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Abstract When case-control studies involve paired samples, tree analyses based
on traditional splitting rules are suboptimal as they ignore the paired nature of the
data. Paired samples occur in microbiome studies when they are collected from
different locations of the same individual or when they are collected from paired
individuals with familial ties. Borrowing concepts from tree splitting, we propose
a novel approach that accommodates the paired structure in the data for fast and
effective nonparametric variable ranking. Importantly this method allows detangling
of different types of associations at play with structured correlated outcomes such
as host genotype and enviromental exposure effects. Another technique for variable
selection are variable importance measures. We describe two types of measures
useful for paired data analysis. The methodology is illustrated on the microbiota of
paired samples from a case-control study of obesity.

1 Introduction

Paired samples occur in microbiome studies when they are collected from different
locations of the same individual or from paired individuals with familial ties. Human
microbiome can be shared among family members with variations in each individ-
ual’s microbial community [4, 1]. Suppose an identifiable “core microbiome" exists
at the microbial gene level and deviations from this core are associated with differ-
ent physiologic states. It is of interest to study how family ties play a role in these
deviations. For example, if deviations from a core gut microbiome are associated
with body mass index (BMI), we can define “individual” and “family” outcomes
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with labels obese/lean, where for example obese family means the individual comes
from a family containing at least one member who is obese, and lean family means
the individual comes from a family whose members are all lean. By studying such
outcomes, we can examine how each array of microbial genes is associated with
obesity both at the family and individual level.

To illustrate our proposed methodology, we will use data from a cross-sectional
study focusing on obesity in twins [4, 2, 6]. Data was collected from human stools of
monozygotic or dyzygotic twins or their mothers. We utilize 142 of these samples.
The bacterial lineages present in the fecal microbiotas of these individuals were
characterized by rRNA sequencing. Sequences were identified by assignment to
taxonomic outcome groups using operational taxonomic units (OTUs). Specific
details of how data was processed can be found in [4].

The original study found that obesity is associated with phylum-level changes in
the microbiota and reduced bacterial diversity using linear approaches, such as PCA
(Principal Components Analysis). Here we will focus on detecting which taxonomic
outcome groups are the most informative for obesity risk at both the family and
individual level using a novel approach that draws upon tree based concepts.

2 Gini Index

Consider a multiclass problem where Y is a categorical (factor) outcome such that
Y ∈ {1, . . . , J} for J ≥ 2. We call this the J-class problem and call {1, . . . , J} the
J class labels for Y . Classification tree splitting is often based on the Gini index
splitting rule. If p = (p1, . . . , pJ ) are the data class proportions of Y for classes 1
through J, respectively, the Gini index of impurity is defined as

φ(p) =
J∑
j=1

pj(1 − pj) = 1 −

J∑
j=1

p2
j .

Classification trees are grown using the Gini index by splitting features recursively
into left and right daughter nodes, where tree splits are obtained by minimizing tree
impurity. The Gini index split-statistic for a split s on a continuous feature xm at a
given tree node is

θ(Y, xm, s) =
nl
n
φ(pl) +

nr
n
φ(pr ),

where the subscript l = {xm ≤ s} and r = {xm > s} denote the left and right
daugther nodes formed by the split on xm at s (nl and nr are the sample sizes of
the two daughter nodes where n = nl + nr is the parent sample size). To reduce tree
impurity, the goal is to find xm and s to minimize

θ(Y, xm, s) =
nl
n
©­«1 −

J∑
j=1

n2
j,l

n2
l

ª®¬ + nr
n

©­«1 −

J∑
j=1

n2
j,r

n2
r

ª®¬ ,
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where nj,l and nj,r are the number of cases of class j in the left and right daughters,
respectively and nj = nj,l + nj,r are the number of cases of class j and n =

∑J
j=1 nj .

With some algebra, it can be shown this is equivalent to maximizing the split-statistic

g(Y, xm, s) =
1
n

J∑
j=1

n2
j,l

nl
+

1
n

J∑
j=1

(nj − nj,l)
2

n − nl
.

Although the Gini index is primarly used as a splitting rule for growing a classifi-
cation tree, we note that it can be used as a fast preliminary variable ranking method.
For each of the p predictors x1, . . . , xp , define

G(Y, xm) = g(Y, xm, smax),

where
smax = arg max

s
g(Y, xm, s).

