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ABSTRACT 

 

We make distinction of two important roles for binomial coefficients to play in Number 

Theory and Trigonometry, respectively. The polynomial aspect of C(n, k) enables the 

derivation of both explicit and implicit formulas for sums of powers of arithmetic 

progressions, whereas the combinatorial aspect of (
𝑛
𝑘

) helps the derivation of multiple angle 

formulas for Sine, Cosine and Tangent functions.  
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coefficient, Arithmetically progressive sequence, Recursion, Iteration, Trigonometry, Multi 

angle formula Sine, Cosine, Tangent, De Moivre’s Theorem. 
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NOMENCLATURE 

 

 

C(n, k), (𝑛
𝑘

)     binomial coefficient, combination 

 

Σ           sum 

 

   Bernoulli coefficient 

 


1)(i     the natural sequence 

 

 

     arithmetically progressive sequence 

 

 

             the sum of the first kth powers of the natural sequence 

 

P(n, k) , ((
𝑛
𝑘

))  the permutation of n elements taken k at a time 

 

k!     k factorial  

 

 [
𝑛
𝑘

]              Stirling number of the first kind  

 

 {
𝑛
𝑘

}              Stirling number of the second kind  

                           

 {
𝑛
𝑘

}
𝑎;𝑑

            Stirling number of the second kind for (𝑎 + (𝑖 − 1)𝑑)1
∞  
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1.     POLYNOMIAL ASPECT  

 

According to the binomial theorem, we are familiar with the following expansion 

 

     (𝑥 + 𝑦)𝑛 = ∑ 𝐶(𝑛, 𝑘)𝑥𝑛−𝑘𝑦𝑘𝑛
𝑘=0  ,                    Eq. 1 

 

where 𝐶(𝑛, 𝑘) is known to be Binomial coefficient as displayed in Table 1.  

 

  n\k     0    1       2     3      4      5     6      7     8     9    10 

   0     1 

1  1    1 

   2  1   2       1 

   3    1    3       3     1 

   4  1    4       6     4      1 

   5  1   5      10    10      5   1                                                 

6  1   6      15    20     15   6      1         

   7  1   7      21    35   35     21      7     1 

   8  1   8      28    56   70     56     28     8      1 

   9  1   9      36    84  126    126     84    36      9     1 

  10  1   10      45   120  210    252    210    120     45    10    1 

 

Table 1.   Pascal Triangle 

 

Since 

 

      𝐶(𝑛, 𝑘) = 𝑛(𝑛 − 1)(𝑛 − 2) … (𝑛 − 𝑘 + 1),          Eq. 2 

 

we see that C(n, k) is a polynomial in n of degree k. This feature of binomial coefficients  

 

enable us to derive both explicit and implicit formulas for sums of powers of arithmetic  

 

progressions. Despite of the fact that the closed form for the polynomial expression for a  

 

powered sum of the arithmetically progressive sequence  has been obtained  

 

in (3), we feel obliged to present two more efficient ways for computer calculation. 
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One way is to use recursion for finding the Bernoulli number b(k, j) in 

 

      ∑ 𝑖𝑘 = ∑ 𝑏(𝑘, 𝑗)𝑛𝑘+1−𝑗𝑛+1
𝑗=1

𝑛
𝑖=1 ,                  Eq. 3 

 

which is displayed in Table 2.                                                                                                                                      

k\j   1             4    5     6     7                

       

        

               

     0           

                                          

                                

                                    

                                         

                                 

                                    

Table 2.      Bernoulli triangle 

 

By taking n = k, x = 1 and y = n in Eq. 1, we can obtain 

       ∑ 𝑖𝑘 − ∑ 𝑖𝑘𝑛
𝑖=1

𝑛+1
𝑖=1 =                           Eq. 4 

and equate the coefficients of the like terms in the expansions of which for  to  

 

to come up with  

           .                             Eq. 5 
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Take  in Eq. 5 for instance, by equating the coefficients of the like terms of  

 

  

 

 

 

 

 

 

 

 

 

  

 

 

 

we can obtain   

 

  ,  

 

        , 

 

 

 

and 

 

. 

 

 

Moreover, let us generalize Eq. 3 to 

 

                       Eq. 6 

 

for an arithmetically progressive sequence  with .      
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Likewise, we can equate the coefficients of the like terms for  in the 

 

expansions of both sides of the identity 

 

              Eq. 7                                  

 

to obtain the following generalization of Eq. 4:   

 

         .                        Eq. 8 

 

Putting  in Eq. 8, we see that 

 

              

gives  

             ;  

 

                            

gives  
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In this manner, we can successively obtain 
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2.     COMBINATORIAL ASPECT 

 

The number  of ways of sorting the first  terms of the natural sequence    

 

into  subsets with  elements in the  subset is , where . For 

example,  and .  

