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EVOLUTIONARY MATHEMATICS AND SCIENCE FOR

TWO ASPECTS OF BINOMIAL COEFFICIENTS:

POLYNOMIAL C(n, k) AND COMBINATION (Z)

Authored by:  Hung-ping Tsao (& &)

ABSTRACT

We make distinction of two important roles for binomial coefficients to play in Number
Theory and Trigonometry, respectively. The polynomial aspect of C(n, k) enables the
derivation of both explicit and implicit formulas for sums of powers of arithmetic

n

progressions, whereas the combinatorial aspect of ( k

) helps the derivation of multiple angle

formulas for Sine, Cosine and Tangent functions.

KEYWORDS: Polynomial expression, Sorting, Commutative ring, Stirling number, Eulerian
number, Natural sequence, Powered sum, Binomial coefficient, Pascal triangle, Bernoulli
coefficient, Arithmetically progressive sequence, Recursion, Iteration, Trigonometry, Multi
angle formula Sine, Cosine, Tangent, De Moivre’s Theorem.



NOMENCLATURE

cin k), (}) binomial coefficient, combination

)3 sum

b(k, j) Bernoulli coefficient

O the natural sequence

(a+({-1nd); arithmetically progressive sequence

S the sum of the first kth powers of the natural sequence

P(n, k), ((Z)) the permutation of n elements taken k at a time

k! k factorial
[Z Stirling number of the first kind
{k} Stirling number of the second kind

{Z} ; Stirling number of the second kind for (a + (i — 1)d){°
a;



1. POLYNOMIAL ASPECT
According to the binomial theorem, we are familiar with the following expansion
(x +Y)" = Xi=o C(n, k)x™Fyk Eq. 1

where C(n, k) is known to be Binomial coefficient as displayed in Table 1.

nk 0 1 2 3 4 5 6 7 8 9 10
0 1
1 1 1
2 1 2
3 1 3 1
4 1 4 4
5 1 5 10 10
6 1 6 15 20 15
7 1 7 21 35 35 21
8 1 8 28 56 70 56 28
9 1 9 36 84 126 126 84 36 9 1

10 1 10 45 120 210 252 210 120 45 10 1

Table 1. Pascal Triangle
Since
Cnk)=n(n—1)(n-2)..(n—k+1), Eq. 2

we see that C(n, k) is a polynomial in n of degree k. This feature of binomial coefficients

enable us to derive both explicit and implicit formulas for sums of powers of arithmetic

progressions. Despite of the fact that the closed form for the polynomial expression for a

powered sum of the arithmetically progressive sequence (a+ (i—1)d);" has been obtained

in (3), we feel obliged to present two more efficient ways for computer calculation.



One way is to use recursion for finding the Bernoulli number b(k, j) in

i=1 1= X720 bk, ',

which is displayed in Table 2.
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Bernoulli triangle

By takingn =k, x =1 andy =nin Eq. 1, we can obtain

n+1:k __

i=1!

n

i=1

i =@1+n)"

=ZC(|<, o’

Eq. 3
10 11
1
10
1
2 11
Eq. 4

and equate the coefficients of the like terms in the expansions of which for j=012,...k to

to come up with

k+1

Ck,i)= ZC(j, bk, j) .

Eq.5



Take k =3 in Eq. 5 for instance, by equating the coefficients of the like terms of

C(3,0)+C(3)n+C(3,2)n* + C(3,3)n’
= Zb(B, Hin+1)’ - Zb(B, jnt

=b(3,1)C(L0) +b(3,2)[C(2,0) + C(21)n] +b(3,3)[C(3,0) + C(3.1)n+C(3,2)n*]
+b(3,4)[C(4,0) + C(4)n +C(4,2)n* + C(4,3)n°]
= [C(LD)b(31) + C(2,2)b(3,2) + C(3,3)b(3,3) + C(4,4)b(3,4)]
+[C(21)b(3,2) + C(3,2)b(3,3) + C(4,3)b(3,4)]n
+[C(4,2)b(3,3) + C(3)b(3,4)In? +[C(4)b(3,4)]n°
we can obtain
C(4)b(3,4) =C(3,0),
C(4,2)b(33)+C(31)b(3,4) =C(3)),
C(21)b(3,2) + C(3,2)b(3,3) + C(4,3)b(3,4) = C(3,2)
and

CADbBL) +C(2,2)b(3,2) + C(3:3)b(3,3) + C(4,4)b(3,4) = C(3,3) .

Moreover, let us generalize Eq. 3 to

k+1

Sla+(-d1* = 3 b, (k, n**

for an arithmetically progressive sequence (a+ (i—1)d);” with by, (k, j) =b(k, j) .



Likewise, we can equate the coefficients of the like terms for j=012,,...k inthe

expansions of both sides of the identity

n+1 n

(dn+a)* = Y [a+(i-1d]* - Y [a+ (i -Dd]* Eq. 7

to obtain the following generalization of Eq. 4:

k+1

a'd“C(k,i) = > C(j, )b, (K, ) Eq. 8

=

Putting i=k+1k,k—1 in Eqg. 8, we see that

d*C(k,0) = C(k +11)b, , (k. k +1)

gives
b, (K k+1)—d"i-
ad k+1’
ad“*C(k,1) = C(k +1,2)b,, (k,k +1) + C(k,1)b,, (k.k)
gives
b, (k,k)=d “(a - 9)
' 2
and

a’d*?C(k,2) = C(k +13)b,4 (k,k +1) + C(k,2)b,.4 (k.k) + C(k —11)b,, (k,k —1)
gives

C(k)

d2
b.. (k,k-1)=d“? a?’—ad +—
a,d( ) [ + 6] 2



In this manner, we can successively obtain

Ck2).

