

Lenox Institute Press

Newtonville, NY, USA; Auburndale, MA, USA

Evolutionary Progress in Science, Technology, Engineering, Arts and Mathematics (STEAM) Series

MATHEMATICS OF HUNG-PING TSAO

Authored by:
Hung-ping Tsao, PhD, Retired Faculty Member
San Francisco State University
Address: 1151 Highland Drive, Novato, California 94949, USA
(415) 902-2166; (415) 883-2194
tsaohp.tsao6@gmail.com

Tsao, Hung-ping (2020). Mathematics of Hung-ping Tsao. In: "Evolutionary Progress in Science, Technology, Engineering, Arts, and Mathematics (STEAM)", Wang, Lawrence K. and Tsao, Hung-ping (editors). Volume 2, Number 11, November 2020; 336 pages. Lenox Institute Press, Newtonville, NY, 12128-0405, USA. No. STEAM-VOL2-NUM11-NOV2020; ISBN 978-0-9890870-3-2. US Department of Commerce, National Technical Information Service, 5301 Shawnee Road, Alexandria, VA 22312, USA.

MATHEMATICS OF HUNG-PING TSAO

Authored by:
Hung-ping Tsao, PhD

TABLE OF CONTENTS

TABLE OF CONTENTS

ABSTRACT
KEYWORDS
NOMENCLATURE
PROLOGUE

1. TALK ELEGANCY
1.1 TOWER OF HANOI
1.2. EINSTEIN RIDDLE
1.2.1 Talk Topic: Illustrative Problem Solving
1.3. GEOMETRY VIA TRIGONOMETRY
1.3.1 Pythagorean Theorem
1.3.2 Tsao's Theorem I
1.3.3 Tsao's Theorem II
1.4. PROOFS WITHOUT WORDS: PYTHAGOREAN THEOREM
1.4.1 $\quad a^{2}+b^{2}=c^{2}$
1.4.2 $\mathrm{a}^{2}+\mathrm{b}^{2}=2 \mathrm{ab}+(\mathrm{b}-\mathrm{a})^{2}$
1.4.3 $2 \mathrm{ab}+(\mathrm{b}-\mathrm{a})^{2}=\mathrm{c}^{2}$
1.4.4 $\quad c^{2}=(b-a \cos C)^{2}+a^{2} \sin ^{2} C=a^{2}+b^{2}-2 a b \cos C$
1.5. GEOMETRY PLUS TRIGONOMETRY
1.6. COUNTING TIDBITS
1.6.1 Talk Topic: Jail House Mathematics
1.7. GLOBAL APPROACH TO PROBABILITY PROBLEMS
1.7.1 Talk Topic: Probability Problems and Concepts Made Simple
1.8. MUTUAL INDEPENDANCY VERSUS MUTAL EXCLUSIVENESS
1.9. THE SOLID GROUND IN A BIG PICTURE OF LIFE INSURANCE FUTURE
1.10. SUDOKU PREVIEW
1.11. TEACHING EFFICIENCY
2. NUMBERS INTRICACY
2.1. INTRODUCTION
2.2. PASCAL-BERNOULLI-STIRLING-EULER-BELL-GAUSS
2.2.1 Pascal-Bernoulli
2.2.2 Stirling
2.2.3 Euler
2.2.4 Sorting
2.2.5 Bell
2.2.6 General triangular arrays
2.2.7 Gauss
2.3. MULTIPLE ANGLE FORMULAS IN TRIGONOMETRY
3. LIFE CONTINGENCY

3.1. INTRODUCTION

3.2. THEORY OF COMPOUND INTEREST

3.2.1 Functions of compound interest
3.2.2 Geometric point of view
3.3. LAWS OF MORTALITY
3.3.1 Point of view of stochastic theory
3.3.2 Point of view of traditional actuaries
3.4. MORTALITY RATES OF FRACTIONAL AGES
3.5. MODELS OF THE SURVIVALSHIP FUNCTION
3.6. SIMPLE VISUALIZATIONS FOR SCHEDULE EXPOSURE FORMULAS
3.7. LIFE INSURANCE AND ANNUITIES
3.7.1 Deterministic point of view
3.7.2 Stochastic point of view
3.7.3 Dynamic point of view
3.8. NET ANNUAL PREMIUMS AND RESERVES
3.8.1 Net annual premiums
3.8.2 Net premium reserves
3.9. VARYING LIFE CONTINGENCY FUNCTIONS
3.9.1 Increasing life contingency functions
3.9.2 Decreasing life contingency functions
3.9.3 The supplementary relationships
3.9.4 Varying life insurance and annuities
3.10. DERIVATIVES OF LIFE CONTINGENCY FUNCTIONS
3.10.1 Derivatives of continuous life insurance and annuities
3.10.2 Derivatives of discrete life insurance and annuities
3.10.3 Derivatives of varying life insurance and annuities
3.11. SOME USEFUL THEOREMS IN ACTUARIAL MATHEMATICS
4. SUDOKU ECSTACY
4.1. ORIENTATIONAL MOVES
4.2. FUNDAMENTAL MOVES
4.3. WASTEFUL MOVES
4.4. SITUATIONAL MOVES
4.5. EXPERIMENTAL MOVES
5. PADAGOGY EFFICIENCY
5.1. BIKINI AND OPEN TOP PROBLEMS
5.2. OPTIMIZATION PROBLEMS
5.3. MARGINAL FUNCTIONS
5.4. SIMPLIFIED SIMPLEX METHOD

GLOSSARY

REFERENCES
APENDIX A: LIST OF TABLES

APENDIX B: LIST OF FIGURES

EDITORS PAGE
E-BOOK SERIES AND CHAPTER INTRODUCTON

MATHEMATICS OF HUNG－PING TSAO

Authored by：Hung－ping Tsao（曹 恆平）

Abstract

I would like to share some of my ideas in Number Theory，Actuarial Mathematics， Sudoku Solving and Optimization Teaching with college students and colleagues．

Keywords：Natural sequence，AP－sequence，Power－sum，Product－sum，Sorting， Combination，Permutation，Cycle，Subset，Binomial coefficient，Stirling number， Pascal triangle，Bernoulli coefficient，Eulerian number，Bell number，Ordered Bell polynomial，Eulerian Bell polynomial，Recursive formula，q－Gaussian coefficient， Life insurance，Life annuity，Interest，Mortality，Contingency，Premium，Reserve， Sudoku，Puzzle，Row，Column，Box，Unique solution，Flipflops chain，Residue．

NOMENCLATURE

$\mathrm{C}(\mathrm{n}, \mathrm{k}),\binom{n}{k}$	combination
Σ	sum
$b(k, j)$	Bernoulli coefficient
$(i){ }_{1}^{\infty}$	the natural sequence
$S_{n}^{(k)}$	the sum of the first kth powers of the natural sequence
\int	integral
$\mathrm{P}(\mathrm{n}, \mathrm{k}),{ }_{\mathrm{n}} \mathrm{P}_{\mathrm{k}}$	the permutation of n elements taken k at a time
k!	k factorial
$s(n, k)$	small Stirling number
$S(k+1, j)$	large Stirling number
$e(k, j)$	small Euler number
$E(k, j)$	large Euler number
$\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle$	first-order Eulerian number
$\left\langle\left\langle\begin{array}{l} n \\ k \end{array}\right\rangle\right\rangle$	second-order Eulerian number
$\left(\binom{n}{k}\right)$	the permutation of n elements taken k at a time
$\left[\begin{array}{l}n \\ k\end{array}\right]$	Stirling number of the first kind
$\left\{\begin{array}{l}n \\ k\end{array}\right\}$	Stirling number of the second kind

$(a+(i-1) d)_{1}^{\infty}$ arithmetically progressive sequence
$\left[\begin{array}{l}n \\ k\end{array}\right]_{a ; d} \quad$ Stirling triangle of the first kind for $(a+(i-1) d)_{1}^{\infty}$
$\left\{\begin{array}{l}n \\ k\end{array}\right\}_{a ; d} \quad$ Stirling triangle of the second kind for $(a+(i-1) d)_{1}^{\infty}$
$\left\langle{ }_{k}^{n}\right\rangle_{a ; d}$
$\left\langle\left\langle\begin{array}{c}k \\ k\end{array}\right\rangle\right\rangle_{a ; d}$
$T^{r, s}\left(a_{i}\right)_{0}^{\infty} \quad$ general triangular array for $\left(a_{i}\right)_{0}^{\infty}$
$\Pi \quad$ product
$\left[\begin{array}{c}n-1 \\ k\end{array}\right]_{q}$
$B_{n} \quad$ Bell number
$\delta \quad$ the force of interest
$\mu_{x} \quad$ the force of mortality
$\mathrm{a}(\mathrm{x}) \quad$ the accumulation function
i the nominal rate of interest
$i^{(m)} \quad$ the nominal rate of interest payable m times a year $d^{(m)} \quad$ the nominal rate of discount payable m times a year $\ddot{a}_{n}^{(m)} \quad$ the present value of an annuity due which pays m^{-1} at the beginning of each mth of a year for n years
$a_{n}^{(m)} \quad$ the present value of an annuity immediate which pays m^{-1} at the end of each mth of a year for n years
$\bar{a}_{n} \quad$ the present value of a continuous annuity payable continuously for n years with the total of 1 paid during each year
$\ddot{s}_{n}^{(m)} \quad$ the future value of an annuity due which pays m^{-1} at the beginning of each m th of a year for n years
$s_{n}^{(m)} \quad$ the future value of an annuity immediate which pays m^{-1} at the end of each m th of a year for n years
$\bar{s}_{n} \quad$ the future value of a continuous annuity payable continuously for n years, with the total of 1 paid during each year

X the random variable of a newborn's age-at-death
$\omega \quad$ the terminal age
$\mathrm{F}(\mathrm{x}) \quad$ the distribution function (d. f.) of X
$\mathrm{S}(\mathrm{x}) \quad$ the survival function
(x) the life aged x
${ }_{t \mid u} q_{x} \quad$ the probability that a life (x) aged x will die between ages $\mathrm{x}+\mathrm{t}$ and $\mathrm{x}+\mathrm{t}+\mathrm{u}$
${ }_{t} q_{x} \quad$ the probability that (x) will die within t years
${ }_{t} p_{x} \quad$ the probability that (x) will survive for t years
$q_{x} \quad$ the probability that (x) will die within a year
$\mathrm{p}_{\mathrm{x}} \quad$ the probability that (x) will survive for a year
$\mathrm{L}(0) \quad$ the cohort of newborns
$l_{0} \quad$ the number of newborns in $\mathrm{L}(0)$
$\mathrm{L}(\mathrm{x}) \quad$ those in $\mathrm{L}(0)$ who survive to age x
$l_{x} \quad$ the number of lives in $\mathrm{L}(\mathrm{x})$
${ }_{n} d_{x} \quad$ the number of those in $L(x)$ who will die within n years
$d_{x} \quad$ those in $L(x)$ who will die within a year
$P_{x}^{z} \quad$ the number of persons aged between x and $\mathrm{x}+1$ at the beginning of the calendar year z
$E_{x}^{z} \quad$ the number of persons attained age x during the calendar year z
the number of deaths among E_{x}^{z} during the calendar year z
the number of deaths among P_{x}^{z} before the attainment of age $\mathrm{x}+1$
the number of migrants in addition to E_{x}^{z} during the calendar year z
the number of migrants in addition to P_{x}^{z} before the attainment of age $\mathrm{x}+1$
n-year term insurance of 1 payable at the end of the year of death
$A_{x: n}^{1} \quad \mathrm{n}$-year pure endowment of 1 payable at the end of the nth year when (x) lives
$\mathrm{A}_{\mathrm{x}: \mathrm{n}} \quad \mathrm{n}$-year endowment insurance of 1 payable either at the end of the year of death or at the end of the nth year when (x) survives
$\mathrm{a}_{\mathrm{x}: \mathrm{n}}$
$\ddot{a}_{x: n} \quad \mathrm{n}$-year annuity of 1 payable at the beginning of each year while (x) survives
n-year pure endowment of 1 payable at the end of the nth year when (x) lives
$A_{x: n} \quad n$-year endowment insurance of 1 payable either at the end of the year of death or at the end of the nth year when (x) lives
$d_{\delta}(x, t) \quad$ the discount function of interest
$d_{\mu}(x, t) \quad$ the discount function of mortality
${ }_{h \mid} \bar{\alpha}_{x: n} \quad$ an h-year deferred n-year continuous life contingency function
${ }_{h \mid} \bar{\alpha}_{x} \quad$ an h-year deferred whole life continuous contingency function
$\bar{\alpha}_{x: n} \quad$ an n-year continuous life contingency function
$\bar{\alpha}_{x} \quad$ a whole life continuous contingency function
${ }_{r} \bar{P}\left({ }_{h \mid} \bar{\alpha}_{x: n}\right) \quad$ the continuously paid net level premium of ${ }_{h \mid} \bar{\alpha}_{x: n}$, with payments for r years
$(I \bar{\alpha})_{x: n} \quad$ an n-year continuous contingency function providing the present value of the death benefit $(\underline{t+1}) \bar{\alpha}_{t}$ at time t and the maturity benefit $n \bar{\alpha}_{n}$.
$(I \bar{\alpha})_{x: n}^{1} \quad$ an n-year continuous contingency function providing the present value of the death benefit $(t+1) \bar{\alpha}_{t}$ at time t and the maturity benefit 0
$(D \bar{\alpha})_{x: n}^{1} \quad$ an n-year continuous contingency function providing the present value of the death benefit $(n-\underline{t}) \bar{\alpha}_{t}$ at time t
$\left(D^{(m)} \bar{\alpha}\right)_{x: n}^{1}, \quad$ an mthly decreasing life contingency function
$\left(D_{h}{ }^{(m)} \bar{\alpha}\right)_{x: n}^{1} \quad$ an mthly decreasing life contingency function with only h years death benefit decrease
$6_{10}(86) \mathrm{b} 6: 6(75): \mathrm{u} 56 \mathrm{c} 3 \mathrm{~b} 3 / \mathrm{c} 9 \mathrm{~b} 9 \quad$ The tenth step with the law of unique solution to avoid the dilemma of double choices between 5, 6 in column 3 of box 3 and 6,5 in column 9 of box 9 so as to place 6 at (86) box 6

37r3: fcr-56(32)(33)\&49(36)(39) The seventh step with row move to place 3 in row 3 since 3 is the residue of the flipflops chain $56(32)(33) \& 49(36)(39)$ in row 3.

PROLOGUE

I am an amateur mathematician, who has been working rather diligently all my life. After receiving Ph.D. from UIUC in the area of combinatorics and teaching for two years in college, I pursued my actuarial career for eight years before returning to teach. I have published (22) in Chinese, an English excerpt of which was published in (20). During the 17 years of teaching at SFSU, I used the textbook "College Mathematics" tailor-made for my own students in College of Business. Since these books contain fruitful of innovative ideas, I am eager to benefit undergraduate students worldwide.

Ever since my retirement in the year of 2002, I have been working on the classic Number Theory. Although I only used elementary methods, I was able to get a breakthrough and recently published a "EVOLUTIONARY MATHEMATICS AND SCIENCE FOR NUMBER INTRICACY INVESTIGATION" (in addition to "EVOLUTIONARY MATHEMATICS AND SCIENCE FOR LIFE CONTINGENCY INVESTIGATION") by Lenox Institute Press. I hope my efforts and results could evolve into an undergraduate textbook in the area of Number Theoretical Combinatorics.

I also published "Cracking Sudoku Completely" in Chinese. It contains the detailed solution of the hardest Sudoku puzzle posted online which I solved manually in 2013. Besides being referenced by a course of Computer Games in Taiwan, its excerpt was published in (17). I believe the inclusion of the English version of it should benefit the vast majority of Sudoku lovers worldwide. As a matter of fact, four "EVOLUTIONARY MATHEMATICS AND ART FOR SUDOKU" e-books have recently published.

1. Number Theory

Dated back to the Eighteenth Century, James Sterling, Leonhard Euler and Jacob Bernoulli have collectively set up a solid foundation for the number theoretically combinatorics. You might have heard of numbers bearing their names, but I bet most people are not familiar with their work.

Although my doctoral dissertation included some discussion of certain properties of Stirling numbers, I should admit that I knew very little about them. Late until around the turn of this Century, I came across a book titled Concrete Mathematics in a Stanford library which was used as a textbook for the first year graduate students of Computer Science major.

At that time, I was about to retire from teaching in the College of Business, San Francisco State University and got interested in pursuing the explicit polynomial expression for the sum of powers of the natural numbers. Through my tireless efforts, I came up with two unusual arrays of numbers to be used for my purpose. No sooner I flipped through that textbook than I realized that those unusual numbers were indeed Stirling numbers of the first and second kind in disguise!

The authors of the book did suggest some plausible approach for expressions of the sum of powers of the natural numbers without reaching the goal, as an example of a failed attempt. I would like to share with you my successful attempt. I further generalize the related numbers based on the natural sequence to those that are arithmetically progressive sequence-based. As a result, various structures of triangular arrays can be built on top of different underlying bases.

2. Actuarial Mathematics

We shall start with the accumulation function and use the geometric point of view to generalize and simplify the theory of interest. Then survey the laws of mortality from both points of view of stochastic theory and traditional actuaries. There is a thorough discussion and simple visualization of Balducci and uniform distribution of deaths assumptions of mortality rates of fractional ages.

Two least square-fit cubic survivorship functions for fitting the Male Table of 1958 CSO are presented. Various complicated exposure formulas for a mortality study are obtained by a simple inspection of the valuation schedule in demography.

Life insurance and annuities are first introduced in three different points of view: deterministic, stochastic and dynamic. Then a uniform representation of a general life contingency function and its derivative is defined in such a fashion that deferred, term, endowment, life insurance and life annuity with level or varying benefit and premium can be treated all in one shot.

3. Sudoku Solving

We provide a unique step-by-step Sudoku solving procedure by using subscripts and annotations so that the entire solving process can be recorded. We train the beginners into champion players with enabling "kung fu skills" coupled with surprisingly easy measures. In the end, we demonstrate how to crack down the hardest Sudoku ever!

4. Optimization Teaching

We introduce more efficient methods in Differential Calculus and Linear Programming.

1. TALK ELEGANCY

1.1. TOWER OF HANOI

We are given a tower of eight disks, initially stacked in decreasing size on one of three pegs. The objective is to transfer the entire tower to one of the other pegs, moving only one disk at a time and never moving a larger one onto a smaller.

The problem of the Tower of Hanoi was invented by E. Lucas in 1883 and had been discussed extensively without touching on the number system in (6). Let us first give an optimal solution to this problem with four disks by imposing subscripts to each number to keep track of the number of moves hereunto taken for the corresponding disk as follows.

Step $0 \quad 10$
20
3_{0}
40
peg $1 \quad$ peg 2
peg 3
Step $1 \quad 20$
30
$4_{0} \quad 1_{1}$
peg $1 \quad$ peg 2
peg 3
Step $2 \quad 30$
4_{0}
peg 1
1_{1}
peg 2
21
peg 3
Step 3
3_{0}
40
peg 1
peg 2
1_{2}
21
peg 3
Step 4

$$
\begin{gathered}
4_{0} \\
\text { peg } 1
\end{gathered}
$$

31
peg 2
1_{2}
21
peg 3

Step 5	13		
	40	31	21
	peg 1	peg 2	peg 3
Step 6	13	22	
	40	31	
	peg 1	peg 2	peg 3
Step 7		14	
		$2{ }_{2}$	
	40	31	
	peg 1	peg 2	peg 3
Step 8		14	
		22	
		31	41
	peg 1	peg 2	peg 3
Step 9		22	15
		31	41
	peg 1	peg 2	peg 3
Step 10			15
	23	$\begin{gathered} 3_{1} \\ \text { neg } \end{gathered}$	$\begin{array}{r} 41 \\ \text { neg } 3 \end{array}$
Step 11	16		
	23	31	41
	peg 1	peg 2	peg 3
Step 12	16		32
	23		41
	peg 1	peg 2	peg 3
Step 13			32
	2_{3}	1_{7}	41
	peg 1	peg 2	peg 3
Step 14			24
			32
		17	41
	peg 1	peg 2	peg 3

Step 15

The general problem with n disks can be solved the same way. Let T_{n} denote the total number of moves taken to accomplish the objective in the general case. Then we see from the above illustration that

$$
T_{3}=8+4+2+1=15
$$

and in general

$$
T_{n}=\sum_{i=0}^{n-1} 2^{i}=2^{n}-1 .
$$

Now with a modification we can convert our problem into the binary number system. Give some of the disks the weight 0 and the others the weight 1 . Then the weighted sum $T_{n ; 2}$ of all the moves would represent a unique binary number such as

$$
T_{5 ; 2}(1,1,0,1,0)=2^{4}+2^{3}+2^{1}=(1,1,0,1,0)_{2}
$$

where ($1,1,0,1,0$) represents 5 disks with weights listed in the ascending order of sizes.

If we further restrict that all moves can only be made between the adjacent pegs and consider each move as a half count, then the direct solution of the modified problem with three disks can be demonstrated as follows.

Step $0 \quad 10$
20
30
peg 1
peg 2
peg 3

Step 1	$\begin{gathered} 2_{0} \\ 3_{0} \\ \text { peg } 1 \end{gathered}$	$\begin{gathered} 1_{0.5} \\ \text { peg } 2 \end{gathered}$	peg 3
Step 2	$\begin{gathered} 2_{0} \\ 3_{0} \\ \text { peg } 1 \end{gathered}$	peg 2	$\begin{gathered} 1_{1} \\ \operatorname{peg} 3 \end{gathered}$
Step 3	$\begin{gathered} 3_{0} \\ \text { peg } 1 \end{gathered}$	$\begin{gathered} 2_{0.5} \\ \operatorname{peg} 2 \end{gathered}$	$\begin{gathered} 1_{1} \\ \operatorname{peg} 3 \end{gathered}$
Step 4	$\begin{gathered} 3_{0} \\ \text { peg } 1 \end{gathered}$	$\begin{gathered} 1_{1.5} \\ 2_{0.5} \\ \text { peg } 2 \end{gathered}$	peg 3
Step 5	$\begin{gathered} 1_{2} \\ 3_{0} \\ \text { peg } 1 \end{gathered}$	$\begin{gathered} 2_{0.5} \\ \operatorname{peg} 2 \end{gathered}$	peg 3
Step 6	$\begin{gathered} 1_{2} \\ 3_{0} \\ \text { peg } 1 \end{gathered}$	peg 2	$\begin{gathered} 2_{1} \\ \text { peg } 3 \end{gathered}$
Step 7	$\begin{gathered} 3_{0} \\ \text { peg } 1 \end{gathered}$	$\begin{gathered} 1_{2.5} \\ \text { peg } 2 \end{gathered}$	$\begin{gathered} 2_{1} \\ \operatorname{peg} 3 \end{gathered}$
Step 8	$\begin{gathered} 3_{0} \\ \text { peg } 1 \end{gathered}$	peg 2	$\begin{array}{r} 1_{3} \\ 2_{1} \\ \text { peg } 3 \end{array}$
Step 9	peg 1	$\begin{gathered} 3_{0.5} \\ \operatorname{peg} 2 \end{gathered}$	$\begin{gathered} 1_{3} \\ 2_{1} \\ \text { peg } 3 \end{gathered}$
Step 10	peg 1	$\begin{gathered} 1_{3.5} \\ 3_{0.5} \\ \text { peg } 2 \end{gathered}$	$\begin{gathered} 2_{1} \\ \operatorname{peg} 3 \end{gathered}$
Step 11	$\begin{gathered} 1_{4} \\ \text { peg } 1 \end{gathered}$	$\begin{gathered} 3_{0.5} \\ \text { peg } 2 \end{gathered}$	$\begin{gathered} 2_{1} \\ \operatorname{peg} 3 \end{gathered}$
Step 12	$\begin{gathered} 1_{4} \\ \text { peg } 1 \end{gathered}$	$\begin{array}{r} 2_{1.5} \\ 3_{0.5} \\ \text { peg } 2 \end{array}$	peg 3

Step 13	peg 1	$\begin{gathered} 1_{4.5} \\ 2_{1.5} \\ 3_{0.5} \\ \text { peg } 2 \end{gathered}$	peg 3
Step 14	peg 1	$\begin{gathered} 2_{1.5} \\ 3_{0.5} \\ \text { peg } 2 \end{gathered}$	$\begin{gathered} 1_{5} \\ \text { peg } 3 \end{gathered}$
Step 15	$\begin{gathered} 2_{2} \\ \text { peg } 1 \end{gathered}$	$\begin{gathered} 3_{0.5} \\ \text { peg } 2 \end{gathered}$	$\begin{gathered} 1_{5} \\ \text { peg } 3 \end{gathered}$
Step 16	$\begin{gathered} 2_{2} \\ \text { peg } 1 \end{gathered}$	$\begin{gathered} 1_{5.5} \\ 3_{0.5} \\ \text { peg } 2 \end{gathered}$	peg 3
Step 17	$\begin{gathered} 1_{6} \\ 2_{2} \\ \text { peg } 1 \end{gathered}$	$\begin{gathered} 3_{0.5} \\ \text { peg } 2 \end{gathered}$	peg 3
Step 18	$\begin{gathered} 1_{6} \\ 2_{2} \\ \text { peg } 1 \end{gathered}$	peg 2	$\begin{gathered} 3_{1} \\ \operatorname{peg} 3 \end{gathered}$
Step 19	$\begin{gathered} 2_{2} \\ \text { peg } 1 \end{gathered}$	$\begin{gathered} 1_{6.5} \\ \text { peg } 2 \end{gathered}$	$\begin{gathered} 3_{1} \\ \operatorname{peg} 3 \end{gathered}$
Step 20	$\begin{gathered} 2_{2} \\ \text { peg } 1 \end{gathered}$	peg 2	$\begin{array}{r} 1_{7} \\ 3_{1} \\ \operatorname{peg} 3 \end{array}$
Step 21	peg 1	$\begin{gathered} 2_{2.5} \\ \text { peg } 2 \end{gathered}$	$\begin{array}{r} 1_{7} \\ 3_{1} \\ \text { peg } 3 \end{array}$
Step 22	peg 1	$\begin{array}{r} 1_{7.5} \\ 2_{2.5} \\ \text { peg } 2 \end{array}$	$\begin{gathered} 3_{1} \\ \operatorname{peg} 3 \end{gathered}$
Step 23	$\begin{gathered} 1_{8} \\ \text { peg } 1 \end{gathered}$	$\begin{gathered} 2_{2.5} \\ \text { peg } 2 \end{gathered}$	$\begin{gathered} 3_{1} \\ \operatorname{peg} 3 \end{gathered}$
Step 24	$\begin{gathered} 1_{8} \\ \operatorname{peg} 1 \end{gathered}$	peg 2	$\begin{array}{r} 23 \\ 3_{1} \\ \text { peg } 3 \end{array}$

Step 25		2_{3}	
		peg 1	$1_{8.5}$
Step 26		3_{1}	
			peg 3
			1_{9}
	peg 1	peg 2	2_{3}
			3_{1}
		peg 3	

The above detailed process can be recapped as follows.

As before, with a modification we can convert our problem into the tri-nary system. Give some of the disks the weight 0 , some others the weight 1 and the rest the weight 2 . Then the weighted sum $T_{n ; 3}$ of all the moves would represent a unique tri-nary number. For example,

$$
T_{5 ; 3}(2,0,1,0,2)=2\left(3^{4}\right)+3^{2}+2=(2,0,1,0,2)_{3},
$$

where $(2,0,1,0,2)$ represents 5 disks with weights listed in the ascending order of sizes.

The initial problem can be generalized as follows.

General Tower of Hanoi with k pegs. We are given a tower of n disks, initially stacked in decreasing size on the first of k ordered pegs. The objective is to transfer the entire tower to the last peg, moving only one disk at a time and never moving a larger one onto a smaller. We further restrict that all moves can only be made between the adjacent pegs.

Can we convert the problem of General Tower of Hanoi into the k-ary number system?

1.2. EINSTEIN RIDDLE

The question is: Based on the following hints, who owns the fish?

1) There are five houses in five different colors.
2) In each house lives a person with a different nationality.
3) These five owners drink a certain type of beverages, smoke a certain brand of cigar and keep a certain pet.
4) No owners have the same pet, smoke the same brand of cigar or drink the same beverage.
5) The Brit lives in the red house.
6) The Swede keeps dogs as pets.
7) The Dane drinks tea.
8) The green house is on the left of the white house.
9) The green house's owner drinks coffee.
10) The person who smokes Pall Mall rears birds.
11) The owner of the yellow house smokes Dunhill.
12) The man living in the center house drinks milk.
13) The Norwegian lives in the first house.
14) The man who smokes blends lives next to the one who keeps cats.
15) The man who keeps horses lives next to the man who smokes Dunhill.
16) The owner who smokes Blue Master drinks beer.
17) The German smokes Prince.
18) The Norwegian lives next to the blue house.
19) The man who smokes blends has a neighbor who drinks water.

The author's motivation came from the notion that only two percent of people in the whole world could solve Einstein Riddle. He would try to prove it otherwise by using an illustrative method incorporate with subscripted annotations.

Many logical reasoning problems can be solved this way, especially Sudoku puzzles. He was invited to present the following talk at "The 2017 International Conference in Management Sciences and Decision Making" (Tamkang University), which is an example of a talk that could appeal to general audience with no math background.

1.2.1 Talk Topic: Illustrative Problem Solving

First of all, I would like to thank Professor Ruey-Chyn Tsaur for inviting me cordially here at the Department of Management Sciences, which is by no means a stranger to me. It has to trace back to its origin the Institute of Management Sciences, where I was invited by Professor Horng-Jinh Chang to be a visiting professor for three months in the year of 1984 .

As you might have known, Professor Chang was a student of Professor Wen-tao Huang, who has been my dearest friend since our graduate student years together in Tsinghua University, where Professor Tsaur received his PhD from much later.

I still remember quite vividly the founding year of the Institute of Mathematics there nearly fifty five years ago. Wen-tao was the first student to register, but to his dismay was soon called back to fulfill his obliged teaching duty in Tainan as required for every student graduated from the National Taiwan Normal University.

Among the seven students registered in the Spring semester of 1962, six (one female) graduated from the National Taiwan Normal University and one from the National Taiwan University. Despite of the wide range of age disparity, we got along pretty well in the male student dorm. After the first day of orientation, we had dinner together. To make the story short, let me propose the following three problems that are most suitable for our theme: the illustrative problem solving.

Problem 1. From the following requirements, can you figure out the order of the age seniority and the gift-exchanging arrangement?
\#1. The sitting is three on each side of the table.
\#2. Each gives gift in a non-reciprocate fashion.
\#3. HT gives gift to the one sitting opposite him.
\#4. WH sitting opposite to the second oldest gives gift to the second youngest.
\#5. HL sitting by the side of the second youngest gives gift to the youngest.
\#6. CH not giving gift to the second oldest sits between the youngest and the third youngest.
\#7. FH and the third oldest do not give gift to each other.
\#8. WL being not the oldest sits in a corner and gives gift to the third youngest.
\#9. The third youngest sits opposite the oldest.

Solution

According to \#1, divide the table surface into six parts as shown in Figure 1, each of which is to place one's number of the age seniority with 1 being the youngest.

Figure 1. The table surface for placing

According to \#6, sit CH first with the subscript indicating the order of occurrence and coplace 1 and 3 as shown in Figure 2. According to \#9, place 6 opposite to 3.
$\mathrm{CH}_{1}(\# 6)$

3_{2} (\#6)		$1_{2 \text { (\#6) }}$
6_{3} (\#9)		

Figure 2. The first stage of placing

According to \#4 and \#6, place 5 in the remaining corner and sit WH opposite to the second oldest. According to \#8, sit WL (being neither the oldest nor the third youngest) in the remaining right corner.

	$\mathrm{WH}_{5}(\# 4)$
32	12
63	$54(\# 4.6)$

Figure 3. The second stage of placing

Therefore, CH must be the third oldest. Otherwise, co-place 2 and 4 as shown below. According to \#5, sit HL by the side of CH. According to \#7, sit FH (being not the third oldest) in the remaining corner. According to \#3, HT gives gift to CH contradicting \#4 (WH gives gift to CH).

Figure 4. The third stage of placing

Therefore, the only two possible cases are displayed below.

Case 1.

HT	CH	WH
3	4	1
6	2	5
HL	FH	wL

Figure 5. The fourth stage of placing

The gift-giving arrangement is displayed with the requirement number as follows.

	WH (1)	CH (4)	HT (3)	WL (5)	FH (2)
		HL (6)			
WH (1)			\#4		
CH (4)				$\# 6$	
HT (3)					
WL (5)					
FH (2)					
HL (6)					

Table 1. The first stage of gift-giving arrangement

The requirement \#6 prevents FH from giving gift to CH , so nobody gives gift to CH .

Case 2.

Figure 6. The fifth stage of placing

The gift-giving arrangement is displayed with the requirement number and the age seniority order is WH, HT, FH, CH, WL, HL as illustrated below.

$$
\text { WH (1) } \mathrm{CH} \text { (4) } \mathrm{HT}(2) \quad \mathrm{WL}(5) \quad \mathrm{FH} \text { (3) } \mathrm{HL} \text { (6) }
$$

WH (1) \#4
CH (4) \#6
HT (2) \#3
WL (5) \#8
FH (3) \#2
HL (6) \#5

Table 2. The second stage of gift-giving arrangement

Problem 2. On the second day, we three young ones decided to elect courses among
Statistics, Analysis, Algebra and Topology according to the following agreements. From the following agreements, can you figure out who does not elect Topology?
\#1. Each elects exactly three courses.
\#2. Each course is elected by exactly two.
\#3. If WH elects Statistics, so does he Topology.
\#4. If HT elects Algebra, so does he Analysis.
\#5. If FH elects Algebra, so does he Analysis.
\#6. If WH elects Topology, so does he Analysis.
\#7. If FH elects Topology, so does he Analysis.
Solution
Assumption 1. WH does not elect Topology.
According to \#2, TH and FH elect Topology, abbreviated as (HT, TP) and (FH,TP) in Figure 7.

	ST	AN	AL	TP	
WH	1.1 .1		1.1	$1.1 .1(\# 3)$	<4
HT		$1.1(\# 4)$	1.1	1	<4
FH		$1(\# 7)$		1	<4
	$=2$	$=2$	$=2$	$=2$	

Figure 7. Assumption 1 of course electing

According to \#7, (FH, AN).

Assumption 1.1. (WH, AL), (HT, AL).
According to \#4, (HT, AN).

Assumption 1.1.1. (WH, ST).
According to \#3, (WH, TP), contradicting \#2, since Topology is elected by three.
Assumption 1.2. (WH, AL), (FH, AL).

	ST	AN	AL	TP
WH			1.2	
HT				1
FH		1	1.2	1

Figure 8. Assumption1.2 of course electing

According to \#2, (WH,ST), (HT,ST). Or else, FH would elect four courses, contradicting \#1. According to \#3, (WH, TP), contradicting Assumption 1.

Assumption 1.3. (HT, AL), (FH, AL).
According to \#4, (HT, AN).

	ST	AN	AL	TP
WH				
HT			1.3	1
FH		1	1.3	1

Figure 9. Assumption1.3 of course electing

Same as before, (WH, TP), contradicting Assumption 1. So instead of Figure 8 and Figure 9, let us look at Figure 10 under Assumption 2.

Assumption 2. HT does not elect Topology. According to \#2, (WH,TP), (FH,TP).
According to \#6, (WH, AN). According to \#7, (FH, AN).

	ST	AN	AL	TP
WH		$2(\# 6)$		2
HT		$2.1(\# 4)$	2.1	
FH		$2(\# 7)$		2

Figure 10. Assumption 2 of course electing

Assumption 2.1. (HT, AL).
According to \#4, (HT, AN), contradicting \#2, since Analysis is elected by three.
Assumption 2.2. (WH, AL), (FH, AL).

	ST	AN	AL	TP
WH		$2(\# 6)$	2.2	2
HT				
FH		$2(\# 7)$	2.2	2

Figure 11. Assumption 2.2 of course electing

So instead of Figure 11, let us look at Figure 12 under Assumption 3. According to \#1, HT can only elect Topology, contradicting \#2.

Assumption 3. FH does not elect Topology.
According to \#2, (WH,TP), (HT,TP). According to \#6, (WH, AN).

	ST	AN	AL	TP
WH		$3(\# 6)$	3.1	3
HT		$3.1(\# 4)$	3.1	3
FH				

Figure 12. Assumption 3 of course electing

Assumption 3.1. (WH, AL), (HT, AL). According to \#4, (HT, AN).
According to \#1, FH can only elect Statistics, contradicting \#2.
Assumption 3.2. (HT, AL), (FH, AL). According to \#4, (HT, AN).

	ST	AN	AL	TP
WH		$3(\# 6)$		3
HT		$3.2(\# 4)$	3.2	3
FH		$3.2(\# 5)$	3.2	

Figure 13. Assumption 3.2 of course electing

According to \#5, (FH, AN), contradicting \#2, since Analysis is elected by three. The false attempt shown in Figure 13 leads us to Assumption 3.3 for the last resort.

Assumption 3.3. (WH, AL), (FH, AL). According to \#7, (FH, AN).
Assumption 3.3.1. (HT, ST), (FH, ST).

	ST	AN	AL	TP
WH		$3(\# 6)$	3.3	3
HT	3.3 .1			3
FH	3.3 .1	$3.3(\# 7)$	3.3	

Figure 14. Assumption 3.3.1 of course electing

Agreements \#1 and \#2 are satisfied in Figure 14. Therefore, FH does not elect Topology.

Problem 3. Oddly enough, we all came from different places (P), later majored in Different fields (F), with advisors of different nationalities (N) and now each of us lives in different cities (C) . Based on the hints below, can you figure out who resides in San Francisco?
\#1. CH came from Danshuei.
\#2. HL lives in Hsinchu.
\#3. FH advised by American.
\#4. The individual who came from Taipei registered before that from Chiayi.
\#5. The individual who came from Taipei majored in Number Theory.
\#6. The individual who advised by Canadian lives in Taipei.
\#7. The individual who came from Tainan advised by Indian.
\#8. The individual who registered third majored in Geometry.
\#9. WH registered first.
\#10. The individual who advised by American registered either right before or right after that lives in Danshuei.
\#11. The individual who lives in Los Angeles registered either right before or right after that advised by Indian.
\#12. The individual who advised by Japanese majored in Game Theory.
\#13. HT advised by Chinese.
\#14. WH registered right before the one came from Changhua.
\#15. The individual who advised by American registered either right before or right after that majored in Geometry.

Solution. (This is, in fact, the Einstein Riddle in disguise.)
By rearranging the hints in the new order: $9,14,8,4,5,1,7$ and 11 , we can first come up with Table 3 of the first stage information.

	1	2	3	4	5
I	WH (\#9)		$\mathrm{CH}(\# 1)$		
P	$\mathrm{TN}(\# 1)$	$\mathrm{CH}(\# 14)$	$\mathrm{DS}(\# 1)$	$\mathrm{TP}(\# 4, \# 5)^{*}$	$\mathrm{CY}(\# 4)$
F			GM (\#8)	NT (\#5)	
N	IN (\#7)				
C					
LA (\#11)					

[^0]Table 3. Table of the first stage of information

According to \#15, we have the following two cases to consider.

Case 1. AM (N, 4)

	1	2	3	4	5
I	WH (\#7)		$\mathrm{CH}(\# 1)$	FH (\#3)	HL (\#2)
P	TN (\#1)	CH (\#14)	DS (\#1)	TP (\#4,\#5)	CY (\#4)
F			GM (\#8)	NT (\#5)	
N	IN (\#7)			AM (1)	
C			LA (\#11)		
(\#C (\#2)					

Table 4. Table of the second stage of information in Case 1

According to \#3, we place FH in (I, 4). According to \#2, we place HL in (I, 5), HC in (C, 5) and HT in (I, 2), contradicting \#13.

Case 2. $\mathrm{AM}(\mathrm{N}, 2)$

	1	2	3	4	5
I	WH (\#7)	FH (\#3)	CH (\#1)	HT (\#13)	
P	TN (\#1)	CH (\#14)	DS (\#1)	TP (\#4,\#5)	CY (\#4)
F			GM (\#8)	NT (\#5)	GT (\#12)
N	IN (\#7)	AM (2)		CH (\#13)	JA (\#12)
C		LA (\#11)			

Table 5. Table of the second stage of information in Case 2

According to \#3, we place FH in (I, 2). According to \#12, we place JA in (N, 5) and GT in (F, 5). According to \#13, we place CH in (N, 4) and HT in (I, 4).

We can now use the rest of the hints to complete Table 6 for the answer.

	1	2	3	4	5
I	WH	FH	CH	HT	HL
P	TN	CH	DS	TP	CY
F	ST	AN	GM	NT	GT
N	IN	AM	CN	CH	JA
C	DS	LA	TP	SF	HC

Table 6. The final table of the complete information

Therefore, HT lives in San Francisco.

Now you know the rest of the story. Not quite! Let me finish with the following episode.

Fifty four years ago,

HT: "WH, Where is your Home?"
WH: '"HT, Home is in Tainan."

Fifty four years later,

Rock watching HT
White waves splash upon shore rock slate,
One dashes another lest getting there late;
An idle by-passer simply sits still watching,
Poetic rhythms well up during long gazing.

Watching waves WH
White waves seize the rocks,
Waves went yet turning back;
If only for sentimental blocks,
Nag forever not holding back.

Wen-tao and I have been teasing each other (first by mail, then through e-mail) ever since we graduated from Tsinghua University. In conclusion, I would like to challenge Wen-tao with the following poem in hope that our exchange of teasing would continue.

I have almost left my heart in San Francisco, Come over here to talk about fifty years ago;

Along the bank of the same old Damshueiho*,
Hope for your applaud and a long loud acho.

* Damshueiho means Damshuei river.

1.3. GEOMETRY VIA TRIGONOMETRY

In high school mathematics, Geometry and Trigonometry are taught separately in that order.

Here are some the other way around examples

1.3.1 Pythagorean Theorem

$$
\begin{array}{ll}
(c+d) \cos x=a & (c+d) \cos ^{2} x=c \\
(c+d) \sin x=b & (c+d) \sin ^{2} x=d \\
\cos ^{2} x+\sin ^{2} x=1 & a^{2}+b^{2}=(c+d)^{2}
\end{array}
$$

Figure 15. Figure for P. T.

1.3.2 Tsao's Theorem I

Let ADEK be a rectangle. If $\mathrm{OB}=3 \mathrm{OA}$ and $\mathrm{OC}=4 \mathrm{OA}$, then $\mathrm{BK}=\mathrm{HG}$.

Figure $16 . \quad$ Figure for T. T. 1

Proof via the trigonometrical identity $\sin 3 x=3 \sin x-4 \sin ^{3} x$
Let $\mathrm{OA}=1$. Then $\mathrm{OB}=3$ and $\mathrm{OC}=4$. It follows that

$$
4 \sin x=C F, 4 \sin ^{2} x=F G, 4 \sin ^{3} x=H G, \sin 3 x=A D \text { and } 3 \sin x=B E .
$$

Therefore,

$$
\mathrm{HG}=4 \sin ^{3} \mathrm{x}=3 \sin \mathrm{x}-\sin 3 \mathrm{x}=\mathrm{BE}-\mathrm{AD}=\mathrm{BK} .
$$

1.3.3 Tsao's Theorem II

If BF and OE are perpendicular, then $\mathrm{BC}=\mathrm{DF}$.

Figure 17. Figure for T. T. 2

Proof via the formula $\tan (x+y)=(\tan x+\tan y) /(1-\tan x \tan y)$
Let $\mathrm{OA}=1$. Then $\tan (x+y)=B A, \tan x=C A, \tan y=D A, \tan (x+y) \tan y=E A$ and $\tan (x+y) \tan y \tan x=F A$. It follows that

$$
B C=\tan (x+y)-\tan x=\tan y+\tan (x+y) \tan y \tan x=D A+F A=D F .
$$

1.4. PROOFS WITHOUT WORDS: PYTHAGOREAN THEOREM
1.4.1 $\quad a^{2}+b^{2}=c^{2}$

Figure 18. Figure with three squares

Figure 19. Figure with three half circles
1.4.2 $a^{2}+b^{2}=2 a b+(b-a)^{2}$

Figure 20. Figure with (b-a $)^{2}$ off center
$1.4 .3 \quad 2 \mathrm{ab}+(\mathrm{b}-\mathrm{a})^{2}$

Figure 21.
Figure with (b-a) ${ }^{2}$ centered
2.4.4 $\quad c^{2}=(b-a \cos C)^{2}+a^{2} \sin ^{2} C=a^{2}+b^{2}-2 a b \cos C$

Figure 22. Figure for obtuse triangle

Figure 23.
Figure for acute triangle

1.5. GEOMETRY PLUS TRIGONOMETRY

Let ABCD be a square such that

$$
\mathrm{BE}=\mathrm{CE}
$$

and

$$
\mathrm{BF}=2 \mathrm{AF} .
$$

If FG is perpendicular to DE and DH is perpendicular to EF , then

$$
\mathrm{DG}=\mathrm{FG}
$$

and
HB // DE.

Figure 24. Figure for $\mathrm{DG}=\mathrm{FG}$ and $\mathrm{HB} / / \mathrm{DE}$

Let $\mathrm{AB}=1$. Then Pythagorean Theorem gives

$$
\begin{aligned}
& \mathrm{DE}=\sqrt{5} / 2, \\
& \mathrm{DF}=\sqrt{10} / 3, \\
& \mathrm{EF}=5 / 6
\end{aligned}
$$

and Law of Cosines gives

$$
\cos \mathrm{x}=\left(\mathrm{DE}^{2}+\mathrm{DF}^{2}-\mathrm{EF}^{2}\right) / 2(\mathrm{DE})(\mathrm{DF})=\sqrt{2} / 2
$$

where $\mathrm{x}=$ angle EDF.

It follows that $\mathrm{DG}=\sqrt{5} / 3=\mathrm{FG}$ and the rest is clear.

The following figure and table can further be obtained.

Figure 25. Figure supplemented by a convenient table

1.6. COUNTING TIDBITS

The author shall touch on miscellaneous combinatorial problems that can be pondered in a jail house.

He gave two talks of the same nature at Sonoma State University (1988) and National Taiwan Normal University (2017). Since the time span is nearly thirty years, the contents had been modified a great deal.

The following is a combined excerpt of both talks that could appeal to general audience with some math background.

1.6.1. Talk Topic: Jail House Mathematics

I was once caught speeding and put in jail overnight. At first, I was eager to get out of the jail-cell. I could not help but to stare at the grid gate.

Figure 26. Figure for the grid gate

After some inner struggle, I calmed myself down and began to wonder how many squares were there in the grid.

The answer was $\sum_{r=1}^{n} r^{2}$.

I continued to indulge in my wonderland and became a combinatorialist. I'll tell you what happened inside and out. Unlike many long-term inmates (who later became philosophers, writers or politicians), I was fortunate just being in jail one night to become a mathematician.

First, let's get back to the grid. What came to my mind was, in fact, "how many different (shortest) paths connecting A and B?" (See Figure 27)

In jail, people usually use the brute force approach. There are 1 (via 5) plus 4 (via 4) plus 10(via 3) plus 20 (via 2) plus 35 (via 1),i.e. 70 paths.

Figure 27. Figure for the grid gate with two corners marked A and B

A combinatorial approach is to pick all possible 4 horizontal (or vertical) moves out of 8 moves needed to go from A to B. There are, therefore, $\binom{8}{4}=70$ ways.

After such mind boggling, I rested myself in the restroom. Then I saw the graded window.

Figure 28. Figure for the graded window

I wondered "how many of triangles of all sizes in a subdivided triangle of n layers?" To come up with the answer in a rather academic way.

Theorem 1

Let $\mathrm{T}(\mathrm{n})$ be the number in question and $\mathrm{S}(\mathrm{n})=\sum_{r=1}^{n} r$. Then

$$
\mathrm{T}(\mathrm{n}-1)+\mathrm{T}(\mathrm{n})=2 \sum_{r=1}^{n-1} S(r)+\sum_{r=1}^{n} S(r) .
$$

Proof
As can be seen from the figure, when extending from $n-1$ layers to $n+1$ layers
$\mathrm{S}(\mathrm{n})+\mathrm{S}(\mathrm{n}+1)$ new forward triangles and $\mathrm{S}(\mathrm{n})$ new backward triangles are added. Hence

$$
T(n+1)=T(n-1)+2 S(n)+S(n+1)
$$

We shall only show the inductive step of the mathematical induction:

$$
\begin{aligned}
\mathrm{T}(\mathrm{n})+\mathrm{T}(\mathrm{n}+1) & =\mathrm{T}(\mathrm{n})+\mathrm{T}(\mathrm{n}-1)+2 \mathrm{~S}(\mathrm{n})+\mathrm{S}(\mathrm{n}+1) \\
& =2 \sum_{r=1}^{n-1} S(r)+\sum_{r=1}^{n} S(r)+2 \mathrm{~S}(\mathrm{n})+\mathrm{S}(\mathrm{n}+1) \\
& =2 \sum_{r=1}^{n} S(r)+\sum_{r=1}^{n+1} S(r) .
\end{aligned}
$$

Theorem 2

$$
\mathrm{S}^{(2)}(\mathrm{n})=\sum_{r=1}^{n} r^{2}=\mathrm{C}(\mathrm{n}+1,3)+\mathrm{C}(\mathrm{n}+2,3) .
$$

Proof

Since $\mathrm{S}(\mathrm{r}-1)+\mathrm{S}(\mathrm{r})=\mathrm{r}^{2}$ and since $\sum_{r=2}^{n} C(r, 2)=\mathrm{C}(\mathrm{n}+1,3)$, we have

$$
\mathrm{S}^{(2)}(\mathrm{n})=\sum_{r=1}^{n-1} S(r)+\sum_{r=1}^{n} S(r)=\sum_{r=1}^{n-1} C(r+1,2)+\sum_{r=1}^{n} C(r+1,2)=\mathrm{C}(\mathrm{n}+1,3)+\mathrm{C}(\mathrm{n}+2,3) .
$$

Corollary

$$
\mathrm{T}(\mathrm{n})=\mathrm{C}(\mathrm{n}+1,3)+\mathrm{S}^{(2)}(\mathrm{n})-\mathrm{T}(\mathrm{n}-1)
$$

We can use Theorem 2 and Corollary to come up with $S^{(2)}(n)$ and $T(n)$ recursively.

n	$\mathrm{C}(\mathrm{n}+1,3)$	$\mathrm{C}(\mathrm{n}+2,3)$	$\mathrm{S}^{(2)}(\mathrm{n})$	$\mathrm{T}(\mathrm{n}-1)$	$\mathrm{T}(\mathrm{n})$
1	0	1	1	0	
2	1	4	5	1	1
3	4	10	14	5	5
4	10	20	30	13	13
5	20	35	55	27	27
6	35	56	91	48	78
7	56	84	140	78	118
8	84	120	204	118	170
9	120	165	285	170	235
10	165	220	385	235	315

Table 7. Table for recursive calculations of $S^{(2)}(n)$ and $T(n)$

Theorem 3

$$
\mathrm{T}(\mathrm{n})=[\mathrm{n}(\mathrm{n}+2)(2 \mathrm{n}+1) / 8],
$$

where [x] is the integral part of x .

Proof

Due to Theorem 1, we can write

$$
\begin{aligned}
\mathrm{T}(\mathrm{n})+\mathrm{T}(\mathrm{n}-1) & =2 \mathrm{C}(\mathrm{n}+1,3)+\mathrm{C}(\mathrm{n}+2,3)=(\mathrm{n}+1) \mathrm{n}(\mathrm{n}-1) / 3+(\mathrm{n}+2)(\mathrm{n}+1) \mathrm{n} / 6=\mathrm{n}^{3} / 2+\mathrm{n}^{2} / 2 \\
& =\left(2 \mathrm{n}^{3}+5 \mathrm{n}^{2}+2 \mathrm{n}\right) / 8+\left[\left(2(\mathrm{n}-1)^{3}+5(\mathrm{n}-1)^{2}+2(\mathrm{n}-1)\right] / 8-1 / 8\right.
\end{aligned}
$$

from which we see that

$$
\mathrm{T}(\mathrm{n})=\left(2 \mathrm{n}^{3}+5 \mathrm{n}^{2}+2 \mathrm{n}\right) / 8+\left[-1+(-1)^{\mathrm{n}}\right] / 16=[\mathrm{n}(\mathrm{n}+2)(2 \mathrm{n}+1) / 8] .
$$

When leaving the jail, I left behind the following graffiti on the wall.

1) $\sum_{r=1}^{n} r=C(n+1,2)$

O	O	O	O	O	O
X	O	O	O	O	O
X	X	O	O	O	O
X	X	X	O	O	O
X	X	X	X	O	O
X	X	X	X	X	O
X	X	X	X	X	X

Figure 29. Figure for graffiti picture 1
2) $\sum_{r=1}^{n} r^{2}=C(n+2,3)+C(n+1,3)$
$1+(1+2)+(1+2+3)+. \quad . \quad+(1+2+3+\ldots+\mathrm{n})=C(n+2,3)$
$\begin{array}{ccccccccccccccc}\mathrm{O} & \mathrm{O} \\ & \mathrm{X} & \mathrm{O} & \mathrm{X} & \mathrm{O} & \mathrm{O} & \mathrm{X} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{X} & \mathrm{O} & \mathrm{O} & \mathrm{O} & \mathrm{O} \\ & & & \mathrm{X} & \mathrm{X} & \mathrm{O} & \mathrm{X} & \mathrm{X} & \mathrm{O} & \mathrm{O} & \mathrm{X} & \mathrm{X} & \mathrm{O} & \mathrm{O} & \mathrm{O} \\ & & & & & & \mathrm{X} & \mathrm{X} & \mathrm{X} & \mathrm{O} & \mathrm{X} & \mathrm{X} & \mathrm{X} & \mathrm{O} & \mathrm{O} \\ & & & & & & & & & & \mathrm{X} & \mathrm{X} & \mathrm{X} & \mathrm{X} & \mathrm{O} \\ & 1 & + & (1+2) & + & . & & & . & + & {[1+2+} & \ldots & +(n-1)]=C(n+1,3)\end{array}$
Figure 30. Figure for graffiti picture 2
3) $\sum_{r=1}^{n} r^{3}=[C(n+1,2)]^{2}$

Figure 31. Figure for graffiti picture 3

The moment that I got out, I was able to see a better picture below and wrote a couple of articles (19) and (18) about $\sum_{r=1}^{n} r^{k}$.

Figure 32. Figure for the jail house

1.7. GLOBAL APPROACH TO PROBABILITY PROBLEMS

For the instructional purpose, both global and local approaches are equally important to solve probability problems. There are excellent demonstrations of the latter in (13), from which the author shall select four problems, namely twin knights, the ballot box, ties in matching pennies and the theater row for the global approach. The author shall also provide the combinatorial realization of the probability for "Squares among rectangles" and the graphical visualization of the odds for "Same birthday among classmates".

1.7.1. Talk Topic: Probability Problems and Concepts Made Simple

Let us start with the following four problems selected from (13).

1) Twin knight

Suppose King Arthur holds a jousting tournament where the jousts are in pairs as in a tennis tournament. The 8 knights in the tournament are evenly matched, and they include the twin knights Balin and Balan. What is the chance that the twins meet in a match during the tournament?

If the knights were not evenly matched, the calculations of each probability for all possible locations that the twins meet as in the book would have been necessary. In our case, all we need is to divide the total number of matches by the total number of pairs. Therefore, in the case of 2^{n} knights, the answer is

$$
\frac{2^{n}-1}{\binom{2^{n}}{2}}=\frac{1}{2^{n-1}}
$$

which was proved by induction in (13).
2) The ballot box

In an election, two candidates, Albert and Benjamin, have in a ballot box a and b votes respectively, $a>b$. If ballots are randomly drawn and tallied, what is the chance that at least once after the first tally the candidates have the same number of tallies?

If we approach this problem by considering the last tie in the tallying, then the detail discussions of the first tie as in (13) can be avoided. Out of $a+b$ positions in a tallying sequence, the last tie can occur with A or B being tallied at each of the $2 b$ even positions so that the answer is $\frac{2 b}{a+b}$.
3) Ties in matching pennies

Players A and B match pennies N times. They keep a tally of their gains and losses. After the first toss, what is the chance that at no time during the game will they be even?

The solution in (13) made use of its previous problem and $\binom{2 n}{n}=\sum_{k=0}^{n}\binom{n}{k}\binom{n}{n-k}$.
In fact, when $N=2 n$ or $N=2 n+1$, the answer is $\frac{\binom{2 n}{n}}{2^{2 n}}$.
(To achieve no tie, the first n tallies out of the first $2 n$ need to be of the same kind.)

Combinatorial solution

To achieve no tie, the first n tallies but not the second n tallies out of the first 2 n tallies need to be of the same kind. For the case of $n=2$, no tie tallies:
$\mathrm{N}=4$:
$A A A A, A A A B, A A B B, B B A B, B B B A, B B B B$.
$\mathrm{N}=5$:
AAAAA, AAAAB, AAABA, AABBA, AAABB, AABAB, BBABA, BBBAA, BBABB, BBBAB, BBBBA, BBBBB
4) The theater row

With b elements of one kind and m of another, randomly arranged in a line, what is the expected number of unlike adjacent elements?

Instead of being caught up with "unlike adjacent elements", we shall consider the matching of unlike pair. A match will produce two adjacent cases. Since each of the first kind has the chance of $\frac{1}{b}$ to match with the second kind and each of the second kind has the chance of $\frac{1}{m}$ to match with the first kind, the answer is $\frac{2}{\frac{1}{b}+\frac{1}{m}}=\frac{2 m b}{m+b}$.
5) Squares among rectangles

What is the chance $P(n)$ that a randomly selected rectangle from a gridded square of size n is a square? (See Figure 33 for $n=4$)

Figure 33. Figure for the gridded square

We can certainly use the local approach to find that

$$
\begin{aligned}
& P(1)=1 \\
& P(2)=\frac{5}{9}, \\
& P(3)=\frac{7}{18}, \\
& P(4)=\frac{3}{10}
\end{aligned}
$$

and

$$
P(5)=\frac{11}{45} .
$$

Globally, we need to realize that a pair of identical lengths and a pair of identical widths determine a unique rectangle so that the total number of rectangles is

$$
\binom{n+1}{2}^{2} .
$$

On the other hand, the total number of squares is $\sum_{i=1}^{n} i^{2}$. Therefore, we have

$$
P(n)=\frac{\frac{n^{2}(n+1)^{2}}{4}}{\frac{n(n+1)(2 n+1)}{6}}=\frac{1}{n}+\frac{n-1}{3 n(n+1)} .
$$

Two observations are in order.

First, $P(n) \approx \frac{1}{n}$. Second, $P(n)=\frac{\sum_{i=1}^{n} i^{2}}{\sum_{i=1}^{n} i^{3}}$.
6) Same birthday among classmates

What is the probability that two students in a classroom have the same birthday?

During my teaching at San Francisco State University, I did the experiment for each of my classes. This is how the experiment went. Each student was asked to submit his/her birthday written in a piece of paper. Then I collected them according to the birth month, from January to December. I still remember vividly the very experiment the match of birthdays late until December papers were collected. Then came a loud laughter, when two Korean twin students walked all the way from the last row to submit their papers.

Let us first consider the following figure, in which 25 points are uniformly spread over the uniform sample space of 441 points as in Figure 34.

Figure 34. Figure for the uniform sample space of 441 points

This is equivalent of saying that if there were 441 days in a year, then the maximum number of people to have different 'birthdays' spread out uniformly would be 25 so that among 25 people the probability of at least two having the same 'birthday' would be

$$
1-441 \mathrm{P}_{25} / 441^{25}=0.5
$$

Similarly, Figure 35 shows that if there were 368 days in a year, then among 23 people the probably of at least two having the same 'birthday' would be

$$
1-368 \mathrm{P}_{23} / 368^{23}=0.5
$$

Figure 35. Figure for the uniform sample space of 368 points

Since there are actually 365 days in a year, it follows that among 23 people the probability of at least two having the same birthday is slightly exceeding 50%.

1.8. MUTUAL INDEPENDANCY VERSUS MUTAL EXCLUSIVENESS

It was pointed out in (12) that the concepts of mutual exclusivity and probabilistic independency are difficult for students to grasp. However, the concept of the former is self-explanatory. Two events that are likely to occur are said to be mutually exclusive if the occurrence of one prevents the other from occurring. This concept does not involve the probability.

So the problem comes from the definition of the latter: two events are said to be independent if the occurrence of one does not affect the probability of the other to occur. Since this concept involves the probability, there shouldn't be any confusion with the previous concept. Rather, the difficulty lies on the judgment of the "affection".

One way of solving this problem is to introduce a measure of evaluating the degree of dependency.

Let A and B be events. The conditional probability $P(B \mid A)$ of B given A is the probability of B given that A has already occurred.

Thus two events A and B are independent if and only if $P(B \mid A)=P(B)$ and/or $P(A \mid B)=P(A)$.

Since $P(B \mid A)=\frac{P(B \cap A)}{P(A)}$, we can also say that A and B are independent if and only if

$$
P(B \cap A)=P(B) P(A) . \quad \text { Eq. } 1
$$

To help judging of the "affection", we define the discrepancy of independency $D I(B \mid A)$ in the probability of B given A to be the percentage change in the probability of B affected by the occurrence of A, namely

$$
\begin{equation*}
D I(B \mid A)=\frac{P(B \mid A)-P(B)}{P(B)}=\frac{P(B \cap A)}{P(B) P(A)}-1 \tag{Eq. 2}
\end{equation*}
$$

which is 0 if A and B are independent due to Eq. 1 .

In an experiment of picking 6 distinct months randomly from the calendar year, construct 2 events that are mutually exclusive.

Apparently, the event A of picking the odd months and the event B of picking the even months are mutually exclusive. Are they independent? Certainly not, since the occurrence of A does affect the probability of B to occur.

To be more specific,

$$
\begin{aligned}
& P(B \mid A)=\frac{P(B \cap A)}{P(A)}=0, \\
& P(B)=\frac{1}{2}, \\
& D I(B \mid A)=\frac{P(B \mid A)-P(B)}{P(B)}=\frac{0-\frac{1}{2}}{\frac{1}{2}}=-1 .
\end{aligned}
$$

For convenience, let the sample space be $S=\{1,2,3,4,5,6,7,8,9,10,11,12\}$.

By setting $E_{i}=\{i, i+1, i+2, i+3, i+4, i+5\}$, we can use Eq. 74 to find

$$
\begin{aligned}
& D I\left(E_{1} \mid E_{1}\right)=1, \\
& D I\left(E_{1} \mid E_{2}\right)=\frac{2}{3}, \\
& D I\left(E_{1} \mid E_{3}\right)=\frac{1}{3}, \\
& D I\left(E_{1} \mid E_{4}\right)=0, \\
& D I\left(E_{1} \mid E_{5}\right)=-\frac{1}{3}, \\
& D I\left(E_{1} \mid E_{6}\right)=-\frac{2}{3}, \\
& D I\left(E_{1} \mid E_{7}\right)=-1 .
\end{aligned}
$$

We see from the above E_{1} is 100% dependent to itself, E_{1} and E_{7} are mutually exclusive (-100% dependent to each other), whereas E_{1} and E_{4} are independent (0%).

The following graphical views might further help readers to envision the matter.
Case 1. A and B are mutually exclusive.

Figure 36. Figure for the mutually exclusive case

In this case, $D I(B \mid A)=\frac{P(B \cap A)}{P(B) P(A)}-1=\frac{0}{0.2 \times 0.3}-1=-1$

Case 2. A and B are independent.

Figure 37.
Figure for the independent case
In this case, $D I(B \mid A)=\frac{P(B \cap A)}{P(B) P(A)}-1=\frac{0.2}{0.5 X 0.4}-1=0$
Case 3. A and B are nearly independent.

Figure 38. Figure for the nearly independent case
In this case, $D I(B \mid A)=\frac{P(B \cap A)}{P(B) P(A)}-1=\frac{0.7}{0.8 X 0.8}-1=0.09375$

1.9. THE SOLID GROUND IN A BIG PICTURE OF LIFE INSURANCE

The main theme of this speech is to demonstrate how not to be lost in a big picture by way of diligently laying down a solid foundation, especially for actuaries. I am very pleased to have this opportunity to inform you about two explosive well-kept secrets.

The life actuarial theory had been well developed to a near perfection throughout the twentieth century. The whole hundred years of development is like the entire life span of an ideal individual in the insurance industry. For a human life, the mid-age is the juncture of two distinguishing stages: growing and maturing. Therefore, it is not coincidental that the formation of the SOA organization in U. S. A. and the construction of the CSO life table in 1958 came about all in the mid-century. By constructing two cubic models for 1958 CSO male life table, I discovered the first secret: the live curve is symmetrical with respect to the mid-age!

Analogous to the apparent deterioration at the very end of a human life, near the turning point of the last century the life contingency theory suffered a severe setback and in despair bizarrely resorted to some fuzzy model for savage!

Through the tireless effort of unifying the insurance and annuity functions from both deterministic and stochastic points of view, I discovered the second secret: the dynamic model could very well be an important tool to cope with the drastic change of the financial environment in this new century!

You might have been confused by these two secrets, especially the first one. What is exactly the mid-age? If it means 50 , then what I just told you shouldn't be true at all.

In my studies, the mid-age is actually 65 , the age of retirement!

As I have shown in (20), my models fit well with 1958 CSO male life table up to age 75. This is good enough for practical use, isn't it?

My first secret would have been true, if the terminal age of a human life were 130. Who knows? Some day we might reach that goal. Although actuaries should not develop theories without looking at the reality, they won't prosper without relying on theories either. Most theories are based on two important factors: mortality rate and interest rate. Life actuaries in the last century collectively built up a gigantic mansion by laying down a solid foundation.

After giving you my perspectives ranging from mortality models construction to unification of life contingencies in an orderly manner, I'll then elaborate on my second secret. In there, I'll point out that the mansion we have built is now precarious, not because of the mortality pillar, rather of the interest pillar. In the big picture, there is an urgent need for a revolutionary change in the concept of interest rate. Otherwise, we would run into the same unrealistic dilemma as I mentioned in the first secret.

The key word in the actuarial profession is fairness. In the past experience, actuaries have not been able to predict correctly about the interest rate. For that matter, nobody could have.

Therefore, the dynamic approach using discounting functions of interest and mortality retrospectively should be the way to go in this new century.

1.10. SUDOKU PREVIEW

The following is an excerpt of the introduction in (17).

Maze with clues has been built in every foreseeable place,
All barriers could be removed without any frustrating face
;
In idle time please come to visit the three treasures palace,
Relax your mood and nerves and indulge in Sudoku space.

The inventor of Sudoku games was Tetsuya Nishio, who first came across a game named Number Place in Dell Magazine in early 1980's while visiting U.S. and then developed it into a more complicated puzzle to be played in Japan. Its name was immediately changed to Sudoku by Nikoli Magazine in Japan and prevailed there for a while. Now, people all over the world are indulging in this game thanks to Wayne Gould, a retired Hong Kong judge from New Zealand. Not until 1997 while touring Tokyo, he encountered this gadget. After six years of study, he came up with the computer software named Pappocom which enabled him to massively produce fiendish Sudoku puzzles. In 2004, this wonderful workmanship game frantically hit the entire England and subsequently the whole Europe. Soon after that, it returned to U.S. and Japan, further extended to Taiwan in 2005. Surging from the outset of this century, "Sudoku" is indeed self-entertaining, time-killing, loneliness-removing, solitude-exempting and senile-preventing.

The purpose of the Sudoku game is using logical inference, starting from the puzzle form of Figure 39, to uncover those un-starred numbers in Figure 40 step by step according to the order of subscripts. The rule of Sudoku game is to require each row, each column and each box to have each of all numbers ranging from 1 through 9 .

	5^{*}	7^{*}	1^{*}		9^{*}	4^{*}	3^{*}	2^{*}
9^{*}	1^{*}	3^{*}	4^{*}	5^{*}	2^{*}	7^{*}	6^{*}	8^{*}
4^{*}		2^{*}	3^{*}		7^{*}	9^{*}	5^{*}	1^{*}
		9^{*}	2^{*}		4^{*}	5^{*}		7^{*}
		1^{*}			5^{*}	6^{*}		4^{*}
5^{*}		4^{*}	6^{*}		8^{*}	3^{*}	1^{*}	9^{*}
2^{*}	4^{*}	6^{*}	5^{*}		1^{*}	8^{*}		3^{*}
1^{*}	3^{*}	8^{*}		4^{*}	6^{*}	2^{*}		5^{*}
7^{*}	9^{*}	5^{*}	8^{*}	2^{*}	3^{*}	1^{*}	4^{*}	6^{*}

Figure 39. The first figure of Sudoku preview

6_{14}	5^{*}	7^{*}	1^{*}	8_{18}	9^{*}	4^{*}	3^{*}	2^{*}
9^{*}	1^{*}	3^{*}	4^{*}	5^{*}	2^{*}	7^{*}	6^{*}	8^{*}
4^{*}	8_{15}	2^{*}	3^{*}	6_{19}	7^{*}	9^{*}	5^{*}	1^{*}
3_{12}	6_{13}	9^{*}	2^{*}	1_{1}	4^{*}	5^{*}	8_{3}	7^{*}
8_{16}	7_{17}	1^{*}	9_{7}	3_{6}	5^{*}	6^{*}	2_{2}	4^{*}
5^{*}	2_{4}	4^{*}	6^{*}	7_{5}	8^{*}	3^{*}	1^{*}	9^{*}
2^{*}	4^{*}	6^{*}	5^{*}	9_{9}	1^{*}	8^{*}	7_{10}	3^{*}
1^{*}	3^{*}	8^{*}	7_{8}	4^{*}	6^{*}	2^{*}	9_{11}	5^{*}
7^{*}	9^{*}	5^{*}	8^{*}	2^{*}	3^{*}	1^{*}	4^{*}	6^{*}

Figure 40 The second figure of Sudoku preview

Freshly retired from the teaching post of San Francisco State Business School, I started to play this game sporadically. No sooner than 2005, the returning year of my son Michael from medical training, I began to indulge myself in this fascinating game, thanks to his thoughtful choices of all sorts of challenging Sudoku books as birthday, father day and Chistmas presents for the subsequent three years.

Those books include 1001 SUDOKU (Thunder's Mouth Press, copy right to Nicoli) and SUDOKU GENIUS (Tom Scheldon, 144 of the Most Friendish Puzzles Ever Devised) of 2005; Su Doku (Wayne Gould, Challenging Sudoku 4), HIGHER SUDOKU (Tetsuya Nishio, New Variations from Japan) and Sudoku Puzzles (Aline Ribeiro de Almeida,TOP 100 HARDEST) of 2006; Extreme Sudoku (Dell, Sudoku puzzles with an X factor!) of 2007.

Therefore, I literally ate and drank Sudoku during the entire period of those three years. However, unlike most speed-oriented players, I took my time to enjoy the logical reasoning provided by each puzzle and kept the detailed record of the whole solving process. The joy of life is to share. With this belief, I had prepared a draft of my book "Completely Cracking Sudoku" way back in 2007 blending the most inspiring ideas of puzzle structures enlightened by the afore-mentioned books in order to introduce the unique step by step method. The key is to take and record each step in accordance with a logical reasoning instead of hasty trials and errors, so that everyone can enjoy and refresh one's memorable moments.

That draft was then sent to my youngest brother Yung-Shyeng who never played a single game of Sudoku. He made lots of valuable suggestions from a beginner's point of view. He also added a finishing touch, liking of the secrete codes in kung-fu practice, on this originally scrupulous and methodical manuscript of knowhow. This has revived the spirit of my book as if bringing the painted dragon to life by putting in the pupils of its eyes. Soon after that, I was sidetracked by my breakthrough in the classic number theory.

Coincidentally, the afore-mentioned Euler was a famous classic number theorist, who along with Gauss, Bernoulli and Stirling had almost simultaneously discovered various formulas for expressing the sum of powers of the natural sequence. Imaging that, had he had spare time to spend on Latin squares, Sudoku games could have come about some three hundred years ago! As to my breakthrough, I generalized most of those formulas from the natural sequence to arithmetically progressive sequences and obtained their polynomial expressions.

Just around the conclusion of my breakthrough, I was informed by Mr. Ray Leo in early July of 2012 that the hardest Sudoku was newly posted online. After being able to crack down this hardest Sudoku in a couple of days using my Sudoku-solving techniques, I have revived the desire of publishing my book. During this five years of "idling period", I have actually perfected the method of explaining how puzzles can be solved step by step using various techniques with the aid of shorthand annotations to be introduced in my book. In fact, most of so called challenging puzzles turned out to be so so under the scrutiny of my examination. Nevertheless, they more or less reflected those authors' special view points and therefore should not be categorically denied.

Interestingly, in 2008 I picked up and studied "Cracking Sudoku" (in Chinese, by Wang Tung Chiao) while strolling the "Bookstore Street" in Taipei. The following year, I have pointed out an erroneous puzzle of (16) and received three of his new books in return. So it is fair to say that I have not given up on Sudoku completely. Thus in the final section of this article, we shall let readers take part in solving the hardest Sudoku to manifest what they are about to learn is by no means a "flowery boxing".

Furthermore, we might as well let veterans peek at a few puzzles from the above two books now so that they can foresee what would unfold in the later sections, for fear that they might give up on this article due to the unchallenging nature of the first few sections.

Although most puzzles we shall encounter were labeled as rank 5, they could be solved rather easily with patience and perseverance; even the beginners could follow the step by step guidance and enjoy the wonderful feeling.

Otherwise, they can skip this foreplay and come back to visit these puzzles after learning the basic skills. To begin with, let us try the most challenging puzzle claimed by Wang Tung Chiao in Cracking Sudoku.

First star all given numbers in Figure 41 and then start with the smallest number ready to be filled, according to the prescribed order of up-down and left-right.

After failing with 1, 2 and 3 for all boxes, you could try 4 in box 1 . The junction of row 1 \& column 2,Grid (12), is the only place for 4 , abbreviated as 4(12). So the first step is 4 (12).

1^{*}				9^{*}				3^{*}
	7^{*}			5^{*}			6^{*}	
		2^{*}	8^{*}		1^{*}	4^{*}		
4^{*}								5^{*}
		6^{*}				7^{*}		
9^{*}								8^{*}
		4^{*}	5^{*}		9^{*}	2^{*}		
	3^{*}			6^{*}			5^{*}	
2^{*}				4^{*}				6^{*}

Figure 41.

The third figure of Sudoku preview

The second step is to enter 4 into the grid of row 8 and column 9 in box 9 , abbreviated as $4_{2}(89)$ and the third step is to enter 5 into the grid of row 1 and column 7 in box 7 , abbreviated as $5_{3}(17)$.

1^{*}	4_{1}	8_{4}		9^{*}		5_{3}	2_{7}	3^{*}
	7^{*}	9_{9}		5^{*}		8_{5}	6^{*}	1_{6}
		2^{*}	8^{*}		$1 *$	4^{*}	7_{14}	9_{13}
4^{*}								5^{*}
		6^{*}				$7 *$		2_{8}
9^{*}								8^{*}
		4^{*}	5^{*}		9^{*}	2^{*}		7_{15}
	3^{*}			6^{*}		9_{12}	5^{*}	4_{2}
2^{*}	9_{10}	5_{11}		4^{*}				6^{*}

Figure 42.

The fourth figure of Sudoku preview

Now the first obstacle is encountered. With patience and perseverance, readers might find the grid in row 1 and column 3, but what number to fill in? Please scan in Figure 42 from left to right, row 1 has $1,4,9,5,3$ and column 3 has $2,6,4$, hence only 7 and 8 are left to be filled. But, wait! 7 can not be filled here either, due to the fact that box 1 where the grid in question is situated has 7 . Hence for the fourth step, we can take $84(13)$ as shown in Figure 42. This is called a grid move (g), abbreviated as $84(13) \mathrm{g}$, since this move is determined by the surroundings (row, column \& box) intersecting with this grid. After $8_{5}(27)$ and $1_{6}(29)$, you can look at box 7 . The 2 can only be entered into (18), abbreviated as $27(18) b 7$. This is called a box move (b), since this move is determined by the surroundings (all rows \& columns) intersecting with this box. After 28 (59), you can look at row 2 . The 9 can only be entered into (23), abbreviated as $99(23) r 2$. This is called a row move (r), since this move is determined by the surroundings (all columns \& boxes) intersecting with this row.

After $9_{10}(92), 5_{11}(93)$ and $9_{12}(87)$, you can look at column 9 . The 9 can only be entered into (39), abbreviated as $9_{13}(39) \mathrm{c} 9$. This is called a column move (c), since this move is determined by the surroundings (all rows \& boxes) intersecting with this column. After $7_{14}(38)$ and $7_{15}(79)$, once again a stalemate, is encountered. By scanning three unfilled grids in box 1 , readers can easily know to fill 3 into (21), abbreviated as $3_{16}(21) \mathrm{g}$ as shown in figure 43.

Readers can then move rather smoothly by taking $3_{17}(35), 3_{18}(78) r 7,8_{19}(98), 1_{20}(97)$ and $7_{21}(81) \mathrm{c} 1$ as shown. The rest is easy with the following annotations.

$$
\begin{aligned}
& 1_{22}(83) \mathrm{g} \\
& 8_{24}(55) \mathrm{g} \\
& 2_{32}(62) \mathrm{c} 2 \\
& 2_{34}(45) \mathrm{c} 5 \\
& 6_{38}(67) \mathrm{g} \\
& 6_{40}(46) \mathrm{g} \\
& 9_{46}(58) \mathrm{r} 5
\end{aligned}
$$

1^{*}	4_{1}	8_{4}	6_{41}	9^{*}	7_{42}	5_{3}	2_{7}	3^{*}
3_{16}	7^{*}	9_{9}	4_{48}	5^{*}	2_{49}	8_{5}	6^{*}	1_{6}
6_{28}	5_{29}	2^{*}	8^{*}	3_{17}	1^{*}	4^{*}	7_{14}	9_{13}
4^{*}	8_{25}	7_{36}	9_{54}	2_{34}	6_{40}	3_{39}	1_{55}	5^{*}
5_{30}	1_{33}	6^{*}	3_{45}	8_{24}	4_{47}	7^{*}	9_{46}	2_{8}
9^{*}	2_{32}	3_{37}	1_{53}	7_{35}	5_{31}	6_{38}	4_{52}	8^{*}
8_{26}	6_{27}	4^{*}	5^{*}	1_{23}	9^{*}	2^{*}	3_{18}	7_{15}
7_{21}	3^{*}	1_{22}	2_{51}	6^{*}	8_{50}	9_{12}	5^{*}	4_{2}
2^{*}	9_{10}	5_{11}	7_{43}	4^{*}	3_{44}	1_{20}	8_{19}	6^{*}

Figure 43.
The fifth figure of Sudoku preview

1.11. TEACHING EFFICIENCY

In Chapter 5, among other things, we shall use the idea of the boundary being the marginal change of a well-rounded region (a region possessing an inscribed circle) with respect to the inradius (the radius of the inscribed circle) to solve optimization problems more efficiently and categorically.

2. NUMBERS INTRICACY

2.1. INTRODUCTION

I have a unique experience of linking the following famous mathematicians together.

Pascal-Bernoulli-Stirling-Euler-Bell-Gauss

Frankly speaking, I was not familiar with their works when I first started the process of transforming product-sums to power-sums! Prior to all this, I have submitted an article to Mathematical Gazette using a simpler approach which will be presented in the end. All these endeavors had been undertaken two years after I retired from teaching at College of Business, San Francisco State University in 2002.

We first define the linear factorization of the "polynomial" in $\Theta=S$ or O :

$$
P(\Theta)=b_{k} \Theta^{(k)}+b_{k-1} \Theta^{(k-1)}+b_{k-2} \Theta^{(k-2)}+\ldots+b_{0} \Theta^{(0)}
$$

by way of factorization of ordinary polynomials.

Let $\mathrm{P}(\mathrm{n}, \mathrm{k})$ be the permutation of n elements taken k at a time. It is well-known that

$$
\mathrm{P}(\mathrm{n}, \mathrm{k})=\mathrm{n}(\mathrm{n}-1)(\mathrm{n}-2) \ldots(\mathrm{n}-\mathrm{k}+1) .
$$

We shall use $P(S+2,2)$, which is $(S+2)(S+1)$, to denote

$$
S^{(2)}+3 S^{(1)}+2 S^{(0)}
$$

and use $Q(O+1,3)$ to denote

$$
O^{(3)}-3 O^{(2)}-O^{(1)}+4 O^{(0)}
$$

where $Q(n, k)=n(n-2)(n-4) \ldots(n-2 k+2)$.

Lemma 1

$$
n^{k}=S^{(k)}-(S-1)^{k}=\sum_{j=1}^{k}(-1)^{j-1} C(k, j) S^{(k-j)}
$$

Proof.

We shall only show the inductive step of mathematical induction on n :

$$
(n+1)^{k}=(n+1)^{k}+S^{(k)}(n)-[S(n)-1]^{k}-[(n+1)-1]^{k}=S^{(k)}(n+1)-[S(n+1)-1]^{k} .
$$

Therefore, any polynomial in n can be converted into a polynomial in S. For example,

$$
n^{6}=6 S^{(5)}-15 S^{(4)}+20 S^{(3)}-15 S^{(2)}+6 S^{(1)}-S^{(0)}
$$

Lemma 2

$$
Q(O)=Q(2 S-1) \text { or } P(S)=P\left(\frac{O+1}{2}\right) .
$$

Proof.