 

 

In particular, the number of ways of sorting the first  terms of  into  subsets with  

 

 elements in one and  elements in another is the combination ,  

 

which will be further abbreviated as the binomial coefficient  or ; while the  

 

number of ways of sorting the first  terms of  into  singletons and a subset of  

 

 elements is the permutation , which will be abbreviated as   

 

or . Hence we write  

 

                     Eq. 9 

 

and 

,              Eq. 10 
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where . Since this first level of sortation can be expressed as the product of a  

 

combination and one or more permutations such as  and  

 

, the familiar recursive formulas  

 

          Eq. 11 

 

and 

 

.                               Eq. 12 

 

 

We use Eq. 11 to generate the first-order Pascal triangle, same as Table 1, in Table 3 and 

 

Eq. 12 to generate the second-order Pascal triangle as in Table 4. 

 

   0     1      2       3       4      5      6     7     8    9   10 

  0     1 

1     1     1 

  2     1   2      1 

  3   1   3      3      1 

  4     1     4      6      4       1 

  5     1   5     10     10       5      1                                                

  6     1   6     15      20      15      6     1         

  7     1   7     21      35     35      21      7   1 

  8     1   8     28      56     70      56     28   8     1 

  9     1   9     36      84    126     126     84  36     9    1 

 10     1   10    45     120    210     252    210   120    45   10    1 

 

Table 3.  Table for the first-order Pascal triangle 
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 0   1    2    3     4     5        6      7      8     9     10 

    1 1   1 

    2   1   2    2 

    3   1   3    6   6 

    4   1   4   12  24    24 

    5   1   5   20  60   120    120                                                       

    6   1   6   30  120   360    720     720      

    7 1   7   42  210   840   2520    5040    5040 

 8   1   8   56  336  1680   6720   20160   40320   40320  

    9   1   9   72  504  3024  15120   60480  181440  362880 362880  

   10   1  10   90  720  5040  30240  151200  604800 1814400 3628800 3628800 

 

Table 4.     Table for the second-order Pascal triangle 

 

The number of ways of sorting the first  terms of  into  cycles is the Stirling  

number of the first kind . We can obtain Table 5 via the recursive formula 

 

    .                   Eq. 13 

 

      1        2       3       4       5    6      7    8     9   10 

   1    1 

   2    1     1 

   3      2     3      1 

   4    6     11      6      1 

   5   24    50       35     10      1                                        

   6  120   274      225   85     15     1         

   7  720  1764     1624     735    175     21    1 

   8    5040 13068    13132    6769   1960    322     28  1 

   9   40320   109584   118124   67284   22449   4536    546    36    1 

  10  362880  1026576  1172700  723680  269325  63273   9450   870   45   1   

 

              Table 5.      Table for Stirling numbers of the first kind 
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We further write Eq. 9 into 

               ((
𝑛
𝑘

)) = ∑ (−1)𝑘−𝑗𝑘−1
𝑗=0 [

𝑘
𝑘 − 𝑗

] .                   Eq. 14 

For example,                                                                 

                = [
4
4

] n4 − [
4
3

] n3 + [
4
2

] n2 − [
4
4

] n . 

On the other hand, the number of ways of sorting the first  terms of  into  sets is 

the Stirling number of the second kind . We can obtain Table 6 via the recursive formula 

,                             Eq. 15 

  n\k   1        2        3        4       5       6     7   8    9   10  

   1   1 

   2   1     1 

   3   1     3      1 

4   1      7      6       1 

   5   1       15       25      10       1                                                 

   6   1       31       90    65      15       1         

   7   1       63      301      350     140      21      1             

   8   1      127      966    1701    1050     266     28     1 

   9   1      255     3025     7770    6951    2646    462    36    1 

10   1      511     9330    34105   42525   22827   5880   750   45    1 

       Table 6.      Table for Stirling triangle of the second kind  

 

Alternatively, the Stirling triangle  of the second kind can be constructed based on  

,  and  via the inversion formula 

 

 .                          Eq. 16 
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3.    EXPLICIT FORMULAS FOR POWERED SUMS 

 

To attain our goal, we first derive the following identity  

 

          (
𝑛
𝑘

) = ∑ (−1)𝑗−𝑘𝑛
𝑗=𝑘 [

𝑗
𝑘

] {
𝑛 + 1
𝑗 + 1

}.                  Eq. 17 

                                                                        

We shall only look at the case for  and , since the general case is similar. Let us  

 

first verify Eq. 17 with the following examples:  

 

, 

 

, 

 

.   