. d
b (K k—2) = d (a—;)( aq) S2

by (kK =3) = dk“{(az = ad)® —%}@ ;

b, ; (k,k—4) =d k‘s(a—%j[(az — ad)? —%(a2 —ad)}—c(k’d') ;
_B)— kb 2 _ 3 _i 2 2 £ C(k,5) .
b,y (k,k—5)=d {(a =ad) > (a® —ad) +42}—6

ba;d(k,k—6):d”(a—%j{(az:ad)z—dz(a —ad)? 2 (a —ad)} (K, 6)
s 4d? , , 5 2d° » d°®|CkT) .
b, (k.k—7)=d {( ~ad)* -~ (@’ =ad)’ + “—(a" ~ad)’ 30}—8

b,.q (k,k—8)

d*  , , 3d° , C(k,8)
T(a —ad) —?(a —ad)}—,

:dkg(a—%J{(aZ ~ad)* -2d?(a® =ad)® + 9

b,.q (kK,k—-9)

2 6 10
=d"“"| (@* -ad)® —i(a2 —ad)* +3d*(a* = ad)® —i(a2 —ad)? £ 207 Ck9)
2 2 66 10



2. COMBINATORIAL ASPECT

n

The number ( J of ways of sorting the first N terms of the natural sequence (i);

Ng,Ny,...| N

m
,where n=>"n, . For

m
[n; =

i1

into m subsets with n; elementsinthe jth subsetis

ny o1 14 14
example, =—— and =—
2.45 214151 2.3,3,6 21313161

In particular, the number of ways of sorting the first n terms of (i) into 2 subsets with

. . . L. n n!
k elements in one and n—Kk elements in another is the combination =
knk) KI(n—=k)!

n

which will be further abbreviated as the binomial coefficient ( ) or C(n,k): while the

k

number of ways of sorting the first n terms of (i) into k singletons and a subset of

n | n
n—k elements is the permutation ( j L , which will be abbreviated as [ j
11..1k)  (n—=K)! K

or P(n,k). Hence we write

((nn:n(n—l)(n—2)...[n—(k—1)] Eq. 9

and

20

10



k
where (( D = k!. Since this first level of sortation can be expressed as the product of a
k

() o

) o 10

We use Eq. 11 to generate the first-order Pascal triangle, same as Table 1, in Table 3 and

Eq. 12 to generate the second-order Pascal triangle as in Table 4.

(:)A 0o 1 2 3 4 5 6 7 8 9 10

0 1

101 1

> 1 2

3 1 3 1

4 1 4 4

5 1 5 10 10

6 1 6 15 20 15

7 1 1 2 35 35 21

8 1 8 28 56 70 56 28

9 1 9 36 84 126 126 84 36 9 1
0 1 10 45 120 210 252 210 120 45 10

Table 3. Table for the first-order Pascal triangle
11



((HJJA 0o 1 2 3 4 5 6 7 8 9 10
k

1 1 1

2 1 2

3 1 3 6

4 1 4 12 24

5 1 5 20 60 120 120

6 1 6 30 120 360 720 720

7 1 7 42 210 840 2520 5040 5040

8 1 8 56 336 1680 6720 20160 40320 40320

9O 1 9 72 504 3024 15120 60480 181440 362880 362880

10 1 10 90 720 5040 30240 151200 604800 1814400 3628800 3628800

Table 4. Table for the second-order Pascal triangle

The number of ways of sorting the first n terms of (i)f into k cycles is the Stirling

n

k

number of the first kind [ } . We can obtain Table 5 via the recursive formula

K}:[:j+(”_nr:}' Eq. 13

{:}A 1 2 3 4 5 6 7 8 9 10
1 1
2 1
3 2
4 6 11 6 1
5 24 50 35 10 1
6 120 274 225 85 15 1
7 720 1764 1624 735 175 21 1
8 5040 13068 13132 6769 1960 322 28 1
O 40320 109584 118124 67284 22449 4536 546 36 1

10 362880 1026576 1172700 723680 269325 63273 9450 870 45 1

Table 5. Table for Stirling numbers of the first kind
12



We further write Eg. 9 into

For example,

((Z)) =i (-D" [k ¢ j] - Eq. 14

((Jj =n(n-1(n-2)(n-3) = [§]n* = [J]n* + [}] 2 =[] n .

On the other hand, the number of ways of sorting the first n terms of (i)f into kK setsis

the Stirling number of the second kind {

n\k

=
N

15
31
63
127
255
511
Table 6.