We shall only show the inductive step of mathematical induction on n :

$$
Q(O(n+1))=Q(O(n))+Q(2 n+1)=Q(2 S(n)-1)+Q(2(n+1)-1)=Q(2 S(n+1)-1) .
$$

Therefore, any even (respectively, odd) polynomial in n can be converted into an odd (respectively, even) polynomial in O, since

$$
\begin{aligned}
& n^{2 k+1}=\frac{1}{2^{2 k}}\left[C(2 k+1,1) O^{(2 k)}+C(2 k+1,3) O^{(2 k-2)}+\ldots+C(2 k+1,2 k-1) O^{(2)}+O^{(0)}\right] \\
& n^{2 k}=\frac{1}{2^{2 k-1}}\left[C(2 k, 1) O^{(2 k-1)}+C(2 k, 3) O^{(2 k-3)}+\ldots+C(2 k, 2 k-3) O^{(3)}+C(2 k, 2 k-1) O^{(1)}\right] .
\end{aligned}
$$

For example, $n^{9}=\frac{1}{256}\left[9 O^{(8)}+84 O^{(6)}+126 O^{(4)}+36 O^{(2)}+O^{(0)}\right]$ and

$$
n^{10}=\frac{1}{512}\left[10 O^{(9)}+120 O^{(7)}+252 O^{(5)}+120 O^{(3)}+10 O^{(1)}\right]
$$

Lemma 3

$$
P(n, r)=r P(S-1, r-1)=\frac{r}{2^{r-1}} Q(O-1, r-1) .
$$

Proof.

We shall only show the inductive step of mathematical induction on n :

$$
\begin{aligned}
& P(n+1, r-1) \\
= & P(n, r)+r P(n, r-1) \\
= & r P(S(n)-1, r-1)+r P((n+1)-1, r-1) \\
= & r P(S(n+1)-1, r-1)
\end{aligned}
$$

and

$$
\begin{aligned}
& r P(S-1, r-1) \\
= & r P\left(\frac{O+1}{2}-1, r-1\right) \\
= & r P\left(\frac{O-1}{2}, r-1\right) \\
= & \frac{r}{2^{r-1}} Q(O-1, r-1) .
\end{aligned}
$$

In addition to

$$
P(n, 1)=S^{(0)}=O^{(0)}
$$

we can use Lemma 3 to derive

$$
\begin{aligned}
& P(n, 2)=2\left(S^{(1)}-S^{(0)}\right)=O^{(1)}-O^{(0)} \\
& P(n, 3)=3\left(S^{(2)}-3 S^{(1)}+2 S^{(0)}\right)=\frac{3}{4}\left(O^{(2)}-4 O^{(1)}+3 O^{(0)}\right)
\end{aligned}
$$

and in general

$$
\begin{aligned}
& \qquad P(n, r) \\
& =r\left(S^{(r-1)}-S(r-1,1) S^{(r-2)}+\ldots+(-1)^{j} S(r-1, j) S^{(r-j-1)}+\ldots+(-1)^{r-1} S(r-1, r-1) S^{(0)}\right) \\
& =\frac{r}{2^{r-1}}\left(O^{(r-1)}-O(s-1,1) O^{(r-2)}+\ldots+(-1)^{j} O(s-1, j) O^{(r-j-1)}+\ldots+(-1)^{r-1} O(s-1, r-1) O^{(0)}\right) \\
& \text { where } s=2(r-1), S(m, j) \text { and } O(m, j) \text { denote the sums of all products of } \mathrm{j} \text { elements of } \\
& \text { the sets }\{1,2,3, \ldots, m\} \text { and }\{1,3,5, \ldots, 2 m-1\} \text {, respectively. }
\end{aligned}
$$

We can use Lemma 3 to derive the summation formulas for each k. For example,

$$
\begin{aligned}
S^{(2)} & =(S-1)(S-2)+3(S-1)+1 \\
& =P(S-1,2)+3 P(S-1,1)+P(S-1,0) \\
& =\frac{P(n, 3)}{3}+3\left(\frac{P(n, 2)}{2}\right)+P(n, 1)=\frac{n^{3}}{3}+\frac{n^{2}}{2}+\frac{n}{6}
\end{aligned}
$$

and

$$
\begin{aligned}
O^{(2)} & =(O-1)(O-3)+4(O-1)+1 \\
& =Q(O-1,2)+4 Q(O-1,1)+Q(O-1,0) \\
& =\frac{2^{3-1}}{3} P(n, 3)+4\left(\frac{2^{2-1}}{2} P(n, 2)\right)+P(n, 1)=\frac{4 n^{3}}{3}-\frac{n}{3} .
\end{aligned}
$$

Soon after that, I received a notice of passing of the referee from Mathematical Gazette and the request of the new referee for some final revisions of my pending manuscript. Having already generalized my findings to power-sums of arithmetic progressions based on the above three lemmas, I submitted the new version of my article with an essentially different approach, which is quoted as follows.

We define the general permutation notation, with ${ }_{n} P_{r ; 1}={ }_{n} P_{r}$,

$$
\begin{aligned}
& { }_{n} P_{r ; d}=n(n-d)(n-2 d) \ldots[n-(r-1) d] ; \\
& { }_{S_{n}-a} P_{r ; d}=\left(S_{n}-a\right)\left(S_{n}-a-d\right) \ldots\left[S_{n}-a-(r-1) d\right]
\end{aligned}
$$

with

$$
{ }_{S_{n}-a} P_{3 ; d}=S_{n}^{(3)}-(3 a+3 d) S_{n}^{(2)}+\left(3 a^{2}+6 a d+2 d^{2}\right) S_{n}^{(1)}-\left(a^{3}+3 a^{2} d+2 a d^{2}\right) S_{n}^{(0)} .
$$

In such "polynomials", S_{n} is a linear operator over any commutative ring; in particular, if $S_{n}=S_{n}{ }^{\prime}+S_{n}$ ", then ${ }_{S_{n}-a} P_{r ; d}={ }_{S_{n}{ }^{\prime}-a} P_{r ; d}+{ }_{S_{n} "-a} P_{r ; d}$ since in three "polynomial" expansions all the coefficients of the same "power" are equal. Our method is based on the following.

Theorem 1.

$$
{ }_{d n} P_{r ; d}=r d_{S_{n}-a} P_{r-1 ; d} .
$$

Proof.

$$
{ }_{d(n+1)} P_{r ; d}={ }_{d n} P_{r ; d}+r d_{d n} P_{r-1 ; d}=r d_{S_{n}-a} P_{r-1 ; d}+r d_{(a+n d)-a} P_{r-1 ; d}=r d_{S_{n+1}-a} P_{r-1 ; d} .
$$

It then follows from ${ }_{d n} p_{r, d}=d^{r}{ }_{n} p_{r}$ that

$$
{ }_{S-a} p_{r-1 ; d}=\frac{d^{r-1}}{r}{ }_{n} p_{r} .
$$

Next we can first obtain

$$
\sum_{j=1}^{r}\binom{r}{j} n^{r-j}=\frac{1}{d^{r}} \sum_{j=1}^{r}(-1)^{j-1}\binom{r}{j}\left[a^{j}-(a-d)^{j}\right](a+n d)^{r-j}
$$

via expanding $[(a+n d)-a]^{r}$ and $[(a+n d)-(a-d)]^{r}$, then use mathematical induction on n to prove

$$
\begin{aligned}
n^{r}= & \frac{1}{d^{r}} \sum_{j=1}^{r}(-1)^{j-1}\binom{r}{j}\left[a^{j}-(a-d)^{j}\right] S^{(r-j)}: \\
& (n+1)^{r} \\
= & n^{r}+\sum_{j=1}^{r}\binom{r}{j} n^{r-j} \\
= & \frac{1}{d^{r}} \sum_{j=1}^{r}(-1)^{j-1}\binom{r}{j}\left[a^{j}-(a-d)^{j}\right] \sum_{i=1}^{n}[a+(i-1) d]^{r-j} \\
& +\frac{1}{d^{r}} \sum_{j=1}^{r}(-1)^{j-1}\left(\begin{array}{l}
r \\
j \\
j
\end{array}\right)\left[a^{j}-(a-d)^{j}\right](a+n d)^{r-j} \\
= & \frac{1}{d^{r}} \sum_{j=1}^{r}(-1)^{j-1}\left(\begin{array}{l}
r \\
j \\
j
\end{array}\right)\left[a^{j}-(a-d)^{j}\right]_{i=1}^{n+1}[a+(i-1) d]^{r-j},
\end{aligned}
$$

with $\binom{r}{i}$ and $C(r, j)$ being interchangeable. Since ${ }_{d n} P_{r ; d}=d^{r}{ }_{n} P_{r}$, it follows from Theorem 1 that

$$
{ }_{S_{n}-a} P_{r-1 ; d}=\frac{d^{r-1}}{r}{ }_{n} P_{r},
$$

which can be used to derive the polynomial expression in n for $S_{n}^{(k)}$ as follows.

$$
\begin{aligned}
& S_{n}^{(1)}=\left(S_{n}-a\right)+a S_{n}^{(0)}={ }_{S_{n}-a} P_{1 ; d}+a_{S_{n}-a} P_{0 ; d}=\frac{d_{n} P_{2}}{2}+a_{n} P_{1}=\frac{d}{2} n^{2}+\left(a-\frac{d}{2}\right) n ; \\
& S_{n}^{(2)}=\left(S_{n}-a\right)\left(S_{n}-a-d\right)+(2 a+d)\left(S_{n}-a\right)+a^{2} S_{n}^{(0)} \\
& ={ }_{S_{n}-a} P_{2 ; d}+(2 a+d)_{S_{n}-a} P_{1 ; d}+a^{2}{ }_{S_{n}-a} P_{0 ; d}=\frac{d^{2}{ }_{n} P_{3}}{3}+\frac{(2 a+d) d_{n} P_{2}}{2}+a_{n}^{2} P_{1} \\
& =\frac{d^{2}}{3} n^{3}+d\left(a-\frac{d}{2}\right) n^{2}+\left(a^{2}-a d+\frac{d^{2}}{6}\right) n ;
\end{aligned}
$$

$$
\begin{aligned}
S_{n}^{(3)}= & \left(S_{n}-a\right)\left(S_{n}-a-d\right)\left(S_{n}-a-2 d\right)+(3 a+3 d)\left(S_{n}-a\right)\left(S_{n}-a-d\right) \\
& +\left(3 a^{2}+3 a d+d^{2}\right)\left(S_{n}-a\right)+a^{3} S_{n}^{(0)} \\
= & S_{S_{n}-a} P_{3 ; d}+(3 a+3 d)_{S_{n}-a} P_{2 ; d}+\left(3 a^{2}+3 a d+d^{2}\right)_{S_{n}-a} P_{1 ; d}+a_{S_{n}-a}^{3} P_{0 ; d} \\
= & \frac{d^{3}{ }_{n} P_{4}}{4}+\frac{(3 a+3 d) d^{2}{ }_{n} P_{3}}{3}+\frac{\left(3 a^{2}+3 a d+d^{2}\right) d_{n} P_{2}}{2}+a_{n}^{3} P_{1} \\
= & \frac{d^{3}}{4} n^{4}+d^{2}\left(a-\frac{d}{2}\right) n^{3}+\frac{3 d}{2}\left(a^{2}-a d+\frac{d^{2}}{6}\right) n^{2}+a(a-d)\left(a-\frac{d}{2}\right) n .
\end{aligned}
$$

During the new pending period, I received a letter from the referee to recommend reading (1). Accordingly, I incorporated the integration method into my new article (18) evolved from the following.

Lemma 4.

Let $S^{(k)}(n)=a_{k+1} n^{k+1}+a_{k} n^{k}+a_{k-1} n^{k-1}+\ldots+a_{2} n^{2}+a_{1} n$. Then

$$
S^{(k+1)}(n)=(k+1)\left\lfloor\int S^{(k)}(n) d n+c n\right\rfloor
$$

Eq. 3
where

$$
c=\frac{1}{k+1}-\left(\frac{1}{k+2} a_{k+1}+\frac{1}{k+1} a_{k}+\frac{1}{k} a_{k-1}+\ldots+\frac{1}{3} a_{2}+\frac{1}{2} a_{1}\right) .
$$

Proof.
We shall only show the inductive step of mathematical induction on n :

$$
\begin{aligned}
S^{(k+1)}(n+1) & =S^{(k+1)}(n)+(n+1)^{k+1} \\
& =(k+1)\left\lfloor\int S^{(k)}(n) d n+c n\right\rfloor+(k+1)\left[\int(n+1)^{k} d(n+1)+c\right\rfloor \\
& =(k+1)\left\lfloor\int S^{(k)}(n+1) d(n+1)+c(n+1)\right\rfloor .
\end{aligned}
$$

By using Lemma 4, we can successively obtain

$$
\begin{aligned}
& S^{(0)}(n)=n ; \\
& S^{(1)}(n)=\frac{1}{2} n^{2}+\frac{1}{2} n ; \\
& S^{(2)}(n)=\frac{1}{3} n^{3}+\frac{1}{2} n^{2}+\frac{1}{6} n ; \\
& S^{(3)}(n)=\frac{1}{4} n^{4}+\frac{1}{2} n^{3}+\frac{1}{4} n^{2} ; \\
& S^{(4)}(n)=\frac{1}{5} n^{5}+\frac{1}{2} n^{4}+\frac{1}{3} n^{3}-\frac{1}{30} n ; \\
& S^{(5)}(n)=\frac{1}{6} n^{6}+\frac{1}{2} n^{5}+\frac{5}{12} n^{4}-\frac{1}{12} n^{2} ; \\
& S^{(6)}(n)=\frac{1}{7} n^{7}+\frac{1}{2} n^{6}+\frac{1}{2} n^{5}-\frac{1}{6} n^{3}+\frac{1}{42} n ; \\
& S^{(7)}(n)=\frac{1}{8} n^{8}+\frac{1}{2} n^{7}+\frac{7}{12} n^{6}-\frac{7}{24} n^{4}+\frac{1}{12} n^{2} ; \\
& S^{(8)}(n)=\frac{1}{9} n^{9}+\frac{1}{2} n^{8}+\frac{2}{3} n^{7}-\frac{7}{15} n^{5}+\frac{2}{9} n^{3}-\frac{1}{30} n ; \\
& S^{(11)}(n)=\frac{1}{12} n^{12}+\frac{1}{2} n^{11}+\frac{11}{12} n^{10}-\frac{11}{8} n^{8}+\frac{11}{6} n^{6}-\frac{11}{8} n^{4}+\frac{5}{12} n^{2} ; \\
& S^{(9)}(n)=\frac{1}{10} n^{10}+\frac{1}{2} n^{9}+\frac{3}{4} n^{8}-\frac{7}{10} n^{6}+\frac{1}{2} n^{4}-\frac{3}{20} n^{2} ; \\
& S^{(10)}(n)=\frac{1}{14} n^{13}+\frac{1}{2} n^{12}+\frac{13}{12} n^{11}-\frac{143}{60} n^{10}+\frac{143}{28} n^{8}-\frac{143}{20} n^{6}+\frac{65}{12} n^{4}-\frac{591}{420} n^{2}
\end{aligned}
$$

Lemma 5.

Let $O^{(k)}(n)=b_{k+1} n^{k+1}+b_{k} n^{k}+b_{k-1} n^{k-1}+\ldots+b_{2} n^{2}+b_{1} n$. Then

$$
O^{(k+1)}(n)=(2 k+2)\left\lfloor\int O^{(k)}(n) d n+c n\right\rfloor,
$$

where

$$
c=\frac{1}{2 k+2}-\left(\frac{1}{k+2} b_{k+1}+\frac{1}{k+1} b_{k}+\frac{1}{k} b_{k-1}+\ldots+\frac{1}{3} b_{2}+\frac{1}{2} b_{1}\right) .
$$

Proof

We shall only show the inductive step of mathematical induction on n :

$$
\begin{aligned}
O^{(k+1)}(n+1) & =O^{(k+1)}(n)+(2 n+1)^{k+1} \\
& =(2 k+2)\left\lfloor\int O^{(k)}(n) d n+c n\right]+(2 k+2)\left[\int(2 n+1)^{k} d(n+1)+c\right] \\
& =(2 k+2)\left\lfloor\int O^{(k)}(n+1) d(n+1)+c(n+1)\right]
\end{aligned}
$$

The following list can be obtained by successive use of Lemma 5 .

$$
\begin{aligned}
& O^{(0)}(n)=n \\
& O^{(1)}(n)=n^{2} \\
& O^{(2)}(n)=\frac{4}{3} n^{3}-\frac{1}{3} n \\
& O^{(3)}(n)=2 n^{4}-n^{2} \\
& O^{(4)}(n)=\frac{16}{5} n^{5}-\frac{8}{3} n^{3}+\frac{7}{15} n \\
& O^{(5)}(n)=\frac{16}{3} n^{6}-\frac{20}{3} n^{4}+\frac{7}{3} n^{2}
\end{aligned}
$$

$$
\begin{aligned}
& O^{(6)}(n)=\frac{64}{7} n^{7}-\frac{16}{3} n^{5}+\frac{28}{3} n^{3}-\frac{31}{21} n ; \\
& O^{(7)}(n)=16 n^{8}-\frac{112}{3} n^{6}+\frac{98}{3} n^{4}-\frac{31}{3} n^{2} ; \\
& O^{(8)}(n)=\frac{256}{9} n^{9}-\frac{256}{3} n^{7}+\frac{1568}{15} n^{5}-\frac{496}{9} n^{3}+\frac{127}{15} n ; \\
& O^{(9)}(n)=\frac{512}{10} n^{10}-192 n^{8}+\frac{3136}{10} n^{6}-248 n^{4}+\frac{762}{10} n^{2} ; \\
& O^{(10)}(n)=\frac{1024}{11} n^{11}-\frac{1280}{3} n^{9}+896 n^{7}-992 n^{5}+508 n^{3}-\frac{2555}{33} n
\end{aligned}
$$

Furthermore, by letting $N=2 n^{2}$, we can obtain

$$
\begin{aligned}
& O^{(1)}(n)=\frac{1}{2} N, \\
& O^{(2)}(n)=\frac{n}{3}(2 N-1), \\
& O^{(3)}(n)=\frac{1}{2}\left(N^{2}-N\right), \\
& O^{(4)}(n)=\frac{n}{15}(2 N-1)(6 N-7), \\
& O^{(5)}(n)=\frac{1}{6}\left(4 N^{3}-10 N^{2}+7 N\right), \\
& O^{(6)}(n)=\frac{n}{21}(2 N-1)\left(12 N^{2}-36 N+31\right), \\
& O^{(7)}(n)=\frac{1}{6}\left(6 N^{4}-28 N^{3}+49 N^{2}-31 N\right), \\
& O^{(8)}(n)=\frac{n}{45}(2 N-1)\left(40 N^{3}-220 N^{2}+478 N-381\right),
\end{aligned}
$$

$$
\begin{aligned}
& O^{(9)}(n)=\frac{1}{10}\left(16 N^{5}-120 N^{4}+392 N^{3}-620 N^{2}+381 N\right), \\
& O^{(10)}(n)=\frac{n}{33}(2 N-1)\left(48 N^{4}-416 N^{3}+1640 N^{2}-3272 N+2555\right),
\end{aligned}
$$

where the second factor of $O^{(2 k)}(n)$ is the derivative of that of $O^{(2 k+1)}(n)$.

The above two lemmas led to the following.

Theorem 2.

Let $S_{n}^{(k)}=\sum_{j=1}^{k} a_{k+1-j}^{(k)} n^{k+1-j}$, where $a_{k+1-j}^{(k)}$ is a polynomial in a and d. Then

$$
S_{n}^{(k+1)}=d(k+1) \int S_{n}^{(k)} d n+c_{k+1} n,
$$

Eq. 4
where c_{k+1} is a polynomial in a and d that can be determined by $S_{1}^{(k+1)}=a^{k+1}$.
Proof.

We use mathematical induction on n :

$$
\begin{aligned}
S_{n+1}^{(k+1)} & =S_{n}^{(k+1)}+(a+n d)^{k+1} \\
& \left.=d(k+1)\left\lfloor\int S_{n}^{(k)}(n) d n+c_{k+1} n\right\rfloor+d(k+1) \mid \int(a+n d)^{k} d n+a^{k+1}\right] \\
& =d(k+1) \int S_{n+1}^{(k)} d(n+1)+c_{k+1} n+a^{k+1} \\
& =d(k+1) \int S_{n+1}^{(k)} d(n+1)+c_{k+1}(n+1)
\end{aligned}
$$

where the last step is true, since $a^{k+1}=S_{1}^{(k+1)}=c_{k+1}$ when $n=0$.

By abbreviating $S^{(k)}(n)$ to S^{k}, I came up with the following interesting approximation

$$
\begin{equation*}
\frac{S^{k+2}-S^{k}}{S^{k}-S^{k-2}} \approx \frac{k+1}{k+3}\left(n^{2}+n\right)-\frac{\left(k^{2}+3 k+8\right)(k-3)}{6(k-1)(k+3)} \tag{Eq. 5}
\end{equation*}
$$

by taking $m=k$ and $m=k-2$ in

$$
S^{m+2}-S^{m} \approx \frac{1}{m+3} n^{m+3}+\frac{1}{2} n^{m+2}+\frac{m+2}{12} n^{m+1}-\frac{1}{m+1} n^{m}-\frac{1}{2} n^{m}
$$

respectively and then via long division. Note that Eq. 5 is exact for $k=3,4,5$:

$$
\begin{aligned}
& \frac{S^{5}-S^{3}}{S^{3}-S^{1}}=\frac{4 n^{2}+4 n}{6} \\
& \frac{S^{6}-S^{4}}{S^{4}-S^{2}}=\frac{5 n^{2}+5 n-2}{7} \\
& \frac{S^{7}-S^{5}}{S^{5}-S^{3}}=\frac{6 n^{2}+6 n-4}{8}
\end{aligned}
$$

Although Eq. 5 is not exact for $k=6$, it only underestimates the exact value of

$$
\frac{S^{8}-S^{6}}{S^{6}-S^{4}}=\frac{7 n^{2}+7 n-6}{9}-\frac{n^{2}+n-6}{9\left(5 n^{2}+5 n-2\right)}
$$

with the discrepancy approximately $2 / 3$. In the similar manner, we can also derive the following approximation formulas

$$
\begin{aligned}
& \frac{S^{k+2}}{S^{k}} \approx \frac{k+1}{k+3}\left(n^{2}+n\right)-\frac{k(k+1)}{6(k+3)} \\
& \frac{S^{k+1} S^{k-1}-S^{k} S^{k}}{S^{2 k+1}} \approx 3 C(k+2,3)
\end{aligned}
$$

Three years prior to the publication of (18), I gave a few talks among universities in
Taiwan and a class of gifted students of my Alma Mater (High School of National Taiwan Normal University). I was then invited to present "General Triangular Arrays of Numbers" by "22nd Asian Technology Conference in Mathematics" (Chung Yuan Christian University, December 19, 2017). I am also grateful that Professor Ronald Graham [author of (6)] replied promptly to my e-mails with two separate attachments of my manuscripts that I generalized most of the special functions in Chapter 6 of (6).

2.2. PASCAL-BERNOULLI-STIRLING-EULER-BELL-GAUSS

I am presenting here a systemic but rather long account of my personal excursion into the realm of numbers initiated by Blaise Pascal, James Stirling, Leonhard Euler and Jacob Bernoulli, which is therefore not meant to be a categorical survey of the topic.

2.2.1 Pascal-Bernoulli

Nothing is more impressive than the Pascal triangle,

It displays those numbers ever so natural and simple;
I have long dreamed of writing a prospective article,

To show the inner beauty of numbers from my angle.

Binomial coefficients $C(n, k)$ can be displayed as Pascal triangle (see Table 8), which was discovered about one thousand years ago by Al-Karaji. In fact, it could trace back to the second century B.C. by Pingala and for the subsequent thousand years there had been documentary evidences that Pascal triangle had been mentioned independently in India, Greece, China and Persia.

$C(n, k)$	0	1	2	3	4	5	6	7	8	9	10

$\left.\begin{array}{ccccccccccc}0 & 1 & & & & & & & & & \\ 1 & 1 & 1 & & & & & & & & \\ 2 & 1 & 2 & 1 & & & & & & & \\ 3 & 1 & 3 & 3 & 1 & & & & & & \\ 4 & 1 & 4 & 6 & 4 & 1 & & & & & \\ 5 & 1 & 5 & 10 & 10 & 5 & 1 & & & & \\ 6 & 1 & 6 & 15 & 20 & 15 & 6 & 1 & & & \\ 7 & 1 & 7 & 21 & 35 & 35 & 21 & 7 & 1 & & \\ 8 & 1 & 8 & 28 & 56 & 70 & 56 & 28 & 8 & 1 & \\ 9 & 1 & 9 & 36 & 84 & 126 & 126 & 84 & 36 & 9 & 1 \\ 10 & 1 & 10 & 45 & 120 & 210 & 252 & 210 & 120 & 45 & 10\end{array}\right) 1$

Table 8. Pascal Triangle

As a matter of fact, $C(n, k)$ and $\sum_{i=1}^{n} i^{k}$ got intertwined in the Eighteen Century by Blaise Pascal, James Stirling, Leonhard Euler and Jacob Bernoulli.

My goal had been to use $C(k, j)$ in Table 8 to find the general Bernoulli coefficient $b(k, j)$, with $b(k, 1)$ denoting Bernoulli numbers, in the following expression

$$
\sum_{i=1}^{n} i^{k}=\sum_{j=1}^{k+1} b(k, j) n^{j}
$$

which is also denoted as $S_{n}^{(k)}$, displayed in the Bernoulli triangle in Table 9.

$b \Delta$	1	2	3	4	5	6	7	8	9	10	11
1	$\frac{1}{2}$	$\frac{1}{2}$									
2	$\frac{1}{6}$	$\frac{1}{2}$	$\frac{1}{3}$								
3	0	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$							
4	$-\frac{1}{30}$	0	$\frac{1}{3}$	$\frac{1}{2}$	$\frac{1}{5}$						
5	0	$-\frac{1}{12}$	0	$\frac{5}{12}$	$\frac{1}{2}$	$\frac{1}{6}$					
6	$\frac{1}{42}$	0	$-\frac{1}{6}$	0	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{7}$				
7	0	$\frac{1}{12}$	0	$-\frac{7}{24}$	0	$\frac{7}{12}$	$\frac{1}{2}$	$\frac{1}{8}$			
8	$-\frac{1}{30}$	0	$\frac{2}{9}$	0	$-\frac{7}{15}$	0	$\frac{2}{3}$	$\frac{1}{2}$	$\frac{1}{9}$		
9	0	$-\frac{3}{20}$	0	$\frac{1}{2}$	0	$-\frac{7}{10}$	0	$\frac{3}{4}$	$\frac{1}{2}$	$\frac{1}{10}$	
10	$\frac{5}{66}$	0	$-\frac{1}{2}$	0	1	0	-1	0	$\frac{5}{6}$	$\frac{1}{2}$	$\frac{1}{11}$

Table 9. Bernoulli triangle

The Intuitive approach is to equate the coefficients of the like terms in the expansions of

$$
\begin{equation*}
(n+1)^{k}=\sum_{i=1}^{n+1} i^{k}-\sum_{i=1}^{n} i^{k} \tag{Eq. 7}
\end{equation*}
$$

for $j=0,1,2, \ldots, k$, then use the identity

$$
(1+n)^{k}=\sum_{j=0}^{k} C(k, j) n^{j}
$$

Eq. 8
to obtain

$$
C(k, i)=\sum_{j=i}^{k+1} C(j, i) b(k, j) .
$$

Eq. 9

Take $k=3$ in Eq. 7 for instance, by equating the coefficients of the like terms of

$$
\begin{aligned}
& C(3,0)+C(3,1) n+C(3,2) n^{2}+C(3,3) n^{3} \\
= & \sum_{j=1}^{4} b(3, j)(n+1)^{j}-\sum_{j=1}^{4} b(3, j) n^{j} \\
= & b(3,1) C(1,0)+b(3,2)[C(2,0)+C(2,1) n]+b(3,3)\left[C(3,0)+C(3.1) n+C(3,2) n^{2}\right] \\
& +b(3,4)\left[C(4,0)+C(4,1) n+C(4,2) n^{2}+C(4,3) n^{3}\right] \\
= & {[C(1,1) b(3,1)+C(2,2) b(3,2)+C(3,3) b(3,3)+C(4,4) b(3,4)] } \\
& +[C(2,1) b(3,2)+C(3,2) b(3,3)+C(4,3) b(3,4)] n \\
& +[C(4,2) b(3,3)+C(3,1) b(3,4)] n^{2}+[C(4,1) b(3,4)] n^{3}
\end{aligned}
$$

we can obtain

$$
\begin{aligned}
& C(4,1) b(3,4)=C(3,0) ; C(4,2) b(3,3)+C(3,1) b(3,4)=C(3,1) \\
& C(2,1) b(3,2)+C(3,2) b(3,3)+C(4,3) b(3,4)=C(3,2)
\end{aligned}
$$

and

$$
C(1,1) b(3,1)+C(2,2) b(3,2)+C(3,3) b(3,3)+C(4,4) b(3,4)=C(3,3) .
$$

Moreover, let us generalize Eq. 6 to

$$
\begin{equation*}
\sum_{i=1}^{n}[a+(i-1) d]^{k}=\sum_{j=1}^{k+1} b_{a ; d}(k, j) n^{k+1-j} \tag{Eq. 10}
\end{equation*}
$$

for an arithmetically progressive sequence $(a+(i-1) d)_{1}^{\infty}$ with $b_{1 ; 1}(k, j)=b(k, j)$.

Likewise, we can equate the coefficients of the like terms for $j=0,1,2, \ldots, k$ in the expansions of both sides of the identity $(d n+a)^{k}=\sum_{i=1}^{n+1}[a+(i-1) d]^{k}-\sum_{i=1}^{n}[a+(i-1) d]^{k}$ to obtain the following generalization of Eq. 7:

$$
a^{i} d^{k-i} C(k, i)=\sum_{j=i}^{k+1} C(j, i) b_{a, d}(k, j)
$$

Eq. 11

When $i=k+1, k, k-1$ in Eq. 4,

$$
d^{k} C(k, 0)=C(k+1,1) b_{a ; d}(k, k+1)
$$

gives

$$
\begin{aligned}
& b_{a ; d}(k, k+1)=d^{k} \frac{1}{k+1} \\
& a d^{k-1} C(k, 1)=C(k+1,2) b_{a ; d}(k, k+1)+C(k, 1) b_{a ; d}(k . k)
\end{aligned}
$$

gives

$$
b_{a ; d}(k, k)=d^{k-1}\left(a-\frac{d}{2}\right)
$$

and

$$
a^{2} d^{k-2} C(k, 2)=C(k+1,3) b_{a ; d}(k, k+1)+C(k, 2) b_{a ; d}(k \cdot k)+C(k-1,1) b_{a ; d}(k, k-1)
$$

gives

$$
b_{a ; d}(k, k-1)=d^{k-2}\left(a^{2}-a d+\frac{d^{2}}{6}\right) \frac{C(k, 1)}{2} .
$$

In this manner, we can successively obtain

$$
\begin{aligned}
& b_{a ; d}(k, k-2)=d^{k-3}\left(a-\frac{d}{2}\right)\left(a^{2}-a d\right) \frac{C(k, 2)}{3}, \\
& b_{a ; d}(k, k-3)=d^{k-4}\left[\left(a^{2}=a d\right)^{2}-\frac{d^{4}}{30}\right] \frac{C(k, 3)}{4}, \\
& b_{a ; d}(k, k-4)=d^{k-5}\left(a-\frac{d}{2}\right)\left[\left(a^{2}=a d\right)^{2}-\frac{d^{2}}{3}\left(a^{2}-a d\right)\right] \frac{C(k, 4)}{5}, \\
& b_{a ; d}(k, k-5)=d^{k-6}\left[\left(a^{2}=a d\right)^{3}-\frac{d^{2}}{2}\left(a^{2}-a d\right)^{2}+\frac{d^{6}}{42}\right] \frac{C(k, 5)}{6}, \\
& b_{a ; d}(k, k-6)=d^{k-7}\left(a-\frac{d}{2}\right)\left[\left(a^{2}=a d\right)^{2}-d^{2}\left(a^{2}-a d\right)^{2}+\frac{d^{4}}{3}\left(a^{2}-a d\right)\right] \frac{C(k, 6)}{7},
\end{aligned}
$$

which certainly would not lead to Eq. 11. So it is time to introduce my approach.

2.2.2 Stirling

Let $p(n, k)$ be the product-sum (sum of products) of all k numbers of row n of the unity triangle $U \Delta$, where $U(n, k)=1$. By further assuming $p(n, 0)=C(n, 0)$, we see that $p(n, k)=C(n, k)$ as displayed in Table 8. For example, $p(1,1)=1=C(1,1)$,

$$
\begin{aligned}
& p(2,1)=1+1=2=C(2,1), p(2,2)=1 \times 1=1=C(2,2), p(3,1)=1+1+1=3=C(3,1), \\
& p(3,2)=1 \times 1+1 \times 1+1 \times 1=3=C(3,2) \text { and } p(3,3)=1 \times 1 \times 1=1=C(3,3) .
\end{aligned}
$$

Likewise, we define the small Stirling numbers $s(n, k)$ with $s(n, 0)=1$ and $s(n+1, k)$ being the product-sum of all k numbers in row n of the natural triangle $N \Delta$, where $N(n, k)=k$. For example, as in Table $10, s(2,1)=1, s(3,1)=1+2=3, s(3,2)=1 \times 2=2$, $s(4,1)=1+2+3=6, s(4,2)=1 \times 2+1 \times 3+2 \times 3=11, s(4,3)=1 \times 2 \times 3=6$.

$s \Delta$	0	1	2	3	4	5	6	7	8	9
1	1									
2	1	1								
3	1	3	2							
4	1	6	11	6						
5	1	10	35	50	24					
6	1	15	85	225	274	120				
7	1	21	175	735	1624	1764	720			
8	1	28	322	1960	6769	13132	13068	5040		
9	1	36	546	4536	22449	67284	118124	109584	40320	
10	1	45	870	9450	63273	269325	723680	1172700	1026576	362880

Table 10. The small Stirling triangle

We further notice that $s(n, n-1)=(n-1)$! and

$$
s(n, k)=(n-1) s(n-1, k-1)+s(n-1, k), k \leq n-2 .
$$

Eq. 12

Next, we define the large Stirling numbers $S(k+1, j)$ by way of

$$
\sum_{i=0}^{n} i^{k}=\sum_{i=1}^{k+1} S(k+1, j) C(n, j) .
$$

Eq. 13

Since $\sum_{i=1}^{n} i^{0}=n=C(n, 1)$ and $\sum_{i=1}^{n} i^{1}=C(n+1,2)=C(n, 1)+C(n, 2)$, we have $S(1,1)=1, S(2,1)=1$ and $S(2,2)=1$.

Likewise, since

$$
\begin{aligned}
\sum_{i=1}^{n} i^{2} & =\frac{(2 n+1)(n+1) n}{6}=\frac{2 n^{3}+3 n^{2}+n}{6}+\left[2 C(n, 3)-\frac{2 n^{3}-6 n^{2}+4 n}{6}\right] \\
& =2 C(n, 3)+\frac{9 n^{2}-3 n}{6}+\left[3 C(n, 2)-\frac{9 n^{2}-9 n}{6}\right] \\
& =2 C(n, 3)+3 C(n, 2)+C(n, 1)
\end{aligned}
$$

we have $S(3,1)=1, S(3,2)=3$ and $S(3,3)=2$;
and since

$$
\begin{aligned}
& \sum_{i=1}^{n} i^{3}=\frac{(n+1)^{2} n^{2}}{4} \\
= & \frac{n^{4}+2 n^{3}+n^{2}}{4}+\left[6 C(n, 4)-\frac{n^{4}-6 n^{3}+11 n^{2}-6 n}{4}\right] \\
= & 6 C(n, 4)+\frac{8 n^{3}-10 n^{2}+6 n}{4}+\left[12 C(n, 3)-\frac{8 n^{3}-24 n^{2}+16 n}{4}\right] \\
= & 6 C(n, 4)+12 C(n, 3)+\frac{14 n^{2}-10 n}{4}+\left[7 C(n, 2)-\frac{14 n^{2}-14 n}{4}\right] \\
= & 6 C(n, 4)+12 C(n, 3)+7 C(n, 2)+C(n, 1),
\end{aligned}
$$

we have $S(4,1)=1, S(4,2)=7, S(4,3)=12$ and $S(4,4)=6$.
We can further find that $S(k, 1)=1, S(k, k)=(k-1)!, \sum_{j=1}^{k}(-1)^{j} S(k, j)=0$ and

$$
S(k, j)=(j-1) S(k-1, j-1)+j S(k-1, j) \quad 1 \leq j \leq k, \quad \text { Eq. } 14
$$

via which we can obtain the large Stirling triangle as in Table 11.

$S \Delta$	1	2	3	4	5	6	7	8	9	10
1	1									
2	1	1								
3	1	3	2							
4	1	7	12	6						
5	1	15	50	60	24					
6	1	31	180	390	360	120				
7	1	63	602	2100	3360	2520	720			
8	1	127	1932	10206	25200	31920	20160	5040		
9	1	255	6050	46620	166284	317520	332640	181440	40320	
10	1	511	188660	204630	1017900	2736540	4233600	3780000	1814400	362880

Table 11. The large Stirling triangle

Next we shall show how to come up with Bernoulli coefficients $b(k, j)$ by observing both Tables 10 and 11 simultaneously. For example,

$$
\begin{aligned}
& \frac{s(4,0) S(4,4)}{4!}=\frac{1}{4}=b(3,4), \frac{3(3,0) S(4,3)}{3!}-\frac{s(4,1) S(4,4)}{4!}=\frac{1}{2}=b(3,3) \\
& \frac{s(2,0) S(4,2)}{2!}-\frac{s(3,1) S(4,3)}{3!}+\frac{s(4,2) S(4,4)}{4!}=\frac{1}{4}=b(3,2) \\
& \frac{s(1,0) S(4,1)}{1!}-\frac{s(2,1) S(4,2)}{2!}+\frac{s(3,2) S(4,3)}{3!}-\frac{s(4,3) S(4,4)}{4!}=0=b(3,1) .
\end{aligned}
$$

In general, we have

$$
b(k, j)=\sum_{t=0}^{k+1-j} \frac{(-1)^{t} s(j+t, t) S(k+1, j+t)}{(j+t)!},
$$

Eq. 15
which can be substituted in Eq. 6 to yield

$$
\sum_{i=1}^{n} i^{k}=\sum_{j=0}^{k}\left[\sum_{t=0}^{k+1-j} \frac{(-1)^{t} s(j+t, t) S(k+1, j+t)}{(j+t)!}\right]^{j+1} .
$$

Eq. 16

2.2.3 Euler

Let us define the small Euler numbers $e(k, j)$ by $e(k, 1)=e(k, k)=1$ and

$$
\begin{equation*}
e(k, j)=\sum_{t=0}^{j-1}(-1)^{t} C(k+1-j+t, t) S(k+1, j-t) . \tag{Eq. 17}
\end{equation*}
$$

For example,

$$
\begin{aligned}
& e(3,2)=C(2,0) S(4,2)-C(3,1) S(4,1)=4, \\
& e(4,2)=C(3,0) S(5,2)-C(3,1) S(5,1)=11, \\
& e(4,3)=C(2,0) S(5,3)-C(3,1) S(5,2)+C(4,2) S(5,1)=11, \\
& e(5,2)=C(4,0) S(6,2)-C(5,1) S(6,1)=26, \\
& e(5,3)=C(3,0) S(6,3)-C(4,1) S(6,2)+C(5,2) S(6,1)=66, \\
& e(5,4)=C(2,0) S(6,4)-C(3,1) S(6,3)+C(4,2) S(6,2)-C(5,3) S(6,1)=26 .
\end{aligned}
$$

In addition to $e(k, j)=e(k, k+1-j)$, we can further observe

$$
\begin{aligned}
& e(3,2)=(3+1-2) e(2,1)+2 e(2,2), e(4,2)=(4+1-2) e(3,1)+2 e(3,2), \\
& e(4,3)=(4+1-3) e(3,2)+3 e(3,3), e(5,2)=(5+1-2) e(4,1)+2 e(4,2), \\
& e(5,3)=(5+1-3) e(4,2)+3 e(4,3), e(5,4)=(5+1-4) e(4,3)+4 e(4,4),
\end{aligned}
$$

to come up with

$$
e(k, j)=(k+1-j) e(k-1, j-1)+j e(k-1, j)
$$

Eq. 18
and the small Euler triangle as shown in Table 12.

$e \Delta$	1	2	3	4	5	6	7	8	9	10
1	1									
2	1	1								
3	1	4	1							
4	1	11	11	1						
5	1	26	66	26	1					
6	1	57	302	302	57	1				
7	1	120	1191	2416	1191	120	1			
8	1	247	4293	15619	15619	4293	247	1		
9	1	502	14608	88234	156189	88234	14608	502	1	
10	1	1013	47840	455192	1310354	1310354	455192	47840	1013	1

Table 12. The small Euler triangle
Since $(n+1)^{1}=C(n+1,1)$, we can also obtain $e(k, j)$ via

$$
(n+1)^{k}=\sum_{j=1}^{k} e(k, j) C(n+j, k):
$$

Eq. 19
$(n+1)^{2}=C(n+1,2)+C(n+2,2)$,
$(n+1)^{3}=C(n+1,3)+4 C(n+2,3)+C(n+3,3)$,
$(n+1)^{4}=C(n+1,4)+11 C(n+2,4)+11 C(n+3,4)+C(n+4,4)$,
$(n+1)^{5}=C(n+1,5)+26 C(n+2,5)+66 C(n+3,5)+26 C(n+4,5)+C(n+5,5), \ldots$
By virtue of Eq. 14, we can use mathematical induction to establish

$$
\begin{align*}
& \sum_{i=1}^{n} i^{k}=\sum_{j=1}^{k} e(k, j) C(n+j, k+1): \tag{Eq. 20}\\
\sum_{i=1}^{n+1} i^{k}= & \sum_{j=1}^{k} e(k, j) C(n+j, k+1)+\sum_{j=1}^{k} e(k, j) C(n+j, k) \\
= & \sum_{j=1}^{k} e(k, j) C(n++1+j, k+1) .
\end{align*}
$$

For $k=3$, we can write

$$
\begin{aligned}
\sum_{i=1}^{n} i^{3} & =e(3,1) C(n+1,4)+e(3,2) C(n+2,4)+e(3,3) C(n+3,4) \\
= & e(3,1)[C(1,1) C(n, 3)+C(1,0) C(n, 4)] \\
& +e(3,2)[C(2,2) C(n, 2)+C(2,1) C(n, 3)+C(2,0) C(n, 4)] \\
& +e(3,3)[C(3,3) C(n, 1)+C(3,2) C(n, 2)+C(3,1) C(n, 3)+C(3,0) C(n, 4)] \\
& =[e(3,1) C(1,0)+e(3,2) C(2,0)+e(3,3) C(3,0)] \sum_{j+0}^{3} \frac{(-1)^{j} s(4, j) n^{4-j}}{4!} \\
& +[e(3,1) C(1,1)+e(3,2) C(2,1)+e(3,3) C(3,1)] \sum_{j=0}^{2} \frac{(-1)^{j} s(3, j) n^{3-j}}{3!} \\
& +[e(3,2) C(2,2)+e(3,3) C(3,2)] \sum_{j+0}^{1} \frac{(-1)^{j} s(2, j) n^{2-j}}{2!}+e(3,3) C(3,3) \frac{s(1,0)}{1!} .
\end{aligned}
$$

Hence we have

$$
\begin{aligned}
b(3,4)= & {[e(3,1) C(1,0)+e(3,2) C(2,0)+e(3,3) C(3,0)] \frac{s(4,0)}{4!}=\frac{1}{4}, } \\
b(3,3)= & -[e(3,1) C(1,0)+e(3,2) C(2,0)+e(3,3) C(3,0)] \frac{s(4,1)}{4!} \\
& +[e(3,1) C(1,1)+e(3,2) C(2,1)+e(3,3) C(3,1)] \frac{s(3,0)}{3!}=\frac{1}{2},
\end{aligned}
$$

$$
\begin{aligned}
b(3,2)= & {[e(3,1) C(1,0)+e(3,2) C(2,0)+e(3,3) C(3,0)] \frac{s(4,2)}{4!} } \\
& -[e(3,1) C(1,1)+e(3,2) C(2,1)+e(3,3) C(3,1)] \frac{s(3,1)}{3!} \\
& +[e(3,2) C(2,2)+e(3,3) C(3,2)] \frac{s(2,0)}{2!}=\frac{1}{4}, \\
b(3,1)= & -[e(3,1) C(1,0)+e(3,2) C(2,0)+e(3,3) C(3,0)] \frac{s(4,3)}{4!} \\
& +[e(3,1) C(1,1)+e(3,2) C(2,1)+e(3,3) C(3,1)] \frac{s(3,2)}{3!} \\
& -[e(3,2) C(2,2)+e(3,3) C(3,2)] \frac{s(2,1)}{2!} \\
& +e(3,3) C(3,3) \frac{s(1,0)}{1!}=0 .
\end{aligned}
$$

Since $S(k, j)=\sum_{t=k-j}^{k-1} e(k-1, t) C(t, k-j)$ and $S(k, k)=\sum_{t=1}^{k-1} e(k-1, t)$, we can write Eq. 16 as

$$
\begin{equation*}
\sum_{i=1}^{n} i^{k}=\sum_{j=1}^{k} \frac{e(k, j)}{(k+1)!}\left\{\sum_{t=0}^{k}\left[\sum_{r=0}^{t}(-1)^{r} s(k, r) C(k+1-r, t-r) i^{t-r}\right] n^{k+1-t}\right\} . \tag{Eq. 21}
\end{equation*}
$$

Next, let us observe Table 11 diagonally. We can recognize that the second rightmost diagonal entries, in fact, give $\frac{S(n, n-1)}{(n-2)!}=C(n, 2)$. We further dictate the trend:

$$
\begin{aligned}
& \frac{S(n, n-2)}{(n-3)!}=C(n+1,4)+2 C(n, 4) \\
& \frac{S(n, n-3)}{(n-4)!}=C(n+2,6)+8 C(n+1,6)+6 C(n, 6),
\end{aligned}
$$

$$
\frac{S(n, n-4)}{(n-5)!}=C(n+3,8)+22 C(n+2,8)+58 C(n+1,8)+24 C(n, 8), \ldots
$$

In such manner, we can define the large Euler number $E(k, j)$ by way of

$$
S(n, n-k)=(n-k-1)!\sum_{j=1}^{k} E(k, j) C(n+k-j, 2 k) .
$$

Eq. 22
and come up with $E(k, 1)=E(k-1,1), E(k, k)=k E(k-1, k-1)$ and in general

$$
\begin{equation*}
E(k, j)=(2 k-j) E(k-1, j-1)+k F(k-1, j) \tag{Eq. 23}
\end{equation*}
$$

via which we can generate the large Euler triangle in Table 13

$E \Delta$	1	2	3	4	5	6	7	8	9
1	1								
2	1	2							
3	1	8	6						
4	1	22	58	24					
5	1	52	328	444	120				
6	1	114	1452	4400	3780	720			
7	1	240	5610	32129	58140	33984	5040		
8	1	494	19950	198580	644020	785304	341136	40320	
9	1	1004	67260	1062500	5765500	12440064	11026296	3733920	362880

Table 13. The large Euler triangle
On the other hand, we can also obtain

$$
s(n, k)=\sum_{j=1}^{k} E(k, j) C(n+j-1,2 k)
$$

Eq. 24

Since Eq. 24 is true for $k=1$:

$$
s(n, 1)=\sum_{j=1}^{1} E(1, j) C(n+1-1,2 \cdot 1)
$$

all we need to show is that

$$
\begin{equation*}
s(n, m+1)=\sum_{j=1}^{m+1} E(m+1, j) C(n+j-1,2 m+2) \tag{Eq. 25}
\end{equation*}
$$

by assuming Eq. 24 is true for $k=m$. Prior to proving Eq. 24 by mathematical induction, let us do it in the case of $m=4$. Using Eqs. 12 and 23, we can write

$$
\begin{aligned}
& s(n, 5)=(n-1)) s(n-1,4)+s(n-1,5) \\
= & (n-1)[E(4,1) C(n-1,8)+E(4,2) C(n, 8)+E(4,3) C(n+1,8)+E(4,4) C(n+2,8)] \\
& +E(5,1) C(n-1,10)+E(5,2) C(n, 10)+E(5,3) C(n+1,10)+E(5,4) C(n+2,10)+E(5,5) C(n+3,10) \\
= & \sum_{j=1}^{4}[(n-1) C(n+j-2,8)+j C(n+j-2,10)+(9-j) C(n+j-1,10)] E(4, j)
\end{aligned}
$$

and

$$
\begin{aligned}
& \sum_{j=1}^{5} E(5, j) C(n+j-1,10) \\
= & E(4,1) C(n, 10)+[8 E(4,1)+2 E(4,2)] C(n+1,10)+[7 E(4,2)+3 E(4,3)] C(n+2,10) \\
& +[6 E(4,3)+4 E(4,4)] C(n+3,10)+5 E(4,4) C(n+4,10) \\
= & \sum_{j=1}^{4}[j C(n+j-1,10)+(9-j) C(n+j, 10)] E(4, j)
\end{aligned}
$$

The coefficients of the like term $E(4, j)$ are equal, since

$$
\begin{aligned}
& {[(n-1) C(n+j-2,8)+j C(n+j-2,10)+(9-j) C(n+j-1,10)] } \\
& -[j C(n+j-1,10)+(9-j) C(n+j, 10)] \\
= & (n+j-1) C(n+j-2,8)-[j C(n+j-2,8)+j C(n+j-2,9)+(9-j) C(n+j-1,9)] \\
= & 9 C(n+j-1,9)-[j C(n+j-2,8)+j C(n+j-2,9)+(9-j) C(n+j-1,9)] \\
= & 0 .
\end{aligned}
$$

Thus we have proved that $s(n, 5)=\sum_{j=1}^{5} E(5, j) C(n+j-1,10)$. In general, we can write

$$
\begin{aligned}
& s(n, m+1)-\sum_{j=1}^{m+1} E(m+1, j) C(n+j-1,2 m+2) \\
& =\sum_{j=1}^{m}[(n-1) C(n+j-2,2 m)+j C(n+j-2,2 m+2)+(2 m+1-j) C(n+j-1,2 m+2)] E(m, j) \\
& \quad-\sum_{j=1}^{m}[j C(n+j-1,2 m+2)+(9-j) C(n+j, 2 m+2)] E(m, j)
\end{aligned}
$$

The coefficients of the like term $E(m, j)$ are equal, since

$$
\begin{aligned}
{[} & (n-1) C(n+j-2,2 m)+j C(n+j-2,2 m+2)+(2 m+1-j) C(n+j-1,2 m+2)] \\
& -[j C(n+j-1,2 m+2)+(2 m+1-j) C(n+j, 2 m+2)] \\
= & (n+j-1) C(n+j-2,2 m) \\
& -[j C(n+j-2,2 m)+j C(n+j-2,2 m+2)+(2 m+1-j) C(n+j-1,2 m+1)] \\
= & (2 m+1) C(n+j-1,2 m+1) \\
& -[j C(n+j-2,2 m)+j C(n+j-2,2 m+1)+(2 m+1-j) C(n+j-1,2 m+1)]=0 .
\end{aligned}
$$

We have completed the proof of Eq. 24 by the mathematical induction. Therefore, by virtue of Eqs. 15, 22 and 24, $b(k, j)$ can be expressed in terms of the large Euler numbers. Note that the small and large Euler numbers are in essence the same as the firstorder and second-order Eulerian numbers $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle$ and $\left\langle\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle\right\rangle$ (which will be introduced next $),$ since $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle=e(n, k-1)$ and $\left\langle\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle\right\rangle=E(n, k-1)$.

2.2.4 Sorting

The number $\binom{n}{n_{1}, n_{2}, \ldots n_{m}}$ of ways of sorting the first n terms of the natural sequence $(i)_{1}^{\infty}$ into m subsets with n_{j} elements in the $j t h$ subset is $\frac{n!}{\prod_{j=1}^{m} n_{j}!}$, where $n=\sum_{j=1}^{m} n_{j}$.

In particular, the number of ways of sorting the first n terms of $(i)_{1}^{\infty}$ into 2 subsets with k elements in one and $n-k$ elements in another is the combination $\binom{n}{k, n-k}=\frac{n!}{k!(n-k)!}$, which will be further abbreviated as the binomial coefficient $\binom{n}{k}$ or $C(n, k)$; while the number of ways of sorting the first n terms of $(i)_{1}^{\infty}$ into k singletons and a subset of $n-k$ elements is the permutation $\binom{n}{1,1, \ldots, 1, k}=\frac{n!}{(n-k)!}$, which will be abbreviated as $\left(\binom{n}{k}\right)$ or $P(n, k)$. Hence we write

$$
\begin{equation*}
\left(\binom{n}{k}\right)=n(n-1)(n-2) \ldots[n-(k-1)] \tag{Eq. 26}
\end{equation*}
$$

and

$$
\binom{n}{k}=\frac{\left(\binom{n}{k}\right)}{\left(\binom{k}{k}\right)}
$$

Eq. 27
where $\left(\binom{k}{k}\right)=k!$.

Since this first level of sortation can be expressed as the product of a combination and one or more permutations such as $\binom{9}{2,3,4}=\binom{5}{2}\left(\binom{9}{4}\right)$ and $\binom{14}{2,3,4,5}=\binom{5}{2}\left(\binom{9}{4}\right)\left(\binom{14}{5}\right)$, the familiar recursive formulas

$$
\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}
$$

Eq. 28
and

$$
\left(\binom{n}{k}\right)=k\left(\binom{n-1}{k-1}\right) .
$$

Eq. 29

We can use Eq. 28 to generate the first-order Pascal triangle, same as Table 8, in Table 14.

$\binom{n}{k} \Delta$	0	1	2	3	4	5	6	7	8	9	10
0	1										
1	1	1									
2	1	2	1								
3	1	3	3	1							
4	1	4	6	4	1						
5	1	5	10	10	5	1					
6	1	6	15	20	15	6	1				
7	1	7	21	35	35	21	7	1			
8	1	8	28	56	70	56	28	8	1		
9	1	9	36	84	126	126	84	36	9	1	
10	1	10	45	120	210	252	210	120	45	10	1

Table 14. The first-order Pascal triangle

Likewise, we can use Eq. 29 to generate the second-order Pascal triangle as in Table 15.

$\left(\binom{n}{k}\right)$		1	2	3	4	5	6	7	8	9	10
1	1	1									
2	1	2	2								
3	1	3	6	6							
4	1	4	12	24	24						
5	1	5	20	60	120	120					
6	1	6	30	120	360	720	720				
7	1	7	42	210	840	2520	5040	5040			
8	1	8	56	336	1680	6720	20160	40320	40320		
9	1	9	72	504	3024	15120	60480	181440	362880	362880	
10	1	10	90	720	5040	30240	151200	604800	1814400	3628800	3628800

Table 15. The second-order Pascal triangle

We further write Eq. 26 into

$$
\begin{equation*}
\left(\binom{n}{k}\right)=\sum_{j=1}^{k}(-1)^{j-1} s(k, j) n^{k-j+1}, \tag{Eq. 30}
\end{equation*}
$$

where $s(k, j)$ is the small Stirling number as in Table 10. For example,

$$
\left(\binom{n}{4}\right)=n(n-1)(n-2)(n-3)=s(4,0) n^{4}-s(4,1) n^{3}+s(4,3) n^{2}-s(4,4) n .
$$

Next, let us proceed to sorting of the second level: Stirling numbers.

The number of ways of sorting the first n terms of $(i)_{1}^{\infty}$ into k cycles is the Stirling number of the first kind $\left[\begin{array}{l}n \\ k\end{array}\right]$. Clearly, $\left[\begin{array}{l}1 \\ 1\end{array}\right]=1$. In general, sorting the first n terms of $(i)_{1}^{\infty}$ into k cycles, there are $\left[\begin{array}{l}n-1 \\ k-1\end{array}\right]$ ways including the one-cycle $[n]$, since the number of ways of sorting the first $n-1$ terms into $k-1$ cycles is $\left[\begin{array}{l}n-1 \\ k-1\end{array}\right]$.

For any one of the $\left[\begin{array}{c}n-1 \\ k\end{array}\right]$ ways of sorting, not including n, we need to insert n into 1 (say, a j_{i}-cycle) of the k cycles. Since there are j_{i} ways of doing such insertion, the total possible ways of inserting n into any of those k cycles is $\sum_{i=1}^{k} j_{i}=n-1$.

Thus we have

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]=\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]+(n-1)\left[\begin{array}{l}
n-1 \\
k
\end{array}\right],
$$

Eq. 31
which is the same as Eq. 12, since $\left[\begin{array}{l}n \\ k\end{array}\right]=s(n, n-k)$.

Also, we can write Eq. 30 as

$$
\left(\binom{n}{k}\right)=\sum_{j=1}^{k}(-1)^{j-1}\left[\begin{array}{c}
k \\
k-j+1
\end{array}\right] n^{k-j+1} . \quad \text { Eq. } 32
$$

We can use Eq. 31 to generate the Stirling triangle of the first kind as shown in Table 16.

$\left[\begin{array}{l}n \\ k\end{array}\right] \Delta$	1	2	3	4	5	6	7	8	9	10
1	1									
2	1	1								
3	2	3	1							
4	6	11	6	1						
5	24	50	35	10	1					
6	120	274	225	85	15	1				
7	720	1764	1624	735	175	21	1			
8	5040	13068	13132	6769	1960	322	28	1		
9	40320	109584	118124	67284	22449	4536	546	36	1	
10	362880	1026576	1172700	723680	269325	63273	9450	870	45	1

Table 16. Table for Stirling numbers of the first kind

On the other hand, $\left[\begin{array}{l}n \\ k\end{array}\right] \Delta$ can be built from $\binom{n}{k} \Delta$ via $\left[\begin{array}{l}n \\ 1\end{array}\right]=(n-1)!,\left[\begin{array}{l}n \\ n\end{array}\right]=1$ and

$$
\left[\begin{array}{l}
n+1 \\
k+1
\end{array}\right]=\binom{k}{0}\left[\begin{array}{l}
n \\
k
\end{array}\right]+\binom{k+1}{1}\left[\begin{array}{c}
n \\
k+1
\end{array}\right]+\binom{k+2}{2}\left[\begin{array}{c}
n \\
k+2
\end{array}\right]+\ldots+\binom{n}{n-k}\left[\begin{array}{l}
n \\
n
\end{array}\right] \quad \text { Eq. } 33
$$

as shown in Table 17.
$n \backslash k_{1}$
2
3
4
5
$1 \quad 1$
21
32

$$
\binom{1}{1}\left[\begin{array}{l}
2 \\
1
\end{array}\right]+\binom{2}{1}\left[\begin{array}{l}
2 \\
2
\end{array}\right]
$$

1
$4 \begin{array}{lll}4 & 6 & \binom{1}{1}\left[\begin{array}{l}3 \\ 1\end{array}\right]+\binom{2}{1}\left[\begin{array}{l}3 \\ 2\end{array}\right]+\binom{3}{1}\left[\begin{array}{l}3 \\ 3\end{array}\right] \quad\binom{2}{2}\left[\begin{array}{l}3 \\ 2\end{array}\right]+\binom{3}{2}\left[\begin{array}{l}3 \\ 3\end{array}\right]\end{array}$
1
$5 \quad 24\binom{1}{1}\left[\begin{array}{l}4 \\ 1\end{array}\right]+\binom{2}{1}\left[\begin{array}{l}4 \\ 2\end{array}\right]+\binom{3}{1}\left[\begin{array}{l}4 \\ 3\end{array}\right]+\binom{4}{1}\left[\begin{array}{l}4 \\ 4\end{array}\right]\binom{2}{2}\left[\begin{array}{l}4 \\ 2\end{array}\right]+\binom{3}{2}\left[\begin{array}{l}4 \\ 3\end{array}\right]+\binom{4}{2}\left[\begin{array}{l}4 \\ 4\end{array}\right]\binom{3}{3}\left[\begin{array}{l}4 \\ 3\end{array}\right]+\binom{4}{3}\left[\begin{array}{l}4 \\ 4\end{array}\right] 1$

Table 17. Stirling triangle of the first kind via the recursive formula

By using Eq. 26 to expand both sides of

$$
\left(\binom{n}{k}\right)=n(n-1)(n-2) \ldots[n-(k-1)]=n\left(\binom{n-1}{k-1}\right),
$$

we can obtain Eq. 28 by equating the like terms of

$$
\sum_{j=0}^{k}(-1)^{j}\left[\begin{array}{c}
k+1 \\
k+1-j
\end{array}\right] n^{k+1-j}=n \sum_{j=0}^{k-1}(-1)^{j}\left[\begin{array}{c}
k \\
k-j
\end{array}\right](n-1)^{k-j} .
$$

Let us continue our excursion of this second level of sortation. The number of ways of sorting the first n terms of $(i)_{1}^{\infty}$ into k sets is the Stirling number of the second kind $\left\{\begin{array}{l}n \\ k\end{array}\right\}$.

Clearly, $\left\{\begin{array}{l}1 \\ 1\end{array}\right\}=1$. In general, sorting the first n terms of $(i)_{1}^{\infty}$ into k sets, there are two cases to consider. First, there are $\left\{\begin{array}{l}n-1 \\ k-1\end{array}\right\}$ ways if the singleton $\{n\}$ is included in the sorted arrangements, since the number of ways of sorting the first $n-1$ terms into $k-1$ sets is $\left\{\begin{array}{l}n-1 \\ k-1\end{array}\right\}$. Second, there are $k\left\{\begin{array}{c}n-1 \\ k\end{array}\right\}$ ways if the singleton $\{n\}$ is not included in the sorted arrangements, since for any one of $\left\{\begin{array}{c}n-1 \\ k\end{array}\right\}$ ways of sorting the term n can be inserted into any one of those k sets. Thus we have proved the recursive formula

$$
\left\{\begin{array}{l}
n \tag{Eq. 34}\\
k
\end{array}\right\}=\left\{\begin{array}{c}
n-1 \\
k-1
\end{array}\right\}+k\left\{\begin{array}{c}
n-1 \\
k
\end{array}\right\},
$$

which is equivalent to Eq. 14 , since $S(n, k)=(k-1)!\left\{\begin{array}{l}n \\ k\end{array}\right\}$.

The Stirling triangle $\left\{\begin{array}{l}n \\ k\end{array}\right\} \Delta$ of the second kind can be generated via Eq. 34 as in Table 18.
$\left\{\begin{array}{l}\left\{\begin{array}{l}n \\ k\end{array}\right\}\end{array} \begin{array}{lllllllllll}\Delta & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}\right.$

1	1									
2	1	1								
3	1	3	1							
4	1	7	6	1						
5	1	15	25	10	1					
6	1	31	90	65	15	1				
7	1	63	301	350	140	21	1			
8	1	127	966	1701	1050	266	28	1		
9	1	255	3025	7770	6951	2646	462	36	1	
10	1	511	9330	34105	42525	22827	5880	750	45	1

Table 18. Stirling triangle of the second kind via the recursive formula

To attain our goal, we first derive the following identity

$$
C(n, k)=\sum_{j=k}^{n}(-1)^{j-k}\left[\begin{array}{l}
j \tag{Eq. 35}\\
k
\end{array}\right]\left[\begin{array}{l}
n+1 \\
j+1
\end{array}\right] .
$$

We shall only look at the case for $n=5$ and $k=3$, since the general case is similar. So we use Eqs. 31 and 34 to show the inductive step:

$$
\begin{aligned}
\binom{6}{3} & =\left(\left[\begin{array}{l}
3 \\
3
\end{array}\right]\left\{\begin{array}{l}
6 \\
4
\end{array}\right\}-\left[\begin{array}{l}
4 \\
3
\end{array}\right]\left\{\begin{array}{l}
6 \\
5
\end{array}\right\}+\left[\begin{array}{l}
5 \\
3
\end{array}\right]\left\{\begin{array}{l}
6 \\
6
\end{array}\right\}\right)+\left(\left[\begin{array}{l}
3 \\
3
\end{array}\right]\left\{\begin{array}{l}
6 \\
3
\end{array}\right\}-\left[\begin{array}{l}
4 \\
3
\end{array}\right]\left\{\left\{\begin{array}{l}
6 \\
4
\end{array}\right\}+\left[\begin{array}{l}
5 \\
3
\end{array}\right]\left\{\begin{array}{l}
6 \\
5
\end{array}\right\}-\left[\begin{array}{l}
6 \\
3
\end{array}\right]\left\{\begin{array}{l}
6 \\
6
\end{array}\right\}\right)\right. \\
& =\left[\begin{array}{l}
2 \\
2
\end{array}\right]\left\{\begin{array}{l}
6 \\
3
\end{array}\right\}-\left(\left[\begin{array}{l}
4 \\
3
\end{array}\right]-4\left[\begin{array}{l}
3 \\
3
\end{array}\right]\right)\left\{\begin{array}{l}
6 \\
4
\end{array}\right\}+\left(\left[\begin{array}{l}
5 \\
3
\end{array}\right]-5\left[\begin{array}{l}
4 \\
3
\end{array}\right]\right)\left\{\begin{array}{l}
6 \\
5
\end{array}\right\}-\left(\left[\begin{array}{l}
6 \\
3
\end{array}\right]-6\left[\begin{array}{l}
5 \\
3
\end{array}\right]\right)\left\{\begin{array}{l}
6 \\
6
\end{array}\right\} \\
& \left.\left.=\left(4\left\{\begin{array}{l}
6 \\
4
\end{array}\right\}+\left\{\begin{array}{l}
6 \\
3
\end{array}\right\}\right)-\left[\begin{array}{l}
4 \\
3
\end{array}\right]\left[\begin{array}{l}
5 \\
5 \\
5
\end{array}\right\}+\left\{\begin{array}{l}
6 \\
4
\end{array}\right\}\right)+\left[\begin{array}{l}
5 \\
3
\end{array}\right]\left(\begin{array}{l}
6 \\
6 \\
6
\end{array}\right\}+\left\{\begin{array}{l}
6 \\
5
\end{array}\right\}\right)-\left[\begin{array}{l}
6 \\
3
\end{array}\right]\left\{\begin{array}{l}
6 \\
6
\end{array}\right\} \\
& =\left[\begin{array}{l}
3 \\
3
\end{array}\right]\left\{\begin{array}{l}
7 \\
4
\end{array}\right\}-\left[\begin{array}{l}
4 \\
3
\end{array}\right]\left\{\begin{array}{l}
7 \\
5
\end{array}\right\}+\left[\begin{array}{l}
5 \\
3
\end{array}\right]\left\{\begin{array}{l}
7 \\
6
\end{array}\right\}-\left[\begin{array}{l}
6 \\
3
\end{array}\right]\left\{\begin{array}{l}
7 \\
7
\end{array}\right\} .
\end{aligned}
$$

Alternatively, the Stirling triangle $\left\{\begin{array}{l}n \\ k\end{array}\right\} \Delta$ of the second kind can be constructed based on $\left\{\begin{array}{l}n \\ 1\end{array}\right\}=1,\left\{\begin{array}{c}n \\ n-1\end{array}\right\}=\left[\begin{array}{c}n \\ n-1\end{array}\right]=\binom{n}{2}$ and $\left\{\begin{array}{l}n \\ n\end{array}\right\}=1$ via the inversion formula

$$
\left\{\begin{array}{l}
n \tag{Eq. 36}\\
k
\end{array}\right\}=\sum_{j=1}^{n-k}(-1)^{j-1}\left[\begin{array}{c}
k+j \\
k
\end{array}\right]\left\{\begin{array}{c}
n \\
k+j
\end{array}\right\}
$$

as follows.

$$
\begin{aligned}
& \left\{\begin{array}{l}
4 \\
2
\end{array}\right\}=\left[\begin{array}{l}
3 \\
2
\end{array}\right]\left\{\begin{array}{l}
4 \\
3
\end{array}\right\}-\left[\begin{array}{l}
4 \\
2
\end{array}\right]\left\{\begin{array}{l}
4 \\
4
\end{array}\right\}=7,\left\{\begin{array}{l}
5 \\
3
\end{array}\right\}=\left[\begin{array}{l}
4 \\
3
\end{array}\right]\left\{\begin{array}{l}
5 \\
4
\end{array}\right\}-\left[\begin{array}{l}
5 \\
3
\end{array}\right]\left\{\begin{array}{l}
5 \\
5
\end{array}\right\}=25, \\
& \left\{\begin{array}{l}
5 \\
2
\end{array}\right\}=\left[\begin{array}{l}
3 \\
2
\end{array}\right]\left\{\begin{array}{l}
5 \\
3
\end{array}\right\}-\left[\begin{array}{l}
4 \\
2
\end{array}\right]\left\{\begin{array}{l}
5 \\
4
\end{array}\right\}+\left[\begin{array}{l}
5 \\
2
\end{array}\right]\left\{\begin{array}{l}
5 \\
5
\end{array}\right\}=15, \ldots
\end{aligned}
$$

We then derive the following identity

$$
(1+n)^{k}=\sum_{j=1}^{k+1}\left(\binom{n}{j-1}\right)\left\{\begin{array}{c}
k+1 \tag{Eq. 37}\\
j
\end{array}\right\} .
$$

We only look at the case where $k=4$. From Eq. 8, we can use Eqs. 35 and 36 to write

$$
\begin{aligned}
(1+n)^{4}= & \binom{4}{0}+\binom{4}{1} n+\binom{4}{2} n^{2}+\binom{4}{3} n^{3}+\binom{4}{4} n^{4} \\
= & 1+\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]\left\{\begin{array}{l}
5 \\
2
\end{array}\right\}-\left[\begin{array}{l}
2 \\
1
\end{array}\right]\left\{\begin{array}{l}
5 \\
3
\end{array}\right\}+\left[\begin{array}{l}
3 \\
1
\end{array}\right]\left\{\begin{array}{l}
5 \\
4
\end{array}\right\}-\left[\begin{array}{l}
4 \\
1
\end{array}\right]\left\{\begin{array}{l}
5 \\
5
\end{array}\right\}\right) n \\
& +\left(\left[\begin{array}{l}
2 \\
2
\end{array}\right]\left\{\begin{array}{l}
5 \\
3
\end{array}\right\}-\left[\begin{array}{l}
3 \\
2
\end{array}\right]\left\{\begin{array}{l}
5 \\
4
\end{array}\right\}+\left[\begin{array}{l}
4 \\
2
\end{array}\right]\left\{\begin{array}{l}
5 \\
5
\end{array}\right\}\right) n^{2}+\left(\left[\begin{array}{l}
3 \\
3
\end{array}\right]\left\{\left\{\begin{array}{l}
5 \\
4
\end{array}\right\}-\left[\begin{array}{l}
4 \\
3
\end{array}\right]\left\{\begin{array}{l}
5 \\
5
\end{array}\right\}\right) n^{3}+n^{4}\right. \\
= & 1+\left[\begin{array}{l}
1 \\
1
\end{array}\right] n^{5}\left\{\begin{array}{l}
5 \\
2
\end{array}\right\}+\left(\left[\begin{array}{l}
2 \\
2
\end{array}\right] n^{2}-\left[\begin{array}{l}
2 \\
1
\end{array}\right]^{n}\right)\left\{\begin{array}{l}
5 \\
3
\end{array}\right\}+\left(\left[\begin{array}{l}
3 \\
3
\end{array}\right] n^{3}-\left[\begin{array}{l}
3 \\
2
\end{array}\right] n^{2}+\left[\begin{array}{l}
3 \\
1
\end{array}\right] n\right)\left\{\begin{array}{l}
5 \\
4
\end{array}\right\} \\
& +\left(\left[\begin{array}{l}
4 \\
4
\end{array}\right] n^{4}-\left[\begin{array}{l}
4 \\
3
\end{array}\right] n^{3}+\left[\begin{array}{l}
4 \\
2
\end{array}\right] n^{2}-\left[\begin{array}{l}
4 \\
1
\end{array}\right] n\right)\left\{\begin{array}{l}
5 \\
5
\end{array}\right\} \\
= & \left(\binom{n}{0}\left\{\begin{array}{l}
5 \\
1
\end{array}\right\}+\left(\binom{n}{1}\left\{\begin{array}{l}
5 \\
2
\end{array}\right\}+\left(\binom{n}{2}\left\{\begin{array}{l}
5 \\
3
\end{array}\right\}+\left(\binom{n}{3}\left\{\begin{array}{l}
5 \\
4
\end{array}\right\}+\left(\binom{n}{4}\right)\left\{\begin{array}{l}
5 \\
5
\end{array}\right\} .\right.\right.\right.\right.
\end{aligned}
$$

Next, we use the mathematical induction to prove

$$
\sum_{i=1}^{n} i^{k}=\sum_{j=1}^{k+1} \frac{1}{j}\left(\binom{n}{j}\right)\left\{\begin{array}{c}
k+1 \tag{Eq. 38}\\
j
\end{array}\right\},
$$

with Eq. 37 being used in the inductive step:

$$
\begin{align*}
\sum_{i=1}^{n+1} i^{k} & =\sum_{j=1}^{k+1} \frac{1}{j}\left(\binom{n}{j}\right)\left\{\begin{array}{c}
k+1 \\
j
\end{array}\right\}+\sum_{j=1}^{k+1}\left(\binom{n}{j-1}\right)\left\{\begin{array}{c}
k+1 \\
j
\end{array}\right\}=\sum_{j=1}^{k+1}\left[1+\frac{j}{n-j+1}\right] \frac{1}{j}\left(\binom{n}{j}\left\{\begin{array}{c}
k+1 \\
j
\end{array}\right\}\right. \\
& =\sum_{j=1}^{k+1}\left[\frac{n+1}{n-j+1}\left(\binom{n}{j}\right)\right] \frac{1}{j}\left\{\begin{array}{c}
k+1 \\
j
\end{array}\right\}=\sum_{j=1}^{k+1} \frac{1}{j}\left(\binom{n+1}{j}\left\{\begin{array}{c}
k+1 \\
j
\end{array}\right\} .\right. \tag{Eq. 39}
\end{align*}
$$

Finally, we can obtain

$$
\sum_{i=1}^{n} i^{k}=\sum_{r=0}^{k} \sum_{j=k+1-r}^{k+1}(-1)^{j-k-1+r} \frac{1}{j}\left[\begin{array}{c}
j \tag{Eq. 40}\\
k+1-r
\end{array}\right]\left\{\begin{array}{c}
k+1 \\
j
\end{array}\right\} n^{k+1-r}
$$

by regrouping the following display of Eq. 39 :

$$
\begin{aligned}
& {\left[\begin{array}{l}
1 \\
1
\end{array}\right]\left\{\begin{array}{c}
k+1 \\
1
\end{array}\right\} n+\frac{1}{2}\left\{\begin{array}{c}
k+1 \\
2
\end{array}\right\} n^{2}-\frac{1}{2}\left[\begin{array}{l}
2 \\
1
\end{array}\right]\left[\begin{array}{c}
k+1 \\
2
\end{array}\right\} n} \\
& +\frac{1}{3}\left\{\begin{array}{c}
k+1 \\
3
\end{array}\right\} n^{3}-\frac{1}{3}\left[\begin{array}{l}
3 \\
2
\end{array}\right]\left\{\begin{array}{c}
k+1 \\
3
\end{array}\right\} n^{2}+\frac{1}{3}\left[\begin{array}{c}
3 \\
1
\end{array}\right]\left\{\begin{array}{c}
k+1 \\
3
\end{array}\right\} n+,, \\
& +\frac{1}{k+1}\left[\begin{array}{c}
k+1 \\
k+1
\end{array}\right]\left\{\begin{array}{c}
k+1 \\
k+1
\end{array}\right\} n^{k+1}-\frac{1}{k+1}\left[\begin{array}{c}
k+1 \\
k
\end{array}\right]\left\{\begin{array}{c}
k+1 \\
k+1
\end{array}\right\} n^{k}+\ldots+(-1)^{k} \frac{1}{k+1}\left[\begin{array}{c}
k+1 \\
1
\end{array}\right]\left\{\begin{array}{c}
k+1 \\
k+1
\end{array}\right\} n .
\end{aligned}
$$

We finally come to the third level of sortation.
The first-order Eulerian number $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle$ is the number of permutations $p_{1} p_{2} \ldots p_{n}$ of the set $\{1,2, \ldots n\}$ that have k ascents, i.e. k places where $p_{j}<p_{j+1}$. Let us first look at simple examples: 1 gives $\left\langle\begin{array}{l}1 \\ 0\end{array}\right\rangle=1$ and $\left\langle\begin{array}{l}1 \\ 1\end{array}\right\rangle=0 ; 21$ gives $\left\langle\begin{array}{l}2 \\ 0\end{array}\right\rangle=1 ; 12$ gives $\left\langle\begin{array}{l}{ }^{2} \\ 1\end{array}\right\rangle=1$ and $\left\langle\begin{array}{l}2 \\ 2\end{array}\right\rangle=0 ; 321$ gives $\left\langle\begin{array}{l}3 \\ 0\end{array}\right\rangle=1 ; 132,213,231,312$ gives $\left\langle\begin{array}{l}3 \\ 1\end{array}\right\rangle=4 ; 123$ gives $\left\langle\begin{array}{l}3 \\ 2\end{array}\right\rangle=1$ and
$\left\langle\begin{array}{l}3 \\ 3\end{array}\right\rangle=0 ; 4321$ gives $\left\langle\begin{array}{l}4 \\ 0\end{array}\right\rangle=1 ; 1234$ gives $\left\langle\begin{array}{l}4 \\ 3\end{array}\right\rangle=1$ and
$\left\langle\begin{array}{l}4 \\ 4\end{array}\right\rangle=0 ; 1432,2143,2431,3142,3214,3412,3241,4132,4213,4231,4312$ gives
$\left\langle\begin{array}{l}4 \\ 1\end{array}\right\rangle=11$
and $1243,1324,1342,1423,2134,2314,2341,2413,3124,3412,4123$ gives $\left\langle\begin{array}{l}4 \\ 2\end{array}\right\rangle=11$.

In general, for a permutation $p_{1} p_{2} \ldots p_{n-1}$ of $\{1,2, \ldots n-1\}$ with $k-1$ ascents, we have two cases to consider.

Case 1. We can insert n into $p_{1} p_{2} \ldots p_{n-1}$ either after p_{n-1} or between p_{j-1} and p_{j} whenever $P_{j-1}>P_{j}$ to form a permutation of $\{1,2, \ldots n\}$ that increases the number of ascents by 1 so that the total number of permutations of $\{1,2, \ldots n\}$ that have k ascents in this case is $(n-k)\left\{\begin{array}{c}n-1 \\ k-1\end{array}\right\rangle$.

Case 2. For a permutation $p_{1} p_{2} \ldots p_{n-1}$ of $\{1,2, \ldots n-1\}$ with k ascents, we can insert n into $p_{1} p_{2} \ldots p_{n-1}$ either before p_{1} or between p_{j-1} and p_{j} whenever $p_{j-1}<p_{j}$ to form a permutation of $\{1,2, \ldots n\}$ that maintains the same number of ascents so that the total number of permutations of $\{1,2, \ldots n\}$ that have k ascents in this case is $(k+1)\left\langle\begin{array}{c}n-1 \\ k\end{array}\right\rangle$.

Therefore, we have proved that

$$
\left\langle\begin{array}{l}
n \tag{Eq. 41}\\
k
\end{array}\right\rangle=(n-k)\left\langle\begin{array}{c}
n-1 \\
k-1
\end{array}\right\rangle+(k+1)\left\langle\begin{array}{c}
n-1 \\
k
\end{array}\right\rangle,
$$

Comparing Eqs. 41 and 18, we see that $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle=e(n, k-1)$ and Eq. 41 can be written as

$$
\begin{equation*}
\sum_{i=1}^{n} i^{k}=\sum_{j=0}^{k-1} \backslash_{j}^{k}{ }_{j}\binom{n+j+1}{k+1} \tag{Eq. 42}
\end{equation*}
$$

Now, by virtue of Eq. 35, we can derive

$$
\begin{align*}
& \sum_{i=1}^{n} i^{k}=\frac{1}{(k+1)!} \sum_{j=0}^{k-1}\left\langle\sum_{j}^{k}\right\rangle \sum_{r=1}^{k+1}(-1)^{r-1}\left[\begin{array}{c}
k+1 \\
k+2-r
\end{array}\right](n+j+1)^{k+2-r} \\
& =\frac{1}{(k+1)!} \sum_{j=0}^{k-1}\left\langle\sum_{j}^{k}\right\rangle \sum_{r=1}^{k+1}(-1)^{r-1}\left[\begin{array}{c}
k+1 \\
k+2-r
\end{array} \sum_{t=0}^{k+2-r}\binom{k+2-r}{k+2-r-t} n^{k+2=r=t}(j+1)^{t}\right. \\
& =\frac{1}{(k+1)!} \sum_{j=0}^{k+1}\left\{\sum_{t=0}^{j}(-1)^{r}\left[\begin{array}{c}
k+1 \\
k+1-r
\end{array}\right]\binom{k+1-r}{k+1-j} \sum_{t=0}^{k-1}(t+1)^{j-r}\left\langle\begin{array}{l}
k \\
t
\end{array}\right)\right\} n^{k+1-j} \tag{Eq. 43}
\end{align*}
$$

The second-order Eulerian number $\left\langle\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle\right\rangle$ is the number of permutations $p_{1} p_{2} \ldots p_{n}$ of the multiset $\{1,1,2,2, \ldots n, n\}$ that have k ascents, i.e. k places where $p_{j}<p_{j+1}$, provided that all numbers between the two occurrences of m are greater than m for $1 \leq m \leq n$.

