
Language of ‘purely functional’ operating
systems.

Camille Akmut

Introduction

Due to the multitude of terminologies brought on by the emergence of the “purely
functional” approach in operating systems, such a document seemed warranted;
Some terms are brand new, others should be familiar but have been re-purposed
while others yet though established have been replaced.

Based on an extensive review of the existing literature, this language summary
aims to be an entry point for researchers and others interested in this novel, and
active field. Its vocabulary will hopefully not be a hindrance anymore to their
various activities (theory or practice).

1



component “What we call a
component typically
corresponds to the
ambiguous notion of a
package in package
management systems.
(. . . ) As far as Nix is
concerned a component
is just a set of files in a
file system.”

Dolstra 2006 : 19

store “Nix stores components
in a component store,
also called the Nix
store.”

Dolstra 2006 : 19

Nixpkgs “the Nix Packages
collection, . . . a large
set of Nix expressions
for common and
not-so-common software
components.” e.g. gcc,
nix or firefox

Dolstra 2006 : 25;
167-68

derivation “Nix-speak for a
component build action,
which derives the
component from its
inputs.”; “build action
that produces a single
path in the Nix store”

Dolstra 2006 : 27;
Dolstra et al. 2008b : 4

.drv “store derivation”
(found in /nix/store
and /gnu/store)

Dolstra 2006 : 39 ff.

hashes “an SHA-256 hash of all
inputs used to build the
component: - Sources -
Libraries - Compilers -
Build scripts - Build
parameters . . . ”
e.g. /nix/store/jjp9pirx8b3nqs9k. . . -
firefox

Dolstra 2006b; also
Dolstra 2005 : 1

2



atomicity “Component upgrades in
conventional systems
are not atomic. That is,
while a component is
being overwritten with a
newer version, the
component is in an
inconsistent state and
may well not work
correctly. This lack of
atomicity extends
beyond the level of
individual components.
When upgrading an
entire system, for
instance, it may be
necessary to upgrade
shared components such
as shared libraries first.
If they are not
backwards compatible,
then there will be a
timing window in which
components that use
them fail to work
properly.”

Dolstra et al. 2004 : 80

atomic rollbacks “If a program does not
work correctly it should
be possible to roll back
to an older version
easily and atomically,
complete with its
configuration
information.” (the
above handled mostly
atomic upgrades)

Hemel 2006 : 9

Nix expressions* “Installation of
components in the store
is driven by Nix
expressions. These are
declarative specifications
that describe all aspects
of the construction of a
component, i.e.,
obtaining the sources of
the component, building
it from those sources,
the components on
which it depends. . . ”

Dolstra et al. 2004 : 81

3



Nix expressions
(language)

“a simple functional
language for computing
with sets of attributes.”;
“a dynamically typed,
lazy, purely functional
language.”

Dolstra et al. 2004 : 81;
Dolstra et
al. 2010[2008] : 6

stdenv “used by almost all Nix
Packages components;
it provides a "standard"
environment consisting
of the things one expects
in a basic Unix
environment: a C/C++
compiler (GCC, to be
precise), the Bash shell,
fundamental Unix
tools. . . ”

Dolstra 2006 : 26-27

stdenv.mkDerivation “mkDerivation is a
function provided by
stdenv that builds a
component from a set of
attributes. An attribute
set is just a list of
key/value pairs”

Dolstra 2006 : 27

fixed-output
derivation

“derivations of which we
know the output in
advance (. . . ) The
rationale for
fixed-output derivations
is derivations such as
those produced by the
fetchurl function. (. . . )
It sometimes happens
that the URL of the file
changes (. . . ) If a
fetchurl derivation
followed the normal
translation scheme, the
output paths of the
derivation and all
derivations depending
on it would change.
(. . . ) Fixed-output
derivations solve this
problem by allowing a
derivation to state to
Nix that its output will
hash to a specific
value.”

Dolstra 2006 : 106 ff.

