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A B S T R A C T

Historical languages are increasingly being modelled computationally. Syntactically annotated texts are often
a sine-qua-non in their modelling, but parsing of pre-modern language varieties faces great data sparsity,
intensified by high levels of orthographic variation. In this paper we present a good-quality Early Slavic
dependency parser, attained via manipulation of modern Slavic data to resemble the orthography and
morphosyntax of pre-modern varieties. The tool can be deployed to expand historical treebanks, which are
crucial for data collection and quantification, and beneficial to downstream NLP tasks and historical text
mining.
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1. Introduction

Dependency parsing is important in many downstream natural lan-
guage processing (NLP) tasks, including event extraction, word vector
representation enhancement, and text classification and summariza-
tion. Training good-quality parsers for historical languages is a chal-
lenging task, since they normally provide very little data with very
high levels of linguistic variation, which in machine learning easily
translates into high levels of noise.

In this paper we present a variety-agnostic part-of-speech (PoS)
tagger and dependency parser for Early Slavic (OldSlavNet) trained on
multi-lingual Slavic data spanning a thousand years via orthographic
and morphosyntactic harmonization of the modern data with their
pre-modern counterparts. Early Slavic and Modern Russian data was
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obtained from the Tromsø Old Church Slavonic and Old Russian Tree-
banks (TOROT) [1] (specifically the entirety of its Church Slavonic and
Old Russian subcorpus, and part of SynTagRus [2] from its Modern
Russian one), whereas Modern Serbian data was collected from the
Universal Dependencies (UD) Serbian-SET treebank [3]. Unlike other
experiments on historical language parsing (e.g. [4] on pre-modern Ger-
manic), and similar transfer techniques for the morphological tagging
of historical languages, including Slavic (e.g. [5]), OldSlavNet does not
rely on annotation projection between historical texts and their mod-
ern translations, but on modern data from a variety of contemporary
resources of different genres. This is a particularly welcome feature,
since it makes the parser a scalable tool: additional training data can
be added from original contemporary sources of any genre to improve
the parser without training it from scratch. The harmonization scripts,
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Fig. 1. Example of a tokenized, one-sentence-per-line text file (left) and its CoNLL-U version (right) obtained using converter.py.

now available for Russian and Serbian, can be downloaded from the
parser’s repository and used to harmonize new Modern Russian and
Serbian texts with Early Slavic, thus potentially improving the parsing
performance.

The parser is especially crucial to expand historical treebanks, large
collections of digital texts annotated with syntactic information: tree-
banks are a versatile source of data, not only directly exploited in
many NLP tasks, as the aforementioned ones, but they are used by the
humanities at large as a stand-alone collection of carefully digitized
textual data enriched with linguistic information.

2. Data and parser architecture

The parser works in the UD framework [6], one of the most widely
employed formats for dependency parsing.

The tool’s neural-network architecture is based on jPTDP [7]. The
following are the main new features in OldSlavNet’s model:

- ArgParse substitutes the older OptParse to allow for wider
reusability of our code.

- RMSProp [8] is employed instead of Adam [9] as optimizer to
avoid exploding gradients. The initial learning rate was set to 0.1
instead of None.

- Since the previous experiment in [10], the training set has been
expanded with Modern Russian and Serbian data. OldSlavNet’s
documentation contains a detailed breakdown of the corpus on
which the parser was trained and tested.

3. Usage

The following is the end-to-end process to use the tool to tag new
Early Slavic text:

1. Pre-process your text file: Convert your Early Slavic text to the
CoNLL-U UD-format by running the converter.py script in-
cluded in OldSlavNet’s repository. The input must be an al-
ready tokenized, one-sentence-per-line text file. Fig. 1 shows how
typical input text files and output CoNLL-U files should look like.

2. Download the repository : Clone OldSlavNet’s repository or down-
load the relevant files:

a. The Python scripts (parser.py, oldslavdep.py,
learner.py, decoder.py, mnnl.py and utils.py).

b. the model and model.params files.
c. the requirement.txt file.

3. Install the required dependencies:
Run: pip install -r requirements.txt

4. Tag your CoNLL-U file: Run the parser.py script and the neces-
sary hyperparameters as detailed in the relevant documentation’s
section. Your output should look as in Fig. 2

Fig. 2. Example of a CoNLLU file after adding part-of-speech and syntactic tags using
OldSlavNet.