For this analysis, g(Y, xm, s) is taken to be the split statistic for the root node consisting
of the entire data—thus n is the full sample size. Variables can be ranked in order of
importance by the size of G(Y, xm). Notice this variable selection procedure is fully
nonparametric and can be computed quickly even in big data settings. The following
section provides a demonstration of how this approach works for our problem.

2.1 Simulation Study

Consider a binary class setting and denote the outcome as Y I ∈ {0, 1}, where Y I = 0
represents a lean individual and Y I = 1 an obese individual. Family outcome is
denoted as YF ∈ {0, 1}, where YF = 0 signifies an individual from a family with all
lean members and YF = 1 indicates an individual from a family where at least one
member is obese. Association with Y I = 1 reflects how host adiposity influences the
gut microbiome, whereas association with YF = 1 reflects environmental exposure
influences. How the host genotype affects the gut microbiome under enviromental
exposure is reflected by an association with both Y I = 1 and YF = 1.

We use the following simulation where YF is specified according to

P{YF = 1|X = x} = logistic
(
− 2 + x1 + x2 + x3 + 2 × 1{x1<0.5}

)
(1)

and Y I is specified by

P{Y I = 1|YF = 1,X = x} = logistic
(
− 2 + x4 + x5 + x6 + 2 × 1{x4<0.5}

)
, (2)

where logistic(α) = 1/(1 + e−α). In this scenario, x1, x2 and x3 are associated
with environmental exposures that causes the presence of obesity. While, x4, x5 and
x6 are associated with host adiposity, given that the host is under these types of
environmental exposures.
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The feature space dimension was set to p = 10. Features were independently
drawn from a uniform distribution U(0, 1). Variables unrelated to outcome, represen-
ing noise variables, were also added to the design matrix. ForYF , noise variables were
x4, . . . , x10. For Y I , noise variables were x1, x2, x3 and x7, . . . , x10. Split-statistics,
g(Y, xm, s), are plotted in Figure 1 for features x1, x4 and x10 and for both outcomes
Y = YF and Y = Y I . Red color represents the family level outcome YF and blue is
used for the individual level outcome Y I . Variable x1 in (a) predicts obesity at the
family level, and is associated with YF , and the true optimal split point occurs at 0.5.
We can see that the split-statistic of x1 is high for both YF and Y I and both peak at
around 0.5. Variable x4 in (b) is associated with P{Y I = 1|YF = 1}, and therefore
is associated with Y I , and has a true optimal split point of 0.5. We can see that the
split-statistic g(Y I, x4, s) is high for Y I and reaches its peak near 0.5 (although not
exactly at the true value—we will come back to this point later). In contrast, the
split-statistic g(YF, x4, s) for YF does not at all have an optimized value near 0.5 and
its peak value occurs near its edge. This edge effect is typical of noisy variables and
is a property of the Gini splitting rule called end-cut preference, ECP [13]. Variable
x10 in (c) is a noise variable, and its split-statistic is low for both YF and Y I . Observe
that its optimal split points is close to the edge for both outcomes, which as stated is
typical behavior of a noisy variable.
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Fig. 1 Univariate split-statistics for x1, x4 and x10 from simulation (1)-(2). Values g(Y, xm, s)
are shown across different split values s. Red and blue display family level outcome YF and
individual level outcomesY I respectively. Vertical lines mark the optimal split-statistic G(Y, xm).
Variable x1 is associated with YF with true optimal split point of 0.5. Variable x4 is associated
with P{Y I = 1 |YF = 1} with true optimal split point of 0.5. Variable x10 is a noise variable.

Comparing the results across Figure 1, it is clear that G(Y, xm), which is the
highest point of g(Y, xm, s), is useful for variable ranking. However, focusing only
on family level outcomes (red color) will ignore features like x4 that are related to
the individual level outcome (blue color). Checking both split-statistics clearly helps
better understand the underlying associations.
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3 Multivariate Gini Index

Tang and Ishwaran [11] defined a multivariate Gini index split-statistic obtained by
averaging univariate Gini split-statistics. For the bivariate outcome problem, this can
be described as

gu(Y
F,Y I, xm, s) =

1
2
[
g(YF, xm, s) + g(Y I, xm, s)

]
.