© 0O N O U WN R
e e T e T = T N =

=
o

n

}. We can obtain Table 6 via the recursive formula
k

n n-1 n-1
U=l
k k-1 k
3 4 5 6 7 8 9 10
1
25 10 1
90 65 15 1
301 350 140 21 1
966 1701 1050 266 28 1
3025 7770 6951 2646 462 36 1
9330 34105 42525 22827 5880 750 45 1

Table for Stirling triangle of the second kind

Alternatively, the Stirling triangle { }A of the second kind can be constructed based on
k

(= LA
(g}

j=1

) and {}:1 via the inversion formula

n

Eq. 16

13



3. EXPLICIT FORMULAS FOR POWERED SUMS

To attain our goal, we first derive the following identity
ny k[j1m+1
() =z [ 1) e 1

We shall only look at the case for n=5 and k =3, since the general case is similar. Let us

first verify Eq. 17 with the following examples:

6 3 7 4 7 [57](7 6 7
(): {}_ {}+ {}_[H}=1><350—6><140+35><21—225><1=20,
3 EX 1315 L3 L6 317
5 37(6 47| (6 576
(): {}_ {}Jr {}=1x65—6x15+35><1=10,
3 L3 14 1 3115 L3116
5 271 (6 37 (6 F47](6 5 6
U: {}_ {}+ {}_{ H}=1><90—3x65+11><15—50x1=10.
2 1213 1214 L2 ](5 2|16

14



We then derive the following identity

L+n)* = tzﬂ Jln{kjl} '

We only look at the case where K =4 . From Eq. 4, we can use Eqgs. 16 and 17 to write

o (oo



k+1 1 ([mljj{kﬂ}
=) = . Eg. 20
= AN j a

Finally, we can obtain

n

" k K+1 . 1 j K+1
PILEDIDD (—1)”-1”—_[ H }n Eq. 21
r=0 j K+1-r j

i=1 =k+1-r J

by regrouping the following display of Eq. 20:

16



4. IMPLICIT FORMULAS FOR POWERED SUMS

For simplicity, let us write

n

si(n) = Y la+(@i—-1d] Eq. 22

i=1

and derive as follows.

Seia (N)
_ iz;:[a+ (i—1)d]*[a+ (i —1)d]
_ izl:[a+ (i —1)d]k‘1dKn +§j— (n+1- i)}
_ d{[n +§j§[a+ d(i -] —g(n +1-i)[a+d( —1)]“}

= d{(n +§j8§;j(n) —Zn:(n +1-i)[a+d(i —1)]k‘l} ,

the last term of which can further be derived as

Zn:(n +1-i)a+d(i -1

=S (n)+ ri[(n D +1-i][a+d(i-D]**

and in turn

17



E[(n ~D+1-ij[a+d@i-D]*

I 1)+Z[(” 2)+1-il[a+d(i-1]",.

n—(n-2) n—(n-1)

Z{[n —(n=-2)]+1-illa+d(i-D]** =S¥ () + Z{[n —(n=-D]+1-iHa+d@i-D1**

so that

589 (n) = d{[ j‘k  (n) - Zs‘k l’(n} £q. 23

From

sY (n) = Z[a+(| 1)d] =an + d“(” b %n2+(a—%jn,

we use Eq. 6 to obtain

Saa ()

2 2
=d—n +d(a—gj +{a(a—d)+d—}n.
3 2 6

18



We further write

Sfﬂ,(n)_ n’+= [a+(a d)n,

S&(n) = 3 n +— [a+(a d)n? += [a +4a(a—d)+(a—d)?]n,

LM = n+ 2S5 () -4 S5 (),

We shall use <10 > for a, <1-1> for d, <11> for a+(a—d), <141> for

a’+4a(a—d)+(a—d)?. Accordingly, we can derive

Sz ()

= (dn+ <10>)S{) (n) - dzsézd) (1)

d® 5, d , 1
= (dn+ <10 >) ?n +E<11>n +g<141>n

—dZ(—j +9<11>J +(15<141>1J

19



3 d? d? d d 1
=—n*+| —<11>+—<10> n3+(—<141>+—<1O><11>)n2+—<10><141>n
3 2 3 6 2 6

3 3 2 2 2 2
_(d°_d° n* + d—<11>+d—<10>—d—<1—1>—d—<11> n®
3 12 2 3 6 6

+ 9<141>+9<10><11>—i<1—21>—9<141> n?
6 2 12 6

+ 1<1O ><141>—i<1—21><11>—i<1—1><141> n
6 12 12

3 2 dZ 1
=—n*+—<33>n°+—<282>)n* +— < 0660>n
12 12

3 2 d2 1
:Tn4+—<11> n3+?<141>)n2 +§<0110>n.

Defining

b*(k,k -2t +1) =b(k,k — 2t +1)
and

b*(k,k —2t) =(k — 2t +)b(k,k — 2t +1)
we can write

k
S8 =Yb*(kk+1-j)d“Ip,(a,dn**

j=0

where p;(a,a—d) isahomogeneous polynomialin a and a—d suchas

20



po(a,d)=1,
p,(a,d)=a+(a—-d)=<1>,

p,(a,d)=a’+4a(a—-d)+(a-d)’=<14>,

p;(a,d)=a’*(a-d)+a(a—-d)* =<01>,

p,(a,d)=a*-4a’(a-d)+24a’*(a—-d)* -4a(a-d)’ +(a—d)* =<1-4,24 >
ps(a,d)=a*(a-d)-4a’(a-d)*-4a’(a—-d)’+a(a—d)* =<01,-4,>,... Eq. 24

with <1,> abbreviating <11>, <14 > abbreviating <141>, <0,.1,> abbreviating
<0110 >, <1-4,24> abbreviating <1(—4)(24)(-4)1>, <1,-4,24 > abbreviating