Here are some simple cases: 11 gives $\left\langle\left\langle\begin{array}{l}1 \\ l_{0}\end{array}\right\rangle\right\rangle=1$ and $\left\langle\left\langle\begin{array}{l}1 \\ 1 \\ 1\end{array}\right\rangle\right\rangle=0 ; 2211$ gives $\left\langle\left\langle\begin{array}{l}{ }^{2} \\ 0\end{array}\right\rangle\right\rangle=1$;
1122,12211 gives $\left\langle\left\langle\begin{array}{l}2 \\ 1\end{array}\right\rangle\right\rangle=2 ; 332211$ gives $\left\langle\left\langle\begin{array}{l}3 \\ 0\end{array}\right\rangle\right\rangle=1 ; 112233$ gives $\left\langle\left\langle\begin{array}{l}3 \\ 3\end{array}\right\rangle\right\rangle=0 ;$
113322,133221, 221133, 221331,223311, 233211,331122, 331221 gives $\left\langle\left\langle\begin{array}{l}3 \\ 1 \\ 1\end{array}\right\rangle\right\rangle=8$ and
$112233,112332,122133,122331,123321,133122$ gives $\left\langle\left\langle\begin{array}{l}3 \\ 2\end{array}\right\rangle\right\rangle=6$. For a permutation $p_{1} p_{2} \ldots p_{2 n-2}$ of $\{1,1,2,2, \ldots n-1, n-1\}$ with $k-1$ ascents, we can insert n, n into $p_{1} p_{2} \ldots p_{2 n-2}$ either after p_{n-1} or between p_{j-1} and p_{j} whenever $P_{j-1} \geq P_{j}$ to form a permutation of $\{1,1,2,2, \ldots n, n\}$ that increases the number of ascents by 1 so that the total number of permutations of $\{1,1,2,2, \ldots n, n\}$ that have k ascents is $(2 n-1-k)\left\langle\left\langle\begin{array}{c}n-1 \\ k\end{array}\right\rangle\right\rangle$;
whereas for a permutation $p_{1} p_{2} \ldots p_{2 n-2}$ of $\{1,1,2,2, \ldots n-1, n-1\}$ with k ascents, we can insert n, n into $p_{1} p_{2} \ldots p_{2 n-2}$ either before p_{1} or between p_{j-1} and p_{j} whenever $p_{j-1}<p_{j}$ to form a permutation of $\{1,1,2,2, \ldots n, n\}$ that maintains the same number of ascents so that the total number of permutations of $\{1,1,2,2, \ldots n, n\}$ that have k ascents is $(k+1)\left\langle\left\langle\begin{array}{c}n-1 \\ k\end{array}\right\rangle\right\rangle$.

Therefore, we have proved that

$$
\left\langle\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle\right\rangle=(2 n-1-k)\left\langle\left\langle\begin{array}{l}
n-1 \\
k-1
\end{array}\right\rangle\right\rangle+(k+1)\left\langle\left\langle\begin{array}{c}
n-1 \\
k
\end{array}\right\rangle\right\rangle,
$$

which is equivalent to Eq. 18, since $\left\langle\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle\right\rangle=E(n, k-1)$.

Furthermore, there is a curious link between Stirling numbers of the second kind and the first-order Eulerian numbers, that is,

$$
\sum_{k=1}^{n} k!\left\{\begin{array}{c}
n \tag{Eq. 44}\\
k
\end{array}\right\}=\sum_{k=0}^{n-1} 2^{k}\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle,
$$

as can be verified via Tables 18 and 12.

For $(a+(i-1) d)_{1}^{\infty}$, the Stirling triangle of the first kind $\left[\begin{array}{l}n \\ k\end{array}\right]_{a ; d}$ can be constructed via

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{a ; d}=\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]_{a ; d}+[a+(n-2) d]\left[\begin{array}{l}
n-1 \\
k
\end{array}\right]_{a ; d} \quad \text { Eq. } 45
$$

with $\left[\begin{array}{l}n \\ n\end{array}\right]_{a ; d}=1$ and the Stirling triangle of the second kind $\left\{\begin{array}{l}n \\ k\end{array}\right\}_{a ; d}$ can be constructed via

$$
\left\{\begin{array}{l}
n \tag{Eq. 46}\\
k
\end{array}\right\}_{a ; d}=\left\{\begin{array}{l}
n-1 \\
k-1
\end{array}\right\}_{a ; d}+[a+(k-1) d]\left\{\begin{array}{c}
n-1 \\
k
\end{array}\right\}_{a ; d}
$$

with $\left\{\begin{array}{l}n \\ { }_{n}\end{array}\right\}_{a ; d}=1$. On the other hand, Eq. 36 can be generalized to

$$
\left\{\begin{array}{l}
n \tag{Eq. 47}\\
k
\end{array}\right\}_{a ; d}=\sum_{j=1}^{n-k}(-1)^{j-1}\left[\begin{array}{c}
k+j \\
k
\end{array}\right]_{a ; d}\left\{\begin{array}{c}
n \\
k+j
\end{array}\right\}_{a ; d} .
$$

Next, we shall prove

$$
\sum_{i=1}^{n}[a+(i-1) d]^{k}=\sum_{r=0}^{k} \sum_{j=k+1-r}^{k+1}(-1)^{j-k-1+r} \frac{d^{j-1}}{j}\left[\begin{array}{c}
j \tag{Eq. 48}\\
k+1-r
\end{array}\right]\left\{\begin{array}{c}
k+1 \\
j
\end{array}\right\}_{a ; d} n^{k+1-r},
$$

which is the generalization of Eq. 37. By virtue of $(n-j+1)\left(\binom{n}{j-1}\right)=\left(\binom{n}{j}\right)$ and Eq. 46,
we first use mathematical induction to prove

$$
\sum_{j=1}^{k+1} d^{j-1}\left\{\begin{array}{c}
k+1 \tag{Eq. 49}\\
j
\end{array}\right\}_{a ; d}\left(\left(_{n}^{n} \begin{array}{l}
j-1
\end{array}\right)\right)=(a+n d)^{k}
$$

as follows. Since the inductive basis is trivially true, we only show the inductive step.

$$
\begin{aligned}
& \sum_{j=1}^{k+2} d^{j-1}\left\{\begin{array}{c}
k+2 \\
j
\end{array}\right\}_{a ; d}\left(\binom{n}{j-1}\right) \\
& =\sum_{j=1}^{k+1} d^{j-1}\left([a+(j-1) d]\left\{\begin{array}{c}
k+1 \\
j
\end{array}\right\}_{a ; d}+\left\{\begin{array}{c}
k+1 \\
j-1
\end{array}\right\} \quad\right)\left(\binom{n}{j-d}\right)+d^{k+1}\left(\binom{n}{k+1}\right) \\
& =\sum_{j=1}^{k+1} a d^{j-1}\left\{\begin{array}{c}
k+1 \\
j
\end{array}\right\}_{a ; d}\left(\binom{n}{j-1}\right)+\sum_{j=1}^{k+1} d^{j}(j-1)\left\{\begin{array}{c}
k+1 \\
j
\end{array}\right\}_{a ; d}\left(\binom{n}{j-1}\right)+\sum_{j=1}^{k+1} d^{j-1}\left\{\begin{array}{c}
k+1 \\
j-1
\end{array}\right\} \quad\left(\begin{array}{c}
n \\
a ; d
\end{array}\left(\begin{array}{c}
\\
j-1
\end{array}\right)\right)+d^{k+1}\left(\binom{n}{k+1}\right) \\
& =\sum_{j=1}^{k+1}(a+n d) d^{j-1}\left\{\begin{array}{c}
k+1 \\
j
\end{array}\right\}_{a ; d}\left(\binom{n}{j-1}\right)-\sum_{j=1}^{k+1} d^{j}\left\{\begin{array}{c}
k+1 \\
j
\end{array}\right\}_{a ; d}\left(\binom{n}{j}\right)+\sum_{j=1}^{k+1} d^{j-1}\left\{\begin{array}{c}
k+1 \\
j-1
\end{array}\right\}_{a ; d}\left(\binom{n}{j-1}\right)+d^{k+1}\left(\binom{n}{k+1}\right) \\
& =(a+n d) \sum_{j=1}^{k+1} d^{j-1}\left\{\begin{array}{c}
k+1 \\
j
\end{array}\right\}_{a ; d}\left(\binom{n}{j-1}\right)-\sum_{j=1}^{k+1} d^{j}\left\{\begin{array}{c}
k+1 \\
j
\end{array}\right\}_{a ; d}\left(\binom{n}{j}\right)+\sum_{j=1}^{k} d^{j}\left\{\begin{array}{c}
k+1 \\
j
\end{array}\right\}_{a ; d}\left(\binom{n}{j}\right)+d^{k+1}\left(\binom{n}{k+1}\right) \\
& =(a+n d)^{k+1} .
\end{aligned}
$$

We can now use mathematical induction to prove Eq. 48 via Eq. 49:

$$
\begin{aligned}
& \sum_{j=1}^{k+1} \frac{d^{j-1}}{j}\left\{\begin{array}{c}
k+1 \\
j
\end{array}\right\}_{a ; d}\left(\binom{n+1}{j}\right) \\
= & \sum_{j=1}^{k+1} \frac{d^{j-1}}{j}\left\{\begin{array}{c}
k+1 \\
j
\end{array}\right\}_{a ; d}\left[\left(\binom{n}{j}\right)+j\left(\binom{n}{j-1}\right)\right] \\
= & \sum_{j=1}^{k+1} \frac{d^{j-1}}{j}\left\{\begin{array}{c}
k+1 \\
j
\end{array}\right\}_{a ; d}\left(\binom{n}{j}\right)+\sum_{j=1}^{k+1} d^{j-1}\left\{\begin{array}{c}
k+1 \\
j
\end{array}\right\}_{a ; d}\left(\binom{n}{j-1}\right) \\
= & \sum_{i=1}^{n}[a+(i-1) d]^{k}+(a+n d)^{k} \\
= & \sum_{i=1}^{n+1}[a+(i-1) d]^{k} .
\end{aligned}
$$

Finally, we can obtain Eq. 49 by regrouping the following display of Eq. 48.

$$
\begin{aligned}
& {\left[\begin{array}{l}
1 \\
1
\end{array}\right]\left\{\begin{array}{c}
k+1 \\
1
\end{array}\right\}_{a ; d} n+\frac{d}{2}\left[\begin{array}{l}
2 \\
2
\end{array}\right]\left[\begin{array}{c}
k+1 \\
2
\end{array}\right\}_{a ; d} n^{2}-\frac{d}{2}\left[\begin{array}{l}
2 \\
1
\end{array}\right]\left\{\begin{array}{c}
k+1 \\
2
\end{array}\right\}_{a ; d} n} \\
& +\frac{d^{2}}{3}\left[\begin{array}{l}
3 \\
3
\end{array}\right]\left\{\begin{array}{c}
k+1 \\
3
\end{array}\right\}_{a ; d} n^{3}-\frac{d^{2}}{3}\left[\begin{array}{l}
3 \\
2
\end{array}\right]\left\{\begin{array}{c}
k+1 \\
3
\end{array}\right\}_{a ; d} n^{2}+\frac{d^{2}}{3}\left[\begin{array}{l}
3 \\
1
\end{array}\right]\left\{\begin{array}{c}
k+1 \\
3
\end{array}\right\}_{a ; d} n+\ldots \\
& +\frac{d^{k}}{k+1}\left[\begin{array}{l}
k+1 \\
k+1
\end{array}\right]\left\{\begin{array}{c}
k+1 \\
k+1
\end{array}\right\}_{a ; d} n^{k+1}-\frac{d^{k}}{k+1}\left[\begin{array}{c}
k+1 \\
k
\end{array}\right]\left\{\begin{array}{c}
k+1 \\
k+1
\end{array}\right\}_{a ; d} n^{k}+\ldots+(-1)^{k} \frac{d^{k}}{k+1}\left[\begin{array}{c}
k+1 \\
1
\end{array}\right]\left\{\begin{array}{c}
k+1 \\
k+1
\end{array}\right\}_{a ; d} n .
\end{aligned}
$$

Based on $\left[\begin{array}{l}1 \\ 0\end{array}\right]_{a ; d}=0$ and $\left[\begin{array}{l}1 \\ 1\end{array}\right]_{a ; d}=1$, we can use Eq. 45 to tabulate $\left[\begin{array}{l}n \\ k\end{array}\right]_{a ; d}$ in Table 19.

n / k	1	2	3	4	5
1	1				
2	a	1			
3	$a(a+d)$	$2 a+d$	1		
4	$a(a+d)(a+2 d)$	$3 a^{2}+6 a d+2 d^{2}$	$3 a+3 d$	1	
5	$a(a+d)(a+2 d)(a+3 d)$	$4 a^{3}+18 a^{2} d+22 a d^{2}+6 d^{3}$	$6 a^{2}+18 a d+11 d^{2}$	$4 a+6 d$	1

Table 19. Table for general Stirling numbers of the first kind $\left[\begin{array}{l}n \\ k\end{array}\right]_{a ; d}$

Next, we shall come up with the second-order Stirling numbers of the second kind in the same manner. Based on $\left\{\begin{array}{l}1 \\ 0\end{array}\right\}_{a ; d}=0$ and $\left\{\begin{array}{l}1 \\ 1\end{array}\right\}_{a ; d}=1$, we can use Eq. 46 to tabulate $\left\{\begin{array}{l}n \\ k\end{array}\right\}_{a ; d}$ in Table 20.

n / k	1	2	3	4	5
1	1				
2	a	1			
3	a^{2}	$2 a+d$	1		
4	a^{3}	$3 a^{2}+3 a d+d^{2}$	$3 a+3 d$	1	
5	a^{4}	$4 a^{3}+6 a^{2} d+4 a d^{2}+d^{3}$	$6 a^{2}+12 a d+7 d^{2}$	$4 a+6 d$	1

Table 20. Table for general Stirling numbers of the second kind $\left\{\begin{array}{l}n \\ k\end{array}\right\}_{a ; d}$

Lastly, we shall generalize Eulerian numbers $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle$ and $\left\langle\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle\right\rangle$ for $(a+(n-1) d)_{n=1}^{\infty}$. It is quite easy to derive

$$
\begin{align*}
& \sum_{i=1}^{n}[a+(i-1) d]=(d-a)\binom{n}{2}+a\binom{n+1}{2}, \tag{Eq. 50}\\
& \sum_{i=1}^{n}[a+(i-1) d]^{2}=(d-a)^{2}\binom{n}{3}+\left(-2 a^{2}+2 a d+d^{2}\right)\binom{n+1}{3}+a^{2}\binom{n+2}{3}, \tag{Eq. 51}
\end{align*}
$$

and

$$
\begin{align*}
\sum_{i=1}^{n}[a+(i-1) d]^{3}= & (d-a)^{3}\binom{n}{4}+\left(3 a^{3}-6 a^{2} d+4 d^{3}\right)\binom{n+1}{4} \\
& +\left(-3 a^{3}+3 a^{2} d+3 a d^{2}+d^{3}\right)\binom{n+2}{4}+a^{3}\binom{n+3}{4} \tag{Eq. 52}
\end{align*}
$$

Now, we can define $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle_{a ; d}$ according to Eqs. 50-52 analogous to $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle$. By virtue of

Eq. 50, we define $\left\langle\begin{array}{l}1 \\ -1\end{array}\right\rangle_{a ; d}=d-a$ and $\left\langle\begin{array}{l}1 \\ 0_{0}\end{array}\right\rangle_{a ; d}=a$ so that $\left\langle\begin{array}{l}1 \\ -1\end{array}\right\rangle^{1}=\left\langle\begin{array}{l}1 \\ -1\end{array}\right\rangle_{1 ; 1}=0$. Unlike $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle$,
we start with $k=-1$ for $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle_{a ; d}$. Due to Eqs. 51 and 52, we can define $\left\langle\begin{array}{l}{ }^{2} \\ -1\end{array}\right\rangle_{a ; d}=(d-a)^{2}$,
$\left\langle{ }_{0}^{2}\right\rangle_{a ; d}=-2 a^{2}+2 a d+d^{2},\left\langle_{1}^{2}\right\rangle_{a ; d}=a^{2},\left\langle_{-1}^{3}\right\rangle_{a ; d}=(d-a)^{3},\left\langle_{0}^{3}\right\rangle_{a ; d}=3 a^{3}-6 a^{2} d+4 d^{3}$,
$\left\langle\begin{array}{l}3 \\ 1\end{array}\right\rangle_{a ; d}=-3 a^{3}+3 a^{2} d+3 a d^{2}+d^{3}$ and $\left\langle_{2}^{3}\right\rangle_{a ; d}=a^{3}$. Thus we have generalized Eq. 42 up
to $k=3$, which is sufficient for us to generalize Eq. 41 .

For our purpose, let us first define $\left\langle{ }_{-1}^{0}\right\rangle_{a ; d}=0$. Then we write $\left\langle{ }_{-1}^{2}\right\rangle_{a ; d}=(-a+d)\left\langle\left\langle_{-1}^{1}\right\rangle_{a ; d}\right.$,
$\left.\left\langle{ }^{2}\right\rangle_{0}\right\rangle_{a ; d}=(a+d)\left\langle{ }_{-1}^{1}\right\rangle_{a ; d}+(-a+2 d)\left\langle{ }_{0}^{1}\right\rangle_{a ; d},\left\langle{ }_{1}^{2}\right\rangle_{a ; d}=a\left\langle{ }_{0}^{1}\right\rangle_{a ; d},\left\langle\left\langle_{-1}^{3}\right\rangle_{a ; d}=(-a+d)\left\langle{ }_{-1}^{2}\right\rangle_{a ; d}\right.$,
$\left\langle\begin{array}{l}3 \\ { }_{0}\end{array}\right\rangle_{a ; d}=(a+2 d)\left\langle{ }_{-1}^{2}\right\rangle_{a ; d}+(-a+2 d)\left\langle\left\langle_{0}^{2}\right\rangle_{a ; d},\left\langle\left\langle_{1}^{3}\right\rangle_{a ; d}=(a+d)\left\langle{ }_{0}^{2}\right\rangle_{a ; d}+(-a+3 d)\left\langle{ }_{1}^{2}\right\rangle_{a ; d}\right.\right.$ and
$\left\langle{ }_{2}^{3}\right\rangle_{a ; d}=a\left\langle{ }_{1}^{2}\right\rangle_{a ; d}$.

As we can check, the above are the special cases of

$$
\begin{equation*}
\left\langle_{k}^{n}\right\rangle_{a ; d}=[a+(n-k-1) d]\left\langle{ }_{k-1}^{n-1}\right\rangle_{a ; d}+[-a+(k+2) d]\left\langle_{k}^{n-1}\right\rangle_{a ; d}, \tag{Eq. 53}
\end{equation*}
$$

which is the generalization of Eq. 36 and can be used to tabulate $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle_{a ; d}$ in Table 21.
$n \backslash k \quad-1$
0
1
2
$0 \quad 0$
$1 d-a$
a
$2(d-a)^{2}$
$-2 a^{2}+2 a d+d^{2}$
a^{2}
$3(d-a)^{3}$
$3 a^{3}-6 a^{2} d+4 d^{3}$ $-3 a^{3}+3 a^{2} d+3 a d^{2}+d^{3}$ a^{3}

Table 21. Table for general first order Eulerian numbers $\left\langle{ }_{k}^{n}\right\rangle_{a ; d}$

Moreover, we can write

$$
\begin{aligned}
& {[a+(n-1) d]=(d-a)\binom{n-1}{1}+a\binom{n}{1},} \\
& {[a+(n-1) d]^{2}=(d-a)^{2}\binom{n-1}{2}+\left(-2 a^{2}+2 a d+d^{2}\right)\binom{n}{2}+a^{2}\binom{n+1}{2},} \\
& {[a+(n-1) d]^{3}=(d-a)^{3}\binom{n-1}{3}+\left(3 a^{3}-6 a^{2} d+4 d^{3}\right)\binom{n}{3}} \\
& \\
& \quad+\left(-3 a^{3}+3 a^{2} d+3 a d^{2}+d^{3}\right)\binom{n+1}{3}+a^{3}\binom{n+2}{3}
\end{aligned}
$$

and in general

$$
[a+(n-1) d]^{k}=\sum_{j=-1}^{k-1}\left\langle\begin{array}{l}
k \\
j
\end{array}\right\rangle_{a ; d}\binom{n+j}{k},
$$

which the generalization of Eq. 19 since $\left\langle\begin{array}{l}n \\ l_{k}\end{array}\right\rangle=e(n, k-1)$. Therefore, the proof of Eq. 20
can be generalized to prove

$$
\sum_{i=1}^{n}[a+(i-1) d]^{k}=\sum_{j=-1}^{k-1}\left\langle\sum_{j}^{k}\right\rangle_{a ; d}\binom{n+j+1}{k+1} .
$$

By recalling $\left[\begin{array}{l}n \\ k\end{array}\right]=s(n, n-k)$ and $\left\langle\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle\right\rangle=E(n, k-1)$, we generalize Eq. 51 as follows.
Since $\left[\begin{array}{c}n \\ n-1\end{array}\right]_{a ; d}=\sum_{i=1}^{n-1}[a+(i-1) d]=(d-a)\binom{n-1}{2}+a\binom{n}{2}$, to generalize Eq. 51 we assume $\left[\begin{array}{c}n \\ n-2\end{array}\right]_{a ; d}=x\binom{n-1}{4}+y\binom{n}{4}+z\binom{n+1}{4}$. Taking $n=1,2,3$, we have
$z=\left[\begin{array}{l}3 \\ 1\end{array}\right]_{a ; d}=a^{2}+a d$,
$y+5 z=\left[\begin{array}{l}4 \\ 2\end{array}\right]_{a ; d}=3 a^{2}+6 a d+2 d^{2}$ and $x+5 y+15 z=\left[\begin{array}{l}5 \\ 3\end{array}\right]_{a ; d}=6 a^{2}+18 a d+11 d^{2}$ so that
$x=(d-a)^{2}, y=-2 a^{2}+a d+2 d^{2}$ and $z=a(a+d)$. Thus, we have arrived at

$$
\left[\begin{array}{c}
n \\
n-2
\end{array}\right]_{a ; d}=(d-a)^{2}\binom{n-1}{4}+\left(-2 a^{2}+a d+2 d^{2}\right)\binom{n}{4}+a(a+d)\binom{n+1}{4} .
$$

Likewise, we can obtain

$$
\begin{aligned}
{\left[\begin{array}{c}
n \\
n-3
\end{array}\right]_{a ; d}=} & (d-a)^{3}\binom{n-1}{6}+\left(3 a^{3}-3 a^{2} d-7 a d^{2}+8 d^{3}\right)\binom{n}{6} \\
& +\left(-3 a^{3}-3 a^{2} d+8 a d^{2}+6 d^{3}\right)\binom{n+1}{6}+a(a+d)(a+2 d)\binom{n+2}{6} .
\end{aligned}
$$

By defining $\left\langle\left\langle\begin{array}{l}0 \\ -1\end{array}\right\rangle\right\rangle_{a ; d}=1,\left\langle\left\langle\begin{array}{l}1 \\ -1\end{array}\right\rangle\right\rangle_{a ; d}=d-a$ and $\left\langle\left\langle\begin{array}{l}1 \\ 0\end{array}\right\rangle\right\rangle_{a ; d}=a$, we can use

$$
\left\langle\left\langle\begin{array}{l}
n \tag{Eq. 54}\\
k
\end{array}\right\rangle\right\rangle_{a ; d}=[a+(2 n-2-k) d]\left(\left\langle\begin{array}{l}
n-1 \\
k-1
\end{array}\right\rangle\right\rangle_{a ; d}+[-a+(k+2) d]\left(\left\langle\begin{array}{c}
n-1 \\
k
\end{array}\right\rangle\right\rangle_{a ; d}
$$

to tabulate $\left\langle\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle\right\rangle_{a ; d}$ in Table 22.
$n \backslash k \quad-1$
0
1
2

0	1		
1	$d-a$	a	
2	$(d-a)^{2}$	$-2 a^{2}+a d+2 d^{2}$	$a(a+d)$

$3(d-a)^{3} 3 a^{3}-3 a^{2} d-7 a d^{2}+8 d^{3}-3 a^{3}-3 a^{2} d+8 a d^{2}+6 d^{3} a(a+d)(a+2 d)$

Table 22. Table for general second order Eulerian numbers $\left\langle\left\langle\sum_{k}^{n}\right\rangle\right\rangle_{a ; d}$ Accordingly, we can derive $\left[\begin{array}{c}n \\ n-k\end{array}\right]_{a ; d}=\sum_{j=-1}^{k-1}\left\langle\left\langle\begin{array}{l}k \\ j\end{array}\right\rangle\right\rangle_{a ; d}\binom{n+j}{2 k}$ so that $\left\langle\left\langle\begin{array}{l}k \\ j\end{array}\right\rangle\right\rangle_{a ; d}$ is the secondorder Eulerian number for $(a+(i-1) d)_{0}^{\infty}$.

2.2.5 Bell

Let us now consider the ordered Bell polynomial

$$
F_{n}(a, d)=\sum_{k=1}^{n} d^{k} k!\left\{\begin{array}{l}
n \tag{Eq. 55}\\
k
\end{array}\right\}_{a ; d} \text { for } n>1
$$

and the Eulerian Bell polynomial

$$
E_{n}(a, d)=\sum_{k=0}^{n-1} 2^{k}\left\langle{ }_{k}^{n}\right\rangle_{a ; d} \text { for } n>1
$$

Eq. 56

Can we generalize Eq. 44 for $n>1$? We shall see that $F_{n}(a, d)=E_{n}(a, d)$ only when $a=d$. For our purpose, let us define the difference Bell polynomial $D_{n}(a, d)$ to be

$$
\begin{equation*}
D_{n}(a, d)=F_{n}(a, d)-E_{n}(a, d) . \tag{Eq. 57}
\end{equation*}
$$

The Bell number $B_{n}=\sum_{k=1}^{n}\left\{\begin{array}{l}n \\ k\end{array}\right\}$ satisfying $B_{n+1}=\sum_{k=0}^{n}\binom{n}{k} B_{k}$ can be generalized to

$$
B_{n}(a, d)=\sum_{k=1}^{n} d^{k-1}\left\{\begin{array}{l}
n \\
k
\end{array}\right\}_{a ; d}
$$

as follows.

$$
\begin{aligned}
& B_{1}(a, d)=1, \\
& B_{2}(a, d)=a+d, \\
& B_{3}(a, d)=a^{2}+2 a d+2 d^{2}, \\
& B_{4}(a, d)=a^{3}+3 a^{2} d+6 a d^{2}+5 d^{3}
\end{aligned}
$$

so that

$$
\begin{aligned}
& B_{1}(a, d)=1=B_{0}, \\
& B_{2}(a, d)=a B_{0}+d B_{1}, \\
& B_{3}(a, d)=a^{2} B_{0}+2 a d B_{1}+d^{2} B_{2}, \\
& B_{4}(a, d)=a^{3} B_{0}+3 a^{2} d B_{1}+3 a d^{2} B_{2}+d^{3} B_{3}
\end{aligned}
$$

and in general,

$$
B_{n+1}(a, d)=\sum_{k=0}^{n} a^{n-k} d^{k}\binom{n}{k} B_{k} .
$$

Finally, we use Eq. 55 to find

$$
\begin{aligned}
& F_{2}(a, d)=a d+2 d^{2}, \\
& F_{3}(a, d)=a^{2} d+4 a d^{2}+8 d^{3}, \\
& F_{4}(a, d)=a^{3} d+6 a^{2} d^{2}+24 a d^{3}+44 d^{4}
\end{aligned}
$$

and use Eq. 56 to find

$$
\begin{aligned}
& E_{2}(a, d)=2 a d+d^{2}, \\
& E_{3}(a, d)=a^{3}+6 a d^{2}+6 d^{3}, \\
& E_{4}(a, d)=4 a^{3} d+6 a^{2} d^{2}+28 a d^{3}+37 d^{4}
\end{aligned}
$$

In the same fashion, we can use Eq. 57 to obtain

$$
\begin{aligned}
& D_{2}(a, d)=(d-a) d \\
& D_{3}(a, d)=(d-a)\left(a^{2}+2 d^{2}\right) \\
& D_{4}(a, d)=(d-a)\left(3 a^{2} d+3 a d^{2}+7 d^{3}\right) \\
& D_{5}(a, d)=(d-a)\left(a^{4}+12 a^{2} d^{2}+24 a d^{3}+38 d^{4}\right), \\
& D_{6}(a, d)=(d-a)\left(5 a^{4} d+10 a^{3} d^{2}+70 a^{2} d^{3}+185 a d^{4}+271 d^{5}\right), \\
& D_{7}(a, d)=(d-a)\left(a^{6}+30 a^{4} d^{2}+120 a^{3} d^{3}+570 a^{2} d^{4}+1620 a d^{5}+2342 d^{6}\right)
\end{aligned}
$$

and in general, we propose the following

$$
D_{n}(a, d)=(d-a)\left[(d-a)^{n-1}+E_{n-1}(a, d)\right] .
$$

Eq. 58

2.2.6 General triangular arrays

We shall further rewriting Eqs. 45, 46, 53 and 54 as

$$
\begin{aligned}
& {\left[\begin{array}{l}
n \\
k
\end{array}\right]_{\left(a_{i}\right)_{1}^{\infty}}=[a+(n-2) d]\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]_{\left(a_{i}\right)^{\infty}}+\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]_{\left(a_{i}\right)^{\infty}}=a_{n-1}\left[\begin{array}{l}
n-1 \\
k
\end{array}\right]_{\left(a_{i}\right)_{1}^{\infty}}+\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]_{\left(a_{i}\right)_{1}^{\infty}},} \\
& \left\{\begin{array}{l}
n \\
k
\end{array}\right\}_{\left(a_{i}\right)_{1}^{\infty}}=\left\{\begin{array}{l}
n-1 \\
k-1
\end{array}\right\}_{\left(a_{i}\right)_{1}^{\infty}}+[a+(k-1) d]\left\{\begin{array}{l}
n-1 \\
k
\end{array}\right\}_{\left(a_{i}\right)_{1}^{\infty}}=\left\{\begin{array}{l}
n-1 \\
k-1
\end{array}\right\}_{\left(a_{i}\right)_{1}^{\infty}}+a_{k}\left\{\begin{array}{l}
n-1 \\
k
\end{array}\right\}_{\left(a_{i}\right)_{1}^{\infty}}, \\
& \left.\left.\left\langle{ }_{k}^{n}\right\rangle_{\left(a_{i}\right)_{0}^{\infty}}=a_{n-k}\left\langle\begin{array}{l}
n-1 \\
k-1
\end{array}\right\rangle_{\left(a_{i}\right)_{0}^{\infty}}+\left[(n+k) a_{n}-(n+1+k) a_{n-1}\right]\right\rangle_{k}^{n-1}\right\rangle_{\left(a_{i}\right)_{0}^{\infty}} \\
& +\left[(n+k) a_{n}-(n+1+k) a_{n-1}\right] \quad\left\langle\left\langle\begin{array}{c}
n-1 \\
k
\end{array}\right\rangle\right\rangle_{\left(a_{i}\right)_{0}^{\infty}}, \\
& \left.\left.\left\langle\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle\right\rangle_{\left(a_{i}\right)_{0}^{\infty}}=\left[(n-k) a_{n}-(n-1-k) a_{n-1}\right]\right\rangle\left\langle\begin{array}{l}
n-1 \\
k-1
\end{array}\right\rangle\right\rangle_{\left(a_{i}\right)_{0}^{\infty}} \\
& +\left[(n+k) a_{n}-(n+1+k) a_{n-1}\right]\left\{\left\langle\begin{array}{c}
n-1 \\
k
\end{array}\right\rangle\right\rangle_{\left(a_{i}\right)_{0}^{\infty}},
\end{aligned}
$$

Eq. 59

Eq. 60

Eq. 61

Eq. 62
where $a_{i}=a+(i-1) d$. In the same token, Eqs. 28 and 29 can be written as

$$
\begin{align*}
& \binom{n}{k}_{(1)_{0}^{\infty}}=\binom{n-1}{k}_{(1)_{0}^{\infty}}+\binom{n-1}{k-1}_{(1)_{0}^{\infty}} ; \tag{Eq. 63}\\
& \left(\binom{n}{k}\right)_{(i)_{0}^{\infty}}=0\left(\binom{n-1}{k}\right)_{(i)_{0}^{\infty}}+k\left(\binom{n-1}{k-1}\right)_{(i)_{0}^{\infty}} .
\end{align*}
$$

Eq. 64

More generally, a triangular array $T^{r, s}\left(a_{i}\right)_{0}^{\infty}$ for $\left(a_{i}\right)_{0}^{\infty}$ can be defined as $T^{r, s}{ }_{\left(a_{i}\right)_{0}^{\infty}}=0$ for $k \leq-2$ and $k \geq n, T^{r, s}\left(a_{i}\right)_{0}^{\infty}(1,-1)=-a_{0}, T^{r, s}\left(a_{i}\right)_{0}^{\infty}(1,0)=a_{1}$ and

$$
\begin{equation*}
T^{r, s}\left(a_{i}\right)_{0}^{\infty}(n, k)=M(r) T^{r, s}\left(a_{i}\right)_{0}^{\infty}(n-1, k-1)+M(s) T^{r, s}\left(a_{i}\right)_{0}^{\infty}(n-1, k), \tag{Eq. 65}
\end{equation*}
$$

where $M(r)$ and $M(s)$ can be taken the following model list.

$$
\begin{aligned}
& M(0)=0, M(1)=1, M(2)=a_{n-1}, M(3)=a_{k}, M(4)=a_{n-k}, \\
& M(5)=(n+k) a_{n}-(n+1+k)-(n+1+k) a_{n-1}, \\
& M(6)=(n-k) a_{n}-(n-1-k) a_{n-1}
\end{aligned}
$$

Eq. 66

So, Eqs. 63 and 64 can be rewritten as $\binom{n}{k}=T^{1,1}(1)_{1}^{\infty}(n, k)$ and $\left(\binom{n}{k}\right)=T^{0,2}(i)_{1}^{\infty}(n, k)$,
where $(1)_{1}^{\infty}$ is the unity sequence and $(i)_{1}^{\infty}$ is the natural sequence. Moreover, Eqs. 59-62 can be rewritten as

$$
\begin{aligned}
& {\left[\begin{array}{l}
n \\
k
\end{array}\right]_{\left(a_{i}\right)_{1}^{\infty}}=T_{\left(a_{i}\right)_{1}^{\infty}}^{1,2}(n, k-1),} \\
& \left\{\begin{array}{l}
n \\
k
\end{array}\right\}_{\left(a_{i}\right)_{1}^{\infty}}=T_{\left(a_{i}\right)_{1}^{\infty}}^{1,3}(n, k-1), \\
& \left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle_{\left(a_{i}\right)_{1}^{\infty}}=T_{\left(a_{i}\right)_{0}^{\infty}}^{3,4}(n, k), \\
& \left\langle\left\langle l_{k}^{n}\right\rangle\right\rangle_{\left(a_{i}\right)_{0}^{\infty}}=T_{\left(a_{i}\right)_{0}^{\infty}}^{5,4}(n, k) .
\end{aligned}
$$

2.2.7 Gauss

To close out, let us consider Stirling numbers based on the sequence $\left(q^{i-1}\right)_{1}^{\infty}$ with $q \neq 0$.

First, we look at $\left[\begin{array}{l}n \\ k\end{array}\right]_{\left(q^{i-1}\right)_{i}^{0}}$. Based on $\left[\begin{array}{l}1 \\ 0\end{array}\right]_{\left(q^{i-1}\right)_{i}^{\infty}}=0$ and $\left[\begin{array}{l}1 \\ 1\end{array}\right]_{\left(q^{i-1}\right)_{i}^{0}}=1$, we can derive from Eq. 59 for $\left(q^{i-1}\right)_{1}^{\infty}$, namely

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{\left(q^{(-1}\right)_{1}^{\infty}}=\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]_{\left(q^{i-1}\right)_{i}^{\infty}}+q^{n-2}\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]_{\left(q^{i-1}\right)_{!}^{)_{i}}},
$$

the following:

$$
\begin{aligned}
& {\left[\begin{array}{l}
2 \\
1
\end{array}\right]_{\left(q^{i-1}\right)_{i}^{\infty}}=q^{0}\left[\begin{array}{l}
1 \\
1
\end{array}\right]_{\left(q^{i-1}\right)_{i}^{\infty}}=1,\left[\begin{array}{c}
2 \\
2
\end{array}\right]_{\left(q^{i-1}\right)_{i}^{0 i}}=\left[\begin{array}{c}
1 \\
1
\end{array}\right]_{\left(q^{i-1}\right)_{i}^{\infty}}=1,} \\
& {\left[\begin{array}{l}
3 \\
1
\end{array}\right]_{\left(q^{i-1}\right)_{i}^{\infty}}=q^{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]_{\left(q^{i-1}\right)_{i}^{\infty}}=q,\left[\begin{array}{l}
3 \\
2
\end{array}\right]_{\left(q^{(i-1}\right)_{i}^{\infty}}=\left[\begin{array}{l}
2 \\
1
\end{array}\right]_{\left(q^{i-1}\right)_{i}^{00}}+q^{1}\left[\begin{array}{l}
2 \\
2
\end{array}\right]_{\left(q^{i-1}\right)_{i}^{\infty}}=1+q,\left[\begin{array}{l}
3 \\
3
\end{array}\right]_{\left(q^{i-1}\right)_{i}^{\infty}}=1,} \\
& {\left[\begin{array}{l}
4 \\
1
\end{array}\right]_{\left(q^{i-1}\right)_{i}^{\infty}}=q^{2},\left[\begin{array}{l}
4 \\
2
\end{array}\right]_{\left(q^{i-1}\right)_{i}^{\infty}}=q+q^{2}+q^{3},\left[\begin{array}{l}
4 \\
3
\end{array}\right]_{\left(q^{i-1}\right)_{i}^{\infty}}=1+q+q^{2},\left[\begin{array}{l}
4 \\
4
\end{array}\right]_{\left(q^{i-1}\right)_{i}^{0}}=1, \ldots}
\end{aligned}
$$

and in general

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{\left(q^{i-1}\right)_{1}^{\infty}}=q^{\binom{n-k}{2}} \prod_{i=1}^{k-1} \frac{1-q^{n-k+i}}{1-q^{i}}=q^{\left(\begin{array}{c}
n-k
\end{array}\right)}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]_{q},
$$

where $\left[\begin{array}{c}n-1 \\ k\end{array}\right]_{q}$ is known to be a q-Gaussian coefficient. Likewise, we can use Eq. 63 for

$$
\left(q^{i-1}\right)_{1}^{\infty} \text {, namely }\left\{\begin{array}{l}
n \\
k
\end{array}\right\}_{\left(q^{i-1}\right)_{i}^{\infty}}=\binom{k+1}{2}\left\{\begin{array}{l}
n-1 \\
k-1
\end{array}\right\}_{\left(q^{i-1}\right)_{k}^{\infty}}+\left\{\begin{array}{c}
n-1 \\
k
\end{array}\right\}_{\left(q^{i-1}\right)_{k}^{\infty}}
$$

to arrive at

$$
\left\{\begin{array}{l}
n \\
k
\end{array}\right\}_{\left(q^{i-1}\right)_{1}^{\infty}}=\prod_{i=1}^{k-1} \frac{1-q^{n-k+i}}{1-q^{i}}=\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]_{q} .
$$

In conclusion, the properties of unimodal and log concave in (36) can be generalized.

2.3. MULTIPLE ANGLE FORMULAS IN TRIGONOMETRY

We shall derive the general formula for $\tan m \theta$, which is hitherto not known.

We can derive

$$
\begin{equation*}
\tan (2 n-1) \theta=\frac{\sum_{k=1}^{n}(-1)^{k-1}\binom{2 n-1}{2 k-1} \tan ^{2 k-1} \theta}{\sum_{k=1}^{n}(-1)^{k-1}\binom{2 n-1}{2 k-2} \tan ^{2 k-2} \theta} \tag{Eq. 67}
\end{equation*}
$$

and

$$
\begin{equation*}
\tan 2 n \theta=\frac{\sum_{k=1}^{n}(-1)^{k-1}\binom{2 n}{2 k-1} \tan ^{2 k-1} \theta}{\sum_{k=0}^{n}(-1)^{k}\binom{2 n}{2 k} \tan ^{2 k} \theta} \tag{Eq. 68}
\end{equation*}
$$

by using

$$
\begin{equation*}
\tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta} \tag{Eq. 69}
\end{equation*}
$$

Although the general formulas for $\sin m \theta$ and $\cos m \theta$ have been known due to
De Moivre's Theorem, we can use Eq. 67 to derive

$$
\begin{equation*}
\cos (2 n-1) \theta=\sum_{k=0}^{n-1} \sum_{i=k+1}^{n}(-1)^{k}\binom{i-1}{k}\binom{2 n-1}{2 i-2} \cos ^{2 n-2 k-1} \theta \tag{Eq. 70}
\end{equation*}
$$

and

$$
\begin{equation*}
\sin (2 n-1) \theta=\sum_{k=0}^{n-1} \sum_{i=k+1}^{n}(-1)^{k}\binom{i-1}{k}\binom{2 n-1}{2 i-2} \sin ^{2 n-2 k-1} \theta ; \tag{Eq. 71}
\end{equation*}
$$

and use Eq. 68 to derive, via combinatorial method,

$$
\begin{equation*}
\cos 2 n \theta=\sum_{k=0}^{n} \sum_{i=k+1}^{n+1}(-1)^{k}\binom{i-1}{k}\binom{2 n}{2 i-2} \cos ^{2 n-2 k} \theta \tag{Eq. 72}
\end{equation*}
$$

and

$$
\sin 2 n \theta=\cos \theta \sum_{k=0}^{n-1} \sum_{i=k+1}^{n}(-1)^{k}\binom{i-1}{k}\binom{2 n}{2 i-1} \sin ^{2 n-2 k-1} \theta
$$

Eq. 73

Since

$$
\tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}
$$

we can use Eq. 69 to derive

$$
\tan 3 \theta=\frac{2 \tan \theta+\left(1-\tan ^{2} \theta\right) \tan \theta}{\left(1-\tan ^{2} \theta\right)-2 \tan \theta}=\frac{3 \tan \theta-\tan ^{3} \theta}{1-3 \tan ^{2} \theta}=\frac{\binom{3}{1} \tan \theta-\binom{3}{3} \tan ^{3} \theta}{\binom{3}{0}-\binom{3}{2} \tan ^{2} \theta}
$$

and in turn

$$
\begin{aligned}
\tan 5 \theta & =\frac{2 \tan \theta\left[\binom{3}{0}-\binom{3}{2} \tan ^{2} \theta\right]+\left(1-\tan ^{2} \theta\right)\left[\binom{3}{1} \tan \theta-\binom{3}{3} \tan ^{3} \theta\right]}{\left(1-\tan ^{2} \theta\right)\left[\binom{3}{0}-\binom{3}{2} \tan ^{2} \theta\right]-2 \tan \theta\left[\binom{3}{1} \tan \theta-\binom{3}{3} \tan ^{3} \theta\right]} \\
& =\frac{5 \tan \theta-\left[2\binom{3}{2}+\binom{3}{3}+\binom{3}{1}\right] \tan ^{3} \theta+\tan ^{5} \theta}{1-\left[2\binom{3}{1}+\binom{3}{2}+\binom{3}{0}\right] \tan ^{2} \theta+5 \tan ^{4} \theta} \\
& =\frac{\binom{5}{1} \tan \theta-\binom{5}{3} \tan ^{3} \theta+\binom{5}{5} \tan ^{5} \theta}{\binom{5}{0}-\binom{5}{2} \tan ^{2} \theta+\binom{5}{4} \tan ^{4} \theta},
\end{aligned}
$$

due to $2\binom{l}{r}+\binom{l}{r+1}+\binom{l}{r-1}=\binom{l+2}{r+1}$.

In general, we can derive
$\tan (2 n-1) \theta$

$$
\begin{aligned}
& =\frac{2 \tan \theta \sum_{k=1}^{n-1}(-1)^{k-1}\binom{2 n-3}{2 k-2} \tan ^{2 k-2} \theta+\left(1-\tan ^{2} \theta\right) \sum_{k=1}^{n-1}(-1)^{k-1}\binom{2 n-3}{2 k-1} \tan ^{2 k-1} \theta}{\left(1-\tan ^{2} \theta\right) \sum_{k=1}^{n-1}(-1)^{k-1}\binom{2 n-3}{2 k-2} \tan ^{2 k-2} \theta-2 \tan \theta \sum_{k=1}^{n-1}(-1)^{k-1}\binom{2 n-3}{2 k-1} \tan ^{2 k-1} \theta} \\
& =\frac{(2 n-1) \tan \theta+\sum_{k=2}^{n-1}(-1)^{k-1}\left[2\binom{2 n-3}{2 k-2}+\binom{2 n-3}{2 k-1}+\binom{2 n-3}{2 k-3}\right] \tan ^{2 k-1} \theta+(-1)^{n-1} \tan ^{2 n-1} \theta}{1+\sum_{k=2}^{n-1}(-1)^{k-1}\left[2\binom{2 n-3}{2 k-3}+\binom{2 n-3}{2 k-2}+\binom{2 n-3}{2 k-4}\right] \tan ^{2 k-2} \theta+(-1)^{n-1}(2 n-1) \tan ^{2 n-2} \theta},
\end{aligned}
$$

which leads to Eq. 67.

Similarly, we can derive

$$
\tan 4 \theta=\frac{\binom{4}{1} \tan \theta-\binom{4}{3} \tan ^{3} \theta}{\binom{4}{0}-\binom{4}{2} \tan ^{2} \theta+\binom{4}{4} \tan ^{4} \theta}
$$

and in turn

$$
\begin{align*}
\tan 6 \theta & =\frac{2 \tan \theta\left[\binom{4}{0}-\binom{4}{2} \tan ^{2} \theta+\binom{4}{4} \tan ^{4} \theta\right]+\left(1-\tan ^{2} \theta\right)\left[\binom{4}{1} \tan \theta-\binom{4}{3} \tan ^{3} \theta\right]}{\left(1-\tan ^{2} \theta\right)\left[\binom{4}{0}-\binom{4}{2} \tan ^{2} \theta+\binom{4}{4} \tan ^{4} \theta\right]-2 \tan \theta\left[\binom{4}{1} \tan \theta-\binom{4}{3} \tan ^{3} \theta\right]} \\
& =\frac{6 \tan \theta-\left[2\binom{4}{2}+\binom{4}{3}+\binom{4}{1}\right] \tan ^{3} \theta+6 \tan ^{5} \theta}{1-\left[2\binom{4}{1}+\binom{4}{2}+\binom{4}{0}\right] \tan ^{2} \theta+\left[2\binom{4}{3}+\binom{4}{4}+\binom{4}{2}\right] \tan ^{4} \theta-\tan ^{6} \theta} \\
& =\frac{\binom{6}{1} \tan \theta-\binom{6}{3} \tan ^{3} \theta+\binom{6}{5} \tan ^{5} \theta}{\binom{6}{0}-\binom{6}{2} \tan ^{2} \theta+\binom{6}{4} \tan ^{4} \theta-\binom{6}{6} \tan ^{6} \theta} . \quad \text { Eq. } 74 \tag{Eq. 74}
\end{align*}
$$

In general, we can derive
$\tan 2 n \theta$

$$
\begin{aligned}
= & \frac{2 \tan \theta \sum_{k=0}^{n-1}(-1)^{k}\binom{2 n-2}{2 k} \tan ^{2 k} \theta+\left(1-\tan ^{2} \theta\right) \sum_{k=1}^{n-1}(-1)^{k-1}\binom{2 n-2}{2 k-1} \tan ^{2 k-1} \theta}{\left(1-\tan ^{2} \theta\right) \sum_{k=0}^{n-1}(-1)^{k}\binom{2 n-2}{2 k} \tan ^{2 k} \theta-2 \tan \theta \sum_{k=1}^{n-1}(-1)^{k-1}\binom{2 n-2}{2 k-1} \tan ^{2 k-1} \theta} \\
= & \frac{2 n \tan \theta+\sum_{k=1}^{n-2}(-1)^{k}\left[2\binom{2 n-2}{2 k}+\binom{2 n-2}{2 k+1}+\binom{2 n-2}{2 k-1}\right] \tan ^{2 k-1} \theta+(-1)^{n-1} 2 n \tan ^{2 n-1} \theta}{1+\sum_{k=2}^{n-1}(-1)^{k-1}\left[2\binom{2 n-3}{2 k-3}+\binom{2 n-3}{2 k-2}+\binom{2 n-3}{2 k-4}\right] \tan ^{2 k-2} \theta+(-1)^{n-1}(2 n-1) \tan ^{2 n-2} \theta},
\end{aligned}
$$

which leads to Eq. 68. Before deriving Eq. 70, we first look at the case when $n=4$.
From Eq. 67, we can derive

$$
\begin{align*}
\tan 7 \theta & \left.=\frac{\binom{7}{1} \tan \theta-\binom{7}{3} \tan ^{3} \theta+\binom{7}{5} \tan ^{5} \theta-\binom{7}{7} \tan ^{7} \theta}{7} \begin{array}{l}
7
\end{array}\right) \tan ^{2} \theta+\binom{7}{4} \tan ^{4} \theta-\binom{7}{6} \tan ^{6} \theta \\
& =\tan \theta \frac{\binom{7}{1}-\binom{7}{3}\left(\sec ^{2} \theta-1\right)+\binom{7}{5}\left(\sec ^{2} \theta-1\right)^{2}-\binom{7}{7}\left(\sec ^{2} \theta-1\right)^{3}}{0} \\
& =\frac{\sin \theta \sum_{k=0}^{7} \sum_{i=k+1}^{4}(-1)^{k}\binom{i-1}{2}\left(\sec ^{2} \theta-1\right)+\left(\begin{array}{c}
7 \\
7 \\
4
\end{array}\right)\left(\sec ^{2} \theta-1\right)^{2}-\binom{7}{6}\left(\sec ^{2} \theta-1\right)^{3}}{\cos \theta \sum_{k=0}^{3} \sum_{i=k+1}^{4}(-1)^{k}\binom{i-1}{k}\binom{7}{2 i-2} \sec ^{2 k} \theta} \\
& =\frac{\sin \theta \sum_{k=0}^{3} \sum_{i=k+1}^{4}(-1)^{k}\binom{i-1}{k}\binom{7}{2 i-1}\left(1-\sin ^{2} \theta\right)^{3-k}}{\cos \theta \sum_{k=0}^{3} \sum_{i=k+1}^{4}(-1)^{k}\binom{i-1}{k}\binom{7}{2 i-2} \cos ^{2(3-k)} \theta} . \tag{Eq. 75}
\end{align*}
$$

Obviously, the denominator of Eq. 75 equals the right-hand side of Eq. 70 for $n=4$.

Instead of showing that the numerator of Eq. 75 equals the right-hand side of Eq. 71 for $n=4$, we can likewise derive

$$
\cot 7 \theta=\frac{\cos \theta \sum_{k=0}^{3} \sum_{i=k+1}^{4}(-1)^{k}\binom{i-1}{k}\binom{7}{2 i-1}\left(1-\cos ^{2} \theta\right)^{3-k}}{\sin \theta \sum_{k=0}^{3} \sum_{i=k+1}^{4}(-1)^{k}\binom{i-1}{k}\binom{7}{2 i-2} \sin ^{2(3-k)} \theta}
$$

so that the denominator of which equals the right-hand side of Eq. 71.

In general, we get

$$
\tan (2 n-1) \theta=\frac{\sin \theta \sum_{k=0}^{n-1} \sum_{i=k+1}^{n}(-1)^{k}\binom{i-1}{k}\binom{2 n-1}{2 i-1}\left(1-\sin ^{2} \theta\right)^{n-k-1}}{\cos \theta \sum_{k=0}^{n-1} \sum_{i=k+1}^{n}(-1)^{k}\binom{i-1}{k}\binom{2 n-1}{2 i-2} \cos ^{2(n-k-1)} \theta}
$$

and

$$
\cot (2 n-1) \theta=\frac{\cos \theta \sum_{k=0}^{n-1} \sum_{i=k+1}^{n}(-1)^{k}\binom{i-1}{k}\binom{2 n-1}{2 i-1}\left(1-\cos ^{2} \theta\right)^{n-k-1}}{\sin \theta \sum_{k=0}^{n-1} \sum_{i=k+1}^{n}(-1)^{k}\binom{i-1}{k}\binom{2 n-1}{2 i-2} \sin ^{2(n-k-1)} \theta}
$$

so that Eqs. 67 and 70 are true. Finally, we note that the numerator and the denominator of Eq. 74 equal to $\frac{\sin 6 \theta}{\cos ^{6} \theta}$ and $\frac{\cos 6 \theta}{\cos ^{6} \theta}$, respectively. Similarly, Eqs. 72 and 73 can be derived from Eq. 68.

All the multiple angle formulas derived above can be proved by mathematical induction.
We shall only prove Eq. 67 , which is obviously true for $n=1$. So we are left to prove

$$
\begin{equation*}
\tan 2(n+1) \theta=\frac{\sum_{k=1}^{n+1}(-1)^{k-1}\binom{2(n+1)}{2 k-1} \tan ^{2 k-1} \theta}{\sum_{k=0}^{n+1}(-1)^{k}\binom{2(n+1)}{2 k} \tan ^{2 k} \theta} . \tag{Eq. 76}
\end{equation*}
$$

Using Eq. 64, we first obtain $\tan 2(n+1) \theta=\frac{\tan 2 \theta+\tan 2 n \theta}{1-\tan 2 \theta \tan 2 n \theta}$

$$
\begin{equation*}
=\frac{2 \tan \theta \sum_{k=0}^{n}(-1)^{k}\binom{2 n}{2 k} \tan ^{2 k} \theta+\left(1-\tan ^{2} \theta\right) \sum_{k=1}^{n}(-1)^{k-1}\binom{2 n}{2 k-1} \tan ^{2 k-1} \theta}{\left(1-\tan ^{2} \theta\right) \sum_{k=0}^{n}(-1)^{k}\binom{2 n}{2 k} \tan ^{2 k} \theta-2 \tan \theta \sum_{k=1}^{n}(-1)^{k-1}\binom{2 n}{2 k-1} \tan ^{2 k-1} \theta} . \tag{Eq. 77}
\end{equation*}
$$

Then use Eq. 28 to regroup the numerator of Eq. 77 successively as

$$
\begin{aligned}
& 2 \tan \theta+\sum_{k=1}^{n}(-1)^{k}\binom{2 n}{2 k} \tan ^{2 k+1} \theta+\sum_{k=1}^{n}(-1)^{k-1}\binom{2 n}{2 k-1} \tan ^{2 k-1} \theta \\
& +\sum_{k=1}^{n}\left[(-1)^{k}\binom{2 n}{2 k} \tan ^{2 k+1} \theta-(-1)^{k-1}\binom{2 n}{2 k-1} \tan ^{2 k+1} \theta\right] \\
= & 2 \tan \theta+\sum_{k=1}^{n-1}(-1)^{k}\binom{2 n}{2 k} \tan ^{2 k+1} \theta+(-1)^{n} \tan ^{2 n+1} \theta \\
& +2 n \tan \theta+\sum_{k=2}^{n}(-1)^{k-1}\binom{2 n}{2 k-1} \tan ^{2 k-1} \theta+\sum_{k=1}^{n}(-1)^{k}\binom{2 n+1}{2 k} \tan ^{2 k+1} \theta \\
= & 2(n+1) \tan \theta+\sum_{k=1}^{n-1}(-1)^{k}\left[\binom{2 n}{2 k}+\binom{2 n}{2 k+1}\right] \tan ^{2 k+1} \theta+(-1)^{n} \tan ^{2 n+1} \theta \\
& +\sum_{k=1}^{n-1}(-1)^{k}\binom{2 n+1}{2 k+1} \tan ^{2 k+1} \theta+(-1)^{n}(2 n+1) \tan ^{2 n+1} \theta \\
= & 2(n+1) \tan \theta+\sum_{k=1}^{n}(-1)^{k}\binom{2 n+1}{2 k+1} \tan ^{2 k+1} \theta+\sum_{k=1}^{n-1}(-1)^{k}\binom{2 n+1}{2 k} \tan ^{2 k+1} \theta \\
& +(-1)^{n} 2(n+1) \tan ^{2 n+1} \theta \\
= & 2(n+1) \tan \theta+\sum_{k=1}^{n-1}(-1)^{k}\binom{2 n+2}{2 k+1} \tan ^{2 k+1} \theta+(-1)^{n} \tan ^{2 n+1} \theta \\
= & \sum_{k=0}^{n}(-1)^{k}\binom{2(n+1)}{2 k+1} \tan ^{2 k+1} \theta=\sum_{k=1}^{n+1}(-1)^{k}\binom{2(n+1)}{2 k-1} \tan ^{2 k-1} \theta,
\end{aligned}
$$

which is the numerator of Eq. 71. The proof for denominator case is similar.

3. LIFE CONTINGENCY

3.1. INTRODUCTION

Some forty years ago, I started out my eight years of actuarial career as an actuarial student and was provided by all my employers with study time and materials to prepare for Actuarial Exams sponsored by SOA. By studying the only one textbook (9) inside out, I personally invented many short cuts for solving various problems. I later published thirteen papers (23)-(35), a lecture note (20) and a textbook (22) in Chinese, which I did consult (2). Recently, I found out that my innovative ideas such as the uniform representation of a general life contingency function and its derivative were not even mentioned in (15). Thus, I feel obliged to write this chapter for the benefit of readers.

A life actuarial model is based on three major factors: interest, mortality and expense. We first give a general way of constructing it in terms of accumulation functions.

Force of Interest	Force of Mortality	Expense Percentage
δ	μ_{x}	ε

Interest Related Accumulation Function Mortality Related Accumulation Function

$$
a_{\delta}(t)=e^{\delta t}
$$

$$
a_{\mu_{x}}(t)=e^{\int_{0}^{T} \mu_{x+t} d u}
$$

Annuity
Endowment Insurance

$$
\bar{a}_{x: n}=\int_{0}^{n}\left[a_{\delta}(t) a_{\mu_{x}}(t)\right]^{-1} d t \quad \bar{A}_{x: n}=\int_{0}^{n}\left[a_{\delta}(t)\right]^{-1} \frac{d}{d t}\left\{-\left[a_{\mu_{x}}(t)\right]^{-1}\right\} d t+\left[a_{\delta}(n) a_{\mu_{x}}(n)\right]^{-1}
$$

$$
\begin{array}{cc}
\text { Net Level Premium } & \text { Gross Level Premium } \\
\bar{P}_{x: n}=\bar{A}_{x: n} / \bar{a}_{x: n} & \bar{G}_{x: n}=\bar{P}_{x: n}(1+\varepsilon)
\end{array}
$$

Net Level Premium Reserve at Year $t \quad$ Cash Value at Year t

$$
\bar{V}_{x: n}=\bar{A}_{x+t: n-t}-\bar{P}_{x: n} \bar{a}_{x+t: n-t} \quad r \bar{C}_{x: n}=\bar{A}_{x+t: n-t}-\bar{G}_{x: n} \bar{a}_{x+t: n-t}
$$

Figure 44. The structure of an n year continuous life actuarial model

In the model outlined in Figure 45, let $\bar{a}(t)=\int_{0}^{t}\left[a_{\delta}(u)\right]^{-1} d u$. Then by using the integration by parts, we can write

$$
\bar{a}_{x: n}=\int_{0}^{n} \bar{a}(t) \frac{d}{d t}\left\{-\left[a_{\mu_{x}}(t)\right]^{-1}\right\} d t+\bar{a}(n)\left[a_{\mu_{x}}(n)\right]^{-1}
$$

so that all life contingency functions can be written as

$$
\bar{\alpha}_{x: n}=\int_{0}^{n} \bar{\alpha}(t) \frac{d}{d t}\left\{-\left[a_{\mu_{x}}(t)\right]^{-1}\right\} d t+\bar{\alpha}(n)\left[a_{\mu_{x}}(n)\right]^{-1}
$$

where $\bar{\alpha}(t)$ is the present value of the benefit at time t so that the first term $\bar{\alpha}_{x: n}^{1}$ is the death benefit and the second term $\bar{\alpha}_{x: n}^{1}$ is the maturity benefit. This is generally true in any model.

3.2. THEORY OF COMPOUND INTEREST

3.2.1 Functions of compound interest

We shall start with the accumulation function and use the geometric point of view to generalize and simplify the theory of interest.

Let $\mathrm{a}(\mathrm{x})$ be an increasing positive function satisfying

$$
\begin{equation*}
a(-x)=[a(x)]^{-1} \tag{Eq. 78}
\end{equation*}
$$

From Eq. 78, it follows that $\mathrm{a}(0)=1$ and that

$$
\begin{equation*}
[\mathrm{a}(0)-\mathrm{a}(-\mathrm{x})]^{-1}-[\mathrm{a}(\mathrm{x})-\mathrm{a}(0)]^{-1}=1, \quad \mathrm{x}>0 . \tag{Eq. 79}
\end{equation*}
$$

A continuous $\mathrm{a}(\mathrm{x})$ further requires the existence of $\mathrm{a}^{\prime}(0)$ (denoted by δ). For example, $\mathrm{a}(\mathrm{x})=(1+\mathrm{i})^{\mathrm{x}}$, where i is the nominal rate of interest.

We first list the notations and definitions of major functions with the illustrative Figures 45-50 as follows:
$\mathrm{i}^{(\mathrm{m})}=$ the nominal rate of interest payable m times a year
$d^{(m)}=$ the nominal rate of discount payable m times a year
$\delta=$ the force of interest
$\ddot{a}_{n}^{(m)}=$ the present value of an annuity due which pays m^{-1} at the beginning of each mth of a year for n years

Figure $45 . \quad$ The present value of $\ddot{a}_{n}^{(m)}$
$a_{n}^{(m)}=$ the present value of an annuity immediate which pays m^{-1} at the end of each mth of a year for n years

	m^{-1}	$\mathrm{~m}^{-1}$	$\mathrm{~m}^{-1} \cdots \cdots \cdot \mathrm{~m}^{-1}$	
0			n	
$a_{n}^{(m)}$				

Figure 46. The present value of $a_{n}^{(m)}$
$\bar{a}_{n}=$ the present value of a continuous annuity payable continuously for n years, with the total of 1 paid during each year

Figure 47. The present value of \bar{a}_{n}
$\ddot{s}_{n}^{(m)}=$ the future value of $\ddot{a}_{n}^{(m)}$

Figure 48. The future value of $\ddot{a}_{n}^{(m)}$
$s_{n}^{(m)}=$ the future value of $a_{n}^{(m)}$

Figure 49. The future value of $a_{n}^{(m)}$
$\bar{s}_{n}=$ the future value of \bar{a}_{n}

0	1	2	3	$\mathrm{n}-1$	n

Figure 50. The present value of \bar{a}_{n}

When $m=1$, the superscript (m) of the above notations is simply dropped.

On the other hand, we can generalize the definition of the force of interest at time x to be

$$
\delta(x)=\lim _{t \rightarrow 0}\{[a(x+t)-a(x)] / a(x)\} / t .
$$

Then

$$
\delta(\mathrm{x})=\mathrm{a}^{\prime}(\mathrm{x}) / \mathrm{a}(\mathrm{x})
$$

and

$$
\delta=\delta(0)
$$

In the case that

$$
a(x)=(1+i)^{x},
$$

we have

$$
\delta(x)=\lim _{t \rightarrow 0}\{[a(x+t)-a(x)] / t\} / a(x)=\lim _{t \rightarrow 0}\left[(1+i)^{t}-1\right] / t=\delta
$$

for all x and

$$
\delta=\ln (1+\mathrm{i})
$$

or

$$
i=e^{\delta}-1
$$

3.2.2 Geometric point of view

Let $\mathrm{a}(\mathrm{x})$ be an accumulation function. Define $\mathrm{i}^{(\mathrm{m})}$ to be the slope of the line joining $(0,1)$ and $\left(m^{-1}, a\left(m^{-1}\right)\right)$. Let $d^{(p)}=i^{(-p)}$. Then $d^{(p)}$ is the slope of the line joining $(0,1)$ and $\left(-p^{-1}, a\left(-p^{-1}\right)\right)$.

Figure 51. Geometric visualization of the force of interest

We can visualize from Figure 8 that

$$
\mathrm{d}^{(\mathrm{p})}<\delta<\mathrm{i}^{(\mathrm{m})}
$$

and

$$
\lim _{\mathrm{p} \rightarrow \infty} \mathrm{~d}^{(\mathrm{p})}=\delta=\underset{\mathrm{m} \rightarrow \infty}{\lim \mathrm{i}^{(\mathrm{m})}} .
$$

The latter can also be derived as follows according to the definitions of $\mathrm{d}^{(\mathrm{p})}, \delta$ and $\mathrm{i}^{(\mathrm{m})}$:
$\lim d^{(p)}=\lim \left[a\left(-p^{-1}\right)-a(0)\right] /\left(-p^{-1}\right)=a^{\prime}(0)=\delta=a^{\prime}(0)=\lim \left[a\left(m^{-1}\right)-a(0)\right] /\left(\mathrm{m}^{-1}\right)=\lim \mathrm{i}^{(m)}$. $\mathrm{p} \rightarrow \infty \quad-\mathrm{p}^{-1} \rightarrow 0$
$\mathrm{m}^{-1} \rightarrow 0$
$m \rightarrow \infty$

Figure 52. Geometric visualization of annuity functions

Referring to Figure 52, we define the following annuity functions:
$\ddot{a}_{n}^{(m)}=$ the ratio of the length of $\mathrm{P}_{-\mathrm{n}} \mathrm{Q}_{-\mathrm{n}}$ to the slope of $\mathrm{O} P_{-m^{-1}}$
$a_{n}^{(m)}=$ the ratio of the length of $\mathrm{P}_{-\mathrm{n}} \mathrm{Q}_{-\mathrm{n}}$ to the slope of $\mathrm{O} P_{m^{-1}}$
$\bar{a}_{n}=$ the ratio of the length of $\mathrm{P}_{-\mathrm{n}} \mathrm{Q}_{-\mathrm{n}}$ to the slope of the tangent at O
$\ddot{s}_{n}^{(m)}=$ the ratio of the length of $\mathrm{P}_{\mathrm{n}} \mathrm{Q}_{\mathrm{n}}$ to the slope of $\mathrm{O} P_{-m^{-1}}$
$s_{n}^{(m)}=$ the ratio of the length of $\mathrm{P}_{\mathrm{n}} \mathrm{Q}_{\mathrm{n}}$ to the slope of $\mathrm{O} P_{m^{-1}}$
$\bar{s}_{n}=$ the ratio of the length of $\mathrm{P}_{\mathrm{n}} \mathrm{Q}_{\mathrm{n}}$ to the slope of the tangent at O

With the exception of continuous functions, the above can also be defined as follows:
$\ddot{a}_{n}^{(m)}=$ the ratio of the length of $P_{-n} Q_{-n}$ to m times that of $P_{-m^{-1}} \mathrm{Q}_{-m^{-1}}$
$a_{n}^{(m)}=$ the ratio of the length of $P_{-n} Q_{-n}$ to m times that of $P_{m^{-1}} \mathrm{Q}_{m^{-1}}$
$\ddot{s}_{n}^{(m)}=$ the ratio of the length of $P_{n} Q_{n}$ to m times that of $P_{-m^{-1}} \mathrm{Q}_{-m^{-1}}$
$s_{n}^{(m)}=$ the ratio of the length of $P_{n} Q_{n}$ to m times that of $P_{m^{-1}} \mathrm{Q}_{m^{-1}}$

Hence

$$
\begin{aligned}
& \ddot{a}_{n}^{(m)}=[1-\mathrm{a}(-\mathrm{nm})] / \mathrm{d}^{(\mathrm{m})}=[1-\mathrm{a}(-\mathrm{nm})] /\left\{\mathrm{m}\left[1-\mathrm{a}\left(-\mathrm{m}^{-1}\right)\right]\right\}, \\
& a_{n}^{(m)}=[1-\mathrm{a}(-\mathrm{nm})] / \mathrm{i}^{(\mathrm{m})}=[1-\mathrm{a}(-\mathrm{nm})] /\left\{\mathrm{m}\left[\mathrm{a}\left(\mathrm{~m}^{-1}\right)-1\right]\right\}, \\
& \bar{a}_{n}=[1-\mathrm{a}(-\mathrm{n})] / \mathrm{a}^{\prime}(0)=[1-\mathrm{a}(-\mathrm{n})] / \delta, \\
& \ddot{s}_{n}^{(m)}=[\mathrm{a}(\mathrm{~nm})-1] / \mathrm{d}^{(\mathrm{m})}=[\mathrm{a}(\mathrm{~nm})-1] /\left\{\mathrm{m}\left[1-\mathrm{a}\left(-\mathrm{m}^{-1}\right)\right]\right\}, \\
& s_{n}^{(m)}=[\mathrm{a}(\mathrm{~nm})-1] / \mathrm{i}^{(\mathrm{m})}=[\mathrm{a}(\mathrm{~nm})-1] /\left\{\mathrm{m}\left[\mathrm{a}\left(\mathrm{~m}^{-1}\right)-1\right]\right\}, \\
& \bar{s}_{n}=[\mathrm{a}(\mathrm{n})-1] / \mathrm{a}^{\prime}(0)=[\mathrm{a}(\mathrm{n})-1] / \delta .
\end{aligned}
$$

In conclusion, we shall derive the following important formulas from Eqs. 78 and 79.

$$
\begin{aligned}
& \mathrm{i}^{(\mathrm{m})}=\mathrm{a}\left(\mathrm{~m}^{-1}\right) \mathrm{d}^{(\mathrm{m})} \\
& {\left[\mathrm{d}^{(\mathrm{m})}\right]^{-1}-\left[\mathrm{i}^{(\mathrm{m})}\right]^{-1}=\mathrm{m}^{-1} ;} \\
& {\left[\ddot{a}_{n}^{(m)}\right]^{-1}-\left[\ddot{\dot{s}}_{n}^{(m)}\right]^{-1}=\mathrm{d}^{(\mathrm{m})} ;} \\
& {\left[a_{n}^{(m)}\right]^{-1}-\left[s_{n}^{(m)}\right]^{-1}=\mathrm{i}^{(\mathrm{m})} ;} \\
& {\left[\left[\bar{a}_{n}\right]^{-1}-\left[\bar{s}_{n}\right]^{-1}=\delta .\right.}
\end{aligned}
$$

Eq. 80
Eq. 81
Eq. 82

Eq. 83

Eq. 84

Since $\mathrm{a}(0)=1$, we can derive Eq. 80 from Eq. 78 as follows.

$$
i^{(m)}=\frac{a\left(m^{-1}\right)-a(0)}{m^{-1}-0}=a\left(m^{-1}\right)\left\{\frac{1-\left[a\left(m^{-1}\right)\right]^{-1}}{0-\left(-m^{-1}\right)}\right\}=a\left(m^{-1}\right)\left[\frac{a(0)-a\left(-m^{-1}\right)}{0-\left(-m^{-1}\right)}\right]=a\left(m^{-1}\right) d^{(m)}
$$

Eq. 81 can be derived from Eq. 80 as follows.

$$
\frac{1}{d^{(m)}}-\frac{1}{i^{(m)}}=a\left(\frac{1}{m}\right)\left[\frac{1}{i^{(m)}}\right]-\frac{1}{i^{(m)}}=\frac{a\left(m^{-1}\right)-a(0)}{i^{(m)}}=\frac{1}{m} .
$$

From Eq. 79, we can derive Eq. 82 [similar for Eqs. 83 and 84] as follows.
$\frac{1}{\ddot{a}_{n}^{(m)}}-\frac{1}{\ddot{s}_{n}^{(m)}}=\frac{d^{(m)}}{a(0)-a(-n m)}-\frac{d^{(m)}}{a(n m)-a(0)}=d^{(m)}\left[\frac{1}{a(0)-a(-n m)}-\frac{1}{a(n m)-a(0)}\right]=d^{(m)}$.

In the case that

$$
\mathrm{a}(\mathrm{x})=(1+\mathrm{i})^{\mathrm{x}}
$$

we have

$$
\begin{gathered}
\ddot{a}_{n}=\left[1-(1+i)^{-n}\right] / d=\ddot{s}_{n}(1+i)^{-n} ; \\
a_{n}=\left[1-(1+i)^{-n}\right] / i=s_{n}(1+i)^{-n} ; \\
\bar{a}_{n}=\left[1-(1+i)^{-n}\right] / \delta=\bar{s}_{n}(1+i)^{-n} .
\end{gathered}
$$

From these formulas we can readily derive Eqs. $84-81$ for the case that $\mathrm{m}=1$, which can also be visualized from Figures 53-55.

$$
\begin{aligned}
& \text { n-year payments of annuity due future value } \\
& 1 / \ddot{s}_{n} \quad 1 / \ddot{s}_{n} \quad 1 / \ddot{s}_{n} \ldots \ldots .{ }_{n} \quad 1 \\
& +\begin{array}{lllll}
\mathrm{d} & \mathrm{~d} & \mathrm{~d} & \ldots & \mathrm{~d} \\
\hline \ddot{s}_{n}
\end{array} \\
& =1 / \ddot{a}_{n} \quad 1 / \ddot{a}_{n} \quad 1 / \ddot{a}_{n} \ldots \ldots .1 / \ddot{a}_{n} \quad(1+i)^{n} \\
& \left(1 / \ddot{a}_{n}\right) \ddot{n}_{n}=(1+i)^{n}=1+\mathrm{d} \ddot{s}_{n}=\left(1 / \ddot{s}_{n}\right) \ddot{s}_{n}+\mathrm{d} \ddot{s}_{n}
\end{aligned}
$$

Figure 53. Future value of n-year payments of annuity due

$$
\begin{aligned}
& \text { n-year payments of annuity immediate future value } \\
& 1 / s_{n} \quad 1 / s_{n} \quad 1 / s_{n} \ldots \ldots 1 / s_{n} \quad 1+\mathrm{i} \\
& =1 / a_{n} \quad 1 / a_{n} \quad 1 / a_{n} \ldots \ldots 1 / a_{n}(1+i)^{n+1} \\
& \left(1 / a_{n}\right) \ddot{s}_{n}=(1+i)^{n+1}=(1+\mathrm{i})+\left[(1+i)^{n+1}-(1+\mathrm{i})\right]=\left(1 / s_{n}\right) \ddot{s}_{n}+\mathrm{i} \ddot{s}_{n}
\end{aligned}
$$

Figure 54. Future value of n-year payments of annuity immediate

Figure 55. Future value of n-year payments of continuous annuity

3.3. LAWS OF MORTALITY

3.3.1 Point of view of stochastic theory

Let us first introduce the conventional notations as follows.

X : The random variable of a newborn's age-at-death.
ω : The terminal age.
$F(x)$: The distribution function (d. f.) of X.
$S(x)=1-F(x)$: The survival function.

Let ${ }_{t \mid u} q_{x}$ be the probability that a life (x) aged x will die between ages $\mathrm{x}+\mathrm{t}$ and $\mathrm{x}+\mathrm{t}+\mathrm{u}$.

Then
${ }_{t \mid u} q_{x}=\operatorname{Pr}[x+t<X \leq x+t+u \mid x<X \leq \omega]=\frac{F(x+t+u)-F(x+t)}{F(\omega)-F(x)}=\frac{S(x+t)-S(x+t+u)}{S(x)-S(\omega)}$,
where $\mathrm{F}(\omega)=1$ and $\mathrm{S}(\omega)=0$. The above relationships can be visualized from Figure 57.

Figure 56. Linear visualization of the death rate ${ }_{t \mid u} q_{x}$

When $\mathrm{u}=1$, we have (by omitting 1)

$$
{ }_{t \mid} q_{x}=\operatorname{Pr}[x+t<X \leq x+t+1 \mid x<X \leq \omega]=\frac{F(x+t+1)-F(x+t)}{1-F(x)}=\frac{S(x+t)-S(x+t+1)}{S(x)}
$$

and when $\mathrm{t}=0$, we have (by omitting 0 and replacing u by t)

$$
{ }_{t} q_{x}=\operatorname{Pr}[x<X \leq x+t \mid x<X \leq \omega]=\frac{F(x+t)-F(x)}{1-F(x)}=\frac{S(x)-S(x+t)}{S(x)}
$$

Let ${ }_{t} p_{x}=1-{ }_{t} q_{x}$ be the probability that (x) will survive for t years. Then

$$
{ }_{t \mid u} q_{x}={ }_{t+u} q_{x}-{ }_{t} q_{x}={ }_{t} p_{x}-{ }_{t+u} p_{x}={ }_{t} p_{x}-{ }_{t} p_{x u} p_{x+t}={ }_{t} p_{x u} q_{x+t} .
$$

3.3.2 Point of view of traditional actuaries

In a life table, we can always find $q_{x}, \mathrm{x}=0,1,2,3, \ldots \omega$, which is the probability that (x) will die within a year, namely ${ }_{1} q_{x}$ as introduced in the previous section; while $p_{x}={ }_{1} p_{x}$ is the probability that (x) will survive in a year.

Let $S(x)$ be a survival function. Then

$$
q_{x}=\frac{S(x)-S(x+1)}{S(x)}
$$

and

$$
p_{x}=\frac{S(x+1)}{S(x)} .
$$

Let $\mathrm{L}(0)$ be a cohort of l_{0} newborns. Then the survivorship function $l_{x}=l_{0} S(x)$ is the number of those in $L(0)$ who survive to age x. Let $L(x)$ denote such a set.

In this manner, the number of survivors can be tracked down as follows:

$$
\begin{aligned}
& l_{1}=l_{0} S(1)=l_{0} p_{0}, \\
& l_{2}=l_{0} S(2)=l_{02} p_{0}=l_{0} p_{0} p_{1}=l_{1} p_{1}, \\
& l_{3}=l_{0} S(3)=l_{03} p_{0}=l_{0} p_{0} p_{1} p_{2}=l_{2} p_{2}, \ldots \\
& l_{\omega}=l_{0} S(\omega)=l_{0 \omega} p_{0}=l_{0} p_{0} p_{1} p_{2} p_{3} \ldots p_{\omega-1}=l_{\omega-1} p_{\omega-1}=0 .
\end{aligned}
$$

Let ${ }_{n} d_{x}$ be the number of those in $L(x)$ who will die within n years and let d_{x} be those in $\mathrm{L}(\mathrm{x})$ who will die within a year. Then

$$
\begin{aligned}
& { }_{n} d_{x}=l_{x}-l_{x+n}, \\
& d_{x}=l_{x}-l_{x+1}, \\
& { }_{n} q_{x}={ }_{n} d_{x} / l_{x}, \\
& q_{x}=d_{x} / l_{x}, \\
& { }_{n} p_{x}=\left(l_{x}+{ }_{n} d_{x}\right) / l_{x},
\end{aligned}
$$

$$
\begin{gathered}
p_{x}=\left(l_{x}+d_{x}\right) / l_{x}, \\
{ }_{t+u} q_{x}-{ }_{t} q_{x}={ }_{t \mid u} q_{x}={ }_{u} d_{x+t} / l_{x}=\left(l_{x+t} / l_{x}\right)\left({ }_{u} d_{x+t} / l_{x+t}\right)={ }_{t} p_{x u} q_{x+t} .
\end{gathered}
$$

The above relationships can be visualized in Figure 57.

Figure 57. Linear visualization of various death rates

Now let us look at the instantaneous rate of mortality

$$
\begin{gathered}
\mu_{x}=\lim _{t}\left(q_{x} / t\right), \\
t \rightarrow 0
\end{gathered}
$$

$$
\text { Eq. } 85
$$

called the force of mortality. Since

$$
{ }_{t} q_{x}=\frac{S(x)-S(x+t)}{S(x)}
$$

we have

$$
\begin{equation*}
\mu_{x}=-\frac{S^{\prime}(x)}{S(x)}=\frac{F^{\prime}(x)}{S(x)}=\frac{F^{\prime}(x)}{{ }_{x} p_{0}} . \tag{Eq. 86}
\end{equation*}
$$

Hence ${ }_{x} p_{0} \mu_{x}$ is the p.d. f. (probability density function) of X .

3.4. MORTALITY RATES OF FRACTIONAL AGES

When $0<t<1, \mathrm{t}_{\mathrm{x}}$ can not be found in a life table.

The following two methods are commonly used to solve this problem.

1) Linear interpolation:

$$
l_{x+t}=(1-t) l_{x}+t l_{x+1} .
$$

2) Reciprocal interpolation:

$$
l_{x+t}^{-1}=(1-t) l_{x}^{-1}+t l_{x+1}^{-1} .
$$

The first method assumes the uniform distribution of deaths throughout a year, called U-Assumption; while the second method is due to Balducci, called B-Assumption.

