
1

Spyral Notebooks as a Supplement to Voyant Tools1
Paper by Kaylin Land2, Geoffrey Rockwell3, and Andrew MacDonald1

Abstract

This paper introduces Spyral Notebooks, a notebook environment that extends Voyant

Tools and offers a space for both notating and presenting analysis and for developing JavaScript

code that extends Voyant. In the paper we present the design justifications for Spyral, showcase

some of the analytical possibilities of Spyral, and address recent criticism of notebook

environments. We suggest Spyral Notebooks help teach students to think-through digital text

analysis and argue that the design of Spyral makes it rich in potential for the humanities

researcher. We also highlight the collaborative possibilities of Spyral and show ways in which

Spyral Notebooks have been used for collaborative digital humanities projects. Finally, we

discuss future plans for Spyral.

Dans cet article nous présentons le Spyral Notebooks, un notebook ou calepin

électronique qui étend le Voyant Tools et offre un cadre pour le commentaire et la présentation

de l'analyse et pour le développement de code JavaScript. Nous justifions la conception

pour Spyral, soulignons des possibilités analytiques de Spyral et discutons des critiques de

calepins électroniques. Nous suggérons que le Spyral Notebooks enseigne aux étudiants entendre

l'analyse de texte numérique et nous disputons que la conception de Spyral rend prometteur pour

les chercheurs humanistes. Nous soulignons aussi les possibilités de collaboration

avec Spyral Notebooks. Finalement, nous discussions les directions futures pour Spyral.

1 Spyral was initially developed by Stéfan Sinclair with support from the Text Mining the Novel SSHRC Partnership
led by Andrew Piper. It is now supported by the LINCS project funded by CFI and led by Susan Brown.
2 McGill University
3 University of Alberta

2

Introduction

 Voyant Tools is widely recognized for being user-friendly, intuitive and useful for

teaching.4 The online digital text analysis tool site offers researchers, students, and amateur users

alike the ability to analyze textual materials using a suite of different analytical tools. However,

Voyant offers limited options for sharing, saving, and building upon analysis done in the browser

application. This paper introduces Spyral Notebooks, a notebook environment that extends

Voyant Tools and offers a space for both notating and presenting analysis and for developing

JavaScript code that extends Voyant. In the paper we present the design justifications for Spyral,

showcase some of the analytical possibilities of Spyral, and address recent criticism of notebook

environments. We suggest Spyral Notebooks offer a space for teaching students to think-through

digital text analysis and argue that the design of Spyral makes it rich in potential for the

humanities researcher. We also highlight the collaborative possibilities of Spyral and show ways

in which Spyral Notebooks have been used for collaborative digital humanities projects. Finally,

we discuss future plans for Spyral.

What are Spyral Notebooks?

 Spyral (voyant-tools.org/spyral) is a notebook development environment that is

integrated into Voyant Tools (voyant-tools.org). Notebook environments can be thought of as

both extensions of traditional research notebooks and as novel tools that integrate

documentation, active analysis and presentation of results. At their core, notebooks are made up

of three types of blocks or cells that a user can add or delete in a sequence.

4 See Welsh, Megan E. “Review of Voyant Tools.” Collaborative Librarianship 6, no. 2 (2014): 96+.

3

1. There are text cells that can contain headings and other text elements found in word

processors or browser editors (usually based in HTML) for typing unstructured text.

Depending on the notebook environment, the text blocks can be simple or more

sophisticated. Mathematica, another notebook environment, has a sophisticated text

editing environment with integrated outlining and the ability to change stylesheets and

generate slides from the text. Spyral Notebooks use HTML for text and offer an in-

browser WYSIWYG HTML editor for the text blocks (see Figure 1).

2. There are code cells where the user inputs code, be it Python, the Wolfram language used

in Mathematica, or JavaScript, which is used in Spyral. The code cells can be run in

sequence or individually as you debug your code. Code cells can contain as much or as

little code as the user desires (see Figure 1).

3. There are output cells which produce the output of the code you inputted in the

associated code cell (see Figure 1). It is important to recognize that the output of the code

is dependent on what you have instructed the computer to do; that is, it is not a printout of

the code cell but the results of running your code. You thus have to instruct the computer

to print out the desired results. In Figure 1, when you run the code cell Spyral outputs the

traditional “Hello World.”