The subscript “u” is used to emphasize that the split-statistic is unweighted. We can
define

Gu(YF,Y I, xm) = gu(Y
F,Y I, xm, sumax )

for ranking variables, where

sumax = arg max
s

gu(Y
F,Y I, xm, s).

Larger values of Gu(YF,Y I, xm) identify informative variables and smaller values
indicate noise variables.

3.1 Conditional Gini Index

The problem with the split-statistic gu(Y
F,Y I, xm, s) is that by averaging across the

outcomes it ignores the correlation between YF and Y I . To resolve this issue, we
introduce the following conditional Gini split-statistic.

Let πc = P{Y I = 1|YF = 1} be the population proportion of obese cases among
individuals with at least one obese family member. The subscript “c” is used to
emphasize this is a conditional probability. Because there are only two classes, we
have pc = (pc, 1− pc) and φ(pc) = 2pc(1− pc) where pc is the sample estimator of
πc . For a split s on variable xm, the conditional Gini split-statistic is defined as

θc(YF,Y I, xm, s) =
ñl
ñ
φ(pc) +

ñr
ñ
φ(pc),

where as before subscripts l and r denote left and right daughter nodes formed by the
split. The numbers of cases YF = 1 in the daughters are ñl and ñr where ñ = ñl + ñr .
The numbers of these cases where Y I = 1 in the left and right daughters is denoted
by ñ1,l and ñ1,r respectively. It can be shown that minimizing θc(YF,Y I, xm, s) is
equivalent to maximizing

gc(YF,Y I, xm, s) =
ñ2

1,l

ññl
+

ñ2
1,r

ññr
.

We can define
Gc(YF,Y I, xm) = gc(YF,Y I, xm, scmax )
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for ranking variables, where scmax = arg maxs gc .
Now because gc(YF,Y I, xm, s) conditions on YF = 1, it is not designed to identify

signal affecting YF . To resolve this, define the conditional weighted split-statistic

gcw(Y
F,Y I, xm, s) =

1
wF + wI

[
wF · g(YF, xm, s) + wI · gc(YF,Y I, xm, s)

]
for detecting features that affect both YF and Y I . Observe that when wF = wI = 1,
this becomes an unweighted split-statistic and will be denoted by gcu(Y

F,Y I, xm, s).
Weighted indices can be calculated as wF =

∑n
i 1{YF

i =1} and wI =
∑n

i 1{Y I
i =1},

which adjusts for the fact that there are always more obese cases for YF than Y I . The
maximum value for the conditional weighted split-statistic is

Gcw(YF,Y I, xm) = gcw(Y
F,Y I, xm, scwmax )

where scwmax = arg maxs gcw . In a likewise fashion, define the maximum conditional
unweighted split-statistic Gcu(YF,Y I, xm).

Figure 2 displays: (a) gc(YF,Y I, xm, s), (b) gu(YF,Y I, xm, s), (c) gcu(YF,Y I, xm, s)
and (d) gcw(YF,Y I, xm, s) for variables x1, x4 and x10 from the simulation (1)-(2).
Variable x4 affects the conditional probability P(Y I = 1|YF = 1), which is plotted
in purple color. Returning to the point made earlier regarding Figure 1(b), when
comparing Figure 2(a) to Figure 1(b), we find gc(YF,Y I, x4, s) characterizes x4 bet-
ter than g(Y I, x4, s) as the maximum value is closer to the true splitting point 0.5.
Another point to observe is that the goal of gu(YF,Y I, xm, s) and gcu(Y

F,Y I, xm, s)
is to detect features associated with YF and/or Y I . However, gu(YF,Y I, xm, c) in (b)
is less effective than gcu(Y

F,Y I, xm, s) in (c) because it ranks x4 similarly to noise
variable x10 (shown in orange). In contrast, gcu(YF,Y I, xm, s) in (c) and the weighted
gcw(Y

F,Y I, xm, s) in (d) properly rank x4 as more informative than x10. In fact, the
weighted split-statistic tends to do an even better job.