Dual Theorem. l_{x} imposes B-Assumption if and only if $l_{\omega-x}^{-1}$ imposes U-Assumption.
Proof. We shall assume that l_{ω} is close to 0 but not 0 to avoid l_{ω}^{-1} being undefined. Let

$$
l_{x}^{*}=l_{\omega-x}^{-1} .
$$

Then the theorem can be proved as follows:

$$
l_{x+t}^{*}=l_{\omega-(x+t)}^{-1}=l_{[\omega-(x+1)]+(1-t)}^{-1}=[1-(1-t)] l_{\omega-(x+1)}^{-1}+(1-t) l_{[\omega-(x+1)]+1}^{-1}=t l_{x+1}^{*}+(1-t) l_{x}^{*} .
$$

Now, we shall derive the formula of ${ }_{\mathrm{h}} \mathrm{q}_{\mathrm{x}+\mathrm{t}}$ for the following two cases.

Case 1. l_{x} imposes U-Assumption.

The following formula can also be visualized from Figure 58.
${ }_{h} q_{x+t}=\frac{l_{x+t}-l_{x+t+h}}{l_{x+t}}=\frac{(1-t) l_{x}+t l_{x+1}-(1-t-h) l_{x}-(t+h) l_{x+1}}{(1-t) l_{x}+t l_{x+1}}=\frac{\left[h\left(l_{x}-l_{x+1}\right)\right] / l_{x}}{\left[l_{x}-t\left(l_{x}-l_{x+1}\right)\right] / l_{x}}=\frac{h q_{x}}{1-t q_{x}}$

Figure 58. Linear visualization of the death rate in Case 1

It follows from

$$
{ }_{t} p_{x h} q_{x+t}=h q_{x}
$$

that

$$
\begin{equation*}
{ }_{h} q_{x+t}=\frac{h q_{x}}{1-{ }_{t} q_{x}}=\frac{h q_{x}}{1-t q_{x}} \tag{Eq. 87}
\end{equation*}
$$

and that

$$
\begin{aligned}
\mu_{x+t} & =\lim _{h}\left(q_{x+t} / h\right)=q_{x} /\left(1-t q_{x}\right) . \\
& h \rightarrow 0
\end{aligned}
$$

By taking $\mathrm{t}=0$ in Eq. 87, we have

$$
{ }_{h} q_{x}=h q_{x}
$$

and by taking $\mathrm{h}=1-\mathrm{t}$, we have

$$
{ }_{1-t} q_{x+t}=\frac{(1-t) q_{x}}{1-t q_{x}}
$$

Case 2. $\quad l_{x}$ imposes B-Assumption.

According to Dual Theorem, l_{x}^{*} imposes U-Assumption. From Case 1, we have

$$
{ }_{h} q_{[\omega-(x+1)]+(1-t-h)}^{*}=\frac{h q_{\omega-(x+1)}^{*}}{1-(1-t-h) q_{\omega-(x+1)}^{*}} .
$$

Since

$$
q_{\omega-(x+1)}^{*}=\frac{l_{\omega-(x+1)}^{*}-l_{\omega-x}^{*}}{l_{\omega-(x+1)}^{*}}=\frac{l_{x+1}^{-1}-l_{x}^{-1}}{l_{x+1}^{-1}}=\frac{l_{x}-l_{x+1}}{l_{x}}=q_{x},
$$

it follows that

$$
{ }_{h} q_{x+t}=\frac{l_{x+t}-l_{x+t+h}}{l_{x+t}}=\frac{l_{x+t+h}^{-1}-l_{x+t}^{-1}}{l_{x+t+h}^{-1}}=\frac{l_{\omega-(x+t+h)}^{*}-l_{\omega-(x+t)}^{*}}{l_{\omega-(x+t+h)}^{*}}={ }_{h} q_{\omega-(x+t+h)}^{*}={ }_{h} q_{[\omega-(x+1)]+(1-t-h)}^{*}=\frac{h q_{x}}{1-(1-t-h) q_{x}} .
$$

Eq. 88

Eq. 88 can be visualized from Figures 58 and 59.

Figure 59. Linear visualization of the death rate in Case 2

To simplify the matter, we can further combine Figures 58 and 59 into Figure 60 as though the time is running from $x+1$ to x (having in mine that the time is actually running from $\omega-(x+1)$ to $\omega-x$.)

Figure 60. Linear visualization of the death rate in both cases
By taking $\mathrm{t}=0$ in Eq. 88, we have

$$
{ }_{h} q_{x}=\frac{h q_{x}}{1-(1-h) q_{x}}
$$

and by taking $\mathrm{h}=1-\mathrm{t}$, we have

$$
\begin{equation*}
{ }_{1-t} q_{x+t}=(1-t) q_{x} . \tag{Eq. 89}
\end{equation*}
$$

Similar to Case 1, we can also derive

$$
\begin{aligned}
\mu_{x+t} & \left.=\lim _{h} q_{x+t} / h\right)=q_{x} /\left[1-(1-t) q_{x}\right] . \\
& h \rightarrow 0
\end{aligned}
$$

Because of the simplicity of Eq. 89, B-Assumption is often used as the basis of calculating the mortality rates.

3.5. MODELS OF THE SURVIVALSHIP FUNCTION

Mathematicians have long been searching for appropriate models for the survivorship function l_{x}. From Eq. 86, we can derive

$$
\begin{equation*}
l_{x}=l_{0} S(x)=l_{0} \frac{S(x)}{S(0)}=l_{0} e^{\ln \frac{S(x)}{S(0)}}=l_{0} e^{\int_{0}^{x} \frac{s^{\prime}(y)}{S(y)} d y}=l_{0} e^{-\int_{0}^{x} \mu_{y} d y} \tag{Eq. 90}
\end{equation*}
$$

In 1724 de Moivre first introduced, as the basis of the model,

$$
\mu_{x}=\frac{1}{\omega-x}
$$

the survivorship function of which can be calculated from Eq. 90 as

$$
l_{x}=l_{0}\left(1-\frac{x}{\omega}\right),
$$

where $\omega=105$. This was used in those days for simplifying the calculation of life annuities primarily only for the range of ages from 12 to 86 , which was generalized to

$$
\mu_{x}=\frac{\alpha}{\omega-x}, \quad \alpha>0
$$

the survivorship function of which being

$$
l_{x}=l_{0}\left(1-\frac{x}{\omega}\right)^{\alpha} .
$$

In 1825 , Gompertz believed that the force of mortality was increasing in geometric progression and introduced

$$
\begin{equation*}
\mu_{x}=B c^{x}, \tag{Eq. 91}
\end{equation*}
$$

the survivorship function of which being

$$
l_{x}=l_{0} e^{-\frac{B}{\ln c}\left(c^{x}-1\right)} .
$$

By suitably adjusting B and c, this model could fit the range of ages from 10 to 55 . Therefore, it was used to construct the 1937 Standard Annuity Table.

In 1860, Makeham further generalize the model to

$$
\begin{equation*}
\mu_{x}=A+B c^{x} \tag{Eq. 92}
\end{equation*}
$$

and later to

$$
\mu_{x}=A+H x+B c^{x}
$$

the survivorship function of which being

$$
l_{x}=l_{0} e^{-\frac{B}{\ln c}\left(c^{x}-1\right)-A x-\frac{H x^{2}}{2}-\frac{B c^{x}}{\ln c}} .
$$

By suitably adjusting A, B and c, this model could fit any age over 20 and was used to construct the Commissioners 1941 Standard Ordinary Mortality Table and also the Annuity Table for 1949. Furthermore, both Eqs. 91 and 92 are often used nowadays to simplify compound probability problems involving multiple life insurance.

Later, the model based on

$$
\mu_{x}=\frac{A c^{x}}{1+B c^{x}},
$$

the survivorship function of which being

$$
l_{x}=l_{0}\left(\frac{1+B}{1+B c^{x}}\right)^{\frac{A}{B \ln c}} .
$$

In 1939, Weibull introduced

$$
\mu_{x}=k x^{n}
$$

the survivorship function of which being

$$
l_{x}=l_{0} e^{-\frac{k}{n+1}} x^{n+1} .
$$

In 1997, the author obtained the following two least-square-fit cubic survivorship functions:

$$
\begin{align*}
& l_{x}^{O}=l_{0}\left[-\frac{1}{365}\left(\frac{x-46}{10}\right)^{3}-\frac{1}{45}\left(\frac{x-46}{10}\right)^{2}-\frac{1}{15}\left(\frac{x-46}{10}\right)+\frac{1}{1.115}\right] \tag{Eq. 93}\\
& l_{x}^{E}=l_{0}\left[-\frac{1}{1970}\left(\frac{x-41}{5}\right)^{3}-\frac{1}{205}\left(\frac{x-41}{5}\right)^{2}-\frac{1}{55}\left(\frac{x-41}{5}\right)+\frac{1}{1.075}\right] . \tag{Eq. 94}
\end{align*}
$$

The function Eq. 93 was derived based on $l_{6}, l_{16}, l_{26}, \ldots l_{86}$ of 1958 CSO Male Life Table and fit well the range of ages from 0 to 70 . The function Eq. 94 was derived based on $l_{6}, l_{16}, l_{26}, \ldots l_{76}$ of the same table and fit well the range of ages from 3 to 79 . The error for each of these models is within 1% for most of the ages described above and about 2% for few ages as can be seen in the following comparison chart (Tables 23 and 24 combined).

x	1958 CSO l_{x}	Tsao's l_{x}^{O}	\% Error	Tsao's l_{x}^{E}	\% Error
0	$10,000,000$	$9,999,794$.00	$10,312,057$	3.12
1	$9,929,200$	$9,965,185$.36	$10,233,904$	3.07
2	$9,911,725$	$9,933,529$.22	$10,161,596$	2.52
3	$9,896,659$	$9,904,662$.08	$10,094,887$	2.00
4	$9,882,210$	$9,878,418$	-.04	$10,033,535$	1.53
5	$9,868,375$	$9,854,634$	-.14	$9,977,296$	1.10
6	$9,855,053$	$9,833,146$	-.22	$9,925,926$.72
7	$9,842,241$	$9,813,788$	-.29	$9,879,181$.38
8	$9,829,840$	$9,796,397$	-.34	$9,836,818$.07
9	$9,817,749$	$9,780,808$	-.38	$9,798,593$	-.20
10	$9,805,870$	$9,766,856$	-.40	$9,764,263$	-.42
11	$9,994,005$	$9,754,378$	-.40	$9,733,584$	-.62
12	$9,781,958$	$9,743,210$	-.40	$9,706,312$	-.77
13	$9,769,633$	$9,733,185$	-.37	$9,682,203$	-.89
14	$9,756,737$	$9,724,141$	-.33	$9,661,014$	-.98
15	$9,743,175$	$9,715,913$	-.28	$9,642,502$	-1.03
16	$9,728,950$	$9,708,336$	-.21	$9,626,422$	-1.05
17	$9,713,967$	$9,701,246$	-.13	$9,612,531$	-1.04
18	$9,698,230$	$9,694,479$	-.04	$9,600,585$	-1.01
19	$9,681,840$	$9,687,870$.06	$9,590,341$	-.95
20	$9,664,994$	$9,681,255$.17	$9,581,555$	-.86
21	$9,647,694$	$9,674,470$.28	$9,573,984$	-.76
22	$9,630,039$	$9,667,350$.39	$9,567,382$	-.65
23	$9,612,127$	$9,659,730$.50	$9,561,508$	-.53
24	$9,593,960$	$9,651,447$.60	$9,556,118$	-.39
25	$9,575,636$	$9,642,336$.70	$9,550,966$	-.26
26	$9,557,155$	$9,632,232$.79	$9,545,812$	-.12
27	$9,538,423$	$9,620,972$.87	$9,540,409$.02
28	$9,519,442$	$9,608,391$.93	$9,534,515$.16
29	$9,500,118$	$9,594,324$.99	$9,527,886$.29
30	$9,480,358$	$9,578,607$	1.04	$9,520,279$.42
31	$9,460,165$	$9,561,076$	1.07	$9,511,449$.54
32	$9,439,447$	$9,541,566$	1.08	$9,501,154$.65
33	$9,418,208$	$9,519,913$	1.08	$9,489,148$.75
34	$9,396,358$	$9,495,952$	1.06	$9,475,190$.84
35	$9,373,807$	$9,469,520$	1.02	$9,459,035$.91
36	$9,350,279$	$9,440,450$.96	$9,440,439$.96
37	$9,325,594$	$9,408,582$.89	$9,419,160$	1.00
38	$9,299,482$	$9,373,748$.80	$9,394,952$	1.03
39	$9,271,491$	$9,335,785$.69	$9,367,573$	1.04
	9				

Table 23. First half of the comparison chart

40	9,241,359	9,294,527	. 56	9,336,779	1.03
41	9,208,737	9,249,812	. 45	9,302,326	1.02
42	9,173,375	9,201,474	. 31	9,263,970	. 99
43	9,135,122	9,149,350	. 16	9,221,468	. 95
44	9,093,740	9,093,273	. 01	9,174,577	. 89
45	9,048,999	9,033,082	-. 18	9,123,052	. 82
46	9,000,587	8,968,610	-. 36	9,066,651	. 73
47	8,948,114	8,899,694	-. 54	9,005,128	. 64
48	8,891,204	8,826,168	-. 73	8,938,241	. 53
49	8,829,410	8,747,870	-. 92	8,865,746	. 41
50	8,762,306	8,664,634	- 1.11	8,787,400	. 29
51	8,689,404	8,576,296	- 1.30	8,702,958	. 16
52	8,610,244	8,482,692	- 1.48	8,612,177	. 02
53	8,524,486	8,383,657	- 1.65	8,514,814	. 11
54	8,431,654	8,279,027	- 1.81	8,410,624	. 25
55	8,331,317	8,168,637	- 1.95	8,299,364	. 38
56	8,223,010	8,052,324	- 2.08	8,180,791	. 51
57	8,106,161	7,929,922	-2.17	8,054,660	. 64
58	7,980,191	7,801,267	-2.24	7,920,729	. 75
59	7,844,528	7,666,196	-2.27	7,778,752	. 84
60	7,698,698	7,524,543	- 2.26	7,628,488	. 91
61	7,542,106	7,376,144	- 2.20	7,469,692	. 96
62	7,374,370	7,220,835	- 2.08	7,302,120	. 98
63	7,195,099	7,058,452	- 1.90	7,125,529	. 97
64	7,003,925	6,888,829	- 1.64	6,939,675	. 92
65	6,800,531	6,711,803	- 1.30	6,744,315	. 83
66	6,584,614	6,527,210	-. 87	6,539,205	. 69
67	6,355,865	6,334,884	-. 33	6,324,100	. 50
68	6,114,088	6,134,662	. 34	6,098,759	. 25
69	5,859,253	5,926,379	1.15	5,862,936	. 06
70	5,592,012	5,709,870	2.11	5,616,388	. 44
71	5,313,586	5,484,972	3.23	5,358,872	. 85
72	5,025,855	5,251,520	4.49	5,090,144	1.28
73	4,731,089	5,009,350	5.88	4,809,960	1.67
74	4,431,800	4,758,296	7.37	4,518,077	1.95
75	4,129,906	4,498,196	8.92	4,214,251	2.04
76	3,826,895	4,228,884	10.50	3,898,238	1.86
77	3,523,881	3,950,196	12.10	3,569,794	1.30
78	3,221,884	3,661,968	13.66	3,228,677	. 21
79	2,922,055	3,364,034	15.13	2,874,642	-. 62

Table 24. Second half of the comparison chart

3.6. SIMPLE VISUALIZATIONS FOR SCHEDULE EXPOSURE FORMULAS

We shall introduce the method of valuation schedule in demography to be used to calculate the mortality rates for any observed group in the insurance industry such as the insured of a life insurance company, the annuitants of an annuity contract or the participants of a pension plan. To undertake a mortality study for such a group, we need to specify the observation period and the mechanism of calculating the exposure and deaths. These calculations involve with starters, new entrants, withdrawers, deaths and enders. For a large group, the valuation schedule exposure formulas are often considered rather than the individual record exposure formulas because of the obvious reason. These formulas are based only on the observed deaths and the periodic numeration of the individuals in the observed group, which are readily available from the data for the valuation purpose just as in the population study in demography.

We first adopt pertinent notations from the demography.
$P_{x}^{z}=$ the number of persons aged between x and $\mathrm{x}+1$ at the beginning of the calendar year z ;
$E_{x}^{z}=$ the number of persons attained age x during the calendar year z ;
${ }_{\alpha} D_{x}^{z}=$ the number of deaths among E_{x}^{z} during the calendar year z;
${ }_{\delta} D_{x}^{z}=$ the number of deaths among P_{x}^{z} before the attainment of age $\mathrm{x}+1$;
$D_{x}^{z}=$ the number of deaths at age x last birthday during the calendar year z ;
$D_{x 1}^{z}={ }_{\delta} D_{x-1}^{z}+{ }_{\alpha} D_{x}^{z} ;$
$D_{x}^{z z+1}={ }_{\alpha} D_{x}^{z}+{ }_{\delta} D_{x}^{z+1} ;$
${ }_{\alpha} m_{x}^{z}=$ the number of migrants in addition to E_{x}^{z} during the calendar year z;
${ }_{\delta} m_{x}^{z}=$ the number of migrants in addition to P_{x}^{z} before the attainment of age $\mathrm{x}+1$.

Calendar year z

Figure 61. The observed deaths and the periodic numeration of the individuals

From the above figure, we have

$$
\begin{equation*}
{ }_{\alpha} m_{x}^{z}=E_{x}^{z}-P_{x}^{z+1}+{ }_{\alpha} D_{x}^{z} \tag{Eq. 95}
\end{equation*}
$$

and

$$
\begin{equation*}
{ }_{\delta} m_{x}^{z}=P_{x}^{z}-E_{x+1}^{z}+{ }_{\delta} D_{x}^{z} . \tag{Eq. 96}
\end{equation*}
$$

The number of migrants is the number of new entrants minus the number of withdrawers.
In the insurance industry, the migration can be assumed to occur either at the insured's birthday or at the end of calendar year. Different migration and mortality assumptions will lead to different exposure formulas. The mortality rate is calculated as the ratio of the number of deaths over the total exposure. The treatment of deaths plays the major role in the calculation of different exposure formulas as discussed below. Let k be the number of months after January 1 for the average birthday of an observed group. For a large group, k is usually assumed to be 6 . If the observation period is the calendar year z, we can group the deaths by age last birthday or by calendar age. If the observation period is from birthday in z to the birthday in $\mathrm{z}+1$, then the grouping is always by age last birthday.

Case 1. Calendar year study, deaths by age last birthday.
In the following figure, we assume that ${ }_{\alpha} m_{x}^{z}$ occurs m months after January 1 and ${ }_{\delta} m_{x}^{z}$ occurs n months after January 1.

Figure 62. Visualization of Case 1

1) B-Assumption on deaths

Using the idea of potential and cancelled exposure, we can obtain

$$
E_{x}^{z} q_{x}+{ }_{\alpha} m_{x \frac{12-m}{12}}^{z} q_{x+\frac{m}{12}}-P_{x}^{z+1}{ }_{\frac{12-k}{12}} q_{x+\frac{k}{12}}+P_{x}^{z} \frac{12-k}{12} q_{x+\frac{k}{12}}+{ }_{\delta} m_{x \frac{12-n}{12}}^{z} q_{x+\frac{n}{12}}=D_{x}^{z} .
$$

It follows from Eqs. 89, 95 and 96 that
$\left[E_{x}^{z}+\left(P_{x}^{z+1}+{ }_{\alpha} D_{x}^{z}-E_{x}^{z}\right) \frac{12-m}{12}+\left(P_{x}^{z}-P_{x}^{z+1}\right) \frac{12-k}{12}+\left(E_{x+1}^{z}+{ }_{\delta} D_{x}^{z}-P_{x}^{z}\right) \frac{12-n}{12}\right] q_{x}=D_{x}^{z}$.
Hence

$$
q_{x}=\frac{D_{x}^{z}}{E},
$$

where

$$
E=\frac{m}{12} E_{x}^{z}+\frac{n-k}{12} P_{x}^{z}+\frac{12-n}{12} E_{x}^{z+1}+\frac{k-m}{12} P_{x}^{z+1}+\frac{12-m}{12}{ }_{\alpha} D_{x}^{z}+\frac{12-n}{12}{ }_{\delta} D_{x}^{z} .
$$

If the migration occurs on birthdays ($\mathrm{m}=0$ and $\mathrm{n}=12$), then

$$
E=\frac{12-k}{12} P_{x}^{z}+\frac{k}{12} P_{x}^{z+1}+\frac{k}{12}{ }_{\alpha} D_{x}^{z},
$$

which can be visualized directly from the diagram below.

Figure 63. The migration occurs on birthdays under B-Assumption

The coefficient (exposure) of P_{x}^{z} is the length of the line segment X---O, the coefficient of P_{x}^{z+1} is the length of the line segment $\mathrm{O}--\mathrm{X}$ and the coefficient of ${ }_{\alpha} D_{x}^{z}$ is the length of the line segment $\mathrm{O}---\mathrm{O}$.

If the migration occurs at year-ends $(\mathrm{m}=\mathrm{n}=\mathrm{k})$, then

$$
E=\frac{k}{12} E_{x}^{z}+\frac{12-k}{12} E_{x+1}^{z}+\frac{12-k}{12} D_{x}^{z}
$$

which can be visualized directly from the diagram below.

Figure 64. The migration occurs at year-ends under B-Assumption
The coefficient of E_{x+1}^{z} is the length of the line segment X---O, the coefficient of E_{x}^{z} is the length of the line segment $\mathrm{O}--\mathrm{X}$, the coefficient of ${ }_{\delta} D_{x}^{z}$ is the length of the line segment $\mathrm{X}---\mathrm{O}$ and the coefficient of ${ }_{\alpha} D_{x}^{z}$ is the length of the line segment $\mathrm{X}---\mathrm{O}$.
2) U-Assumption on deaths

Since the equivalent formula to Eq. 87 is far more complicated under U-Assumption, we shall use the direct approach by tracing down the deaths from segment to segment in the original diagram to obtain

$$
\begin{equation*}
E_{x \frac{k}{12}}^{z} q_{x}+{ }_{\alpha} m_{x \frac{k-m}{12}}^{z} q_{x+\frac{m}{12}}+P_{x \frac{12-k}{12}}^{z} q_{x+\frac{k}{12}}+{ }_{\delta} m_{x \frac{12-n}{12}}^{z} q_{x+\frac{n}{12}}=D_{x}^{z} . \tag{Eq. 97}
\end{equation*}
$$

Due to the fact that U-Assumption is usually accompanied with the migration assumption either on birthdays or at year-ends, we shall only discuss these two special cases. If the migration occurs on birthdays ($\mathrm{m}=0$ and $\mathrm{n}=12$), then

$$
\left(E_{x}^{z}+{ }_{\alpha} m_{x}^{z}\right)_{\frac{k}{12}} p_{x}=P_{x}^{z+1}
$$

We shall make use of the following identity

$$
\begin{equation*}
\frac{k}{12} p_{x \frac{12-k}{12}} q_{x+\frac{k}{12}}={ }_{\frac{k}{12}} p_{x}\left(1-\frac{12-k}{12} p_{x+\frac{k}{12}}\right)={ }_{\frac{k}{12}} p_{x}-p_{x}=q_{x}-{ }_{\frac{k}{12}} q_{x} . \tag{Eq. 98}
\end{equation*}
$$

By multiplying ${ }_{\frac{k}{12}} p_{x}$ to Eq. 97 and making use of the above, we can obtain

$$
P_{x}^{z+1}{ }_{\frac{k}{12}} q_{x}+P_{x}^{z}\left(q_{x}-{ }_{\frac{k}{12}} q_{x}\right)+{ }_{\delta} m_{x}^{z} \frac{k}{12} p_{x 0} q_{x+1}=D_{x}^{z}\left(1-{ }_{\frac{k}{12}} q_{x}\right) .
$$

It then follows from U-Assumption, as can be visualized from the figure below, that

$$
E=\frac{12-k}{12} P_{x}^{z}+\frac{k}{12} P_{x}^{z+1}+\frac{k}{12}{ }_{\alpha} D_{x}^{z},
$$

Figure 65. The migration occurs at year-ends under U-Assumption

The coefficient of P_{x}^{z} is the length of the line segment $\mathrm{O}--\mathrm{X}$, the coefficient of P_{x}^{z+1} is the length of the line segment X---O, the coefficient of ${ }_{\alpha} D_{x}^{z}$ is the length of the line segment X---O and the coefficient of ${ }_{\delta} D_{x}^{z}$ is the length of the line segment X---O. If the migration occurs at year-ends ($\mathrm{m}=\mathrm{n}=\mathrm{k}$), by multiplying ${ }_{\frac{k}{12}} p_{x}$ to Eq. 97 and making use of Eq. 96, we can obtain

$$
\left(E_{x \frac{k}{12}}^{z} p_{x}\right)_{\frac{k}{12}} q_{x}+{ }_{\alpha} m_{x \frac{k}{12}}^{z} p_{x 0} q_{x+\frac{k}{12}}+\left(P_{x}^{z}+{ }_{\delta} m_{x}^{z}-{ }_{\delta} D_{x}^{z}\right)\left(q_{x}-{ }_{\frac{k}{12}} q_{x}\right)+{ }_{\delta} D_{x}^{z} q_{x}=D_{x}^{z} .
$$

Since $E_{x}^{z}{ }_{\frac{k}{12}}^{z} p_{x}=P_{x}^{z+1}$, by applying Eq. 96 and U-Assumption to the above we can obtain

$$
E=\frac{k}{12} E_{x}^{z}+\frac{12-k}{12} E_{x+1}^{z}+{ }_{\delta} D_{x}^{z},
$$

which can be visualized directly from the figure below.

Figure 66. The migration occurs at year-ends under U-Assumption

The coefficient of E_{x+1}^{z} is the length of the line segment $\mathrm{O}--\mathrm{X}$, the coefficient of E_{x}^{z} is the length of the line segment $\mathrm{X}---\mathrm{O}$, and the coefficient of ${ }_{\alpha} D_{x}^{z}$ is the length of the line segment O---O. The derivation of exposure formulas for the last two of the following cases is similar to the first and therefore will be omitted. However, we shall summarize the formulas of the case with accompanying figures and follow suit.

Case 1. Calendar year study, deaths by age last birthday.
Case 2. Calendar year study, deaths by calendar year.
Case 3. Birthday to birthday study, deaths by age last birthday.

Case 1. Calendar year study, deaths by age last birthday.

Exposure formulas

B-Assumption on deaths

$$
E=\frac{12-k}{12} P_{x}^{z}+\frac{k}{12} P_{x}^{z+1}+\frac{k}{12^{\alpha}} D_{x}^{z}
$$

U-Assumption on deaths

$$
E=\frac{k}{12} E_{x}^{z}+\frac{12-k}{12} E_{x+1}^{z}+\frac{12-k}{12} D_{x}^{z}
$$

$$
E=\frac{k}{12} E_{x}^{z}+\frac{12-k}{12} E_{x+1}^{z}+{ }_{\delta} D_{x}^{z}
$$

Figure 68. Calendar year study, deaths by age last birthday, migration at year-ends

Case 2. Calendar year study, deaths by calendar year.

Exposure formulas

B-Assumption on deaths

$E=\frac{12-k}{12} P_{x-1}^{z}+\frac{k}{12} P_{x}^{z+1}+\frac{k}{12} D_{x \backslash}^{z}$

$$
E=\frac{12-k}{12} P_{x-1}^{z}+\frac{k}{12} P_{x}^{z+1}+{ }_{\alpha} D_{x}^{z}
$$

Figure 69. Calendar year study, deaths by calendar year, migration on birthdays

$$
E=E_{x}^{z}+{ }_{\delta} D_{x-1}^{z} \quad E=E_{x}^{z}+\frac{k}{12} D_{x \backslash}^{z}
$$

Figure 70. Calendar year study, deaths by calendar year, migration at year-ends

3.7. LIFE INSURANCE AND ANNUITIES

3.7.1 Deterministic point of view

Let ${ }_{k-1} \mid q_{x}$ be the probability that a life (x) aged x will die between ages $\mathrm{x}+\mathrm{k}-1$ and $\mathrm{x}+\mathrm{k}$. Let ${ }_{\mathrm{k}} \mathrm{p}_{\mathrm{x}}$ be the probability that (x) will survive to age $\mathrm{x}+\mathrm{k}$. Let i be the nominal interest rate and let $\mathrm{v}=1 /(1+\mathrm{i})$.

Let $A_{x: n}^{1}$ denote an n-year term insurance of 1 payable at the end of the year of death. Then

$$
\begin{equation*}
A_{x: n}^{1}=\sum_{k=0}^{n-1} v_{k \mid}^{k+1} \mid q_{x} . \tag{Eq. 99}
\end{equation*}
$$

Let $A_{x: n}^{1}$ denote an n-year pure endowment of 1 payable at the end of the nth year when (x) survives. Then

$$
\begin{equation*}
A_{x: n}^{1}=v_{n}^{n} p_{x} \tag{Eq. 100}
\end{equation*}
$$

Let $\mathrm{A}_{\mathrm{x}: \mathrm{n}}$ denote an n -year endowment insurance of 1 payable either at the end of the year of death or at the end of the nth year when (x) survives. Then

$$
\begin{equation*}
A_{x: n}=A_{x: n}^{1}+A_{x: n}^{1} \tag{Eq. 101}
\end{equation*}
$$

Let $\mathrm{a}_{\mathrm{x}: \mathrm{n}}$ denote an n-year annuity of 1 payable at the end of each year while(x) survives. Then it is called an annuity immediate and

$$
a_{x: n}=\sum_{k=1}^{n} v^{k}{ }_{k} p_{x} .
$$

Let $\ddot{a}_{x: n}$ denote an n-year annuity of 1 payable at the beginning of each year while (x) survives. Then it is called an annuity due and

$$
\ddot{a}_{x: n}=\sum_{k=0}^{n-1} v^{k}{ }_{k} p_{x}=1+a_{x: n-1} .
$$

An annuity due can also be interpreted as an endowment insurance with \ddot{a}_{k} payable at the year of death and \ddot{a}_{n} payable at the date of maturity. Hence

$$
\begin{equation*}
\ddot{a}_{x: n}=\sum_{k=0}^{n-1} \ddot{a}_{k+1 k \mid} q_{x}+\ddot{a}_{n n} p_{x} \tag{Eq. 102}
\end{equation*}
$$

Therefore, we can consider an n-year term life contingency function $\alpha_{x: n}^{1}$ with the death benefit α_{k} payable at the end of the year of death. Then

$$
\begin{equation*}
\alpha_{x: n}^{1}=\sum_{k=0}^{n-1} \alpha_{k+1 k \mid} q_{x} \tag{Eq. 103}
\end{equation*}
$$

and an n-year endowment contingency function with α_{n} payable at the date of maturity is

$$
\alpha_{x: n}=\alpha_{x: n}^{1}+\alpha_{x: n}{ }^{1}
$$

where $\alpha_{x: n}{ }^{1}$ is an n -year pure endowment of α_{n} at the date of maturity, namely

$$
\begin{equation*}
\alpha_{x: n}^{1}=\alpha_{n n} p_{x} \tag{Eq. 104}
\end{equation*}
$$

By taking $\alpha_{k}=v^{k}$ in Eq. 103, we can obtain Eq. 99. In this case, Eq. 100 follows from Eq. 104. These are the formulas for life insurance.

By taking $\alpha_{k}=\ddot{a}_{k}$ in Eq. 103, we can obtain

$$
\begin{aligned}
& \ddot{a}_{x: n}^{1}=\sum_{k=0}^{n-1} \ddot{a}_{k+1 k \mid} q_{x} ; \\
& \ddot{a}_{x: n}=\sum_{k=0}^{n-1} \ddot{a}_{k+1 k \mid} q_{x}+\ddot{a}_{n n} p_{x} .
\end{aligned}
$$

In this case, Eq. 102 follows from Eq. 141 and the above. These are the formulas for annuity due.

By taking $\alpha_{k}=a_{k}$ in Eq. 103, we can obtain

$$
\begin{aligned}
& a_{x: n}^{1}=\sum_{k=0}^{n-1} a_{k+1 k \mid} q_{x} ; \\
& a_{x: n}=\sum_{k=0}^{n-1} a_{k+1 k \mid} q_{x}+a_{n n} p_{x} .
\end{aligned}
$$

Finally, from Eqs. 100 and 101, we can derive

$$
A_{x \cdot n}+d \ddot{a}_{x \cdot n}=\sum_{k=0}^{n-1}\left(v^{k+1}+d \ddot{a}_{k+1}\right)_{k \mid} q_{x}+\left(v^{n}+d \ddot{a}_{n}\right)_{n} p_{x}=1 .
$$

Likewise, we can obtain

$$
A_{x \cdot n}^{1}+d \ddot{a}_{x: n}^{1}=\sum_{k=0}^{n-1}{ }_{k \mid} q_{x}={ }_{n} q_{x} .
$$

3.7.2 Stochastic point of view

Let K be the random variable of the integral future-life-time of (x). Then its p.d.f.is ${ }_{k \mid} q_{x}, 0 \leq k \leq \omega-x-1$, where ω is the terminal age.

Let ${ }_{h \mid} \alpha_{x: n}$ be an h-year deferred n -year life contingency function, with the random variable of the present value of the benefit being

$$
\begin{array}{ll}
\alpha_{K} & \mathrm{~K}=\mathrm{h}, \mathrm{~h}+1, \mathrm{~h}+2, \ldots, \mathrm{~h}+\mathrm{n}-1 \\
Z_{h \mid \alpha_{x, n}}= & \mathrm{K}=\mathrm{h}+\mathrm{n}, \mathrm{~h}+\mathrm{n}+1, \mathrm{~h}+\mathrm{n}+2, \ldots
\end{array}
$$

Then

$$
{ }_{h \mid} \alpha_{x: n}=E\left[Z_{h \mid \alpha_{x: n}}\right]=\sum_{k=h}^{h+n-1} \alpha_{k+1 k \mid} q_{x}+\alpha_{h+n h+n} p_{x} .
$$

As in Eqs. 103 and 104, we write

$$
{ }_{h 1} \alpha_{x: n}^{1}=\alpha_{h+n}{ }_{h+n} p_{x}
$$

and

$$
{ }_{h \mid} \alpha_{x: n}^{1}=\sum_{k=h}^{h+n-1} \alpha_{k+1 k \mid} q_{x} .
$$

Let ${ }_{k \mid} A_{x: n}$ be an h-year deferred n-year endowment payable at the end of the year. Then

$$
\alpha_{k}=v^{k}, \quad h+1 \leq k \leq h+n .
$$

From Eq. 105, we have

$$
\begin{equation*}
{ }_{h \mid} A_{x: n}=\sum_{k=h}^{h+n-1} v^{k+1}{ }_{k \mid} q_{x}+v^{h+n}{ }_{h+n} p_{x} . \tag{Eq. 106}
\end{equation*}
$$

Let ${ }_{h \mid} A_{x \cdot n}^{1}$ be an h-year deferred n-year term insurance payable at the end of the year.
Then from Eq. 105, we have

$$
\begin{equation*}
{ }_{h \mid} A_{x: n}^{1}=\sum_{k=h}^{h+n-1} v^{k+1}{ }_{k \mid} q_{x}, \tag{Eq. 107}
\end{equation*}
$$

since $\alpha_{h+n}=0$. From Eqs. 106 and 107, we have

$$
{ }_{h \mid} A_{x: n}={ }_{h \mid} A_{x: n}^{1}+v^{h+n}{ }_{h+n} p_{x}={ }_{h \mid} A_{x: n}^{1}+{ }_{h+n} E_{x}={ }_{h \mid} A_{x: n}^{1}+{ }_{h \mid} A_{x: n}^{1} .
$$

Let ${ }_{h \mid} a_{x: n}$ be an h-year deferred n-year annuity payable at the end of the year. By taking $\alpha_{k}=a_{k}-a_{h}$ in Eq. 105, we have
${ }_{h \mid} a_{x: n}=\sum_{k=h+1}^{h+n}\left(a_{k}-a_{h}\right)_{k \mid} q_{x}+\left(a_{h+n}-a_{h}\right)_{h+n} p_{x}=\sum_{k=h+1}^{h+n} a_{k k \mid} q_{x}-a_{h h+1} p_{x}+a_{h+n h+n} p_{x} \quad$ Eq. 108 and

$$
{ }_{h \mid} a_{x: n}^{1}=\sum_{k=h+1}^{h+n} a_{k k \mid} q_{x} .
$$

Since $a_{k}=v+v^{2}+v^{3}+\ldots+v^{k}$ and $k \mid q_{x}=k p_{x}-k+1 p_{x}$, from Eq. 108 we have

$$
{ }_{h \mid} a_{x: n}=\sum_{k=h+1}^{h+n} v^{k}{ }_{k} p_{x} .
$$

Let ${ }_{h \mid} \ddot{a}_{x: n}$ be an h-year deferred n-year annuity payable at the beginning of the year. By taking $\alpha_{k}=\ddot{a}_{k+1}-\ddot{a}_{h}$, we can, likewise, obtain

$$
\begin{gathered}
{ }_{h \mid} \ddot{a}_{x: n}=\sum_{k=h}^{h+n-1} \ddot{a}_{k+1 k \mid} q_{x}-\ddot{a}_{h h} p_{x}+\ddot{a}_{h+n+1}{ }_{h+n} p_{x}=\sum_{k=h}^{h+n+1} v^{k}{ }_{k} p_{x} ; \\
{ }_{h \mid} \ddot{a}_{x: n}^{1}=\sum_{k=h}^{h+n-1} \ddot{a}_{k+1 k \mid} q_{x} .
\end{gathered}
$$

Let T be the random variable of the life-until-death of (x). Then its p.d.f. is ${ }_{t} p_{x} \mu_{x+t}$, where μ_{x+t} is the force of mortality at age $\mathrm{x}+\mathrm{t}$.

Let ${ }_{h \mid} \bar{\alpha}_{x: n}$ be an h-year deferred n-year continuous life contingency function with the present value of the death benefit at time t being $\bar{\alpha}_{t}$ and that of the maturity benefit being $\bar{\alpha}_{h+n}$.

When $\mathrm{n}=\omega-x{ }_{h \mid} \bar{\alpha}_{x: n}$ becomes ${ }_{n \mid} \bar{\alpha}_{x}$, called an h-year deferred whole life continuous contingency function. When $\mathrm{h}=0$, they are denoted as $\bar{\alpha}_{x: n}$ and $\bar{\alpha}_{x}$, respectively.

Since the random variable of the present value of the benefit is

$$
Z_{h \mid \bar{\alpha}_{x n}}=\begin{array}{ll}
\bar{\alpha}_{T} & \mathrm{~h} \leq \mathrm{T} \leq \mathrm{h}+\mathrm{n} \\
\bar{\alpha}_{h+n} & \mathrm{~T}>\mathrm{h}+\mathrm{n},
\end{array}
$$

it follows that

$$
{ }_{h \mid} \bar{\alpha}_{x \cdot n}=E\left[Z_{h \mid \bar{\alpha}_{x n}}\right]=\int_{h}^{h+n} \bar{\alpha}_{t t} p_{x} \mu_{x+t} d t+\bar{\alpha}_{h+n h+n} p_{x} . \quad \text { Eq. } 109
$$

By taking $\bar{\alpha}_{t}=v^{t}$ in Eq. 106, we obtain

$$
\begin{equation*}
{ }_{h \mid} \bar{A}_{x: n}=\int_{h}^{h+n} v^{t}{ }_{t} p_{x} \mu_{x+1} d t+v^{h+n}{ }_{h+n} p_{x} \tag{Eq. 110}
\end{equation*}
$$

and

$$
{ }_{h \mid} \bar{A}_{x: n}^{1}=\int_{h}^{h+n} v^{t}{ }_{t} p_{x} \mu_{x+t} d t,
$$

where ${ }_{n \mid} \bar{A}_{x: n}\left(\right.$ respectivdy,${ }_{h \mid} \bar{A}_{x: n}^{1}$) is an h-year deferred n-year endowment (respectively, term)insurance of 1 payable at the moment of death or at the date of maturity.

Let ${ }_{h \mid} \bar{a}_{x: n}$ denote an h-year deferred n-year continuous annuity. Then

$$
Z=Z\left({ }_{h \mid} \bar{a}_{x: n}\right)=\begin{array}{lll}
0 & 0 \leq T \leq h \\
& \bar{a}_{T}-\bar{a}_{n} & h \leq T \leq h+n \\
\bar{a}_{h+n}-\bar{a}_{h} & T>h+n .
\end{array}
$$

It follows from Eq. 106 that

$$
\begin{equation*}
{ }_{h \mid} \bar{a}_{x: n}=E\left[Z_{h \mid} \bar{a}_{x: n}\right]=\int_{h}^{h+n}\left(\bar{a}_{t}-\bar{a}_{h}\right)_{t} p_{x} \mu_{x+t} d t+\left(\bar{a}_{h+n}-\bar{a}_{h}\right)_{h+n} p_{x} . \tag{Eq. 111}
\end{equation*}
$$

Since

$$
\bar{a}_{t}=\frac{1-v^{t}}{\delta}
$$

we can obtain from Eqs. 110 and 111 that

$$
{ }_{h} \bar{a}_{x: n}=\left({ }_{h} E_{x}-{ }_{h \mid} \bar{A}_{x: n}\right) / \delta={ }_{h} E_{x}\left(1-\bar{A}_{x+h: n}\right) / \delta,
$$

where ${ }_{h} E_{x}=v^{h}{ }_{h} p_{x}$ and δ is the force of interest.
3.7.3 Dynamic point of view

Let $d_{\delta}(x, t)$ and $d_{\mu}(x, t)$ be the discount function of interest and mortality, respectively. Define an h-year deferred n-year continuous annuity as

$$
{ }_{h \mid} \bar{a}_{x: n}=\int_{h}^{h+n} d_{\delta}(x, t) d_{\mu}(x, t) d t
$$

and an h-year deferred n-year continuous term insurance as

$$
{ }_{h \mid} \bar{A}_{x: n}^{1}=\int_{h}^{h+n} d_{\delta}(x, t) \frac{d}{d t}\left[-d_{\mu}(x, t)\right] d t .
$$

Then an h-year deferred n-year continuous endowment insurance is defined to be

$$
{ }_{h \mid} \bar{A}_{x: n}={ }_{h \mid} \bar{A}_{x: n}^{1}+{ }_{h \mid} A_{x: n}{ }^{1},
$$

where

$$
{ }_{h+n} E_{x}={ }_{h \mid} A_{x: n}{ }^{1}=d_{\delta}(x, h+n) d_{\mu}(x, h+n)
$$

is an h-year deferred n-year pure endowment. This is the model of life contingency functions based on discount functions. In particular, if we let

$$
d_{\delta}(x, t)=e^{-\delta t}
$$

and

$$
d_{\mu}(x, t)=e^{-\int_{0}^{t} \mu_{x s t} d s},
$$

then we can obtain the familiar (traditional) expressions for life contingency functions.

Another alternative is to let

$$
d_{\delta}(x, t)=e^{-\delta_{x} t}
$$

where δ_{x} is the force of interest at the issue age x . By integration by parts, we can obtain

$$
{ }_{h \mid} \bar{A}_{x: n}^{1}={ }_{h} E_{x}-\delta_{x h \mid} \bar{a}_{x: n}-d_{\delta}(x, h+n) d_{\mu}(x, h+n)
$$

and

$$
{ }_{{ }_{h \mid} \mid} \bar{A}_{x: n}={ }_{h} E_{x}-\delta_{x h \mid} \bar{a}_{x: n} .
$$

Note that δ_{x} could be updated according to a certain national index. It can also include the expense factor for the calculation of the gross premiums, while $d_{\mu}(x, t)$ could be updated according to the national life table. On the other hand, $\bar{a}(x, n)$ can always be approximated. As for the discrete case, the conventional approximations are handy.

3.8. NET ANNUAL PREMIUMS AND RESERVES

3.8.1 Net annual premiums

Let ${ }_{r} \bar{P}\left({ }_{h \mid} \bar{\alpha}_{x: n}\right)$ be the continuously paid net level premium, or simply net premium of ${ }_{h 1} \bar{\alpha}_{x: n}$, with payments for r years.

In the annuity case, it only makes sense that $\mathrm{r}<\mathrm{h}+\mathrm{n}$. The reason is as follows. The insured pays r years of premiums when financially able, then starts receiving payments after h years for n years when financially needy. When $h=0$, then the paying period should be less than the receiving period. There is no such restriction in the insurance case. In fact, when $\mathrm{h}=0$, r is usually equal to n . In this case, ${ }_{n} \bar{P}\left(\bar{A}_{x: n}\right)$ is abbreviated as $\bar{P}_{x: n},{ }_{n} P\left(\bar{A}_{x: n}^{1}\right)$ as $\bar{P}_{x: n}^{1}$ and ${ }_{n} \bar{P}\left(A_{x: n}{ }^{1}\right)$ as $\bar{P}_{x: n}{ }^{1}$.

Let L be the random variable of the present value of the insurer's loss. Then

$$
L=Z\left({ }_{h \mid} \bar{\alpha}_{x: n}\right)-{ }_{r} \bar{P}\left({ }_{h \mid} \bar{\alpha}_{x: n}\right) Z\left(\bar{a}_{x: n}\right) .
$$

If $\mathrm{E}[\mathrm{L}]=0$, then

$$
{ }_{r} \bar{P}\left({ }_{h \mid} \bar{\alpha}_{x: n}\right)={ }_{h \mid} \bar{\alpha}_{x: n} / \bar{a}_{x: r} .
$$

Hence we have

$$
\begin{aligned}
& { }_{r} \bar{P}\left({ }_{h \mid} \bar{a}_{x: n}\right)={ }_{h \mid} \bar{a}_{x: n} / \bar{a}_{x: r}, \\
& { }_{r} \bar{P}\left({ }_{h \mid} \bar{a}_{x: n}^{1}\right)={ }_{h \mid} \bar{a}_{x \cdot n}^{1} / \bar{a}_{x \cdot r}, \\
& { }_{r} \bar{P}\left({ }_{h \mid} \bar{A}_{x: n}\right)={ }_{h \mid} \bar{A}_{x: n} / \bar{a}_{x: r}, \\
& { }_{r} \bar{P}\left({ }_{h \mid} \bar{A}_{x: n}^{1}\right)={ }_{h \mid} \bar{A}_{x: n}^{1} / \bar{a}_{x: r}
\end{aligned}
$$

and

$$
{ }_{r} \bar{P}\left({ }_{h \mid} A_{x: n}{ }^{1}\right)={ }_{h \mid} A_{x: n}^{1} / \bar{a}_{x: r} .
$$

For the special cases, we have

$$
\begin{aligned}
& \bar{P}_{x: n}=\bar{A}_{x: n} / \bar{a}_{x: n}, \\
& \bar{P}_{x: n}^{1}=\bar{A}_{x: n}^{1} / \bar{a}_{x: n}
\end{aligned}
$$

and

$$
\bar{P}_{x}=\bar{A}_{x} / \bar{a}_{x} .
$$

For the discrete case, similar formulas can be derived.

3.8.2 Net premium reserves

We shall discuss the reserves based on the net level premium ${ }^{r} \bar{P}\left({ }_{h \mid} \bar{\alpha}_{x: n}\right)$.

Define

$$
\begin{aligned}
{ }_{t} \bar{V}\left({ }_{h \mid} \bar{\alpha}_{x: n}\right)= & \text { the reserve needs to be provided for (x) by the insurer at } \\
& \text { the end of the } \mathrm{t} \text {-th year, abbreviated as the reserve for (x) at } \\
& \text { the end of the } \mathrm{t} \text {-th year or simply the reserve for }(\mathrm{x}+\mathrm{t}) .
\end{aligned}
$$

Let U be the random variable of the future-life-time of $(x+t)$. Then its p.d.f. is

$$
{ }_{u} p_{x+t} \mu_{x+t+u} .
$$

Let ${ }_{t} L$ be the random variable of the loss of the insurer at the end of the t-th year. Then

$$
{ }_{t}^{r} \bar{V}\left({ }_{h \mid} \bar{\alpha}_{x: n}\right)=E\left[{ }_{t} L\right],
$$

the value of which is as follows.
i) If r $<h$, then

$$
\begin{array}{ll}
{ }_{h-t \mid} \bar{\alpha}_{x+t: n}-{ }^{r} \bar{P}\left({ }_{h \mid} \bar{\alpha}_{x: n}\right) \bar{\alpha}_{x+t: r-t} & t<r \\
\left.{ }_{h x: n}\right)=\bar{\alpha}_{x+t: n} & r \leq t<h \\
\bar{\alpha}_{x+t: n+h-t} & h \leq t \leq h+n
\end{array}
$$

ii) If $r=h$, then

$$
\begin{aligned}
& { }_{h-t \mid} \bar{\alpha}_{x+t: n}-r \bar{P}\left({ }_{h \mid} \bar{\alpha}_{x: n}\right) \bar{a}_{x+t: r-t} \quad t<h \\
& { }_{t}^{r} \bar{V}\left({ }_{h \mid} \bar{\alpha}_{x: n}\right)= \\
& \bar{\alpha}_{x+t: n+h-t} \\
& h \leq t \leq h+n
\end{aligned}
$$

iii) If $r>h$, then

$$
\begin{array}{ll}
{ }_{h-t \mid} \bar{\alpha}_{x+t: n}-r \bar{P}\left({ }_{h \mid} \bar{\alpha}_{x: n}\right) \bar{a}_{x+t: r-t} & t<h\left({ }_{h \mid} \bar{\alpha}_{x: n}\right)= \\
\bar{\alpha}_{x+t: n+h-t}-r \bar{P}\left({ }_{h \mid} \bar{\alpha}_{x: n}\right) \bar{a}_{x+t: r-t} & h \leq t<r \\
\bar{\alpha}_{x+t: n+h-t} & r \leq t \leq h+n
\end{array}
$$

The above formulas also hold for ${ }_{h \mid} \bar{\alpha}_{x: n}^{1}$, with ${ }_{h+n}^{r} \bar{V}\left({ }_{h \mid} \bar{\alpha}_{x: n}^{1}\right)=0$.

If $h=0$, then

$$
{ }^{r} \bar{V}\left(\bar{\alpha}_{x: n}\right)=\begin{array}{ll}
\bar{\alpha}_{x+t: n-t}-{ }^{r} \bar{P}\left(\bar{\alpha}_{x: n}\right) \bar{a}_{x+t: r-t} & t<r \\
\bar{\alpha}_{x+t: n-t} & r \leq t \leq n
\end{array}
$$

and

$$
{ }_{{ }_{t}^{r} \bar{V}\left(\bar{\alpha}_{x: n}^{1}\right)=} \begin{array}{ll}
\bar{\alpha}_{x+t: n-t}^{1}-r \bar{P}\left(\bar{\alpha}_{x: n}^{1}\right) \bar{a}_{x+t: r-t} & t<r \\
\bar{\alpha}_{x+t: n-t}^{1} & r \leq t \leq n
\end{array}
$$

In the case of $\mathrm{r}=\mathrm{n}$, we have

$$
\begin{array}{ll}
{ }_{t} \bar{V}\left(\bar{\alpha}_{x: n}\right)= & t<n \\
\bar{\alpha}_{x+t: n-t}-r \bar{P}\left(\bar{\alpha}_{x: n}\right) \bar{a}_{x+t: n-t} & t=n
\end{array}
$$

and

$$
\bar{V}\left(\bar{\alpha}_{x: n}^{1}\right)=\bar{\alpha}_{x+t: n-t}^{1}-\bar{P}\left(\bar{\alpha}_{x: n}^{1}\right) \bar{a}_{x+t: n-t} \quad t<n
$$

We write ${ }_{t} \bar{V}\left(\bar{A}_{x: n}\right)$ and ${ }_{t} \bar{V}\left(\bar{A}_{x: n}^{1}\right)$, respectively as ${ }_{t} \bar{V}_{x: n}$ and ${ }_{t} \bar{V}_{x: n}^{1}$. Thus

$$
{ }_{t} \bar{V}_{x: n}^{1}=\overline{{ }_{t}} \bar{V}\left(A_{x: n}^{1}\right)=\begin{array}{ll}
A_{x+t: n-t}^{1}-\bar{P}_{x: n}^{1} \bar{a}_{x+t: n-t} & t<n \\
1 & t=n
\end{array}
$$

3.9. VARYING LIFE CONTINGENCY FUNCTIONS

3.9.1 Increasing life contingency functions

Let $(I \bar{\alpha})_{x: n}$ be an n-year continuous contingency function providing the present value of the death benefit $(\underline{t+1}) \bar{\alpha}_{t}$ at time t and the maturity benefit $n \bar{\alpha}_{n}$, where \underline{x} is the floor function of x (the greatest integer less than x). If the maturity benefit is 0 , then the function is denoted by $(I \bar{\alpha})_{x \cdot n}^{1}$. Thus

$$
(I \bar{\alpha})_{x: n}=(I \bar{\alpha})_{x n}^{1}+n \bar{\alpha}_{n} p_{x} .
$$

It follows from Eq. 108 that

$$
(I \bar{\alpha})_{x: n}^{1}=\int_{0}^{n}(\underline{t+1}) \bar{\alpha}_{t t} p_{x} \mu_{x+t} d t .
$$

Since the death benefit of both functions increases by 1 each year, they are called annually increasing life contingency functions with the difference only in the maturity benefit.

If the present value of the death benefit at time t is

$$
\frac{(t m+1)}{m} \bar{\alpha}_{t},
$$

then the above functions are denoted by $\left(I^{(m)} \bar{\alpha}\right)_{x: n}$ and, called mthly increasing life contingency functions.

If the death benefit increases only for h years, then the pertinent functions are written as $\left(I_{h}{ }^{(m)} \bar{\alpha}\right)_{x: n}$ and $\left(I_{h}{ }^{(m)} \bar{\alpha}\right)_{x: n}^{1}$.

3.9.2 Decreasing life contingency functions

Let $(D \bar{\alpha})_{x \cdot n}^{1}$ be an n-year continuous contingency function providing the present value of the death benefit $(n-t) \bar{\alpha}_{t}$ at time t . Then it follows from Eq. 109 that

$$
(D \bar{\alpha})_{x: n}^{1}=\int_{0}^{n}(n-\underline{t}) \bar{\alpha}_{t t} p_{x} \mu_{x+t} d t .
$$

The death benefit decreases by 1 annually from n to 1 . Thus such a function is called an annually decreasing life contingency function. Since the maturity benefit is 0 , the notation $(D \bar{\alpha})_{x: n}$ is redundant.

If the present value of the death benefit at time t is

$$
\left(n-\frac{(t m)}{m}\right) \bar{\alpha}_{t},
$$

then the pertinent function is denoted by $\left(D^{(m)} \bar{\alpha}\right)_{x: n}^{1}$, called an mthly decreasing life contingency function. If the death benefit decreases only for h years, then the pertinent functions is written as $\left(D_{h}{ }^{(m)} \bar{\alpha}\right)_{x \cdot n}^{1}$.
3.9.3 The supplementary relationships

Since

$$
\frac{(t m+1)}{m}+\left(n-\frac{(t m)}{m}\right)=n+\frac{1}{m},
$$

we have

$$
\left(I^{(m)} \bar{\alpha}\right)_{x: n}^{1}+\left(D^{(m)} \bar{\alpha}\right)_{x: n}^{1}=\left(n+\frac{1}{m}\right) \bar{\alpha}_{x: n}^{1} .
$$

Eq. 112

This supplementary relationship can also be seen from the following figure.

Figure 71. \quad The supplementary relationship of $\left(D^{(m)} \bar{\alpha}\right)_{x: n}^{1}$ and $\left(I^{(m)} \bar{\alpha}\right)_{x: n}^{1}$

If $m \rightarrow \infty$, then from Eq. 112 we have

$$
\begin{equation*}
(\bar{I} \bar{\alpha})_{x: n}^{1}+(\bar{D} \bar{\alpha})_{x: n}^{1}=n \bar{\alpha}_{x: n}^{1}, \tag{Eq. 113}
\end{equation*}
$$

where $(\bar{I} \bar{\alpha})_{x: n}^{1}$ is an n-year continually increasing life contingency function and $(\bar{D} \bar{\alpha})_{x: n}^{1}$ is an n-year continually decreasing life contingency function.

If the present value of the maturity benefit is $n \bar{\alpha}_{n}$, then the pertinent function is

$$
(\bar{I} \bar{\alpha})_{x: n}=\lim _{m \rightarrow \infty}\left(I^{(m)} \bar{\alpha}\right)_{x: n}=(\bar{I} \bar{\alpha})_{x: n}^{1}+n \bar{\alpha}_{n n} p_{x} .
$$

The supplementary relationship in Eq. 113 can be seen from the following figure.

Figure 72. \quad The supplementary relationship of $(\bar{D} \bar{\alpha})_{x: n}^{1}$ and $(\bar{I} \bar{\alpha})_{x: n}^{1}$

The triangle representing $(\bar{I} \bar{\alpha})_{x: n}^{1}$ consists of all the horizontal line segments, each representing ${ }_{s \mid} \bar{\alpha}_{x: n-s}^{1}, 0 \leq s \leq n$. This relationship can also be proved as follows.

$$
(\bar{I} \bar{\alpha})_{x: n}^{1}=\int_{0}^{n} t \bar{\alpha}_{t t} p_{x} \mu_{x+t} d t=\int_{0}^{n} \int_{0}^{t} d s \bar{\alpha}_{t t} p_{x} \mu_{x+t} d t=\int_{0}^{n} \int_{s}^{n} \bar{\alpha}_{t t} p_{x} \mu_{x+t} d t d s=\int_{0}^{n}{ }_{s \mid} \bar{\alpha}_{x: n-s}^{1} d s
$$

Eq. 115
Similarly, we have

$$
\begin{equation*}
(\bar{D} \bar{\alpha})_{x: n}^{1}=\int_{0}^{n}(n-t) \bar{\alpha}_{t t} p_{x} \mu_{x+t} d t=\int_{0}^{n} \int_{t}^{n} d s \bar{\alpha}_{t t} p_{x} \mu_{x+t} d t=\int_{0}^{n} \bar{\alpha}_{x: s}^{1} d s \tag{Eq. 116}
\end{equation*}
$$

Combining Eqs. 115 and 116, we have

$$
\begin{equation*}
(\bar{I} \bar{\alpha})_{x: n}=\int_{0}^{n}\left({ }_{s \mid} \bar{\alpha}_{x: n-s}^{1}+\bar{\alpha}_{n n} p_{x}\right) d s=\int_{0}^{n} \bar{\alpha}_{x: n-s} d s . \tag{Eq. 117}
\end{equation*}
$$

On the other hand, we can use the integration by parts to obtain

$$
\begin{align*}
& (\bar{I} \bar{\alpha})_{x: n}=\int_{0}^{n} \bar{\alpha}_{t t} p_{x} d t+\int_{0}^{n} t \bar{\alpha}_{t}{ }_{t}{ }_{t} p_{x} d t \tag{Eq. 118}\\
& (\bar{D} \bar{\alpha})_{x: n}=n \bar{\alpha}_{0}-\int_{0}^{n} \bar{\alpha}_{t t} p_{x} d t+\int_{0}^{n}(n-t) \bar{\alpha}_{t}{ }_{t} p_{x} d t \tag{Eq. 119}
\end{align*}
$$

3.9.4 Varying life insurance and annuities

By taking $\bar{\alpha}_{t}=v^{t}$ in the hitherto derived functions, we can obtain the formulas for
$(I \bar{A})_{x: n},(I \bar{A})_{x: n}^{1},(D \bar{A})_{x: n}^{1},\left(I^{(m)} \bar{A}\right)_{x: n},\left(I^{(m)} \bar{A}\right)_{x: n}^{1},\left(D^{(m)} \bar{A}\right)_{x: n}^{1},\left(I_{h}{ }^{(m)} \bar{A}\right)_{x: n},\left(I_{h}{ }^{(m)} \bar{A}\right)_{x: n}^{1}$, $\left(D_{h}{ }^{(m)} \bar{A}\right)_{x: n}^{1},(\overline{I A})_{x: n},(\overline{I A})_{x: n}^{1}$ and $(\bar{D} \bar{A})_{x: n}^{1}$.

By taking $\bar{\alpha}_{t}{ }^{\prime}=v^{t}$, we can obtain the formulas for
$(I \bar{a})_{x: n},(I \bar{a})_{x: n}^{1},(D \bar{a})_{x: n}^{1},\left(I^{(m)} \bar{a}\right)_{x: n},\left(I^{(m)} \bar{a}\right)_{x: n}^{1},\left(D^{(m)} \bar{a}\right)_{x: n}^{1},\left(I_{h}{ }^{(m)} \bar{a}\right)_{x: n},\left(I_{h}{ }^{(m)} a\right)_{x: n}^{1}$, $\left(D_{h}{ }^{(m)} \bar{a}\right)_{x: n}^{1},(\bar{I} \bar{a})_{x: n},(\bar{I} \bar{a})_{x: n}^{1}$ and $(\bar{D} \bar{a})_{x: n}^{1}$.

Note that, in the case of annuities, $\bar{\alpha}_{t}=\bar{a}_{t}$ except for the last three types and for the last three types,

$$
\bar{\alpha}_{t}=\lim _{\Delta t \rightarrow 0} \int_{t}^{t+\Delta t} v^{s} d s=\lim _{\Delta t \rightarrow 0}\left(\bar{a}_{t+\Delta t}-\bar{a}_{t}\right)=0
$$

Hence, from Eq. 141, we have

$$
(\overline{I A})_{x: n}=(\overline{I A})_{x: n}^{1}+\bar{a}_{x: n}
$$

and

$$
(\bar{I} \bar{a})_{x: n}=(\bar{I} \bar{a})_{x: n}^{1} .
$$

From Eq. 113, we have

$$
(\bar{I} \bar{A})_{x: n}^{1}+(\bar{D} \bar{A})_{x: n}^{1}=n \bar{A}_{x: n}^{1}
$$

and

$$
(\bar{I} \bar{a})_{x: n}^{1}+(\bar{D} \bar{a})_{x: n}^{1}=n \bar{a}_{x, n}
$$

Eq. 120

Furthermore, from Eqs. 115 and 116, we have

$$
(\bar{I} \bar{a})_{x: n}=(\bar{I} \bar{a})_{x: n}^{1}=\int_{0}^{n} \bar{a}_{x: n-s}^{1} d s
$$

and

$$
(\bar{D} \bar{a})_{x: n}^{1}=\int_{0}^{n} \bar{a}_{x: s}^{1} d s
$$

Let $\bar{\alpha}_{t}{ }^{\prime}=v^{t}$. Since $\bar{\alpha}_{t}=0$, from Eq. 118 we have

$$
(\bar{I} \bar{a})_{x: n}=\int_{0}^{n} t v^{t}{ }_{t} p_{x} d t .
$$

Eq. 121

As a special case, we have

$$
\bar{a}_{x: n}=\int_{0}^{n} v^{t}{ }_{t} p_{x} d t
$$

Eq. 122

From Eq. 119, we can also derive Eq. 120 as follows:

$$
(\bar{D} \bar{a})_{x: n}^{1}=\int_{0}^{n}(n-t) v_{t}^{t} p_{x} d t=n \bar{a}_{x: n}-(\bar{I} \bar{a})_{x: n} .
$$

For insurance, from Eqs. 115-118, we can obtain

$$
\begin{aligned}
& (\overline{I A})_{x: n}^{1}=\int_{0}^{n} \bar{A}_{x: n-s}^{1} d s, \\
& (\bar{D} \bar{A})_{x: n}^{1}=\int_{0}^{n} \bar{A}_{x: s}^{1} d s
\end{aligned}
$$

and

$$
(\overline{I A})_{x: n}=\int_{0}^{n} \bar{A}_{x: n-s} d s
$$

Eq. 123

Let $\bar{\alpha}_{t}=v^{t}$. From Eqs. 118-120, we have

$$
(\overline{I A})_{x: n}=\int_{0}^{n} v^{t}{ }_{t} p_{x} d t-\int_{0}^{n} t \delta v_{t}^{t} p_{x} d t=\bar{a}_{x: n}-\delta(\bar{I} \bar{a})_{x: n} .
$$

From Eqs. 119, 122 and 123 we have

$$
\begin{aligned}
(\bar{D} \bar{A})_{x: n}^{1}= & n-\int_{0}^{n}(n-t) v_{t}^{t} p_{x} d t-\int_{0}^{n} v^{t}{ }_{t} p_{x} d t=n-\delta(\bar{D} \bar{a})_{x: n}-\bar{a}_{x: n}=n-\bar{a}_{x: n}-\delta n \bar{a}_{x: n}+ \\
& \delta(\overline{\bar{I}} \bar{a})_{x: n} .
\end{aligned}
$$

Similar to Eq. 120, we can obtain

$$
(I \bar{\alpha})_{x: n}=\sum_{k=0}^{n-1}{ }_{k \mid} \bar{\alpha}_{x: n-k}
$$

and then

$$
(I \bar{A})_{x: n}+\delta(I \bar{a})_{x: n}=\sum_{k=0}^{n-1}\left({ }_{k \mid} \bar{A}_{x: n-k}+\delta_{k} \bar{a}_{x: n-k}\right)=\sum_{k=0}^{n-1}{ }_{k} E_{x}=\ddot{a}_{x: n} .
$$

3.10. DERIVATIVES OF LIFE CONTINGENCY FUNCTIONS
3.10.1 Derivatives of continuous life insurance and annuities

Let l_{x} be the survivorship function. Since

$$
\frac{d l_{x}}{d x}=-l_{x} \mu_{x}
$$

we have

$$
\frac{d_{t} p_{x}}{d x}=\frac{d\left({ }^{l_{x+t}} / l_{x}\right)}{d x}=-\frac{l_{x+t} \mu_{x+t}}{l_{x}}-\frac{l_{x+t}\left(-l_{x} \mu_{x}\right)}{l_{x}^{2}}={ }_{t} p_{x}\left(\mu_{x}-\mu_{x+t}\right) .
$$

It follows that

$$
\begin{equation*}
\frac{d_{t} E_{x}}{d x}=\frac{d\left(v_{t}^{t} p_{x}\right)}{d x}=v_{t}^{t} p_{x}\left(\mu_{x}-\mu_{x+t}\right)={ }_{t} E_{x}\left(\mu_{x}-\mu_{x+t}\right) \tag{Eq. 125}
\end{equation*}
$$

Using Eq. 125, we can differentiate Eq. 122 to obtain

$$
\frac{d_{h \mid} \bar{\alpha}_{x: n}}{d x}=\int_{h}^{h+n} \bar{\alpha}_{t} \frac{d\left({ }_{t} p_{x} \mu_{x+t}\right)}{d x} d t+\bar{\alpha}_{h+n} h+n p_{x}\left(\mu_{x}-\mu_{x+h+n}\right) .
$$

Since

$$
\frac{d\left({ }_{t} p_{x} \mu_{x+t}\right)}{d x}=\frac{d\left(l_{x+1} \mu_{x+t} / l_{x}\right)}{d x}=\left(1 / l_{x}\right) \frac{d\left(l_{x+1} \mu_{x+t}\right)}{d x}+{ }_{t} p_{x} \mu_{x+t} \mu_{x}
$$

it follows that

$$
\frac{d_{h \mid} \bar{\alpha}_{x: n}}{d x}=\int_{h}^{h+n}\left(\bar{\alpha}_{t t} / l_{x}\right) \frac{d\left(l_{x+t} \mu_{x+t} / l_{x}\right)}{d x} d t+\mu_{x} \int_{h}^{h+n} \bar{\alpha}_{t t} p_{x} \mu_{x+1} d t+\bar{\alpha}_{h+n}{ }_{h+n} p_{x}\left(\mu_{x}-\mu_{x+h+n}\right)
$$

Using the integration by parts, we have

$$
\begin{equation*}
\frac{d_{h \mid} \bar{\alpha}_{x: n}}{d x}=\mu_{x h \mid} \bar{\alpha}_{x: n}-\int_{h}^{h+n} \bar{\alpha}_{t}{ }_{t} p_{x} \mu_{x+1} d t-\bar{\alpha}_{h h} p_{x} \mu_{x+h} . \tag{Eq. 126}
\end{equation*}
$$

3.10.2 Derivatives of discrete life insurance and annuities

From Eqs. 105 and 124, we can derive

$$
\begin{align*}
& \frac{d_{h \mid} \alpha_{x: n}}{d x} \\
= & \sum_{k=h}^{h+n-1} \alpha_{k+1}\left[{ }_{k} p_{x}\left(\mu_{x}-\mu_{x+k}\right)-_{k+1} p_{x}\left(\mu_{x}-\mu_{x+k+1}\right)\right]+\alpha_{n+h n+h} p_{x}\left(\mu_{x}-\mu_{x+h+n}\right) \\
= & \sum_{k=h}^{h+n-1}\left[\alpha_{k+1}{ }_{k \mid} q_{x} \mu_{x}+\alpha_{k+1}\left(k_{k+1} p_{x} \mu_{x+k+1}-{ }_{k} p_{x} \mu_{x+k}\right)\right]+\alpha_{n+h n+h} p_{x}\left(\mu_{x}-\mu_{x+h+n}\right) \\
= & \mu_{x h \mid} \alpha_{x \cdot n}+\sum_{k=h}^{h+n-1}\left(\alpha_{k}-\alpha_{k+1}\right)_{k} p_{x} \mu_{x+k} . \tag{Eq. 127}
\end{align*}
$$

Let $\alpha_{k}=v^{k}$. Then

$$
\frac{d_{h \mid} A_{x: n}}{d x}=\mu_{x h \mid} A_{x \cdot n}+\sum_{k=h}^{h+n-1}\left(v^{k}-v^{k+1}\right)_{k} p_{x} \mu_{x+k}=\mu_{x h \mid} A_{x \cdot n}+d \sum_{k=h}^{h+n-1}{ }_{k} E_{x} \mu_{x+k},
$$

where $d=\frac{i}{1+i}$.

Let $\alpha_{k}=\ddot{a}_{k}$. Then

$$
\begin{aligned}
& \frac{d_{h \mid} \ddot{a}_{x: n}}{d x} \\
= & \mu_{x h \mid} \ddot{a}_{x: n}+\sum_{k=h}^{h+n-1}\left(\ddot{a}_{k}-\ddot{a}_{k+1}\right)_{k} p_{x} \mu_{x+k} \\
= & \mu_{x h \mid} \ddot{a}_{x: n}-\sum_{k=h}^{h+n-1}{ }_{k} E_{x} \mu_{x+k} .
\end{aligned}
$$

Let $\alpha_{k}=a_{k}$. Then

$$
\begin{aligned}
& \frac{d_{h \mid} a_{x: n}}{d x} \\
= & \mu_{x h \mid} a_{x: n}+\sum_{k=h}^{h+n-1}\left(a_{k}-a_{k+1}\right)_{k} p_{x} \mu_{x+k} \\
= & \mu_{x h \mid} a_{x: n}-v \sum_{k=h}^{h+n-1}{ }_{k} E_{x} \mu_{x+k} .
\end{aligned}
$$

3.10.3 Derivatives of varying life insurance and annuities

From Eqs. 117 and 126, we can derive

$$
\begin{align*}
\frac{d(\bar{I} \bar{\alpha})_{x: n}}{d x} & =\int_{0}^{n} \frac{d_{s \mid} \bar{\alpha}_{x: n-s}}{d x} d s \\
& =\int_{0}^{n} \bar{\alpha}_{x: n-s} \mu_{x} d s-\int_{0}^{n} \int_{s}^{n} \bar{\alpha}_{t}{ }_{t} p_{x} \mu_{x+t} d t d s-\int_{0}^{n} \bar{\alpha}_{t s} p_{x} \mu_{x+s} d s \\
& =\mu_{x}(\bar{I} \bar{\alpha})_{x: n}-\int_{0}^{n} t \bar{\alpha}_{t}{ }_{t} p_{x} \mu_{x+t} d t-\int_{0}^{n} \bar{\alpha}_{s s} p_{x} \mu_{x+s} d s \tag{Eq. 128}
\end{align*}
$$

3.11. SOME USEFUL THEOREMS IN ACTUARIAL MATHEMATICS

Theorem A. Let a, c, d and e be positive numbers. Then the function

$$
f(x)=\frac{d x+e}{\sqrt{a x^{2}+c}}
$$

attains its maximum value

$$
\sqrt{\frac{d^{2}}{a}+\frac{e^{2}}{c}} \text { at } x=\frac{c d}{a e} .
$$

Proof. We first derive

$$
\begin{aligned}
& f^{\prime}(x)=\frac{d \sqrt{a x^{2}+c}-\frac{a x(d x+e)}{\sqrt{a x^{2}+c}}}{\sqrt{a x^{2}+c}}=\frac{c d-a e x}{\sqrt{\left(a x^{2}+c\right)^{3}}} ; \\
& f^{\prime \prime}(x)=\frac{-a e \sqrt{\left(a x^{2}+c\right)}-\frac{3 a(c d-a e x)}{\sqrt{\left(a x^{2}+c\right)^{3}}}}{\sqrt{\left(a x^{2}+c\right)^{3}}}=-\frac{a e\left(a x^{2}+c\right)^{3}+3 a(c d-a e x)}{\sqrt{\left(a x^{2}+c\right)^{5}}}
\end{aligned}
$$

Since the value of $f^{\prime \prime}(x)$ at the critical point $x=\frac{c d}{a e}$ is

$$
-\frac{a e\left[a\left(\frac{c d}{a e}\right)^{2}+c\right]^{3}}{e \sqrt{\left[a\left(\frac{c d}{a e}\right)^{2}+c\right]^{5}}},
$$

the maximum value is

$$
f\left(\frac{c d}{a e}\right)=\frac{a\left(\frac{c d}{a e}\right)+e}{\sqrt{a\left(\frac{c d}{a e}\right)^{2}+c}}=\frac{\frac{c}{e}\left(\frac{d^{2}}{a}+\frac{e^{2}}{c}\right)}{\sqrt{\frac{c^{2}}{e^{2}}\left(\frac{d^{2}}{a}+\frac{e^{2}}{c}\right)}}=\sqrt{\frac{d^{2}}{a}+\frac{e^{2}}{c}}
$$

Corollary A. For an insurance organization, let S denote the random loss on a segment of its risks and let x be the retention limit the minimizes the probability

$$
\operatorname{Pr}\left(\frac{S-E[s]}{\sqrt{\operatorname{Var}[S]}}>f(x)\right)
$$

where $f(x)$ is the ratio of the security loading $g(x)=d x+e$ and the standard deviation

$$
h(x)=\sqrt{\operatorname{Var}[S]}=\sqrt{a x^{2}+c} .
$$

Then $x=\frac{c d}{a e}$ and

$$
f\left(\frac{c d}{a e}\right)=\sqrt{\frac{d^{2}}{a}+\frac{e^{2}}{c}}
$$

Corollary B. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ and e be positive numbers such that $4 \mathrm{ac}>\mathrm{b}^{2}$ and $2 \mathrm{ae}>\mathrm{bd}$.
Then

$$
f(x)=\frac{d x+e}{\sqrt{a x^{2}+b x+c}}
$$

attains its maximum value

$$
\sqrt{\frac{\frac{d^{2}}{a}+(2 a e-b d)^{2}}{a\left(4 a c-b^{2}\right)}}
$$

at $\quad x=\frac{2 c d-b e}{2 a e-b d}$.
Proof. Write

$$
f(x)=\frac{d\left(x+\frac{b}{2 a}\right)+\frac{2 a e-b d}{2 a}}{\sqrt{a\left(x+\frac{b}{2 a}\right)^{2}+\frac{4 a c-b^{2}}{4 a}}}
$$

and use Theorem A.

Theorem B. Let $f(x)=q b[\exp (-b x)]$ and $g(x)=-\exp (-a x)$. Then

$$
h(d ; c)=\int_{0}^{\infty} f(x) g(d-c x) d x=-\frac{q b[\exp (-a d)]}{b-c a} .
$$

Corollary C. Let p be the probability that a property will not be damaged in the next period and let $f(x)$ in Theorem B be the probability density function of a positive random variable X with $\mathrm{q}=1-\mathrm{p}$. If the owner of the property with wealth w has a utility function $g(x)$ in Theorem B and is offered an insurance policy that will pay1 - c portion of any loss during the next period, then the maximum premium G that the property owner will pay for this insurance is

$$
G=\frac{1}{a} \ln \frac{p+\frac{q b}{b-a}}{p+\frac{q b}{b-c a}} .
$$

Proof. Equating the utilities with and without insurance, we have

$$
p g(w-G)+h(w-G ; c)=p g(w)+h(w ; 1) .
$$

It follows from Theorem B that

$$
\begin{aligned}
& -p\{\exp [-a(w-G)]\}-\frac{q b}{b-a} \exp [-a(w-G)] \\
& =-p[\exp (-a w)]-\frac{q b}{b-a} \exp (-a w)
\end{aligned}
$$

so that

$$
\left(p+\frac{q b}{b-c a}\right) \exp (a G)=p+\frac{q b}{b-a} .
$$

The corollary follows.

Theorem C. Let

$$
f(x)=\frac{2}{a}\left(1-\frac{x}{a}\right), 0 \leq x \leq a,
$$

be the probability density function of a random variable X . Then

$$
E\left[X^{n}\right]=\frac{a^{n}}{\binom{n+2}{2}} .
$$

Corollary D. The mean and variance of the random variable X in Theorem C are $\frac{a}{3}$ and $\frac{a^{2}}{18}$, respectively.

Theorem D. A decision maker has wealth w, has a utility function

$$
u(x)=x^{r}, 0<x<1
$$

and faces a random loss X with a uniform distribution on $[0, \mathrm{w}]$. Then the maximum amount this decision maker will pay for the complete insurance against the random loss is

$$
G=\left[1-\left(\frac{1}{r+1}\right)^{\frac{1}{r}}\right] w .
$$

Proof. Equating the utilities with and without insurance, we have

$$
(w-G)^{r}=\int_{0}^{w} \frac{1}{w}(w-x)^{r} d x .
$$

It follows that

$$
(w-G)^{r}=\frac{w^{r}}{r+1} .
$$

The theorem follows.

Theorem E. Assume that a decision maker will retain wealth w with probability p and will suffer a loss c with probability $\mathrm{q}=1-\mathrm{p}$. Based on the utility function

$$
u(x)=x-a x^{2}, 0<x<\frac{1}{2 a}(\mathrm{a}>0),
$$

the maximum insurance premium that the decision maker will pay for the complete insurance is

$$
G=w-\frac{1}{2 a}\left\{1-\left[1-4 a p w(1-a w)+4 a q(w-c)-4 a^{2} q(w-c)^{2}\right]^{\frac{1}{2}}\right\} .
$$

Proof. Equating the utilities with and without insurance, we have

$$
(w-G)-a(w-G)^{2}=p w(1-a w)+q(w-c)[1-a(w-c)] .
$$

It follows that

$$
w-G=\frac{1}{2 a}\left\{1-\left[4 a p w(1-a w)+4 a q(w-c)-4 a^{2} q(w-c)^{2}\right]^{\frac{1}{2}}\right\} .
$$

The theorem follows.

Theorem F. Let $\mathrm{X}_{\mathrm{i}}, \mathrm{i}=1,2,3, \ldots, \mathrm{n}$, be nonnegative mutually independent random variable with the probability density function $f_{i}(t)$. If the moment generating function $M_{X_{i}}(t)$ of each X_{i} is finite on some interval, then the convolution $f_{1} * f_{2}(x)$ is the unique probability density function of $S=\sum_{1}^{n} X_{i}$.

Proof. We shall only prove the case with $\mathrm{n}=2$. For any t in the given interval, we have

$$
M_{S}(t)=\int_{0}^{\infty} e^{t x} \int_{0}^{x} f_{1}(x-y) f_{2}(y) d y d x=\int_{0}^{\infty} e^{t y} f_{2}(y) \int_{0}^{\infty} e^{t z} f_{1}(z) d z d y
$$

where $z=x-y$.

Hence $M_{S}(t)=M_{X_{1}}(t) M_{X_{2}}(t)$ and hence the theorem follows.

4. SUDOKU ECSTACY

4.1. ORIENTATIONAL MOVES

On top of all sorts of skills, we have also developed shorthand annotations for keeping track of the order, location and type of each move! At the same time, the nomenclature of types of moves is very easy to remember and describe. For example, the move developed within a single box is called a "box move" and the way of scanning among boxes and blocks is called the "scanning method". As shown in Figure 73, the playground of Sudoku is divided into 81 grids, to be combined horizontally as nine rows top-down, vertically as nine columns left-right, and 3×3 squares as nine boxes. We follow the prescribed order of up-down and left-right, so the referral of each grid will be row first column next; for instance column next; for instance grid (32) stands for the grid located at the intersection of row 3 (r3) and column 2 (c2).

Figure 73. The playground of Sudoku

Similarly, the order of boxes is the same: box 1 , box 2 , box 3 , box 4 , box 5 , box 6 , box 7 , box 8 and box 9 are called top-down and then left-right respectively as b1, b2, b3, b4, b5, $\mathrm{b} 6, \mathrm{~b} 7, \mathrm{~b} 8$ and b 9 . We shall later use the same prescribed order to place numbers at grids in rows, columns or boxes. The reason for doing so is simply to facilitate our explanations and mutual understanding with readers, but by no means to limit your flexibility in manipulation! Our unique invention is to combine three consecutive boxes as blocks: b1b2b3 as Left Block (abbreviated as LB), b4b5b6 as Middle Block (abbreviated as MB), b7b8b9 as Right Block (abbreviated as RB), b1b4b7 as Up Block (abbreviated as UB), b2b5b8 as Central Block (abbreviated as CB) and b3b6b9 as Down Block (abbreviated as DB).

