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INTRODUCTION

Thank you. It’s really delightful to be here talking to this 
group. 

I am going to present a paper that I presented previously at the 
Fifteenth International Conference on Artificial Intelligence and Law 
(ICAIL 2015), which was held in San Diego this past June. Ted 
Sichelman, in fact, was the general chair of that conference, and I 
think he is still watching remotely. So I will just say: That was an 
outstanding conference, Ted. Thank you for helping to organize it.  

You should have received a copy of my ICAIL paper prior to 
the symposium. Here is the citation: 

                                                
 * Professor Emeritus of Computer Science and Law, Rutgers, The State 
University of New Jersey. 
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L. Thorne McCarty, How to Ground a Language for Legal Discourse in a 
Prototypical Perceptual Semantics, in PROCEEDINGS OF THE FIFTEENTH 
INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND LAW 89-
98 (2015).1

If you have a chance to look at this paper, you will see that it is very 
technical, especially Section 3, which is entitled “A Logical 
Language.” One of the things that I will try to do in my talk today is 
to present these ideas, especially Section 3, in a more intuitive and 
informal way. I will refer you to the paper itself for the more 
technical details. 

You also should have received two background papers. I hope 
you have a chance to read these papers at some point, too, because 
they will explain the legal background of my ICAIL 2015 paper. The 
two papers are also from the Artificial Intelligence and Law 
conferences, in 1995 and 1997. Here is the 1995 paper: 

L. Thorne McCarty, An Implementation of Eisner v. Macomber, in
PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON ARTIFICIAL 
INTELLIGENCE AND LAW 276-86 (1995).2

As the title suggests, this paper presents a computational 
reconstruction of the arguments of Justice Pitney and Justice 
Brandeis in the case of Eisner v. Macomber, 252 U.S. 189 (1920), 
which I am sure you all know and love from your first introductory 
tax course. I don’t have time to say much about it, but it is based on a 
formal representation that I have referred to as the “prototype plus 
deformation” model of legal concepts. And that idea is going to recur 
in this talk, too. The second paper, from 1997, is:  

L. Thorne McCarty, Some Arguments About Legal Arguments, in
PROCEEDINGS OF THE SIXTH INTERNATIONAL CONFERENCE ON ARTIFICIAL 
INTELLIGENCE AND LAW 215-24 (1997).3

This paper was primarily a critical view of the literature, that is, the 
literature in the field of Artificial Intelligence and Law on legal 
argument. But it also contained a section, towards the end, Section 5, 
entitled “The Correct Theory,” which was an (uncritical) summary of 
my own theory of legal argument. Part of the thesis is quoted here: 

Legal reasoning is a form of theory construction . . . A judge rendering a 
decision in a case is constructing a theory of that case . . . If we are 

                                                
1. Available online at http://bit.ly/1qCnLJq.  
2. Available online at http://bit.ly/1pfmtdd.  
3. Available online at http://bit.ly/1QU5CUm. 
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looking for a computational analogue of this phenomenon, the first field 
that comes to mind is machine learning.4

In some sense, of course, machine learning is theory construction. 
However, if you were to look at the state of machine learning, circa 
1997, you would see clearly that the available techniques were not 
sufficient to handle the complexity of the theories that are needed for 
legal reasoning. Part of the problem is discussed in the following 
passage, which is again from Section 5 of my 1997 paper:  

Most machine learning algorithms assume that concepts have “classical” 
definitions, with necessary and sufficient conditions, but legal concepts 
tend to be defined by prototypes. When you first look at prototype models 
. . . , they seem to make the learning problem harder, rather than easier, 
since the space of possible concepts seems to be exponentially larger in 
these models than it is in the classical model. But empirically, this is not 
the case. Somehow, the requirement that the exemplar of a concept must 
be “similar” to a prototype (a kind of “horizontal” constraint) seems to 
reinforce the requirement that the exemplar must be placed at some 
determinate level of the concept hierarchy (a kind of “vertical” constraint). 
How is this possible? This is one of the great mysteries of cognitive 
science.  

It is also one of the great mysteries of legal theory.5

The paper then proceeds to discuss Dworkin’s thesis in Hard Cases
(1975) and Law’s Empire (1986),6 and concludes that the mystery 
can only be solved by developing a computational theory of 
“coherence” in legal argument. But what do we mean by 
“coherence”? This is the key question.

If we now fast-forward to the present, and my ICAIL 2015 
paper, here is a summary of my talk: What has happened, I claim, is 
that contemporary trends in machine learning have now shed new 
light on the subject. Remember, as I said, in 1997, machine learning 
was not adequate to the task. But I will describe in this talk some 
recent work, particularly my own recent work, on what is called 
“manifold learning,”7 as well as some work in progress on “deep

                                                
4. Id. at 221. 
5. Id. 
6. Ronald Dworkin, Hard Cases, 88 HARV. L. REV. 1057 (1975); RONALD 

DWORKIN, LAW’S EMPIRE (1986).
7. The three main historical approaches to manifold learning were 

introduced in the following papers: Joshua B. Tenenbaum, Vin de Silva & John C. 
Langford, A Global Geometric Framework for Nonlinear Dimensionality Reduction,
290 SCI. 2319 (2000); Sam T. Roweis & Lawrence K. Saul, Nonlinear 
Dimensionality Reduction by Locally Linear Embedding, 290 SCI. 2323 (2000); 
Mikhail Belkin & Partha Niyogi, Laplacian Eigenmaps for Dimensionality 
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learning,”8 and I will explain the implications of this work. Of 
course, I will also have to explain what I mean by these terms. If you 
want to look more deeply into the subject, I have several papers, 
either available now or available soon, where this material is 
presented in some detail. The mathematical foundations of the work 
are presented in: 

L. Thorne McCarty, Clustering, Coding, and the Concept of Similarity,
PREPRINT, arXiv:1401.2411 [cs.LG] (2014).9

(This paper has been submitted for journal publication, and it is 
currently under review.) I also have two follow-up technical papers 
in preparation: (i) Differential Similarity in Higher Dimensional 
Spaces: Theory and Applications; and (ii) Deep Learning with a 
Riemannian Dissimilarity Metric. (I originally cited these papers as 
“Forthcoming, 2015,” but that turned out to be slightly optimistic. 
Nevertheless, I do expect to have a draft of the first paper available 
sometime during the first half of 2016.) Finally, Section 3 of my 
ICAIL 2015 paper, which I mentioned earlier, extends all of this 
work to construct “A Logical Language.” In fact, the main claim of 
my talk today, which was also the main claim of my ICAIL 2015 
paper, is the following: 

Taken together, this work leads to a logical language grounded in a 
prototypical perceptual semantics, with implications for legal theory.10

Obviously, I have to explain what I mean by a “prototypical 
perceptual semantics.”