Figure 3 displays maximum Gini split-statistics for all p = 10 variables aver-
aged over 100 independent replications. For convenient calibration, the averaged
split-statistic for the noise variable x7 is used as a selection cutoff. When comparing
subfigure (c) with (b), we see that Gc(YF,Y I, xm) performs better in term of select-
ing the true signals, x4, x5 and x6, than G(Y I, xm). When comparing subfigure (f)
with (d), we observe that the weighted Gini split-statistic utilizing the conditional
Gini index, Gcw(YF,Y I, xm), outperforms the simple averaged Gini split-statistic,
Gu(YF,Y I, xm), in selecting the true signal variables x1, . . . , x6 (in (d) the infor-
mative variable x6 is not selected whereas the noise variable x10 is selected). The
performance of Gcu(YF,Y I, xm) and Gcw(YF,Y I, xm) are roughly similar except
that noise variable x10 is less likely to be chosen using Gcw(YF,Y I, xm). Thus as
before, the weighted split-statistic tends to do a better job. Finally, when comparing
subpanel (f) to (a) notice that Gcw(YF,Y I, xm) is as good as G(YF, xm) in identifying
variables x1, x2, x3 related to YF . However, this does not mean G(YF, xm) is not use-
ful, since when combined with Gcw(YF,Y I, xm) it allows one to detangle variable
relationships with the two outcomes.
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Fig. 2 Multivariate split-statistics for x1, x4 and x10 from simulation (1)-(2). Curves dis-
played are: (a) gc (Y

F,Y I , xm, s), (b) gu (Y
F,Y I , xm, s), (c) gcu (Y

F,Y I , xm, s) and (d)
gcw (YF,Y I , xm, s) with maximum statistic marked by a square point.

4 Variable Importance

Another effective tool for variable selection is variable importance (VIMP). The per-
mutation VIMP for a variable xm is the prediction error for the model subtracted from
the prediction error for the model using data that randomly permutes xm [14]. This
procedure can be implemented over independent bootstrap samples and the value
averaged to obtain a more stable estimator [14]. More formally, let P̂E(Y ) be the av-
eraged out-of-sample (called out-of-bag and abbreviated as OOB) misclassification
error for the original model. Let P̂E(Y, x∗m) be the averaged OOB misclassification
error when xm is randomly permuted. The VIMP for xm is

I(Y, xm) = P̂E(Y, x∗m) − P̂E(Y ).
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Fig. 3 Variable ranking from maximum split-statistics for simulation (1)-(2) repeated 100 times
independently. Dashed line is averaged value of maximum Gini split-statistic for noise variable x7
which represents a convenient cutoff value.

To determine if variables affect the conditional probability P(Y I = 1|YF = 1),
we define a conditional VIMP analogous to the conditional Gini index. Conditional
VIMP is calculated by restricting the data to those cases where YF = 1. The condi-
tional VIMP index for xm is

Ic(Y I, xm) = P̂Ec(Y I, x∗m) − P̂Ec(Y I ).

Figure 4 displays VIMP for all p features for our simulation. Values have been
averaged over 100 independent replications. Unconditional VIMP, I(YF, xm), for
YF displayed in subpanel (a) successfully ranks the true signal variables x1, x2
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and x3 as the most informative. When comparing subpanel (c) to (b), we see that
conditional VIMP, Ic(Y I, xm), is better at selecting true signal variables x4, x5 and
x6 than unconditional VIMP, I(Y I, xm). In subfigure (b), VIMP for x1 is very large
and would lead to incorrect selection compared with (c).
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Fig. 4 Variable importance from simulation (1)-(2) averaged over 100 independent replications.

5 Analysis of Obesity using Microbiome Data

Now we return to the microbiome obesity data described earlier (n = 142 and
p = 174). Outcomes were coded as before: Y I = 0 represents a lean individual,
Y I = 1 an obese individual, YF = 0 signifies an individual from a family with all
lean members, and YF = 1 indicates an individual from a family where at least one
member is obese. Table 1 of the Appendix provides convenient abbreviated names
for features.