4

Figure 1 A sample Spyral Notebook showing a text block, code block and output block

 Notebook environments are designed as “literate” programming environments. The term

literate programming comes from Donald Knuth’s 1984 article of the same name. Knuth

promoted a programming practice that encourages the human authors of code to notate code for

other human readers to make clear what work the code is accomplishing. Knuth wrote: “Instead

of imagining that our main task is to instruct a computer what to do, let us concentrate rather on

explaining to human beings what we want a computer to do.”5 Notebook environments

encourage researchers to document their thinking in text blocks with accompanying code blocks

that do the processing and analysis. In the case of Spyral, the text blocks also provide a rich

opportunity for discussing the results of analysis and explaining what work code blocks are

doing. For example, a code block that produces a visualization from Voyant Tools can be

annotated with an explanation of that visualization and what decisions were made to generate

such a visualization. This type of documentation is particularly beneficial in digital humanities

5 Donald E. Knuth, “Literate Programming,” The Computer Journal 27, no. 2 (1984): 97-111.

5

projects where the textual accompaniments to code and visualizations can be just as important as

the analysis itself.

Other notebook environments currently available include Wolfram Mathematica

(www.wolfram.com/mathematica), Jupyter Notebooks (jupyter.org), Observable

(observablehq.com), and Google Colab or Colaboratory (colab.research.google.com). These

notebook environments are designed primarily for data science, visualization and software

engineering. Spyral is the first notebook environment developed specifically for digital text

analysis and visualization.

Notebook environments can also be used effectively in teaching as tutorial text, example

code and exercises can be woven together and run step by step as the student works through the

notebook. One example of such tutorials is The Art of Literary Text Analysis, written in Jupyter

Notebooks by Stéfan Sinclair and Geoffrey Rockwell.6 This tutorial is currently being adapted

for use in Spyral Notebooks as well. Another example of a tutorial notebook is William Turkel’s

textbook Digital Research Methods in Mathematica (2020).7

Notebook Environment Design and Criticisms
 Joel Grus of the Allen Institute for Artificial Intelligence recently (2018) gave an hour-

long talk at JupyterCon entitled “I don’t like notebooks.”8 In his talk, Grus outlines some

common criticism of notebook environments. While notebook environments offer many benefits,

they have been criticized both as tools for the experienced coder and as teaching tools. Grus

argues that notebooks are difficult for beginning users, encourage bad habits and discourage

6 See https://github.com/sgsinclair/alta/blob/master/ipynb/ArtOfLiteraryTextAnalysis.ipynb
7 See https://williamjturkel.net/digital-research-methods-with-mathematica/
8 Grus, Joel. “I hate notebooks.” Filmed August 2018 at JupyterCon, New York, NY. Video,
https://www.youtube.com/watch?v=7jiPeIFXb6U

6

good habits. He also points out that most notebooks do not have autocompletion or linting and

that they are not necessarily effective for writing reproducible or sharable code. Another

complaint Grus (and other researchers) has is that notebook tutorials are oftentimes not written to

be effective teaching tools because they encourage clicking through code cells without

necessarily understanding the content of those cells. Many of these complaints are addressed in

academic papers about notebook environments. For example, Chattopadhyay et al. identify pain

points in computational notebooks and come to some of the same conclusions as Grus.9 Without

defending notebook environments in general, this paper does engage some of the criticism of

notebook environments as it relates to Spyral Notebooks.

 Yihui Xie provides a useful distinction when considering the criticism of notebook

environments in his blog post “The First Notebook War.”10 Xie writes that notebook usage can

be classified into two broad camps: notebooks used for software engineering and those used for

data analysis. Xie argues that notebook environments are inherently better suited for data

analysis than for software engineering. Furthermore, he views many of the criticisms of

notebook environments as aimed at using notebooks for software engineering. When thinking

about Spyral Notebooks, the primary audience for the notebooks is humanities researchers who

will use the notebooks for textual analysis and will not be using notebook environments to write

code that will eventually transition out of notebooks and into a product, as would a software

engineer. In addition, many users of Spyral Notebooks will not consider themselves coders at all

and thus Spyral as a notebook environment is not necessarily geared towards teaching general

9 Souti Chattopadhyay, Ishita Prasad, Austin Z. Henley, Anita Sarma, and Titus Barik. “What's Wrong with
Computational Notebooks? Pain Points, Needs, and Design Opportunities.” In Proceedings of the 2020 CHI
Conference on Human Factors in Computing Systems (CHI '20). Association for Computing Machinery, New York,
NY (2020), 1–12. DOI: https://doi.org/10.1145/3313831.3376729
10 Yihui Xie, “The First Notebook War,” September 2019. https://yihui.org/en/2018/09/notebook-war/

7

coding skills but rather towards teaching textual analysis as performed with Voyant and through

JavaScript in Spyral. Further, notebooks, as Knuth imagined, encourage the author to explain

what they want to do and to document what worked and didn’t. This places the emphasis on the

thinking about texts done through the notebook not on the programming or opaque results. The

intended audience is other humanists interested in following the research and analysis. The

audience may not understand all the code, but the results are documented and can be replicated

or adapted.