I. PROTOTYPE CODING

But first, let’s look at the concept of prototype coding. The 
basic idea is to represent a point in an n-dimensional space by 
                                                                                                      
Reduction and Data Representation, 15 NEURAL COMPUTATION 1373 (2003). My 
own work on manifold learning is most closely related to the Laplacian Eigenmaps
of Belkin and Niyogi.  

8. The literature on deep learning is now very extensive, but the field was 
initiated by three important papers in 2006: Yoshua Bengio et al., Greedy Layer-
Wise Training of Deep Networks, 19 ADVANCES IN NEURAL INFO. PROCESSING 
SYSTEMS 153 (2006); Geoffrey E. Hinton, Simon Osindero & Yee-Whye Teh, A
Fast Learning Algorithm for Deep Belief Nets, 18 NEURAL COMPUTATION 1527
(2006); Marc’Aurelio Ranzato et al., Efficient Learning of Sparse Representations 
with an Energy-Based Model, 19 ADVANCES IN NEURAL INFO. PROCESSING SYSTEMS 
1137 (2006).  

9. Available online at http://bit.ly/1phP8q4.  
10. McCarty, supra note 1, at 89. 
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measuring its distance from a prototype in several specified 
directions. Furthermore, assuming that our initial space is Euclidean, 
we want to select a prototype that lies at the origin of an embedded,
low-dimensional, nonlinear subspace, which is in some sense 
“optimal”. This second point leads us to the field of manifold 
learning.

A. Manifold Learning 

What is manifold learning? Here is a quotation from a 
relatively recent paper by a prominent research group at the 
University of Montreal, which was published in the proceedings of 
the Conference on Neural Information Processing Systems in 2011 
(NIPS 2011). The authors identify three hypotheses motivating their 
work, two of which are as follows: 

1. . . .  

2. The (unsupervised) manifold hypothesis, according to which real 
world data presented in high dimensional spaces is likely to concentrate in 
the vicinity of non-linear sub-manifolds of much lower dimensionality. . . . 

3. The manifold hypothesis for classification, according to which points 
of different classes are likely to concentrate along different sub-manifolds, 
separated by low density regions of the input space.11

Notice that these hypotheses combine geometric concepts (e.g., 
“non-linear sub-manifolds of much lower dimensionality”) with 
probabilistic concepts (e.g., “low density regions of the input 
space”). Similarly, my foundational paper from 2014, cited above,12

combines a geometric model with a probabilistic model, in a 
principled way, or so I claim.  

So let’s look at that these two models, first the probabilistic 
model, and then the geometric model. 

                                                
11. Salah Rifai et al., The Manifold Tangent Classifier, 24 ADVANCES IN 

NEURAL INFO. PROCESSING SYSTEMS 2294 (2011) (citations omitted).  
12. McCarty, supra note 9. 
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1. The Probabilistic Model 

Figure 1 
THE PROBABILISTIC MODEL

The probabilistic model is defined in Figure 1. It is Brownian 
motion with a drift term. You may be familiar, intuitively, with 
Brownian motion, and I will explain shortly what I mean by a “drift 
term.” More precisely, the probabilistic model is a diffusion process
generated by the differential operator, , as shown in Figure 1.
(There is no way to avoid using some mathematical notation here, 
but I will try to make it as simple as possible.) The first term in the 
differential operator is one-half of the Laplacian operator, 
���expressed in Cartesian coordinates, which is written out in 
standard calculus notation in the second equation. The second term 
in the differential operator is also written out in standard calculus 
notation in the second equation. The symbol that looks like a triangle 
printed upside-down is called the gradient, and U(x) represents a 
scalar potential function, i.e., a function that outputs a single real-
valued number at each point, x, of our n-dimensional space. Now, if 
we had a diffusion process generated by just the first term here, that 
is, a diffusion process generated by one-half of the Laplacian, we 
would have pure Brownian motion. But pure Brownian motion 
dissipates. By that I mean: It has no invariant probability measure, 
no “steady-state” distribution, other than zero. However, if we add 
this second term—which is called the “drift term”—it turns out that 
we have a finite non-zero probability measure as an invariant. In fact, 
there is a theorem which states that the invariant probability measure 
is proportional to e raised to the power 2U(x). This means that the 
gradient of U(x) is proportional to the gradient of the log of the 
probability density. And this is an important result: It means, among 
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other things, that we can estimate the gradient of U(x) from sample 
data, as we will see later.  

Figure 2 shows an example. (Thanks to Mathematica for these 
graphics.) It’s a three-dimensional example, so that we can visualize 
it easily. The first figure illustrates a potential function, 
U(x) = U(x,y,z), which is defined here as a sixth-degree polynomial. 
What we’re seeing is a contour plot of a surface in three-dimensional 
space, namely, the surface on which U(x) is equal to a constant. The 
second figure illustrates the gradient of U(x), which is a fifth-degree
polynomial. What we’re seeing is a plot of the gradient vector,
which is also called the drift vector, in the xy plane at the value 
z = −10. Notice that all the arrows in the second figure are pointing 
towards a point somewhere in the center of the plot. This illustrates 
how the drift term works in the diffusion equation in Figure 1. 
Remember: Brownian motion by itself would dissipate completely, 
but the drift vector is counteracting the dissipative effects of the 
Laplacian term. Intuitively, we can think of the drift vector as 
“transporting probability mass towards the origin.” Furthermore, if 
the two terms are in perfect balance, the diffusion process would be 
maintaining an invariant probability measure. In an important sense, 
then, all of the critical information about the invariant probability 
measure, and the diffusion process generating it, is captured by this 
drift vector. 