Figure 5 displays split-statistics for 6 representative features, chosen to illustrate
how host and environmental factors affect the gut microbiome. Univariate split-
statistics g(YF, xm, s) for the family outcome YF are shown using red lines, and
conditional split-statistics gc(YF,Y I, xm, s) are displayed using orange lines. Bivari-
ate split-statistics, gcu(YF,Y I, xm, s) and gcw(Y

F,Y I, xm, s), lie between these two
lines. Recall when optimal split points appear towards the edge of a features’ range
that this is a sign of a noisy feature (referred to as the ECP property [13]).

Subfigures (a), (b), (c) represent features informative for the environmental out-
comeYF . In all three figures g(YF, xm, s) takes large values across the range of feature
values. However, these three features are not informative for P{Y I = 1|YF = 1} as
gc(YF,Y I, xm, s) is near zero in all instances. Thus they do not reflect how host
adiposity influences the gut microbiome under enviornmental exposure.



10 Min Lu and Hemant Ishwaran

0 2 4 6 8 10 12 14

0.
00

0
0.

00
2

0.
00

4
0.

00
6

(a)

kBpAcCoroCorfC..g__Adlercreutzia

G
in

i g
ai

n

g(YF, xm, s)
gc(Y

F, YI, xm, s)

0 1 2 3 4 5 6

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

(b)

kBpBcBoBfRi..g__Alistipes..s__indistinctus

G
in

i g
ai

n

g(YF, xm, s)
gc(Y

F, YI, xm, s)

0 5 10 15 20 25 30

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

(c)

kBpBcBoBfP..g__Parabacteroides..s__distasonis

G
in

i g
ai

n

g(YF, xm, s)
gc(Y

F, YI, xm, s)

0 100 200 300 400

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8

(d)

kBpBcBoBfBa..g__Bacteroides..s__ovatus

G
in

i g
ai

n

g(YF, xm, s)
gc(Y

F, YI, xm, s)

0 500 1000 1500 2000 2500 3000

0.
00

0
0.

00
5

0.
01

0
0.

01
5

(e)

kBpFcCoC

G
in

i g
ai

n

g(YF, xm, s)
gc(Y

F, YI, xm, s)

0 20 40 60 80 100 120

0.
00

0
0.

00
2

0.
00

4
0.

00
6

(f)

kBpFcCoCfLach..g__Dorea..s__formicigenerans

G
in

i g
ai

n

g(YF, xm, s)
gc(Y

F, YI, xm, s)

Fig. 5 Split-statistics for microbiome obesity data. Shown are 6 representative variables illustrating
how taxonomic outcome groups predict obesity risk at the family level (shown using the univariate
Gini split-statistic onYF , g(YF, xm, c), plotted in red) and at the individual level (shown using the
univariate conditional Gini split-statistic gc (Y

F,Y I , xm, c), plotted in orange). Variable names
are abbreviated according to Table 1.
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Subfigures (d) and (e) represent features that are informative for both YF = 1
and P{Y I = 1|YF = 1} as both g(YF, xm, s) and gc(YF,Y I, xm, s) assume relatively
large values. These features identify influences from both environmental exposure
and host adiposity. For (d), the two maximum split-statistics are nearly the same
which suggests that effect of environmental exposure and host adiposity are roughly
the same for this feature. For (e), gc(YF,Y I, xm, s) attains a much larger maximum
statistic than g(YF, xm, s) at a higher feature value. This suggest the effect of envi-
ronmental exposure and host adiposity depends on the feature value, for example
whether the feature value is larger than 500 or 1000.

Subfigure (f) is a feature that mainly reflects the influence from host adiposity,
rather than environmental exposure. This is because values of g(YF, xm, s) are overall
small and its optimal split point is close to the edge of its range, signaling that it is
likely a noisy variable for YF .

Values of G(YF, xm) and Gc(YF,Y I, xm) are given Figure 6. Size of circles are
scaled proportional to Gcw(YF,Y I, xm). Phylum groups are used to color circles. It
is interesting to note that features informative for YF = 1 and P{Y I = 1|YF = 1}
belong primarly to the Fusobacteria phylum. Generally values of Gc(YF,Y I, xm) are
smaller than G(YF, xm). However when they are weighted to obtain Gcw(YF,Y I, xm),
we can see that there is a nice balancing of values.

Finally, Figure 7 displays unconditional VIMP, I(YF, xm), and conditional VIMP,
Ic(Y I, xm), for all p variables. Many variables have small or negative values thus
showing that VIMP can be used as an effective means to dimension.

