf
https://music-encoding.org/conference/abstracts/abstracts_mec2019/The%20effects%20of%20translation%20between%20the%20Humdrum%20%20Lilypond%20%20MEI%20%20and%20MusicXML.pdf
https://doi.org/10.17613/etwb-m434
https://doi.org/10.17613/etwb-m434
https://doi.org/10.1145/3243907.3243911
https://music-encoding.org/conference/abstracts/abstracts_mec2019/Neon2.pdf
https://music-encoding.org/conference/abstracts/abstracts_mec2019/Neon2.pdf
https://doi.org/10.17613/d41w-n008
http://bit.ly/mec2017-vhv
http://verovio.humdrum.org/
https://doi.org/10.17613/5ae5-8387
https://trompamusic.eu/deliverables/TR-D6.5-Working_Prototype_for_Instrument_Players_v2.pdf
https://clara.trompamusic.eu
https://clara.trompamusic.eu
https://doi.org/10.1145/3358664.3358666
https://archives.ismir.net/ismir2017/paper/000190.pdf
https://archives.ismir.net/ismir2017/paper/000190.pdf