 One of the biggest criticisms of notebook environments is that they are not intuitive for

beginning users and that they require complicated set-up, particularly for those who are not

already familiar with client-server models.11 As Johnson recognizes, “When students download

an instructor-prepared notebook, those not familiar with the client-server model…will initially be

baffled by their inability to simply double-click on it to open it up.”12 This is one of Spyral’s

biggest advantages: no set-up is required to use Spyral Notebooks. The application is entirely

web-based so the user need only open a web browser and enter the Spyral Notebook URL

(voyant-tools.org/spyral). Removing this barrier to entry means that users will not need to

download and install anything to their personal computers and can begin to work in Spyral

quickly. Remember that Spyral is an extension of Voyant.

 Another issue Chattopadhyay et al. recognize with notebook environments is the

difficulties around loading data into the notebook and the challenges of cleaning data.13 Because

Spyral Notebooks extend Voyant Tools, any textual corpus that has been uploaded to Voyant can

easily be used in Spyral Notebooks using the loadCorpus JavaScript function (see Figure 2). The

11 Chattopadhyay et al., “What’s Wrong with Computational Notebooks?” 3.
12 Johnson, “Benefits and Pitfalls of Jupyter Notebooks in the Classroom.”
13 Chattopadhyay et al., “What’s Wrong with Computational Notebooks?" 3.

8

corpus object loaded into Spyral will have all the properties of a Voyant corpus, meaning it will

already be tokenized.

 If a user is already working in Voyant and sees some interesting results, there is an even

easier way to load a corpus in Voyant, and that is to Export the tool and corpus to Spyral.

Choosing to Export “a new Spyral Notebook from this tool and data” creates a notebook with the

code to load the corpus and output the tool with the current query.

Lack of linting and other support available in Integrated Development Environments

(IDEs) is also cited as a limitation of some notebook environments. Spyral Notebooks do contain

basic linting features as well as some basic error correction features (see Figure 3).

Figure 2 A code cell showing how to load a Voyant corpus in Spyral

Figure 3 A code cell showing suggested inputs

Sharing Spyral
 Spyral Notebooks are designed to be cooperative and sharable. Spyral Notebooks can be

easily shared through URLs. If a user wishes to make changes to a notebook, they can save the

notebook under a new name, effectively forking the notebook. This makes Spyral Notebooks

highly cooperative and eliminates many of the issues present in other notebook environments in

9

which users need to download dependencies and ensure that their personal machine environment

matches the environment of the user who created the notebook. In simple terms, when you share

a Spyral notebook, because the text corpus is saved on the Voyant Tools server, any user will be

able to open your notebook and view your results without downloading any additional files.

Currently, a catalogue feature is in development for Spyral that will allow users to view

notebooks they have created and find suggested notebooks, including tutorials (see Figure 4).

This will encourage researchers to collaborate as they will be able to view what other users have

done in Spyral and even build upon pre-existing projects.14

Figure 4 A screenshot of the Catalogue feature

 In summary, Spyral Notebooks were designed for the humanities researcher with limited

coding skills who wishes to experiment beyond the confines of Voyant. The notebooks provide a

14 It should be noted that if a user wants to keep their notebook private they can install Voyant locally and then use
Spyral locally too.

10

platform for collaborative projects and can be used both for teaching textual analysis and for

saving, performing analysis, and presenting results.

Digital Text Analysis in Spyral

 Spyral Notebooks use JavaScript to extend the analytical suite available in Voyant Tools.

The idea is to give digital humanists a growth path from what they can do in Voyant to their own

analytics. To input text for analysis in Spyral, users can either reference an existing Voyant

corpus or create a new corpus from strings, URLs, spreadsheets, or by uploading text files

directly. Spyral Notebooks offer far more customizability for corpora than the upload button in

Voyant Tools and also enable the user to edit their corpus after it has been uploaded (for

example, to add more texts to a corpus). Once a corpus has been created, the user can call up any

of the tools available in Voyant (see Figure 5). The user can then customize which features they

want the tool to display by using different configuration options. For example, the user can call

up the Cirrus word cloud visualization and change the background colour, font, limit the number

of terms to load, edit the stop list and other features. These customization features are available

in Voyant, but by accessing the visualization through Spyral the user can save the customization

options and repeat them across different tools or corpora.

11

Figure 5 Code cell showing the Cirrus tool

 Spyral also expands the analytical capabilities of Voyant Tools. The table class allows

users to work with tabular data and contains methods for editing tables as well as statistical

methods (for example, Z scores for a column of data). From the table class, you can easily create

a chart: for example a bar chart, scatter plot, or line chart. The user has full control to edit the

chart title, axis titles, and also specify what precisely they want to chart (see Figure 6). Another

option available in Spyral Notebooks is the categories class. Categories is a powerful class that

can be used to separate terms into different buckets and perform analysis on subsets of terms. For

12

example, you can create a positive and negative category and perform sentiment analysis on your

text.