6 Discussion

Fast nonparametric selection of features that accounts for correlation in paired data
is a valuable tool for microbiome data analysis. Variable selection procedures can
choose features that reflect influences from external effects (between pairs) and
internal effects (within pairs), but without taking in account the paired structure of
the data, they will be inefficient in separating the two types of effects. Our proposed
conditional Gini split-statistic, when used alone or averaged with univariate Gini
split-statistics, serves two purposes. First, the maximum value of the split-statistic
can be used for variable ranking and variable selection. Conditional Gini is able to
select variables reflecting how the microbiome is affected by host adiposity given
the same environmental exposures. Second, how the value of the split-statistic varies
within a feature provides useful insight into the magnitude of the external and/or
internal effects. The optimal split point for conditional Gini represents the threshold
that a feature can separate lean and obese individuals given the same environmental
exposure. We demonstrated these two aspects in a systematic comparative simulation
and through a real data application. We found that the paired structure of the data
played a very strong role in performance of our methods. Without controlling for
family level of obesity, features that only affect individual level of obesity are often
noticeably masked.
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Fig. 6 Comparison between G(YF, xm) and GYF=1(Y
I , xm). The size of circles are proportional

to Gcw (YF,Y I , xm). The color of circles identifies the phylum.

There are other variable selection procedures designed for multivariate outcomes.
However, in big data settings, computational speed plays a key role. Practically speak-
ing, the best method is not always optimal for the researcher because computational
times can be too long. Our Gini split-statistics can be rapidly computed for a large
number of features in big data setttings and because the calculations are univariate
the procedure could be parallelized to further reduce runtimes. Users can simulate
a noise feature to determine the cutoff for screening noise variables. Potentially,
our Gini indices can be used as tree splitting rules so that all the features can be
taken into consideration together. Moreover, our approach could leverage powerful
machine learning methods such as random forests and boosting to provide a direct
approach to analyze paired data.
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Appendix

Table 1 Abbreviated feature names for microbiome obesity data.