A move that can be determined by scanning a single block is called a "single block move", while a move that requires the cross reference of two blocks is called a "double block move" such as left block move, up block move, up left block move, center middle block move, down right block move, etc.

4.2. FUNDAMENTAL MOVES

1) Single block move

Here we find the 1 in question can only be entered into grid (45), so as to avoid two 1 's appearing either in the same row or column of central block. This is not only because both rows 5 and 6 have 1, but also the 1 in row 4 can neither be placed at grid (41) or grid (42) (which would contradict with the 1 in box 2) nor at any other grids already filled; just so we can gradually recognize the relationships of numbers among rows, columns and grids in the block, which is the skill of a block move.

The above first step was using central block move to place 1 at grid (45), abbreviated as $1_{1}(45) \mathrm{CB}$, where the subscript 1 indicates that this is the "first step".
2) Double block move

Since each box is located in the intersection of two perpendicular blocks, we can simultaneously use both horizontal and vertical block moves to gradually find out the fillable number. There are altogether nine double block moves: up-left (UL), central-left (CL), down-left (DL), up-middle (UM), central-middle (CM), down-middle (DM), upright (UR), central-right (CR) and down-right (DR).

Here we find 2 can only be entered into box 8 (grid (48) or grid (58)), because in right block both box 7 and box 9 have 8 ; had we entered 2 into grid (48), it would contradict with the 2 in row 4 of central block. Hence by double scanning of central and right blocks, we can only entered 2 into grid (58), abbreviated as $2_{2}(58) \mathrm{CR}$.
3) Terminating move (t)

After each move, we should scan each related row, column and box to see if there is only one grid remained to be filled; if so, we should terminate it right away by filling in the very last number so that more easy target could reveal.
4) Row move (r)

Scanning unfilled grids of each row to gradually find among unfilled numbers a potential one to fill that won't cause any conflict with the existing numbers in each column and each box.
5) Column move (c)

Scanning unfilled grids of each column to gradually find among unfilled numbers a potential one to fill that won't cause any conflict with the existing numbers in each row and each box.
6) Box move (b)

Scanning unfilled grids of each box to gradually find among unfilled numbers a potential one to fill that won't cause any conflict with the existing numbers in each row and each column.
7) Grid move (g)

Scanning unfilled grids of each row, column and box to gradually find among unfilled numbers a potential one to fill that won't cause any conflict with the existing numbers in its situated row, column and box. Unlike the above row column combo, after locating a grid we still need to preclude more than one potential unfilled number. Therefore, sometimes even the veterans would find the grid move "nowhere to set foot in". We first introduce the traditional solving methods, and later introduce our "unique secret skills".
8) Law of unique solution (u)

Suppose that a number has only two potential grids to fit in a row, column or box in attempting row column combo. If the choice of one of them would cause multiple solutions of the puzzle, then the number in question needs to be filled into the other grid. Sudoku puzzles do not allow multiple solutions to screw up the logical reasoning needed in the solving process.

4.3. EDUCATIONAL MOVES

Puzzle 1

When facing a
y-junction, we don't simply take one road.

Rather, be prepared
for some easy way to pop up.

5^{*}			6^{*}	2^{*}				
1^{*}							4^{*}	
								1^{*}
			1^{*}		4^{*}		7^{*}	
2^{*}								
					3^{*}			
	3^{*}					6^{*}		
				8^{*}		2^{*}		
	4^{*}	7^{*}						

Figure 74. Figure 1 for Puzzle 1
For the puzzle in
Figure 74, we can take
to the thirteenth step
as shown in Figure 75.

$2_{2} \mathrm{~b} 3$	$2_{3} \mathrm{c} 6$
$4_{\mathrm{r}} \mathrm{r} 1$	$4_{10 \mathrm{C} 7}$
$6_{11} \mathrm{~b} 7$	$7_{12} 3_{13} \mathrm{c} 1$

5^{*}		4_{8}	6^{*}	2^{*}	1_{1}			
1^{*}	2_{7}						4^{*}	6_{11}
7_{12}							2_{6}	1^{*}
3_{13}			1^{*}		4^{*}		7^{*}	2_{5}
2^{*}						4_{10}		
4_{9}			2_{4}		3^{*}			
	3^{*}	2_{2}				6^{*}		
				8^{*}		2^{*}		
	4^{*}	7^{*}			2_{3}			

Figure 75. Figure 2 for Puzzle 1

The situation shown in
Figure 76 allows us to take
$7_{14 \mathrm{r}}$: 7c9b9.

5^{*}		4_{8}	6^{*}	2^{*}	1_{1}	7_{14}		
1^{*}	2_{7}						4^{*}	6_{11}
7_{12}							2_{6}	1^{*}
3_{13}			1^{*}		4^{*}		7^{*}	2_{5}
2^{*}						4_{10}		
4_{9}			2_{4}		3^{*}			
	3^{*}	2_{2}				6^{*}		$7 ?$
				8^{*}		2^{*}		$7 ?$
	4^{*}	7^{*}			2_{3}			

Figure 76. Figure 3 for Puzzle 1

The situation shown in
Figure 77 allows us to take the next twenty one steps in Figure 78.

315c7: 3(18)(19)	
$4_{17} 7{ }_{18} 6_{19} 9_{201} \mathrm{r} 8$	
$1_{32} \mathrm{~b} 9$	834 b 5
735 c 4	

5^{*}		4_{8}	6^{*}	2^{*}	1_{1}	7_{14}	$3 ?$	$3 ?$
1^{*}	2_{7}						4^{*}	6_{11}
7_{12}							2_{6}	1^{*}
3_{13}			1^{*}		4^{*}		7^{*}	2_{5}
2^{*}						4_{10}		
4_{9}			2_{4}		3^{*}			
	3^{*}	2_{2}				6^{*}		
				8^{*}		2^{*}		
	4^{*}	7^{*}			2_{3}			

Figure 77. Figure 4 for Puzzle 1

5^{*}		4_{8}	6^{*}	2^{*}	1_{1}	7_{14}		
1^{*}	2_{7}		7_{35}	3_{25}			4^{*}	6_{11}
7_{12}	6_{27}	3_{26}		4_{24}			2_{6}	1^{*}
3_{13}		6_{30}	1^{*}		4^{*}		7^{*}	2_{5}
2^{*}			8_{34}		6_{28}	4_{10}		
4_{9}			2_{4}		3^{*}	1_{33}	6_{29}	
	3^{*}	2_{2}	4_{23}	1_{22}		6^{*}		7_{31}
6_{19}			3_{16}	8^{*}	7_{18}	2^{*}	3_{20}	4_{17}
	4^{*}	7^{*}		6_{21}	2_{3}	3_{15}	1_{32}	

Figure 78. Figure 5 for Puzzle 1
Now we are
facing a
y - junction to
choose between

8(42) and 8(47)
as shown in

Figure 79.

5^{*}		4_{8}	6^{*}	2^{*}	1_{1}	7_{14}		
1^{*}	2_{7}		7_{35}	3_{25}			4^{*}	6_{11}
7_{12}	6_{27}	3_{26}		4_{24}			2_{6}	1^{*}
3_{13}	$8 ?$	6_{30}	1^{*}		4^{*}	$8 ?$	7^{*}	2_{5}
2^{*}			8_{34}		6_{28}	4_{10}		
4_{9}			2_{4}		3^{*}	1_{33}	6_{29}	
	3^{*}	2_{2}	4_{23}	1_{22}		6^{*}		7_{31}
6_{19}			3_{16}	8^{*}	7_{18}	2^{*}	3_{20}	4_{17}
	4^{*}	7^{*}		6_{21}	2_{3}	3_{15}	1_{32}	

Figure 79. Figure 6 for Puzzle 1

As displayed in
Figure 80,
taking the road
of $8(42)$, we
would come
to a dead end.

5^{*}	No8	4_{8}	6^{*}	2^{*}	1_{1}	7_{14}	No8	No8
1^{*}	2_{7}		7_{35}	3_{25}			4^{*}	6_{11}
7_{12}	6_{27}	3_{26}		4_{24}			2_{6}	1^{*}
3_{13}	8_{1}	6_{30}	1^{*}		4^{*}		7^{*}	2_{5}
2^{*}			8_{34}		6_{28}	4_{10}		
4_{9}			2_{4}		3^{*}	1_{33}	6_{29}	8_{2}
	3^{*}	2_{2}	4_{23}	1_{22}		6^{*}	8_{3}	7_{31}
6_{19}			3_{16}	8^{*}	7_{18}	2^{*}	3_{20}	4_{17}
	4^{*}	7^{*}		6_{21}	2_{3}	3_{15}	1_{32}	

Figure 80. Figure 7 for Puzzle 1

Therefore, we	5*		48	6*	2*	1_{1}	714		
should take	1*	27		735	325			4*	611
the road not	$7{ }_{12}$	627	326		4_{24}			26	1*
	3_{13}		6_{30}	1*		4*	836	7*	25
taken, namely	2*			834		628	4_{10}		
836r4: 8(42)	49			24		3*	133	629	
$\begin{aligned} & \rightarrow 8(69) \\ & \rightarrow 8(78) \end{aligned}$		3*	22	4_{23}	122		6*		731
\rightarrow No8r1	6_{19}			316	8*	718	2*	320	417
in Figure 81.		4*	7*		621	23	315	1_{32}	

Figure 81. Figure 8 for Puzzle 1

5^{*}	9_{37}	4_{8}	6^{*}	2^{*}	1_{1}	7_{14}	8_{52}	3_{51}
1^{*}	2_{7}	8_{38}	7_{35}	3_{25}	5_{62}	9_{61}	4^{*}	6_{11}
7_{12}	6_{27}	3_{26}	9_{59}	4_{24}	8_{63}	5_{64}	2_{6}	1^{*}
3_{13}	5_{43}	6_{30}	1^{*}	9_{45}	4^{*}	8_{36}	7^{*}	2_{5}
2^{*}	7_{40}	1_{41}	8_{34}	5_{47}	6_{28}	4_{10}	3_{50}	9_{49}
4_{9}	8_{39}	9_{44}	2_{4}	7_{46}	3^{*}	1_{33}	6_{29}	5_{48}
8_{55}	3^{*}	2_{2}	4_{23}	1_{22}	9_{60}	6^{*}	5_{53}	7_{31}
6_{19}	1_{42}	5_{57}	3_{16}	8^{*}	7_{18}	2^{*}	3_{20}	4_{17}
9_{56}	4^{*}	7^{*}	5_{58}	6_{21}	2_{3}	3_{15}	1_{32}	8_{54}

Figure 82. Figure 9 for Puzzle 1

Puzzle 2

After taking
5_{1} b1 $\quad 62$ b9 $\quad 83$ b5
in Figure 84 of the puzzle in Figure 83, we spot two sets of flipflops.

2^{*}	3^{*}							
				8^{*}		5^{*}		
7^{*}								
			3^{*}		1^{*}			6^{*}
	8^{*}	5^{*}						
			2^{*}					
1^{*}							2^{*}	
		6^{*}		4^{*}				
						7^{*}	3^{*}	

Figure 83. Figure 1 for Puzzle 2
As we can see the flipflop 23(26)(29) leads us nowhere, while 58(81)(91) would help! We can take

34b3: 58(81)(91).

2^{*}	3^{*}							
				8^{*}	$2 / 3$	5^{*}		$3 / 2$
7^{*}	51							
			3^{*}		1^{*}			6^{*}
	8^{*}	5^{*}						
			2^{*}		8_{3}			
1^{*}		3_{4}				6_{2}	2^{*}	
$5 / 8$		6^{*}		4^{*}				
$8 / 5$						7^{*}	3^{*}	

Figure 84. Figure 2 for Puzzle 2
We can now complete the puzzle as in

Figure 85.
$7_{12} \mathrm{~b} 3 \quad 7_{15} \mathrm{r} 2$
$2{ }_{19} 1{ }_{20} 3_{21}$ r 5
$5_{25} \mathrm{~g} \quad 1_{28} 6_{29} \mathrm{C} 5$
$1_{39} \mathrm{~b} 7 \quad 4_{42} \mathrm{~b} 8$

2^{*}	3^{*}	9_{53}	5_{32}	1_{28}	7_{18}	4_{44}	6_{58}	8_{49}
4_{52}	6_{38}	1_{40}	9_{59}	8^{*}	2_{6}	5^{*}	7_{15}	3_{8}
7^{*}	5_{1}	8_{50}	6_{61}	3_{7}	4_{62}	1_{39}	9_{60}	2_{23}
9_{54}	4_{55}	2_{11}	3^{*}	7_{17}	1^{*}	8_{27}	5_{26}	6^{*}
3_{21}	8^{*}	5^{*}	4_{63}	6_{29}	9_{64}	2_{19}	1_{20}	7_{16}
6_{37}	1_{22}	7_{13}	2^{*}	5_{25}	8_{3}	3_{24}	4_{42}	9_{43}
1^{*}	7_{12}	3_{4}	8_{35}	9_{30}	5_{34}	6_{2}	2^{*}	4_{36}
5_{48}	2_{10}	6^{*}	7_{14}	4^{*}	3_{5}	9_{45}	8_{47}	1_{41}
8_{51}	9_{56}	4_{57}	1_{31}	2_{9}	6_{33}	7^{*}	3^{*}	5_{46}

Figure 85. Figure 3 for Puzzle 2

Puzzle 3

For the puzzle in
Figure 86, we can take to the sixteenth step as shown in Figure 87.

	9^{*}							1^{*}
				2^{*}		4^{*}		
			3^{*}					
2^{*}		8^{*}		6^{*}				
							9^{*}	5^{*}
					1^{*}			
			4^{*}			8^{*}	2^{*}	
1^{*}	5^{*}							
7^{*}								

Figure 86. Figure 1 for Puzzle 3
$1_{1} 5_{2} \mathrm{r} 7$
$8{ }_{4} \mathrm{~b} 3$
${ }_{25} \mathrm{c} 2$
$5_{9} 9_{10 \mathrm{r}} 4$
$7_{11 \mathrm{r} 7}$
$8_{12} \mathrm{~b} 8$
$9_{13} \mathrm{~b} 4$

	9^{*}			5_{14}		2_{7}		1^{*}
			1_{3}	2^{*}		4^{*}		9_{15}
	2_{5}	1_{6}	3^{*}	9_{13}				8_{16}
2^{*}		8^{*}	5_{9}	6^{*}	9_{10}			
				$3 ?$	$3 ?$		9^{*}	5^{*}
				$3 ?$	1^{*}		8_{12}	2_{8}
			4^{*}	1_{1}	5_{2}	8^{*}	2^{*}	7_{11}
1^{*}	5^{*}							
7^{*}	8_{4}							

Figure 87. Figure 2 for Puzzle 3
As in Figure 87, we need to choose from column 5 or 6 for 3 to be in box 5 , but the latter would run into the dilemma in

Figure 88.

	9^{*}			5_{14}		2_{7}		1^{*}
			1_{3}	2^{*}		4^{*}		9_{15}
	2_{5}	1_{6}	3^{*}	9_{13}				8_{16}
2^{*}		8^{*}	5_{9}	6^{*}	9_{10}			
				$3 ?$			9^{*}	5^{*}
				$3 ?$	1^{*}		8_{12}	2_{8}
			4^{*}	1_{1}	5_{2}	8^{*}	2^{*}	7_{11}
1^{*}	5^{*}							
7^{*}	8_{4}			No\#				

Figure 88. Figure 3 for Puzzle 3

Therefore, we can
Take in Figure 89
317b5:
$3 \mathrm{c} 5 \mathrm{~b} 5 \rightarrow \mathrm{No}$ (95),
but with the question mark left behind.

What number to fill in
(95)? (See Figure 90)

	9^{*}			5_{14}		2_{7}		1^{*}
			1_{3}	2^{*}		4^{*}		9_{15}
	2_{5}	1_{6}	3^{*}	9_{13}				8_{16}
2^{*}		8^{*}	5_{9}	6^{*}	9_{10}			
					3_{17}		9^{*}	5^{*}
					1^{*}		8_{12}	2_{8}
			4^{*}	1_{1}	5_{2}	8^{*}	2^{*}	7_{11}
1^{*}	5^{*}							
7^{*}	8_{4}			$?$				

Figure 89. Figure 4 for Puzzle 3
You guessed it, it is 3 !
That's the exactly
place for 3! What we are playing is Sudoku, the Japanese meaning of which is "Unique

Number Placement".

	9^{*}			5_{14}		2_{7}		1^{*}
			1_{3}	2^{*}		4^{*}		9_{15}
	2_{5}	1_{6}	3^{*}	9_{13}				8_{16}
2^{*}		8^{*}	5_{9}	6^{*}	9_{10}			
			2		3_{17}		9^{*}	5^{*}
					1^{*}		8_{12}	2_{8}
			4^{*}	1_{1}	5_{2}	8^{*}	2^{*}	7_{11}
1^{*}	5^{*}							
7^{*}	8_{4}			3				

Figure 90. Figure 5 for Puzzle 3

Now, as in Figure 91, let us take a step back, as in Figure 87, prior to the seventeenth step and ask: What number to fill in (95)?

	9^{*}			5_{14}		2_{7}		1^{*}
			1_{3}	2^{*}		4^{*}		9_{15}
	2_{5}	1_{6}	3^{*}	9_{13}				8_{16}
2^{*}		8^{*}	5_{9}	6^{*}	9_{10}			
							9^{*}	5^{*}
					1^{*}		8_{12}	2_{8}
			4^{*}	1_{1}	5_{2}	8^{*}	2^{*}	7_{11}
1^{*}	5^{*}							
7^{*}	8_{4}			$?$				

Figure 91. Figure 6 for Puzzle 3

Let us now look back to those two choices between columns 5 and 6 in box 5 for the number 3. Because of 3(95) as in Figure 92, the right choice has to be column 6 .

	9^{*}			5_{14}		2_{7}		1^{*}
			1_{3}	2^{*}		4^{*}		9_{15}
	2_{5}	1_{6}	3^{*}	9_{13}				8_{16}
2^{*}		8^{*}	5_{9}	6^{*}	9_{10}			
					3_{2}		9^{*}	5^{*}
					1^{*}		8_{12}	2_{8}
			4^{*}	1_{1}	5_{2}	8^{*}	2^{*}	7_{11}
1^{*}	5^{*}							
7^{*}	8_{4}			3_{1}				

Figure 92. Figure 7 for Puzzle 3
Since things are
straighten out, let us go back to Figure 90.

We can continue to the twenty-third step as shown in Figure 93. 421 b5

	9^{*}			5_{14}		2_{7}		1^{*}
			1_{3}	2^{*}		4^{*}		9_{15}
	2_{5}	1_{6}	3^{*}	9_{13}				8_{16}
2^{*}		8^{*}	5_{9}	6^{*}	9_{10}			
			2_{18}	8_{19}	3_{17}		9^{*}	5^{*}
			7_{22}	4_{21}	1^{*}		8_{12}	2_{8}
			4^{*}	1_{1}	5_{2}	8^{*}	2^{*}	7_{11}
1^{*}	5^{*}			7_{23}				
7^{*}	8_{4}			3_{20}				

Figure 93. Figure 8 for Puzzle 3

From the inferences displayed in

Figure 94, we can take
624g: 59(61)(63)
$\rightarrow 3 \mathrm{c} 2 \mathrm{~b} 2$

	9^{*}			5_{14}		2_{7}		1^{*}
			1_{3}	2^{*}		4^{*}		9_{15}
	2_{5}	1_{6}	3^{*}	9_{13}				8_{16}
2^{*}	$3 ?$	8^{*}	5_{9}	6^{*}	9_{10}			
			2_{18}	8_{19}	3_{17}		9^{*}	5^{*}
$5 / 9$	$3 ?$	$9 / 5$	7_{22}	4_{21}	1^{*}		8_{12}	2_{8}
	$?$		4^{*}	1_{1}	5_{2}	8^{*}	2^{*}	7_{11}
1^{*}	5^{*}			7_{23}				
7^{*}	8_{4}			3_{20}				

Figure 94. Figure 9 for Puzzle 3

From the situation
shown in Figure 95,
we can take
$6_{25} 3_{26} \mathrm{r} 6: 59(61)(63)$ in Figure 96.

	9^{*}			5_{14}		2_{7}		1^{*}
			1_{3}	2^{*}		4^{*}		9_{15}
	2_{5}	1_{6}	3^{*}	9_{13}				8_{16}
2^{*}		8^{*}	5_{9}	6^{*}	9_{10}			
			2_{18}	8_{19}	3_{17}		9^{*}	5^{*}
$5 / 9$		$9 / 5$	7_{22}	4_{21}	1^{*}		8_{12}	2_{8}
	6_{24}		4^{*}	1_{1}	5_{2}	8^{*}	2^{*}	7_{11}
1^{*}	5^{*}			7_{23}				
7^{*}	8_{4}			3_{20}				

Figure 95. Figure 10 for Puzzle 3

What number to fill in
(22)? The grid move again! Accordingly, we take

727 g
in Figure 96.

	9^{*}			5_{14}		2_{7}		1^{*}
	$?$		1_{3}	2^{*}		4^{*}		9_{15}
	2_{5}	1_{6}	3^{*}	9_{13}				8_{16}
2^{*}		8^{*}	5_{9}	6^{*}	9_{10}			
			2_{18}	8_{19}	3_{17}		9^{*}	5^{*}
	3_{26}		7_{22}	4_{21}	1^{*}	6_{25}	8_{12}	2_{8}
	6_{24}		4^{*}	1_{1}	5_{2}	8^{*}	2^{*}	7_{11}
1^{*}	5^{*}			7_{23}				
7^{*}	8_{4}			3_{20}				

Figure 96. Figure 11 for Puzzle 3
Finally, we can
complete the
puzzle in Figure 97.

[^1]| 4_{46} | 9^{*} | 6_{60} | 8_{59} | 5_{14} | 7_{38} | 2_{7} | 3_{55} | 1^{*} |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8_{56} | 7_{27} | 3_{61} | 1_{3} | 2^{*} | 6_{62} | 4^{*} | 5_{54} | 9_{15} |
| 5_{51} | 2_{5} | 1_{6} | 3^{*} | 9_{13} | 4_{39} | 7_{37} | 6_{50} | 8_{16} |
| 2^{*} | 1_{32} | 8^{*} | 5_{9} | 6^{*} | 9_{10} | 3_{36} | 7_{40} | 4_{41} |
| 6_{29} | 4_{30} | 7_{28} | 2_{18} | 8_{19} | 3_{17} | 1_{31} | 9^{*} | 5^{*} |
| 9_{53} | 3_{26} | 5_{52} | 7_{22} | 4_{21} | 1^{*} | 6_{25} | 8_{12} | 2_{8} |
| 3_{57} | 6_{24} | 9_{58} | 4^{*} | 1_{1} | 5_{2} | 8^{*} | 2^{*} | 7_{11} |
| 1^{*} | 5^{*} | 2_{44} | 6_{63} | 7_{23} | 8_{64} | 9_{35} | 4_{42} | 3_{47} |
| 7^{*} | 8_{4} | 4_{43} | 9_{49} | 3_{20} | 2_{45} | 5_{34} | 1_{33} | 6_{48} |

Figure 97. Figure 12 for Puzzle 3

Puzzle 4

For the puzzle in
Figure 98, we can take to the twentyninth step as shown in Figure 99.

	6^{*}						1^{*}	
	7^{*}	2^{*}						
			3^{*}					
1^{*}		5^{*}		3^{*}				
				2^{*}		8^{*}		
4^{*}								
						7^{*}		2^{*}
5^{*}			1^{*}					
			4^{*}			3^{*}		

Figure 98. Figure 1 for Puzzle 4

		6*	43	215			527	1*	
124b1		7*	2*		18	528	4_{23}		
		51	12	3*	4_{22}				
$2{ }_{11} 7_{12} 6_{13} \mathrm{c} 1$	1*		5*		3^{*}	421			
420 r 5	$7{ }_{12}$			525	2*	17	8*		420
	4*						1_{6}		526
52469	6_{13}	14			529	316	7*	4_{10}	2*
$5_{255} 5$	5*	49	317	1*	719	214			
	2_{11}		718	4*			3*	5_{24}	15

Figure 99. Figure 2 for Puzzle 4

Now, we come to a
y-junction as shown in
Figure 100: 8(42) or
8(44).

	6^{*}	4_{3}	2_{15}			5_{27}	1^{*}	
	7^{*}	2^{*}		1_{8}	5_{28}	4_{23}		
	5_{1}	1_{2}	3^{*}	4_{22}				
1^{*}	$8 ?$	5^{*}	$8 ?$	3^{*}	4_{21}			
7_{12}			5_{25}	2^{*}	1_{7}	8^{*}		4_{20}
4^{*}						1_{6}		5_{26}
6_{13}	1_{4}			5_{29}	3_{16}	7^{*}	4_{10}	2^{*}
5^{*}	4_{9}	3_{17}	1^{*}	7_{19}	2_{14}			
2_{11}		7_{18}	4^{*}			3^{*}	5_{24}	1_{5}

Figure 100. Figure 3 for Puzzle 4

From Figure 100, we can see that

> 830r4: 8(44)
> $\rightarrow 8(73) \& 679 \mathrm{r} 6 \mathrm{~b} 5$
> $\rightarrow \mathrm{No} \mathrm{\#}(63)$,
to be taken in

Figure 101.

	6^{*}	4_{3}	2_{15}			5_{27}	1^{*}	
	7^{*}	2^{*}		1_{8}	5_{28}	4_{23}		
	5_{1}	1_{2}	3^{*}	4_{22}				
1^{*}		5^{*}	8_{1}	3^{*}	4_{21}			
7_{12}			5_{25}	2^{*}	1_{7}	8^{*}		4_{20}
4^{*}		No\#	$7 ?$	$6 ?$	$9 ?$	1_{6}		5_{26}
6_{13}	1_{4}	8_{2}		5_{29}	3_{16}	$7 *$	4_{10}	2^{*}
5^{*}	4_{9}	3_{17}	1^{*}	7_{19}	2_{14}			
2_{11}		7_{18}	4^{*}			3^{*}	5_{24}	1_{5}

Figure 101. Figure 4 for Puzzle 4
After the thirtysixth step, from the situation shown in Figure 102, we can take
$937 \mathrm{c} 3: 9 \mathrm{r} 6 \mathrm{~b} 5$
as in Figure 103.

	6^{*}	4_{3}	2_{15}			5_{27}	1^{*}	
	7^{*}	2^{*}		1_{8}	5_{28}	4_{23}		
	5_{1}	1_{2}	3^{*}	4_{22}				
1^{*}	8_{30}	5^{*}		3^{*}	4_{21}			
7_{12}	3_{32}		5_{25}	2^{*}	1_{7}	8^{*}		4_{20}
4^{*}	2_{31}			$9 ?$	$9 ?$	1_{6}	3_{36}	5_{26}
6_{13}	1_{4}	8_{34}	9_{35}	5_{29}	3_{16}	7^{*}	4_{10}	2^{*}
5^{*}	4_{9}	3_{17}	1^{*}	7_{19}	2_{14}			
2_{11}	9_{33}	7_{18}	4^{*}			3^{*}	5_{24}	1_{5}

Figure 102. Figure 5 for Puzzle 4

8_{52}	6^{*}	4_{3}	2_{15}	9_{47}	7_{48}	5_{27}	1^{*}	3_{51}
3_{53}	7^{*}	2^{*}	8_{42}	1_{8}	5_{28}	4_{23}	9_{55}	6_{50}
9_{54}	5_{1}	1_{2}	3^{*}	4_{22}	6_{43}	2_{62}	7_{61}	8_{59}
1^{*}	8_{30}	5^{*}	6_{40}	3^{*}	4_{21}	9_{63}	2_{64}	7_{60}
7_{12}	3_{32}	9_{37}	5_{25}	2^{*}	1_{7}	8^{*}	6_{39}	4_{20}
4^{*}	2_{31}	6_{38}	7_{41}	8_{46}	9_{49}	1_{6}	3_{36}	5_{26}
6_{13}	1_{4}	8_{34}	9_{35}	5_{29}	3_{16}	7^{*}	4_{10}	2^{*}
5^{*}	4_{9}	3_{17}	1^{*}	7_{19}	2_{14}	6_{56}	8_{58}	9_{57}
2_{11}	9_{33}	7_{18}	4^{*}	6_{44}	8_{45}	3^{*}	5_{24}	1_{5}

Figure 103. Figure 6 for Puzzle 4

Puzzle 5
We can take to the thirtyfifth step in Figure 105 of the puzzle in Figure 104. $5_{2} \mathrm{c} 1 \quad 78{ }_{9} \mathrm{c} 7 \quad 2{ }_{15} \mathrm{~b} 1$ $33_{17 \mathrm{c}} 633_{19 \mathrm{c} 7} \quad 9_{20} \mathrm{~b} 4$ $9_{22} \mathrm{~b} 9 \quad 22_{29 \mathrm{r}} 44_{34} \mathrm{~b} 2$

6^{*}				$7 *$				
	3^{*}					9^{*}		
						5^{*}		
1^{*}			5^{*}			4^{*}		
7^{*}		2^{*}			8^{*}			
				3^{*}			7^{*}	
		3^{*}					2^{*}	
	5^{*}		9^{*}					

Figure 104. Figure 1 for Puzzle 5
It's time for a chain of flipflops. Let us start from box 8 and then expand the chain to cover the entire right block as displayed in

Figure 106.

6^{*}		9_{31}		7^{*}	5_{4}	2_{9}	3_{29}	
5_{2}	3^{*}		2_{28}			9^{*}		7_{14}
2_{15}	7_{13}			9_{20}	3_{17}	5^{*}		
1^{*}			5^{*}	2_{26}	7_{10}	4^{*}	9_{23}	3_{24}
7^{*}	9_{30}	2^{*}	3_{18}	4_{34}	8^{*}		5_{7}	
3_{1}	4_{33}	5_{3}			9_{21}	7_{8}	8_{35}	2_{25}
9_{32}	2_{16}			3^{*}			7^{*}	5_{6}
		3^{*}	7_{11}	5_{5}			2^{*}	9_{22}
	5^{*}	7_{12}	9^{*}		2_{27}	3_{19}		

Figure 105. Figure 2 for Puzzle 5

We are going to introduce here a brand new move,
called "the residue of flpflops chain move".

6^{*}		9_{31}		7^{*}	5_{4}	2_{9}	3_{29}	$8 / 4$
5_{2}	3^{*}		2_{28}			9^{*}	$1 / 6$	7_{14}
2_{15}	7_{13}			9_{20}	3_{17}	5^{*}	$6 / 1$	$4 / 8$
1^{*}			5^{*}	2_{26}	7_{10}	4^{*}	9_{23}	3_{24}
7^{*}	9_{30}	2^{*}	3_{18}	4_{34}	8^{*}	$1 / 6$	5_{7}	$6 / 1$
3_{1}	4_{33}	5_{3}	$1 / 6$	$6 / 1$	9_{21}	7_{8}	8_{35}	2_{25}
9_{32}	2_{16}			3^{*}			7^{*}	5_{6}
		3^{*}	7_{11}	5_{5}			2^{*}	9_{22}
	5^{*}	7_{12}	9^{*}		2_{27}	3_{19}		$1 / 6$

Figure 106. Figure 3 for Puzzle 5

In Figure 107, we can find the residue 4 (98) in column 8 . So, we can take

436c8: rcf-16(28)(38)
in Figure 108.

6^{*}		9_{31}		7^{*}	5_{4}	2_{9}	3_{29}	$8 / 4$
5_{2}	3^{*}		2_{28}			9^{*}	$1 / 6$	7_{14}
2_{15}	7_{13}			9_{20}	3_{17}	5^{*}	$6 / 1$	$4 / 8$
1^{*}			5^{*}	2_{26}	7_{10}	4^{*}	9_{23}	3_{24}
7^{*}	9_{30}	2^{*}	3_{18}	4_{34}	8^{*}	$1 / 6$	5_{7}	$6 / 1$
3_{1}	4_{33}	5_{3}			9_{21}	7_{8}	8_{35}	2_{25}
9_{32}	2_{16}			3^{*}			7^{*}	5_{6}
		3^{*}	7_{11}	5_{5}			2^{*}	9_{22}
	5^{*}	7_{12}	9^{*}		2_{27}	3_{19}	4	$1 / 6$

Figure 107. Figure 4 for Puzzle 5

As a result, we can
take to the fortythird step as shown in

Figure 109.
443 r 2

6^{*}		9_{31}		7^{*}	5_{4}	2_{9}	3_{29}	$8 / 4$
5_{2}	3^{*}		2_{28}			9^{*}	$1 / 6$	7_{14}
2_{15}	7_{13}			9_{20}	3_{17}	5^{*}	$6 / 1$	$4 / 8$
1^{*}			5^{*}	2_{26}	7_{10}	4^{*}	9_{23}	3_{24}
7^{*}	9_{30}	2^{*}	3_{18}	4_{34}	8^{*}	$1 / 6$	5_{7}	$6 / 1$
3_{1}	4_{33}	5_{3}			9_{21}	7_{8}	8_{35}	2_{25}
9_{32}	2_{16}			3^{*}			7^{*}	5_{6}
		3^{*}	7_{11}	5_{5}			2^{*}	9_{22}
	5^{*}	7_{12}	9^{*}		2_{27}	3_{19}	4_{36}	$1 / 6$

Figure 108. Figure 5 for Puzzle 5

In order to have a better read, we
expand the chain
further as displayed in
Figure 110.

6^{*}		9_{31}		7^{*}	5_{4}	29	3_{29}	$8 / 4$
5_{2}	3^{*}	4_{43}	2_{28}	8_{41}		9^{*}	$1 / 6$	7_{14}
2_{15}	7_{13}			9_{20}	3_{17}	5^{*}	$6 / 1$	$4 / 8$
1^{*}			5^{*}	2_{26}	7_{10}	4^{*}	9_{23}	3_{24}
7^{*}	9_{30}	2^{*}	3_{18}	4_{34}	8^{*}	$1 / 6$	5_{7}	$6 / 1$
3_{1}	4_{33}	5_{3}			9_{21}	7_{8}	8_{35}	2_{25}
9_{32}	2_{16}		8_{38}	3^{*}	4_{40}	$6 / 1$	7^{*}	5_{6}
4_{37}		3^{*}	7_{11}	5_{5}		8_{42}	2^{*}	9_{22}
8_{39}	5^{*}	7_{12}	9^{*}		2_{27}	3_{19}	4_{36}	$1 / 6$

Figure 109. Figure 6 for Puzzle 5

We can easily spot 4
as the residue of
box 4. Hence, we
take
444b4: rcf-
16(26)(34)
as shown in
Figure 111.

6^{*}		9_{31}	4	7^{*}	5_{4}	2_{9}	3_{29}	$8 / 4$
5_{2}	3^{*}	4_{43}	2_{28}	8_{41}	$6 / 1$	9^{*}	$1 / 6$	7_{14}
2_{15}	7_{13}		$1 / 6$	9_{20}	3_{17}	5^{*}	$6 / 1$	$4 / 8$
1^{*}			5^{*}	2_{26}	7_{10}	4^{*}	9_{23}	3_{24}
7^{*}	9_{30}	2^{*}	3_{18}	4_{34}	8^{*}	$1 / 6$	5_{7}	$6 / 1$
3_{1}	4_{33}	5_{3}	$6 / 1$	$1 / 6$	9_{21}	7_{8}	8_{35}	2_{25}
9_{32}	2_{16}	$1 / 6$	8_{38}	3^{*}	4_{40}	$6 / 1$	7^{*}	5_{6}
4_{37}	$6 / 1$	3^{*}	7_{11}	5_{5}	$1 / 6$	8_{42}	2^{*}	9_{22}
8_{39}	5^{*}	7_{12}	9^{*}	$6 / 1$	2_{27}	3_{19}	4_{36}	$1 / 6$

Figure 110. Figure 7 for Puzzle 5

6^{*}		9_{31}	4_{44}	7^{*}	5_{4}	2_{9}	3_{29}	$8 / 4$
5_{2}	3^{*}	4_{43}	2_{28}	8_{41}	$6 / 1$	9^{*}	$1 / 6$	7_{14}
2_{15}	7_{13}		$1 / 6$	9_{20}	3_{17}	5^{*}	$6 / 1$	$4 / 8$
1^{*}			5^{*}	2_{26}	7_{10}	4^{*}	9_{23}	3_{24}
7^{*}	9_{30}	2^{*}	3_{18}	4_{34}	8^{*}	$1 / 6$	5_{7}	$6 / 1$
3_{1}	4_{33}	5_{3}	$6 / 1$	$1 / 6$	9_{21}	7_{8}	8_{35}	2_{25}
9_{32}	2_{16}	$1 / 6$	8_{38}	3^{*}	4_{40}	$6 / 1$	7^{*}	5_{6}
4_{37}	$6 / 1$	3^{*}	7_{11}	5_{5}	$1 / 6$	8_{42}	2^{*}	9_{22}
8_{39}	5^{*}	7_{12}	9^{*}	$6 / 1$	2_{27}	3_{19}	4_{36}	$1 / 6$

Figure 111. Figure 8 for Puzzle 5

6^{*}	1_{46}	9_{31}	4_{44}	7^{*}	5_{4}	2_{9}	3_{29}	8_{45}
5_{2}	3^{*}	4_{43}	2_{28}	8_{41}	6_{60}	9^{*}	1_{62}	7_{14}
2_{15}	7_{13}	8_{47}	1_{59}	9_{20}	3_{17}	5^{*}	6_{63}	4_{64}
1^{*}	8_{49}	6_{50}	5^{*}	2_{26}	7_{10}	4^{*}	9_{23}	3_{24}
7^{*}	9_{30}	2^{*}	3_{18}	4_{34}	8^{*}	1_{53}	5_{7}	6_{54}
3_{1}	4_{33}	5_{3}	6_{58}	1_{57}	9_{21}	7_{8}	8_{35}	2_{25}
9_{32}	2_{16}	1_{51}	8_{38}	3^{*}	4_{40}	6_{52}	7^{*}	5_{6}
4_{37}	6_{48}	3^{*}	7_{11}	5_{5}	1_{61}	8_{42}	2^{*}	9_{22}
8_{39}	5^{*}	7_{12}	9^{*}	6_{56}	2_{27}	3_{19}	4_{36}	1_{55}

Figure 112. Figure 9 for Puzzle 5

Puzzle 6

We can take to the seventh step
in Figure 114 of the
puzzle in Figure 113.
31 c 4
57b2

				2^{*}	3^{*}	6^{*}		
	1^{*}						5^{*}	
3^{*}		2^{*}		7^{*}				
			5^{*}				4^{*}	
6^{*}								
			1^{*}					8^{*}
	5^{*}		4^{*}					
7^{*}						3^{*}		

Figure 113. Figure 1 for Puzzle 6

5_{8}				2^{*}	3^{*}	6^{*}		
	1^{*}	3_{4}					5^{*}	
							3_{3}	
3^{*}		2^{*}		7^{*}				
			5^{*}				4^{*}	3_{2}
6^{*}		5_{7}	3_{1}					
	3_{5}		1^{*}					8^{*}
	5^{*}		4^{*}	3_{6}				
7^{*}						3^{*}		

Figure 114. Figure 2 for Puzzle 6
Normally, it's too
early to take the "two roads" approach. But let us try it for row 9 in Figure 115 to take a choice between 4(93) and 4(99).

5_{8}				2^{*}	3^{*}	6^{*}		
	1^{*}	3_{4}					5^{*}	
							3_{3}	
3^{*}	$4 ?$	2^{*}		$7 *$				
			5^{*}				4^{*}	3_{2}
6^{*}	$4 ?$	5_{7}	3_{1}					
	3_{5}		1^{*}					8^{*}
	5^{*}		4^{*}	3_{6}				
7^{*}		$4 ?$				3^{*}		$4 ?$

Figure 115. Figure 3 for Puzzle 6

The choice of 4(93) would lead us to the dilemma as demonstrated in Figure 116.

5_{8}				2^{*}	3^{*}	6^{*}	1_{4}	4_{2}
	1^{*}	3_{4}					5^{*}	
							3_{3}	
3^{*}		2^{*}		7^{*}				
			5^{*}				4^{*}	3_{2}
6^{*}		5_{7}	3_{1}					
	3_{5}		1^{*}			4_{3}	No5	8^{*}
	5^{*}		4^{*}	3_{6}		No5	No5	No5
7^{*}		4_{1}				3^{*}	No5	1_{5}

Figure 116. Figure 4 for Puzzle 6

So in Figure 117, we take

$$
\begin{aligned}
\text { 4gr9: } & 4(93) \\
& \rightarrow 4(19) \\
& \rightarrow 4(77) \\
& \rightarrow 1(18) \\
& \rightarrow 1(99) \\
& \rightarrow \text { No5b } 9 .
\end{aligned}
$$

5_{8}		4_{10}		2^{*}	3^{*}	6^{*}		
	1^{*}	3_{4}					5^{*}	
							3_{3}	
3^{*}	$4 ?$	2^{*}		$7 *$				5_{13}
			5^{*}				4^{*}	3_{2}
6^{*}	$4 ?$	5_{7}	3_{1}					
4_{11}	3_{5}		1^{*}			5_{12}		8^{*}
	5^{*}		4^{*}	3_{6}				
7^{*}						3^{*}		4_{9}

Figure 117. Figure 5 for Puzzle 6
We can take to the thirteenth step in

Figure 117
$4_{10 r} 1$: 4 c 2 b 2
$5_{12} \mathrm{~b} 9$
and in Figure 118 take
$2_{14} 7_{15 \mathrm{~F}} 7 \& 2_{16 \mathrm{r}} \mathrm{B}: 2 \mathrm{c} 6 \mathrm{~b} 5$.

5_{8}		4_{10}		2^{*}	3^{*}	6^{*}		
	1^{*}	3_{4}					5^{*}	
							3_{3}	
3^{*}		2^{*}		7^{*}				5_{13}
			5^{*}		$2 ?$		4^{*}	3_{2}
6^{*}		5_{7}	3_{1}		$2 ?$			
4_{11}	3_{5}		1^{*}		7_{15}	5_{12}	2_{14}	8^{*}
2_{16}	5^{*}		4^{*}	3_{6}				
7^{*}						3^{*}		4_{9}

Figure 118. Figure 6 for Puzzle 6

We then take to the fortyseventh step in

Figure 119.

$6_{18} 7_{19} \mathrm{~b} 1$	1	122 b 2
$6_{23} \mathrm{r} 7$	$6_{25} \mathrm{c} 9$	$2_{29} \mathrm{r} 5$
$8_{38} \mathrm{~b} 7$	$8_{39} \mathrm{c} 4$	

5_{8}	7_{19}	4_{10}	9_{40}	2^{*}	3^{*}	6^{*}	8_{38}	1_{41}
9_{46}	1^{*}	3_{4}	6_{28}			7_{34}	5^{*}	2_{32}
8_{47}	2_{17}	6_{18}	7_{33}			4_{35}	3_{3}	9_{42}
3^{*}		2^{*}	8_{39}	7^{*}			6_{26}	5_{13}
1_{22}	8_{44}	7_{21}	5^{*}	9_{45}	6_{27}	2_{29}	4^{*}	3_{2}
6^{*}		5_{7}	3_{1}		2_{30}	8_{43}		7_{37}
4_{11}	3_{5}	9_{24}	1^{*}	6_{23}	7_{15}	5_{12}	2_{14}	8^{*}
2_{16}	5^{*}		4^{*}	3_{6}			7_{36}	6_{25}
7^{*}	6_{20}		2_{31}			3^{*}		4_{9}

Figure 119. Figure 7 for Puzzle 6
In Figure 120, the equilibrium of the chain of flipflops is maintained, i.e. all flipflops involved in each row, column or box are cancellable.

5_{8}	7_{19}	4_{10}	9_{40}	2^{*}	3^{*}	6^{*}	8_{38}	1_{41}
9_{46}	1^{*}	3_{4}	6_{28}	$4 / 8$	$8 / 4$	7_{34}	5^{*}	2_{32}
8_{47}	2_{17}	6_{18}	7_{33}	$5 / 1$	$1 / 5$	4_{35}	3_{3}	9_{42}
3^{*}	$9 / 4$	2^{*}	8_{39}	7^{*}	$4 / 1$	$1 / 9$	6_{26}	5_{13}
1_{22}	8_{44}	7_{21}	5^{*}	9_{45}	6_{27}	2_{29}	4^{*}	3_{2}
6^{*}	$4 / 9$	5_{7}	3_{1}	$1 / 4$	2_{30}	8_{43}	$9 / 1$	7_{37}
4_{11}	3_{5}	9_{24}	1^{*}	6_{23}	7_{15}	5_{12}	2_{14}	8^{*}
2_{16}	5^{*}		4^{*}	3_{6}	9	$9 / 1$	7_{36}	6_{25}
7^{*}	6_{20}		2_{31}	$8 / 5$	$5 / 8$	3^{*}	$1 / 9$	4_{9}

Figure 120. Figure 8 for Puzzle 6
In Figure 120, we can find the residue 9 (86) in box 6 and take 948b6: rcf-58(95)(96), which forces us to take all the flops in Figure 121.

5_{8}	7_{19}	4_{10}	9_{40}	2^{*}	3^{*}	6^{*}	8_{38}	1_{41}
9_{46}	1^{*}	3_{4}	6_{28}	8_{57}	4_{58}	7_{34}	5^{*}	2_{32}
8_{47}	2_{17}	6_{18}	7_{33}	3_{60}	3_{59}	4_{35}	3_{3}	9_{42}
3^{*}	4_{53}	2^{*}	8_{39}	7^{*}	1_{55}	9_{50}	6_{26}	5_{13}
1_{22}	8_{44}	7_{21}	5^{*}	9_{45}	6_{27}	2_{29}	4^{*}	3_{2}
6^{*}	9_{54}	5_{7}	3_{1}	4_{56}	2_{30}	8_{43}	1_{51}	7_{37}
4_{11}	3_{5}	9_{24}	1^{*}	6_{23}	7_{15}	5_{12}	2_{14}	8^{*}
2_{16}	5^{*}	8_{63}	4^{*}	3_{6}	9_{48}	1_{49}	7_{36}	6_{25}
7^{*}	6_{20}	1_{64}	2_{31}	8_{61}	5_{62}	3^{*}	9_{52}	4_{9}

Figure 121. Figure 9 for Puzzle 6

Puzzle 7

We can readily take the first thirty-five steps of the puzzle in Figure 122 as shown in Figure 123.

9^{*}						6^{*}	8^{*}	
4^{*}				7^{*}				
						2^{*}		
	8^{*}						1^{*}	7^{*}
			4^{*}	2^{*}				
	$7 *$		8^{*}		1^{*}			
			9^{*}			4^{*}		
3^{*}								

Figure 122. Figure 1 for Puzzle 7

71 rl	47 c 8	9*		71	127	518		6*	8*	
		4*		819		7*		1_{26}		
$1_{11} \mathrm{~b} 5$	212 b 8	1_{22}				815		2*	72	
$314 \mathrm{b6}$	$8_{159} 9_{16617} \mathrm{C} 5$	213	8*	48		9_{16}			1*	7*
		76	124		4*	2*	835	933		
122 cl	$1_{235} 9$		929		75	1_{11}		834	4_{7}	212
928 b 3	$9_{33} 5$:		7*	928	8*	4_{10}	1*		232	
		820		231	9*	314	74	4*		1_{25}
9 c 9 b 7		3*	49	123		617		73	9_{30}	821

Figure 123. Figure 2 for Puzzle 7

Although we spot a
blank grid in box 9 of
Figure 124, we are not sure what number can fit there.

9^{*}		7_{1}	1_{27}	5_{18}		6^{*}	8^{*}	
4^{*}		8_{19}		7^{*}		1_{26}		
1_{22}				8_{15}	$4 / 9$	2^{*}	7_{2}	$9 / 4$
2_{13}	8^{*}	4_{8}		9_{16}		$3 / 5$	1^{*}	7^{*}
7_{6}	1_{24}		4^{*}	2^{*}	8_{35}	9_{33}		
$5 / 6$	9_{29}		7_{5}	1_{11}		8_{34}	4_{7}	2_{12}
$6 / 5$	7^{*}	9_{28}	8^{*}	4_{10}	1^{*}	$5 / 3$	2_{32}	
8_{20}	$5 / 6$	2_{31}	9^{*}	3_{14}	7_{4}	4^{*}	$6 / 5$	1_{25}
3^{*}	4_{9}	1_{23}		6_{17}		7_{3}	9_{30}	8_{21}

Figure 124. Figure 3 for Puzzle 7

We can expand the chain of flipflops in Figure 124 as far as we can so that the equilibrium is mantained as in

Figure 125.

9^{*}		7_{1}	1_{27}	5_{18}		6^{*}	8^{*}	
4^{*}		8_{19}		7^{*}		1_{26}		$5 / 3$
1_{22}	$6 / 5$	$5 / 6$		8_{15}	$4 / 9$	2^{*}	7_{2}	$9 / 4$
2_{13}	8^{*}	4_{8}	$5 / 3$	9_{16}		$3 / 5$	1^{*}	7^{*}
7_{6}	1_{24}	$3 / 5$	4^{*}	2^{*}	8_{35}	9_{33}	$5 / 3$	$6 / 5$
$5 / 6$	9_{29}	$6 / 3$	7_{5}	1_{11}	$3 / 5$	8_{34}	4_{7}	2_{12}
$6 / 5$	$7 *$	9_{28}	8^{*}	4_{10}	1^{*}	$5 / 3$	2_{32}	$3 / 6$
8_{20}	$5 / 6$	2_{31}	9^{*}	3_{14}	7_{4}	4^{*}	$6 / 5$	1_{25}
3^{*}	4_{9}	1_{23}		6_{17}		7_{3}	9_{30}	8_{21}

Figure 125. Figure 4 for Puzzle 7
We can take

336r3: rcf-
56(32)(33)

$$
\& 49(36)(39)
$$

$6_{371} 4$: rcf-
35(44)(47)
and

$$
338(28) g
$$

in Figure 126.

9^{*}		7_{1}	1_{27}	5_{18}		6^{*}	8^{*}	
4^{*}		8_{19}		$7 *$		1_{26}	3_{38}	$5 / 3$
1_{22}	$6 / 5$	$5 / 6$	3_{36}	8_{15}	$4 / 9$	2^{*}	7_{2}	$9 / 4$
2_{13}	8^{*}	4_{8}	$5 / 3$	9_{16}	6_{37}	$3 / 5$	1^{*}	7^{*}
7_{6}	1_{24}	$3 / 5$	4^{*}	2^{*}	8_{35}	9_{33}	$5 / 3$	$6 / 5$
$5 / 6$	9_{29}	$6 / 3$	7_{5}	1_{11}	$3 / 5$	8_{34}	4_{7}	2_{12}
$6 / 5$	7^{*}	9_{28}	8^{*}	4_{10}	1^{*}	$5 / 3$	2_{32}	$3 / 6$
8_{20}	$5 / 6$	2_{31}	9^{*}	3_{14}	7_{4}	4^{*}	$6 / 5$	1_{25}
3^{*}	4_{9}	1_{23}		6_{17}		7_{3}	9_{30}	8_{21}

Figure 126. Figure 5 for Puzzle 7
Finally, we can break up the flipflop chain in Figure 126 by taking all flips and complete the puzzle as shown in

Figure 127.

9^{*}	3_{55}	7_{1}	1_{27}	5_{18}	2_{57}	6^{*}	8^{*}	4_{58}
4^{*}	2_{56}	8_{19}	6_{62}	7^{*}	9_{63}	2_{5}	3_{38}	5_{39}
1_{22}	6_{54}	5_{51}	3_{36}	8_{15}	4_{60}	2^{*}	7_{2}	9_{59}
2_{13}	8^{*}	4_{8}	5_{46}	9_{16}	6_{37}	3_{45}	1^{*}	7^{*}
7_{6}	1_{24}	3_{49}	4^{*}	2^{*}	8_{35}	9_{33}	5_{40}	6_{48}
5_{44}	9_{29}	6_{50}	7_{5}	1_{11}	3_{47}	8_{34}	4_{7}	2_{12}
6_{43}	7^{*}	9_{28}	8^{*}	4_{10}	1^{*}	5_{52}	2_{32}	3_{53}
8_{20}	5_{42}	2_{31}	9^{*}	3_{14}	7_{4}	4^{*}	6_{41}	1_{25}
3^{*}	4_{9}	1_{23}	2_{61}	6_{17}	5_{64}	7_{3}	9_{30}	8_{21}

Figure 127. Figure 6 for Puzzle 7

Puzzle 8

We can readily take the first thirtyfive steps of the puzzle in Figure 128 as shown in Figure 129.

	5^{*}		6^{*}			2^{*}		
				8^{*}				
								9^{*}
		$7 *$		4^{*}			3^{*}	
5^{*}						1^{*}		
2^{*}								
	6^{*}	4^{*}					7^{*}	
			2^{*}		5^{*}			
			1^{*}					

Figure 128. Figure 1 for Puzzle 8

$2_{2} 5_{3} 1_{4} \mathrm{r} 7$	$1_{10 \mathrm{r} 4}$
$4_{11} \mathrm{~b} 6$	
$5_{12} 1_{13} \mathrm{c} 5$	
$6_{22} \mathrm{c} 6$	$6_{23} \mathrm{c} 3$
$7_{32} \mathrm{~b} 6$	$8_{33} \mathrm{c} 6$
$9_{34} \mathrm{c} 5$	

4_{27}	5^{*}		6^{*}	1_{13}		2^{*}	8_{35}	
6_{26}		2_{9}	5_{20}	8^{*}		4_{28}	1_{16}	9^{*}
		1_{14}	4_{21}	2_{8}			5_{19}	6_{25}
	1_{10}	7^{*}		4^{*}	2_{7}	6_{24}	3^{*}	5_{18}
5^{*}					6_{22}	1^{*}	2_{6}	
2^{*}		6_{23}		5_{12}	1_{15}		9_{34}	
1_{4}	6^{*}	4^{*}			8_{33}	5_{3}	7^{*}	2_{2}
			2^{*}	6_{31}	5^{*}		4_{29}	1_{17}
	2_{5}	5_{1}	1^{*}	7_{32}	4_{11}		6_{30}	

Figure 129. Figure 2 for Puzzle 8
We first come up with the chain in

Figure 130. Note that 7/3(16) will be added to maintain the equilibrium as shown in Figure 131.

4_{27}	5^{*}		6^{*}	1_{13}		2^{*}	8_{35}	$3 / 7$
6_{26}	$7 / 3$	2_{9}	5_{20}	8^{*}	$3 / 7$	4_{28}	1_{16}	9^{*}
		1_{14}	4_{21}	2_{8}		$7 / 3$	5_{19}	6_{25}
$9 / 8$	1_{10}	7^{*}	$8 / 9$	4^{*}	2_{7}	6_{24}	3^{*}	5_{18}
5^{*}				$9 / 3$	6_{22}	1^{*}	2_{6}	
2^{*}		6_{23}		5_{12}	1_{15}		9_{34}	
1_{4}	6^{*}	4^{*}	$9 / 3$	$3 / 9$	8_{33}	5_{3}	7^{*}	2_{2}
			2^{*}	6_{31}	5^{*}		4_{29}	1_{17}
	2_{5}	5_{1}	1^{*}	7_{32}	4_{11}		6_{30}	

Figure 130. Figure 3 for Puzzle 8

We can take
9_{361} : rcf37(16)(19)
and
9_{37} b2: rcf37(16)(26)
in Figure 132,

4_{27}	5^{*}		6^{*}	1_{13}	$7 / 3$	2^{*}	8_{35}	$3 / 7$
6_{26}	$7 / 3$	2_{9}	5_{20}	8^{*}	$3 / 7$	4_{28}	1_{16}	9^{*}
		1_{14}	4_{21}	2_{8}		$7 / 3$	5_{19}	6_{25}
$9 / 8$	1_{10}	7^{*}	$8 / 9$	4^{*}	2_{7}	6_{24}	3^{*}	5_{18}
5^{*}				$9 / 3$	6_{22}	1^{*}	2_{6}	
2^{*}		6_{23}		5_{12}	1_{15}		9_{34}	
1_{4}	6^{*}	4^{*}	$9 / 3$	$3 / 9$	8_{33}	5_{3}	7^{*}	2_{2}
			2^{*}	6_{31}	5^{*}		4_{29}	1_{17}
	2_{5}	5_{1}	1^{*}	7_{32}	4_{11}		6_{30}	

Figure 131. Figure 4 for Puzzle 8

We shall expand
the chain by further adding $7 / 3(54)$ and 3/7(64) in

Figure 133.

4_{27}	5^{*}	9_{36}	6^{*}	1_{13}	$7 / 3$	2^{*}	8_{35}	$3 / 7$
6_{26}	$7 / 3$	2_{9}	5_{20}	8^{*}	$3 / 7$	4_{28}	1_{16}	9^{*}
		1_{14}	4_{21}	2_{8}	9_{37}	$7 / 3$	5_{19}	6_{25}
$9 / 8$	1_{10}	7^{*}	$8 / 9$	4^{*}	2_{7}	6_{24}	3^{*}	5_{18}
5^{*}				$9 / 3$	6_{22}	1^{*}	2_{6}	
2^{*}		6_{23}		5_{12}	1_{15}		9_{34}	
1_{4}	6^{*}	4^{*}	$9 / 3$	$3 / 9$	8_{33}	5_{3}	7^{*}	2_{2}
			2^{*}	6_{31}	5^{*}		4_{29}	1_{17}
	2_{5}	5_{1}	1^{*}	7_{32}	4_{11}		6_{30}	

Figure 132. Figure 5 for Puzzle 8

Unlike the previous puzzles, we can right away take all the flips in column 4 of this chain as shown in

Figure 134.

4_{27}	5^{*}	9_{36}	6^{*}	1_{13}	$7 / 3$	2^{*}	8_{35}	$3 / 7$
6_{26}	$7 / 3$	2_{9}	5_{20}	8^{*}	$3 / 7$	4_{28}	1_{16}	9^{*}
		1_{14}	4_{21}	2_{8}	9_{37}	$7 / 3$	5_{19}	6_{25}
$9 / 8$	1_{10}	7^{*}	$8 / 9$	4^{*}	2_{7}	6_{24}	3^{*}	5_{18}
5^{*}			$7 / 3$	$9 / 3$	6_{22}	1^{*}	2_{6}	
2^{*}		6_{23}	$3 / 7$	5_{12}	1_{15}		9_{34}	
1_{4}	6^{*}	4^{*}	$9 / 3$	$3 / 9$	8_{33}	5_{3}	7^{*}	2_{2}
			2^{*}	6_{31}	5^{*}		4_{29}	1_{17}
	2_{5}	5_{1}	1^{*}	7_{32}	4_{11}		6_{30}	

Figure 133. Figure 6 for Puzzle 8

Then we take all flips for the chain related, followed by three block moves as
shown in Figure 135.

4_{27}	5^{*}	9_{36}	6^{*}	1_{13}	$7 / 3$	2^{*}	8_{35}	$3 / 7$
6_{26}	$7 / 3$	2_{9}	5_{20}	8^{*}	$3 / 7$	4_{28}	1_{16}	9^{*}
		1_{14}	4_{21}	2_{8}	9_{37}	$7 / 3$	5_{19}	6_{25}
$9 / 8$	1_{10}	7^{*}	8_{38}	4^{*}	2_{7}	6_{24}	3^{*}	5_{18}
5^{*}			7_{39}	$9 / 3$	6_{22}	1^{*}	2_{6}	
2^{*}		6_{23}	3_{40}	5_{12}	1_{15}		9_{34}	
1_{4}	6^{*}	4^{*}	9_{41}	$3 / 9$	8_{33}	5_{3}	7^{*}	2_{2}
			2^{*}	6_{31}	5^{*}		4_{29}	1_{17}
	2_{5}	5_{1}	1^{*}	7_{32}	4_{11}		6_{30}	

Figure 134. Figure 7 for Puzzle 8
Now by adding
$3 / 7(22)$ to maintain
the equilibrium for the remaining chain,
we cantake
848b1: rcf-
37(16)(19).

4_{27}	5^{*}	9_{36}	6^{*}	1_{13}	$7 / 3$	2^{*}	8_{35}	$3 / 7$
6_{26}	$7 / 3$	2_{9}	5_{20}	8^{*}	$3 / 7$	4_{28}	1_{16}	9^{*}
8_{48}	$3 / 7$	1_{14}	4_{21}	2_{8}	9_{37}	$7 / 3$	5_{19}	6_{25}
9_{42}	1_{10}	7^{*}	8_{38}	4^{*}	2_{7}	6_{24}	3^{*}	5_{18}
5^{*}			7_{39}	9_{44}	6_{22}	1^{*}	2_{6}	
2^{*}		6_{23}	3_{40}	5_{12}	1_{15}		9_{34}	
1_{4}	6^{*}	4^{*}	9_{41}	3_{43}	8_{33}	5_{3}	7^{*}	2_{2}
7_{46}	9_{45}		2^{*}	6_{31}	5^{*}		4_{29}	1_{17}
	2_{5}	5_{1}	1^{*}	7_{32}	4_{11}	9_{47}	6_{30}	

Figure 135. Figure 8 for Puzzle 8

4_{27}	5^{*}	9_{36}	6^{*}	1_{13}	7_{58}	2^{*}	8_{35}	3_{59}
6_{26}	7_{56}	2_{9}	5_{20}	8^{*}	3_{57}	4_{28}	1_{16}	9^{*}
8_{48}	3_{55}	1_{14}	4_{21}	2_{8}	9_{37}	7_{54}	5_{19}	6_{25}
9_{42}	1_{10}	7^{*}	8_{38}	4^{*}	2_{7}	6_{24}	3^{*}	5_{18}
5^{*}	8_{61}	3_{53}	7_{39}	9_{44}	6_{22}	1^{*}	2_{6}	4_{63}
2^{*}	4_{62}	6_{23}	3_{40}	5_{12}	1_{15}	8_{60}	9_{34}	7_{64}
1_{4}	6^{*}	4^{*}	9_{41}	3_{43}	8_{33}	5_{3}	7^{*}	2_{2}
7_{46}	9_{45}	8_{52}	2^{*}	6_{31}	5^{*}	3_{51}	4_{29}	1_{17}
3_{49}	2_{5}	5_{1}	1^{*}	7_{32}	4_{11}	9_{47}	6_{30}	8_{50}

Figure 136. Figure 9 for Puzzle 8

Puzzle 9

We can take to the fourteenth step in Figure 138 of the puzzle in Figure 137.

$$
2_{2} \mathrm{c} 1 \quad 7_{9} \mathrm{~b} 5 \quad 9_{14} \mathrm{~b} 3
$$

3^{*}			5^{*}			6^{*}		
					7^{*}		2^{*}	
	2^{*}						7^{*}	4^{*}
			3^{*}	1^{*}				
4^{*}		8^{*}						7^{*}
				2^{*}		9^{*}		
5^{*}			1^{*}					

Figure 137. Figure 1 for Puzzle 9
The 3 in box 5
restricts 3 of box 4 to be in column 5 as shown in Figure 138, which triggers the moves in row 7

$$
1_{15} 3_{16} 5_{17 \mathrm{r} 7:} 3 \mathrm{c} 5 \mathrm{~b} 4 .
$$

3^{*}		7_{12}	5^{*}	$3 ?$	2_{4}	6^{*}		
				$3 ?$	7^{*}		2^{*}	
2_{2}				$3 ?$	1_{5}	7_{1}		
	2^{*}						7^{*}	4^{*}
7_{13}			3^{*}	1^{*}				2_{8}
			2_{6}	7_{9}				
4^{*}	9_{14}	8^{*}	6_{18}	5_{17}	3_{16}	2_{7}	1_{15}	7^{*}
			7_{10}	2^{*}		9^{*}		
5^{*}	7_{11}	2_{3}	1^{*}					

Figure 138. Figure 2 for Puzzle 9
Again, the 4 in box 8 restricts 4 of box 5 to be in column 6 as
shown in Figure 139, which triggers the of move in box 6

419b6: 4c6b5.

3^{*}		7_{12}	5^{*}		2_{4}	6^{*}		
					7^{*}		2^{*}	
2_{2}					1_{5}	7_{1}		
	2^{*}						7^{*}	4^{*}
7_{13}			3^{*}	1^{*}	$4 ?$			2_{8}
			2_{6}	7_{9}	$4 ?$			
4^{*}	9_{14}	8^{*}	6_{18}	5_{17}	3_{16}	2_{7}	1_{15}	7^{*}
			7_{10}	2^{*}		9^{*}		
5^{*}	7_{11}	2_{3}	1^{*}	4_{19}				

Figure 139. Figure 3 for Puzzle 9

We can then take to the twentyeighth step in Figure 140 .

$4_{25} 1_{26} \mathrm{r} 1$
$5_{28} \mathrm{~b} 7$

3^{*}	4_{25}	7_{12}	5^{*}		2_{4}	6^{*}		1_{26}
					7^{*}	4_{21}	2^{*}	
2_{2}			4_{27}		1_{5}	7_{1}	5_{28}	
	2^{*}						7^{*}	4^{*}
7_{13}			3^{*}	1^{*}				2_{8}
			2_{6}	7_{9}				
4^{*}	9_{14}	8^{*}	6_{18}	5_{17}	3_{16}	2_{7}	1_{15}	7^{*}
			7_{10}	2^{*}	8_{24}	9^{*}	4_{20}	5_{22}
5^{*}	7_{11}	2_{3}	1^{*}	4_{19}	9_{23}			

Figure 140. Figure 4 for Puzzle 9

Now, it's time to look at the following chain of flipflops in

Figure 141.

3^{*}	4_{25}	7_{12}	5^{*}	$8 / 9$	2_{4}	6^{*}	$9 / 8$	1_{26}
$8 / 9$			$9 / 8$		7^{*}	4_{21}	2^{*}	
2_{2}			4_{27}		1_{5}	7_{1}	5_{28}	$8 / 9$
$1 / 6$	2^{*}		$8 / 9$	$9 / 8$			7^{*}	4^{*}
7_{13}			3^{*}	1^{*}				2_{8}
$9 / 8$			2_{6}	7_{9}				
4^{*}	9_{14}	8^{*}	6_{18}	5_{17}	3_{16}	2_{7}	1_{15}	7^{*}
$6 / 1$			7_{10}	2^{*}	8_{24}	9^{*}	4_{20}	5_{22}
5^{*}	7_{11}	2_{3}	1^{*}	4_{19}	9_{23}			

Figure 141. Figure 5 for Puzzle 9
Look at the only grid left to be filled in box

7 , where 3 is the
residue of the chain in question! So, we take 329b7: rcf-89(18)(39)
in Figure 142.

3^{*}	4_{25}	7_{12}	5^{*}	$8 / 9$	2_{4}	6^{*}	$9 / 8$	1_{26}
$8 / 9$			$9 / 8$		7^{*}	4_{21}	2^{*}	3_{29}
2_{2}			4_{27}		1_{5}	7_{1}	5_{28}	$8 / 9$
$1 / 6$	2^{*}		$8 / 9$	$9 / 8$			7^{*}	4^{*}
7_{13}			3^{*}	1^{*}				2_{8}
$9 / 8$			2_{6}	7_{9}				
4^{*}	9_{14}	8^{*}	6_{18}	5_{17}	3_{16}	2_{7}	1_{15}	7^{*}
$6 / 1$			7_{10}	2^{*}	8_{24}	9^{*}	4_{20}	5_{22}
5^{*}	7_{11}	2_{3}	1^{*}	4_{19}	9_{23}			

Figure 142. Figure 6 for Puzzle 9

We can continue to take seven more moves in Figure 143
$6_{32} \mathrm{~g}$
$3{ }_{34} \mathrm{c} 8$
and break down as
in Figure 144!

3^{*}	4_{25}	7_{12}	5^{*}	$8 / 9$	2_{4}	6^{*}	$9 / 8$	1_{26}
$8 / 9$			$9 / 8$	6_{31}	7^{*}	4_{21}	2^{*}	3_{29}
2_{2}			4_{27}	3_{30}	1_{5}	7_{1}	5_{28}	$8 / 9$
$1 / 6$	2^{*}	3_{35}	$8 / 9$	$9 / 8$			7^{*}	4^{*}
7_{13}			3^{*}	1^{*}				2_{8}
$9 / 8$			2_{6}	7_{9}			3_{34}	6_{32}
4^{*}	9_{14}	8^{*}	6_{18}	5_{17}	3_{16}	2_{7}	1_{15}	7^{*}
$6 / 1$	3_{36}		7_{10}	2^{*}	8_{24}	9^{*}	4_{20}	5_{22}
5^{*}	7_{11}	2_{3}	1^{*}	4_{19}	9_{23}	3_{37}	6_{33}	8_{38}

Figure 143. Figure 7 for Puzzle 9
Now, we can see 8 in box 9 will force us to take all the flops of the chain in question, excluding the
flipflops 16(41)(81).

3^{*}	4_{25}	7_{12}	5^{*}	$8 / 9$	2_{4}	6^{*}	$9 / 8$	1_{26}
$8 / 9$			$9 / 8$	6_{31}	7^{*}	4_{21}	2^{*}	3_{29}
2_{2}			4_{27}	3_{30}	1_{5}	7_{1}	5_{28}	$8 / 9$
$1 / 6$	2^{*}	3_{35}	$8 / 9$	$9 / 8$			7^{*}	4^{*}
7_{13}			3^{*}	1^{*}				2_{8}
$9 / 8$			2_{6}	7_{9}			3_{34}	6_{32}
4^{*}	9_{14}	8^{*}	6_{18}	5_{17}	3_{16}	2_{7}	1_{15}	7^{*}
$6 / 1$	3_{36}		7_{10}	2^{*}	8_{24}	9^{*}	4_{20}	5_{22}
5^{*}	7_{11}	2_{3}	1^{*}	4_{19}	9_{23}	3_{37}	6_{33}	8_{38}

Figure 144. Figure 8 for Puzzle 9

Thereafter, we can
complete the puzzle
rather easily as shown in Figure 145.

654 c 2

3^{*}	4_{25}	7_{12}	5^{*}	9_{42}	2_{4}	6^{*}	8_{40}	1_{26}
9_{46}	1_{61}	5_{60}	8_{43}	6_{31}	7^{*}	4_{21}	2^{*}	3_{29}
2_{2}	8_{48}	6_{49}	4_{27}	3_{30}	1_{5}	7_{1}	5_{28}	9_{39}
1_{58}	2^{*}	3_{35}	9_{44}	8_{45}	6_{56}	1_{63}	7^{*}	4^{*}
7_{13}	6_{54}	4_{52}	3^{*}	1^{*}	5_{55}	8_{50}	9_{41}	2_{8}
8_{47}	5_{62}	9_{51}	2_{6}	7_{9}	4_{53}	5_{64}	3_{34}	6_{32}
4^{*}	9_{14}	8^{*}	6_{18}	5_{17}	3_{16}	2_{7}	1_{15}	7^{*}
6_{57}	3_{36}	1_{59}	7_{10}	2^{*}	8_{24}	9^{*}	4_{20}	5_{22}
5^{*}	7_{11}	2_{3}	1^{*}	4_{19}	9_{23}	3_{37}	6_{33}	8_{38}

Figure 145. Figure 9 for Puzzle 9

Puzzle 10

We can take to the
sixth step in
Figure 146 of the
puzzle in Figure 147.
$2_{2} \mathrm{~b} 2 \quad 4{ }_{3} \mathrm{~b} 6 \quad 4{ }_{6} \mathrm{r} 2$

3^{*}				4^{*}				
							5^{*}	$7 *$
				1^{*}				
1^{*}	6^{*}					3^{*}		
			2^{*}			8^{*}		
4^{*}				8^{*}				
	2^{*}		7^{*}		6^{*}			
			5^{*}					
						4^{*}		

Figure 146. Figure 1 for Puzzle 10

3^{*}				4^{*}				
	4_{6}						5^{*}	7^{*}
				1^{*}				
1^{*}	6^{*}	8_{1}	4_{5}			3^{*}		
			2^{*}			8^{*}		
4^{*}		2_{2}		8^{*}				
	2^{*}	4_{4}	7^{*}		6^{*}			
			5^{*}		4_{3}			
						4^{*}		

Figure 147. Figure 2 for Puzzle 10

In the setting of
flipflops of
Figure 148, 6 is the
residue of column 5 .

3^{*}				4^{*}	$5 / 7$			
	4_{6}			6			5^{*}	7^{*}
				1^{*}	$7 / 5$			
1^{*}	6^{*}	8_{1}	4_{5}	$5 / 7$		3^{*}		
			2^{*}	$7 / 5$		8^{*}		
4^{*}		2_{2}		8^{*}				
	2^{*}	4_{4}	7^{*}		6^{*}			
			5^{*}		4_{3}			
						4^{*}		

Figure 148. Figure 3 for Puzzle 10

So, in Figure 149 we take the residue move 67c5: rcf-57(45)(55), followed by the middle block move
$6_{8} \mathrm{MB}$.

3^{*}				4^{*}				
	4_{6}			6_{7}			5^{*}	7^{*}
				1^{*}				
1^{*}	6^{*}	8_{1}	4_{5}			3^{*}		
			2^{*}			8^{*}		
4^{*}		2_{2}	6_{8}	8^{*}				
	2^{*}	4_{4}	7^{*}		6^{*}			
			5^{*}		4_{3}			
						4^{*}		

Figure 149. Figure 4 for Puzzle 10

3^{*}				4^{*}				
	4_{6}			6_{7}			5^{*}	7^{*}
				1^{*}				
1^{*}	6^{*}	8_{1}	4_{5}			3^{*}		
			2^{*}		1	8^{*}	$4 / 6$	$6 / 4$
4^{*}		2_{2}	6_{8}	8^{*}				
	2^{*}	4_{4}	7^{*}		6^{*}			
			5^{*}		4_{3}			
						4^{*}		

Figure 150. Figure 5 for Puzzle 10

3^{*}				4^{*}				
	4_{6}			6_{7}			5^{*}	7^{*}
				1^{*}				
1^{*}	6^{*}	8_{1}	4_{5}			3^{*}		
			2^{*}		1_{9}	8^{*}		
4^{*}		2_{2}	6_{8}	8^{*}				
	2^{*}	4_{4}	7^{*}		6^{*}			
			5^{*}		4_{3}			
						4^{*}		

Figure 151. Figure 6 for Puzzle 10

In the setting of flipflops of

Figure 152, we can see 3 and 9 being the residue of box 5 .

3^{*}				4^{*}				
	4_{6}			6_{7}			5^{*}	7^{*}
				1^{*}				
1^{*}	6^{*}	8_{1}	4_{5}	$5 / 7$	9	3^{*}		
			2^{*}	$7 / 5$	1_{9}	8^{*}		
4^{*}		2_{2}	6_{8}	8^{*}	3			
	2^{*}	4_{4}	7^{*}		6^{*}			
			5^{*}		4_{3}			
						4^{*}		

Figure 152. Figure 7 for Puzzle 10
Therefore, we take
$3_{10} 9_{11}$ b5: rcf-
57(45)(55),
followed by the next
Eleven steps in
Figure 153.

$3_{13 \mathrm{r} 2}$	$8_{14} \mathrm{~b} 6$
$1_{18 \mathrm{c} 2}$	$2_{211} 2$

Now let us look at box 1 of Figure 154,
we should take
623b1: u57c3b1c6b4
in Figure 155 to avoid
possible multiple
solutions.

3^{*}	1_{18}	$7 / 5$		4^{*}	$5 / 7$			
8_{15}	4_{6}	9_{22}	3_{13}	6_{7}	2_{21}	1_{20}	5^{*}	7^{*}
2_{16}		$5 / 7$		1^{*}	$7 / 5$			
1^{*}	6^{*}	8_{1}	4_{5}		9_{11}	3^{*}		
			2^{*}		1_{9}	8^{*}		
4^{*}		2_{2}	6_{8}	8^{*}	3_{10}			
	2^{*}	4_{4}	7^{*}		6^{*}			
	8_{17}	1_{19}	5^{*}		4_{3}			
			1_{12}		8_{14}	4^{*}		

Figure 154. Figure 9 for Puzzle 10

We also add two
flipflops
7/5(13) and 5/7(32) in
Figure 155.

3^{*}	1_{18}	$7 / 5$		4^{*}	$5 / 7$			
8_{15}	4_{6}	9_{22}	3_{13}	6_{7}	2_{21}	1_{20}	5^{*}	7^{*}
2_{16}	$5 / 7$	6_{23}		1^{*}	$7 / 5$			
1^{*}	6^{*}	8_{1}	4_{5}		9_{11}	3^{*}		
			2^{*}		1_{9}	8^{*}		
4^{*}		2_{2}	6_{8}	8^{*}	3_{10}			
	2^{*}	4_{4}	7^{*}		6^{*}			
	8_{17}	1_{19}	5^{*}		4_{3}			
			1_{12}		8_{14}	4^{*}		

Figure 155. Figure 10 for Puzzle 10

3^{*}	1_{19}	$7 / 5$		4^{*}	$5 / 7$			
8_{16}	4_{6}	9_{22}	3_{13}	6_{8}	2_{12}	1_{21}	5^{*}	7^{*}
2_{17}	$5 / 7$	6_{23}		1^{*}	$7 / 5$		$3 / 4$	$4 / 3$
1^{*}	6^{*}	8_{1}	4_{5}	$5 / 7$	9_{11}	3^{*}		
			2^{*}	$7 / 5$	1_{7}	8^{*}	$4 / 6$	$6 / 4$
4^{*}		2_{2}	6_{9}	8^{*}	3_{10}			
	2^{*}	4_{4}	7^{*}		6^{*}			
	8_{18}	1_{20}	5^{*}		4_{3}			
			1_{15}		8_{14}	4^{*}		

Figure 156. Figure 11 for Puzzle 10
In order to speed up the solving process, let us further extend the chain of flipflops to much larger extent as displayed in

Figure 157.

3^{*}	1_{19}	$7 / 5$		4^{*}	$5 / 7$			
8_{16}	4_{6}	9_{22}	3_{13}	6_{8}	2_{12}	1_{21}	5^{*}	7^{*}
2_{17}	$5 / 7$	6_{23}		1^{*}	$7 / 5$		$3 / 4$	$4 / 3$
1^{*}	6^{*}	8_{1}	4_{5}	$5 / 7$	9_{11}	3^{*}		
$5 / 7$			2^{*}	$7 / 5$	1_{7}	8^{*}	$4 / 6$	$6 / 4$
4^{*}	$7 / 5$	2_{2}	6_{9}	8^{*}	3_{10}	$5 / 7$		
	2^{*}	4_{4}	7^{*}		6^{*}			
	8_{18}	1_{20}	5^{*}		4_{3}			
$7 / 5$		$5 / 7$	1_{15}		8_{14}	4^{*}		

Figure 157. Figure 12 for Puzzle 10

Now, we can readily take to the
thirtysecond step as
in Figure 158.

$$
\begin{aligned}
& 6_{29} 2_{30} \mathrm{c} 7 \\
& 7_{32} \mathrm{r} 8
\end{aligned}
$$

3^{*}	1_{19}	$7 / 5$		4^{*}	$5 / 7$	6_{29}		
8_{16}	4_{6}	9_{22}	3_{13}	6_{8}	2_{12}	1_{21}	5^{*}	7^{*}
2_{17}	$5 / 7$	6_{23}		1^{*}	$7 / 5$		$3 / 4$	$4 / 3$
1^{*}	6^{*}	8_{1}	4_{5}	$5 / 7$	9_{11}	3^{*}		
$5 / 7$	9_{25}	3_{24}	2^{*}	$7 / 5$	1_{7}	8^{*}	$4 / 6$	$6 / 4$
4^{*}	$7 / 5$	2_{2}	6_{9}	8^{*}	3_{10}	$5 / 7$		
9_{28}	2^{*}	4_{4}	$7 *$		6^{*}			
6_{27}	8_{18}	1_{20}	5^{*}		4_{3}	2_{30}	7_{32}	
$7 / 5$	3_{26}	$5 / 7$	1_{15}	2_{31}	8_{14}	4^{*}		

Figure 158. Figure 13 for Puzzle 10

We come to the point
to break the chain
almost all the way
through as shown in
Figure 159.

3^{*}	1_{19}	5_{36}		4^{*}	7_{42}	6_{29}		
8_{16}	4_{6}	9_{22}	3_{13}	6_{8}	2_{12}	1_{21}	5^{*}	7^{*}
2_{17}	7_{35}	6_{23}		1^{*}	5_{43}		$3 / 4$	$4 / 3$
1^{*}	6^{*}	8_{1}	4_{5}	7_{41}	9_{11}	3^{*}		
7_{37}	9_{25}	3_{24}	2^{*}	5_{40}	1_{7}	8^{*}	$4 / 6$	$6 / 4$
4^{*}	5_{34}	2_{2}	6_{9}	8^{*}	3_{10}	7_{33}		
9_{28}	2^{*}	4_{4}	7^{*}		6^{*}			
6_{27}	8_{18}	1_{20}	5^{*}		4_{3}	2_{30}	7_{32}	
5_{38}	3_{26}	7_{39}	1_{15}	2_{31}	8_{14}	4^{*}		

Figure 159. Figure 14 for Puzzle 10

3^{*}	1_{19}	5_{36}	9_{47}	4^{*}	7_{42}	6_{29}	8_{61}	2_{62}
8_{16}	4_{6}	9_{22}	3_{13}	6_{8}	2_{12}	1_{21}	5^{*}	7^{*}
2_{17}	7_{35}	6_{23}	8_{46}	1^{*}	5_{43}	9_{45}	3_{51}	4_{52}
1^{*}	6^{*}	8_{1}	4_{5}	7_{41}	9_{11}	3^{*}	2_{63}	5_{64}
7_{37}	9_{25}	3_{24}	2^{*}	5_{40}	1_{7}	8^{*}	4_{53}	6_{54}
4^{*}	5_{34}	2_{2}	6_{9}	8^{*}	3_{10}	7_{33}	9_{57}	1_{58}
9_{28}	2^{*}	4_{4}	7^{*}	3_{49}	6^{*}	5_{44}	1_{59}	8_{60}
6_{27}	8_{18}	1_{20}	5^{*}	9_{48}	4_{3}	2_{30}	7_{32}	3_{50}
5_{38}	3_{26}	7_{39}	1_{15}	2_{31}	8_{14}	4^{*}	6_{55}	9_{56}

Figure 160. Figure 15 for Puzzle 10

4. WASTEFUL MOVES

Puzzle 11

Among 5000 Sudoku puzzles with 17 initial values in (2), I found the puzzle in

Figure 161 is a rare unsolvable one!