<1(-4)(24)(-4)1>, <01,-4,> abbreviating < 01(—4)(—4)10 > ... due to the symmetry of
p;(a,a—d). Thus we can derive

d* 3 d? 1
SWM)=—n"+—<1>n*"+—<14>n+d <01, >n*-—<1-4-24>n;
’ 5 2 3 30

5 4 3 2
ng"(](n):%n6+7<l,> n5+%<1,4>n4+

<01,>n? _d <1,-4,-24 > n?
12

—1 <01-4,>n;
6

6 5 4 3 2
S;?j(n):d7n7 +?<1,> n® +d7<1,4>n5 + <01,> n“—d?<1,—4,—24>n3

_d <01-4,>n*+ 1. 1,-6,—6,64>n;
2 42

21



5 4 3

7 6
<14>n°+

d
SOM)y=—n®+—<1>n" +
a,d() 8 2

<01,>n°— <1,-4,-24>n*

2
7d <01-4,>n® +i<1 —6,—6,64 > n® +i<01 -6,8,>n;
42 12

5 4

7 6
‘8’(n)_ n +7<1>n + <l4>n"+ <01,>n°— <1-4,-24>n°
3 2
_rd <01-4,> <1,—6,—6,64>n3+%<0,1,—6,8,> n?
1

-—<1-88,64,-160>n;
30

9 8 7 5
S‘g’(n)_ n®+—«<1>n° +3d <1,4>n8+6d6<0,1,>n7—7d <1-4,-24>n°®
e 10 2 10

3

4
_2ud <01-4,>n° +d7<1 —6,-6,64>n*+2d? <01,-6,8,>n?

—ﬁ<1 -8,8,64,—160 > n? —%<03 —24,64,-48,>n;

10 9 8 7

S“O)(n)_ +—<1,>n1°+T<1,4>n +

<0l>n®-d®<1-4-24>n’

—7d°<01-4,>n®+d* <1,-6,—6,64 >n° +5d° <01,-6,8,>n*

d’ 3d
-—<1-88,64,-160>n° -~ <03-2464 —48,> n*

+ 62 <5,-50,126,192,-1392,2304 > n

Now we can use Eq. 8 to further come up with



2

S&(n) = —n '+d%(a- )n“’+5d8{a(a—d)+%}n9+15d7(a—%)a(a—d)n8

+30d°®

+42d*

+30d°3

8
+15d{a4(a—d)4 42 a*(a—d)’ +2: a’(a—d)? _d_} .

_az(a—d)z—%}ﬂ +42d5(a—%j{a2(a— d)? —%a(a—d)}n6

_as(a—d)a —ﬁaz(a—d)2 +£ n°
2 42

a—%}{ae‘(a—d)e’ —d?(a—d)? +%a(a—d)}n“

30

+5d(a—%}{a4(a—d) —-2d*a*(a-d)® +92 a’(a—d)? —ﬁa(a d)}

In order to see the trend, use A(j,r) to denote the coefficients of the termsin p;(a,a—d).

For example,

AL =1,A1L2) =1:

A2D) =1,A22) =4 A23)=1:

A(31) =0,AB2)=1,A33)=1,A(34)=0:

A1) =1,A42) =4 A(43) =24 A44)=-4 A@45)=1;

AL =0,AG2)=1,A53)=-4, A5G4 =-4, A55) =1,A56)=0.

In fact, we can iteratively obtain more values of A(j,r) asin the triangle AA of Table 7.

23



jr 12 3 4 5 6 7 8 9 10 11
11 1

2 1 4 1

3 0 1 1 0

4 1 -4 -24 -4 1

5 0 1 -4 -4 1 0

6 1 -6 -6 64 -6 -6 1

7 0 1 -6 8 8 -6 1 0

8 1 -8 8 64 160 64 8 -8 1

9 0 1 -8 64/3 -16 -16 64/3 -8 1 0

10 1 -10 126/5 192/5 -1392/5 2304/5 -1392/5 192/5 126/5 -10 1

Table 7. Table for the coefficients A(j,r) of thetermsin p;(a,a—d)

Besides A(2t1) = A(2t,2t+1)=1 and A(2t +11) = A(2t +1,2t + 2) = 0, by further observing
A(4,2) = A(4,4) = AG,3) = A(5,4) = 4,
A(6,2) = A(6,6) = A(7,3) = A(7,6) = —6
A(8,2) = A(8,8) = A(9,3) = A(9,8) =-8 |
we see the trend that, for t>1,
A(2t,2) = A(2t,2t) = A(2t +1,3) = A(2t +1,2t) = —2t

A2t,t+1) = (2t + 2)A(2t + 1Lt +1)

2t+1 2t+2

ZA(Zt, i) :(2t+1)ZA(2t+1, i),

which can be verified in Table 4. Due to the symmetry, only the first half of each row of

A(j,r) will be shown in Table 8.
24



1 4
0 1
1 -4 -24
0 1 -4
1 -6 -6 64
0 1 -6 8
1 -8 8 64 -160
64
0 1 -8 — -16
3
L _10 % & B 1392 2304
5 5 5 5
0 T S LA R
5 5 5
L 19 31956 ~ 15520 B 227160 730368 ~ 1026816
691 691 691 691 691
0 L 19 41056 ~ 106520 146304 ~ 73344
691 691 691 691
L 14 2494 4448 8296 11840 137568 178176
35 35 35 7 35 35
0 L 14 8864 B 29928 60864 . 14368 33408
105 105 105 21 105
L 16 362640 B 1025920 320480 7371264 B 273098 52971520 B 65272320
3617 3617 3617 3617 3617 3617 3617
Table 8. Table for the first half of each row of A(j,r)

25



As can be seen from Table 8, it is peculiar that

A2t,t+1) = (2t + 2)A(2t + 1Lt +1)

for t<8, butnotfor t=8.