 

Next we use Eqs. 13 and 15 to show the inductive step: 
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We then derive the following identity  

 

.                              Eq. 18 

 

We only look at the case where . From Eq. 4, we can use Eqs. 16 and 17 to write 
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Next, we use the mathematical induction to prove  

 

,                              Eq. 19 

 

with Eq. 18 being used in the inductive step:                                             
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Eq. 20 

 

 

Finally, we can obtain   

 

                 Eq. 21  

 

by regrouping the following display of Eq. 20: 
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4.    IMPLICIT FORMULAS FOR POWERED SUMS 

 

For simplicity, let us write 
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As can be seen from Table 8, it is peculiar that  
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We have, however, yet to find a better way to come up with satisfactory patterns!     
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5.    MULTIPLE ANGLE FORMULAS FOR TRIGONOMETRIC FUNCTIONS 

 

we can derive  

                       Eq. 25  

and  

                      Eq. 26 

by using 

.             Eq. 27 

 

Although the general formulas for  and  have been known due to  

 

De Moivre’s Theorem, we can use Eq. 25 to derive   

 

      Eq. 28 

and 
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and use Eq. 26 to derive 
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and 
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via combinatorial method.                                                     
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Since , we can use Eq. 27 to derive 

            

and in turn 

                           

 

 

, 

 

due to .  

 

In general, we can derive 

 

    

            

,   

 

which leads to Eq. 25.  
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Similarly, we can derive 

   

and in turn 

 

 

Eq. 30 

       

 

      .                 Eq. 32 

 

In general, we can derive 

 

     

 

   

 

  , 

 

which leads to Eq. 26.  
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Before deriving Eq. 28, we first look at the case when . From Eq. 25, we can derive  

 

 

            

            

           .            Eq. 33 

Obviously, the denominator of Eq. 33 equals the right-hand side of Eq. 28 for . Instead 

of showing that the numerator of Eq. 33 equals the right-hand side of Eq. 29 for , we 

can likewise derive 

   

so that the denominator of which equals the right-hand side of Eq. 29. 

In general, we can similarly derive 

   

and 

   

so that Eqs. 28 and 29 are true.   
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Finally, we note that the numerator and the denominator of Eq. 32 equal to  and 

, respectively. Accordingly, Eqs. 31 and 32 can similarly be derived from Eq. 26. All 

the multiple angle formulae derived above can be proved by mathematical induction. We 

shall only prove Eq. 25, which is obviously true for . So we are left to prove  

.               Eq. 34 

Using Eq. 27, we first obtain  

    

 .     Eq. 35 

Then use Eq. 27 to regroup the numerator of Eq. 35 successively as 

 

                    

 

    

 

    

 

    

 

, 

which is the numerator of Eq. 34. We can similarly prove both denominators to be equal.  33 
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GLOSSARY 

 

Polynomial:  A mathematical expression such as ax3+bx2-cx, where x is a variable and a,  

 

b, c are called coefficients. 

 

Binomial expansion:  According to the binomial theorem, it is possible to expand the  

 

polynomial (x + y)n into a sum involving terms of the form a xb  yc, where the  

 

exponents b and c are nonnegative integers with b + c = n, and the coefficient a of each  

 

term is a specific positive integer depending on n and b. 

 

Combinatorics: The branch of mathematics dealing with combinations of objects  

 

belonging to a finite set in accordance with certain constraints. 

 

Integration of a polynomial: The polynomial rule of integration via term-wise  

 

integration can be justified by the fact that the volume 𝑖𝑘+1  of  a 𝑘 + 1 dimensional cube  

 

with side  is the integral of the surface area (𝑘 + 1)𝑖𝑘 . To explain why it works, let 𝑟𝑖 be  

 

the inradius of a  dimensional cube with side . Then the volume (2𝑟𝑖)
𝑘 is  

 

geometrically the integral of the surface area 2𝑘(2𝑟𝑖)
𝑘−1 , i.e. (2𝑟𝑖)

𝑘=∫ 2𝑘(2𝑟𝑖)
𝑘−1d𝑟𝑖 

 

Since , we have 𝑖𝑘 = 𝑘 ∫ 𝑖𝑘−1𝑑𝑖. It follows that 

 

∑ 𝑖𝑘 =  ∑ 𝑘 ∫ ∑ 𝑖𝑘−1𝑑𝑖 = 𝑘 ∫ ∑ 𝑖𝑘−1𝑑𝑛𝑛
𝑖=1

𝑛
𝑖=1

𝑛
𝑖=1

𝑛
𝑖=1 .  