Figure 2 

One more observation about the second figure in Figure 2: If 
you look at the pattern of arrows pointing towards the origin in this 
plot, you might realize that you could use the drift vector to define a 
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nonlinear coordinate system in what was initially a linear Euclidean 
space. This leads us to a discussion of the geometric model. 

2. The Geometric Model 

The geometric model is defined in Figure 3. To implement the 
idea of prototype coding, we choose a radial coordinate, �, and the 
directional coordinates, ��, ��, …, �n−1, where n is the 
dimensionality of the initial Euclidean space. The radial coordinate 
will follow the gradient of U(x), as suggested in Figure 2, and the 
directional coordinates will be defined in such a way as to be 
orthogonal to the gradient of U(x). But what we really want is a 
lower-dimensional subspace, a k-dimensional subspace, say, where 
k < n. Somehow, we must choose k−1 out of the n−1
directional�coordinates, and project our diffusion process onto this 
k−1 dimensional subspace, which can then be combined with our 
one-dimensional radial coordinate to give us a k-dimensional space. 
The device we need is a Riemannian metric, which we interpret as a 
measure of dissimilarity. (Again, we cannot avoid using some 
mathematical terminology and notation here: A Riemannian metric is 
a generalization of the concept of distance to a nonlinear space, and 
it specifies how a nonlinear space is stretched and curved.) Crucially, 
the dissimilarity metric should depend on the probability measure. 
Roughly speaking, the dissimilarity should be small in a region in 
which the probability density is high, and large in a region in which 
the probability density is low. This will give us the properties that we 
need for manifold learning.  

Figure 3 
THE GEOMETRIC MODEL

For the precise definition of my Riemannian dissimilarity 
metric, and for the proof that it possesses the desired properties, you 
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will have to consult my foundational paper.13 Once these details are 
established, however, we can compute the directional coordinates in 
three steps: 

1. We find a principal axis for the ��coordinate, by minimizing 
the Riemannian distance along the drift vector.  

2. We choose k−1 principal directions, from a point somewhere 
along the principal axis, by computing the minimal 
eigenvectors of the Riemannian dissimilarity matrix, gij(x). 
(Some familiarity with linear algebra is necessary to 
understand this step.) 

3. To compute the k−1 coordinate curves, we follow the 
geodesics of the Riemannian metric in each of the k−1 
principal directions. (A geodesic is a curve in the Riemannian 
manifold with minimal length, as measured by the Riemannian 
metric.) 

Notice, in all three steps, that we are minimizing dissimilarity and 
maximizing probability. Figure 4 shows the results of these 
computations in the example that was illustrated in Figure 2. This is 
a three-dimensional example, so we are looking for a two-
dimensional subspace. You can see that the principal axis in Figure 4
follows the axis of maximal probability in Figure 2. The other radial 
coordinate curves have a shorter Euclidean distance to the origin, 
although the Riemannian distance to the origin along these curves is 
the same. There is only one principal direction at each point on the 
principal axis, as indicated by the blue arrows, and you can see that 
the geodesic coordinate curves follow the contours of the potential 
function, U(x), in Figure 2. It is obvious that the coordinate system is 
nonlinear. 

So that’s my theory of manifold learning. Notice that it follows 
and exploits the “(unsupervised) manifold hypothesis, according to 
which real world data presented in high dimensional spaces is likely 
to concentrate in the vicinity of non-linear sub-manifolds of much 
lower dimensionality.”14

                                                
13. Id.
14. Rifai et al., supra note 11. 
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Figure 4 

3. Prototypical Clusters 

In many real-world cases, there are multiple prototypes, as 
illustrated by the toy example in Figure 5. Here, I have taken two 
copies of the potential function in Figure 2, and I have rotated them 
and translated them to new positions. I call these prototypical 
clusters, and I represent their probability density as a mixture, with 
two potential functions, U1(x) and U2(x). If you focus on U(x) in the 
formula in Figure 5, which is equal to the log of the probability 
density, you can see that the gradient of U(x) in a neighborhood of 
the first prototype would be approximately the same as the gradient 
of U1(x), and the gradient of U(x) in a neighborhood of the second 
prototype would be approximately the same as the gradient of U2(x). 
Thus, intuitively, using our Riemannian dissimilarity metric, we 
could say that these two prototypical clusters are “exponentially” far 
apart. Notice, too, that our model satisfies the “manifold hypothesis 
for classification, according to which points of different classes are 
likely to concentrate along different sub-manifolds, separated by low 
density regions of the input space.”15

Because of the prominent role of the Riemannian dissimilarity 
metric in this theory, I will often refer to it as a theory of differential 
similarity. 

                                                
15. Id.
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Figure 5 
PROTOTYPICAL CLUSTERS

B. Deep Learning 

Let’s now return to the paper in the Conference on Neural 
Information Processing Systems (NIPS 2011), and look at the 
authors’ first hypothesis, which was omitted in our previous 
discussion: 

1. The semi-supervised learning hypothesis, according to which learning 
aspects of the input distribution p(x) can improve models of the 
conditional distribution of the supervised target p(y|x) . . .. This hypothesis 
underlies not only the strict semi-supervised setting where one has many 
more unlabeled examples at his disposal than labeled ones, but also the 
successful unsupervised pretraining approach for learning deep 
architectures . . . .16

The key phrase here is “learning deep architectures.” This phrase 
refers to a multi-layered classifier, usually for a vision system, which 
(i) learns a set of features bottom-up, in an unsupervised manner, and 
then (ii) applies a supervised learning algorithm at the top level. The 
architecture can be traced back to three important papers from 
2006,17 which initiated the modern field of “deep learning.”18

For a standard example, let’s consider the MNIST dataset of 
handwritten digits, 0 through 9,19 which is the kind of image that the 
                                                

16. Id. at 2294 (citations omitted). 
17. See Bengio et al., supra note 8; Hinton, Osindero & Teh, supra note 8;

Ranzato et al., supra note 8. 
18. Most commercial deep learning systems today are based on fully 

supervised learning, or “learning with a teacher,” but the original model was semi-
supervised, which is much more interesting, theoretically.  