					1^{*}			8^{*}
5^{*}							2^{*}	
	4^{*}			6^{*}				
			2^{*}			4^{*}		
8^{*}						3^{*}		
		1^{*}						
	2^{*}					7^{*}	4^{*}	
				9^{*}	5^{*}			
			8^{*}					

Figure 161. Figure 1 for Puzzle 11

We can easily take to the fifteenth step as shown in Figure 162

$8_{2} \mathrm{r} 7$	$8_{3} \mathrm{r} 3$
$1_{8} 69 \mathrm{r} 2$	$4_{11} \mathrm{~b} 4$,

				2_{11}	1^{*}			8^{*}
5^{*}	8_{4}	6_{9}				1_{8}	2^{*}	4_{1}
1_{10}	4^{*}	2_{12}		6^{*}	8_{3}			
			2^{*}			4^{*}	8_{6}	
8^{*}						3^{*}		
2_{13}		1^{*}		8_{5}				
	2^{*}	8_{2}				7^{*}	4^{*}	
				9^{*}	5^{*}	8_{7}		2_{15}
			8^{*}		2_{14}			

Figure 162. Figure 2 for Puzzle 11
we found that no 2 could be filled in column 8 as shown in Figure 91.

				2_{11}	1^{*}	No2		8^{*}
5^{*}	8_{4}	6_{9}				1_{8}	2^{*}	4_{1}
1_{10}	4^{*}	2_{12}		6^{*}	8_{3}	No2		
			2^{*}			4^{*}	8_{6}	
8^{*}						3^{*}		
2_{13}		1^{*}		8_{5}		No2		
	2^{*}	8_{2}				7^{*}	4^{*}	
				9^{*}	5^{*}	8_{7}		2_{15}
			8^{*}		2_{14}	No2		

Figure 163 Figure 3 for Puzzle 11

Puzzle 12

Unfortunately or fortunately, I further found the puzzles in

Figures 164 and 167 are also rare unsolvable ones!

			6^{*}		$7 *$	8^{*}		
	4^{*}	2^{*}						
			3^{*}	5^{*}				2^{*}
	$7 *$						1^{*}	
8^{*}				4^{*}				
		5^{*}		2^{*}				
1^{*}						7^{*}		
			9^{*}					

Figure 164. Figure 1 for Puzzle 12
We can take the first eight steps in

Figure 165 for the
puzzle in Figure 164.
2 r1
76 b 5
778 gr 4

			6^{*}		$7 *$	8^{*}	2_{1}	
	4^{*}	2^{*}						
			3^{*}	5^{*}	8_{8}		7_{7}	2^{*}
2_{4}	7^{*}						1^{*}	
8^{*}			7_{5}	4^{*}	2_{6}			
		5^{*}		2^{*}				
1^{*}	2_{3}					7^{*}		
			9^{*}			2_{2}		

Figure 165. Figure 2 for Puzzle 12

We shall find that no 1 can be filled in box 5 as indicated in

Figure 166.

			6^{*}		7^{*}	8^{*}	2_{1}	
	4^{*}	2^{*}						
			3^{*}	5^{*}	8_{8}		7_{7}	2^{*}
2_{4}	7^{*}		No1	No1	No1		1^{*}	
8^{*}			7_{5}	4^{*}	2_{6}			
		5^{*}		2^{*}				
1^{*}	2_{3}					7^{*}		
			9^{*}			2_{2}		

Figure 166. Figure 3 for Puzzle 12

Puzzle 13

For the puzzle of
Figure 167, we can
take the first thirty steps as shown in

Figure 168.

4^{*}			6^{*}				2^{*}	
							1^{*}	
	8^{*}							
				3^{*}		8^{*}		5^{*}
		6^{*}				3^{*}		
2^{*}								
5^{*}	3^{*}					7^{*}		
			2^{*}		1^{*}			
			4^{*}					

Figure 167. Figure 1 for Puzzle 13

22 b 8	1849 7 7	4*			6*				2*	312
			26						1*	822
$311 \mathrm{b6}$	312 r 1		8*			27			518	728
$4{ }_{14}{ }^{\text {b }}$	6_{1515}			423		3*	23	8*	615	5*
		816		6*				3*		22
81662	$8_{17} 5_{18} \mathrm{C} 9$	2*		3_{1}				1_{10}		4_{14}
423 C 3	625 C 2	5*	3*	25				7*	49	18
		930	4_{24}	821	2*	729	1*	519	313	626
626 b 9	$7{ }_{2966}$.		625		4*	520	311	24	817	9_{27}

Figure 168. Figure 2 for Puzzle 13
Next, we spot the grid (17), where only 9 fits. So we take

$$
9_{31} \mathrm{~g}
$$

in Figure 169 and we
face a y-junction in
column 5.

4^{*}			6^{*}	$1 ?$		9_{31}	2^{*}	3_{12}
	2_{6}						1^{*}	8_{22}
	8^{*}			2_{7}			5_{18}	7_{28}
		4_{23}		3^{*}	2_{3}	8^{*}	6_{15}	5^{*}
8_{16}		6^{*}		$1 ?$		3^{*}		2_{2}
2^{*}		3_{1}				1_{10}		4_{14}
5^{*}	3^{*}	2_{5}				7^{*}	4_{9}	1_{8}
9_{30}	4_{24}	8_{21}	2^{*}	7_{29}	1^{*}	5_{19}	3_{13}	6_{26}
	6_{25}		4^{*}	5_{20}	3_{11}	2_{4}	8_{17}	9_{27}

Figure 169. Figure 3 for Puzzle 13

Road 1. 1(15)
Case1. 1(31)

4^{*}	No3	No3	6^{*}	1_{1}		9_{31}	2^{*}	3_{12}
6_{3}	2_{6}	No3				4_{5}	1^{*}	8_{22}
1_{2}	8^{*}	9_{8}	3_{7}	2_{7}	4_{6}	6_{4}	5_{18}	7_{28}
		4_{23}		3^{*}	2_{3}	8^{*}	6_{15}	5^{*}
8_{16}		6^{*}				3^{*}		2_{2}
2^{*}		3_{1}				1_{10}		4_{14}
5^{*}	3^{*}	2_{5}				7^{*}	4_{9}	1_{8}
9_{30}	4_{24}	8_{21}	2^{*}	7_{29}	1^{*}	5_{19}	3_{13}	6_{26}
	6_{25}		4^{*}	5_{20}	3_{11}	2_{4}	8_{17}	9_{27}

Figure 170. Figure 4 for Puzzle 13
Case2. 1(33)

From Figures 170 and 171 , we see
that the first road took us to the dead end.

4^{*}			6^{*}	1_{1}		9_{31}	2^{*}	3_{12}
6_{4}	2_{6}	9_{7}		No\#		4_{6}	1^{*}	8_{22}
3_{3}	8^{*}	1_{2}		2_{7}		6_{5}	5_{18}	7_{28}
		4_{23}		3^{*}	2_{3}	8^{*}	6_{15}	5^{*}
8_{16}		6^{*}				3^{*}		2_{2}
2^{*}		3_{1}				1_{10}		4_{14}
5^{*}	3^{*}	2_{5}				7^{*}	4_{9}	1_{8}
9_{30}	4_{24}	8_{21}	2^{*}	7_{29}	1^{*}	5_{19}	3_{13}	6_{26}
	6_{25}		4^{*}	5_{20}	3_{11}	2_{4}	8_{17}	9_{27}

Figure 171. Figure 5 for Puzzle 13
Road 2. 1(55)

From Figure 172, the road not taken leads to nowhere either.

Therefore, this puzzle is unsolvable. What a lesson to learn!

4^{*}			6^{*}			9_{31}	2^{*}	3_{12}
6_{4}	2_{6}			4_{5}		No\#	1^{*}	8_{22}
3_{3}	8^{*}		1_{2}	2_{7}			5_{18}	7_{28}
		4_{23}		3^{*}	2_{3}	8^{*}	6_{15}	5^{*}
8_{16}		6^{*}		1_{1}		3^{*}		2_{2}
2^{*}		3_{1}				1_{10}		4_{14}
5^{*}	3^{*}	2_{5}				7^{*}	4_{9}	1_{8}
9_{30}	4_{24}	8_{21}	2^{*}	7_{29}	1^{*}	5_{19}	3_{13}	6_{26}
	6_{25}		4^{*}	5_{20}	3_{11}	2_{4}	8_{17}	9_{27}

Figure 172. Figure 6 for Puzzle 13

Puzzle 14

The puzzle in
Figure 173 is a rare one with seventeen initial values, with two solutions as in

Figures 174 and 175 !

4^{*}			$7 *$					5^{*}
							7^{*}	
			2^{*}					
6^{*}	3^{*}					8^{*}		
5^{*}						2^{*}		
				1^{*}				
					4^{*}	1^{*}		
	7^{*}							
		1^{*}	5^{*}				9^{*}	

Figure 173. Figure 1 for Puzzle 14

4^{*}	6	8	$7 *$	3	1	9	2	5^{*}
1	5	2	8	4	9	3	7^{*}	6
7	9	3	2^{*}	5	6	4	8	1
6^{*}	3^{*}	7	4	2	5	8^{*}	1	9
5^{*}	1	4	9	8	7	2^{*}	6	3
8	2	9	6	1^{*}	3	5	4	7
9	8	6	3	7	4^{*}	1^{*}	5	2
2	7^{*}	5	1	9	8	6	3	4
3	4	1^{*}	5^{*}	6	2	7	9^{*}	8

Figure 174. Figure 2 for Puzzle 14

4^{*}	6	8	$7 *$	3	1	9	2	5^{*}
1	5	2	9	4	8	3	7^{*}	6
7	9	3	2^{*}	5	6	4	8	1
6^{*}	3^{*}	7	4	2	5	8^{*}	1	9
5^{*}	1	4	8	9	7	2^{*}	6	3
8	2	9	6	1^{*}	3	5	4	7
9	8	6	3	7	4^{*}	1^{*}	5	2
2	7^{*}	5	1	8	9	6	3	4
3	4	1^{*}	5^{*}	6	2	7	9^{*}	8

Figure 175. Figure 3 for Puzzle 14

Puzzle 15

Here is another one!

The puzzle in
Figure 176 will lead to two solutions as
shown in
Figures 177 and 178.

1^{*}								8^{*}
				3^{*}		7^{*}		
6^{*}								
	3^{*}					5^{*}	2^{*}	
			1^{*}					6^{*}
	7^{*}							
			2^{*}		1^{*}		4^{*}	
						3^{*}	5^{*}	
			6^{*}					

Figure 176. Figure 1 for Puzzle 15

1^{*}	5	3	7	9	2	4	6	8^{*}
2	9	4	8	3^{*}	6	7^{*}	1	5
6^{*}	8	7	5	1	4	2	9	3
4	3^{*}	1	9	6	8	5^{*}	2^{*}	7
5	2	8	1^{*}	4	7	9	3	6^{*}
9	7^{*}	6	3	2	5	1	8	4
3	8	5	2^{*}	7	1^{*}	6	4^{*}	9
7	6	2	4	8	9	3^{*}	5^{*}	1
4	1	9	6^{*}	5	3	8	7	2

Figure 177. Figure 2 for Puzzle 15

1^{*}	5	3	7	9	4	2	6	8^{*}
2	9	4	8	3^{*}	6	7^{*}	1	5
6^{*}	8	7	5	1	2	4	9	3
4	3^{*}	1	9	6	8	5^{*}	2^{*}	7
5	2	8	1^{*}	4	7	9	3	6^{*}
9	7^{*}	6	3	2	5	1	8	4
3	8	5	2^{*}	7	1^{*}	6	4^{*}	9
7	6	2	4	8	9	3^{*}	5^{*}	1
4	1	9	6^{*}	5	3	8	7	2

Figure 178. Figure 3 for Puzzle 15

5. SITUATIONAL MOVES

Puzzle 16

For the puzzle in
Figure 179, if I told you that I could fill $1,2,3$ in those grids in Figure 180, would you believe me?

4^{*}				8^{*}	2^{*}			
1^{*}							6^{*}	
		5^{*}				7^{*}		2^{*}
	6^{*}		3^{*}					
	9^{*}							
			6^{*}	5^{*}			3^{*}	
3^{*}						2^{*}		
			1^{*}					

Figure 179. Figure 1 for Puzzle 16
How in the world can we see them? In fact, there are some hidden numbers as indicated in Figure 181, that might help you!

4^{*}				8^{*}	2^{*}			
1^{*}	2			3			6^{*}	
		5^{*}				7^{*}	1	2^{*}
	6^{*}		3^{*}					
	9^{*}							
			6^{*}	5^{*}			3^{*}	
3^{*}						2^{*}		
			1^{*}					

Figure 180. Figure 2 for Puzzle 16
In box 4,1 and 6 can only be filled in (35) and (36) as shown. Since 6 can only be filled in either (45) or (46), where 1 should be avoided.

4^{*}				8^{*}	2^{*}			
1^{*}							6^{*}	
				$1 / 6$	$6 / 1$			
		5^{*}		$6 ?$	$6 ?$	7^{*}		2^{*}
	6^{*}		3^{*}					
	9^{*}							
			6^{*}	5^{*}			3^{*}	
3^{*}						2^{*}		
			1^{*}					

Figure 181. Figure 3 for Puzzle 16

Otherwise, we could flip flop 1 and 6 in

Figure 182, if we were able to complete the puzzle so that multiple solutions would be obtained.

4^{*}				8^{*}	2^{*}			
1^{*}							6^{*}	
				$1 / 6$	$6 / 1$			
		5^{*}		$6 / 1$	$1 / 6$	7^{*}		2^{*}
	6^{*}		3^{*}					
	9^{*}							
			6^{*}	5^{*}			3^{*}	
3^{*}						2^{*}		
			1^{*}					

Figure 182. Figure 4 for Puzzle 16
Now, could we fill 1 in (42) as shown in Figure 183? The answer is no, since that is exactly the right spot for 3 . So the right spot for 1 is (48).

4^{*}				8^{*}	2^{*}			
1^{*}							6^{*}	
	$1 ?$	5^{*}				7^{*}		2^{*}
	6^{*}		3^{*}					
	9^{*}							
			6^{*}	5^{*}			3^{*}	
3^{*}						2^{*}		
			1^{*}					

Figure 183. Figure 5 for puzzle 16

4^{*}				8^{*}	2^{*}			
1^{*}							6^{*}	
				$1 / 6$	$6 / 1$			
	3	5^{*}				7^{*}		2^{*}
	6^{*}		3^{*}					
	9^{*}							
			6^{*}	5^{*}			3^{*}	
3^{*}						2^{*}		
			1^{*}					

Figure $184 . \quad$ Figure 6 for puzzle 16

Now, could we fill 3 in (95) as shown in Figure185? The answer is no, since that is exactly the right spot for 2 . So the right spot for 3 is (25).

4^{*}				8^{*}	2^{*}			
1^{*}							6^{*}	
				$1 / 6$	$6 / 1$			
	3	5^{*}				7^{*}		2^{*}
	6^{*}		3^{*}					
	9^{*}							
			6^{*}	5^{*}			3^{*}	
3^{*}						2^{*}		
			1^{*}	$3 ?$				

Figure 185.
Figure 7 for puzzle 16
Could we fill 2 at (23)
as in Figure 186?
Since 6 needs to be at (13) in row 1 and in turn at (91), 3 and 5 are forced to be at (33) and (31), as shown

4^{*}				8^{*}	2^{*}			
1^{*}		$2 ?$					6^{*}	
	3	5^{*}				7^{*}		2^{*}
	6^{*}		3^{*}					
	9^{*}							
			6^{*}	5^{*}			3^{*}	
3^{*}						2^{*}		
			1^{*}					

Figure $186 . \quad$ Figure 8 for puzzle 1

As a result, 9 would not be able to fit in box 1 at all!

Therefore, the right spot for 2 is (22).

4^{*}		6_{1}		8^{*}	2^{*}			
1^{*}		$2 ?$					6^{*}	
5_{4}		3_{3}						
	3	5^{*}				7^{*}		2^{*}
	6^{*}		3^{*}					
	9^{*}							
			6^{*}	5^{*}			3^{*}	
3^{*}						2^{*}		
6_{2}			1^{*}					

Figure 187. Figure 9 for puzzle 16

Now, let us use the prescribed order to solve the puzzle in question restarting from Figure 188.
$22_{2} 3$ b 6
35 r 4

4^{*}				8^{*}	2^{*}			
1^{*}							6^{*}	
				$1 / 6$	$6 / 1$		2_{1}	
	3_{5}	5^{*}		$6 / 1$	$1 / 6$	7^{*}		2^{*}
	6^{*}		3^{*}					
	9^{*}		24					
			6^{*}	5^{*}			3^{*}	
3^{*}						2^{*}		
			1^{*}	2_{2}	3_{3}			

Figure 188. Figure 10 for puzzle 16
Next, to avoid the potential multiple solutions by
flipflopping 1 and 6 as
shown in Figure 188,
we take in Figure 189
1_{6} r4: u16r3b4r4b5.

4^{*}				8^{*}	2^{*}			
1^{*}							6^{*}	
							2_{1}	
	3_{5}	5^{*}				7^{*}	1_{6}	2^{*}
	6^{*}		3^{*}					
	9^{*}		2_{4}					
			6^{*}	5^{*}			3^{*}	
3^{*}						2^{*}		
			1^{*}	2_{2}	3_{3}			

Figure 189. Figure 11 for puzzle 16
The rest is easy as in
Figure 190.
37c5: 16(35)(36) 68 rr 1
$3_{13} \mathrm{~b} 8 \quad 3_{14} 1_{15} \mathrm{r} 1$
$1_{17} \mathrm{c} 2 \quad 5_{18} \mathrm{~b} 3 \quad 5_{21} \mathrm{r} 1$
$5_{22} \mathrm{c} 6$: $5 \mathrm{r} 5 \mathrm{~b} 8 \quad 9_{23} \mathrm{~b} 1$
$4_{28} 829 \mathrm{c} 2 \quad 732 \mathrm{c} 1$
$734 \mathrm{C} 8 \quad 847 \mathrm{r} 5$.

4^{*}	7_{30}	6_{8}	5_{21}	8^{*}	2^{*}	3_{14}	9_{31}	1_{15}
1^{*}	2_{24}	9_{23}	7_{58}	3_{7}	4_{59}	8_{39}	6^{*}	5_{40}
5_{19}	8_{18}	3_{9}	9_{60}	6_{56}	1_{55}	4_{43}	2_{1}	7_{42}
8_{33}	3_{10}	5^{*}	4_{61}	9_{62}	6_{57}	7^{*}	1_{6}	2^{*}
2_{26}	6^{*}	1_{52}	3^{*}	7_{53}	8_{47}	5_{41}	4_{50}	9_{46}
7_{32}	9^{*}	4_{51}	2_{4}	1_{54}	5_{22}	6_{12}	8_{49}	3_{13}
9_{27}	4_{28}	2_{20}	6^{*}	5^{*}	7_{37}	1_{16}	3^{*}	8_{38}
3^{*}	1_{17}	7_{35}	8_{21}	4_{63}	9_{64}	2^{*}	5_{21}	6_{7}
6_{10}	5_{18}	8_{36}	1^{*}	2_{2}	3_{3}	9_{44}	7_{34}	4_{45}

Figure 190. Figure 12 for puzzle 16

Puzzle 17

The first fifteen steps of the puzzle in Figure 191 is easy.

$1_{2} 9_{3} \mathrm{c} 6_{4} \mathrm{r} 7$	$7_{10} \mathrm{~b} 2$
$8_{11} \mathrm{~b} 6$	$9_{12} \mathrm{~b} 8$
$9_{14} \mathrm{r} 1$	$6_{15} \mathrm{c} 4$

	4^{*}					3^{*}		
7^{*}			5^{*}					
								1^{*}
	8^{*}	9^{*}						
			8^{*}				7^{*}	
		1^{*}				6^{*}		
3^{*}						2^{*}	8^{*}	
				9^{*}	1^{*}			
				6^{*}				

Figure 191. Figure 1 for Puzzle 17
We take this rare opportunity to show you the "intersection move" $7(74)$ as shown in

Figure 192

1_{5}	4^{*}		9_{14}			3^{*}		
7^{*}			5^{*}	1_{6}				
			6_{15}					1^{*}
	8^{*}	9^{*}	1_{7}					
			8^{*}		9_{13}	1_{8}	7^{*}	
	7_{10}	1^{*}				6^{*}	9_{12}	8_{1}
3^{*}	1_{2}	6_{4}	7_{16}			2^{*}	8^{*}	9_{3}
				9^{*}	1^{*}			
				6^{*}	8_{11}		1_{9}	

Figure 192. Figure 2 for Puzzle 17

Taking 7(75)/(76), we would run into the dilemma of having no 7 in column 4 as shown in Figure 193.

1_{5}	4^{*}		9_{14}			3^{*}		
7^{*}			5^{*}	1_{6}				
			6_{15}					1^{*}
	8^{*}	9^{*}	1_{7}					
			8^{*}		9_{13}	1_{8}	7^{*}	
	7_{10}	1^{*}	No7			6^{*}	9_{12}	8_{1}
3^{*}	1_{2}	6_{4}	No7	$7 ?$	$7 ?$	2^{*}	8^{*}	9_{3}
			No7	9^{*}	1^{*}			
			No7	6^{*}	8_{11}		1_{9}	

Figure 193. Figure 3 for Puzzle 17

If we took
7(84)/(94), we
would run into the dilemma of having no 7 in row 7 as shown in Figure 194.

1_{5}	4^{*}		9_{14}			3^{*}		
7^{*}			5^{*}	1_{6}				
			6_{15}					1^{*}
	8^{*}	9^{*}	1_{7}					
			8^{*}		9_{13}	1_{8}	7^{*}	
	7_{10}	1^{*}				6^{*}	9_{12}	8_{1}
3^{*}	1_{2}	6_{4}	No7	No7	No7	2^{*}	8^{*}	9_{3}
			$7 ?$	9^{*}	1^{*}			
			$7 ?$	6^{*}	8_{11}		1_{9}	

Figure 194. Figure 4 for Puzzle 17

Thus we have

7(74): 7(75)/(76) $\rightarrow \mathrm{No} 7 \mathrm{c} 4$
\&7(84)/(94) \rightarrow No7r7
as shown in
Figure 195.

1_{5}	4^{*}		9_{14}		$7 ?$	3^{*}		
7^{*}	6_{18}		5^{*}	1_{6}	$7 ?$			
			6_{15}		$7 ?$			1^{*}
	8^{*}	9^{*}	1_{7}	7_{17}	6_{16}			
6_{19}			8^{*}		9_{13}	1_{8}	7^{*}	
	7_{10}	1^{*}	4_{21}			6^{*}	9_{12}	8_{1}
3^{*}	1_{2}	6_{4}	7_{20}	$4 ?$	$4 ?$	2^{*}	8^{*}	9_{3}
				9^{*}	1^{*}			
				6^{*}	8_{11}		1_{9}	

Figure 195. Figure 5 for Puzzle 17
However, we shall
follow the
prescribed order to take four more
steps as in
Figure 196.
$6{ }_{18} \mathrm{~b} 1$

1_{5}	4^{*}	5_{29}	9_{14}	8_{30}	2_{31}	3^{*}	6_{26}	7_{25}
7^{*}	6_{18}	8_{24}	5^{*}	1_{6}	3_{34}	9_{22}		
9_{42}			6_{15}	4_{35}	7_{28}	8_{23}	5_{32}	1^{*}
	8^{*}	9^{*}	1_{7}	7_{17}	6_{16}			
6_{19}			8^{*}	2_{41}	9_{13}	1_{8}	7^{*}	
2_{40}	7_{10}	1^{*}	4_{21}	3_{39}	5_{38}	6^{*}	9_{12}	8_{1}
3^{*}	1_{2}	6_{4}	7_{20}	5_{37}	4_{36}	2^{*}	8^{*}	9_{3}
8_{33}				9^{*}	1^{*}			6_{27}
	9_{43}			6^{*}	8_{11}		1_{9}	

Figure 196. Figure 6 for Puzzle 17

Finally, as in
Figure 197, we can take

444g: 5(47)
\rightarrow No5b9
as shown in
Figure 198.

1_{5}	4^{*}	5_{29}	9_{14}	8_{30}	2_{31}	3^{*}	6_{26}	7_{25}
7^{*}	6_{18}	8_{24}	5^{*}	1_{6}	3_{34}	9_{22}		
9_{42}			6_{15}	4_{35}	7_{28}	8_{23}	5_{32}	1^{*}
	8^{*}	9^{*}	1_{7}	7_{17}	6_{16}	5_{1}		
6_{19}	5_{2}		8^{*}	2_{41}	9_{13}	1_{8}	7^{*}	
2_{40}	7_{10}	1^{*}	4_{21}	3_{39}	5_{38}	6^{*}	9_{12}	8_{1}
3^{*}	1_{2}	6_{4}	7_{20}	5_{37}	4_{36}	2^{*}	8^{*}	9_{3}
8_{33}				9^{*}	1^{*}	No5	No5	6_{27}
5_{3}	9_{43}			6^{*}	8_{11}	No5	1_{9}	No5

Figure 197. Figure 7 for Puzzle 17
Now, according to
the situation shown
in Figure 198, we can take in

Figure 200
$7_{20} 4_{211} 7$:
$7 \mathrm{c} 6 \mathrm{~b} 4 \$ 4 \mathrm{r} 7 \mathrm{~b} 6$.

1_{5}	4^{*}	5_{29}	9_{14}	8_{30}	2_{31}	3^{*}	6_{26}	7_{25}
7^{*}	6_{18}	8_{24}	5^{*}	1_{6}	3_{34}	9_{22}		
9_{42}			6_{15}	4_{35}	7_{28}	8_{23}	5_{32}	1^{*}
	8^{*}	9^{*}	1_{7}	7_{17}	6_{16}	4_{44}		
6_{19}			8^{*}	2_{41}	9_{13}	1_{8}	7^{*}	
2_{40}	7_{10}	1^{*}	4_{21}	3_{39}	5_{38}	6^{*}	9_{12}	8_{1}
3^{*}	1_{2}	6_{4}	7_{20}	5_{37}	4_{36}	2^{*}	8^{*}	9_{3}
8_{33}				9^{*}	1^{*}			6_{27}
	9_{43}			6^{*}	8_{11}		1_{9}	

Figure 198. Figure 8 for Puzzle 17
The rest is easy as in Figure 199.
$9_{22} \mathrm{c} 7$: 9 r 3 b 1
$7_{25} \mathrm{~b} 7 \quad 5_{29} 8_{30 \mathrm{r}} \mathrm{r}$
$334 \mathrm{r} 2 \quad 339 \mathrm{r} 6$
$9_{42} \mathrm{~g}$

1_{5}	4^{*}	5_{29}	9_{14}	8_{30}	2_{31}	3^{*}	6_{26}	7_{25}
7^{*}	6_{18}	8_{24}	5^{*}	1_{6}	3_{34}	9_{22}	2_{62}	4_{63}
9_{42}	2_{51}	3_{50}	6_{15}	4_{35}	7_{28}	8_{23}	5_{32}	1^{*}
5_{47}	8^{*}	9^{*}	1_{7}	7_{17}	6_{16}	4_{44}	3_{61}	2_{64}
6_{19}	3_{48}	4_{45}	8^{*}	2_{41}	9_{13}	1_{8}	7^{*}	5_{49}
2_{40}	7_{10}	1^{*}	4_{21}	3_{39}	5_{38}	6^{*}	9_{12}	8_{1}
3^{*}	1_{2}	6_{4}	7_{20}	5_{37}	4_{36}	2^{*}	8^{*}	9_{3}
8_{33}	5_{52}	2_{56}	3_{58}	9^{*}	1^{*}	7_{54}	4_{59}	6_{27}
4_{46}	9_{43}	7_{55}	2_{57}	6^{*}	8_{11}	5_{53}	1_{9}	3_{60}

Figure 199. Figure 9 for Puzzle 17

Puzzle 18

This very puzzle as
shown in Figure 200
has many virtues that will teach us what

Sudoku is really
about.

				4^{*}		7^{*}		
			5^{*}			3^{*}		
	1^{*}	8^{*}						
3^{*}						5^{*}	4^{*}	
		6^{*}	1^{*}					
			2^{*}					
5^{*}	2^{*}			3^{*}				
								1^{*}
							6^{*}	

Figure 200. Figure 1 for Puzzle 18
We can take to
the eighth step

$$
1_{1} 2_{2} \mathrm{r} 4
$$

as in Figure 201.
In Figure 202, 2
can only fit (13)
or (16) in row 1.

				4^{*}		7^{*}	1_{6}	
			5^{*}	1_{5}		3^{*}		
	1^{*}	8^{*}						
3^{*}		1_{1}				5^{*}	4^{*}	2_{2}
2_{8}		6^{*}	1^{*}					
			2^{*}			1_{7}		
5^{*}	2^{*}			3^{*}	1_{4}			
								1^{*}
1_{3}							6^{*}	

Figure 201. Figure 2 for Puzzle 18

If we took 2(13)
in Figure 203, it would force no room for 5 to be in box 1 .

		$2 ?$		4^{*}	$2 ?$	7^{*}	1_{6}	
			5^{*}	1_{5}		3^{*}		
	1^{*}	8^{*}						
3^{*}		1_{1}				5^{*}	4^{*}	2_{2}
2_{8}		6^{*}	1^{*}					
			2^{*}			1_{7}		
5^{*}	2^{*}			3^{*}	1_{4}			
								1^{*}
1_{3}							6^{*}	

Figure 202. Figure 3 for Puzzle 18

So we take
29r1:2(13)
$\rightarrow 3$ (12)
\rightarrow No5b1
in Figure 204.

No5	3	$2 ?$		4^{*}	$2 ?$	7^{*}	1_{6}	
No5	No5	No5	5^{*}	1_{5}		3^{*}		
No5	1^{*}	8^{*}						
3^{*}		1_{1}				5^{*}	4^{*}	2_{2}
2_{8}		6^{*}	1^{*}					
			2^{*}			1_{7}		
5^{*}	2^{*}			3^{*}	1_{4}			
								1^{*}
1_{3}							6^{*}	

Figure 203. Figure 4 for Puzzle 18
Since 3 hidden in
column 6 of box 5 as
shown, we can take
$3_{11} 13$: 3 c 6 b 5
and the next nineteen
steps in Figure 205.

				4^{*}	2_{9}	7^{*}	1_{6}	
		2_{10}	5^{*}	1_{5}		3^{*}		
	1^{*}	8^{*}						
3^{*}		1_{1}				5^{*}	4^{*}	2_{2}
2_{8}		6^{*}	1^{*}		$3 ?$			
			2^{*}		$3 ?$	1_{7}		
5^{*}	2^{*}			3^{*}	1_{4}			
								1^{*}
1_{3}							6^{*}	

Figure 204. Figure 5 for Puzzle 18
$6_{12} r 7 \quad 6_{13} b 8$
$5_{16} 4_{17 \mathrm{r}} 3 \quad 3_{20} \mathrm{~b} 9$
$5_{21} \mathrm{c} 6:$
34(65)(66)
$6_{22} 8_{23} \mathrm{~b} 4 \quad 6_{27} \mathrm{~g}$
We now face a
stalemate.

Don't panic!

6_{27}	3_{30}	5_{31}	8_{23}	4^{*}	29	7^{*}	1_{6}	9_{26}
		2_{10}	5^{*}	1_{5}	6_{22}	3^{*}	8_{25}	4_{18}
4_{17}	1^{*}	8^{*}	3_{11}			6_{14}	2_{15}	5_{16}
3^{*}		1_{1}		6_{24}	$8 ?$	5^{*}	4^{*}	2_{2}
2_{8}		6^{*}	1^{*}		$3 / 4$	$8 ?$		$8 ?$
			2^{*}	$8 ?$	$4 / 3$	1_{7}		6_{13}
5^{*}	2^{*}		6_{12}	3^{*}	1_{4}			
8	6_{28}	3_{29}	No8	No8	No8		5_{19}	1^{*}
1_{3}			No8	No8	5_{21}		6^{*}	3_{20}

Figure 205. Figure 6 for Puzzle 18

There are only
(47) and (65)
for 8 to fit in
box 5, but 8(65)
would lead to
the dead end in
Figure 206.

6_{27}	3_{30}	5_{31}	8_{23}	4^{*}	2_{9}	7^{*}	1_{6}	9_{26}
		2_{10}	5^{*}	1_{5}	6_{22}	3^{*}	8_{25}	4_{18}
4_{17}	1^{*}	8^{*}	3_{11}			6_{14}	2_{15}	5_{16}
3^{*}	No4	1_{1}		6_{24}	8_{32}	5^{*}	4^{*}	2_{2}
2_{8}	5_{8}	6^{*}	1^{*}					
No4	8_{7}	No4	2^{*}			1_{7}		6_{13}
5^{*}	2^{*}	4_{2}	6_{12}	3^{*}	1_{4}			
8_{6}	6_{28}	3_{29}		2_{5}		4_{3}	5_{19}	1^{*}
1_{3}			4_{1}	8_{5}	5_{21}	2_{4}	6^{*}	3_{20}

Figure 206. Figure 7 for Puzzle 18
So, in Figure 207,
we take

832b5: 34c6b5\& $8(65) \rightarrow 8(81)$ \rightarrow No8b6,

$$
\begin{aligned}
& 433 \mathrm{c} 4: 4(65) \rightarrow 4(73) \\
& \rightarrow 4(87) \rightarrow 2(97) \\
& \rightarrow 2(85) \rightarrow 8(81) \\
& \rightarrow 8(62) \rightarrow 2(52) \\
& \rightarrow \text { No4b2. }
\end{aligned}
$$

6_{27}	3_{30}	5_{31}	8_{23}	4^{*}	2_{9}	7^{*}	1_{6}	9_{26}
$7 / 9$	$9 / 7$	2_{10}	5^{*}	1_{5}	6_{22}	3^{*}	8_{25}	4_{18}
4_{17}	1^{*}	8^{*}	3_{11}	$9 / 7$	$7 / 9$	6_{14}	2_{15}	5_{16}
3^{*}	$7 / 9$	1_{1}	$9 / 7$	6_{24}	8_{32}	5^{*}	4^{*}	2_{2}
2_{8}	5_{41}	6^{*}	1^{*}	$7 / 9$	4_{38}	8_{46}	3_{36}	7_{45}
$9 / 7$	8_{40}	4_{34}	2^{*}	5_{39}	3_{37}	1_{7}	$7 / 9$	6_{13}
5^{*}	2^{*}	$7 / 9$	6_{12}	3^{*}	1_{4}	4_{43}	$9 / 7$	8_{44}
8_{35}	6_{28}	3_{29}	4_{33}		$9 / 7$		5_{19}	1^{*}
1_{3}	4_{42}	$9 / 7$	$7 / 9$		5_{21}		6^{*}	3_{20}

Figure 207. Figure 8 for Puzzle 18

Finally, we can
readily complete this puzzle in Figure 208.

6_{27}	3_{30}	5_{31}	8_{23}	4^{*}	2_{9}	7^{*}	1_{6}	9_{26}
9_{51}	7_{50}	2_{10}	5^{*}	1_{5}	6_{22}	3^{*}	8_{25}	4_{18}
4_{17}	1^{*}	8^{*}	3_{11}	7_{60}	9_{59}	6_{14}	2_{15}	5_{16}
3^{*}	9_{49}	1_{1}	7_{48}	6_{24}	8_{32}	5^{*}	4^{*}	2_{2}
2_{8}	5_{41}	6^{*}	1^{*}	9_{47}	4_{38}	8_{46}	3_{36}	7_{45}
7_{52}	8_{40}	4_{34}	2^{*}	5_{39}	3_{37}	1_{7}	9_{53}	6_{13}
5^{*}	2^{*}	9_{55}	6_{12}	3^{*}	1_{4}	4_{43}	7_{54}	8_{44}
8_{35}	6_{28}	3_{29}	4_{33}	2_{62}	7_{58}	9_{61}	5_{19}	1^{*}
1_{3}	4_{42}	7_{56}	9_{57}	8_{63}	5_{21}	2_{64}	6^{*}	3_{20}

Figure 208. Figure 9 for Puzzle 18

Puzzle 19

The puzzle of
Figure 209 can be solved rather easily as shown in Figure 210.

		1^{*}	7^{*}					
							5^{*}	3^{*}
5^{*}	3^{*}			2^{*}				
			1^{*}			7^{*}		8^{*}
6^{*}								
4^{*}	2^{*}				5^{*}		3^{*}	
			6^{*}			1^{*}		

Figure 209. Figure 1 for Puzzle 19

13349 sr1	$6{ }_{11} \mathrm{~b} 4$	237	59	1*	7*	335	9_{53}	636	827	454
512 r 2	213 b 4	746	6_{50}	440	230	848	$1{ }_{17}$	9_{55}	5*	3*
		847	9_{51}	334	58	649	452	239	715	116
$3_{14} 9_{15}{ }^{\text {b }}$	21774	5*	3*	720	821	2*	613	456	118	9_{57}
218 C 3	$9_{23} \mathrm{~b} 5$	943	442	238	1*	55	36	7*	67	8*
		6*	1_{2}	822	431	9_{59}	760	3_{1}	219	510
$9_{243} 3_{25} 8_{26} 627 \mathrm{r} 7$		4*	2*	624	9_{25}	14	5*	823	3*	714
430 c 4	832 T	333	7_{62}	512	6*	4_{58}	861	1*	944	228
		13	863	941	329	764	232	511	445	626

Figure 210. Figure 2 for Puzzle 19
Would the
flipflopping of
9(32) and 7(38)
with 7(82) and
9(88) cause
multiple
solutions?

2_{37}	5_{9}	1^{*}	7^{*}	3_{35}	No8	6_{36}	8_{27}	
7_{1}			2_{30}	No8	1_{17}		5^{*}	3^{*}
8_{2}	9	3_{34}	5_{8}	No8	No8	2_{39}	7_{15}	1_{16}
5^{*}	3^{*}	7_{20}	8_{21}	2^{*}	6_{13}		1_{18}	
		2_{38}	1^{*}	5_{5}	3_{6}	7^{*}	6_{7}	8^{*}
6^{*}	1_{2}	8_{22}	4_{31}			3_{1}	2_{19}	5_{10}
4^{*}	2^{*}	6_{24}	9_{25}	1_{4}	5^{*}	8_{23}	3^{*}	7_{14}
3_{33}		5_{12}	6^{*}			1^{*}	9	2_{28}
1_{3}	7		3_{29}	8_{3}	2_{32}	5_{11}		6_{26}

Figure 211. Figure 3 for Puzzle 19

The answer is no,
since the new 7(32)
would conflict 7(21)
in box1 as displayed
in Figure 212. We
need to look at
the surroundings.

2_{37}	5_{9}	1^{*}	7^{*}	3_{35}		6_{36}	8_{27}	
$9 ?$			2_{30}		1_{17}		5^{*}	3^{*}
$9 ?$		3_{34}	5_{8}			2_{39}	7_{15}	1_{16}
5^{*}	3^{*}	7_{20}	8_{21}	2^{*}	6_{13}		1_{18}	
No4	9_{1}	2_{38}	1^{*}	5_{5}	3_{6}	7^{*}	6_{7}	8^{*}
6^{*}	1_{2}	8_{22}	4_{31}			3_{1}	2_{19}	5_{10}
4^{*}	2^{*}	6_{24}	9_{25}	1_{4}	5^{*}	8_{23}	3^{*}	7_{14}
3_{33}	7	5_{12}	6^{*}			1^{*}	9	2_{28}
1_{3}			3_{29}		2_{32}	5_{11}		6_{26}

Figure 212. Figure 4 for Puzzle 19

For example, by moving 7(82) to

7(92), we would face the dilemma in Figure 213.

2_{37}	5_{9}	1^{*}	7^{*}	3_{35}		6_{36}	8_{27}	
	9	4_{3}	2_{30}		1_{17}	No\#	5^{*}	3^{*}
		3_{34}	5_{8}			2_{39}	7_{15}	1_{16}
5^{*}	3^{*}	7_{20}	8_{21}	2^{*}	6_{13}		1_{18}	
9_{1}	4_{2}	2_{38}	1^{*}	5_{5}	3_{6}	7^{*}	6_{7}	8^{*}
6^{*}	1_{2}	8_{22}	4_{31}			3_{1}	2_{19}	5_{10}
4^{*}	2^{*}	6_{24}	9_{25}	1_{4}	5^{*}	8_{23}	3^{*}	7_{14}
3_{33}	7	5_{12}	6^{*}			1^{*}	9	2_{28}
1_{3}			3_{29}		2_{32}	5_{11}		6_{26}

Figure 213. Figure 5 for Puzzle 19
In fact, the three
different ways to
move 9(32) as
shown separately
in Figures 212-214
each leading to a
dilemma.

2_{37}	5_{9}	1^{*}	7^{*}	3_{35}		6_{36}	8_{27}	
		9	2_{30}		1_{17}		5^{*}	3^{*}
		3_{34}	5_{8}			2_{39}	7_{15}	1_{16}
5^{*}	3^{*}	7_{20}	8_{21}	2^{*}	6_{13}		1_{18}	
		2_{38}	1^{*}	5_{5}	3_{6}	7^{*}	6_{7}	8^{*}
6^{*}	1_{2}	8_{22}	4_{31}			3_{1}	2_{19}	5_{10}
4^{*}	2^{*}	6_{24}	9_{25}	1_{4}	5^{*}	8_{23}	3^{*}	7_{14}
3_{33}	7	5_{12}	6^{*}			1^{*}	9	2_{28}
1_{3}		No\#	3_{29}		2_{32}	5_{11}		6_{26}

Figure 214. Figure 6 for Puzzle 19

Puzzle 20

We can readily fill with basic moves to the seventeenth step as shown in Figure 216 for the puzzle in

Figure 215.

2^{*}				$7 *$		4^{*}		
	3^{*}		1^{*}					
	5^{*}	1^{*}	3^{*}					
				4^{*}		8^{*}		
		6^{*}				2^{*}		
8^{*}					2^{*}			
			6^{*}				5^{*}	
							1^{*}	

Figure 215. Figure 1 for Puzzle 20

2^{*}	1_{9}			7^{*}	5_{16}	4^{*}	6_{21}	3_{20}
	3^{*}		1^{*}			5_{14}	2_{19}	
5_{15}			2_{3}			1_{8}	8_{25}	
	5^{*}	1^{*}	3^{*}	2_{1}	8_{2}			
			5_{7}	4^{*}	6_{5}	8^{*}		1_{6}
	8_{4}	6^{*}	7_{23}	9_{24}	1_{12}	2^{*}		5_{18}
8^{*}		5_{13}		1_{11}	2^{*}	3_{22}		
1_{10}			6^{*}				5^{*}	
				5_{17}			1^{*}	

Figure 216. Figure 2 for Puzzle 20
We can now complete
the puzzle in
Figure 217.

$$
\begin{align*}
4_{26} 8_{27} \mathrm{c} 4: & 4 \tag{49}\\
& (74) \\
& \rightarrow 4(49) \\
& \rightarrow \mathrm{No} 4 \mathrm{~b} 9
\end{align*}
$$

$3_{34} \mathrm{c} 5 \quad 4_{39} \mathrm{c} 9$
$345 \mathrm{C} 1 \quad 4_{46} \mathrm{r} 2$

2^{*}	1_{9}	9_{28}	8_{27}	7^{*}	5_{16}	4^{*}	6_{21}	3_{20}
7_{49}	3^{*}	8_{30}	1^{*}	6_{35}	4_{46}	5_{14}	2_{19}	7_{51}
5_{15}	6_{36}	4_{48}	2_{3}	3_{34}	9_{47}	1_{8}	8_{25}	7_{52}
9_{50}	5^{*}	1^{*}	3^{*}	2_{1}	8_{2}	6_{44}	7_{53}	4_{39}
3_{45}	2_{57}	7_{58}	5_{7}	4^{*}	6_{5}	8^{*}	9_{34}	1_{6}
4_{40}	8_{4}	6^{*}	7_{23}	9_{24}	1_{12}	2^{*}	3_{41}	5_{18}
8^{*}	7_{43}	5_{13}	9_{29}	1_{11}	2^{*}	3_{22}	4_{42}	6_{38}
1_{10}	4_{53}	3_{60}	6^{*}	8_{31}	7_{62}	9_{63}	5^{*}	2_{33}
6_{37}	9_{56}	2_{59}	4_{26}	5_{17}	3_{61}	7_{64}	1^{*}	8_{32}

Figure 217. Figure 3 for Puzzle 20

Puzzle 21

We can readily fill with basic moves to the thirty-nineth step as shown in

Figure 219 for the puzzle in Figure 218.

3^{*}			1^{*}			8^{*}		
		2^{*}			6^{*}			
			4^{*}					
				8^{*}		1^{*}		
		5^{*}						2^{*}
			$7 *$					
1^{*}	3^{*}						4^{*}	
	8^{*}				5^{*}			
				2^{*}				

Figure 218. Figure 1 for Puzzle 21

$2_{1} \mathrm{~b} 3$	$2_{3} 5_{4} \mathrm{c} 4$
$5_{7 \mathrm{r} 7}$	$8_{12} 2_{13} \mathrm{~b} 4$
$1_{21} \mathrm{c} 3$	$4_{27} \mathrm{r} 8$
$4_{30} \mathrm{~b} 1$	$6_{34}{ }_{35} \mathrm{~b} 5$
$6_{40 \mathrm{c} 7} 7$	6 r 9 b 3.

3^{*}	5_{10}	6_{3}	1^{*}		2_{13}	8^{*}		4_{31}
8_{15}	4_{30}	2^{*}	5_{4}		6^{*}			1_{26}
		1_{21}	4^{*}		8_{12}	5_{9}	2_{14}	
4_{33}	6_{2}	3_{17}	2_{3}	8^{*}	9_{36}	1^{*}	5_{8}	
	1_{22}	5^{*}	6_{34}	4_{29}	3_{35}		8_{18}	2^{*}
	2_{5}	8_{16}	7^{*}	5_{6}	1_{23}	4_{32}	6_{1}	
1^{*}	3^{*}	9_{39}	8_{20}	6_{38}	7_{37}	2_{2}	4^{*}	5_{7}
2_{1}	8^{*}	4_{27}		1_{24}	5^{*}	6_{40}		
5_{11}	No6	No6		2^{*}	4_{28}		1_{24}	8_{19}

Figure 219. Figure 2 for Puzzle 21
From Figure 220, we have

641(18)c8: 6(68)
\rightarrow No6b3
642 c 3.

The rest is easy as
shown.

3^{*}	5_{10}	7_{43}	1^{*}	9_{45}	2_{13}	8^{*}	6_{41}	4_{31}
8_{15}	4_{30}	2^{*}	5_{4}	3_{62}	6^{*}	7_{61}	9_{55}	1_{26}
6_{51}	9_{50}	1_{21}	4^{*}	7_{63}	8_{12}	5_{9}	2_{14}	3_{64}
4_{33}	6_{49}	3_{17}	2_{3}	8^{*}	9_{36}	1^{*}	5_{8}	7_{48}
7_{46}	1_{22}	5^{*}	6_{34}	4_{29}	3_{35}	9_{47}	8_{18}	2^{*}
9_{52}	2_{5}	8_{16}	7^{*}	5_{6}	1_{23}	4_{32}	3_{54}	6_{53}
1^{*}	3^{*}	9_{39}	8_{20}	6_{38}	7_{37}	2_{2}	4^{*}	5_{7}
2_{1}	8^{*}	4_{27}	3_{58}	1_{24}	5^{*}	6_{40}	7_{56}	9_{57}
5_{11}	7_{44}	6_{42}	9_{59}	2^{*}	4_{28}	3_{60}	1_{24}	8_{19}

Figure 220. Figure 3 for Puzzle 21

Puzzle 22

We can readily fill with basic moves to the sixteenth step as shown in Figure 222 for the puzzle in Figure 221.

7^{*}				3^{*}		8^{*}		
			5^{*}			2^{*}		
	2^{*}	5^{*}		6^{*}	8^{*}			
							1^{*}	
	9^{*}							
3^{*}						4^{*}	7^{*}	
1^{*}			9^{*}					
			2^{*}					

Figure 221. Figure 1 for Puzzle 22
$1_{1} \mathrm{~b} 2 \quad 235_{4} 9_{5} \mathrm{c} 1$
$3778896_{10 c} 4: 37 \mathrm{r} 5 \mathrm{~b} 2$ $4_{13} \mathrm{~g} 4_{14} \mathrm{~g} 6_{15} \mathrm{~g} 7_{16 \mathrm{c} 4}$.

As in Figure 222, we can take
7_{17} c6:
7r5b2\&36(86)(96)
In Figure 223.
We can complete the puzzle in Figure 223. $7_{18} \mathrm{c} 2$: u47c2b3c5b6
9_{20} c7: 9r3b4\&r5b5
829630r6
136 C 7
$1{ }_{42} \mathrm{c} 5$

7^{*}		4_{14}	6_{10}	3^{*}	2_{6}	8^{*}		
9_{5}			5^{*}			2^{*}		7_{12}
2_{3}			7_{8}					
4_{13}	2^{*}	5^{*}	1_{2}	6^{*}	8^{*}	7_{16}		
	$7 ?$	$7 ?$	4_{11}				1^{*}	
	9^{*}	1_{1}	3_{7}		7_{17}			
3^{*}	6_{15}		8_{9}			4^{*}	7^{*}	
1^{*}			9^{*}		$3 / 6$			
5_{4}			2^{*}		$6 / 3$			

Figure 222. Figure 2 for Puzzle 22

7^{*}	1_{40}	4_{14}	6_{10}	3^{*}	2_{6}	8^{*}	5_{61}	9_{60}
9_{5}	3_{58}	6_{57}	5^{*}	8_{41}	1_{46}	2^{*}	4_{52}	7_{12}
2_{3}	5_{59}	8_{56}	7_{8}	9_{40}	4_{47}	1_{36}	3_{55}	6_{63}
4_{13}	2^{*}	5^{*}	1_{2}	6^{*}	8^{*}	7_{16}	9_{54}	3_{53}
6_{32}	7_{18}	3_{19}	4_{11}	2_{25}	9_{33}	5_{35}	1^{*}	8_{34}
8_{29}	9^{*}	1_{1}	3_{7}	5_{31}	7_{17}	6_{30}	2_{24}	4_{26}
3^{*}	6_{15}	9_{21}	8_{9}	1_{42}	5_{43}	4^{*}	7^{*}	2_{23}
1^{*}	8_{50}	2_{22}	9^{*}	7_{28}	4_{45}	3_{37}	6_{64}	5_{62}
5_{4}	4_{49}	7_{27}	2^{*}	6_{44}	3_{39}	9_{20}	8_{51}	1_{38}

Figure 223. Figure 3 for Puzzle 22

Puzzle 23

We can take to the thirty-second step in

Figure 225 of the
puzzle in Figure 224.

2^{*}							5^{*}	
		8^{*}		3^{*}				
				1^{*}				
			4^{*}			2^{*}	6^{*}	
	1^{*}							
			2^{*}					
6^{*}						1^{*}		3^{*}
4^{*}			5^{*}		9^{*}			
						7^{*}		

Figure 224. Figure 1 for Puzzle 23
$1_{2} 3_{3} \mathrm{c} 4 \quad 33_{11} \mathrm{~b} 8$
$5_{15 c} 7$
$6{ }_{17} 4_{18} 2_{19} 8_{20 \mathrm{r}} 9$
$4_{22} \mathrm{r} 5 \quad 6{ }_{23} 7_{24} \mathrm{~b} 5$
$7_{25} \mathrm{r} 8 \quad 2_{26} 4_{247} \mathrm{C} 5$
831b2: 46(62)(63)
$8_{32} \mathrm{~g}$.

2^{*}		3_{13}		4_{27}			5^{*}	1_{6}
1_{5}		8^{*}		3^{*}				
				1^{*}			3_{12}	
3_{14}	8_{31}	5_{1}	4^{*}	9_{4}	1_{8}	2^{*}	6^{*}	No9
	1^{*}	2_{1}	3_{3}	8_{3}	6_{23}	5_{15}	No9	4_{22}
			2^{*}	5_{2}	7_{24}	3_{11}	1_{7}	8_{5}
6^{*}			8_{29}	2_{26}	4_{28}	1^{*}	9_{30}	3^{*}
4^{*}	3_{10}	1_{4}	5^{*}	7_{25}	9^{*}			
8_{20}	2_{19}	9_{21}	1_{2}	6_{17}	3_{9}	7^{*}	4_{18}	5_{16}

Figure 225. Figure 2 for Puzzle 23
Due to the dilemma in Figure 225, we can complete the puzzle in Figure 226.

$$
\begin{aligned}
& 5_{33} 9_{34} \mathrm{r} 4: 5(43) \\
& \quad \rightarrow 5(65) \rightarrow 8(55) \\
& \quad \rightarrow 9(45) \rightarrow \text { No } 9 \mathrm{~b} 8
\end{aligned}
$$

$5_{39} \mathrm{C} 1 \quad 9_{56} 3$

2^{*}	6_{63}	3_{13}	7_{46}	4_{27}	8_{32}	9_{64}	5^{*}	1_{6}
1_{5}	9_{62}	8^{*}	6_{58}	3^{*}	5_{51}	4_{61}	2_{49}	7_{45}
7_{38}	5_{55}	4_{57}	9_{56}	1^{*}	2_{50}	8_{47}	3_{12}	6_{53}
3_{14}	8_{31}	7_{35}	4^{*}	5_{33}	1_{8}	2^{*}	6^{*}	9_{34}
9_{40}	1^{*}	2_{1}	3_{3}	8_{42}	6_{23}	5_{15}	7_{43}	4_{22}
5_{39}	4_{59}	6_{60}	2^{*}	9_{41}	7_{24}	3_{11}	1_{7}	8_{44}
6^{*}	7_{36}	5_{37}	8_{29}	2_{26}	4_{28}	1^{*}	9_{30}	3^{*}
4^{*}	3_{10}	1_{4}	5^{*}	7_{25}	9^{*}	6_{54}	8_{48}	2_{52}
8_{20}	2_{19}	9_{21}	1_{2}	6_{17}	3_{9}	7^{*}	4_{18}	5_{16}

Figure 226. Figure 3 for Puzzle 23

4.5. EXPERIMENTAL MOVES

PRACTICE SET 1

Puzzle 24

			3^{*}	6^{*}		5^{*}		
4^{*}								2^{*}
1^{*}								
						7^{*}	1^{*}	
2^{*}			8^{*}					
	8^{*}		5^{*}					
	3^{*}					6^{*}		
				1^{*}	4^{*}			
				7^{*}				

Puzzle 25

3^{*}	7^{*}			9^{*}				
							8^{*}	1^{*}
	2^{*}							
		1^{*}	6^{*}				4^{*}	
5^{*}				7^{*}		3^{*}		
2^{*}						9^{*}		
			1^{*}		4^{*}			
			8^{*}					

Puzzle 26

	1^{*}		4^{*}					
				8^{*}		5^{*}		
						7^{*}		
7^{*}			3^{*}		4^{*}			
			1^{*}				2^{*}	
8^{*}								
2^{*}				9^{*}				
							4^{*}	3^{*}
						6^{*}		1^{*}

Puzzle 27

				6^{*}				1^{*}
	2^{*}		5^{*}					
			3^{*}				2^{*}	
		7^{*}				4^{*}		
1^{*}				5^{*}				
7^{*}	3^{*}				1^{*}			
6^{*}							5^{*}	
			2^{*}			8^{*}		

Puzzle 28

							5^{*}	1^{*}
2^{*}			8^{*}					
4^{*}								
	1^{*}			5^{*}	7^{*}			
3^{*}						2^{*}		
				6^{*}		4^{*}		
	5^{*}	7^{*}					6^{*}	
			2^{*}			3^{*}		

Puzzle 29

	$7 *$		4^{*}		6^{*}	5^{*}		
			2^{*}			3^{*}	4^{*}	
	8^{*}			$1 *$				
						4^{*}		
1^{*}								
3^{*}							1^{*}	$7 *$
			5^{*}					8^{*}
2^{*}								

Puzzle 30

1^{*}							3^{*}	2^{*}
	5^{*}		8^{*}					
	6^{*}		5^{*}			4^{*}		
2^{*}			3^{*}					
7^{*}								
				2^{*}	1^{*}			
	4^{*}					6^{*}		
				7^{*}		5^{*}		

Puzzle 24
$1_{2} 7_{3} 4_{4} \mathrm{c} 4 \quad 3{ }_{13} \mathrm{~b} 6$ $4_{14 \mathrm{c} 2} \quad 6_{16} \mathrm{c} 6$
$7_{17} \mathrm{~b} 7 \quad 2_{24} \mathrm{r} 4$
$2_{28} \mathrm{~b} 3 \quad 6_{34} \mathrm{r} 9$
$936 \mathrm{~b} 3 \quad 8_{38} \mathrm{~b} 9$
$9_{43} \mathrm{r} 1$

8_{44}	7_{23}	9_{43}	3^{*}	6^{*}	2_{30}	5^{*}	4_{11}	1_{5}
4^{*}	5_{50}	6_{48}	1_{2}	8_{57}	9_{56}	3_{58}	7_{17}	2^{*}
1^{*}	2_{29}	3_{51}	7_{3}	4_{10}	5_{53}	8_{63}	6_{41}	9_{64}
3_{33}	9_{49}	5_{52}	4_{4}	2_{24}	6_{16}	7^{*}	1^{*}	8_{1}
2^{*}	1_{8}	4_{21}	8^{*}	3_{61}	7_{12}	9_{62}	5_{40}	6_{42}
6_{32}	8^{*}	7_{20}	5^{*}	9_{60}	1_{9}	4_{22}	2_{25}	3_{59}
7_{19}	3^{*}	1_{7}	2_{30}	5_{54}	8_{55}	6^{*}	9_{37}	4_{15}
5_{45}	6_{47}	8_{46}	9_{35}	1^{*}	4^{*}	2_{26}	3_{27}	7_{18}
9_{36}	4_{14}	2_{28}	6_{34}	7^{*}	3_{13}	1_{6}	8_{38}	5_{39}

Puzzle 25

$\begin{array}{lll}1 \mathrm{~b} 1 & 87 \mathrm{r} 1 & 88 \mathrm{r} 7\end{array}$ $49 \mathrm{~b} 9 \quad 9_{11} \mathrm{~b} 6$ 4128 ${ }_{13} \mathrm{c} 5: 4 \mathrm{r} 2 \mathrm{~b} 1$ $4_{15} \mathrm{r} 1 \quad 1_{14} \mathrm{~b} 9 \quad 5_{16} \mathrm{~b} 3$ $8_{16} 4_{17} r 5 \quad 2_{21} \mathrm{~g}$ $6_{22} \mathrm{r} 3: 6 \mathrm{rlb7} \quad 6_{23} \mathrm{r} 5$

3^{*}	7^{*}	8_{7}	5_{34}	9^{*}	1_{2}	4_{15}	6_{33}	2_{32}
9_{27}	4_{39}	5_{40}	2_{52}	3_{53}	6_{50}	7_{48}	8^{*}	1^{*}
1_{1}	2^{*}	6_{22}	7_{47}	4_{12}	8_{14}	5_{46}	9_{30}	3_{31}
7_{38}	3_{42}	1^{*}	6^{*}	8_{13}	5_{44}	2_{29}	4^{*}	9_{28}
5^{*}	8_{16}	9_{24}	4_{17}	7^{*}	2_{21}	3^{*}	1_{4}	6_{23}
4_{36}	6_{41}	2_{25}	9_{20}	1_{3}	3_{45}	8_{19}	7_{60}	5_{59}
2^{*}	1_{6}	4_{10}	3_{54}	6_{51}	7_{49}	9^{*}	5_{55}	8_{8}
8_{18}	9_{26}	3_{62}	1^{*}	5_{56}	4^{*}	6_{35}	2_{58}	7_{61}
6_{37}	5_{43}	7_{63}	8^{*}	2_{57}	9_{11}	1_{5}	3_{64}	4_{9}

$3_{31} 2_{32} 6_{33} \mathrm{~b} 7 \quad 4_{36} 6_{37} \mathrm{c} 1 \quad 2_{52} \mathrm{c} 4$

Puzzle 26

$1_{2} \mathrm{C} 1 \quad 2{ }_{6} 9_{7} \mathrm{~b} 9 \quad 3{ }_{8} \mathrm{c} 5$
$\begin{array}{lll}3_{10} \mathrm{~b} 7 & 5_{12} \mathrm{~g} & 8_{13} \mathrm{~b} 5\end{array}$
$8_{14} \mathrm{~g} \quad 6_{16} \mathrm{~g}: 57 \mathrm{r} 7 \mathrm{~b} 9$
$\begin{array}{lll}9_{17} \mathrm{~g} & 1_{18} \mathrm{~g} & 620 \mathrm{~g}\end{array}$
$821 \mathrm{~g} \quad 223 \mathrm{~g}$
923c6: 26c6b4

6_{20}	1^{*}	7_{39}	4^{*}	3_{8}	5_{40}	9_{17}	8_{21}	2_{22}
9_{51}	2_{63}	3_{62}	7_{37}	8^{*}	6_{49}	5^{*}	1_{5}	4_{50}
4_{48}	8_{43}	5_{44}	9_{38}	1_{4}	2_{46}	7^{*}	3_{11}	6_{47}
7^{*}	9_{58}	2_{59}	3^{*}	6_{35}	4^{*}	1_{18}	5_{26}	8_{23}
3_{52}	5_{45}	6_{55}	1^{*}	7_{31}	8_{13}	4_{54}	2^{*}	9_{25}
8^{*}	4_{60}	1_{19}	5_{34}	2_{36}	9_{24}	3_{53}	6_{29}	7_{30}
2^{*}	3_{64}	4_{61}	6_{16}	9^{*}	1_{3}	8_{14}	7_{28}	5_{27}
1_{2}	6_{56}	9_{57}	8_{17}	5_{33}	7_{32}	2_{6}	4^{*}	3^{*}
5_{12}	7_{41}	8_{42}	2_{10}	4_{1}	3_{9}	6^{*}	9_{7}	1^{*}

526b8: u57r6b8r7b9 $\quad 7_{32} \mathrm{~b} 6 \quad 5_{34} 6_{35} \mathrm{~b} 5 \quad 2_{46} 647 \mathrm{r} 3 \quad 951 \mathrm{c} 1$

Puzzle 27	5_{20}	754	44	945	6*	321	28	853	1*
	857	2*	114	5*	433	740	$3{ }_{36}$	639	956
$\begin{array}{lllll}2_{3} 84 \mathrm{~b} 3 & 1_{10 \mathrm{r}} 8 & 316 \mathrm{~b} 2\end{array}$	$3{ }_{37}$	9_{63}	6_{62}	1_{13}	27	851	535	75	434
	9_{58}	6_{64}	861	3*	1_{12}	442	147	2*	538
$\begin{array}{llll} 3_{18} \mathrm{~b} 9 & 5_{1 \mathrm{gr} 5} & 5_{20} 3_{2 \mathrm{rr}} \end{array}$	25	5_{19}	7*	831	932	630	4*	111	317
	1*	443	3_{16}	741	5*	26	642	9_{59}	860
$5_{35 \mathrm{~b}} \quad 5_{36 \mathrm{C}} 7$	7*	3*	52	622	823	1*	9_{26}	425	29
	6*	84	23	449	329	9_{52}	1_{10}	5*	727
$6_{39} 740 \mathrm{r} 2 \quad 853 \mathrm{rl}$	445	1_{15}	946	2*	728	51	8*	318	624

Puzzle 28

$15_{2} \mathrm{~b} 1$	18 c 7	$29 r 4$	2*	652	52	8*	762	131	963	442	3_{60}
31563	416 r 4	317 b 5	4*	851	1_{1}	57	361	932	7_{64}	213	659
118 r 6	419320 r 1		936	1*	29	4_{16}	5*	7*	658	348	857
			3*	454	653	125	9_{33}	830	2*	743	54
82314	$1_{25 \mathrm{~g}} \quad 77_{26 \mathrm{C}} 1$		53	744	845	317	6*	211	4*	1_{18}	939
$6{ }_{27} \mathrm{~g}$	830131 c 6		823	5*	7*	9_{24}	421	32	18	6*	212
			634	9_{55}	456	2*	137	56	3*	847	746
$6{ }_{34} 1_{35 \mathrm{c}} 1: 6 \mathrm{r} 4 \mathrm{~b} 8$			135	210	315	728	838	629	55	9_{40}	441

$340 \mathrm{r} 9 \quad 7_{43} \mathrm{~b} 8 \quad 849 \mathrm{r} 1$
Puzzle 29
$14 \mathrm{~b} 4 \quad 5839 \mathrm{~b} 9$
$7_{10} 5_{11} \mathrm{~b} 7 \quad 2_{15} 3_{16 \mathrm{r}} 1$
$7_{19} 8_{20 \mathrm{r}}{ }^{2} 4_{24} \mathrm{r} 3: 23 \mathrm{r} 3 \mathrm{~b} 1$
${ }_{25} 5_{26} \mathrm{C} 1$
$4_{38} 9_{39} \mathrm{c} 2: 23(32)(52)$
346247 C 2

9_{17}	7^{*}	1_{5}	4^{*}	3_{16}	6^{*}	5^{*}	8_{11}	2_{15}
8_{25}	6_{48}	5_{50}	2^{*}	7_{12}	1_{4}	3^{*}	4^{*}	9_{51}
2_{1}	2_{1}	2_{49}	8_{36}	9_{37}	5_{35}	1_{2}	7_{10}	6_{52}
5_{26}	8^{*}	6_{60}	9_{45}	1^{*}	4_{42}	7_{14}	2_{59}	3_{29}
7_{21}	2_{47}	9_{62}	3_{30}	5_{34}	8_{33}	4^{*}	6_{63}	1_{1}
1^{*}	4_{38}	3_{61}	7_{23}	6_{53}	2_{54}	8_{13}	9_{64}	5_{28}
3^{*}	5_{32}	8_{31}	6_{44}	4_{43}	9_{55}	2_{57}	1^{*}	7^{*}
6_{27}	1_{7}	4_{40}	5^{*}	2_{56}	7_{22}	9_{58}	3_{9}	8^{*}
2^{*}	9_{39}	7_{19}	1_{6}	8_{20}	3_{18}	6_{41}	5_{8}	4_{3}

Puzzle 30
$23_{1} \mathrm{c} 7$
18799 ${ }_{10}$ c4: 4b3\&6b9
$1_{12 \mathrm{c} 2} 5_{13 \mathrm{c}} \mathrm{c}: 5 \mathrm{r} 8 \mathrm{~b} 6$
7141 ${ }_{15 c} 7: 7 \mathrm{r} 3 \mathrm{~b} 1$
$3{ }_{17} 7_{18} \mathrm{c} 2$:
$17 \mathrm{r} 4 \mathrm{~b} 8 \rightarrow 3 \mathrm{r} 4 \mathrm{~b} 2$

1^{*}	8_{35}	6_{44}	7_{9}	5_{49}	4_{50}	9_{32}	3^{*}	2^{*}
9_{33}	5^{*}	2_{5}	8^{*}	1_{16}	3_{19}	7_{14}	6_{59}	4_{60}
4_{43}	3_{17}	7_{22}	2_{4}	6_{51}	9_{36}	1_{15}	8_{62}	5_{63}
3_{39}	6^{*}	8_{38}	5^{*}	9_{37}	2_{3}	4^{*}	7_{24}	1_{25}
2^{*}	1_{12}	5_{55}	3^{*}	4_{57}	7_{11}	8_{31}	9_{48}	6_{53}
7^{*}	9_{34}	4_{56}	1_{8}	8_{58}	6_{52}	2_{1}	5_{54}	3_{29}
5_{13}	7_{18}	9_{41}	6_{45}	2^{*}	1^{*}	3_{2}	4_{61}	8_{64}
8_{28}	4^{*}	1_{27}	9_{10}	3_{20}	5_{21}	6^{*}	2_{7}	7_{23}
6_{42}	2_{6}	3_{40}	4_{46}	7^{*}	8_{30}	5^{*}	1_{26}	9_{47}

$\begin{array}{lllllll}830 \mathrm{~b} 6 & 8_{31} \mathrm{c} 7: 8 \mathrm{rlb} 1 & 9_{33 \mathrm{r} 2} & 9_{34 \mathrm{c} 2} & 9_{36} \mathrm{c} 6 & 9_{37} 8_{38} \mathrm{r} 4 & 5_{49 \mathrm{r}} 1\end{array}$

PRACTICE SET 2

Puzzle 31

6^{*}	7^{*}					4^{*}		
8^{*}				1^{*}				
			2^{*}	5^{*}				
			4^{*}		3^{*}	7^{*}		
1^{*}							5^{*}	
	4^{*}	2^{*}	7^{*}					
							6^{*}	1^{*}

Puzzle 32

				5^{*}	1^{*}			
	2^{*}					3^{*}		
7^{*}							1^{*}	5^{*}
			2^{*}	3^{*}				
			4^{*}					8^{*}
5^{*}	7^{*}	8^{*}						
						6^{*}	4^{*}	
1^{*}								

Puzzle 33

1^{*}		4^{*}						
						8^{*}	2^{*}	
						6^{*}		
			3^{*}		6^{*}	7^{*}		
	2^{*}							
			7^{*}					
6^{*}				5^{*}				4^{*}
			4^{*}	2^{*}			5^{*}	
	8^{*}							

Puzzle 34

5^{*}		4^{*}		2^{*}				
9^{*}			8^{*}			1^{*}		
2^{*}								
				9^{*}			2^{*}	
	1^{*}					8^{*}		
	3^{*}							
							4^{*}	9^{*}
			6^{*}		1^{*}			
			3^{*}					

Puzzle 35

			6^{*}					1^{*}
	2^{*}			8^{*}				
1^{*}	9^{*}	4^{*}						
				3^{*}	2^{*}	8^{*}		
7^{*}			1^{*}				5^{*}	
6^{*}			4^{*}					
						2^{*}	3^{*}	

Puzzle 36

		1^{*}	5^{*}					
					1^{*}	3^{*}		
						8^{*}		
						6^{*}	9^{*}	
			$7 *$				2^{*}	
3^{*}					8^{*}			
			2^{*}	1^{*}				
8^{*}	4^{*}							
	3^{*}			6^{*}				

Puzzle 37

		1^{*}	7^{*}					
							5^{*}	3^{*}
5^{*}	3^{*}			2^{*}				
			1^{*}			7^{*}		8^{*}
6^{*}								
4^{*}	2^{*}				5^{*}		3^{*}	
			6^{*}			1^{*}		

Puzzle 31

$1_{1 \mathrm{r} 4} \quad 2{ }_{7} 5{ }_{8} \mathrm{~b} 1 \quad 4_{11 \mathrm{r} 2}$ 4_{12} r8 $\quad 6_{13 r} 7$
$7{ }_{15} 6_{16} \mathrm{~b} 4 \quad 6_{18} 5_{19 \mathrm{r}} 4$
$4_{22} \mathrm{c} 1 \quad 5_{23} \mathrm{c} 4 \quad 8_{25} \mathrm{~b} 3$
$826 \mathrm{r} 3 \quad 828229 \mathrm{r} 4$
$33_{33} \mathrm{r} 1 \quad 7_{42} \mathrm{r} 8$
351c7: u38c2b2c7b8

6^{*}	7^{*}	1_{3}	8_{32}	3_{33}	9_{34}	4^{*}	2_{10}	5_{9}
8^{*}	2_{7}	5_{8}	6_{16}	1^{*}	4_{11}	3_{51}	7_{55}	9_{58}
4_{22}	9_{50}	3_{49}	2^{*}	5^{*}	7_{15}	1_{2}	8_{26}	6_{17}
5_{19}	6_{18}	9_{30}	4^{*}	8_{28}	3^{*}	7^{*}	1_{1}	2_{29}
1^{*}	3_{59}	7_{47}	9_{36}	2_{39}	6_{62}	8_{63}	5^{*}	4_{54}
2_{20}	8_{60}	4_{48}	1_{6}	7_{40}	5_{61}	6_{64}	9_{57}	3_{58}
9_{44}	4^{*}	2^{*}	7^{*}	6_{13}	1_{5}	5_{24}	3_{46}	8_{27}
7_{42}	5_{21}	8_{25}	3_{35}	4_{12}	2_{38}	9_{43}	6^{*}	1^{*}
3_{45}	1_{4}	6_{14}	5_{23}	9_{37}	8_{31}	2_{41}	4_{52}	7_{53}

Puzzle 32

59810c7 712 b 9		6							
	9_{51}	2*	17	729	830	458	3*	523	757
214b9: $2 \mathrm{c} 7 \mathrm{~b} 8 \quad 216 \mathrm{rl}$	$3{ }_{50}$	820	521	65	959	256	16	728	460
717r8: 7c7b5 $\quad 8{ }_{19}{ }^{\text {r }}$	7*	336	234	831	6_{62}	963	432	1*	5*
	819	18	437	2*	3*	525	726	645	947
$5_{21} \mathrm{bl} 5_{25} 7_{266} 3: 69 \mathrm{rbb} 8$	640	522	941	4*	14	727	233	3_{1}	8*
	5*	7*	8*	1_{3}	461	6_{64}	9_{15}	214	313
	235	943	342	52	717	8_{18}	6*	4*	15
$6_{45} \mathrm{C} 8 \quad 44_{48 \mathrm{rl}} \quad 65354$	1*	438	639	9_{54}	253	352	59	811	712

Puzzle 33

$2{ }_{3} \mathrm{~b} 3 \quad 25 \mathrm{~b} 5 \quad 49 \mathrm{~b} 7$
$6_{10} 8_{11} \mathrm{r} 8 \quad 8_{13} \mathrm{~b} 1 \quad 8_{14} \mathrm{c} 4$
$5_{18} \mathrm{~b} 5 \quad 4_{19} \mathrm{c} 6 \quad 5_{20} \mathrm{~b} 8$
$6_{22} 5_{23}$ r1 $7{ }_{24} \mathrm{~b} 6: 7 \mathrm{r} 9 \mathrm{~b} 9$
$7_{25 r} 1 \quad 329 r 1:$
$3 \mathrm{r} 9 \mathrm{~b} 6 \rightarrow 3 \mathrm{c} 7 \mathrm{~b} 9$
$9_{30} \mathrm{c} 9 \quad 9_{32} 6_{33} \mathrm{~b} 6 \quad 11_{36} \mathrm{~g}$

1^{*}	6_{22}	4^{*}	2_{7}	8_{17}	3_{29}	9_{28}	7_{25}	5_{23}
5_{44}	9_{53}	7_{54}	1_{46}	6_{51}	4_{19}	8^{*}	2^{*}	3_{48}
2_{4}	3_{49}	8_{13}	5_{45}	7_{50}	9_{35}	6^{*}	4_{9}	1_{47}
8_{16}	5_{41}	9_{38}	3^{*}	4_{40}	6^{*}	7^{*}	1_{37}	2_{6}
7_{63}	2^{*}	6_{58}	8_{14}	1_{36}	5_{18}	4_{21}	3_{64}	9_{30}
3_{62}	4_{42}	1_{43}	7^{*}	9_{39}	2_{5}	5_{20}	6_{61}	8_{15}
6^{*}	1_{56}	2_{3}	9_{32}	5^{*}	7_{24}	3_{59}	8_{12}	4^{*}
9_{52}	7_{55}	3_{57}	4^{*}	2^{*}	8_{11}	1_{60}	5^{*}	6_{10}
4_{1}	8^{*}	5_{2}	6_{33}	3_{27}	1_{34}	2_{8}	9_{31}	7_{26}

$1_{37} \mathrm{~g} \quad 9_{38} \mathrm{~g} \quad 9_{52} \mathrm{C} 1 \quad 7_{55} \mathrm{C} 2$

Puzzle 34
$1_{2} 3_{3} \mathrm{~b} 1 \quad 3{ }_{11} \mathrm{r} 4$
613r7: 6c2b1
$9_{14 \mathrm{~b} 6} \quad 9_{16} 4_{17} \mathrm{r} 8$
$2{ }_{18} 4_{19} 5_{20}$ c $2: 2 \mathrm{r} 7 \mathrm{~b} 6$
$4_{23 \mathrm{r}} \mathrm{r} \quad 5_{24 \mathrm{~b} 6} \quad 5_{25} \mathrm{r} 2$

5^{*}	8_{56}	4^{*}	1_{4}	2^{*}	6_{40}	9_{59}	7_{60}	3_{54}
9^{*}	6_{39}	3_{3}	8^{*}	7_{38}	4_{23}	1^{*}	5_{25}	2_{1}
2^{*}	7_{57}	1_{2}	9_{15}	3_{12}	5_{26}	4_{58}	6_{47}	8_{55}
8_{30}	4_{19}	5_{33}	7_{32}	9^{*}	3_{11}	6_{31}	2^{*}	1_{6}
7_{37}	1^{*}	9_{46}	5_{51}	6_{41}	2_{43}	8^{*}	3_{53}	4_{52}
6_{36}	3^{*}	2_{45}	4_{50}	1_{5}	8_{29}	5_{34}	9_{48}	7_{49}
1_{8}	5_{20}	6_{13}	2_{44}	8_{28}	7_{42}	3_{10}	4^{*}	9^{*}
3_{9}	9_{16}	7_{62}	6^{*}	4_{17}	1^{*}	2_{21}	8_{61}	5_{27}
4_{22}	2_{18}	8_{63}	3^{*}	5_{24}	9_{14}	7_{64}	1_{7}	6_{35}

$8_{28} \mathrm{c} 5 \quad 8_{30} 6_{31} 7_{32 \mathrm{r} 4:} 78 \mathrm{c} 3 \mathrm{~b} 3 \quad 6_{36 \mathrm{r} 6} \quad 7_{38 \mathrm{c}} 5$

Puzzle 35

$1_{1} 4_{2} 9_{3} \mathrm{r} 5 \quad 25 \mathrm{c} 1 \quad 2{ }_{6} 3_{7} \mathrm{c} 4$
$3{ }_{9 r 4} \quad 3_{11} \mathrm{c} 1 \quad 4_{13} \mathrm{~b} 9$
$5_{14} \mathrm{~g} \quad 8_{15} \mathrm{~b} 7 \quad 8_{17} 4_{18} \mathrm{c} 1$
$8_{27} 5_{28} \mathrm{c} 4: 8 \mathrm{r} 6 \mathrm{~b} 2 \& 5 \mathrm{r} 6 \mathrm{~b} 8$
$7_{30} \mathrm{r} 4 \quad 6_{31} \mathrm{c} 8$
$5_{36} \mathrm{~b} 3 \quad 9_{42} 5_{43} \mathrm{c} 9$

3_{12}	7_{60}	8_{41}	6^{*}	4_{26}	5_{46}	9_{63}	2_{8}	1^{*}
9_{19}	2^{*}	6_{59}	3_{7}	8^{*}	1_{23}	7_{64}	4_{16}	5_{43}
4_{18}	1_{22}	5_{45}	2_{6}	9_{56}	7_{55}	6_{58}	8_{15}	3_{11}
1^{*}	9^{*}	4^{*}	8_{27}	5_{47}	6_{48}	3_{9}	7_{30}	2_{10}
5_{14}	6_{61}	7_{62}	9_{3}	3^{*}	2^{*}	8^{*}	1_{1}	4_{2}
2_{5}	8_{39}	3_{38}	7_{29}	1_{24}	4_{25}	5_{44}	6_{31}	9_{42}
7^{*}	3_{37}	9_{33}	1^{*}	2_{35}	8_{51}	4_{13}	5^{*}	6_{50}
6^{*}	5_{36}	2_{34}	4^{*}	7_{57}	3_{40}	1_{4}	9_{32}	8_{52}
8_{17}	4_{20}	1_{21}	5_{28}	6_{49}	9_{54}	2^{*}	3^{*}	7_{53}

Puzzle 36
$1_{2} \mathrm{~b} 3 \quad 83 \mathrm{~b} 6 \quad 8435 \mathrm{c} 8$
$4_{7} \mathrm{~b} 6 \quad 3{ }_{8} \mathrm{c} 4 \quad 1{ }_{13 \mathrm{r}} 4$
$1_{15} 6_{16}{ }_{177} \mathrm{r} 8$
$6222_{23} 9_{24} 6$
$7_{26} 4_{271} 4 \quad 832 r 1$
$435 \mathrm{r} 5 \quad 5_{54} \mathrm{C} 8$