Figure 6 A chart made from a customized table

Spyral as a Pedagogical Tool

 Spyral Notebooks were also designed with learning and teaching in mind. As many users

of Voyant Tools come to the platform with limited coding skills, Spyral can be seen as a next

step for learning digital text analysis that focuses on the thinking-through that goes into analysis.

The platform is designed to be accessible for those users who are already familiar with

JavaScript. They will be able to quickly harness the power of Spyral by reading the

documentation (available at https://voyant-tools.org/docs/#!/api).

More importantly, Spyral is designed to provide a path from using a tool like Voyant to

documenting text analysis to programming text analysis for those who have no experience with

data analysis and coding languages. As mentioned above one can generate the code for particular

configurations of Voyant tools and texts by Exporting to Spyral. Then one can add text cells

13

explaining and reflecting on the results generated. Thus one can document a project without

learning more than how Export code. This can be shared with others for comment. It isn’t a big

step then to editing the code generated, perhaps to change the query or some of the parameters.

One might then look at other people’s notebooks and copy useful code. One can thus learn by

remixing.

 Currently, the first chapters of The Art of Literary Text Analysis are available for Spyral

Notebooks and they walk users through the basics of creating a corpus in Spyral, exploring a

small corpus and creating tables in Spyral (https://voyant-tools.org/spyral/homeALTA). This

tutorial is designed to introduce users not only to working in Spyral but also to the basic tenets of

literary text analysis. This makes it distinctive from other notebook tutorials that aim to teach

coding basics without showing how those tools can be utilized for practical applications.

Furthermore, the tutorial is focused primarily on helping students get started right away and

teaches only the elements of JavaScript needed to perform textual analysis.

 We are currently in the process of developing a collection of JavaScript recipes for use in

Spyral Notebooks that can serve as an intermediary between a fully-fledged tutorial and the

existing documentation for Spyral (https://voyant-tools.org/spyral/JSrecipes#1). The existing

documentation is based on JSDoc (https://jsdoc.app/) and, while thoroughly documented,

presents a high barrier to entry for the novice user. The JS Recipes for Spyral explain in prose

how the documentation can be used and show users where to edit the code with their own

variables. In this way, it will enable those with a clear end goal (for example, to upload a corpus

using URLs) to quickly identify, copy, and import existing code into a Spyral notebook. With

Spyral, it is simple to export single code blocks from one notebook to another, meaning that

users will not be reliant on copy and paste to share code from notebook to notebook.

14

Spyral as a Collaborative Tool
 Spyral Notebooks also offer collaborative capabilities for humanities researchers to work

together. As discussed above, Spyral Notebooks are easily sharable via URLs and can be edited

if users share the editing passcode required to save the notebook under the same URL. Because

Spyral Notebooks do not require any downloading, researchers do not need to worry about

ensuring that their computers have the same dependencies when loading the notebooks. This

means that any researcher will be able to view the notebook the same way as the notebook’s

creator. In addition, researchers who are more knowledgeable about coding will be able to add or

edit existing code blocks and researchers who may be less familiar with code can view the

outputs without needing to understand exactly how the code is functioning.

 Currently we are in the process of developing further collaborative tools for Spyral,

including the Catalogue view that will allow researchers to easily find and utilize existing

notebooks in their own projects. We are also developing new features with support from the

LINCS project (lincsproject.ca/) led by Susan Brown and supported by CFI. Spyral is being

enhanced by researchers who want to use linked open data to enhance their analysis of texts.

Further Directions

 Spyral is still being developed. Current limitations of Spyral include lack of security

features beyond password protecting notebooks as well as challenges scaling notebooks to

include large amounts of data. We envision for Spyral Notebooks a comprehensive environment

that can be used equally for introducing programming, teaching digital text analysis and for

performing data analysis. We invite you to try out Spyral Notebooks and contact us with any

questions or comments you have about the tool.

15

Works Cited

Chattopadhyay, Souti, Ishita Prasad, Austin Z. Henley, Anita Sarma, and Titus Barik. “What’s

Wrong with Computational Notebooks? Pain Points, Needs, and Design Opportunities.”

Conference on Human Factors in Computing Systems - Proceedings, 2020, 1–12.

https://doi.org/10.1145/3313831.3376729.

Grus, Joel. “I hate notebooks.” Filmed August 2018 at JupyterCon, New York, NY. Video,

https://www.youtube.com/watch?v=7jiPeIFXb6U

Johnson, Jeremiah W. “Benefits and Pitfalls of Jupyter Notebooks in the Classroom.” SIGITE

2020 - Proceedings of the 21st Annual Conference on Information Technology Education,

2020, 32–37. https://doi.org/10.1145/3368308.3415397.

Knuth, Donald E. “Literate Programming.” The Computer Journal 27, no. 2 (1984): 97-111.

Xie, Yihui. “The First Notebook War,” September 2019. https://yihui.org/en/2018/09/notebook-
war/