For further investigation, let us continue the list of Eq. 10 below.

ps(a,a—d)=<1-6,-6,64 >,
p,(a,a-d)=<01-638,>,
pg(a,a—d)=<1-8,8,64,-160 >,
p,(a,a—d)=<0,3-24,64,-48,>,
p,o(a,a—d)=<5,-50,126,192,-1392,2304 >,
Pu(a, a - d) =<0, 5, -50, 192, -336, 192>,
P, (a,a—d) =< 691,-8292,31956 ,15520 ,—227160 ,730368 ,—1026816 >,
p;(a,a—d) =<0,691,-8292,41056,-106520 ,146304 ,— 73344 ,> ,
P, (a,a—d) =< 35,-490,2494,-4448,-8296 59200 ,—137568 178176 >,

p,;s (a,a—d) =< 0,35,-490,8864,—29928 ,60864 ,—14368 ,33408 , >,

so that

dll 10 11d9
SMm)=—n2+=—p (a,a—d)n* +
a;d ( ) 12 2 pl( ) 12

55d°

p,(a,a-d)n* +

pS(a’a_d)ng
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11d’ o 11d°

p,(a,a-d)n® -11d°p, (a,a—d)n°
3 2
+11d*p, (a,a—d)n® 11d (a,a—d)n* 11d (a,a—d)n?
+E plo(ava_d)n +€ pll(a,a—d)n,
12 11
5(12)(’1)— n +7pl(aa d)n* +d*p,(a,a—d)n" +11d°p,(a,a—d)n"™
- 11d° , 33d’ s 22d° :
p,(a,a—d)n” - ps(a,a—d)n” + ps(a,a—d)n
4 3
+22d5p7(a,a—d)n6—BigI ps(a,a—d)n® 11d (a,a—d)n’

2

d 1
+? p,(a,a-d)n®+dp,(a,a—-d)n? ~ 5730 p,(a,a—d),

13 12 11
8‘13)(n)_ n +d7p1(aa d)n® + id

p,(a,a—d)n" +13d"p,(a,a—d)n™
2 3

143d° 143d’

9
_14d p;(a,a—d)n’ +

60

p4 (a’a_d)nlo -

p6 (a,a—d)n8

6 5 4
, 286d o (@ad)n’ ~ 143d pg(a,a—d)n6—143d

pg (a’a_ d)n5

3 2
+ 1?_d po(aa-d)n*+ 13

d
pn(a,a_d)n3 _4_20 P12 (a1a_d)n2

1
_2_10 p13(a’a_d)n,
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14 13 12 11
Sm’(”)— +7 pl(a,a—d)nl“Jr7CI pz(a,a—d)nl3+91d

p3 (av a-— d)nlz

91d*° 1001d° 143d?
- a,a—d)n*" — a,a—d)n® a,a—d)n°
30 P, ( ) 30 Ps ( ne + 18 Pe ( )

p,(a,a—d)n® -

7 6 5
, 143d . 143d ps(a,a—d)n7—1ogéd o a8

91d* 91d°

1 d?
+=3g Po@a-dn’+ = p,(@a-dpn’ -2 p,(@a-dn’

. d
30 Pe@a- d)n® +3 Pu(a,a-dn,

15 14 13 12
8‘15)(n)— n +7pl(aa d)n® + > pz(a,a—d)n14+35d

ps(a,a—d)n”

11 10 9
—912(1 p,(a,a—-d)n? - 9d ps(a,a—d)n' + f’d P (a,a—d)n*

p7 (a! a

8 7 6
+715d —d)n? —4219: ps(a,a—d)n® _14 3d p,(a,a—d)n’

91d° 9d4

+ o p,(a,a—-d)n®+ p,(a,a—d)n’° —d—plz(aa d)n’

d? , d , 1
__pl?;(a’a_d)n +Z p14(a’a_d)n +E pls(aaa—d)n.

We have, however, yet to find a better way to come up with satisfactory patterns!



S. MULTIPLE ANGLE FORMULAS FOR TRIGONOMETRIC FUNCTIONS

we can derive

Z( l)k 1( -

jtan2k 10

-1

tan(2n — 1)6?_ — Eqg. 25
Z( 1) ‘1( jtan2k 20
-2
and
n 2n
Z(_l)kl( jtan2k1 6
tan2n@ = *21_ 2kt Eq. 26
> (-1 ( jtanZke
k=0
by using
tan(a + B) = tana +tanf . Eq. 27
l-tanatan g

Although the general formulas for sinmé& and cosmé have been known due to

De Moivre’s Theorem, we can use Eg. 25 to derive

cos(2n-1)6 = ZZ( 1~ ( j(:”jcosz”z“e Eq. 28

k=0 i=k+1

and

sin(2n—-1)6 = ZZ( 1) ( jC?_Dsinz““é?; Eq. 29

k=0 i=k+1

and use Eqg. 26 to derive

n  n+l
cos2nfd=>" > (-1) ( j[ jcosz“ke Eq. 30
2i-2

k=0 i=k+1

and

sin2n0 = cos6S 3" (-1)* ( j( ansinz““e Eq. 31
2i-1

k=0 i=k+1

via combinatorial method.
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2tan@