7_{57}	8_{32}	1^{*}	5^{*}	3_{10}	2_{53}	9_{60}	6_{46}	4_{40}
5_{48}	9_{56}	4_{37}	6_{42}	8_{34}	1^{*}	3^{*}	7_{55}	2_{50}
6_{47}	2_{51}	3_{1}	4_{39}	7_{44}	9_{52}	8^{*}	1_{18}	5_{49}
2_{25}	1_{13}	7_{26}	3_{8}	4_{27}	5_{28}	6^{*}	9^{*}	8_{12}
4_{35}	5_{36}	8_{33}	7^{*}	9_{31}	6_{30}	1_{14}	2^{*}	3_{11}
3^{*}	6_{22}	9_{24}	1_{9}	2_{23}	8^{*}	5_{61}	4_{41}	7_{62}
9_{58}	7_{59}	5_{38}	2^{*}	1^{*}	3_{6}	4_{21}	8_{4}	6_{20}
8^{*}	4^{*}	6_{16}	9_{43}	5_{29}	7_{45}	2_{17}	3_{5}	1_{15}
1_{2}	3^{*}	2_{19}	8_{3}	6^{*}	4_{7}	7_{63}	5_{54}	9_{64}

Puzzle 37
$1_{2} \mathrm{~b} 2 \quad 553667 \mathrm{r} 5$
714r7: 7c3b2 $\quad 1_{16 \mathrm{~b}}$
$2_{19} \mathrm{~b} 8 \quad 7_{20} 8_{21} \mathrm{r} 4$
$8_{23} 624 \mathrm{r} 7 \quad 2_{28} \mathrm{~b} 9$
$3_{29} 2_{30} \mathrm{C} 4 \quad 636237 \mathrm{r} 1$
$4_{40 \mathrm{C}} 3 \quad 7_{46} \mathrm{C} 1$

2_{37}	5_{9}	1^{*}	7^{*}	3_{35}	9_{53}	6_{36}	8_{27}	4_{54}
7_{46}	6_{50}	4_{40}	2_{30}	8_{48}	1_{17}	9_{55}	5^{*}	3^{*}
8_{47}	9_{51}	3_{34}	5_{8}	6_{49}	4_{52}	2_{39}	7_{15}	1_{16}
5^{*}	3^{*}	7_{20}	8_{21}	2^{*}	6_{13}	4_{56}	1_{18}	9_{57}
9_{43}	4_{42}	2_{38}	1^{*}	5_{5}	3_{6}	7^{*}	6_{7}	8^{*}
6^{*}	1_{2}	8_{22}	4_{31}	9_{59}	7_{60}	3_{1}	2_{19}	5_{10}
4^{*}	2^{*}	6_{24}	9_{25}	1_{4}	5^{*}	8_{23}	3^{*}	7_{14}
3_{33}	7_{62}	5_{12}	6^{*}	4_{58}	8_{61}	1^{*}	9_{44}	2_{28}
1_{3}	8_{63}	9_{41}	3_{29}	7_{64}	2_{32}	5_{11}	4_{45}	6_{26}

PRACTICE SET 3

Puzzle 38

				2^{*}	9^{*}	6^{*}		
	1^{*}	4^{*}						
			7^{*}					1^{*}
6^{*}				8^{*}				
		2^{*}				3^{*}		
2^{*}						5^{*}	6^{*}	
	7^{*}				1^{*}			
			3^{*}					

Puzzle 39

				8^{*}		7^{*}	2^{*}	
5^{*}		1^{*}						
6^{*}	2^{*}							1^{*}
			5^{*}				4^{*}	
3^{*}				7^{*}				
	$7 *$					3^{*}		
			4^{*}		6^{*}			
			1^{*}					

Puzzle 40

				8^{*}	3^{*}		6^{*}	
	5^{*}	4^{*}						
				7^{*}		2^{*}		
	1^{*}		4^{*}					
8^{*}							3^{*}	
			6^{*}			4^{*}		1^{*}
		9^{*}				5^{*}		
3^{*}								

Puzzle 41

	7^{*}		4^{*}			2^{*}		
		8^{*}		5^{*}				
		5^{*}		8^{*}	3^{*}			
6^{*}						7^{*}		
				9^{*}				
7^{*}	4^{*}		6^{*}					
							8^{*}	9^{*}
			1^{*}					

Puzzle 42

	3^{*}							6^{*}
2^{*}					4^{*}			
	7^{*}	1^{*}					3^{*}	
		6^{*}		8^{*}		2^{*}		
3^{*}						4^{*}	7^{*}	
5^{*}			6^{*}	2^{*}				
			1^{*}					

Puzzle 43

	5^{*}	2^{*}	6^{*}		7^{*}			
				1^{*}		4^{*}		
							9^{*}	
			5^{*}	8^{*}			2^{*}	
1^{*}								
	6^{*}		2^{*}					3^{*}
4^{*}						1^{*}		
			9^{*}					

Puzzle 44

2^{*}	1^{*}			3^{*}				
		4^{*}					6^{*}	5^{*}
	8^{*}		2^{*}			3^{*}		
			6^{*}		4^{*}			
					5^{*}			
				$7 *$		1^{*}		
6^{*}		5^{*}						
3^{*}								

Puzzle 38
$1_{3 r} 7 \quad{ }_{99} \mathrm{c} 4 \quad 6{ }_{10} \mathrm{~b} 1$
$2_{15} 3_{16} \mathrm{~b} 5 \quad 7_{17} \mathrm{~b} 2 \quad 33_{20 \mathrm{r}} 7$
$7_{21} 2_{22} \mathrm{~b} 9 \quad 7_{25} 3_{26}$ r 1
$5_{28} \mathrm{r} 8 \quad 8{ }_{29} \mathrm{r} 6 \quad 5_{31} \mathrm{~g}$
$4_{33} \mathrm{~b} \quad 9_{38} \mathrm{r} 9 \quad 5_{41} \mathrm{c} 4$
$4_{48} \mathrm{C} 5 \quad 455 \mathrm{C} 7$

7_{25}	5_{31}	3_{26}	4_{50}	2^{*}	9^{*}	6^{*}	1_{7}	8_{54}
8_{55}	1^{*}	4^{*}	6_{14}	7_{49}	3_{46}	9_{57}	5_{44}	2_{24}
9_{56}	2_{1}	6_{10}	5_{41}	1_{6}	8_{53}	7_{58}	3_{45}	4_{59}
5_{32}	4_{33}	9_{34}	7^{*}	3_{16}	6_{13}	2_{23}	8_{30}	1^{*}
6^{*}	3_{18}	7_{17}	1_{5}	8^{*}	2_{15}	4_{62}	9_{61}	5_{47}
1_{4}	8_{29}	2^{*}	9_{40}	5_{42}	4_{43}	3^{*}	7_{19}	6_{2}
2^{*}	9_{35}	1_{3}	8_{51}	4_{48}	7_{52}	5^{*}	6^{*}	3_{20}
3_{27}	7^{*}	5_{28}	2_{9}	6_{12}	1^{*}	8_{63}	4_{64}	9_{60}
4_{37}	6_{11}	8_{36}	3^{*}	9_{38}	5_{39}	1_{8}	2_{22}	7_{21}

Puzzle 39

54 r 1	$6565 \quad 7666$		5	3_{28}	1	7	210	416	826	645	${ }_{46}$	
			757	827	258	932	6_{11}	512	130	329	433	
$772889 \mathrm{c} 4 \& 2{ }_{10 \mathrm{c}} 5$		$27 \mathrm{r} 3 \mathrm{~b} 1$	6*	2*	517	89	4_{14}	319	9_{20}	718	1*	
		855	9_{41}	756	5*	12	225	622	4*	321		
$4_{14}{ }^{4} 5$	517b2		$7183_{19 \mathrm{r}} 4$	3*	13	4_{15}	65	7*	92	549	852	251
9246	8269		435	7*	948	28	547	813	3*	137	644	
			136	540	854	4*	361	6*	250	963	723	
827328b1: 27 (31)(33)			259	639	360	1*	962	76	434	56	853	

$\begin{array}{lllll}4_{33} \mathrm{~b} 7 & 6_{39} 5_{40} \mathrm{c} 2 & 5_{47 \mathrm{r}} & 5_{49} \mathrm{C} 7\end{array}$

Puzzle 40
$4_{1} 5_{2} \mathrm{r} 1 \quad 1_{6} \mathrm{~b} 3 \quad 17 \mathrm{~b} 8$
$38 \mathrm{~b} 9 \quad 8_{15} \mathrm{~b} 1 \quad 1_{18 \mathrm{r}} 1$
$6_{19 r} 8 \quad 5_{17} \mathrm{C} 1 \quad 3_{18} \mathrm{r} 7$
$6_{22} 5_{23} \mathrm{r} 4: 6 \mathrm{c} 1 \mathrm{~b} 1$
$9_{25 r} 1: 9 \mathrm{c} 1 \mathrm{~b} 1 \quad 8{ }_{27} 7_{28} \mathrm{c} 7$
$7_{38} \mathrm{C} 4 \quad 7_{40} \mathrm{~b} 3 \quad 951 \mathrm{r} 2$

1_{18}	7_{42}	2_{43}	5_{2}	8^{*}	3^{*}	9_{25}	6^{*}	4_{1}
9_{51}	5^{*}	4^{*}	1_{34}	6_{53}	7_{39}	3_{14}	8_{32}	2_{36}
6_{52}	3_{13}	8_{15}	9_{60}	2_{57}	4_{59}	7_{28}	1_{33}	5_{35}
5_{23}	9_{24}	6_{22}	3_{10}	7^{*}	1_{11}	2^{*}	4_{3}	8_{17}
2_{45}	1^{*}	3_{12}	4^{*}	9_{47}	8_{16}	6_{21}	5_{37}	7_{46}
8^{*}	4_{4}	7_{44}	2_{56}	5_{55}	6_{54}	1_{7}	3^{*}	9_{48}
7_{40}	8_{29}	5_{26}	6^{*}	3_{9}	9_{62}	4^{*}	2_{63}	1^{*}
4_{5}	6_{19}	9^{*}	8_{30}	9_{31}	2_{50}	5^{*}	7_{49}	3_{8}
3^{*}	2_{41}	1_{6}	7_{38}	4_{58}	5_{61}	8_{27}	9_{64}	6_{31}

Puzzle 41

$8_{3} 9_{4} \mathrm{r} 7 \quad 3_{12} \mathrm{C} 4 \quad 5{ }_{13} \mathrm{~b} 6$
$5_{14} 3_{15} \mathrm{~b} 3 \quad 7_{16} 4_{17} \mathrm{r} 8$
$\begin{array}{lll}120 \mathrm{~g} & 6_{21} \mathrm{~b} 5 & 1_{23} \mathrm{~g}\end{array}$
$6_{24} \mathrm{~g} \quad 9_{25} 3_{26} 5_{27} \mathrm{r} 5$
$5_{33} 3_{34} \mathrm{r} 1 \quad 239 \mathrm{r} 8$
$5_{43} 344 \mathrm{C} 7$

9_{31}	7^{*}	6_{35}	4^{*}	1_{34}	1_{23}	2^{*}	5_{33}	8_{6}
1_{48}	2_{49}	8^{*}	9_{11}	5^{*}	7_{52}	3_{44}	6_{59}	4_{58}
5_{37}	3_{46}	4_{41}	8_{5}	6_{36}	2_{51}	9_{30}	1_{55}	7_{60}
4_{42}	9_{32}	5^{*}	7_{2}	8^{*}	3^{*}	1_{45}	2_{62}	6_{63}
6^{*}	8_{8}	2_{28}	5_{27}	1_{20}	4_{22}	7^{*}	9_{25}	3_{26}
3_{47}	1_{50}	7_{1}	2_{29}	9^{*}	6_{21}	8_{7}	4_{57}	5_{56}
7^{*}	4^{*}	9_{4}	6^{*}	2_{19}	8_{3}	5_{43}	3_{53}	1_{54}
2_{39}	6_{38}	1_{40}	3_{12}	7_{16}	5_{13}	4_{17}	8^{*}	9^{*}
8_{9}	5_{14}	3_{15}	1^{*}	4_{18}	9_{10}	6_{24}	7_{61}	2_{64}

Puzzle 42
$2_{2} 5_{3} \mathrm{~b} 2 \quad 4{ }_{4} \mathrm{~b} 6 \quad 6{ }_{5} \mathrm{r} 7$
$1_{8} \mathrm{~b} 3 \quad 2_{12 \mathrm{r}} 7 \quad 4_{13 \mathrm{c}} 2$
$7_{15} \mathrm{c} 1 \quad 3_{17} \mathrm{~b} 6 \quad 1_{20} \mathrm{~b} 4$
$7_{26} 4_{27} \mathrm{r} 5 \quad 2_{36} \mathrm{r} 1 \quad 6_{38} r 4$
$5_{42} \mathrm{r} 9 \quad 7_{44} 5_{45} \mathrm{r} 2$

1_{9}	3^{*}	5_{48}	2_{36}	7_{35}	8_{47}	9_{51}	4_{14}	6^{*}
2^{*}	9_{57}	7_{44}	5_{45}	6_{7}	4^{*}	1_{23}	8_{61}	3_{24}
6_{6}	4_{13}	8_{58}	9_{46}	3_{19}	1_{20}	7_{52}	2_{41}	5_{62}
8_{55}	7^{*}	1^{*}	4_{30}	5_{34}	2_{31}	6_{38}	3^{*}	9_{56}
4_{27}	5_{3}	6^{*}	3_{18}	8^{*}	9_{28}	2^{*}	1_{22}	7_{26}
9_{54}	2_{2}	3_{1}	7_{29}	1_{21}	6_{33}	8_{53}	5_{43}	4_{32}
3^{*}	6_{5}	2_{12}	8_{49}	9_{37}	5_{50}	4^{*}	7^{*}	1_{10}
5^{*}	1_{8}	4_{11}	6^{*}	2^{*}	7_{16}	3_{25}	9_{63}	8_{64}
7_{15}	8_{59}	9_{60}	1^{*}	4_{4}	3_{17}	5_{42}	6_{39}	2_{40}

Puzzle 43

$1_{1 \mathrm{c} 4}$	$44_{4} 9_{5} 36 \mathrm{r} 1$
$2{ }_{9} 5_{10 \mathrm{r} 2}$	$4_{14} 7_{15 \mathrm{c} 4}$
$2_{16 \mathrm{c} 5:} 79(55)(65)$	

$5_{19} \mathrm{~g} \quad 5_{20} \mathrm{c} 1 \quad 9_{21} \mathrm{r} 8$
$9_{22} 3_{23} 6_{24} r 8: 79(55)(65)$ $\rightarrow 36 \mathrm{c} 6 \mathrm{~b} 5$
$9_{28} 4_{29 r} 4 \quad 8_{41} \mathrm{~b} 9 \quad 351 \mathrm{c} 2$

9_{5}	5^{*}	2^{*}	6^{*}	4_{4}	7^{*}	3_{6}	1_{3}	8_{7}
6_{59}	7_{50}	8_{57}	3_{61}	1^{*}	9_{8}	4^{*}	5_{10}	2_{9}
3_{60}	4_{30}	1_{31}	8_{62}	2_{16}	5_{18}	7_{44}	9^{*}	6_{43}
7_{47}	9_{28}	4_{29}	5^{*}	8^{*}	3_{53}	6_{58}	2^{*}	1_{2}
1^{*}	8_{52}	6_{55}	4_{14}	7_{40}	2_{17}	5_{63}	3_{46}	9_{38}
2_{12}	3_{51}	5_{56}	1_{1}	9_{39}	6_{54}	8_{64}	7_{45}	4_{37}
8_{49}	6^{*}	7_{48}	2^{*}	5_{19}	1_{33}	9_{27}	4_{36}	3^{*}
4^{*}	2_{12}	9_{22}	7_{15}	3_{23}	8_{25}	1^{*}	6_{24}	5_{21}
5_{20}	1_{32}	3_{35}	9^{*}	6_{26}	4_{34}	2_{11}	8_{41}	7_{42}

Puzzle 44

$11_{1} \mathrm{~b} 3$	$3{ }_{2}$ 2
33 r 5	55 r 1
$6{ }_{11} 4_{12} 2_{13} \mathrm{c} 5$	$54_{20 r} 4$
$7{ }_{23} \mathrm{~b} 5$	$1{ }_{25} \mathrm{r} 4$
$1_{27} \mathrm{C} 4$	429 C 7
732933 Cl	$7{ }_{39} \mathrm{c} 3$
342 r 7	7_{45} C7

2^{*}	1^{*}	6_{15}	5_{5}	3^{*}	8_{37}	4_{29}	7_{53}	9_{52}
9_{33}	3_{2}	4^{*}	7_{24}	2_{13}	1_{28}	8_{36}	6^{*}	5^{*}
7_{32}	5_{10}	8_{34}	4_{14}	6_{11}	9_{38}	2_{55}	3_{51}	1_{54}
5_{9}	8^{*}	9_{26}	2^{*}	1_{25}	7_{23}	3^{*}	4_{20}	6_{17}
1_{22}	2_{40}	3_{3}	6^{*}	9_{58}	4^{*}	5_{8}	8_{62}	7_{63}
4_{21}	6_{16}	7_{39}	3_{4}	8_{59}	5^{*}	4_{56}	1_{57}	2_{60}
8_{35}	4_{31}	2_{41}	9_{43}	7^{*}	6_{19}	1^{*}	5_{7}	3_{42}
6^{*}	9_{47}	5^{*}	1_{27}	4_{12}	3_{48}	7_{45}	2_{61}	8_{64}
3^{*}	1_{46}	1_{1}	8_{44}	5_{6}	2_{49}	6_{18}	9_{50}	4_{28}

$3_{42} r 7 \quad 7_{45} \mathrm{C} 7$

PRACTICE SET 4

Puzzle 45

				4^{*}			$7 *$	
6^{*}	5^{*}							
	2^{*}							
			3^{*}			6^{*}		8^{*}
1^{*}				7^{*}				
						2^{*}		
					2^{*}	5^{*}	3^{*}	
7^{*}			8^{*}					
4^{*}								

Puzzle 46

	3^{*}			$7 *$	9^{*}			
							1^{*}	
	9^{*}					2^{*}		
1^{*}			4^{*}					
			1^{*}	8^{*}				
6^{*}			5^{*}		3^{*}			
				4^{*}		9^{*}		7^{*}

Puzzle 47

		8^{*}	5^{*}		4^{*}			
	3^{*}							1^{*}
			7^{*}					
			6^{*}				5^{*}	
1^{*}	2^{*}							
4^{*}	1^{*}			2^{*}				
2^{*}						3^{*}		
						8^{*}	6^{*}	

Puzzle 48

	7^{*}	4^{*}			3^{*}			
			6^{*}			1^{*}		2^{*}
5^{*}			1^{*}	2^{*}				
	3^{*}						4^{*}	
				6^{*}				
2^{*}			5^{*}					
						8^{*}	7^{*}	
1^{*}								

Puzzle 49

8^{*}		9^{*}	6^{*}			4^{*}		
			3^{*}		5^{*}			7^{*}
			$7 *$		2^{*}		5^{*}	
		4^{*}		9^{*}				
1^{*}	3^{*}							
				2^{*}		9^{*}		
	5^{*}							

Puzzle 50

			8^{*}	6^{*}		4^{*}		
	2^{*}	3^{*}						
	5^{*}					7^{*}		
				4^{*}	2^{*}			
1^{*}						6^{*}		
					5^{*}		3^{*}	2^{*}
6^{*}			1^{*}					
							8^{*}	

Puzzle 51

				1^{*}		4^{*}		5^{*}
6^{*}			9^{*}					8^{*}
3^{*}						2^{*}		
9^{*}							1^{*}	
				2^{*}				
					5^{*}			
			6^{*}				3^{*}	
	2^{*}	8^{*}						
			1^{*}					

Puzzle 45
$2_{1} 5_{2} \mathrm{c} 1 \quad 7_{6} \mathrm{r} 4: 7 \mathrm{c} 3 \mathrm{~b} 1$
$4_{10 c} 4 \quad 4_{13} \mathrm{c} 2$
$1_{15} \mathrm{~b} 8 \quad 3_{16 \mathrm{r} 6: 3 \mathrm{c} 2 \mathrm{~b} 3}$
$8_{19} \mathrm{~b} 9 \quad 6_{21} 5_{22} \mathrm{c} 8$
$\begin{array}{lll}125 & & 326 \mathrm{~g}\end{array} \quad 9_{31} \mathrm{~g}$
$9_{32} \mathrm{~g} \quad 9_{33} \mathrm{C} 1$

3_{30}	9_{56}	1_{57}	6_{50}	4^{*}	5_{51}	8_{37}	7^{*}	2_{5}
6^{*}	5^{*}	7_{39}	1_{25}	2_{4}	8_{40}	4_{36}	9_{23}	3_{26}
8_{34}	2^{*}	4_{38}	9_{32}	3_{42}	7_{41}	1_{35}	6_{21}	5_{24}
2_{1}	7_{6}	9_{31}	3^{*}	5_{54}	1_{53}	6^{*}	4_{14}	8^{*}
1^{*}	2_{13}	8_{46}	2_{3}	7^{*}	6_{48}	3_{27}	5_{22}	9_{28}
5_{2}	6_{47}	3_{16}	4_{10}	8_{45}	9_{49}	2^{*}	1_{15}	7_{7}
9_{33}	8_{55}	6_{58}	7_{19}	1_{60}	2^{*}	5^{*}	3^{*}	4_{12}
7^{*}	3_{44}	5_{20}	8^{*}	6_{62}	4_{11}	9_{29}	2_{18}	1_{61}
4^{*}	1_{59}	2_{19}	5_{52}	9_{63}	3_{43}	7_{8}	8_{17}	6_{64}

135r3: 47(23)(33) $\quad 3_{26} \mathrm{~g}$

Puzzle 46

$1_{3} \mathrm{~b} 4 \quad 95 \mathrm{~b} 5 \quad 2{ }_{10} \mathrm{~g}$ $7_{11} 1_{12} \mathrm{r} 7 \quad 7_{13} \mathrm{c} 4$
$3_{17} \mathrm{~b} 5 \quad 4_{18} \mathrm{c} 2 \quad 5_{24} \mathrm{c} 5$
$7_{30} 3_{31} 2_{32} \mathrm{C} 1 \quad 2_{34} \mathrm{r} 2$
$3_{35} \mathrm{C} 4 \quad 838 \mathrm{r} 1$

2_{32}	3^{*}	1_{4}	6_{36}	7^{*}	9^{*}	4_{23}	5_{39}	8_{38}
4^{*}	6_{48}	7_{49}	2_{34}	5_{24}	8_{29}	3_{37}	1^{*}	9_{9}
9_{8}	8_{43}	5_{44}	3_{35}	1_{3}	4_{2}	7_{53}	2_{55}	6_{54}
5_{33}	9^{*}	8_{41}	7_{13}	3_{17}	6_{42}	2^{*}	4_{20}	1_{1}
1^{*}	2_{47}	6_{61}	4^{*}	9_{5}	5_{51}	8_{40}	7_{52}	3_{63}
7_{30}	4_{18}	3_{62}	1^{*}	8^{*}	2_{50}	6_{60}	9_{58}	5_{64}
6^{*}	7_{11}	9_{7}	5^{*}	2_{10}	3^{*}	1_{12}	8_{22}	4_{21}
3_{31}	5_{45}	2_{46}	8_{26}	4^{*}	1_{15}	9^{*}	6_{27}	7^{*}
8_{28}	1_{16}	4_{19}	9_{6}	6_{25}	7_{14}	5_{59}	3_{57}	2_{56}

Puzzle 47

$1_{5} 46 \mathrm{~b} 9 \quad 2{ }_{7} 1_{8}{ }_{89} 3_{10 \mathrm{c}} 4$
$3_{17 \mathrm{r}} 1 \quad 4_{19} \mathrm{~b} 8 \quad 5_{24 \mathrm{C}} 3$
$5_{27} 7_{28} \mathrm{r} 2 \quad 8{ }_{29} \mathrm{~b} 3 \quad 632 \mathrm{r} 7$
$6_{33} \mathrm{~b} 2 \quad 5_{34} \mathrm{c} 2 \quad 8_{35} \mathrm{c} 4$
$9_{37} \mathrm{~b} 3 \quad 9_{40} 7_{41} \mathrm{~b} 1$
$8_{46} 7_{47 \mathrm{r}} 5 \quad 5_{50 \mathrm{r}}$

7_{41}	9_{40}	8^{*}	5^{*}	1_{2}	4^{*}	6_{44}	2_{15}	3_{17}
5_{27}	3^{*}	2_{3}	8_{35}	6_{58}	9_{59}	4_{26}	7_{28}	1^{*}
6_{43}	4_{25}	1_{1}	7^{*}	3_{18}	2_{11}	9_{62}	8_{63}	5_{56}
3_{22}	7_{42}	4_{24}	6^{*}	9_{53}	1_{14}	2_{12}	5^{*}	8_{54}
1^{*}	2^{*}	9_{51}	4_{9}	8_{46}	5_{52}	7_{47}	3_{20}	6_{45}
8_{30}	6_{33}	5_{50}	2_{7}	7_{48}	3_{21}	1_{13}	4_{19}	9_{55}
4^{*}	1^{*}	6_{32}	3_{10}	2^{*}	1_{31}	5_{61}	9_{64}	7_{49}
2^{*}	8_{29}	7_{38}	9_{36}	5_{57}	6_{60}	3^{*}	1_{5}	4_{6}
9_{37}	5_{34}	3_{23}	1_{8}	4_{16}	7_{39}	8^{*}	6^{*}	2_{4}

Puzzle 48
$2_{1} 1_{2} \mathrm{r} 1 \quad 2{ }_{3} 1_{4} \mathrm{r} 8 \quad 3{ }_{14} \mathrm{~b} 5$
415716r2: 4c6b5
61715: 6c1b1 $7_{18} \mathrm{c} 1$:
7r5b5
4_{19} b2 $\quad 6_{24}$ c2: 6 r7b9
$5_{25} 3_{26} \mathrm{r} 8 \quad 7_{29} \mathrm{C} 4$
$9_{31 r}$: u59r3b4r5b5

6_{45}	7^{*}	4^{*}	2_{1}	1_{2}	3^{*}	9_{48}	5_{39}	8_{47}
8_{44}	5_{28}	9_{33}	6^{*}	4_{15}	7_{16}	1^{*}	3_{43}	2^{*}
3_{46}	1_{7}	2_{9}	8_{30}	9_{34}	5_{35}	4_{62}	6_{42}	7_{61}
5^{*}	4_{19}	6_{23}	1^{*}	2^{*}	9_{37}	7_{60}	8_{40}	3_{59}
9_{31}	3^{*}	1_{6}	1_{29}	5_{36}	8_{28}	2_{11}	4^{*}	6_{17}
7_{18}	2_{10}	8_{32}	3_{14}	6^{*}	4_{21}	5_{50}	1_{5}	9_{49}
2^{*}	8_{53}	3_{57}	5^{*}	7_{55}	1_{8}	6_{63}	9_{41}	4_{64}
4_{20}	6_{24}	5_{25}	9_{27}	3_{26}	2_{3}	8^{*}	7^{*}	1_{4}
1^{*}	9_{52}	7_{56}	4_{22}	8_{54}	6_{15}	3_{58}	2_{12}	5_{51}

$9_{33} \mathrm{~b} 1 \quad 9_{34} \mathrm{c} 5 \quad 5_{39} 8_{40} 9_{41} 6_{42} \mathrm{c} 8$

Puzzle 49

523324 r 1	$7{ }_{11} \mathrm{~b} 1$	4_{24}	630	129	3*	815	5*	214	9_{13}	7*
$9_{12}{ }^{\text {b }}$	$8{ }_{15 \mathrm{r}} 2$	310	711	59	21	416	9_{12}	650	851	145
		623	920	328	7*	132	2*	831	5*	17
416 b 4	417 r 4	58	143	4*	841	9*	648	346	758	259
$9_{19} \mathrm{~b} 3$	2222 Cl	222	842	727	440	57	347	144	649	9_{18}
623 g		1*	3*	262	9_{21}	637	756	55	463	860
	$4_{24} \mathrm{~g}$	725	426	654	56	2*	855	9*	139	338
$1_{29} \mathrm{C} 3$	83114	9_{19}	5*	861	135	336	457	752	264	653

$33_{33} 5 \quad 440 \mathrm{c} 4$
Puzzle 50
$6_{1} b 1 \quad 6_{2} b 9 \quad 17 b 5$
$2{ }_{8} 39{ }_{9}{ }_{10 \mathrm{c}} 7 \quad 4_{17} \mathrm{~b} 1$
$1_{20} 5_{21} 3_{22} \mathrm{~b} 4: 1 \mathrm{rlb} 1$
$3_{288} 89 r 8 \quad 5_{37} \mathrm{c} 1$
$5_{38} \mathrm{c} 5 \quad 5_{43} \mathrm{r} 5$

7_{61}	1_{56}	9_{62}	8^{*}	6^{*}	3_{22}	4^{*}	2_{15}	5_{21}
4_{17}	2^{*}	3^{*}	7_{39}	5_{38}	1_{20}	8_{10}	6_{6}	9_{26}
8_{16}	5^{*}	6_{1}	2_{14}	9_{25}	4_{18}	7^{*}	1_{24}	3_{23}
5_{37}	6_{5}	8_{35}	9_{45}	4^{*}	2^{*}	3_{9}	7_{46}	1_{27}
1^{*}	9_{49}	2_{11}	3_{32}	8_{33}	7_{42}	6^{*}	5_{43}	4_{48}
3_{30}	4_{53}	7_{54}	5_{44}	1_{7}	6_{4}	2_{8}	9_{50}	8_{34}
9_{60}	8_{36}	4_{52}	6_{3}	7_{40}	5^{*}	1_{59}	3^{*}	2^{*}
6^{*}	3_{28}	5_{63}	1^{*}	2_{13}	8_{29}	9_{64}	4_{51}	7_{47}
2_{12}	7_{55}	1_{57}	5_{19}	3_{31}	9_{41}	5_{58}	8^{*}	6_{2}

Puzzle 51

$2{ }_{2} \mathrm{c} 4 \quad 3{ }_{8} 69 \mathrm{r} 1$
$1_{11} \mathrm{~b} 7 \quad 5_{14} 4_{15} \mathrm{r} 2$
1996: 58(77)(79)
$3_{21} 6_{22} 9_{23} 7_{24} 8$
$5_{26 \mathrm{C}} 8 \quad 5_{28} 4_{29} \mathrm{C} 1$
644c7: 6r4b5

8_{30}	9_{54}	7_{53}	2_{2}	1^{*}	3_{8}	4^{*}	6_{9}	5^{*}
6^{*}	1_{12}	2_{3}	9^{*}	5_{14}	4_{15}	3_{10}	7_{16}	8^{*}
3^{*}	5_{61}	4_{62}	8_{50}	7_{47}	6_{48}	2^{*}	9_{17}	1_{11}
9^{*}	3_{59}	5_{60}	4_{32}	6_{49}	8_{51}	7_{46}	1^{*}	2_{5}
4_{29}	8_{55}	6_{56}	7_{52}	2^{*}	1_{1}	9_{42}	5_{26}	3_{40}
2_{4}	7_{45}	1_{13}	3_{41}	9_{43}	5^{*}	6_{44}	8_{27}	4_{31}
1_{20}	4_{63}	9_{64}	6^{*}	8_{35}	2_{7}	5_{33}	3^{*}	7_{38}
7_{24}	2^{*}	8^{*}	5_{18}	3_{21}	9_{23}	1_{19}	4_{25}	6_{22}
5_{28}	6_{59}	3_{58}	1^{*}	4_{36}	7_{37}	8_{34}	2_{6}	9_{39}

$7_{47} \mathrm{c} 5$

PRACTICE SET 5

Puzzle 52

5^{*}						3^{*}	4^{*}	
4^{*}					1^{*}			
			7^{*}			8^{*}		
		2^{*}						1^{*}
6^{*}			3^{*}					
				3^{*}	2^{*}			
	7^{*}						9^{*}	
	1^{*}			8^{*}				

Puzzle 53

			1^{*}		3^{*}			4^{*}
7^{*}		6^{*}						
8^{*}								
	8^{*}							5^{*}
				6^{*}			3^{*}	
			4^{*}					
						8^{*}	1^{*}	
	1^{*}		5^{*}					
			2^{*}			6^{*}		

Puzzle 54

			4^{*}		2^{*}		5^{*}	
8^{*}						$7 *$		
				6^{*}				
	2^{*}		7^{*}			4^{*}		
	6^{*}		3^{*}					
						$1 *$		
							3^{*}	8^{*}
				2^{*}			6^{*}	
1^{*}								

Puzzle 55

	5^{*}						9^{*}	
			1^{*}	3^{*}				
				5^{*}	8^{*}		4^{*}	
1^{*}		2^{*}						
					9^{*}			
3^{*}			6^{*}			2^{*}		1^{*}
						3^{*}		
	9^{*}							

Puzzle 56

			6^{*}	2^{*}				
		3^{*}						
1^{*}								
6^{*}	2^{*}		3^{*}					
							5^{*}	1^{*}
						8^{*}		
		4^{*}		5^{*}	1^{*}			
	5^{*}					6^{*}	3^{*}	
								7^{*}

Puzzle 57

5^{*}					1^{*}			
						2^{*}	7^{*}	
						3^{*}		
			2^{*}	5^{*}				8^{*}
6^{*}	3^{*}							
		7^{*}						
4^{*}							1^{*}	5^{*}
			7^{*}	6^{*}				
			3^{*}					

Puzzle 58

			7^{*}		5^{*}		6^{*}	
	9^{*}	1^{*}				4^{*}		
6^{*}							7^{*}	8^{*}
3^{*}			2^{*}					
				9^{*}				
				1^{*}		9^{*}		
7^{*}			8^{*}					
	2^{*}							

Puzzle 52
$1_{3} \mathrm{~b} 7 \quad 5_{7} \mathrm{r} 3$
$78 \mathrm{~b} 71 \quad 8_{12} 5_{13} \mathrm{r} 2$
$7{ }_{15} 2_{16} 9_{17} \mathrm{c} 5$
$2{ }_{23} 6_{24} \mathrm{c} 2 \quad 3{ }_{27} 8_{28} \mathrm{~b} 2$
$8_{30} \mathrm{~g} \quad 3_{35} 2_{36} 1_{37 \mathrm{r}} 8$
940 c 6

5^{*}	8_{14}	1_{4}	6_{41}	2_{16}	9_{40}	3^{*}	4^{*}	7_{11}
4^{*}	3_{9}	7_{8}	8_{12}	5_{13}	1^{*}	9_{46}	2_{47}	6_{45}
9_{26}	2_{23}	6_{25}	7^{*}	4_{2}	3_{1}	8^{*}	1_{3}	5_{7}
7_{10}	4_{56}	2^{*}	5_{55}	9_{17}	8_{34}	6_{43}	3_{29}	1^{*}
6^{*}	9_{57}	8_{28}	3^{*}	1_{6}	4_{58}	7_{22}	5_{48}	2_{49}
1_{5}	5_{53}	3_{27}	2_{19}	7_{15}	6_{42}	4_{51}	8_{33}	9_{52}
8_{30}	6_{24}	5_{63}	9_{64}	3^{*}	2^{*}	1_{39}	7_{21}	4_{54}
3_{35}	7^{*}	4_{60}	1_{37}	6_{18}	5_{59}	2_{36}	9^{*}	8_{31}
1_{38}	1^{*}	9_{62}	4_{61}	8^{*}	7_{20}	5_{50}	6_{44}	3_{32}

Puzzle 53

$1{ }_{1} \mathrm{~b} 1$	628374 rl	562	9_{56}	263	1*	83	3*	74	62	4*
		7*	331	6*	9_{24}	441	543	120	235	8_{16}
$5 \mathrm{lob9}$	$8_{11} \mathrm{c} 3$	8*	432	1_{1}	69	742	244	526	9_{34}	329
$1_{17 \mathrm{C}} 9$	$720 \mathrm{b8}$	6_{6}	8*	946	323	245	119	440	721	5*
		439	554	753	8_{11}	6*	957	259	3*	1_{17}
722323 c 4	325 r 6 :	1_{18}	255	325	4*	547	758	9_{60}	815	65
3c2b1	526337 C 7	961	67	564	722	328	436	8*	1*	250
$4_{32} \mathrm{~b} 1$	$4_{33} 3_{34} 48$	249	1*	814	5*	937	68	327	433	748
		331	752	438	2*	113	812	6*	510	9_{51}

Puzzle 54

$1_{2} \mathrm{~b} 7 \quad 6_{3} 3_{4}{ }_{55} \mathrm{c} 7$
$1_{11 r} 1$: 1 c 3 b 2
$2_{12} \mathrm{C} 1 \quad 4_{14} \mathrm{~b} 7$
$6{ }_{18} 8_{19} \mathrm{c} 4 \quad 7{ }_{20} \mathrm{~b} 4$
$7_{22} \mathrm{~b} 9 \quad 4{ }_{25} \mathrm{r} 7$
$5_{30} \mathrm{~g} \quad 7_{34} 3_{35 \mathrm{c}} 2$

3_{47}	1_{11}	7_{46}	4^{*}	8_{10}	2^{*}	6_{3}	5^{*}	9_{15}
8^{*}	4_{16}	6_{6}	5_{57}	9_{62}	3_{61}	7^{*}	1_{9}	2_{13}
2_{12}	9_{53}	5_{54}	1_{21}	6^{*}	7_{20}	3_{4}	8_{8}	4_{14}
5_{42}	2^{*}	8_{40}	7^{*}	1_{41}	6_{38}	4^{*}	9_{33}	3_{36}
7_{45}	6^{*}	1_{43}	3^{*}	4_{63}	9_{64}	8_{5}	2_{31}	5_{30}
4_{51}	3_{35}	9_{55}	2_{1}	5_{44}	8_{39}	1^{*}	7_{32}	6_{37}
6_{7}	5_{52}	4_{25}	9_{56}	7_{23}	1_{24}	2_{27}	3^{*}	8^{*}
9_{50}	7_{34}	3_{48}	8_{19}	2^{*}	4_{28}	5_{49}	6^{*}	1_{2}
1^{*}	8_{29}	2_{26}	6_{18}	3_{59}	5_{58}	9_{60}	4_{17}	7_{22}

$1_{41} \mathrm{r} 4 \quad 5_{49} \mathrm{r} 8$

Puzzle 55

$1_{1} \mathrm{~b} 5 \quad 3{ }_{9} 2_{10} \mathrm{c} 8$
$2_{11} 3_{12} \mathrm{c} 2 \quad 5_{15} \mathrm{~b} 2 \quad 6_{16} \mathrm{~b} 5$
$6{ }_{17} 7_{18} \mathrm{c} 2: 48 \mathrm{c} 2 \mathrm{~b} 2$
$9_{20 \mathrm{r}} 2 \quad 9_{22 \mathrm{r}} 7$
$5_{26827} \mathrm{c} 4 \quad 735 \mathrm{~b} 6$
$4_{38} \mathrm{r} 8 \quad 8{ }_{42} \mathrm{C} 1 \quad 44_{44} \mathrm{c} 5$

4_{43}	5^{*}	1_{4}	8_{27}	7_{45}	2_{31}	6_{46}	9^{*}	3_{14}
9_{20}	6_{17}	7_{19}	1^{*}	3^{*}	5_{48}	4_{62}	2_{10}	8_{61}
8_{42}	2_{11}	3_{13}	9_{23}	4_{44}	6_{47}	5_{49}	1_{3}	7_{50}
6_{41}	3_{12}	9_{21}	7_{55}	5^{*}	8^{*}	1_{2}	4^{*}	2_{52}
1^{*}	8_{57}	2^{*}	4_{54}	6_{16}	3_{8}	9_{25}	7_{56}	5_{33}
7^{*}	4_{58}	5_{15}	2_{53}	1_{1}	9^{*}	8_{59}	3_{9}	6_{31}
3^{*}	7_{18}	8_{37}	6^{*}	9_{22}	4_{36}	2^{*}	5_{32}	1^{*}
2_{29}	1_{5}	4_{38}	5_{26}	8_{34}	7_{35}	3^{*}	6_{40}	9_{24}
5_{28}	9^{*}	6_{39}	3_{7}	2_{30}	1_{6}	7_{63}	8_{60}	4_{64}

Puzzle 56

$1{ }_{2 \mathrm{r} 8}$	$6_{8} 3_{9} 7_{10 \mathrm{r} 7}$
$2_{20} \mathrm{~b} 1$	$4_{21 \mathrm{r}} 9$
$6_{23} 2_{24} \mathrm{~b} 8$	$2_{27} \mathrm{c} 4$
$5_{29} \mathrm{r} 2$	$2_{34}{ }_{355} \mathrm{c} 9$
$8_{37} \mathrm{c} 3$	$7_{40} 4_{41} \mathrm{r} 5$

5_{32}	4_{55}	9_{48}	6^{*}	2^{*}	3_{14}	1_{7}	7_{57}	8_{35}
1_{19}	8_{44}	3^{*}	1_{5}	7_{58}	5_{29}	4_{62}	9_{61}	6_{26}
1^{*}	7_{56}	6_{16}	8_{43}	9_{59}	4_{54}	3_{13}	2_{60}	5_{33}
6^{*}	2^{*}	5_{31}	3^{*}	1_{4}	8_{51}	4_{63}	4_{64}	9_{36}
4_{41}	3_{11}	8_{39}	9_{42}	6_{25}	7_{40}	2_{24}	5^{*}	1^{*}
9_{46}	1_{3}	7_{47}	5_{30}	4_{50}	2_{28}	8^{*}	6_{23}	3_{12}
3_{9}	6_{8}	4^{*}	7_{10}	5^{*}	1^{*}	9_{38}	8_{37}	2_{34}
7_{18}	5^{*}	1_{2}	2_{27}	8_{52}	9_{53}	6^{*}	3^{*}	4_{22}
8_{45}	9_{49}	2_{20}	4_{21}	3_{15}	6_{17}	5_{1}	1_{6}	7^{*}

Puzzle 57

$1_{1} \mathrm{~b} 6$	$3_{2} \mathrm{r} 7$
$5_{5} \mathrm{~b} 7$	$7_{6} \mathrm{r} 1$
$6_{15} \mathrm{r} 7$	$5_{16} \mathrm{r} 2:$

$5 \mathrm{c} 6 \mathrm{~b} 6 \quad 2{ }_{17} \mathrm{~b} 4$
$220 \mathrm{r} 5 \quad 6_{22} \mathrm{r} 4$
$6_{26} \mathrm{c} 9 \quad 1_{29} \mathrm{~b} 8: 1 \mathrm{c} 9 \mathrm{~b} 7$
$8_{34 \mathrm{r}} \quad$ 836r7: 8 c 4 b 4

Puzzle 58
$9_{1} 1_{2} \mathrm{rl} \quad 1_{9} \mathrm{~b} 3$
$2_{14 \mathrm{r} 4} \quad 2_{16} \mathrm{~b} 6$
$7_{17 \mathrm{r} 2} \quad 8_{25} 2_{26 \mathrm{rb}} \mathrm{r}$
$830 \mathrm{c} 1 \quad 434 \mathrm{~b} 4$
$435 \mathrm{C} 1 \quad 4_{40} \mathrm{c} 4: 4 \mathrm{r} 6 \mathrm{~b} 8$
$641 \mathrm{~b} 5 \quad 4_{42} \mathrm{r} 5$

2_{18}	4_{45}	3_{46}	7^{*}	8_{32}	5^{*}	1_{2}	6^{*}	9_{1}
8_{30}	9^{*}	1^{*}	3_{54}	6_{55}	2_{17}	4^{*}	5_{37}	7_{19}
5_{36}	6_{39}	7_{24}	9_{7}	4_{34}	1_{8}	8_{28}	2_{29}	3_{38}
6^{*}	5_{43}	9_{4}	1_{11}	3_{56}	4_{57}	2_{14}	7^{*}	8^{*}
3^{*}	8_{31}	4_{42}	2^{*}	7_{22}	6_{41}	5_{44}	9_{3}	1_{12}
1_{10}	7_{23}	2_{15}	5_{48}	9^{*}	8_{33}	6_{63}	3_{62}	4_{60}
4_{35}	3_{47}	5_{51}	6_{53}	1^{*}	7_{21}	9^{*}	8_{25}	2_{26}
7^{*}	1_{9}	6_{52}	8^{*}	2_{16}	9_{6}	3_{64}	4_{61}	5_{50}
9_{5}	2^{*}	8_{27}	4_{40}	5_{49}	3_{58}	7_{20}	1_{13}	6_{59}

PRACTICE SET 6

Puzzle 59

1^{*}					2^{*}			
			5^{*}				7^{*}	
			7^{*}	6^{*}			5^{*}	
2^{*}						1^{*}		
			3^{*}					
				7^{*}		8^{*}		6^{*}
4^{*}	7^{*}	5^{*}						
	3^{*}							

Puzzle 60

	8^{*}					7^{*}	4^{*}	
	3^{*}			2^{*}				
				1^{*}				
2^{*}			6^{*}				8^{*}	
1^{*}								
						5^{*}		
9^{*}								2^{*}
			8^{*}			3^{*}		
			4^{*}		3^{*}			

Puzzle 61

3^{*}								8^{*}
			1^{*}				6^{*}	
2^{*}								
				3^{*}	2^{*}	5^{*}	4^{*}	
	1^{*}							
						2^{*}		
	6^{*}		7^{*}	1^{*}				
4^{*}			6^{*}					
						3^{*}		

Puzzle 62

	5^{*}	7^{*}	3^{*}					
4^{*}								2^{*}
2^{*}		4^{*}		9^{*}				
				3^{*}		6^{*}	5^{*}	
1^{*}								
	8^{*}					3^{*}	7^{*}	
			1^{*}					
					4^{*}			

Puzzle 63

4^{*}		1^{*}		3^{*}				
							2^{*}	
8^{*}								
	9^{*}		2^{*}		6^{*}			
						1^{*}		4^{*}
			7^{*}					
				4^{*}		3^{*}		
	2^{*}						6^{*}	
5^{*}			1^{*}					

Puzzle 64

		3^{*}	4^{*}				1^{*}	
					8^{*}		2^{*}	
8^{*}			6^{*}					
3^{*}	7^{*}					6^{*}		
				1^{*}				
6^{*}								
			3^{*}			8^{*}		
	1^{*}					5^{*}		
		2^{*}						

Puzzle 65

8^{*}	1^{*}							
			8^{*}			5^{*}		
			3^{*}					
		3^{*}		9^{*}	4^{*}			
6^{*}						2^{*}		
					1^{*}			
				3^{*}			1^{*}	9^{*}
2^{*}			7^{*}					
							4^{*}	

Puzzle 59
$2_{6} \mathrm{~b} 5 \quad 57 \mathrm{~b} 9 \quad 3{ }_{10 \mathrm{r} 7}$
$3_{111} 5 \quad 3_{13} 6_{14} 8_{15} \mathrm{c} 1$
$3_{17} 4_{18} r 7 \quad 3_{20} r 5$
$8_{21} \mathrm{~b} 3 \quad 2_{22} 1_{23} \mathrm{r} 9$
$22_{28} \mathrm{C} 8 \quad 329 \mathrm{c} 6$
$8_{33} 2_{34 \mathrm{r} 2} \quad 9_{39} \mathrm{~b} 5$

1^{*}	6_{52}	7_{2}	8_{40}	4_{56}	2^{*}	5_{12}	9_{46}	3_{57}
3_{13}	8_{33}	2_{34}	5^{*}	9_{55}	6_{32}	4_{58}	7^{*}	1_{26}
5_{11}	9_{51}	4_{50}	1_{25}	3_{54}	7_{1}	6_{53}	2_{28}	8_{43}
8_{15}	1_{37}	9_{45}	7^{*}	6^{*}	4_{40}	3_{59}	5^{*}	2_{60}
2^{*}	4_{48}	3_{20}	9_{39}	5_{9}	8_{41}	1^{*}	6_{47}	7_{4}
7_{3}	5_{10}	6_{49}	3^{*}	2_{6}	1_{38}	9_{62}	8_{44}	4_{63}
9_{16}	2_{35}	1_{36}	4_{18}	7^{*}	5_{8}	8^{*}	3_{17}	6^{*}
4^{*}	7^{*}	5^{*}	6_{30}	8_{31}	3_{29}	2_{61}	1_{27}	9_{64}
6_{14}	3^{*}	8_{21}	2_{22}	1_{23}	9_{24}	7_{5}	4_{19}	5_{7}

$9_{45} \mathrm{~g} \quad 9_{46} \mathrm{C} 8$

Puzzle 60

$2_{3} \mathrm{~b} 6 \quad 1{ }_{9} \mathrm{~b} 1 \quad 3_{11} \mathrm{c} 8$
$8_{15 \mathrm{C}} 1 \quad 4_{19} \mathrm{~b} 9 \quad 1_{23} \mathrm{~b} 8$ $4_{25} 8_{26} \mathrm{c} 5 \quad 4_{29} \mathrm{r} 3 \quad 5_{31} \mathrm{~b} 7$ $9_{33} \mathrm{c} 7: 9 \mathrm{r} 3 \mathrm{~b} 1 \quad 6_{35} \mathrm{r} 2$
$7_{37} \mathrm{C} 1 \quad 940 \mathrm{c} 4 \quad 1{ }_{44} 5$
$5_{45} \mathrm{~b} 5 \quad 1{ }_{57} \mathrm{r} 7$

5_{38}	8^{*}	2_{7}	3_{14}	6_{60}	9_{59}	7^{*}	4^{*}	1_{10}
6_{35}	3^{*}	1_{9}	7_{36}	2^{*}	4_{30}	9_{33}	5_{31}	8_{17}
4_{29}	7_{53}	9_{52}	5_{41}	1^{*}	8_{18}	6_{34}	2_{6}	3_{13}
2^{*}	9_{54}	4_{27}	6^{*}	3_{12}	5_{45}	2_{5}	8^{*}	7_{56}
1^{*}	5_{47}	7_{51}	9_{42}	8_{26}	1_{44}	4_{22}	3_{11}	6_{50}
3_{2}	6_{48}	8_{28}	2_{4}	4_{25}	7_{46}	5^{*}	1_{23}	9_{49}
9^{*}	4_{20}	3_{1}	1_{43}	5_{56}	6_{58}	8_{16}	7_{57}	2^{*}
7_{37}	1_{22}	5_{39}	8^{*}	9_{62}	2_{3}	3^{*}	6_{61}	4_{19}
8_{15}	2_{8}	6_{40}	4^{*}	7_{63}	3^{*}	1_{24}	1_{64}	5_{32}

Puzzle 61
$1_{6} \mathrm{c} 1 \quad 37 \mathrm{c} 4 \quad 2{ }_{9} \mathrm{~b} 7$ $4_{15} 5_{16} 7_{17} \mathrm{c} 9: 7 \mathrm{r} 5 \mathrm{~b} 5$
$4_{21} \mathrm{~b} 9 \quad 33_{27} \mathrm{r} 8 \quad 33_{31} \mathrm{~b} 5$
$6_{32} \mathrm{Cl} \quad 7_{33 \mathrm{r}} 4 \quad 935 \mathrm{C} 1$
$4_{38} \mathrm{~b} 2 \quad 8_{44} \mathrm{c} 4 \quad 655 \mathrm{r} 3$

3^{*}	9_{51}	1_{56}	4_{45}	5_{43}	6_{59}	7_{58}	2_{9}	8^{*}
7_{34}	4_{46}	5_{47}	1^{*}	2_{10}	8_{52}	9_{53}	6^{*}	3_{8}
2^{*}	8_{50}	6_{55}	3_{7}	7_{60}	9_{54}	1_{57}	5_{20}	4_{15}
6_{32}	7_{33}	8_{37}	9_{36}	3^{*}	2^{*}	5^{*}	4^{*}	1_{2}
5_{39}	1^{*}	2_{3}	8_{44}	4_{62}	7_{61}	6_{5}	3_{14}	9_{18}
9_{35}	3_{30}	4_{38}	5_{41}	6_{31}	1_{1}	2^{*}	8_{19}	7_{17}
8_{40}	6^{*}	3_{29}	7^{*}	1^{*}	5_{42}	4_{21}	9_{25}	2_{13}
4^{*}	2_{12}	7_{26}	6^{*}	9_{28}	3_{27}	8_{22}	1_{23}	5_{16}
1_{6}	5_{48}	9_{49}	2_{11}	8_{63}	4_{64}	3^{*}	7_{24}	6_{4}

Puzzle 62
$1_{4} \mathrm{r} 7 \quad 45{ }_{6} \mathrm{r} 5$
$596_{10} r 4 \quad 2{ }_{12} r 1$
$2_{16 \mathrm{r}} 7 \quad 7_{20} \mathrm{c} 2$
$3{ }_{29} \mathrm{~b} 1 \quad 5_{35 \mathrm{r}} 7: 5 \mathrm{c} 6 \mathrm{~b} 4$
$637 \mathrm{r} 2 \quad 7_{38} \mathrm{r} 4$

251 c 8

6_{30}	5^{*}	7^{*}	3^{*}	2_{12}	9_{23}	1_{54}	4_{53}	8_{55}
4^{*}	9_{21}	8_{28}	6_{37}	1_{14}	7_{41}	5_{42}	3_{33}	2^{*}
3_{29}	1_{15}	2_{16}	8_{44}	4_{13}	5_{43}	9_{49}	6_{48}	7_{40}
2^{*}	6_{10}	4^{*}	5_{9}	9^{*}	1_{8}	7_{38}	8_{39}	3_{34}
8_{27}	7_{20}	9_{26}	4_{5}	3^{*}	2_{6}	6^{*}	5^{*}	1_{7}
1^{*}	3_{19}	5_{11}	7_{45}	6_{47}	8_{46}	4_{52}	2_{51}	9_{22}
9_{25}	8^{*}	1_{4}	2_{16}	5_{35}	6_{36}	3^{*}	7^{*}	4_{3}
7_{60}	4_{2}	6_{32}	1^{*}	8_{62}	3_{1}	2_{63}	9_{50}	5_{58}
1_{59}	2_{17}	3_{31}	9_{24}	7_{61}	4^{*}	8_{64}	1_{56}	6_{57}

Puzzle 63

$2_{1} \mathrm{~b} 1$	$4_{7} \mathrm{~b} 5$	$6_{13} \mathrm{~b} 6$
$6_{17} \mathrm{r} 5$	$6_{21 \mathrm{r}}$	$9_{23} \mathrm{~b} 1$
$1_{24 \mathrm{c}} 8$	$5_{25} \mathrm{~b} 9$	
$1_{27 \mathrm{r}} \mathrm{r}$	$8_{30 \mathrm{c} 2}$	
$9_{31 \mathrm{r} 7}$	$7_{33} \mathrm{~b} 2$	
$8_{37} \mathrm{~g}$	$3_{38} \mathrm{c} 8$	
$9_{44 \mathrm{r} 1}$	$5_{49 \mathrm{c} 4}$	

4^{*}	7_{45}	1^{*}	8_{43}	3^{*}	2_{2}	6_{21}	5_{39}	9_{44}
6_{18}	5_{51}	9_{23}	4_{12}	7_{62}	1_{61}	8_{42}	2^{*}	3_{53}
8^{*}	3_{52}	2_{1}	5_{49}	6_{22}	9_{55}	7_{47}	4_{11}	1_{54}
7_{33}	9^{*}	4_{8}	2^{*}	1_{29}	6^{*}	5_{40}	3_{38}	8_{41}
2_{6}	6_{17}	5_{59}	3_{16}	9_{56}	8_{60}	1^{*}	9_{35}	4^{*}
3_{34}	1_{28}	8_{58}	7^{*}	5_{57}	4_{7}	2_{5}	9_{36}	6_{20}
9_{31}	8_{30}	7_{32}	6_{13}	4^{*}	5_{26}	3^{*}	1_{24}	2_{4}
1_{27}	2^{*}	3_{28}	9_{50}	8_{63}	7_{64}	4_{10}	6^{*}	5_{25}
5^{*}	4_{9}	6_{14}	1^{*}	2_{3}	3_{15}	9_{46}	8_{37}	7_{48}

$9_{44} \mathrm{r} 1 \quad 5_{49} \mathrm{C} 4$

Puzzle 64

$1_{4} \mathrm{c} 1 \quad 2_{10 \mathrm{c} 7} \quad 2{ }_{13} \mathrm{~b} 2$
$3_{18} \mathrm{c} 6 \quad 6{ }_{22} \mathrm{~b} 7 \quad 8_{24} \mathrm{~b} 3$
$5_{32} \mathrm{c} 4: 5 \mathrm{r} 1 \mathrm{~b} 4 \quad 7_{33} \mathrm{r} 5$
$7_{35} \mathrm{r} 4 \quad 5_{38} \mathrm{~b} 1 \quad 7_{39 \mathrm{r}} 7$
$7{ }_{43} \mathrm{~b} 4$

2_{14}	6_{23}	3^{*}	4^{*}	9_{44}	5_{42}	7_{48}	1^{*}	8_{3}
1_{4}	5_{38}	9_{59}	7_{43}	3_{19}	8^{*}	4_{58}	2^{*}	6_{22}
8^{*}	4_{55}	7_{60}	6^{*}	2_{15}	1_{5}	3_{21}	5_{37}	9_{61}
3^{*}	7^{*}	1_{9}	2_{17}	4_{45}	9_{46}	6^{*}	8_{31}	5_{35}
9_{52}	8_{26}	4_{53}	5_{32}	1^{*}	6_{2}	2_{10}	7_{33}	3_{20}
6^{*}	2_{13}	5_{36}	8_{27}	7_{34}	3_{18}	1_{8}	9_{63}	4_{62}
7_{39}	9_{54}	6_{25}	3^{*}	5_{41}	2_{16}	8^{*}	4_{64}	1_{7}
4_{51}	1^{*}	8_{24}	9_{47}	6_{29}	7_{50}	5^{*}	3_{12}	2_{11}
5_{40}	3_{1}	2^{*}	1_{6}	8_{28}	4_{56}	9_{57}	6_{30}	7_{49}

Puzzle 65
$1_{2} \mathrm{c} 4 \quad 9{ }_{8} 4_{9} \mathrm{c} 4 \quad 2_{11} \mathrm{r} 7$ $4_{13} \mathrm{r} 5 \quad 9_{14} 4_{15} \mathrm{C} 7 \quad 4_{17} \mathrm{r} 2$
$2_{21} \mathrm{~b} 4 \quad 3{ }_{22} 9_{23} \mathrm{c} 1 \quad 23 \mathrm{ror} 2$
633r6: 6c5b4 $\rightarrow 6 \mathrm{c} 5 \mathrm{~b} 6$
837c6 838c7: 8r7b3
$839 \mathrm{r} 5 \quad 7_{43} \mathrm{C} 1$

8^{*}	1^{*}	9_{55}	9_{8}	2_{21}	5_{54}	4_{15}	6_{59}	3_{25}
4_{17}	3_{24}	2_{30}	8^{*}	1_{7}	6_{58}	5^{*}	9_{29}	7_{60}
9_{23}	5_{52}	6_{56}	3^{*}	4_{18}	7_{57}	1_{6}	2_{31}	8_{32}
1_{4}	7_{42}	3^{*}	2_{34}	9^{*}	4^{*}	8_{38}	5_{62}	6_{61}
6^{*}	9_{16}	4_{13}	5_{35}	8_{39}	3_{1}	2^{*}	7_{41}	1_{5}
5_{44}	2_{36}	8_{45}	6_{33}	7_{40}	1^{*}	9_{14}	3_{20}	4_{19}
7_{43}	8_{51}	5_{53}	4_{9}	3^{*}	2_{11}	6_{47}	1^{*}	9^{*}
2^{*}	4_{10}	1_{3}	7^{*}	6_{49}	9_{28}	3_{26}	8_{63}	5_{64}
3_{22}	6_{48}	9_{27}	1_{2}	5_{50}	8_{37}	7_{46}	4^{*}	2_{12}

648b3 755r1

PRACTICE SET 7

Puzzle 66

6^{*}			1^{*}				4^{*}	
			2^{*}			8^{*}		
9^{*}								
			5^{*}	4^{*}			6^{*}	
	8^{*}							1^{*}
	2^{*}							
4^{*}				6^{*}		3^{*}		
	$7 *$					2^{*}		

Puzzle 67

				1^{*}	6^{*}	7^{*}		
	4^{*}	8^{*}						
1^{*}					7^{*}	6^{*}		
		2^{*}	8^{*}					
			3^{*}					
				4^{*}			8^{*}	2^{*}
7^{*}	5^{*}							
							3^{*}	

Puzzle 68

6^{*}				5^{*}			3^{*}	
			2^{*}	1^{*}				
			1^{*}		3^{*}			4^{*}
5^{*}		2^{*}						
8^{*}								
					7^{*}	8^{*}	6^{*}	
	1^{*}		4^{*}			5^{*}		

Puzzle 69

			4^{*}	5^{*}				
1^{*}						6^{*}		
				8^{*}				
6^{*}			7^{*}		1^{*}			
						3^{*}		8^{*}
							4^{*}	
	4^{*}	8^{*}	2^{*}					
	7^{*}					1^{*}		
		9^{*}						

Puzzle 70

7^{*}						6^{*}		1^{*}
				4^{*}	3^{*}			
1^{*}			$7 *$					
					5^{*}		4^{*}	
		6^{*}				8^{*}		
	4^{*}	5^{*}					9^{*}	
	6^{*}			2^{*}				
			1^{*}					

Puzzle 71

7^{*}				1^{*}				
4^{*}						8^{*}		
			2^{*}			3^{*}		
			3^{*}		8^{*}			
5^{*}							4^{*}	
			6^{*}					
	3^{*}		5^{*}			2^{*}		
				4^{*}			7^{*}	
	1^{*}							

Puzzle 72

	1^{*}		2^{*}					
6^{*}							3^{*}	
						5^{*}	7^{*}	
7^{*}		3^{*}						
			1^{*}					
5^{*}								
	6^{*}					2^{*}		1^{*}
4^{*}				3^{*}				
				5^{*}				8^{*}

Puzzle 66

$\begin{array}{lll}2_{1} \mathrm{c} 1 & 67 \mathrm{c} 2 & 1_{11} \mathrm{~b} 7\end{array}$
$4_{13} b 9 \quad 4_{14 r 2}: 4 c 3 b 2$
$8{ }_{15} \mathrm{C} 1 \quad 1_{18} \mathrm{r} 7$
$8_{19} 1_{20} 3_{21} \mathrm{r} 4: 3 \mathrm{c} 3 \mathrm{~b} 3$
$\begin{array}{lll}323 \mathrm{C} 1 & 724 \mathrm{~b} 1 & 727 \mathrm{r} 4\end{array}$
529 ${ }^{2}{ }_{30} \mathrm{~b} 7: 37(19)(39)$

6^{*}	5_{25}	2_{6}	1^{*}	8_{22}	3_{53}	9_{30}	4^{*}	7_{52}
3_{23}	4_{14}	7_{24}	2^{*}	9_{31}	6_{10}	8^{*}	1_{11}	5_{29}
9^{*}	1_{17}	8_{16}	4_{62}	7_{51}	5_{63}	6_{9}	2_{5}	3_{54}
1_{20}	3_{21}	9_{28}	5^{*}	4^{*}	8_{19}	7_{27}	6^{*}	2_{4}
5_{48}	8^{*}	6_{44}	9_{42}	2_{3}	7_{50}	4_{46}	3_{36}	1^{*}
7_{49}	2^{*}	4_{45}	6_{43}	3_{55}	1_{56}	5_{47}	8_{35}	9_{32}
4^{*}	9_{26}	1_{18}	7_{38}	6^{*}	2_{2}	3^{*}	5_{37}	8_{33}
8_{15}	7^{*}	5_{60}	3_{61}	1_{57}	4_{64}	2^{*}	9_{40}	6_{8}
2_{1}	6_{7}	3_{59}	8_{34}	5_{58}	9_{41}	1_{12}	7_{39}	4_{13}

$9_{32} 8_{33} \mathrm{c} 9 \quad 336 \mathrm{c} 8 \quad 5_{37 \mathrm{r} 7} \quad 133 \mathrm{r} 3: 47(23)(33) \quad 326 \mathrm{~g}$

Puzzle 67

71 b9 $\quad 83 \mathrm{r} 1 \quad 27 \mathrm{~b} 3$
38b6: 28(85)(86)
$4_{11} \mathrm{~b} 3 \quad 5_{12} \mathrm{r} 7$
$6{ }_{13} 1_{14} \mathrm{c} 4: 6 \mathrm{r} 8 \mathrm{~b} 9$
$1_{15} \mathrm{~b} 9 \quad 7_{16}$ 2
$3_{20} 2_{21} \mathrm{c} 7: 3 \mathrm{r} 5 \mathrm{~b} 2$

2_{31}	3_{32}	9_{41}	4_{30}	1^{*}	6^{*}	7^{*}	5_{40}	8_{3}
6_{56}	4^{*}	8^{*}	2_{61}	7_{10}	5_{49}	3_{21}	1_{39}	9_{62}
5_{50}	7_{53}	1_{55}	9_{60}	3_{17}	8_{18}	2_{22}	6_{59}	4_{29}
1^{*}	8_{5}	5_{43}	9_{42}	2_{25}	7^{*}	6^{*}	4_{23}	3_{10}
3_{33}	6_{45}	2^{*}	8^{*}	5_{44}	4_{35}	9_{28}	7_{26}	1_{37}
4_{34}	9_{51}	7_{52}	3^{*}	6_{46}	1_{36}	8_{4}	2_{24}	5_{38}
9_{57}	1_{54}	6_{58}	7_{2}	4^{*}	3_{8}	5_{12}	8^{*}	2^{*}
7^{*}	5^{*}	3_{9}	1_{14}	8_{19}	2_{20}	4_{27}	9_{63}	6_{64}
8_{6}	2_{7}	4_{11}	6_{13}	5_{47}	9_{48}	1_{15}	3^{*}	7_{1}

423r4: 4c4b4 427 c 7
$1_{39 \mathrm{r} 2} \quad 5_{40 \mathrm{r}} \mathrm{r}: 5 \mathrm{c} 3 \mathrm{~b} 2 \quad 9_{42} \mathrm{r} 4$

Puzzle 68
$1_{3} \mathrm{~b} 2 \quad 572_{8} \mathrm{c} 6 \quad 8{ }_{10} 2_{11 \mathrm{r}} 4$
$4_{14 \mathrm{r}} \quad 3_{15} \mathrm{~b} 2 \quad 8_{16} 6_{17} \mathrm{r} 8$
$3_{20} \mathrm{c} 4 \quad 9_{21} \mathrm{~g}: 56(92)(93)$

	$\rightarrow 7 \mathrm{clb3}$
$2_{22} \mathrm{c} 1:$	2 r 9 b 9

6^{*}	8_{30}	7_{36}	9_{37}	5^{*}	4_{29}	1_{5}	3^{*}	2_{31}
4_{27}	5_{41}	3_{28}	2^{*}	1^{*}	6_{49}	9_{57}	8_{47}	7_{58}
1_{4}	2_{32}	9_{42}	3_{20}	7_{35}	8_{48}	6_{51}	4_{46}	5_{50}
9_{21}	7_{38}	6_{39}	1^{*}	8_{10}	3^{*}	2_{11}	5_{9}	4^{*}
5^{*}	3_{15}	2^{*}	6_{53}	4_{34}	9_{44}	7_{55}	1_{6}	8_{13}
8^{*}	4_{14}	1_{3}	7_{54}	2_{12}	5_{7}	3_{56}	9_{59}	6_{52}
2_{22}	9_{25}	4_{23}	5_{19}	3_{24}	7^{*}	8^{*}	6^{*}	1_{2}
3_{62}	1^{*}	8_{16}	4^{*}	6_{17}	2_{8}	5^{*}	7_{60}	9_{63}
7_{61}	6_{40}	5_{43}	8_{18}	9_{26}	1_{1}	4_{45}	2_{33}	3_{64}

Puzzle 69
$1_{1} \mathrm{~b} 3 \quad 8{ }_{4} \mathrm{r} 4 \quad 4{ }_{8} \mathrm{C} 7$
$3_{12} \mathrm{r} 4 \quad 6_{13} \mathrm{~b} 3$
$7_{14 \mathrm{~g}}$: 259r4b8 $5_{20 \mathrm{c}} 3$
$2_{23} 5_{24 \mathrm{C} 7} \quad 729 \mathrm{~b} 7$
$330 \mathrm{r} 1: 3 \mathrm{c} 2 \mathrm{~b} 2 \quad 933 \mathrm{r} 3$
$6_{36} 9_{37} 7{ }_{38} \mathrm{r} 7 \quad 9_{41} \mathrm{~g}$

8_{5}	6_{31}	2_{21}	4^{*}	5^{*}	3_{30}	9_{25}	7_{29}	1_{18}
1^{*}	3_{34}	4_{9}	9_{41}	7_{63}	2_{62}	6^{*}	8_{6}	5_{22}
7_{19}	9_{33}	5_{20}	1_{3}	8^{*}	6_{32}	4_{8}	2_{48}	3_{51}
6^{*}	8_{4}	3_{12}	7^{*}	4_{11}	1^{*}	2_{23}	5_{26}	9_{27}
4_{10}	2_{60}	7_{15}	6_{43}	9_{42}	5_{59}	3^{*}	1_{17}	8^{*}
9_{35}	5_{61}	1_{16}	3_{46}	2_{64}	8_{58}	7_{14}	4^{*}	6_{28}
3_{39}	4^{*}	8^{*}	2^{*}	1_{2}	9_{37}	5_{24}	6_{36}	7_{38}
5_{48}	7^{*}	6_{13}	8_{55}	3_{45}	4_{54}	1^{*}	9_{40}	2_{49}
2_{47}	1_{1}	9^{*}	5_{56}	6_{44}	7_{57}	8_{7}	3_{52}	4_{53}

345 g 2479: u23r3b7r9b9

Puzzle 70
$1_{1} \mathrm{~b} 3 \quad 4_{7} \mathrm{r} 1 \quad 7_{11} \mathrm{~b} 4$ $6_{12} 8_{13} b 8: 6 c 4 b 4 \quad 6_{16} c 6$ $7_{17} 6_{18} \mathrm{r} 7 \quad 7_{19} \mathrm{~b} 8 \quad 5_{24} \mathrm{~b} 2$ $9_{27} \mathrm{r} 8 \quad 8_{28} \mathrm{r} 7 \quad 2_{32} \mathrm{c} 6$ $3_{37} \mathrm{~g} \quad 3_{38} \mathrm{~b} 3 \quad 948 \mathrm{c} 2$

Puzzle 71
$3_{1} \mathrm{c} 1 \quad 47 \mathrm{~b} 5 \quad 7_{13} \mathrm{~b} 3$
$5_{14 \mathrm{r}} 9 \quad 7_{15} \mathrm{~b} 7$
$7{ }_{16} 1_{17}{ }_{18} \mathrm{C} 4$
$2_{25} 9_{26} 7_{27} \mathrm{c} 6$
$1_{31} 7$: 1 c 8 b 7
$1_{32} 5_{33} \mathrm{c} 7 \quad 2_{34} \mathrm{c} 6$
636r7: 6c8b7 $\quad{ }_{241} \mathrm{c} 1$

7^{*}	2_{49}	4_{7}	5_{52}	9_{36}	8_{31}	6^{*}	3_{41}	1^{*}
5_{63}	1_{6}	9_{51}	6_{64}	4^{*}	3^{*}	2_{58}	7_{23}	8_{43}
6_{62}	8_{42}	3_{40}	2_{61}	7_{11}	1_{5}	9_{56}	5_{55}	4_{57}
1^{*}	5_{24}	8_{26}	7^{*}	6_{12}	4_{9}	3_{47}	2_{54}	9_{53}
3_{37}	9_{48}	2_{50}	8_{13}	1_{4}	5^{*}	7_{19}	4^{*}	6_{14}
4_{8}	7_{20}	6^{*}	9_{33}	3_{30}	2_{32}	8^{*}	1_{3}	5_{25}
2_{18}	4^{*}	5^{*}	3_{29}	8_{28}	6_{16}	1_{2}	9^{*}	7_{17}
9_{27}	6^{*}	1_{1}	4_{10}	2^{*}	7_{22}	5_{45}	8_{44}	3_{46}
8_{39}	3_{38}	7_{21}	1^{*}	5_{35}	9_{34}	4_{39}	6_{15}	2_{60}

7^{*}	8_{24}	3_{6}	4_{8}	1^{*}	6_{35}	5_{33}	9_{62}	2_{63}
4^{*}	2_{49}	6_{48}	9_{19}	3_{5}	5_{34}	8^{*}	1_{44}	7_{15}
1_{42}	9_{52}	5_{51}	2^{*}	8_{23}	7_{27}	3^{*}	6_{47}	4_{9}
2_{41}	4_{12}	1_{43}	3^{*}	9_{60}	8^{*}	7_{22}	5_{61}	6_{54}
5^{*}	6_{45}	8_{39}	7_{16}	2_{57}	1_{20}	9_{56}	4^{*}	3_{2}
3_{1}	7_{21}	9_{46}	6^{*}	5_{59}	4_{7}	1_{32}	2_{58}	8_{38}
6_{36}	3^{*}	4_{11}	5^{*}	7_{28}	9_{26}	2^{*}	8_{37}	1_{31}
8_{40}	5_{53}	2_{50}	1_{17}	4^{*}	3_{4}	6_{55}	7^{*}	9_{64}
9_{30}	1^{*}	7_{13}	8_{18}	6_{29}	2_{25}	4_{10}	3_{3}	5_{14}

Puzzle 72
$1_{1} 6_{2} \mathrm{~b} 2 \quad 1{ }_{5} \mathrm{~b} 7 \quad 28 \mathrm{~b} 6$
39r7 $\quad 5_{15} 7_{16 r}$ r
$7_{23} \mathrm{~b} 5 \quad 4_{26} \mathrm{~b} 9 \quad 8_{27 \mathrm{r}} 8$
$6_{29 r} 9 \quad 6_{31} b 4$
$832 \mathrm{r} 3 \quad 233 \mathrm{c} 1$
$9_{35} \mathrm{c} 3 \quad 646 \mathrm{r} 4$

9_{34}	1^{*}	5_{15}	2^{*}	7_{16}	3_{11}	4_{55}	8_{54}	6_{50}
6^{*}	2_{39}	7_{37}	5_{22}	4_{62}	8_{61}	1_{5}	3^{*}	9_{45}
8_{32}	3_{10}	4_{38}	9_{41}	1_{6}	6_{31}	5^{*}	7^{*}	2_{40}
7^{*}	8_{58}	3^{*}	4_{42}	2_{44}	9_{59}	6_{46}	1_{7}	5_{20}
2_{33}	4_{52}	6_{2}	1^{*}	8_{60}	5_{21}	7_{24}	9_{53}	3_{14}
5^{*}	9_{57}	1_{1}	3_{12}	6_{47}	7_{23}	8_{56}	2_{43}	4_{51}
3_{9}	6^{*}	8_{28}	7_{30}	9_{63}	4_{64}	2^{*}	5_{19}	1^{*}
4^{*}	5_{17}	2_{18}	8_{27}	3^{*}	1_{4}	9_{49}	6_{48}	7_{25}
1_{3}	7_{36}	9_{35}	6_{29}	5^{*}	2_{8}	3_{13}	4_{26}	8^{*}

PRACTICE SET 8

Puzzle 73

3^{*}				6^{*}		2^{*}		7^{*}
				5^{*}	8^{*}			
					1^{*}			
4^{*}	3^{*}		9^{*}					
							5^{*}	2^{*}
			2^{*}			4^{*}		
	5^{*}						8^{*}	
		$1 *$						

Puzzle 74

5^{*}	3^{*}				1^{*}			
			7^{*}			2^{*}		
4^{*}		2^{*}						
				9^{*}				3^{*}
7^{*}							1^{*}	
		6^{*}	2^{*}			4^{*}		
	8^{*}			3^{*}				
						7^{*}		

Puzzle 75

9^{*}					4^{*}	2^{*}		
	6^{*}		1^{*}					
2^{*}			3^{*}	9^{*}				
			8^{*}				1^{*}	4^{*}
6^{*}								
		1^{*}			5^{*}			
				2^{*}		9^{*}		
	8^{*}							

Puzzle 76

4^{*}		1^{*}						6^{*}
			7^{*}			2^{*}		
5^{*}								
	7^{*}		3^{*}		2^{*}			
							1^{*}	4^{*}
			5^{*}	4^{*}	6^{*}			
						8^{*}	3^{*}	
				1^{*}				

Puzzle 77

4^{*}					7^{*}	3^{*}		
	5^{*}		6^{*}					
		6^{*}	5^{*}	1^{*}				
							8^{*}	2^{*}
						4^{*}		
			2^{*}				7^{*}	6^{*}
3^{*}	4^{*}							
9^{*}								

Puzzle 78

6^{*}			1^{*}					2^{*}
	7^{*}			3^{*}			8^{*}	
	3^{*}					9^{*}	4^{*}	
	4^{*}		5^{*}					
			2^{*}					
2^{*}		1^{*}						
				9^{*}		4^{*}		
5^{*}								

Puzzle 79

6^{*}			3^{*}	4^{*}				
						5^{*}	1^{*}	
2^{*}								
4^{*}	3^{*}					7^{*}		
				1^{*}	8^{*}			
	5^{*}		2^{*}					4^{*}
		8^{*}			7^{*}			
	1^{*}							

Puzzle 73
$2_{2} 9_{3} \mathrm{~b} 45_{4} 85{ }_{1}$ r 1
$582 \mathrm{gr} 4 \quad 1{ }_{19 \mathrm{r}} 7$
820b6
$8_{22} 1_{23} 6_{24} 4$
$4_{27} \mathrm{c} 5: 4 \mathrm{r} 6 \mathrm{~b} 8$
130b5: 1r6b8

3^{*}	8_{5}	5_{4}	4_{7}	6^{*}	9_{3}	2^{*}	1_{6}	7^{*}
1_{12}	2_{11}	4_{62}	7_{59}	5^{*}	8^{*}	6_{46}	3_{61}	9_{48}
6_{54}	7_{56}	9_{63}	3_{60}	2_{2}	1^{*}	5_{17}	4_{64}	8_{18}
4^{*}	3^{*}	2_{7}	9^{*}	7_{25}	5_{8}	8_{22}	6_{24}	1_{23}
7_{55}	9_{57}	8_{58}	1_{30}	4_{27}	6_{33}	3_{29}	5^{*}	2^{*}
5_{14}	1_{31}	6_{34}	8_{32}	3_{28}	2_{13}	9_{45}	7_{43}	4_{44}
8_{52}	6_{53}	3_{37}	2^{*}	1_{19}	7_{41}	4^{*}	9_{49}	5_{16}
2_{10}	5^{*}	7_{40}	6_{35}	9_{21}	4_{39}	1_{26}	8^{*}	3_{36}
9_{51}	4_{50}	1^{*}	5_{15}	8_{20}	3_{38}	7_{42}	2_{1}	6_{47}

336 g

Puzzle 74

$2_{1 r} r 1 \quad 32 \mathrm{~b} 2 \quad 33_{3} 1_{4} 7$
77r5: 24(58)(69)
$4_{16} r 5 \quad 1_{18} b 5$
$4_{20} 3_{21} \mathrm{~b} 3 \quad 1{ }_{29} 3_{30} \mathrm{r} 7$
$8_{34} \mathrm{~b} 2 \quad 6_{37 \mathrm{r}} 1 \quad 6_{38} \mathrm{r} 8$
$5_{47} \mathrm{c} 7 \quad 8_{48} \mathrm{~b} 8 \quad 8{ }_{55} \mathrm{r}$

5^{*}	3^{*}	8_{50}	6_{37}	2_{1}	1^{*}	9_{49}	4_{25}	7_{27}
6_{35}	4_{22}	9_{51}	7^{*}	8_{61}	3_{5}	2^{*}	5_{63}	1_{41}
2_{13}	7_{12}	1_{42}	9_{45}	4_{24}	5_{60}	3_{3}	8_{64}	6_{40}
4^{*}	6_{56}	2^{*}	3_{6}	1_{18}	8_{55}	5_{47}	7_{28}	9_{52}
8_{34}	1_{31}	5_{26}	4_{16}	9^{*}	7_{7}	6_{36}	2_{9}	3^{*}
7^{*}	9_{57}	3_{2}	5_{46}	6_{58}	2_{8}	8_{48}	1^{*}	4_{17}
1_{29}	5_{21}	6^{*}	2^{*}	7_{10}	9_{44}	4^{*}	3_{30}	8_{43}
9_{33}	8^{*}	7_{11}	8_{39}	3^{*}	4_{23}	1_{4}	6_{38}	2_{15}
3_{32}	2_{14}	4_{20}	1_{19}	5_{62}	6_{59}	7^{*}	9_{54}	5_{53}

Puzzle 75
$1_{1} \mathrm{c} 1 \quad 47 \mathrm{~b} 5 \quad 59 \mathrm{~b} 5$
$2_{10} 6_{11} \mathrm{r} 5 \quad 8_{17} 5_{18} \mathrm{~b} 2$
4_{20} b1 $\quad 9_{21} \mathrm{~b} 3$
${ }_{24}{ }^{4}{ }_{25}{ }^{2}{ }_{26} 6{ }_{27} \mathrm{~b} 6: 6 \mathrm{r} 8 \mathrm{~b} 3$
$3_{35} \mathrm{~g} \quad 636 \mathrm{r} 1$
$7_{37} \mathrm{c} 2 \quad 5_{44} 4_{45} \mathrm{c} 7$