Abbrev. Full Form Abbrev. Full Form

kB k-Bacteria oBi ..o-Bifidobacteriales
pF ..p-Firmicutes oE ..o-Erysipelotrichales
pA ..p-Actinobacteria oL ..o-Lactobacillales
pB ..p-Bacteroidetes fB ..f-Bifidobacteriaceae
pC ..p-Cyanobacteria fBa ..f-Bacteroidaceae
pF ..p-Fusobacteria fC ..f-Coriobacteriaceae
pP ..p-Proteobacteria fL ..f-Lactobacillaceae
pS ..p-Synergistetes fLach ..f-Lachnospiraceae
cA ..c-Actinobacteria fM ..f-Micrococcaceae
cB ..c-Bacteroidia fP ..f-Porphyromonadaceae
cBci ..c-Bacilli fPe ..f-Peptostreptococcaceae
cC ..c-Clostridia fPr ..f-Prevotellaceae
cCor ..c-Coriobacteriia fR ..f-Ruminococcaceae
cE ..c-Erysipelotrichi fRi ..f-Rikenellaceae
oA ..o-Actinomycetales fS ..f-Streptococcaceae
oC ..o-Clostridiales fV ..f-Veillonellaceae
oCor ..o-Coriobacteriales gB ..g-Bifidobacterium
oB ..o-Bacteroidales gC ..g-Corynebacterium
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kBpFcCoC..f−Peptococcaceae..g ... 
kBpFcCoC..f−Christensenellaceae..g ... 
kBpBcBoB..f−.Barnesiellaceae. ... 
kBpAcCoroCorfC..g−Collinsella..s ... 
kBpFcCoC..f−Clostridiaceae..g ... 
kBpFcCoCfV..g−Megasphaera ... 
kBpFcEcE..f−Erysipelotrichaceae..g ... 
kBpFcCoCfR
kBpFcCoCfLach..g−Lachnospira ... 
kBpFcCoCfR..g−Faecalibacterium ... 
kBpBcBoBfBa..g−Bacteroides..s ... 
kBpP..c−Alphaproteobacteria..o ... 
kBpFcCoCfLach..g−Clostridium..s ... 
kBpFcEcE..f−Erysipelotrichaceae..g ... 
kBpP..c−Deltaproteobacteria..o ... 
kBpFcEcE..f−Erysipelotrichaceae ... 
kBpFcCoCfLach..g−.Ruminococcus...s ... 
kBpAcCoroCorfC
kBpBcBoBfBa..g−Bacteroides..s ... 
kBpFcCoCfLach
kBpFcCoCfLach..g−Blautia..s ...
kBpP..c−Deltaproteobacteria..o ... 
kBpBcBoBfP..g−Parabacteroides ... 
kBpFcCoCfLach..g−.Ruminococcus...s ... 
kBpFcCoCfLach..g−Dorea..s ... 
kBpFcCoCfR..g−Ruminococcus ... 
kBpP..c−Betaproteobacteria..o ... 
kBpFcCoCfLach..g−Blautia..s ... 
kBpFcCoC..f−Clostridiaceae..g ... 
kBpFcBci
kBpFcCoCfLach..g−Blautia ... 
kBpBcBoBfRi
kBpFcCoCfLach..g−Roseburia..s ... 
kBpBcBoB
kBpBcBoBfBa..g−Bacteroides ... 
kBpFcCoCfR..g−Ruminococcus..s ... 
kBpBcBoBfP..g−Parabacteroides..s ... 
kBpFcCoC..f−.Mogibacteriaceae. ...
kB..p−Verrucomicrobia..c ...
kBpFcEcE..f−Erysipelotrichaceae..g ... 
kBpFcCoC..f−Dehalobacteriaceae..g ... 
kBpFcEcE..f−Erysipelotrichaceae..g ... 
kB..p−Verrucomicrobia..c ... 
kBpFcCoCfV..g−Dialister ... 
kBpFcCoCfPe
kB..p−TM7..c ...
kBpAcCoroCorfC..g−Adlercreutzia ... 
kBpAcAoBifBgB..s−adolescentis ... 
kBpFcCoCfR..g−Oscillospira ... 
kBpBcBoBfP..g−Porphyromonas ... 
kBpP..c−Betaproteobacteria..o ... 
kBpAcCoroCorfC..g−Collinsella ... 
kBpFcCoCfR..g−Anaerotruncus ... 
kBpFcEcE..f−Erysipelotrichaceae..g ... 
kBpFcCoCfLach..g−Coprococcus..s ... 
kBpS..c−Synergistia..o ...
kBpS..c−Synergistia..o ...
kBpP..c−Gammaproteobacteria..o ... 
kBpS..c−Synergistia..o ...
kBpP..c−Epsilonproteobacteria..o ... 
kBpP..c−Deltaproteobacteria..o ... 
kBpP..c−Gammaproteobacteria ...
kB..p−Lentisphaerae..c ...
kB..p−Lentisphaerae..c ...
kBpFcEcE..f−Erysipelotrichaceae..g ... 
kBpFcEcE..f−Erysipelotrichaceae..g ... 
kBpFcEcE..f−Erysipelotrichaceae..g ... 
kBpFcEcE..f−Erysipelotrichaceae..g ... 
kBpFcEcE..f−Erysipelotrichaceae..g ... 