19. Yann LeCun et al., Gradient-Based Learning Applied to Document 
Recognition, 86 PROC. IEEE 2278, 2287 (1998). 
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Post Office needs to recognize in order to process ZIP codes 
automatically. Each image consists of 28 X 28 pixels with values in 
the range [0, 255].20 (Such images are sometimes called “quasi-
binary.” The original NIST dataset was binary, but the edges of the 
digits in Modified NIST, or MNIST, have been blurred slightly by 
preprocessing.21) The full dataset consists of 60,000 training set
images and 10,000 test set images.22 Historically, it has been used as 
a benchmark for supervised pattern recognition,23 but we are 
interested in viewing it as a problem in unsupervised feature 
learning. 

Figure 6 

An architecture for deep learning on the MNIST dataset is 
shown in Figure 6, based on several examples in the recent 
literature.24 The process starts in the lower-left corner and follows the 

                                                
20. Id.  
21. Id.  
22. Id.  
23. Id. 
24. See, e.g., Marc’Aurelio Ranzato, Unsupervised Learning of Feature 

Hierarchies (May 2009) (unpublished Ph.D. dissertation, New York University),
https://www.cs.nyu.edu/media/publications/ranzato_marcaurelio.pdf [https://perma.cc/ 
TTC8-3VHB]; Adam Coates, Demystifying Unsupervised Feature Learning (Sept. 
2012) (unpublished Ph.D. dissertation, Stanford University), https://cs.stanford.edu/ 
~acoates/papers/acoates_thesis.pdf [https://perma.cc/7UEU-D5X6]. 
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arrows to the upper-right corner. The first step is to scan and 
randomly sample the images to extract a collection of 7 X 7
“patches” from each one. If we choose a sampling rate of 10 scans 
per image, which is approximately 2%, we will end up with 600,000
patches, each one represented as a point in a 49-dimensional space. 
Our immediate task is to reduce the dimensionality of this space, and 
one obvious way to do this is to apply the theory of manifold 
learning that we examined previously.  

Figure 7 shows how to get started. First, as I suggested earlier, 
we need to estimate the gradient of U(x) from the sample data, 
namely, our sample of 7 X 7 patches. The estimation procedure is 
explained in my forthcoming paper on Differential Similarity in 
Higher Dimensional Spaces: Theory and Applications, but it uses a 
well-known technique in the literature based on the mean shift 
algorithm.25 Second, we need to identify a set of prototypes. The 
main criteria are listed in Figure 7: (i) We want the gradient of U(x)
to equal zero at a prototype, which means that the prototype will be 
located at a mode of the probability distribution; and (ii) We want the 
prototypical clusters to partition the space of 600,000 patches. Figure 
7 shows 35 prototypes that satisfy these criteria (it is not a uniquely 
defined set), and marks four prototypes that I have chosen, 
subjectively, for further detailed study. I think you would agree with 
me that these are reasonable features for the digits 0 through 9.

                                                
25. See Keinosuke Fukunaga & Larry D. Hostetler, The Estimation of the 

Gradient of a Density Function, with Applications in Pattern Recognition, 21 IEEE
TRANSACTIONS ON INFO. THEORY 32 (1975); Yizong Cheng, Mean Shift, Mode 
Seeking, and Clustering, 17 IEEE TRANSACTIONS ON PATTERN ANALYSIS &
MACHINE INTELLIGENCE 790 (1995); Dorin Comaniciu & Peter Meer, Mean Shift: A 
Robust Approach Toward Feature Space Analysis, 24 IEEE TRANSACTIONS ON 
PATTERN ANALYSIS & MACHINE INTELLIGENCE 603 (2002). 
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Figure 7

We now follow the three steps listed in Figure 4, placing each 
of our prototypes at the origin of one of the coordinate systems that 
we are trying to compute. In Figure 4, the computation was confined 
to just three dimensions, and we are now working in 49 dimensions, 
but the procedure is exactly the same. Figure 8 shows a small sample 
of the results, along with a comparison to the results in Figure 4.
(Note: There are several parameters that must be set when we run 
this computation, and I have chosen a variant for Figure 8 that leads 
to a particularly simple illustration. In my forthcoming paper on 
Differential Similarity in Higher Dimensional Spaces: Theory and 
Applications, I will explore a range of parameter settings that lead to 
more complex and more realistic coordinate curves.) In Figure 8, we 
are looking at two geodesic coordinate curves through the 49-
dimensional space, for each of two prototypes, corresponding to the 
� coordinate curves in Figure 4. The patches on the left (outlined in 
green) are points on the principal axes; the patches in the middle 
(outlined in red) are points at a location approximately 90° along the 
coordinate curves; and the patches on the right are points at 
approximately 180°. Notice that the coordinate curves converge to 
essentially the same patch at 180°, but they are distinct at 90°. This is 
one of the properties that we would expect in our particular nonlinear 
coordinate system.  
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Figure 8 

Let’s now return to the architecture for deep learning shown in 
Figure 6. Suppose we choose the 12 most informative coordinate 
curves for each prototype, and use these to encode the 7 X 7 patches. 
This step—the dimensionality reduction step—is shown in the 
lower-right corner of Figure 6. We can then assemble four adjacent 7
X 7 patches into a 2 X 2 matrix, and resample the image using the 
larger 14 X 14 patch. If we use the encoded values of the 7 X 7
patches in the resampling procedure, each 14 X 14 patch would be 
represented as a point in a 48-dimensional space. And since there are 
only 9 distinct scans of our 2 X 2 matrix across a 28 X 28 image, we 
can actually sample at a rate of 100% and generate 540,000 data 
points in the new space. We can then apply the techniques of 
manifold learning again, and reduce the dimensionality back to 12.
In summary, our general procedure is:  

	� construct the product manifold (in this case, the 2 X 2 matrix) 
from the encoded values of the smaller patches, and then 

	� construct a submanifold using the Riemannian dissimilarity 
metric.  