Since tan26 = -—, We can use Eq. 27 to derive
1-tan“ @

3 3
tang—| |tan®@
2tan6’+(1—tan26’)tan6’_3tan¢9—tan36’_(1j [J

tan360 = 5 > = 5 = . .
(1—tan? @) —2tan@ 1—-3tan2 @ ( )_[ jtanze
0 2
and in turn
3 3 3 3
2tan¢9[[ j—[ jtan29}+(1—tan29)[[ jtane—( jtanSH}
tan560 = ° 2 . °

o - -z oo
s [ )
T (oo
(oo (s
e
awn ()

In general, we can derive

tan(2n-1)60
n-1 2n— n-1 2n-3
2tan 492(—1)"‘1[ jtan”‘2 6 + (L—tan® 49)2(—1)“[ jtanz“‘l 6
_ k=1 2k-2 k=1 2k-1
- n-1 2n-3 n-1 2n-3
(1-tan?6)>_ (—1)“( )tanzk‘2 0—-2tand) (—1)“‘1( jtanz‘“1 6
k=1 2k-2 k=1 2k-1

n-1 2n-3 2n-3 2n-3
(2n-1) tan6+Z(—1)k‘l[2[ j+[ )+( ﬂ tan®** @+ (-1)" ' tan*" " 6
_ k2 2k—2 2k-1 2k-3

14 ”2‘1: (-1) kl|:2[2n_3j + (Zn_j " [ZHH tan®*? 0+ (-1)"*(2n-Ytan** ¢ |

2k— 2k-2 2k—-4

which leads to Eq. 25.



Similarly, we can derive

4 4
( jtana—( jtan:"e
tan40 = ! 3

(o

and in turn

2tan 49[[4j —[Lljtan2 ¢9+(4)tan4 6’} + (1—tan? 0)[[4jtan6—(4jtan3 9}
(1—tan® 9)[[4j —[4jtan2 9+(4jtan4 49} —2tan 9[(4}&“6 —(4)tan3 6’}

IR CORNER
Lo [ ) o

6 6 6
( )tan@—( )tan36’+( jtan‘r’@
_ 1 3 5 Eq 32

/6 6 6 6 '
( j—( )tan2¢9+( )tan“@—( )tanﬁe
0 2 4 6

In general, we can derive

tan6g =

Eq. 30

tan 2n@

)tanz‘“1 2]

2k-1

)tanz"@ 2tan02( 1) ‘1( " )tanz"‘le
2k-1

k=1

2tan6’Z( 1) ( jtan2k¢9+(l tan? 9)2( 1) -1( "
(1 tan? 49)2( 1)"(

2k-1

1—|—Z( 1)k l|: (2“ )4—( " j+(2n_ ji|tan2k2 9+(_1)n71(2n_1)tan2n72 9,

2n-2
2ntan @ + Z( —1)* [2( +( ﬂ tan®™* @+ (-1)"*2ntan*"" @
2k+l
-3

2k k—

which leads to Eq. 26.
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Before deriving Eq. 28, we first look at the case when n =4 . From Eq. 25, we can derive

(Jano-(Jean* o Jeanto-(Jean’ o
({0 Jrant o[ Jran o

( } ( j(se020—1)+(7j(se026’—1)2—(7j(sec29—1)3
=tand ) ( > !

( j(sec2 6-1) +(D(sec2 6 —1)? —Cj(sec2 6-1)°

()|
§

tan76 =

,
jsec2k 2]

k= 0| k+1 2i-1

cosez.z (-1 ( ) )sec
sin QZZ( 1) ( j j(l—sinze)“

k= O| k+l

cosez Z (-D* (I lj(m_zjcosm‘k) 0

k=0 i=k+1

Eq. 33

Obviously, the denominator of Eq. 33 equals the right-hand side of Eqg. 28 for n =4 . Instead
of showing that the numerator of Eq. 33 equals the right-hand side of Eq. 29 for n=4, we
can likewise derive

cosez Z( 1) ( )( ' )(1—0032 6)**

C0t79— k=t O| k+1

sin 6’22( 1) ( j(z;jsinz(“)a

k=0 i=k+1

so that the denominator of which equals the right-hand side of Eq. 29.
In general, we can similarly derive

sin 6’2 Zn: (-1 ( j(zn_ll(l—sin2 )"

tan(2n-1)0 = k=0 i=k+1

cosezzn:( 1) ( j(zﬁ_ljcosz(”‘k‘l)e

k=0 i=k+1

and

cosez Zn: (-1 ( j[zn_lj(l—cos2 1) R

cot(2n-1)0 = =

sin HZ Z( 1~ ( j[ | zjsmz(n 1 g

k=0 i=k+1

so that Egs. 28 and 29 are true.
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sin 66

- and
cos’ @

Finally, we note that the numerator and the denominator of Eq. 32 equal to

cos6d

7 , respectively. Accordingly, Egs. 31 and 32 can similarly be derived from Eq. 26. All
cos®

the multiple angle formulae derived above can be proved by mathematical induction. We
shall only prove Eq. 25, which is obviously true for n =1. So we are left to prove

n+l (n+1)
Z( 1)k l( jtan 2k-1 pa]
k-1

tan 2(n+1)0 = M oD Eq. 34
Z( 1~ ( jtan ]
2k
Using Eq. 27, we first obtain
tan 2(n+1)6 — tan26 +tan2né
1-tan28tan2né
n 2n n 2n
2tan6y_ (—l)k( jtan2k 6+ (1—tan® 49)2(—1)“( jtan2k1 6