4. Impact

OldSlavNet’s previous version (known as jPTDP-GEN) enabled [10],
which discussed the improvement of dependency parsers for low-
resource historical languages using cross-dialectal data. OldSlavNet, a
generic (i.e. variety-agnostic) parser, was shown to perform better than
two variety-specific parsers for Early Slavic, indicating that markedly
non-standardized historical languages are likely to benefit more from
the development of generic, cross-variety models, than from specialized
ones. Since [10], OldSlavNet has further improved its real-world per-
formance (i.e. its ability to tackle a wider range of pre-modern Slavic
varieties and genres) thanks to additional data from Modern Russian
and Modern Serbian, as Table A.1 shows.

OldSlavNet has been trialled on new texts in the TOROT Tree-
bank [1,2], a major annotated historical corpus for Slavic and offspring
of the PROIEL project [11,12]. The expansion of historical Slavic tree-
banks using OldSlavNet will contribute to the advancement of research
domains that benefit from syntactically annotated data, particularly
from less-resourced languages with great spelling variation:

1. Semantic change detection: A methodological gap which has been
noted for decades [13] is the integration of syntactic informa-
tion in meaning change modelling. Early Slavic treebank data
can now be used in semantic change detection by generating
word representation that are both semantically and syntactically
constrained (e.g. syntactic word embeddings [14] and syntactic
topic models [15]), thus improving the semantic models them-
selves. Understanding the mechanisms of meaning change in
different historical contexts will help design better tools for se-
mantic change detection, which has a wide range of applica-

tions in text processing, including information retrieval [16–18],
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Fig. 3. Example of Modern Serbian data before and after harmonization with Early Slavic orthography and morphology.

Fig. 4. Example of Modern Russian data before and after harmonization with Early Slavic orthography and morphology.

culturomics [19], Diachronic Text Evaluation (DTE) [20,21], re-
contextualization of past texts [22], OCR error correction [23],
and abusive content detection [24], among others (see [25] for a
detailed survey of applications).

2. Improving NLP system evaluation practices: Early Slavic is ideally
placed to be used in the evaluation of NLP systems and methods,
in light of its many related subvarieties and its high orthographic
variation. This is a challenge in computational models of language
change, since NLP systems tend to disregard low-frequency types,
which are inevitable in historical sources. More syntactically
annotated data for Early Slavic will allow us to systematically
investigate how NLP approaches to infrequent tokens impact the
generalization of a system’s results, thus improving our evaluation
practices.1

1 Note that the improvement of evaluation practices is a growing area
f research in computational linguistics, with its dedicated venues, such as
umEval (https://humeval.github.io) and SemEval (https://semeval.github.

o).

3. Improving representativeness: Expanding Early Slavic treebanks
will allow us to develop methods for large-scale quantitative
diachronic analyses of linguistic phenomena in languages other
than English. The lack of large, non-English diachronic corpora
has been stressed in the literature (e.g. [26] and [25]) as a possi-
ble bias in historical linguistic research that aims at generalizing
findings cross-linguistically.

5. Limitations and future improvements

The scripts used to harmonize Russian and Serbian orthography and
morphology to Early Slavic are still experimental. Presently, only the
tokens belonging to the most frequent morphological tags have been
harmonized. Figs. 3 and 4 illustrate how the harmonization routine
currently works on a Serbian and a Russian sentence respectively. Given
the promising results, in following releases we plan to develop harmo-
nization scripts encompassing a wider range of morphotags, which is
expected to yield even better parsing performance on pre-modern Slavic
varieties.
3
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Table A.1
Performance of OldSlavNet compared to the previous state of the art.

Model Test set UAS LAS

OldSlavNet Codex Marianus 84.12 78.92
jPTDP-GEN [10] 83.79 78.42
OldSlavNet Primary Chronicle (PVL) 85.33 79.66
jPTDP-ESL [10] 85.70 80.16
OldSlavNet Vita Constantini 70.72 56.64
jPTDP-GEN 69.23 56.41
OldSlavNet Codex Suprasliensis 74.23 66.51
jPTDP-GEN 72.28 63.38
OldSlavNet Life of Sergij of Radonezh 74.10 66.11
jPTDP-GEN 73.90 65.76

A drawback of the current version of OldSlavNet is that it takes
lready sentencized text (i.e. with one sentence per line, as shown in
ig. 1) as an input, which requires users to manually split their text into
entences. Implementation of OldSlavNet with spaCy [27] is however
nderway, in order to complement the parser with an Early Slavic
entencizer that takes an unbroken texts as input and provides a one-
entence-per-line output, which can then be directly fed to OldSlavNet
o add syntactic annotation.
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ppendix. Parser performance

OldSlavNet has been developed to be applicable to different Early
lavic varieties and a wider range of genres than its previous, exper-
mental version. In Table A.1 we report its performance on test sets
hich belong to various pre-modern Slavic dialects and present major
rthographic and morphological differences.
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