4



closures (component
closures)

“With precise
dependency information,
we can achieve the goal
of complete deployment.
The idea is to always
deploy component
closures: if we deploy a
component, then we
must also deploy its
dependencies, their
dependencies, and so
on. That is, we must
always deploy a set of
components that is
closed under the
"depends on" relation.
Since closures are
self-contained, they are
the units of complete
software deployment.
After all, if a set of
components is not
closed, it is not safe to
deploy, since using them
might cause other
components to be
referenced that are
missing on the target
system.”; “the goal of
complete deployment:
safe deployment requires
that there are no
missing dependencies.
This means that we
need to deploy closures
of components under
the "depends-on"
relation. That is, when
we deploy (i.e., copy) a
component X to a client
machine, and X
depends on Y, then we
also need to deploy Y to
the client machine.”

Dolstra et al. 2004 : 84;
Dolstra 2006 : 24

5



pointers (dangling)** “dangling pointers in
components are a root
cause of deployment
failure. Thus, to ensure
successful software
deployment, we must
copy to the target
system not just the files
that make up the
component, but also all
files to which it has
pointers.”

Dolstra et al. 2004b

garbage collection “To ensure that no
dangling pointers can
occur, Nix does not
provide an operation to
delete components.
Rather, paths are
deleted from the store
when they become
garbage, i.e., when they
are no longer reachable
from outside the store.”

Dolstra et al. 2004b,
‘7.6. Garbage collection’

imperative model “Most package
management tools can
be viewed as having an
imperative model. That
is, deployment actions
performed by these tools
are stateful; they
destructively update files
on the system. For
instance, most Unix
package managers, such
as the Red Hat Package
Manager (RPM),
Debian’s apt and
Gentoo’s Portage. . . ”

Dolstra et
al. 2010[2008] : 3

6



store expressions
(.store)

“Nix expressions are
translated into the much
simpler language of
store expressions, just
as compilers generally
do the bulk of their work
on simpler intermediate
representations of the
code being compiled,
rather than on a
full-blown language with
all its complexities.”

Dolstra et al. 2004 : 85

scanning (approach) “The hash scanning
approach gives us all
runtime dependencies
of a component”

Dolstra 2006 : 24

source deployment
model

“This is the model used
by source-based
deployment systems
such as the FreeBSD
Ports Collection and
Gentoo Linux.”

Dolstra 2005b (see also
Dolstra 2006 : 11 ff.;
Hemel 2006 : 12 ff.)

transparent
source/binary
deployment
model***

"source deployment is
clearly awful for most
end-users, who do not
have the resources or
patience for a full build
from source of the
entire dependency graph.
However, Nix allows the
best of both worlds -
source deployment and
binary deployment

Dolstra 2006 : 45

substitute “For instance, the path
/nix/store/mkmpxqr8d7f7. . . -
firefox-1.0 will be
archived and
compressed into an
archive yq318j8lal09. . . -
firefox.nar.bz2 and
uploaded to the server.
Such a file is called a
substitute, since a client
machine can substitute
it for a build. The
server provides a
manifest of all available
substitutes.”

Dolstra 2006 : 45 (see
also Dolstra et al. 2004 :
85-87)

7



graft “when a package is
changed, every package
that depends on it must
be rebuilt. This can
significantly slow down
the deployment of fixes
in core packages (. . . )
To address this, Guix
implements grafts, a
mechanism that allows
for fast deployment of
critical updates without
the costs associated with
a whole-distribution
rebuild.”

Guix Manual****

continuous
integration

Dolstra 2008b : 1 (see
also ch. 8 of Dolstra
2006)

build farm Dolstra et al. 2004 : 89
“ad hoc” (package
management)

As found in the Nix
documentation*****,
meaning presumably
“in addition” to the
declarative style (of the
general configuration
file).

channel ~ a repository for
software

8



Notes :

*“Nix expressions” is routinely used in two different senses : one the language,
two the (package) declarations or definitions written in that language.

**One attempt to paraphrase this follows : in this context, pointers are references
to dependencies of a program or “component”; and, they are dangling if the
dependency is not available for whatever reason e.g. their installation failed,
they were removed -possibly by another program-, etc.. The common context is
memory management in languages like C (see a C book).