. k=0 2k 2k-1 Eq. 35

- n 2n
(1-tan? Q)Z(—l)k( jtan2k 6 —2tan HZ( 1) ‘1( )tanZk‘1 6
k=0 2k-1

k=1

Then use Eq. 27 to regroup the numerator of Eq. 35 successively as

2tan9+Z( 1) ( jtanZk*149+Z( 1~ 1( jtanz“e
2k-1
+Z[(—1)k( jtanz“le—(—l)“( jtanz“” 0}
k=1 2k 2k-1
n-1 2n
=2tané + Z(—l)"( jtanz“l 6+ (-1)" tan*"* @
k=1 2k
n 2n
+2ntané@ + Z(—l)“(
k=2 2k-1

:2(n+1)tan0+2(_1)k[(zkj+(
+Z( D" [n

2k+1

jtan2k 16?+Z:( 1) (

2n

2k

ﬂ tan®*** @ + (-1)" tan*"* @9

2k+1

jtan2k+l O+ (D" (2n+1tan*"* g

_2(n+1)tam9+Z( 1) (2:+Jtan2k”0+2( 1)~ (

+(=D"2(n+1tan*""* @

2k

=2(n+1)tané + Z( 1)~ ( jtan2k+1 6+ (-1)" tan®"* 9
2k+1

2(n+1 n+l 2(n+1)
=Z(—1)k[ jtanz“”e Z( 1~ [ jtanz“e,
k=0

2k+1 2k-1

which is the numerator of Eq. 34. We can similarly prove both denominators to be equal. 33



GLOSSARY
Polynomial: A mathematical expression such as ax3+bx2-cx, where x is a variable and a,
b, c are called coefficients.
Binomial expansion:  According to the binomial theorem, it is possible to expand the
polynomial (x + y)" into a sum involving terms of the form ax°y¢, where the
exponents b and ¢ are nonnegative integers with b + ¢ = n, and the coefficient a of each
term is a specific positive integer depending on n and b.
Combinatorics:  The branch of mathematics dealing with combinations of objects
belonging to a finite set in accordance with certain constraints.
Integration of a polynomial: The polynomial rule of integration via term-wise
integration can be justified by the fact that the volume ¥+ of a k + 1 dimensional cube
with side j is the integral of the surface area (k + 1)i* . To explain why it works, let r; be
the inradius of a  dimensional cube with side j. Then the volume (2r,)* is
geometrically the integral of the surface area 2k(2r;)*~t ,i.e. (2r)k=[2k(2r)* 1dr
Since i=2r,, wehave i* =k [ i*¥"1di. It follows that

= 1= XLk [ X i =k [ XL, i tdn.
Mathematical induction: To prove a statement S(n) is true for any natural number n, it
suffices first to establish the inductive basis [to prove S(1) is true] and then to provide the

inductive step [to prove S(m+1) is true by assuming S(m) is true].
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APPENDIX: LIST OF TABLES

Table 1.

Table 2.

Table 3.

Table 4.

Table 5.

Table 6.

Table 7.

Table 8.

Pascal Triangle

Bernoulli triangle

Table for the first-order Pascal triangle
Table for the second-order Pascal triangle
Table for Stirling numbers of the first kind

Table for Stirling triangle of the second kind

Table for the coefficients A(j,r) of thetermsin p;(a,a—d)

Table for the first half of each row of A(j,r)
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Editors of "EVOLUTIONARY PROGRESS IN SCIENCE, TECHNOLOGY,

ENGINEERING, ARTS AND MATHEMATICS (STEAM)"

1. Dr. Lawrence K. Wang (FH(IRE)

Lawrence K. Wang has over 30+ years of professional experience in facility design,
environmental sustainability, natural resources, STEAM education, global pollution

control, construction, plant operation, and management. He has expertise in water supply, air
pollution control, solid waste disposal, drinking water treatment, waste treatment, and

hazardous waste management.

He was the Director/Acting President of the Lenox Institute of Water Technology, Engineering
Director of Krofta Engineering Corporation and Zorex Corporation, and a Professor of

RPI/SIT/UIUC, in the USA.

He was also a Senior Advisor of the United Nations Industrial and Development

Organization (UNIDO) in Austria.

Dr. Wang is the author of over 700 technical papers and 45+ books, and is credited with 24 US

patents and 5 foreign patents.
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He earned his two HS diplomas from the High School of National Taiwan Normal University
and the State University of New York. He also earned his BS degree from National Cheng-
Kung University, Taiwan, ROC, his two MS degrees from the University of Missouri and the

University of Rhode Island, USA, and his PhD degree from Rutgers University, USA.

Currently he is the Chief Series Editor of the Handbook of Environmental Engineering series
(Springer); Chief Series Editor of the Advances in Industrial and Hazardous Wastes Treatment
series, (CRC Press, Taylor & Francis); co-author of the Water and Wastewater Engineering
series (John Wiley & Sons); and Co-Series Editor of the Handbook of Environment and
Waste Management series (World Scientific). Dr. Wang is active in professional activities of

AWWA, WEF, NEWWA, NEWEA, AIChE, ACS, OCEESA, etc.

2. Dr. Hung-ping Tsao (& &%)

Hung-ping Tsao has been a mathematician, a university professor, and an assistant
actuary, serving private firms and universities in the United States and Taiwan for 30+
years. He used to be an Associate Member of the Society of Actuaries and a Member of
the American Mathematical Society. His research have been in the areas of college
mathematics, actuarial mathematics, management mathematics, classic number theory

and Sudoku puzzle solving.
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In particular, bikini and open top problems are presented to share some intuitive insights and
some type of optimization problems can be solved more efficiently and categorically by using
the idea of the boundary being the marginal change of a well-rounded region with respect to its
inradius; theory of interest, life contingency functions and pension funding are presented in
more simplified and generalized fashions; the new way of the simplex method using cross-
multiplication substantially simplified the process of finding the solutions of optimization
problems; the generalization of triangular arrays of numbers from the natural sequence based
to arithmetically progressive sequences based opens up the dimension of explorations; the
introduction of step-by-step attempts to solve Sudoku puzzles makes everybody’s life so

much easier and other STEAM project development.