We can now repeat this procedure, as shown in the top line of 
Figure 6. The submanifolds from the prior step are assembled into a 
new 2 X 2 product manifold, and the dimensionality of the space is 
reduced again, using the Riemannian dissimilarity metric. Notice that 
we have designed the architecture to maintain a roughly constant 
dimensionality as we proceed from the bottom to the top of Figure 6. 

Finally, at the top level of the architecture in Figure 6, we 
would like to output a classification, for example: This particular 12-
dimensional manifold belongs to the category “4.” In the original 
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model of deep learning,26 this would be a supervised learning step, 
but there is another possibility. Could the classification at the top 
level also be an unsupervised step? I do not know the answer to this 
question, because I am still crunching the data, but when I have the 
final results I will publish them in my paper on Deep Learning with a 
Riemannian Dissimilarity Metric.  

II. A LOGICAL LANGUAGE

We can now address the title of this talk: How to Ground a 
Language for Legal Discourse in a Prototypical Perceptual 
Semantics. Specifically, we will see how to use the machinery of 
manifold learning and deep learning to define a semantics for a 
logical language. Why do I call this a “prototypical perceptual 
semantics”? Well, it’s a prototypical semantics because it is based on 
my model of prototypical clusters, as we will see. Why is it a 
prototypical perceptual semantics? Well, notice that our primary 
examples are drawn from the field of image processing, and 
therefore, if we can build a logic on these foundations, we will have 
a plausible account of how human cognition could be grounded in 
human perception. 

Figure 9 

Recall our general procedure for deep learning in the image 
processing example: (i) construct the product manifold from the 
encoded values of the smaller patches, and then (ii) construct a 
submanifold using the Riemannian dissimilarity metric. In the top

                                                
26. See supra note 18.
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line of Figure 6, for example, four “patches” were combined into an 
“image” of the digit “four” and the dimensionality of the image was 
reduced from 48 to 12. The four patches are shown again in Figure 9,
arranged as a logical product, or what we normally call a 
conjunction. Intuitively, an image is the conjunction of four patches. 
How can we turn this observation into a logic? The expression at the 
bottom of Figure 9 shows how we might encode the MNIST example 
as an atomic formula in a logical language that I developed a number 
of years ago for the representation of legal discourse. I called this a 
Language for Legal Discourse (LLD),27 and I have used it for various 
applications over the years.28

Let’s see how our image processing example maps into the 
syntax of LLD. The expression in Figure 9 says that ?p23 is a 
variable that can be instantiated to a point on the manifold Patch23,
?p14 is a variable that can be instantiated to a point on the manifold
Patch14, … , and ?i is a variable that can be instantiated to a point 
on ImageFOUR, which is a submanifold of the product manifold 
constructed from the four patches. To assist your intuition, let’s also 
review how this atomic formula would be interpreted in classical 
logic. This would be a sorted logic, classically, in which Patch23,
Patch14, etc., are syntactic “sorts,” and ImageFOUR is a syntactic 
“predicate.” Thus, semantically, the expression in Figure 9 would be 
saying that ?p23 is a variable that can be instantiated to an element 
of the set Patch23, ?p14 is a variable that can be instantiated to an 
element of the set Patch14, and so on. Now, what is the 
interpretation of a predicate in classical logic? A predicate is 
interpreted semantically as a relation, which is a subset of the 
Cartesian product of those four sets which, in a sorted logic, provide 
the interpretation of the four sorts. Furthermore, any subset will do, 
so the set of all subsets is the same as the set of all relations. Finally, 
although the variable ?i is not commonly used in classical logic, I 
have always used it in my Language for Legal Discourse (LLD).29

Here, interpreted classically, ?i would be a variable that can be 
                                                

27. L. Thorne McCarty, A Language for Legal Discourse: I. Basic 
Features, in ICAIL ‘89 PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON 
ARTIFICIAL INTELLIGENCE AND LAW 180 (1989). 

28. See, e.g., L. Thorne McCarty, Ownership: A Case Study in the 
Representation of Legal Concepts, 10 ARTIFICIAL INTELLIGENCE & L. 135 (2002); L. 
Thorne McCarty, Deep Semantic Interpretations of Legal Texts, in ICAIL ‘07
PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON ARTIFICIAL 
INTELLIGENCE AND LAW 217 (2007). 

29. See McCarty, supra note 27, at 181. 
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instantiated to an instance of the relation, i.e., to an element of the 
Cartesian product, or what we might intuitively think of as a
relationship. 

Figure 10 

So what I am proposing, in general, is to replace the standard 
semantics of classical logic, based on sets and their elements, with a 
semantics based on manifolds and their points. And the way to do 
this, systematically, I claim, is to work with a logical language based 
on category theory, or what is known as a categorical logic. (It’s 
impossible to explain category theory in three minutes, but I can give 
you some references if you would like to explore the subject 
further.30) Put very simply, category theory studies two kinds of 
mathematical structures, objects and morphisms. See Figure 10.
Depending on which category we are working with, the objects and 
the morphisms will be different. In the category called Set, for 
example, the objects are abstract sets and the morphisms are arbitrary 
mappings. In the category called Top, the objects are topological 
spaces and the morphisms are continuous mappings. And, in the 
category called Man, the objects are differential manifolds and the 
morphisms are smooth mappings. What do I mean by a smooth
                                                

