JSoLangs: ephemeral esolangs in a collaborative live coding environment
For CSDH-SCHN 2021: Making the Network

David Ogborn, McMaster University
Clarissa Littler, Portland Community College
Kate Sicchio, Virginia Commonwealth University

This paper documents and reflect upon the initial stages of an experiment in creating ephemeral live
coding languages — “JSoLangs” — for diverse artistic, educational, and critical purposes. The
experiment takes place in the context of the larger Estuary project: a browser-based, collaborative
platform that allows multiple, distinct live coding notations/languages to interoperate.[1] Estuary
provides a curated set of base live coding notations that target distinct audiovisual results. For
example, the Punctual language, available within the Estuary environment provides an economical
notation for simultaneously creating synthesized sound and visuals,[2] while the CineCerO language
provides a declarative syntax for controlling the playback of videos and kinetic typography within the
web browser. Many other live-coding focused languages are available within Estuary, which aims to
provide a space where “multi-lingual” live coding can be explored without needing to install software
(other than a suitable web browser). Estuary can be accessed at https://estuary.mcmaster.ca.

An emerging feature of the Estuary platform is the ability to create ephemeral “esolangs” [3] on the fly,
within a collaborative Estuary ensemble. These “JSolLangs” (pronounced jay-es-so-langs, to rhyme
with “esolangs”) take the form of small (or not so small) JavaScript programs that transpile live coded
text into one or more of Estuary’s underlying languages. Esolangs (short for “esoteric programming
languages”) are (generally) small programming languages designed for experimental purposes, often
with the intent to make programming difficult. The context of live coding (wherein artist-programmers
produce aesthetic results by making and changing small programs on the fly, often with an audience
with whom both code and its result is shared) is a unique context for creating and exploring the
possibility of such esolangs. The live coding artist programmer who makes an esolang may create and
modify such a language in order to change the interface presented to themselves (or their
collaborators), or they may create and modify such a language in order to communicate differently to
an audience. It seems likely that in most cases the “difficulty” factor that is commonly associated with
esolangs will be less emphatic in the case of live coding esolangs/JSoLangs (indeed, in all three of the
examples discussed below the languages arguably make specific aesthetic results easier to achieve).
In Estuary’s implementation, JSoLang’s take the form of grammars/parsers using the peg.js library [4],
a widely used JavaScript parsing library. Successful parsing is expected to produce a valid text
program in some language that is comprehensible to Estuary.

During the first half of 2021, the authors of this paper have created a series of JSolLangs in the
Estuary platform, in order to reflect on the significance of such ephemeral languages to distinct
purposes, such as artistic expression, learning to code, and the subversion of norms both in terms of
mainstream discussions of general purpose programming languages as well as in terms of the
somewhat more rarefied discourse and practices surrounding live and creative coding. The remainder
of this paper offers brief descriptions of three specific JSoLangs we've created, and at the
CSDH-SCHN 2021 conference we’ll do a short live collaborative performance using all three
JSolLangs together.

https://estuary.mcmaster.ca

Rando (created by Clarissa Littler)

The simple JSoLang | made was inspired by LISP-like macro replacement, and is built on top of
TidalCycles [5] — a language for creating patterns of sound — but the JSoLang framework is used to
add a new operator: ?

The ? operator, at parse time, is interpreted as a randomly chosen sample from a predefined list of
samples. This means that whenever you use ? you don’t know exactly what sample you’re going to
get, but you have at least some idea. | like using this as a way of focusing on the structure for parts of
the code rather than spending time thinking about the samples themselves. | can still pick samples the
way | normally would in my workflow, but the language is simple enough that | can modify it in the
middle of a performance to change the samples or how they work.