Dr. Tsao is the author of 3 books and over 30 academic publications. Among all of the above
accomplishments, he is most proud of solving manually in the total of ten hours the hardest

Sudoku posted online by Arto Inkala in early July of 2012.

He earned his high school diploma from the High School of National Taiwan Normal
University, his BS and MS degrees from National Taiwan Normal University, Taipei,
Taiwan, his second MS degree from the UWM in USA, and a PhD degree from the
University of Illinois, USA.
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Editors of the eBOOK Series of the "EVOLUTIONARY PROGRESS IN
SCIENCE, TECHNOLOGY, ENGINEERING, ARTS AND MATHEMATICS

(STEAM)"

Dr. Lawrence K. Wang (FHilg) - - left

Dr. Hung-ping Tsao (& & %) -- right
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E-BOOK SERIES AND CHAPTER INTRODUCTON

Introduction to the E-BOOK Series of the "EVOLUTIONARY PROGRESS IN SCIENCE,
TECHNOLOGY, ENGINEERING, ARTS AND MATHEMATICS (STEAM)" and This

Chapter “EVOLUTIONARY MATHEMATICS AND SCIENCE FOR TWO ASPECTS OF
BINOMIAL COEFFICIENTS: POLYNOMIAL C(n, k) AND COMBINATION (Z) 7

The acronym STEM stands for “science, technology, engineering and mathematics”. In
accordance with the National Science Teachers Association (NSTA), “A common definition
of STEM education is an interdisciplinary approach to learning where rigorous academic
concepts are coupled with real-world lessons as students apply science, technology,
engineering, and mathematics in contexts that make connections between school, community,
work, and the global enterprise enabling the development of STEM literacy and with it the
ability to compete in the new economy”. The problem of this country has been pointed out by
the US Department of Education that “All young people should be prepared to think deeply
and to think well so that they have the chance to become the innovators, educators, researchers,
and leaders who can solve the most pressing challenges facing our nation and our world, both
today and tomorrow. But, right now, not enough of our youth have access to quality STEM
learning opportunities and too few students see these disciplines as springboards for their
careers.” STEM learning and applications are very popular topics at present, and STEM
related careers are in great demand. According to the US Department of Education reports
that the number of STEM jobs in the United States will grow by 14% from 2010 to 2020, which
is much faster than the national average of 5-8 % across all job sectors. Computer programming

and IT jobs top the list of the hardest to fill jobs.
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Despite this, the most popular college majors are business, law, etc., not STEM related. For
this reason, the US government has just extended a provision allowing foreign students that are
earning degrees in STEM fields a seven month visa extension, now allowing them to stay for
up to three years of “on the job training”. So, at present STEM is a legal term. The acronym
STEAM stands for “science, technology, engineering, arts and mathematics”. As one can see,
STEAM (adds “arts”) is simply a variation of STEM. The word of “arts” means application,
creation, ingenuity, and integration, for enhancing STEM inside, or exploring of STEM
outside. It may also mean that the word of “arts” connects all of the humanities through an
idea that a person is looking for a solution to a very specific problem which comes out of the
original inquiry process. STEAM is an academic term in the field of education.

The University of San Diego and Concordia University offer a college degree with a STEAM
focus. Basically STEAM is a framework for teaching or R&D, which is customizable and
functional, thence the “fun” in functional. As a typical example, if STEM represents a normal
cell phone communication tower looking like a steel truss or concrete column, STEAM will be
an artificial green tree with all devices hided, but still with all cell phone communication
functions. This e-book series presents the recent evolutionary progress in STEAM with many
innovative chapters contributed by academic and professional experts.

This e-book chapter, “EVOLUTIONARY MATHEMATICS AND SCIENCE FOR TWO

ASPECTS OF BINOMIAL COEFFICIENTS: POLYNOMIAL C(n, k) AND

COMBINATION (Z) " is Dr. Hung-ping Tsao’s collection of thoughts, works and articles

about various ways of coming up with formulas for sums of powers throughout his retired
period for seventeen years now. Three years prior to the publication of “EXPLICIT
POLYNOMIAL EXPRESSIONS FOR SUMS OF POWERS OF AN ARITHMETIC
PROGRESSION?”, he gave a few talks among universities in Taiwan and a class of gifted
students of his Alma Mater (High School of National Taiwan Normal University). He was
then invited to present “General Triangular Arrays of Numbers” by “22" Asian Technology
Conference in Mathematics” (Chung Yuan Christian University, December 19, 2017). He is
also grateful that Professor Ronald Graham [author of “CONCRETE MATHEMATICS”]
replied promptly to my e-mails with two separate attachments of his manuscripts that he
generalized most of the special functions in Chapter 6 of “CONCRETE MATHEMATICS”.
He is presenting here a systemic but rather long account of his personal excursion into the
realm of numbers initiated by Blaise Pascal, James Stirling, Leonhard Euler and Jacob
Bernoulli, which is therefore not meant to be a categorical survey of the topic.

42