 

Mathematical induction:   To prove a statement S(n) is true for any natural number n, it  

 

suffices first to establish the inductive basis [to prove S(1) is true] and then to provide the  

 

inductive step [to prove S(m+1) is true by assuming S(m) is true]. 

34 

i

k i

iri 2=

https://en.m.wikipedia.org/wiki/Summation
https://en.m.wikipedia.org/wiki/Nonnegative_integer
https://en.m.wikipedia.org/wiki/Coefficient
https://en.m.wikipedia.org/wiki/Positive_integer
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Editors of "EVOLUTIONARY PROGRESS IN SCIENCE, TECHNOLOGY,  

 

ENGINEERING, ARTS AND MATHEMATICS (STEAM)" 

 

 

1.  Dr. Lawrence K. Wang  (王抗曝)   

 

Lawrence K. Wang has over 30+ years of professional experience in facility design,  

 

environmental sustainability, natural resources, STEAM education, global pollution  

 

control, construction, plant operation, and management. He has expertise in water supply, air  

 

pollution control, solid waste disposal, drinking water treatment, waste treatment, and  

 

hazardous waste management.  

 

 

He was the Director/Acting President of the Lenox Institute of Water Technology, Engineering  

 

Director of Krofta Engineering Corporation and Zorex Corporation, and a Professor of  

 

RPI/SIT/UIUC, in the USA.  

 

 

He was also a Senior Advisor of the United Nations Industrial and Development  

 

Organization (UNIDO) in Austria.   

 

 

Dr. Wang is the author of over 700 technical papers and 45+ books, and is credited with 24 US  

 

patents and 5 foreign patents.   
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He earned his two HS diplomas from the High School of National Taiwan Normal University  

 

and the State University of New York. He also earned his BS degree from National Cheng- 

 

Kung University, Taiwan, ROC, his two MS degrees from the University of Missouri and the  

 

University of Rhode Island, USA, and his PhD degree from Rutgers University, USA.   

 

 

Currently he is the Chief Series Editor of the Handbook of Environmental Engineering series  

 

(Springer); Chief Series Editor of the Advances in Industrial and Hazardous Wastes Treatment  

 

series, (CRC Press, Taylor & Francis); co-author of the Water and Wastewater Engineering  

 

series (John Wiley & Sons);  and Co-Series Editor of the Handbook of Environment and  

 

Waste Management series (World Scientific). Dr. Wang is active in professional activities of  

 

AWWA, WEF, NEWWA, NEWEA, AIChE, ACS, OCEESA, etc.                                                          

 

 

 

2. Dr. Hung-ping Tsao  (曹恆平) 

 

Hung-ping Tsao has been a mathematician, a university professor, and an assistant  

 

actuary, serving private firms and universities in the United States and Taiwan for 30+  

 

years. He used to be an Associate Member of the Society of Actuaries and a Member of  

 

the American Mathematical Society. His research have been in the areas of college  

 

mathematics, actuarial mathematics, management mathematics, classic number theory  

 

and Sudoku puzzle solving.  
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In particular, bikini and open top problems are presented to share some intuitive insights and  

 

some type of optimization problems can be solved more efficiently and categorically by using  

 

the idea of the boundary being the marginal change of a well-rounded region with respect to its  

 

inradius; theory of interest, life contingency functions and pension funding are presented in  

 

more simplified and generalized fashions; the new way of the simplex method using cross- 

 

multiplication substantially simplified the process of finding the solutions of optimization  

 

problems; the generalization of triangular arrays of numbers from the natural sequence based  

 

to arithmetically progressive sequences based opens up the dimension of explorations; the  

 

introduction of step-by-step attempts to solve Sudoku puzzles makes everybody’s life so  

 

much easier and other STEAM project development.  

 

 

Dr. Tsao is the author of 3 books and over 30 academic publications. Among all of the above  

 

accomplishments, he is most proud of solving manually in the total of ten hours the hardest  

 

Sudoku posted online by Arto Inkala in early July of 2012.  