Demo video: https://www.youtube.com/watch?v=cHp-x8ALD4M

drOnezer0 (created by David Ogborn)

drOnezer0 is a JSolLang created by David Ogborn, over the underlying Punctual language (also
created by David Ogborn). Punctual is a Haskell-ish live coding language in which signal processing
graphs are described with an economical notation. Two key features distinguish Punctual: (1) notated
graphs can be translated into both audible and visual results (Web Audio API synthesis effects, and
GLSL fragment shaders), and (2) Punctual provides notations for describing the transitions between
the old version of a program and a new version of the same program (a concern highly distinctive of
live coding as a practice). drOnezerO arose from the desire to further emphasize Punctual’s ability to
target both audible and visual results, by creating an esolang in which ultra-economical expressions
produce both sound and visuals: pitched continuous chords (drones) accompanied by circular imagery
that is produced and moves in relation to the pitch of the chords. Two additional criteria for the new
JSolLang was that it would include some recursive syntax (eg. arithmetic expressions) and that it
would use numbers and symbols, no letters and words (a criterion that may be relaxed as it evolves).

Here are some examples of drOnezerQ programs, as the JSolLang is currently defined (each line is
intended to be a separate example, and text after -- is a comment):

[60,64,67] -- a chord

[60,64,67] + 3 -- the same chord transposed up three semitones

[60,64,67] + [0,0.25] -- the same chord transposed by 0 and by 0.25 semitones

Demo video: https://youtu.be/4g6gSC_MOWw
GitHub repository: https://github.com/dkir0/drOnezer0

Studio//Stage (created by Kate Sicchio)

Studio//Stage is a JSoLang by Kate Sicchio that sits on top of the CineCer0 language in Estuary. The
aim is to use dance specific vocabulary to create a programming language for the creation of screen
dance compositions (dance_cinecerQ_sidexside.mov). The idea of Studio//Stage is that movement in
the form of video clips is developed and crafted through the development of the JSoLang in the
“studio” side of the live coding, mapping dance terminology to CineCer0. The final video performance

https://www.youtube.com/watch?v=cHp-x8ALD4M
https://youtu.be/4g6gSC_M0Ww
https://github.com/dktr0/dr0nezer0
https://drive.google.com/file/d/1mt8tkyt5YKBwRJ2t8v-VF9v2vPOmCwwd/view?usp=sharing

that is viewed is coded in the “stage” side of language. Both the studio and the stage can be
manipulated in performance to create a video dance that explores timings, loops, phrases and
locations on the screen, allowing for algorithmic choreography to emerge in real-time and the
development of the “programmer as choreographer” [6].

The networked capabilities of Estuary allow for an expansion of the choreographic process into a
real-time collaborative method. One choreographer can be shaping the movement material in the
“studio” and the another choreographer can be composing the piece in time and space on the “stage”.
This type of improvisational structure is rare in algorithmic choreography as it is normally programmed
by a solo coder. This form of collaboration will be explored further in future work with Studio//Stage.

Demo video: https://youtu.be/UQ1I8PRkcM4
GitHub repository: https://github.com/sicchio/studio-stage

References:
[1] David Ogborn, Jamie Beverley, Luis Navarro del Angel, Eldad Tsabary, Alex McLean, Esteban
Betancur (2017). “Estuary: Browser-based Collaborative Projectional Live Coding of Musical Patterns.”

Proceedings of International Conference on Live Coding, Morelia, Mexico.

[2] https://github.com/dktrO/Punctual.git

[3] https://esolangs.org

[4] https://pegjs.org/

[5] McLean, Alex. (2014). “Making Programming Languages to Dance to: Live Coding with Tidal.”
Proceedings of the 2nd ACM SIGPLAN International Workshop on Functional Art, Music, Modeling &
Design. FARM '14.

[6] Sicchio, Kate. (2010). “Exploring the software programmer as choreographer.” Digital Resources
for Humanities and Arts, September 2010, London.

https://youtu.be/UQ1l8PRkcM4
https://github.com/sicchio/studio-stage
https://github.com/dktr0/Punctual.git
https://esolangs.org
https://pegjs.org/