30. See, e.g., F. WILLIAM LAWVERE & STEPHEN H. SCHANUEL, CONCEPTUAL 
MATHEMATICS: A FIRST INTRODUCTION TO CATEGORIES (2d ed. 2009); F. WILLIAM 
LAWVERE & ROBERT ROSEBRUGH, SETS FOR MATHEMATICS (2003); STEVE AWODEY,
49 OXFORD LOGIC GUIDES: CATEGORY THEORY (2006); S. Abramsky & N. 
Tzevelekos, Introduction to Categories and Categorical Logic, in LECTURE NOTES 
IN PHYSICS 813: NEW STRUCTURES FOR PHYSICS 3 (Bob Coecke ed., 2011); BART 
JACOBS, CATEGORICAL LOGIC AND TYPE THEORY (2001). These references are 
arranged in order from the more elementary to the more advanced, so that the reader 
can access the literature at whatever level would be the most comprehensible. 
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mapping? A smooth mapping is a continuously differentiable 
function, up to some finite order k, or, alternatively, for all k, which 
would be an infinitely differentiable function. It should be clear that I 
have been using the category Man all along in my work on the 
theory of differential similarity. 

The remainder of Figure 10 lists two standard concepts from 
category theory, which are both defined in Section 3 of my ICAIL 
2015 paper.31 Although these definitions are universal, they designate 
different mathematical objects in different categories. For example, 
the categorical product in Set is the ordinary Cartesian product, and 
the categorical subobject is an ordinary subset. Recall: That’s what 
we used for the semantics of classical logic. But in Man, the 
categorical product is the product manifold, and the categorical 
subobject is a submanifold. That’s what we used in our image 
processing example. In general, we can construct a logic using any of 
these categories, but we get a different logic in each case. Using the 
category Set, we obtain classical logic. Using the category Top, we 
obtain intuitionistic logic, which is strictly weaker than classical 
logic. As far as I know, a categorical logic based on the category 
Man does not have a standard name in the literature, but I show in 
Section 3 of my ICAIL 2015 paper that it has the proof theory of a 
syntactically restricted version of intuitionistic logic,32 with several 
novel properties.  

Figure 11

                                                
31. See McCarty, supra note 1, at 93-94.
32. See id. at 94-96.
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A fragment of the proof theory is illustrated in Figure 11. It 
uses what logicians call a sequent calculus. The two expressions at 
the top of the figure are called sequents, and they represent the 
concept of provability. The odd symbol that looks like a turnstile is 
called a “turnstile,” and the sequent is interpreted as saying: “From 
the formula on the left of the turnstile you can prove the formula on 
the right of the turnstile.” What are the formulas in these examples? 
You will see that I have switched from the image processing 
example in Figure 9 to a toy legal example suggested by the case of 
Eisner v. Macomber in my ICAIL 1995 paper.33 The individual 
macomber (Myrtle H. Macomber in the real case) is an Actor, the 
individual so (Standard Oil in the real case) is a Corporation, and the 
predicate is Control. So the formula expresses the proposition that 
“the actor Myrtle H. Macomber controls the corporation Standard 
Oil.” Let’s first compare the semantic interpretation of this formula 
in classical logic with its interpretation in a categorical logic based 
on the category of differential manifolds. In classical logic, Actor
and Corporation would be sets, and macomber and so would be 
elements in those sets. Control would be a relation, that is, a subset 
of the Cartesian product of Actor and Corporation. But in the 
category Man, Actor and Corporation would be manifolds, and 
macomber and so would be points on those manifolds. Likewise, 
Control would be a manifold, specifically, a submanifold of the 
product manifold of Actor and Corporation. If you now transfer your 
intuitions about the image processing example back to this simple 
legal example, you should be able to see why this is important. It 
means that we can use the machinery of our prototypical clusters, our 
differential similarity metric, our geodesic coordinate system, etc., 
for the Actor manifold, the Corporation manifold, the Control
manifold, and so on. And this is, concretely, what I mean by a 
prototypical perceptual semantics.  

Returning to the proof theory, what are these two sequents 
saying? The first sequent says: “From the proposition 1 you can 
prove the proposition Control ...” Well, 1 means true. So, if you can 
prove this particular proposition from true, then the proposition itself 
is true, that is, “Myrtle H. Macomber controls Standard Oil.” The 
second sequent says: “From the proposition Control … you can 
prove the proposition 0.” Well, 0 means false. So, if from this 
particular proposition you can prove false, then the proposition itself 
is false, that is, “Myrtle H. Macomber does not control Standard 
                                                

33. See McCarty, supra note 2. 
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Oil.” The final remark at the bottom of Figure 11 is also important: A
sequent is interpreted as a morphism. In the category Set, remember, 
a morphism is an arbitrary mapping between abstract sets, so this 
interpretation does not tell us very much in Set. But in the category 
Man, a morphism is a smooth mapping between differential 
manifolds, and this means that a sequent is interpreted as a smooth 
mapping from the manifold on the left-hand side to the manifold on 
the right-hand side. My ICAIL 2015 paper gives you more 
information about how this works. For the two sequents at the top of 
Figure 11, you have to know that 1 is a terminal object in the 
category Man, which is the 0-dimensional manifold consisting of a 
single point, { 0 }, and 0 is an initial object in the category Man,
which is the empty manifold, { }, but you will have to consult the 
paper for the technical details. 

The third sequent in Figure 11 is a slightly more complicated 
example. In this example, there is an atomic formula on the left-hand 
side of the turnstile as well as an atomic formula on the right-hand 
side. Furthermore, instead of constant individuals, macomber and so,
we have variables: ?a is a variable that can be instantiated to a 
particular Actor, and ?c is a variable that can be instantiated to a 
particular Corporation. There is also another technical detail of the 
proof theory illustrated here, but you will have to consult the paper to 
see how it works: The turnstile has a context, C, attached to it, which 
lists all the variables in the two formulas. What is this sequent 
saying? Well, we don’t know what the predicate Q means, but 
whatever it means, the sequent is saying that from the relation Q
between ?a and ?c you can prove the relation Control between ?a
and ?c. And, since a sequent is interpreted as a morphism, this means 
that there exists a smooth mapping in the category Man from the 
point ?q on the manifold Q to the point ?r on the manifold Control.
Again, the details are in the paper. Let me emphasize, though, that 
these details are not novel, although they may be somewhat 
unfamiliar, even to some logicians. They are all features of 
categorical logic,34 and all I have done is to apply these ideas to the 
category of differential manifolds.  