 

 

He earned his high school diploma from the High School of National Taiwan Normal  

 

University, his BS and MS degrees from National Taiwan Normal University, Taipei,  

 

Taiwan, his second MS degree from the UWM in USA, and a PhD degree from the  

 

University of Illinois, USA.   
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 SCIENCE, TECHNOLOGY, ENGINEERING, ARTS AND MATHEMATICS  

 

(STEAM)"  

 

Dr. Lawrence K. Wang  (王抗曝)  - - left 

 

Dr. Hung-ping Tsao (曹恆平) -- right 
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E-BOOK SERIES AND CHAPTER INTRODUCTON 

 

Introduction to the E-BOOK Series of the "EVOLUTIONARY PROGRESS IN SCIENCE, 

 

TECHNOLOGY, ENGINEERING, ARTS AND MATHEMATICS (STEAM)" and This  

 

Chapter “EVOLUTIONARY MATHEMATICS AND SCIENCE FOR TWO ASPECTS OF  

 

BINOMIAL COEFFICIENTS: POLYNOMIAL C(n, k) AND COMBINATION (
𝑛
𝑘

)” 

The acronym STEM stands for “science, technology, engineering and mathematics”. In 

accordance with the National Science Teachers Association (NSTA), “A common definition 

of STEM education is an interdisciplinary approach to learning where rigorous academic 

concepts are coupled with real-world lessons as students apply science, technology, 

engineering, and mathematics in contexts that make connections between school, community, 

work, and the global enterprise enabling the development of STEM literacy and with it the 

ability to compete in the new economy”. The problem of this country has been pointed out by 

the US Department of Education that  “All young people should be prepared to think deeply 

and to think well so that they have the chance to become the innovators, educators, researchers, 

and leaders who can solve the most pressing challenges facing our nation and our world, both 

today and tomorrow. But, right now, not enough of our youth have access to quality STEM 

learning opportunities and too few students see these disciplines as springboards for their 

careers.”  STEM learning and applications are very popular topics at present, and STEM 

related careers are in great demand.  According to the US Department of Education reports 

that the number of STEM jobs in the United States will grow by 14% from 2010 to 2020, which 

is much faster than the national average of 5-8 % across all job sectors. Computer programming 

and IT jobs top the list of the hardest to fill jobs. 

       41 



Despite this, the most popular college majors are business, law, etc., not STEM related. For 

this reason, the US government has just extended a provision allowing foreign students that are 

earning degrees in STEM fields a seven month visa extension, now allowing them to stay for 

up to three years of “on the job training”. So, at present STEM is a legal term. The acronym 

STEAM stands for “science, technology, engineering, arts and mathematics”. As one can see, 

STEAM (adds “arts”) is simply a variation of STEM. The word of “arts” means application, 

creation, ingenuity, and integration, for enhancing STEM inside, or exploring of STEM 

outside.  It may also mean that the word of “arts” connects all of the humanities through an 

idea that a person is looking for a solution to a very specific problem which comes out of the 

original inquiry process. STEAM is an academic term in the field of education.  

 

The University of San Diego and Concordia University offer a college degree with a STEAM 

focus. Basically STEAM is a framework for teaching or R&D, which is customizable and 

functional, thence the “fun” in functional. As a typical example, if STEM represents a normal 

cell phone communication tower looking like a steel truss or concrete column, STEAM will be 

an artificial green tree with all devices hided, but still with all cell phone communication 

functions. This e-book series presents the recent evolutionary progress in STEAM with many 

innovative chapters contributed by academic and professional experts. 

 

This e-book chapter, “EVOLUTIONARY MATHEMATICS AND SCIENCE FOR TWO 

 

ASPECTS OF BINOMIAL COEFFICIENTS: POLYNOMIAL C(n, k) AND 

COMBINATION (
𝑛
𝑘

)” is Dr. Hung-ping Tsao’s collection of thoughts, works and articles 

about various ways of coming up with formulas for sums of powers throughout his retired 

period for seventeen years now. Three years prior to the publication of “EXPLICIT 

POLYNOMIAL EXPRESSIONS FOR SUMS OF POWERS OF AN ARITHMETIC 

PROGRESSION”, he gave a few talks among universities in Taiwan and a class of gifted 

students of his Alma Mater (High School of National Taiwan Normal University). He was 

then invited to present “General Triangular Arrays of Numbers” by “22nd Asian Technology 

Conference in Mathematics” (Chung Yuan Christian University, December 19, 2017). He is 

also grateful that Professor Ronald Graham [author of “CONCRETE MATHEMATICS”] 

replied promptly to my e-mails with two separate attachments of his manuscripts that he 

generalized most of the special functions in Chapter 6 of “CONCRETE MATHEMATICS”. 

He is presenting here a systemic but rather long account of his personal excursion into the 

realm of numbers initiated by Blaise Pascal, James Stirling, Leonhard Euler and Jacob 

Bernoulli, which is therefore not meant to be a categorical survey of the topic.  
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