kBpFcCoC..f−.Tissierellaceae...g ... 
kBpFcCoC..f−.Tissierellaceae...g ... 
kBpFcCoC..f−.Tissierellaceae...g ... 
kBpFcCoC..f−.Tissierellaceae...g ... 
kBpFcCoC..f−.Tissierellaceae...g ... 
kBpFcCoCfV..g−Mitsuokella ... 
kBpFcCoCfV..g−Mitsuokella..s ... 
kBpFcCoCfR..g−Ruminococcus..s ... 
kBpFcCoCfV..g−Megamonas ...
kBpF..c−Fusobacteriia..o ...
kBpFcCoC..f−Peptococcaceae..g ... 
kBpFcCoCfLach..g−Oribacterium ... 
kBpFcCoCfLach..g−Epulopiscium ... 
kBpFcCoCfLach..g−Butyrivibrio ...
kBpF..c−Fusobacteriia..o ... 
kBpFcBcioLfS..g−Streptococcus..s ... 
kBpFcBcioLfS..g−Streptococcus..s ... 
kBpFcBcioLfS
kBpFcBcioLfL..g−Lactobacillus..s ... 
kBpFcBcioLfL..g−Lactobacillus..s ... 
kBpFcBcioLfL..g−Lactobacillus..s ... 
kBpFcBcioLfL..g−Lactobacillus..s ... 
kBpFcBcioL..f−Leuconostocaceae ... 
kBpFcBci..o−Gemellales..f ... 
kBpFcBcioL..f−Carnobacteriaceae..g ... 
kBpC..c−Chloroplast..o ...
kBpFcBcioL..f−Enterococcaceae..g ... 
kBpFcBcioLfL..g−Lactobacillus ... 
kBpBcBoB..f−RF16 ...
kBpAcAoA..f−CorynebacteriaceaegC..s ... 
kBpAcAoA..f−CorynebacteriaceaegC ... 
kBpAcAoA..f−Actinomycetaceae..g ...
kB ...
kBpAcAoA..f−CorynebacteriaceaegC..s ... 
kBpAcAoAfM..g−Rothia..s ... 
kBpFcCoCfV..g−Phascolarctobacterium ... 
kBpAcAoBifBgB..s−longum ... 
kBpAcAoBifBgB..s−bifidum ... 
kBpFcCoCfV..g−Veillonella ... 
kBpFcCoCfLach..g−Lachnobacterium ... 
kBpFcCoCfLach..g−Coprococcus..s ... 
kBpFcCoC..f−Christensenellaceae ... 
kBpFcCoCfR..g−Clostridium..s ... 
kBpAcAoBifBgB
kBpAcAoA..f−Propionibacteriaceae ... 
kBpFcCoC..f−.Tissierellaceae...g ... 
kBpFcCoCfPe..g−.Clostridium...s ... 
kBpBcBoB..f−.Paraprevotellaceae...g ... 
kBpFcCoCfR..g−Ruminococcus..s ... 
kBpFcC
kBpFcBcioLfL..g−Lactobacillus..s ... 
kBpBcBoBfBa..g−Bacteroides..s ...
kB..p−Tenericutes..c ...
kBpFcCoCfV..g−Succiniclasticum ... 
kBpFcEcE..f−Erysipelotrichaceae..g ... 
kBpFcCoCfR..g−Faecalibacterium..s ... 
kBpP..c−Gammaproteobacteria..o ... 
kBpAcAoA..f−Actinomycetaceae..g ... 
kBpFcC..o−SHA.98 ...
kBpFcCoC..f−Clostridiaceae..g ...
kB..p−Tenericutes..c ...
kBpFcCoC..f−Clostridiaceae ... 
kBpFcBcioLfS..g−Lactococcus ... 
kBpBcBoBfRi..g−Alistipes..s ... 
kBpAcCoroCorfC..g−Collinsella..s ... 
kBpAcCoroCorfC..g−Slackia ... 
kBpAcCoroCorfC..g−Eggerthella..s ... 
kBpFcCoC..f−Eubacteriaceae..g ... 
kBpBcBoB..f−.Paraprevotellaceae. ... 
kBpP..c−Gammaproteobacteria..o ... 
kBpBcBoBfPr..g−Prevotella..s ... 
kBpFcBcioL..f−Leuconostocaceae..g ... 
kBpFcCoCfPe..g−Peptostreptococcus..s ... 
kBpBcBoBfBa..g−Bacteroides..s ... 
kBpBcBoBfBa..g−Bacteroides..s ... 
kBpS..c−Synergistia..o ... 
kBpFcCoCfLach..g−Anaerostipes ... 
kBpFcCoCfV..g−Acidaminococcus ... 
kBpFcEcE..f−Erysipelotrichaceae..g ... 
kBpFcBcioLfS..g−Streptococcus ... 
kBpFcCoC..f−Clostridiaceae..g ... 
kBpFcCoCfLach..g−Dorea ... 
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Fig. 7 Variable ranking using VIMP for microbiome data of obesity. Variables with higher value on
the left reflect how the gut microbiome is influenced by environmental factors. Variables with higher
values in the right reflect how gut microbiome is affected by host adiposity given the environmental
exposures.