For the full sequent calculus, we need to add proof rules to our 
system, in order to derive sequents from sequents and to interpret the 
logical connectives. See Figure 12. The structural rule for cut is just 
a rewriting of the rule for the composition of morphisms. It says: If 
                                                

34. See, e.g., AWODEY, supra note 30; Abramsky & Tzevelekos, supra note 
30; JACOBS, supra note 30. 
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from ϕ you can prove θ and from θ you can prove ψ, then from ϕ
you can prove ψ. The rule for conjunction is just a rewriting of the 
definition (see the paper) of the categorical product listed on Figure 
10. This is a bidirectional rule, with the -introduction rule reading 
from top to bottom, and the -elimination rule reading from bottom 
to top. Given the cut rule and the conjunction rule, we can now add 
horn axioms as shown on the figure. This says: From the conjunction 
of the Qs you can prove P, and any variables in the context C will be 
universally quantified, implicitly, at the top level. If you are familiar 
with the programming language PROLOG, you will understand that 
adding these horn axioms to the two rules on Figure 12 gives us the 
basics of horn clause logic programming.35 But we can go even 
further. I do not have time to cover this material in my talk, but in the 
paper I show how to add introduction and elimination rules for 
explicit existential and universal quantifiers, and for implication, as 
well as axioms for simple embedded implications. The end result is 
an extended logic programming language, based on intuitionistic 
logic, which I proposed and analyzed a number of years ago,36 and 
which provides the foundation for my Language for Legal Discourse 
(LLD).37 I was surprised when I discovered this fact, because I was 
not thinking about differential manifolds at the time.  

Figure 12 

                                                
35. See, e.g., JOHN W. LLOYD, FOUNDATIONS OF LOGIC PROGRAMMING 10

(2d ed. 1987).  
36. L. Thorne McCarty, Clausal Intuitionistic Logic: I. Fixed-Point 

Semantics, 5 J. LOGIC PROGRAMMING 1 (1988); L. Thorne McCarty, Clausal 
Intuitionistic Logic: II. Tableau Proof Procedures, 5 J. LOGIC PROGRAMMING 93
(1988); L. Thorne McCarty, Circumscribing Embedded Implications (Without 
Stratifications), 17 J. LOGIC PROGRAMMING 323 (1993). 

37. See McCarty, supra note 27. 
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Another surprise was the discovery of two novel properties in a 
categorical logic based on the category Man:

1. I have already explained that a sequent in categorical logic is 
interpreted as a morphism, but a proof is a chain of inference 
rules applied to sequents, and this means that a proof is 
interpreted as a composition of morphisms. Thus, in the 
category Man, a proof is a smooth mapping of differential 
manifolds, starting with the atomic formulas, which can be 
chosen to represent prototypical clusters. Proofs in classical 
logic do not have this property, since they are interpreted 
invariably as arbitrary mappings of abstract sets. 

2. In Set and Top, every subset of an object is a subobject. But in 
the category Man, not every subset of a manifold is a 
submanifold. (A standard counter-example is shown in Figure 7 
of my ICAIL 2015 paper.38) This has possible implications for 
the logic: 
	� In standard second-order logic, based on Set or Top, the 

predicate variables range across the set of all subsets of the 
first-order domains. But in a second-order logic based on the 
category Man, the predicate variables would range across the 
set of all submanifolds, which is strictly less than the set of 
all subsets. Does this fact have implications for Gödel’s 
Theorem? 

	� Similarly, in the category Man, the search space for learning 
first-order predicates would be strictly less than set of all 
subsets of the first-order domains. Does this fact have 
implications for Learnability?  

I have framed these points as questions, because I consider them to 
be very speculative. Nevertheless, I think they are speculations 
worthy of further investigation.  

III. DEFINING THE ONTOLOGY OF LLD

In my original paper on a Language for Legal Discourse 
(LLD), the goals of the work were described as follows: 

There are many common sense categories underlying the representation of 
a legal problem domain: space, time, mass, action, permission, obligation, 
causation, purpose, intention, knowledge, belief, and so on. The idea is to 
select a small set of these common sense categories, . . . and . . . develop a 
knowledge representation language that faithfully mirrors the structure of 

                                                
38. See McCarty, supra note 1, at 94. 
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this set. The language should be formal: it should have a compositional 
syntax, a precise semantics and a well-defined inference mechanism.39

This research programme has now been incorporated into a more 
general research programme on legal ontologies,40 in which logic 
plays a prominent role. But what happens when we shift the 
foundations of LLD from a language based on Set (which is 
classical), or Top (which is intuitionistic), to a language based on 
Man? There are several questions to consider: 

1. One important feature of LLD is the distinction between count 
terms and mass terms. For example, Actor and Corporation are 
count terms, whereas “20 shares of common stock” is a mass 
term. A standard way to represent this distinction in a 
knowledge representation language is to use a second-order 
logic, in which the second-order mass terms have a measure
attached to them. Does it make a difference whether this logic 
is based on Set, or Top, or Man?

2. One of the most important features of LLD is the representation 
of events and actions,41 and the various modalities over 
actions,42 the most significant of which, in a legal context, are 
the modalities of permission and obligation.43 In my previous 
work, the underlying action language was based on either a 
classical or an intuitionistic logic, and it was clumsy, at best. A 
better approach, I think, would be to take differential manifolds 
seriously, and represent actions (initially) by the Lie group of 
rigid body motions in the category Man.44 We can then apply 
the theory of differential similarity to the manifold of physical 
actions, and generalize from there to a manifold of abstract 

                                                
39. McCarty, supra note 27, at 180. 
40. See, e.g., Rinke Hoekstra et al., The LKIF Core Ontology of Basic Legal 

Concepts, in PROCEEDINGS OF THE WORKSHOP ON LEGAL ONTOLOGIES AND 
ARTIFICIAL INTELLIGENCE TECHNIQUES 43 (P. Casanovas et al. eds., 2007). 