Dolstra himself writes : “In Chapter 3 the dependency problem is cast in terms
of memory management in programming languages” (Dolstra 2006 : 24)

*** “Guix supports transparent source/binary deployment, which means that it
can either build things locally, or download pre-built items from a server, or
both. We call these pre-built items substitutes—they are substitutes for local build
results. In many cases, downloading a substitute is much faster than building
things locally.” (https://guix.gnu.org/manual/en/html_node/Substitutes.html)

**** https://guix.gnu.org/manual/en/html_node/Security-Updates.html. Why
is this especially an issue with core packages? Because, more software depends
on them (thus more rebuilds needed).

Similar is found in the Nix literature : “For instance, if we were to change
(. . . ) Glibc (. . . ) - a component on which almost all other components depend -
massive rebuilds will ensue.” (Dolstra 2006 : 106)

*****e.g. https://nixos.org/manual/nixos/stable/#sec-package-management

9



BIBLIOGRAPHY

- Dolstra, Eelco. 2006. The Purely Functional Software Deployment Model.

"This thesis is about getting computer programs from one machine to another -
and having them still work when they get there."

- Dolstra, Eelco et al.. 2010[2008]. “NixOS: A Purely Functional Linux Distri-
bution”. Journal of Functional Programming 20(5-6). Previous version : 2008
(significantly shorter)

"Current operating systems are managed in an imperative way. With this we mean
that configuration management actions such as upgrading software packages, making changes
to system options, or adding additional system services are done in a stateful way"

- Dolstra, Eelco et al.. 2004. “Nix: A Safe and Policy-Free System for Software
Deployment”. LISA 18 (USENIX).

"we present Nix, a deployment system that addresses these issues through a simple
technique of using cryptographic hashes to compute unique paths for component instances."

- Dolstra, Eelco et al.. 2004b. “Imposing a Memory Management Discipline on
Software Deployment”.

"As any computer user knows, software installation is a fragile process that fails
surprisingly often for seemingly trivial reasons..."

- Dolstra, Eelco. 2005. “Efficient Upgrading in a Purely Functional Component
Deployment Model”.

"The Nix deployment system enables side-by-side deployment of different versions and
variants of components, ... safe upgrades, and ... uninstalls through garbage collection."

- Dolstra, Eelco. 2005b. “Secure Sharing Between Untrusted Users in a Trans-
parent Source/Binary Deployment Model”.

- Dolstra, Eelco. 2006b. “Software deployment with Nix”. Previous versions :
2005c, 2004c 2004d

- Dolstra, Eelco et al.. 2008b. “Hydra: A Declarative Approach to Continuous
Integration”. (The provided year of publication, unclear, is based on citations.)

- Hemel, Armijn. 2006. NixOS: the Nix based operating system.

"[show] how the Nix package management system can be applied to manage
a whole Linux distribution."

10

https://nixos.org/~eelco/pubs/phd-thesis.pdf
https://nixos.org/~eelco/pubs/nixos-jfp-final.pdf
https://nixos.org/~eelco/pubs/nixos-jfp-final.pdf
https://edolstra.github.io/pubs/nixos-icfp2008-final.pdf
https://www.usenix.org/legacy/event/lisa04/tech/full_papers/dolstra/dolstra.pdf
https://www.usenix.org/legacy/event/lisa04/tech/full_papers/dolstra/dolstra.pdf
https://edolstra.github.io/pubs/immdsd-icse2004-final.pdf
https://edolstra.github.io/pubs/immdsd-icse2004-final.pdf
https://edolstra.github.io/pubs/eupfcdm-cbse2005-final.pdf
https://edolstra.github.io/pubs/eupfcdm-cbse2005-final.pdf
https://edolstra.github.io/pubs/secsharing-ase2005-final.pdf
https://edolstra.github.io/pubs/secsharing-ase2005-final.pdf
https://edolstra.github.io/talks/cibit-mar-2006.pdf
https://edolstra.github.io/talks/ipa-lentedagen-2005.pdf
https://edolstra.github.io/talks/sud-2004.pdf
https://edolstra.github.io/talks/immdsd-icse-2004.pdf
https://edolstra.github.io/pubs/hydra-scp-submitted.pdf
https://edolstra.github.io/pubs/hydra-scp-submitted.pdf
https://nixos.org/docs/SCR-2005-091.pdf