41. See L. Thorne McCarty & Ron van der Meyden, Reasoning About 
Indefinite Actions, in PRINCIPLES OF KNOWLEDGE REPRESENTATION AND REASONING:
PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE (KR ‘92) 59 (1992). 

42. See L. Thorne McCarty, Modalities Over Actions, in PRINCIPLES OF 
KNOWLEDGE REPRESENTATION AND REASONING: PROCEEDINGS OF THE FOURTH 
INTERNATIONAL CONFERENCE (KR ‘94) 437 (1994). 

43. See L. Thorne McCarty, Permissions and Obligations, in PROCEEDINGS 
OF THE EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE 
(IJCAI ‘83) 287 (1983). 

44. See, e.g., JEAN GALLIER, GEOMETRIC METHODS AND APPLICATIONS FOR 
COMPUTER SCIENCE AND ENGINEERING 459-511 (2d ed. 2011). 
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actions. Does this formalization lead to a distinctly different 
theory of the deontic modalities?  

3. The best current model of the epistemic modalities, such as 
knowledge and belief, can be found in the literature on 
justification logics.45 A justification logic adds the annotation 
t : X to the proposition X, and interprets this compound term as 
“X is justified by reason t.” Essentially, t is a proof of X. This is 
currently an active area of research, and there are justification 
logics that correspond to many different proof systems. I have 
introduced a new logical language here, of course, based on the 
category Man. Does this language and its proof system lead to 
a new variant in the family of justification logics?  

These are all interesting research questions, and there are probably 
many more. The plan is to reconstruct my Language for Legal 
Discourse from the ground up, and to study the implications of this 
new approach.   

Figure 13 

IV. TOWARD A THEORY OF COHERENCE

The theory of differential similarity is a hybrid drawn from 
three areas of mathematics: Probability, Geometry, Logic. 
Historically, these three fields were distinct, but their boundaries 

                                                
45. See, e.g., Sergei N. Artemov, The Logic of Justification, 1 REV.

SYMBOLIC LOGIC 477 (2008); Melvin Fitting, Reasoning with Justifications, in 
TOWARDS MATHEMATICAL PHILOSOPHY, PAPERS FROM THE STUDIA LOGICA 
CONFERENCE 107 (D. Makinson, J. Malinowski & H. Wansing eds., 2009). 
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have been blurred in the past twenty or thirty years. Figure 13 shows 
one way to understand these relationships. 

At the top of the figure, I have listed the field of Artificial 
Intelligence. The earliest work in AI was based on logic, while more 
recent work has been based primarily on probability theory. There 
have been numerous attempts through the years to combine these 
two approaches,46 but it is fair to say that there is still no single 
unified theory that has garnered universal support. The new entry, at 
the bottom of the figure, is geometry. How is geometry related to 
probability theory? The hybrid field, which has emerged only in the 
past twenty or thirty years, is stochastic differential geometry, as 
represented by the two books cited.47 In fact, the theorems that I have 
been using on the properties of Brownian motion on Riemannian 
manifolds come from the field of stochastic differential geometry. 
How is geometry related to logic? There is a rather famous book by 
MacLane and Moerdijk, cited in the figure,48 which studies this 
relationship at a very abstract level. (Saunders MacLane is the co-
founder, along with Samuel Eilenberg, of category theory.) In fact, 
what I have been doing with my own logic based on the category of 
differential manifolds is a concrete (and very elementary!) version of 
what MacLane and Moerdijk were doing in their book.  

                                                
46. See, e.g., Nils J. Nilsson, Probabilistic Logic, 28 ARTIFICIAL 

INTELLIGENCE 71 (1986); Matthew Richardson & Pedro Domingos, Markov Logic 
Networks, 62 MACHINE LEARNING 107 (2006). 

47. MICHEL EMERY & P.A. MEYER, STOCHASTIC CALCULUS IN MANIFOLDS 
(1989); ELTON P. HSU, STOCHASTIC ANALYSIS ON MANIFOLDS (2002). 

48. SAUNDERS MAC LANE & IEKE MOERDIJK, SHEAVES IN GEOMETRY AND 
LOGIC: A FIRST INTRODUCTION TO TOPOS THEORY (1992). 
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Figure 14 

What I am suggesting in Figure 13 is that Artificial Intelligence 
needs all three fields: Probability, Geometry, Logic. Furthermore, we 
should be proceeding from probability through geometry to logic, as 
in my theory of differential similarity. This means that we need to 
unfold the pie chart in Figure 13 to produce the stack of blocks in 
Figure 14.  

Figure 14 depicts a high-level view of a cognitive model 
constructed from the bottom up, and a view of the constraints in this 
model from the top down, according to the theory of differential 
similarity. First, the logic is constrained by the geometry, as we have 
seen. Second, the geometric model is constrained by the probabilistic 
model, since the Riemannian dissimilarity metric depends on the 
probability measure. Third, the probability measure is constrained by 
the distribution of sample data in the actual world. These three 
propositions lead us to the conjecture at the bottom of the figure: It is 
the existence of these mutual constraints that makes theory 
construction possible.  

Let’s now return to the passage from Section 5 of my ICAIL 
1997 paper, where we were trying to understand legal reasoning as a 
form of theory construction. I have reproduced part of this passage in 
Figure 15. 
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Figure 15 

Recall that we were looking for a learnable knowledge 
representation language, based on prototypes. How is this possible? 
This is (or was) one of the great mysteries of cognitive science, and 
one of the great mysteries of legal theory. 

Is the mystery now solved? For me, that’s just a rhetorical 
question, and the answer is: Yes.  