9^{*}	7_{37}	3_{38}	5_{29}	6_{36}	4^{*}	2^{*}	8_{32}	1_{2}
8_{19}	6^{*}	2_{13}	1^{*}	7_{54}	9_{31}	5_{44}	4_{49}	3_{56}
1_{1}	4_{20}	5_{39}	2_{12}	3_{55}	8_{30}	7_{46}	6_{59}	9_{60}
2^{*}	1_{6}	4_{7}	3^{*}	9^{*}	6_{15}	8_{33}	7_{51}	5_{52}
3_{41}	9_{22}	7_{42}	8^{*}	5_{8}	2_{10}	6_{11}	1^{*}	4^{*}
6^{*}	5_{18}	8_{17}	4_{7}	1_{5}	7_{16}	3_{35}	9_{61}	2_{62}
7_{51}	2_{14}	1^{*}	9_{23}	8_{24}	5^{*}	4_{45}	3_{57}	6_{58}
4_{47}	3_{40}	6_{43}	7_{28}	2^{*}	1_{4}	9^{*}	5_{48}	8_{34}
5_{50}	8^{*}	9_{21}	6_{27}	4_{26}	3_{25}	1_{3}	2_{63}	7_{64}

Puzzle 76
$1_{1} 4_{2} \mathrm{r} 4 \quad 33_{3} 8{ }_{4} \mathrm{~b} 6 \quad 4_{5} 1_{6} \mathrm{r} 8$
$2_{19} \mathrm{c} 1: 2 \mathrm{r} 6 \mathrm{~b} 8 \& \mathrm{r} 7 \mathrm{~b} 9$
$5_{20 \mathrm{r} 2} \quad 6_{25} \mathrm{C} 4 \quad 5_{17 \mathrm{c}} 1$
$3_{18 r} 7 \quad 6_{28} r 4 \quad 7_{31} b 1$
$2_{32} \mathrm{r} 3 \quad 7_{36} 2_{37 \mathrm{r}} 9$
$9_{39 \mathrm{r}} 1 \quad 3{ }_{45 \mathrm{r}} \mathrm{r} 3 \quad 7{ }_{52} \mathrm{r} 6$

4^{*}	8_{40}	1^{*}	2_{34}	3_{27}	9_{39}	5_{24}	7_{32}	6^{*}
3_{55}	6_{30}	9_{54}	7^{*}	5_{20}	1_{8}	2^{*}	4_{15}	8_{47}
5^{*}	2_{33}	7_{31}	4_{14}	6_{26}	8_{42}	1_{10}	9_{46}	3_{45}
1_{1}	7^{*}	4_{2}	3^{*}	8_{59}	2^{*}	6_{28}	5_{23}	9_{61}
2_{19}	3_{41}	8_{56}	6_{25}	9_{60}	5_{21}	7_{62}	1^{*}	4^{*}
9_{53}	5_{22}	6_{29}	1_{12}	7_{52}	4_{13}	3_{48}	8_{49}	2_{51}
8_{57}	1_{7}	3_{58}	5^{*}	4^{*}	6^{*}	9_{63}	2_{50}	7_{64}
6_{8}	4_{5}	5_{7}	9_{35}	2_{44}	7_{43}	8^{*}	3^{*}	1_{6}
1_{36}	9_{38}	2_{37}	8_{4}	1^{*}	3_{3}	4_{16}	6_{17}	5_{18}

Puzzle 77

$4_{3} \mathrm{r} 7 \quad 359_{6} r 7 \quad 67 \mathrm{~b} 3$
$5_{11} 1_{12} \mathrm{r} 5 \quad 5_{13} 1_{14 \mathrm{r}} 7$
$7_{16} \mathrm{~g} \quad 8_{17} 2_{18 \mathrm{r}} 4 \quad 7_{19} \mathrm{~g}$
$721322 \mathrm{c} 2 \quad 2{ }_{26} 5_{27} \mathrm{r} 1$
$8_{34} \mathrm{r} 1 \quad 3_{37} 9_{38} \mathrm{C} 4 \quad 544 \mathrm{c} 6$
846c7: u58c5b6c7b9

4^{*}	9_{23}	8_{34}	1_{35}	2_{26}	7^{*}	3^{*}	6_{9}	5_{27}
2_{20}	5^{*}	3_{55}	6^{*}	9_{57}	8_{45}	1_{52}	4_{58}	7_{25}
6_{8}	7_{21}	1_{54}	4_{4}	3_{56}	5_{44}	8_{46}	2_{63}	9_{62}
8_{17}	2_{18}	6^{*}	5^{*}	1^{*}	4_{2}	7_{16}	9_{64}	3_{61}
5_{11}	1_{12}	4_{1}	3_{37}	7_{42}	9_{43}	6_{10}	8^{*}	2^{*}
7_{19}	3_{22}	9_{24}	8_{32}	6_{31}	2_{28}	4^{*}	5_{29}	1_{20}
1_{14}	8_{15}	5_{13}	2^{*}	4_{3}	3_{5}	9_{6}	7^{*}	6^{*}
3^{*}	4^{*}	7_{40}	9_{38}	5_{49}	6_{33}	2_{51}	1_{53}	8_{47}
9^{*}	6_{7}	2_{41}	7_{39}	8_{48}	1_{36}	5_{50}	3_{60}	4_{59}

847b9: 34(98)(99) 25ıc7

Puzzle 78

$4_{10} \mathrm{r} 1$:
39(56)(66) $\rightarrow 4 \mathrm{c} 5 \mathrm{~b} 5$
$3_{13} \mathrm{c} 4$: 3r8b3
$3_{14 \mathrm{c}} 1: 14(21)(31)$
$7_{15} \mathrm{~b} 3 \quad 9_{16 \mathrm{~g}} \quad 6_{17} \mathrm{~g}$
$8_{18 \mathrm{~g}} \quad 8_{19} \mathrm{~g} \quad 9_{20} \mathrm{c} 4$

6^{*}	5_{3}	8_{26}	1^{*}	7_{28}	4_{10}	3_{27}	9_{22}	2^{*}
1_{45}	7^{*}	9_{16}	6_{17}	3^{*}	2_{4}	5_{37}	8^{*}	4_{47}
1_{46}	2_{1}	3_{30}	9_{20}	5_{29}	8_{25}	1_{44}	7_{57}	6_{56}
8_{23}	3^{*}	2_{8}	7_{21}	1_{31}	6_{34}	9^{*}	4^{*}	5_{33}
9_{59}	4^{*}	6_{36}	5^{*}	8_{24}	3_{53}	2_{7}	1_{43}	7_{58}
7_{60}	1_{2}	5_{35}	2^{*}	4_{11}	9_{61}	6_{62}	3_{52}	8_{54}
2^{*}	9_{49}	1^{*}	4_{12}	6_{32}	7_{42}	8_{51}	5_{38}	3_{48}
3_{14}	6_{17}	7_{15}	8_{18}	9^{*}	5_{39}	4^{*}	2_{6}	1_{40}
5^{*}	8_{50}	4_{9}	3_{13}	2_{5}	1_{41}	7_{63}	6_{64}	9_{55}

$8_{23} \mathrm{~g} \quad 8_{24} \mathrm{~b} 5: 39(56)(66) \quad 3_{27} \mathrm{r} 1 \quad 1_{31} \mathrm{c} 5 \quad 5_{33 \mathrm{r}} 49_{44 \mathrm{r}} 75_{56 \mathrm{c}} 9$

Puzzle 79

$1_{1} 5_{2} 8_{3} \mathrm{c} 1 \quad 37 \mathrm{~b} 1:$
15(13)(33)
$4_{8} \mathrm{r} 2 \quad 1_{12} \mathrm{r} 8 \quad 2_{18} \mathrm{~b} 3$
$3_{19} \mathrm{~b} 5 \quad 6{ }_{21} \mathrm{c} 2 \quad 8{ }_{23} \mathrm{~b} 4$
$7_{27} 2_{28} \mathrm{c} 5 \quad 7_{27} 2_{28} \mathrm{c} 5$
$5_{30} 6_{31} 14 \quad 7_{40} 3_{41} r 7$
$5_{48} \mathrm{~b} 9 \quad 6_{53} \mathrm{c} 8$

6^{*}	9_{36}	1_{15}	3^{*}	4^{*}	5_{17}	2_{39}	7_{38}	8_{26}
8_{3}	4_{8}	3_{7}	6_{34}	7_{27}	1_{29}	5^{*}	1^{*}	9_{35}
2^{*}	7_{37}	5_{16}	2_{14}	8_{23}	9_{33}	4_{55}	6_{53}	3_{56}
4^{*}	3^{*}	9_{32}	5_{30}	2_{28}	6_{31}	7^{*}	8_{6}	1_{4}
5_{2}	6_{21}	7_{62}	9_{63}	1^{*}	8^{*}	3_{57}	4_{54}	2_{60}
1_{1}	8_{5}	2_{61}	7_{64}	3_{19}	4_{11}	9_{58}	5_{52}	6_{59}
7_{40}	5^{*}	6_{22}	2^{*}	9_{42}	1_{13}	8_{25}	3_{41}	4^{*}
3_{43}	2_{18}	8^{*}	4_{10}	6_{50}	7^{*}	1_{12}	9_{45}	5_{48}
9_{44}	1^{*}	4_{9}	8_{24}	5_{51}	3_{20}	6_{49}	2_{47}	7_{46}

PRACTICE SET 9

Puzzle 80

			3^{*}			5^{*}	9^{*}	
	1^{*}						7^{*}	
4^{*}				6^{*}				
			5^{*}			3^{*}		4^{*}
		1^{*}						
			2^{*}					
	6^{*}			1^{*}	7^{*}			
3^{*}						8^{*}		

Puzzle 81

2^{*}	1^{*}			3^{*}				
		4^{*}					6^{*}	5^{*}
	8^{*}		2^{*}			3^{*}		
			6^{*}		4^{*}			
					5^{*}			
				7^{*}		1^{*}		
6^{*}		5^{*}						
3^{*}								

Puzzle 82

	8^{*}				1^{*}			
						6^{*}	3^{*}	
			3^{*}	4^{*}		2^{*}		
	7^{*}						1^{*}	5^{*}
			6^{*}					
				8^{*}				$1 *$
3^{*}		$2 *$						
6^{*}						4^{*}		

Puzzle 83

				6^{*}				1^{*}
	2^{*}		5^{*}					
			3^{*}				2^{*}	
		7^{*}				4^{*}		
1^{*}				5^{*}				
7^{*}	3^{*}				1^{*}			
6^{*}							5^{*}	
			2^{*}			8^{*}		

Puzzle 84

		7^{*}	1^{*}		5^{*}			
	6^{*}	3^{*}				7^{*}		
				6^{*}		3^{*}		2^{*}
1^{*}								
			5^{*}					
5^{*}	2^{*}		4^{*}				8^{*}	
				3^{*}				
9^{*}								

Puzzle 85

				3^{*}		7^{*}		
	1^{*}		6^{*}					
						2^{*}		
			1^{*}				8^{*}	9^{*}
2^{*}								
5^{*}								
	9^{*}	6^{*}					1^{*}	
			4^{*}		2^{*}	5^{*}		
				$7 *$				

Puzzle 86

				4^{*}		7^{*}		
			5^{*}			3^{*}		
	1^{*}	8^{*}						
3^{*}						5^{*}	4^{*}	
		6^{*}	1^{*}					
			2^{*}					
5^{*}	2^{*}			3^{*}				
								1^{*}
							6^{*}	

Puzzle 80

$1_{2} \mathrm{r} 1: 1 \mathrm{c} 6 \mathrm{~b} 5 \quad 4_{7} \mathrm{~b} 7$
$2_{8} \mathrm{~g} \quad 6{ }_{9 r} 7 \quad 9_{10} \mathrm{~g}$
$\begin{array}{lll}7_{11} \mathrm{~b} 4 & 7_{14} \mathrm{~b} 8 & 3_{20} \mathrm{c} 8\end{array}$
$3_{22} 7 \quad 5_{24} \mathrm{~g} \quad 8_{26} \mathrm{~g}$
$627{ }_{28} \mathrm{C} 4$
$2_{31} c 5: ~ u 25 c 5 b 6 c 7 b 9$

6_{58}	8_{62}	2_{61}	3^{*}	7_{11}	4_{12}	5^{*}	9^{*}	1_{2}
5_{25}	1^{*}	3_{23}	9_{29}	2_{31}	8_{32}	4_{7}	7^{*}	6_{9}
4^{*}	7_{55}	9_{56}	1_{6}	6^{*}	5_{24}	2_{8}	3_{20}	8_{21}
7_{57}	2_{60}	6_{59}	5^{*}	9_{52}	1_{5}	3^{*}	8_{49}	4^{*}
8_{48}	5_{39}	1^{*}	7_{13}	4_{46}	3_{33}	6_{16}	2_{47}	9_{19}
9_{49}	3_{34}	4_{45}	2^{*}	8_{50}	6_{30}	1_{4}	5_{40}	7_{14}
2_{38}	6^{*}	5_{37}	8_{26}	1^{*}	7^{*}	9_{10}	4_{18}	3_{22}
3^{*}	4_{53}	7_{54}	6_{27}	5_{36}	9_{44}	8^{*}	1_{3}	2_{42}
1_{1}	9_{63}	8_{64}	4_{28}	3_{35}	2_{43}	7_{15}	6_{17}	5_{41}

$3_{33 \mathrm{~g}} \quad 5_{37 \mathrm{r} 7} \quad 4_{45} \mathrm{~b} 2 \quad 247 \mathrm{r} 5$

Puzzle 81

$1_{1} \mathrm{~b} 3$	$3_{2 \mathrm{r} 2}$
$3_{3 \mathrm{r} 5}$	$5_{5 \mathrm{r} 1}$
$6_{11} 4_{12} 2_{13 \mathrm{c} 5}$	
$4_{20 \mathrm{r} 4}$	$7_{23} \mathrm{~b} 5$
$1_{25} \mathrm{r} 4$	$1_{27} \mathrm{c} 4$
$1_{28} \mathrm{r} 2$	$4_{29} \mathrm{c} 7$

2^{*}	1^{*}	6_{15}	5_{5}	3^{*}	8_{37}	4_{29}	7_{53}	9_{52}
9_{33}	3_{2}	4^{*}	7_{24}	2_{13}	1_{28}	8_{36}	6^{*}	5^{*}
7_{32}	5_{10}	8_{34}	4_{14}	6_{11}	9_{38}	2_{55}	3_{51}	1_{54}
5_{9}	8^{*}	9_{26}	2^{*}	1_{25}	7_{23}	3^{*}	4_{20}	6_{17}
1_{22}	2_{40}	3_{3}	6^{*}	9_{58}	4^{*}	5_{8}	8_{62}	7_{63}
4_{21}	6_{16}	7_{39}	3_{4}	8_{59}	5^{*}	9_{56}	1_{57}	2_{60}
8_{35}	4_{31}	2_{41}	9_{43}	7^{*}	6_{19}	1^{*}	5_{7}	3_{42}
6^{*}	9_{47}	5^{*}	1_{27}	4_{12}	3_{48}	7_{45}	2_{61}	8_{64}
3^{*}	7_{46}	1_{1}	8_{44}	5_{6}	2_{49}	6_{18}	9_{50}	4_{30}

$\begin{array}{llll} & 7_{32} 9_{33} \mathrm{C} 1 & 3 & 37 \mathrm{c} 3\end{array} 3_{42 \mathrm{r}} 7 \quad 145 \mathrm{C} 7$

Puzzle 82

$1_{2} \mathrm{~b} 5$	$6_{3} 4_{4} 35 \mathrm{r} 5$
$2_{16} \mathrm{~b} 9$	$2_{18} \mathrm{c} 2$
$2_{20} \mathrm{~b} 4$	$4_{23} \mathrm{~b} 6$
$4_{27} \mathrm{~b} 1$	$8_{31} \mathrm{~b} 3$

$8_{35} 5$ 5: 8c4b4 $\quad 9_{37} b 4$ $9_{39 \mathrm{c} 2} \quad 4_{47} \mathrm{c} 3$

5_{52}	8^{*}	3_{11}	7_{57}	6_{9}	1^{*}	9_{58}	4_{29}	2_{22}
1_{34}	2_{18}	7_{48}	5_{54}	9_{37}	4_{26}	6^{*}	3^{*}	8_{55}
9_{53}	6_{8}	4_{27}	8_{56}	3_{10}	2_{20}	1_{1}	5_{51}	7_{59}
8_{32}	9_{39}	1_{33}	3^{*}	4^{*}	5_{44}	2^{*}	7_{46}	6_{15}
4_{4}	7^{*}	6_{3}	9_{36}	2_{21}	8_{35}	3_{5}	1^{*}	5^{*}
2_{19}	3_{12}	4_{40}	6^{*}	1_{2}	7_{45}	8_{62}	9_{63}	4_{30}
7_{49}	4_{28}	9_{47}	2_{17}	8^{*}	3_{7}	5_{50}	6_{14}	1^{*}
3^{*}	1_{25}	2^{*}	4_{23}	5_{43}	6_{13}	7_{61}	8_{64}	9_{60}
6^{*}	9_{41}	8_{31}	1_{24}	7_{42}	9_{38}	4^{*}	2_{16}	3_{6}

Puzzle 83
2384 b3 $1_{10 r 8}$
$3_{16} \mathrm{~b} 2 \quad 3_{18} \mathrm{~b} 9$
$3_{19 r} 15_{22} \mathrm{r} 1$
$6_{23} \mathrm{r} 94_{26 \mathrm{r}} 7$
$6_{30} 8_{31} 55 \quad 5_{35} \mathrm{C} 9$
$6{ }_{39} 7_{40 \mathrm{r}} 2 \quad 4{ }_{50} 8_{51 r} \mathrm{r} 1$

5_{22}	7_{52}	4_{50}	9_{45}	6^{*}	3_{19}	2_{8}	8_{51}	1^{*}
8_{57}	2^{*}	1_{14}	5^{*}	4_{33}	7_{40}	3_{37}	6_{38}	9_{56}
3_{39}	9_{63}	6_{62}	1_{13}	2_{7}	8_{46}	5_{36}	7_{55}	4_{34}
9_{58}	6_{64}	8_{61}	3^{*}	1_{12}	4_{42}	7_{48}	2^{*}	5_{35}
2_{5}	5_{21}	7^{*}	8_{31}	9_{32}	6_{30}	4^{*}	1_{11}	3_{17}
1^{*}	4_{43}	3_{16}	7_{41}	5^{*}	2_{6}	6_{49}	9_{59}	8_{60}
7^{*}	3^{*}	5_{2}	6_{24}	8_{25}	1^{*}	9_{27}	4_{26}	2_{9}
6^{*}	8_{4}	2_{3}	4_{44}	3_{20}	9_{47}	1_{10}	5^{*}	7_{28}
4_{53}	1_{15}	9_{54}	2^{*}	7_{29}	5_{1}	8^{*}	3_{18}	6_{23}

Puzzle 84

$3_{2} 6_{3} 7_{4} \mathrm{c} 1 \quad 1_{8} \mathrm{~g} \quad 1_{10 \mathrm{c} 5}$ $3_{13 \mathrm{r}} 1 \quad 5_{14} 9_{15} \mathrm{~b} 1$
$5_{24 \mathrm{~g}}$: 48c3b3 $\quad 5_{18} 4_{19 r} 4$
$9_{21} \mathrm{~g}$:
18(86)(96) $\rightarrow 2 \mathrm{c} 4 \mathrm{~b} 6$
$2{ }_{22} \mathrm{~g}$
723 r 3 :

2_{45}	9_{15}	7^{*}	1^{*}	8_{63}	5^{*}	4_{64}	3_{13}	6_{30}
8_{61}	6^{*}	3^{*}	9_{21}	4_{62}	2_{43}	7^{*}	5_{16}	1_{12}
4_{60}	1_{9}	5_{14}	3_{36}	7_{23}	6_{42}	9_{59}	2_{44}	8_{56}
7_{4}	5_{18}	9_{17}	8_{20}	6^{*}	9_{19}	3^{*}	1_{11}	2^{*}
1^{*}	8_{54}	6_{27}	7_{33}	2_{24}	3_{34}	5_{58}	4_{50}	8_{57}
3_{2}	4_{63}	2_{26}	5^{*}	1_{10}	9_{35}	8_{55}	6_{31}	7_{32}
5^{*}	2^{*}	1_{8}	4^{*}	9_{25}	7_{28}	6_{29}	8^{*}	3_{6}
6_{3}	7_{7}	4_{48}	2_{22}	3^{*}	8_{41}	1_{39}	9_{51}	5_{52}
9^{*}	3_{5}	8_{47}	6_{37}	5_{1}	1_{40}	2_{38}	7_{46}	4_{49}

Puzzle 85
$2_{1 r} r \quad 5 \mathrm{gb} 3 \quad 7_{10} 4_{11} \mathrm{r} 7$
$1_{14 \mathrm{r}} 9 \quad 1_{16 \mathrm{r}} \quad 6_{17} 9_{18} \mathrm{~b} 6$
$5_{23} 4_{24} \mathrm{~b} 8 \quad 7_{26} \mathrm{r} 2 \quad 8 \quad{ }_{28} \mathrm{C} 7$
$9_{29} \mathrm{~b} 2 \quad 8_{30} \mathrm{~b} 3: 8 \mathrm{c} 2 \mathrm{~b} 2$
$3_{32} \mathrm{c} 7: 3 \mathrm{r} 4 \mathrm{~b} 2 \quad 334 \mathrm{~g}$
$7_{36} \mathrm{C} 3 \quad 641 \mathrm{~g} \quad 947 \mathrm{c} 4$

9_{48}	5_{40}	4_{37}	2_{4}	3^{*}	8_{50}	7^{*}	6_{41}	1_{16}
8_{49}	1^{*}	2_{5}	6^{*}	5_{51}	7_{26}	9_{22}	4_{53}	3_{45}
6_{42}	7_{39}	3_{35}	9_{47}	1_{15}	4_{52}	2^{*}	5_{54}	8_{46}
3_{34}	4_{38}	7_{36}	1^{*}	2_{3}	5_{25}	6_{33}	8^{*}	9^{*}
2^{*}	6_{62}	9_{29}	3_{59}	4_{55}	8_{63}	1_{2}	7_{21}	5_{23}
5^{*}	8_{61}	1_{1}	7_{27}	9_{56}	6_{64}	3_{32}	2_{8}	4_{24}
7_{10}	9^{*}	6^{*}	5_{58}	8_{57}	3_{60}	4_{11}	1^{*}	2_{7}
1_{13}	3_{31}	8_{30}	4^{*}	6_{17}	2^{*}	5^{*}	9_{19}	7_{20}
4_{12}	2_{6}	5_{9}	9_{18}	7^{*}	1_{14}	8_{28}	3_{44}	6_{43}

$5_{51} \mathrm{~b} 4 \quad 9_{56} \mathrm{C} 5 \quad 8_{61 \mathrm{r}} 6$

Puzzle 86

$5_{3} \mathrm{r} 7 \quad$ 4,c $^{2} \quad 6_{10} \mathrm{~b} 1$
$7_{11} 3_{12} \mathrm{c} 4: 7 \mathrm{r} 6 \mathrm{~b} 8$
$1_{20} \mathrm{~b} 5 \quad 22_{21} \mathrm{~b} 9 \quad 33_{22} \mathrm{c} 9$
$3_{23} \mathrm{c} 2 \quad 4_{24} \mathrm{c} 6 \quad 428 \mathrm{~b} 8$
$1_{32} 5 \quad 1_{34} \mathrm{r} 4: 1 \mathrm{c} 2 \mathrm{~b} 1$
$1_{37 \mathrm{r}} 7 \quad 240 \mathrm{c} 2$

8_{51}	3_{23}	2_{52}	5_{7}	4^{*}	1^{*}	7^{*}	6^{*}	7_{17}
6_{10}	1_{39}	7^{*}	5^{*}	2_{57}	4_{24}	3^{*}	5_{6}	9_{44}
4^{*}	1^{*}	8^{*}	7_{11}	6_{14}	3_{13}	2_{27}	1_{38}	8_{43}
3^{*}	2_{40}	1_{34}	4^{*}	5^{*}	8_{45}	5^{*}	4^{*}	3_{22}
3_{30}	8^{*}	6^{*}	1^{*}	7_{19}	9_{33}	1_{32}	2^{*}	5_{5}
9_{42}	5_{4}	6_{35}	2^{*}	1_{20}	2_{46}	8_{48}	7_{18}	4_{28}
5^{*}	2^{*}	8_{50}	2^{*}	3^{*}	7_{2}	9_{49}	4_{31}	1_{37}
1_{55}	7_{1}	3_{62}	9_{59}	4_{25}	6_{15}	5^{*}	8_{61}	1^{*}
2_{54}	4_{9}	9_{63}	1_{56}	8_{60}	5_{8}	7^{*}	6^{*}	6_{16}

PRACTICE SET 10

Puzzle 87

6^{*}	3^{*}					5^{*}		
			4^{*}					8^{*}
				6^{*}	1^{*}			
							4^{*}	2^{*}
	8^{*}							
3^{*}		4^{*}	2^{*}					
				5^{*}		8^{*}		
7^{*}							1^{*}	

Puzzle 88

7^{*}			5^{*}			6^{*}	8^{*}	
2^{*}								
				1^{*}				
	9^{*}		2^{*}			5^{*}		
			$7 *$			2^{*}		
	1^{*}							
				3^{*}			1^{*}	9^{*}
							3^{*}	
4^{*}								

Puzzle 89

			4^{*}				3^{*}	8^{*}
	5^{*}	1^{*}						
				$1 *$		5^{*}		$7 *$
7^{*}			3^{*}					
	2^{*}					1^{*}		
3^{*}			8^{*}				6^{*}	
2^{*}								
						9^{*}		

Puzzle 90

6^{*}	1^{*}			2^{*}				
							3^{*}	9^{*}
		7^{*}					4^{*}	
2^{*}						8^{*}		5^{*}
			4^{*}					
	9^{*}							
			1^{*}		4^{*}			
5^{*}						2^{*}		
			3^{*}					

Puzzle 91

| 1^{*} | | | 5^{*} | | 6^{*} | 3^{*} | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | 7^{*} | | | | 4^{*} | |
| | | | | | | | | |
| | 4^{*} | | | | | | 2^{*} | |
| | 3^{*} | | | 8^{*} | | | | |
| 5^{*} | | | 1^{*} | | | | | |
| | | | | 4^{*} | | 9^{*} | | |
| 7^{*} | | | | | | | | 5^{*} |
| | | | | 2^{*} | | | | |

Puzzle 92

4^{*}							1^{*}	9^{*}
	6^{*}		2^{*}					
							7^{*}	
			8^{*}	3^{*}		2^{*}		
7^{*}						3^{*}		
		1^{*}						
	8^{*}			6^{*}		5^{*}		
					7^{*}		4^{*}	

Puzzle 93

2^{*}	4^{*}							
			3^{*}			7^{*}		
				4^{*}	5^{*}		6^{*}	
7^{*}						8^{*}		
		3^{*}		2^{*}				
1^{*}			$7 *$					
	6^{*}						5^{*}	
					2^{*}			4^{*}

Puzzle 87

${ }_{2}{ }_{2} \mathrm{r} 1$	$2_{6} \mathrm{~b} 5$
${ }_{2} \mathrm{~b} 9$	$5_{8} \mathrm{~b} 3$
$5_{17} \mathrm{~b} 3$	$3_{20} \mathrm{~b} 9$

$5_{21} \mathrm{C} 1 \quad 7_{23} \mathrm{r} 8$
$1_{248}{ }_{25} \mathrm{~b} 6 \quad 8{ }_{26} 1_{27 \mathrm{r}} \mathrm{r}$
$6_{35} \mathrm{c} 4 \quad 7_{36} 9_{37} \mathrm{~b} 5$

6^{*}	3^{*}	1_{27}	8_{26}	2_{16}	9_{51}	5^{*}	7_{57}	4_{2}
2_{14}	9_{45}	5_{59}	4^{*}	7_{61}	6_{37}	1_{29}	3_{63}	8^{*}
8_{10}	4_{11}	7_{60}	1_{28}	3_{62}	5_{58}	2_{15}	9_{64}	6_{55}
4_{12}	7_{42}	2_{13}	5_{22}	6^{*}	1^{*}	3_{47}	8_{1}	9_{48}
5_{21}	1_{31}	3_{39}	9_{37}	8_{34}	7_{36}	6_{40}	4^{*}	2^{*}
9_{33}	8^{*}	6_{41}	3_{38}	4_{5}	2_{6}	7_{43}	5_{19}	1_{30}
3^{*}	5_{17}	4^{*}	2^{*}	1_{24}	8_{25}	9_{49}	6_{56}	7_{54}
1_{32}	6_{44}	9_{46}	7_{23}	5^{*}	4_{4}	8^{*}	2_{7}	3_{20}
7^{*}	2_{9}	8_{8}	6_{35}	9_{52}	3_{53}	4_{3}	1^{*}	5_{18}

750 r 1

Puzzle 88

$1_{2} 9_{3} \mathrm{c} 114 \mathrm{rl}$: 1c9b8		,	42	14	5	917	315	6	8	23
		2*	531	314	850	6_{52}	753	1_{6}	99	434
15 c 4	169738 C 7	93	648	847	433	1*	225	38	530	732
		643	9*	710	2*	842	$1{ }_{19}$	5*	437	321
710 b 2	$9_{11} \mathrm{c} 4$	322	841	429	7*	540	9_{18}	2*	638	120
223 rl	530 c 8	544	1*	21	3_{16}	436	646	9_{7}	735	839
$7_{32} 4_{33} \mathrm{H} 3$	$\begin{aligned} & \text { 436r6: } \\ & 4 \mathrm{c} 6 \mathrm{~b} 6 \end{aligned}$	845	228	56	651	3*	4_{61}	755	1*	9*
		12	749	659	9_{11}	227	8_{58}	456	3*	563
540 r 5	850 c 4	4*	3_{13}	9_{12}	15	754	56	857	226	6_{64}

Puzzle 89
$1_{3} 5_{4} \mathrm{r} 1 \quad 2{ }_{9} \mathrm{~b} 1:$
34(32)(33)
$\begin{array}{lll}3_{10} \mathrm{~b} 8 & 5_{12} \mathrm{c} 1 & 6_{17} \mathrm{~g}\end{array}$
$8_{19} \mathrm{c} 7 \quad 7_{201} 8 \quad 22_{23} \mathrm{~b} 9$
$7{ }_{26} 9_{27} \mathrm{c} 1$:
$34 \mathrm{r} 3 \mathrm{~b} 1 \rightarrow 68(21)(31)$
$4_{31} \mathrm{~g} \quad 3{ }_{35} \mathrm{~b} 1 \quad 737 \mathrm{c} 2$

7_{26}	9_{28}	2_{9}	4^{*}	5_{4}	1_{3}	6_{17}	3^{*}	8^{*}
8_{55}	5^{*}	1^{*}	6_{53}	3_{56}	2_{50}	4_{33}	7_{20}	9_{25}
6_{54}	3_{35}	4_{32}	9_{51}	8_{63}	7_{62}	2_{34}	1_{7}	5_{8}
9_{27}	6_{38}	3_{36}	2_{44}	1^{*}	8_{42}	5^{*}	4_{43}	7^{*}
4^{*}	1_{1}	7_{41}	3^{*}	9_{46}	5_{13}	8_{19}	2_{45}	6_{18}
5_{12}	2^{*}	8_{40}	7_{52}	6_{60}	4_{59}	1^{*}	9_{47}	3_{10}
3^{*}	4_{31}	5_{16}	8^{*}	2_{49}	9_{48}	7_{21}	6^{*}	1_{6}
2^{*}	8_{30}	9_{29}	1_{5}	7_{64}	6_{61}	3_{11}	5_{15}	4_{24}
1_{2}	7_{37}	6_{39}	5_{14}	4_{58}	3_{57}	9^{*}	8_{22}	2_{23}

$4_{43 \mathrm{r}} 4 \quad 9_{48} \mathrm{r} 7 \quad 7_{52} \mathrm{c} 4$

Puzzle 90

$23_{3} \mathrm{C} 4 \quad 25 \mathrm{~b} 7 \quad 3_{7} 9_{8} \mathrm{r} 1$
$4_{11} 3_{12} \mathrm{r} 4:$
$3 \mathrm{r} 7 \mathrm{~b} 9 \rightarrow 3 \mathrm{c} 1 \mathrm{~b} 2$
$5_{168_{17}} 4: 58 \mathrm{r} 2 \mathrm{~b} 18_{18} \mathrm{~g}$
$7_{19} \mathrm{~g}: 3 \mathrm{r} 7 \mathrm{~b} 9$

$$
5_{21} 2_{22} 8_{23} \mathrm{c} 2
$$

626g: 13c1b2 $6_{27} \mathrm{c} 4$
$7_{30} \mathrm{~b} 4 \quad 9_{32} \mathrm{~g}: 3 \mathrm{r} 7 \mathrm{~b} 9$

6*	1*	42	98	2*	37	754	561	862
818	521	225	627	4_{1}	730	131	3*	9*
99	310	7*	5_{16}	138	839	629	4*	25
2*	411	6_{26}	728	312	136	8*	937	5*
150	720	845	4*	943	547	352	26	649
451	9*	546	23	844	648	$4{ }_{15}$	760	159
7_{19}	222	932	1*	657	4*	555	858	353
5*	624	335	8_{17}	741	942	2*	135	414
413	823	134	3*	556	24	9_{40}	663	764

Puzzle 91

$4 \mathrm{rr1}$	$24 \mathrm{b9}$	1*	25	41	5*	931	6*	3*	730	829
		937	55	3_{62}	7*	161	826	210	4*	659
25r1	$5147_{156}{ }_{16} \mathrm{c} 5$	654	740	863	29	3_{64}	411	534	932	160
31865	32293388	843	4*	739	617	514	318	142	2*	9_{35}
		27	3*	144	4_{12}	8*	9_{19}	646	533	738
8278	829730 I 1	5*	645	936	1*	715	28	847	320	4_{13}
$9_{32} 5_{33} \mathrm{C} 8$	738 c 9	355	149	556	825	4*	757	9*	652	24
		7*	923	26	322	6_{16}	128	43	827	5*
$1_{42} \mathrm{r} 4$	848149 C 2	4_{2}	848	653	9_{24}	2*	558	74	151	321

Puzzle 92

Puzzle 93

72 b 5	39r4	2*	4*	854	535	77	9_{53}	149	344	643
		622	9_{30}	562	3*	158	4_{18}	7*	221	8_{63}
210r8:		38	76	161	21	642	860	4_{17}	9_{51}	564
2(28)(29)/(58)(59)		9_{29}	128	220	825	4*	5*	39	6*	73
$4_{11}{ }^{4}$	$2{ }_{19} \mathrm{~b} 8$	7*	527	623	936	357	159	8*	4_{16}	219
		4_{15}	826	3*	6_{24}	2*	72	548	1_{50}	9_{52}
622 c 1	82565	1*	213	412	7*	534	641	947	846	345
527128 b 2	532c1	833	6*	75	4_{11}	9_{55}	356	210	5*	138
		532	314	9_{31}	137	839	2*	640	74	4*

548c7

PRACTICE SET 11

Puzzle 94

					1^{*}		6^{*}	
		7^{*}				3^{*}		
4^{*}		5^{*}						
7^{*}			4^{*}	5^{*}				
	8^{*}		6^{*}				2^{*}	
	6^{*}		2^{*}	3^{*}				
						5^{*}		
						7^{*}		

Puzzle 95

			3^{*}	5^{*}			4^{*}	
	7^{*}	6^{*}						
		5^{*}				7^{*}		6^{*}
3^{*}				2^{*}				
						1^{*}		
	1^{*}		7^{*}		6^{*}			
8^{*}							2^{*}	
			5^{*}					

Puzzle 96

1^{*}		6^{*}		3^{*}				
					5^{*}	4^{*}		
7^{*}								
	2^{*}		8^{*}		4^{*}			
							7^{*}	1^{*}
			2^{*}					
5^{*}				1^{*}			6^{*}	
	4^{*}					8^{*}		

Puzzle 97

	6^{*}				1^{*}			
2^{*}							7^{*}	
3^{*}			2^{*}	6^{*}				
8^{*}							1^{*}	
			3^{*}			4^{*}		
	4^{*}		5^{*}					8^{*}
	1^{*}			$7 *$				
						3^{*}		

Puzzle 98

				5^{*}			2^{*}	
6^{*}						4^{*}		
3^{*}								
	8^{*}	2^{*}	1^{*}					
							5^{*}	
								6^{*}
	5^{*}	4^{*}				2^{*}		
			3^{*}		6^{*}	1^{*}		
			7^{*}					

Puzzle 99

4^{*}							1^{*}	9^{*}
	6^{*}		2^{*}					
							7^{*}	
			8^{*}	3^{*}		2^{*}		
7^{*}						3^{*}		
		1^{*}						
	8^{*}			6^{*}		5^{*}		
					7^{*}		4^{*}	

Puzzle 100

7^{*}				8^{*}				
				4^{*}			1^{*}	
					3^{*}		2^{*}	
3^{*}		7^{*}				5^{*}		
			1^{*}		6^{*}			
5^{*}			2^{*}					
6^{*}	1^{*}							
						8^{*}		
								9^{*}

Puzzle 94
$5_{3} \mathrm{r} 7 \quad 4_{9} \mathrm{c} 2$
$6_{10} \mathrm{~b} 1 \quad 7_{11} 3_{12} \mathrm{c} 4:$
7r6b8 1_{20} b5
$22_{1} \mathrm{~b} 9 \quad 322 \mathrm{C} 9$
$323 \mathrm{C} 2 \quad 424 \mathrm{c} 6$
$4_{28} \mathrm{~b} 8 \quad 1_{32} \mathrm{r} 5$
134r4: 1c2b1 $\quad 1_{37} \mathrm{r} 7 \quad 240 \mathrm{c} 2$

Puzzle 95

$2_{1} \mathrm{~b} 6$	$2_{2} \mathrm{~b} 8$
$6_{3} \mathrm{r} 1$	$7_{9} \mathrm{c} 1$
$1_{14} \mathrm{~b} 9$	$5_{16} \mathrm{~b} 3$
$3_{21} \mathrm{~b} 1$	$3_{25} 4_{26} \mathrm{c} 9$
$8_{27} \mathrm{~g}: 49 \mathrm{c} 3 \mathrm{~b} 3$	
$1_{30} \mathrm{~b} 2$	$4_{45} \mathrm{c} 2$

2_{37}	8_{29}	1_{31}	3^{*}	5^{*}	7_{12}	6_{3}	4^{*}	9_{38}
9_{57}	7^{*}	6^{*}	2_{36}	4_{56}	8_{52}	3_{23}	1_{15}	5_{20}
4_{58}	5_{18}	3_{21}	1_{33}	6_{8}	9_{55}	2_{24}	7_{11}	8_{39}
1_{30}	2_{35}	5^{*}	8_{53}	3_{41}	4_{54}	7^{*}	9_{49}	6^{*}
3^{*}	9_{46}	7_{28}	6_{7}	2^{*}	1_{32}	8_{48}	5_{44}	4_{26}
6_{6}	4_{45}	8_{27}	9_{47}	7_{13}	5_{43}	1^{*}	3_{42}	2_{2}
5_{16}	1^{*}	2_{17}	7^{*}	9_{59}	6^{*}	4_{63}	8_{50}	3_{25}
8^{*}	6_{5}	9_{61}	4_{60}	1_{34}	3_{40}	5_{19}	2^{*}	7_{10}
7_{9}	3_{22}	4_{62}	5^{*}	8_{51}	2_{1}	9_{64}	6_{4}	1_{14}

Puzzle 96
$1_{2} \mathrm{~b} 5 \quad 4{ }_{8} \mathrm{~b} 1 \quad 7_{14 \mathrm{r}} 4$
$7_{15 \mathrm{~b}} \quad 6_{171} 2$
619r4: 6c1b3
$6{ }_{20} 7_{21} \mathrm{c} 2: 6 \mathrm{r} 5 \mathrm{~b} 5$
825b8 526c $^{2}: 5 \mathrm{r} 4 \mathrm{~b} 8$
$330 \mathrm{c} 2 \quad 5_{33} \mathrm{~b} 5$

1^{*}	9_{31}	6^{*}	4_{9}	3^{*}	7_{15}	5_{26}	8_{42}	2_{43}
2_{47}	3_{30}	8_{48}	1_{7}	6_{17}	5^{*}	4^{*}	9_{44}	7_{16}
7^{*}	5_{27}	4_{8}	9_{41}	8_{37}	2_{40}	1_{6}	3_{32}	6_{18}
3_{62}	2^{*}	1_{3}	8^{*}	7_{14}	4^{*}	6_{19}	5_{36}	9_{63}
4_{13}	8_{29}	5_{28}	6_{52}	9_{39}	3_{53}	2_{1}	7^{*}	1^{*}
9_{61}	6_{20}	7_{22}	2^{*}	5_{33}	1_{2}	3_{60}	4_{12}	8_{25}
5^{*}	7_{21}	2_{46}	3_{54}	1^{*}	8_{55}	9_{59}	6^{*}	4_{11}
6_{50}	4^{*}	3_{57}	7_{24}	2_{38}	9_{56}	8^{*}	1_{5}	5_{35}
8_{49}	1_{4}	9_{58}	5_{34}	4_{10}	6_{51}	7_{23}	2_{45}	3_{64}

$8_{37} 2_{38} \mathrm{C} 5 \quad 8_{42} \mathrm{r} 1$

Puzzle 97

$1{ }_{2} \mathrm{~b} 5 \quad 4_{8} \mathrm{c} 1$
$6_{12} 2_{13 \mathrm{r}} 5 \quad 7_{14 \mathrm{C}} 7$
$7_{19 \mathrm{c}} 9 \quad 6_{22} \mathrm{c} 4$
$823 \mathrm{~b} 5 \quad 8_{25} \mathrm{~b} 6$
$3_{27} \mathrm{~b} 3 \quad 66_{36 \mathrm{c} 3} \quad 5_{39 \mathrm{r}} 9$
$5_{46} \mathrm{c} 8 \quad 5_{50} 4 \quad 754 \mathrm{c} 6$

4_{8}	6^{*}	7_{61}	8_{34}	9_{58}	1^{*}	5_{63}	3_{21}	2_{49}
2^{*}	3_{31}	9_{56}	6_{22}	4_{18}	5_{55}	8_{35}	7^{*}	1_{7}
1_{4}	8_{33}	5_{62}	7_{59}	3_{30}	2_{45}	9_{64}	6_{20}	4_{17}
3^{*}	9_{51}	1_{3}	2^{*}	6^{*}	4_{10}	7_{14}	8_{24}	5_{50}
8^{*}	2_{13}	4_{9}	9_{60}	5_{59}	7_{54}	6_{12}	1^{*}	3_{1}
5_{41}	7_{52}	6_{36}	3^{*}	1_{2}	8_{23}	4^{*}	2_{47}	9_{53}
7_{32}	4^{*}	3_{27}	5^{*}	2_{43}	6_{38}	1_{6}	9_{44}	8^{*}
9_{40}	1^{*}	8_{26}	4_{11}	7^{*}	3_{29}	2_{48}	5_{46}	6_{19}
6_{37}	5_{39}	2_{28}	1_{5}	8_{25}	9_{42}	3^{*}	4_{16}	7_{15}

Puzzle 98
$1_{2} \mathrm{~b} 8 \quad 53 \mathrm{~b} 6$
29r6: 2c5b6 $\quad 6_{10 r} 4$
$6_{11} 3_{12} 7_{13 r} 7 \quad 2_{17} \mathrm{c} 4$
$3_{19} \mathrm{~b} 7 \quad 4_{21} \mathrm{r} 3: 4 \mathrm{c} 5 \mathrm{~b} 6$
$4_{22} \mathrm{C} 4 \quad 4_{23} 2_{24} 8_{25}$ r8
$9_{31} \mathrm{c} 1 \quad 833 \mathrm{c} 4$
$9_{37} \mathrm{~g}: 8 \mathrm{c} 7 \mathrm{~b} 8 \quad 4_{39} \mathrm{c} 8$

Puzzle 99
$1_{1} 22_{3} 3 \mathrm{c} 1 \quad 2{ }_{11} \mathrm{~b} 4$
$\begin{array}{lll}3 & 3_{15} \mathrm{~b} 6 & 6{ }_{18} \mathrm{~b} 3\end{array} 4_{19} \mathrm{~g}$
$4_{20} \mathrm{C} 5 \quad 7_{22 \mathrm{r}} 4 \quad 5_{24} \mathrm{C} 3$
$830 \mathrm{r} 4 \quad 6_{32} \mathrm{~b} 5 \quad 738 \mathrm{~b} 8$
$5_{43} \mathrm{C} 7 \quad 347 \mathrm{r} 1$

2_{2}	3_{47}	4_{19}	5_{35}	7_{40}	9_{41}	8^{*}	1^{*}	6_{48}
7^{*}	6_{49}	8_{25}	1_{7}	3^{*}	4_{29}	2_{14}	5_{62}	9_{63}
5^{*}	9_{50}	1_{8}	6^{*}	2_{11}	8_{28}	3_{46}	7_{59}	4_{60}
6^{*}	7_{22}	9^{*}	3_{16}	8_{30}	5_{31}	4^{*}	2_{10}	1_{4}
3_{3}	4_{21}	5_{24}	9_{33}	1^{*}	2^{*}	7_{53}	6_{51}	8_{52}
1_{1}	8_{26}	2_{9}	7^{*}	4_{20}	6_{32}	5_{43}	9_{45}	3_{44}
8_{42}	5_{27}	7_{23}	4^{*}	9_{39}	1_{6}	6^{*}	3_{17}	2_{13}
9_{56}	2^{*}	3^{*}	8_{34}	6_{36}	7_{38}	1_{5}	4_{61}	5_{64}
4_{57}	1^{*}	6_{18}	2_{12}	5_{37}	3_{15}	9_{54}	8_{55}	7_{58}

Puzzle 100
$12 \mathrm{~b} 2 \quad 2{ }_{8} 6 \mathrm{gr} 4$
$2_{10} \mathrm{~b} 4 \quad 6_{13} \mathrm{~b} 9$
2 146 $_{15} \mathrm{c} 5: 2 \mathrm{r} 7 \mathrm{~b} 9$
$3{ }_{20} 7_{21} 9_{22} \mathrm{~b} 5: 48 \mathrm{c} 5 \mathrm{~b} 4$
$3_{24} 4$ 4: 3r7b9
$3{ }_{25 \mathrm{~g}}: 489 \mathrm{r} 5 \mathrm{~b} 2 \& 7 \mathrm{c} 8 \mathrm{~b} 9$
$8_{26} 9_{27} \mathrm{c} 8 \quad 4_{30} 3_{31} r 1 \quad 5_{43} \mathrm{r} 2 \quad 9_{46} \mathrm{C} 1$

5. PADAGOGY EFFICIENCY

5.1. BIKINI AND OPEN TOP PROBLEMS

This is an excerpt from (21). The purpose to share some intuitive insights of typical optimization problems with those teaching as well as learning the standard method of using the differential calculus. Among other things, we shall explain intuitively the reason for the optimal solution to be attained at the critical point of the objective function in question. This kind of interpretation is often missing in existing textbooks.

In addition, we shall use the idea of the boundary being the marginal change of a wellrounded region (a region possessing an inscribed circle) with respect to the inradius (the radius of the inscribed circle) to solve optimization problems more efficiently and categorically.

We shall first explore the following three optimization problems.

- Bikini problem. Given a fixed material to form the total area of a bikini (two identical circles and one equilateral triangle), what is the maximum enclosure (combined perimeter)?
- Minimum enclosure problem. Given a fixed length, how can two well-rounded regions be formed with the minimum combined area?
- Open top problem. How can the largest open box be formed from a rectangular sheet of cardboard by first cutting off identical squares in all corners and then folding up the resulting flaps?

Take the last problem for example, we shall explain that to require the resulting box to be neither too shallow nor too narrow is the reason for the maximum volume to be attained at the critical point of the objective function in question.

In addition, we shall introduce a quick way of solving a wide spectrum of optimization problems in differential calculus based on the following three theorems. In other words, for a well-rounded region or a rectangle its boundary is the marginal change of its area.

Theorem I. For a polygon with an inscribed circle, its perimeter is the derivative of its area with respect to the inradius or apothem, the radius of the inscribed circle.

Theorem II. For a circle, its circumference is the derivative of its area with respect to the radius.

Theorem III. For a rectangle, its perimeter is the total differential derivative of its area.

GENERALIZATION OF BIKINI PROBLEM

Theorem 1. Let A be the sum of the areas of p identical circles and q identical regular ngons. Then the maximum combined perimeter is attained when the radius of the circles equals the inradius of the polygons. In this case, the maximum combined perimeter is

$$
2 \sqrt{\left(p \pi+q n \tan \frac{\pi}{n}\right) A}
$$

Proof. Let x be the radius of each circle and $y(x)$ the inradius of each n-gon. Since

$$
p \pi x^{2}+\mathrm{qntan} \frac{\pi}{n} y(x)^{2}=\mathrm{A},
$$

It follows that

$$
y^{\prime}(x)=-\frac{p \pi x}{q n \pi \tan \frac{\pi}{n} y(x)}
$$

and

$$
y^{\prime \prime}(x)=-\frac{p \pi}{q n \tan \frac{\pi}{n}}\left[\frac{x}{y(x)}\right]^{\prime}=-\frac{p \pi\left[q n \tan \frac{\pi}{n} y(x)^{2}+p \pi x^{2}\right]}{\left(q n \tan \frac{\pi}{n}\right)^{2} y(x)^{3}}<0 .
$$

Let $\mathrm{P}(\mathrm{x})$ denote the combined perimeter $2 p \pi x+2 q n \tan \frac{\pi}{n} y(x)$. Then

$$
P^{\prime}(x)=2 p \pi+2 q n \tan \frac{\pi}{n} y^{\prime}(x)=2 p \pi-\frac{2 p \pi x}{y(x)}
$$

and then

$$
P^{\prime \prime}(x)=2 q n \tan \frac{\pi}{n} y y^{\prime \prime}(\mathrm{x})<0 .
$$

Hence the maximum of $\mathrm{P}(\mathrm{x})$ is attained when $P^{\prime}(x)=0$, i.e. $y(x)=x$. In this case,

$$
\begin{aligned}
P(x) & =2\left(p \pi+q n \tan \frac{\pi}{n}\right) \mathrm{x} \\
& =2\left(p \pi+q n \tan \frac{\pi}{n}\right) \sqrt{\frac{A}{p \pi+q n \tan \frac{\pi}{n}}} \\
& =2 \sqrt{\left(p \pi+q n \tan \frac{\pi}{n}\right) A} .
\end{aligned}
$$

Similarly, we can prove the following theorems.
Theorem 2. Let \boldsymbol{A} be the sum of the areas of p identical regular m-gons and q identical regular n-gons. Then the maximum combined perimeter is attained when all of the inradii are equal. In this case, the maximum combined perimeter is
$2 \sqrt{(p m \tan \pi / m+q n \tan \pi / n) A}$.

Theorem 3. Let the sum of the volumes of p identical equilateral tetrahedrons, q identical spheres and r identical cubes be fixed. Then the maximum combined surface area is attained when all the inradii and radii are identical.

ENCLOSURE OF THE MINIMUM COMBINED AREA OF TWO REGIONS WITH A FIXED SUM OF BOUNDARIES

Let \boldsymbol{P} be a circle of radius x and \boldsymbol{Q} a regular n-gon (or a triangle with fixed interior angles) of inradius y. We shall show that if the sum of \boldsymbol{P} (the circumference of \boldsymbol{P}) and \boldsymbol{Q} (the perimeter of \boldsymbol{Q}) is fixed, then the minimum combined area enclosed is attained when $x=y$. This is certainly not the case for an irregular n-gon \boldsymbol{Q} with $n>3$. However, the same method will be applied to find the minimum combined area enclosed by \boldsymbol{P} and \boldsymbol{Q} with $\boldsymbol{P}+\boldsymbol{Q}$ being fixed for various Q 's.

Theorem 4. If the sum of \boldsymbol{P} and \boldsymbol{Q} is fixed, when $y=x$ the minimum combined area of \boldsymbol{P} and \boldsymbol{Q} (a regular n-gon) is attained as $(\pi+n \tan \pi / n) x^{2}$.

Proof. Write $y=y(x)$. Since $2 \pi x+2 n y(x) \tan \pi / n$ is fixed, we have

$$
y^{\prime}(x)=-\frac{\pi}{n \tan \pi / n}
$$

Let $A(x)$ be the combined area of \boldsymbol{P} and \boldsymbol{Q}. Then $A(x)=\pi x^{2}+n y(x)^{2} \tan \pi / n$. It follows that

$$
A^{\prime}(x)=2 \pi x+2 n y(x) y^{\prime}(x) \tan \pi / n=2 \pi[x-y(x)]
$$

and

$$
\mathrm{A}^{\prime \prime}(\mathrm{x})=2 \pi\left[1-y^{\prime(x)}\right]>0
$$

Therefore, the required minimum is attained when $y(x)=x$.

Similarly, we can prove the following theorems.

Theorem 5. If the sum of Q_{m} and Q_{n} is fixed for regular m-gon Q_{m} with inradius x_{m} and n -gon Q_{n} with inradius x_{n}, then then the minimum combined area enclosed is attained as $(m \tan \pi / m+n \tan \pi / n) x_{m}{ }^{2}$.

Theorem 6. Let a circle \boldsymbol{P} and an equilateral triangle (or a square) \boldsymbol{Q} be enclosed by a fixed length. Then the minimum combined area is attained when \boldsymbol{P} can be inscribed in \boldsymbol{Q}.

Theorem 7. Let a sphere \boldsymbol{P} and an equilateral tetrahedron (or a cube) \boldsymbol{Q} be enclosed by a fixed surface area. Then the minimum combined volume enclosed is attained when \boldsymbol{P} can be inscribed in \boldsymbol{Q}.

OPEN TOP PROBLEMS

Let $V(x)$ be the volume of the open box formed from the cardboard of length a and width $b(\leq a)$ by cutting off identical squares of length x in all corners. Then

$$
V(x)=(a-2 x)(b-2 x) x, 0 \leq x \leq b / 2 .
$$

Since

$$
V^{\prime}(x)=(a-2 x)(b-2 x)-2 x[(a-2 x)+(b-2 x)]
$$

and since $\mathrm{V}(0)=0=\mathrm{V}(\mathrm{b} / 2)$, it follows that the maximum volume is attained when the area of the bottom equals the lateral area of the open box so that the resulting box is neither too shallow nor too narrow; or when $\frac{2 x}{a-2 x}+\frac{2 x}{b-2 x}=1$, namely when

$$
x=\frac{a+b-\sqrt{a^{2}+b^{2}-a b}}{6} .
$$

In the two dimensional case, the area of the open rectangle formed from a string of length a by folding up both end segments of length x is $V(x)=(a-2 x) x$, which attains the maximum when $\mathrm{x}=\mathrm{a} / 4$.

A QUICK WAY OF SOLVING OPTIMIZATION PROBLEMS

In some calculus textbooks such as [1], there are limited discussions along the line of Theorem II of section I which can be obtained by taking $n \rightarrow \infty$ in Theorem I, n being the number of sides of the polygon.

Proof of Theorem I. Let x be the inradius and 0 the center of the inscribed circle of the polygon Q. Let A and B be any two adjacent vertices of Q. Then the area of the triangle $A O A B$ is the derivative of which is the length $\mathrm{x}(\cot \mathrm{A}+\cot \mathrm{B})$ of the side $A B$. Since the sum of the areas of all such triangles and the sum of the lengths of all such sides are, respectively, the area and the perimeter of Q , the proof is completed.

The implication of Theorem I is that for a well-rounded region (with an inscribed circle), the marginal change of its area is its boundary.

Proof of Theorem III. Let x and y be the $\frac{1}{2}$ of the length and width, respectively. Since x and y vary independently, the total differential derivative of the area $4 x y$ is the perimeter $4(\mathrm{x}+\mathrm{y})$.

Theorems I, II and III along with their extensions Theorem IV, V and VI can be used to solve many optimization problems more efficiently and categorically as follows.

Theorem IV. For a circular right cylinder (or a polygonal right cylinder with an inscribed circular right cylinder), the area of its top (or bottom) is the derivative of its volume with respect to the height, and the area of its lateral surface is the derivative of its volume with respect to the radius (or inradius).

Theorem V. For a sphere (or a polygonal solid with an inscribed sphere), its surface area is the derivative of its volume with respect to the radius (or inradius).

Theorem VI. For a rectangular box, its surface area is the total differential derivative of its volume.

Example 1. Open Top Problem revisited.

Solution. Let $V(x)$ be the volume and $A(x)$ the area of the bottom of the open box. Then $V(x)=x A(x)$. Thus the required maximum is attained when

$$
x A^{\prime}(x)+A(x)=V^{\prime}(x)=0 .
$$

Since $A(x)$ varies negatively with x ,

$$
\mathrm{A}^{\prime}(\mathrm{x})=-2[(\mathrm{a}-2 \mathrm{x})+(b-2 x)] .
$$

Therefore, the required x can be obtained by solving the following equation

$$
2 \mathrm{x}[(\mathrm{a}-2 \mathrm{x})+(b-2 \mathrm{x})]=(a-2 x)(\mathrm{b}-2 \mathrm{x}) .
$$

Example 2. Let c be the sum of the areas of two well-rounded regions. Find the maximum sum $\mathrm{P}(\mathrm{x})$ of the boundaries.
Solution. Let x be the inradius of one region with the area $a x^{2}$ and $y(x)$ the inradius of the other region with the area $\mathrm{b}[\mathrm{y}(\mathrm{x})]^{2}$. From $a x^{2}+b[\mathrm{y}(\mathrm{x})]^{2}=c$, we can obtain $y^{\prime}(x)=-a x / b y(x)$. Since $P(x)=2 a x+2 b y(x)$, it follows that

$$
P^{\prime}(x)=2 a+2 b y^{\prime}(x)=2 a[1-x / y(x)]
$$

and

$$
P^{\prime \prime}(x)=2 a\left\{-\left[y(x)-x y^{\prime}(x)\right] / y(x)^{2}\right\}=-\mathrm{ac} / y(x)^{3}<0 .
$$

Therefore, the maximum of $\mathrm{P}(\mathrm{x})$ is $2 \sqrt{c(a+b)}$ when $y(x)=x=\sqrt{c /(a+b)}$.

Example 3. Given a fixed length c to form two well-rounded regions, find the minimum combined area.

Solution. Let x and $y(x)$ be the inradii of the given regions with the areas $a x^{2}$ and $\mathrm{b}[\mathrm{y}(\mathrm{x})]^{2}$, respectively. Since the sum of the boundaries is $2 \mathrm{ax}+2 \mathrm{by}(\mathrm{x})=\mathrm{c}$, it follows that $y^{\prime}(x)=-a / b$. Hence the derivative of the combined area $A(x)$ is

$$
A^{\prime}(x)=2 a x+2 b y(x) y^{\prime}(x)=2 a[x-y(x)]
$$

so that

$$
\mathrm{A}^{\prime}(\mathrm{x})=2 \mathrm{a}\left[1-\mathrm{y}^{\prime}(\mathrm{x})\right]=2 \mathrm{a}(1+\mathrm{a} / \mathrm{b})>0 .
$$

Therefore, the minimum of $A(x)$ is $c^{2} / 4(a+b)$ when $y(x)=x=c / 2(a+b)$.

Example 4. Find the minimum surface area of a right circular cylindecr (or a right cylinder with an inscribed circular cylinder) of fixed volume c.
Solution. Let x be the radius (or inradius) of the top and $y(x)$ the height of the cylinder. Then the area and the circumference (or the perimeter) of the top are $A(x)=a x^{2}$ and $A^{\prime}(x)=2 a x$, respectively. Since the volume $y(x) A(x)$ is fixed, it follows that

$$
y^{\prime}(x)=-y(x) A^{\prime}(x) / A(x)=-2 y(x) / x .
$$

Let $S(x)$ be the surface area of the cylinder. Then

$$
S(x)=2 A(x)+2 \operatorname{axy}(x)
$$

Hence

$$
S^{\prime}(x)=2 A^{\prime}(x)+2 a\left[x y^{\prime}(x)+y(x)\right]=2 a[2 x-y(x)],
$$

and

$$
S^{\prime \prime}(x)=2 a\left[2-y^{\prime}(x)\right]=4 a[1+y(x) / x]>0 .
$$

Therefore, the minimum of $S(x)$ is $3 \sqrt[3]{2 a c^{2}}$ when $y(x)=2 x=\sqrt[3]{c / 2 a}$.

Example 5. Find the maximum volume of the above cylinder if the sum of the height and the girth (the circumference or the perimeter of the top) is fixed to be c.
Solution. We adopt the same notations and some of the results from Example 4. Since $y(x)+2 a x=c$, the volume $V(x)$ of the cylinder attains the maximum when

$$
0=V^{\prime}(x)=y(x) A^{\prime}(x)+A(x) y^{\prime}(x)=y(x)(2 a x)+a x^{2}(-2 a)=2 a x[y(x)-a x]
$$

namely when the height equals half of the girth. In this case, $x=c / 3 a$ so that the maximum volume is $c^{3} / 27 a$, since

$$
V^{\prime \prime}(x)=2 a x\left[y^{\prime}(x)-a\right]+2 a[y(x)-a x]=-6 a^{2} x<0 .
$$

5.3. SIMPLIFIED SIMPLEX METHOD

We shall simplify the simplex method of linear programming substantially by using cross-multiplication.

The simplex method in (4) was named in (3) among the top ten algorithms of the $20^{\text {th }}$ century. Although a number of variations in (7) and (14) have been introduced since then, the original algorithm has remained widely used for both reference and instruction in (5) and (10).

Over the years of teaching out of (10), I have encountered different types of "abnormal" problems that would give erroneous solutions had the algorithm stated in that book been used. For the remedies, whenever a pivot is found in either the same row or the same column as an old one (first type of abnormality), restart with the new pivot in the original system; otherwise, perform the "slope check" for each old pivot and when the "check number" is negative for a certain pivot (second type of abnormality), eliminate the entire inequality involving that pivot and restart with the new system. Furthermore, the new method of using cross-multiplication substantially simplified the process of finding the solutions of "normal" problems.

The proof of the maximization algorithm for the case of three variables will be given in theend via comparisons among values of the objective function at all feasible solutions of the variables. Short-hand notations for pertinent determinants of the coefficients of linear equations under the inequality constraints of a given problem enable us to efficiently express the relationship between function values at any pair of feasible solutions.

$$
\begin{array}{lr}
\text { Example 1. } \begin{array}{l}
\text { Maximize } \\
\text { subject to }
\end{array} \quad w=3 x+4 y \\
& x+2 y \leq 8 \\
2 x+3 y \leq 13 \\
& x \geq 0, y \geq 0 .
\end{array}
$$

Solution.

In stead of forming the first tableau T_{1} of the coefficients of the original system T_{0} as below

3	4	
1	2	8
2	3	13

we shall directly find the pivot on T_{0} :

$$
\begin{array}{lrr}
& \mathrm{v} \\
\text { Maximize } & w=3 x+4 y & \\
\text { subject to } & x+2 y \leq 8 & 8 / 2 \mathrm{v} \\
& 2 x+3 y \leq 13 & 13 / 3 \\
& x \geq 0, y \geq 0 .
\end{array}
$$

As illustrated above, find the greatest positive coefficient in the top row to yield the pivot column (as checked), find the least positive quotient of the last column over the pivot column to yield the pivot row (as checked) and find the pivot (as subscripted with 1).

Copy the pivot row from T_{0}, change the other coefficients of the pivot column to 0 , Perform the cross-multiplication from the pivot 2_{1} to each of the remaining coefficients to yield the second tableau T_{2} and find the pivot 1_{2} as illustrated below.

$$
\begin{array}{rlll}
\mathrm{v} & & & \\
2 \times 3-4 \times 1=2 & 0 & 8 & 8 / 1 \\
1 & 2 & 8 \\
2 \times 2-3 \times 1=1_{2} & 0 & 2=2 \times 13-3 \times 8 & 2 / 1 \mathrm{v}
\end{array}
$$

Proceed as before to obtain the third tableau T_{3} :

0	0		
0	2	6	$y=6 / 2=3$
1	0	2	$x=2 / 1=2$

No pivot can be found in T_{3} and from which the variables involving pivots are solved.

This is a simplification of the method using the transformation [6],

p	q			
r	s	\rightarrow	l / p	q / p
		$-\mathrm{r} / \mathrm{p}$	$\mathrm{s}-\mathrm{r} / \mathrm{p}$	

where p is the pivot, q is any other entry in the pivot row, r is any other entry in the pivot column and s is the entry in the row of r and the column of q as shown below.

Since $w=3(6.5)+4(0)=19.5$, we see that "the solution" obtained above was erroneous! This type of error occurs whenever the slope of w is either greater than or less than the slopes of all non-trivial equations under the inequality constraints imposed on the problem.

Therefore, after finding each new pivot, the "slope check" is indispensable. To do that, in our case, perform the cross-multiplication from the top coefficient of the y-column of T_{0} (the old pivot column) to the new pivot:

$$
\text { Slope check: } \quad(4)(2)-(3)(3)=-1<0 .
$$

The negative check number eliminates the pivot in the y-column. Restart with the new pivot in

$\mathrm{T}_{1:}$	3	4		
	1	2	8	
	2_{1}	3	13	
$\mathrm{~T}^{\prime} 2:$	0	-1		
	0	1	3	$y=0$ (no pivot in y column)
	2	3	13	$x=13 / 2=6.5$

Therefore, the maximum of $w=3(6.5)+4(0)=19.5$.

Example 2.	Maximize	$w=18 x+7 y$
	subject to	$31 x+y \leq 6$
		$6 / 3$
	$3 x+2 y \leq 15$	$15 / 3$
$x \geq 0, y \geq 0$.		

Solution.

$\mathrm{T}_{2}:$		v		
	0	3		
	3	1_{2}	6	$6 / 1 \mathrm{v}$
	0	3	27	$27 / 3$

The new pivot is in the same row as the one previously found. Restart with the new pivot.

$\mathrm{T}_{1}:$	18	7		
	3	1_{1}	6	
	3	2	15	
$\mathrm{~T}_{2}{ }^{\prime}:$	-3	0		
	3	1	6	$y=6 / 1=6$
	-3	0	3	$x=0$ (no pivot in x column)

Therefore, the maximum of $w=18(0)+7(6)=42$.

The algorithm for maximization with non-negative variables bounded from above:

1) Use the original system of linear inequalities as the first tableau. If there is only one non-trivial inequality constraint, form the quotients to the top. The only pivot is on the variable of the column with the greatest quotient. Otherwise, find the greatest positive coefficient in the top row to yield the pivot column and then form the quotients of coefficients in the last column over the corresponding positive coefficients in the pivot column. Find the least positive quotient to determine the pivot row. Mark the pivot with an appropriate subscript. In the event of a tie when comparing quantities, all options need to be executed.
2) From the previous tableau, copy the pivot row and make the coefficients of the pivot column 0 except for the pivot. Starting with the pivot, cross-multiply the pivot column witheach of the other columns to yield the new tableau. Refer the pivot found in the new tableauback to the corresponding coefficient of the original system. If the new pivot is in the same row as an old one, restart with the new pivot in the original system.
3) In the original system, perform the slope check by cross-multiplying from each of the top coefficients of the columns involving pivot to the new pivot. If the check number of a certain column is negative, eliminate the inequality involving pivot in that column and restart with the new system.
4) Continue the same process until no more pivot could be found in the new tableau.
5) The solutions of the variables involving pivot can be obtained from the final tableau.

The variables not involving pivot will yield the solution 0 .
6) The maximum value of the objective function can be obtained by comparing the Function values among all options.

The algorithm for minimization with non-negative variables bounded from below:

1) Use the original system of linear inequalities as the first tableau. If there is only one non-trivial inequality constraint, form the quotients to the top. The only pivot is on the variable of the column with the least quotient. Otherwise, find the greatest positive coefficient in the last column to yield the pivot row and then form the quotients of coefficients in the top row over the corresponding positive coefficients in the pivot row. Find the least positive quotient to determine the pivot column. Mark the pivot with an appropriate subscript. In the event of a tie when comparing quantities, all options need to be executed.
2) From the previous tableau, copy the pivot column and make the coefficients of the pivot row 0 except for the pivot. Starting with the pivot, cross-multiply the pivot row with each of the other rows to yield the new tableau. Refer the pivot found in the new tableau back to the corresponding coefficient of the original system. If the new pivot is in the same column as an old one, restart with the new pivot in the original system.
3) Alongside each new tableau, display the table obtained by omitting the top row of the corresponding tableau constructed as though in the maximization case.
4) In the original system, perform the slope check by cross-multiplying from each of the top coefficients of the columns involving pivot to the new pivot. If the check number of a certain column is negative, eliminate the inequality involving the pivot in that column and restart with the new system.
5) Continue the same process until no more pivot could be found in the new tableau.
6) The solutions of the variables involving pivot can be obtained from the final table. The variables not involving pivot will yield the solution 0 . If one of the solutions is negative, eliminate the inequality involving the first pivot and restart with the new system.
7) The minimum value of the objective function can be obtained by comparing the function values among all options.

$$
\begin{array}{ccc}
& 5 / 2 \\
\text { Example 3. } & \text { Minimize } & w=5 \\
& \text { subject to } & x+6 y \\
& & 2 x+3 y \geq 10 \\
& x \geq 0, y \geq 0 .
\end{array}
$$

Solution.

$\mathrm{T}_{2}:$	v					
	$3 / 1$	$6 / 1$				
	3	6				
	1_{2}	1	18	v	1_{2}	0
	0	3	0	2	3	18

Slope check: $\quad(6)(1)-(1)(5)=1>0$.

$\mathrm{T}_{3}:$	3	3					
	1	0	0	1	0	18	$x=18 / 1=18$
	0	3	0	0	3	-24	$y=-24 / 3=-8$

Since $y=-8$, eliminate the inequality involving the first pivot and restart with T^{\prime} :

$5 / 1$	$6 / 1$		
5	6		$y=0$ (no pivot in y column)
1_{1}	1	10	$x=10 / 1=10$

Therefore, the maximum of $w=5(10)+6(0)=50$.
$\begin{array}{lll}3 / 2 & 1 / 1 & 2 / 2\end{array}$
Example 4. Minimize $\quad w=3 x+y+2 z$

$$
\text { subject to } \begin{aligned}
x+y+z & \geq 42 \\
3 x+2 y+z & \geq 49 \\
2 x+y+2 z & \geq 56 \mathrm{v} \\
x & \geq 0, y \geq 0, z \geq 0 .
\end{aligned}
$$

Solution.
Option 1.

$\mathrm{T}_{1}:$		v		
	$3 / 2$	$1 / 1$	$2 / 2$	
	3	1	2	
	1	1	1	42
	3	2	1	49
	2	1	2	56

| $\mathrm{T}_{2}:$ | 1 | 1 | 0 | | | | | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :--- |
| -1 | 1 | -1 | -14 | -1 | 0 | -1 | -14 | $x=0$ |
| -1 | 2 | -3 | -63 | -1 | 0 | -3 | -63 | $z=0$ |
| 0 | 1 | 0 | 0 | 2 | 1 | 2 | 56 | $y=56$ |

Hence $w=3(0)+1(56)+2(0)=56$.

Option 2.

$\mathrm{T}_{1}:$			v	
	$3 / 2$	$1 / 1$	$2 / 2$	
	3	1	2	
	1	1	1	42
	3	2	1	49
	2	1	21	56
	v			

T_{2} : v

$2 / 4$		$2 / 1$					
2	0	2					
0	1	1	28	0	1	0	28
42	3	1	42 v	4	3	0	42
0	0	2	0	2	1	2	56

Slope check: $(2)(3)-(1)(3)=3>0$.

$\mathrm{T}_{3}:$			v	
			$6 / 4$	
	2	-6	6	
	0	4	43	$112 \quad \mathrm{v}$
	4	0	0	0
	0	0	8	0

Since the new pivot is in the same column as the first one, restart from T_{1} with the new pivot:

$\mathrm{T}_{1}:$	3	1	2	
	1	1	1_{1}	42
	3	2	1	49
	2	1	2	56

T' $_{2}:$	v							
	$1 / 2$		$2 / 1$					
	1	-1	2					
	0	0	1	0	1	1	1	42
	2_{2}	1	1	7	v	2_{2}	1	0
	0	-1	2	-28	0	-1	0	-28

Slope check: $(2)(3)-(1)(3)=3>0$.

$\mathrm{T}_{3}:$	1	-3	3						
	0	0	2	0	0	1	2	77	$z=77 / 2$
	2	0	0	0	2	1	0	7	$x=7 / 2$
	0	-2	4	-56	0	-2	0	-56	$y=0$

Hence $w=3(7 / 2)+1(0)+2(77 / 2)=87.5$.

Therefore, Option 1 gives the minimum of $w=56$.

The proof of the maximization algorithm

We can rearrange the variables and the given inequalities in such a manner that the pivots are to be found diagonally (in ascending order of both rows and columns). Since the method used here can be extended for more variables, we shall only consider the following problem with three positive variables in which all coefficients are positive.

$$
\begin{array}{lll}
\text { Maximize } & w=\mathrm{a}_{01} x_{1}+\mathrm{a}_{02} x_{2}+\mathrm{a}_{03} x_{3} & \\
\text { subject to } & \mathrm{a}_{\mathrm{i} 1} x_{1}+\mathrm{a}_{\mathrm{i} 2} x_{2}+\mathrm{a}_{\mathrm{i} 3} x_{3} \leq \mathrm{a}_{\mathrm{i} 4} & \left(\mathrm{I}_{\mathrm{i}}\right) \quad \mathrm{i}=1,2,3 \\
& \mathrm{a}_{01} \geq \mathrm{a}_{0 \mathrm{j}} & \left(\mathrm{1}_{\mathrm{j}}\right) \quad \mathrm{j}=2,3 \\
& \mathrm{a}_{\mathrm{i} 4} \mathrm{a}_{11}-\mathrm{a}_{14} \mathrm{a}_{\mathrm{i} 1} \geq 0 . & \left(\mathrm{i}_{\mathrm{i}}\right) \quad \mathrm{i}=2,3
\end{array}
$$

We shall abbreviate a_{ij} as [ij] and use $\{123\}_{123}$ to denote the determinant of the matrix $([i j])_{i, j} \varepsilon 123$, where $\mathrm{i} \varepsilon 123$ means that i takes on one element of $\{1,2,3\}$ at a time in that order. Let c be a code consisting of some elements in $\{0,1,2,3\}$ and let d be a code consisting of some elements in $\{1,2,3,4\}$. We shall further use $\{d\}_{c}$ to denote the determinant $([i j]){ }_{\mathrm{i}}^{\mathrm{\varepsilon} \cdot, \mathrm{j} \varepsilon \mathrm{d}}$.

Thus, the inequality $\left(2_{i}\right)$ can be rewritten as $\{41\}_{i 1} \geq 0$. Note that

$$
\{\mathrm{rst}\}_{\mathrm{ijk}}=[\mathrm{ir}]\{\mathrm{st}\}_{\mathrm{jk}}+[\mathrm{is}]\{\operatorname{tr}\}_{\mathrm{jk}}+[\mathrm{it}]\{\mathrm{rs}\}_{\mathrm{jk}} .
$$

We shall first state and derive the following formulas concerning decompositions of determinants.

Lemma 1.

i) $\quad\{\mathrm{rst}\}_{\mathrm{ijk}}=[\mathrm{kt}]\{\mathrm{rs}\}_{\mathrm{ij}}+[\mathrm{jt}]\{\mathrm{rs}\}_{\mathrm{ki}}+[\mathrm{it}]\{\mathrm{rs}\}_{\mathrm{jk}}$.
ii) $\quad[\mathrm{iu}]\{\mathrm{rst}\}_{\mathrm{ijk}}=\{\mathrm{ru}\}_{\mathrm{ij}}\{\mathrm{st}\}_{\mathrm{ik}}+\{\mathrm{su}\}_{\mathrm{ij}}\{\mathrm{tr}\}_{\mathrm{ik}}+\{\mathrm{tu}\}_{\mathrm{ij}}\{\mathrm{rs}\}_{\mathrm{ik}}$.
iii) $\quad[\mathrm{jt}]\{\mathrm{rst}\}_{\mathrm{ijk}}=\{\mathrm{rt}\}_{\mathrm{ij}}\{\mathrm{st}\}_{\mathrm{jk}}-\{\mathrm{st}\}_{\mathrm{ij}}\{\mathrm{rt}\}_{\mathrm{jk}}$.
iv) $\quad\{\mathrm{ru}\}_{\mathrm{ij}}\{\mathrm{st}\}_{\mathrm{ij}}+\{\mathrm{su}\}_{\mathrm{ij}}\{\mathrm{tr}\}_{\mathrm{ij}}+\{\mathrm{tu}\}_{\mathrm{ij}}\{\mathrm{rs}\}_{\mathrm{ij}}=0$.
v) $\quad\{\mathrm{ur}\}_{\mathrm{ij}}\{\mathrm{ust}\}_{\mathrm{ijk}}+\{\mathrm{us}\}_{\mathrm{ij}}\{\mathrm{utr}\}_{\mathrm{ijk}}+\{\mathrm{ut}\}_{\mathrm{ij}}\{\mathrm{urs}\}_{\mathrm{ijk}}=0$.

Proof.

i) $\quad\{r s t\}_{\mathrm{ijk}}=[\mathrm{ir}]\{\mathrm{st}\}_{\mathrm{jk}}+[\mathrm{is}]\{\mathrm{tr}\}_{\mathrm{jk}}+[\mathrm{it}]\{\mathrm{rs}\}_{\mathrm{jk}}$

$$
\begin{aligned}
& =[\mathrm{ir}][\mathrm{js}][\mathrm{kt}]-[\mathrm{ir}][\mathrm{jt}][\mathrm{ks}]+[\mathrm{is}][\mathrm{jt}][\mathrm{kr}]-[\mathrm{is}][\mathrm{jr}]\left[[\mathrm{kt}]+[\mathrm{it}]\{\mathrm{rs}\}_{\mathrm{jk}}\right. \\
& =[\mathrm{kt}]([\mathrm{ir}][\mathrm{js}]-[\mathrm{is}][\mathrm{jr}])+[\mathrm{jt}]([\mathrm{kr}][\mathrm{is}]-[\mathrm{ks}][\mathrm{ir}])+[\mathrm{it}]\{\mathrm{rs}\}_{\mathrm{jk}} \\
& =[\mathrm{kt}]\{\mathrm{rs}\}_{\mathrm{ij}}+[\mathrm{jt}]\{\mathrm{rs}\}_{\mathrm{ki}}+[\mathrm{it}]\{\mathrm{rs}\}_{\mathrm{jk}} .
\end{aligned}
$$

ii) $\quad\{\mathrm{ru}\}_{\mathrm{ij}}\{\mathrm{st}\}_{\mathrm{ik}}+\{\mathrm{su}\}_{\mathrm{ij}}\{\operatorname{tr}\}_{\mathrm{ik}}+\{\mathrm{tu}\}_{\mathrm{ij}}\{\mathrm{rs}\}_{\mathrm{ik}}$

$$
\begin{aligned}
= & {[\mathrm{ir}][\mathrm{ju}][\mathrm{is}][\mathrm{kt}]-[\mathrm{ir}]\left[[\mathrm{ju}][\mathrm{it}][\mathrm{ks}]-[\mathrm{iu}][\mathrm{jr}]\{\mathrm{st}\}_{\mathrm{ik}}+[\mathrm{is}][\mathrm{ju}][\mathrm{it}][\mathrm{kr}]-[\mathrm{is}][\mathrm{ju}][\mathrm{ir}][\mathrm{kt}]\right.} \\
& -[\mathrm{iu}][\mathrm{js}]\{\mathrm{tr}\}_{\mathrm{ik}}+[\mathrm{it}][\mathrm{ju}][\mathrm{ir}][\mathrm{ks}]-[\mathrm{it}]\left[[\mathrm{ju}][\mathrm{is}][\mathrm{kr}]-[\mathrm{iu}][\mathrm{jt}]\{\mathrm{rs}\}_{\mathrm{ik}}\right. \\
= & -[\mathrm{iu}]\left([\mathrm{jr}]\{\mathrm{st}\}_{\mathrm{ik}}+[\mathrm{js}]\{\mathrm{tr}\}_{\mathrm{ik}}+[\mathrm{jt}]\{\mathrm{rs}\}_{\mathrm{ik}}\right)=-[\mathrm{iu}]\{\mathrm{rst}\}_{\mathrm{jik}}=[\mathrm{iu}]\{\mathrm{rst}\}_{\mathrm{ijk}} .
\end{aligned}
$$

iii) Taking $\mathrm{k}=\mathrm{j}, \mathrm{j}=\mathrm{i}$ and $\mathrm{u}=\mathrm{t}$ in ii), we have

$$
[\mathrm{jt}]\{\mathrm{rst}\}_{\mathrm{jik}}=\{\mathrm{rt}\}_{\mathrm{ji}}\{\mathrm{st}\}_{\mathrm{jk}}+\{\mathrm{st}\}_{\mathrm{ji}}\{\mathrm{tr}\}_{\mathrm{jk}}+\{\mathrm{tt}\}_{\mathrm{ji}}\{\mathrm{rs}\}_{\mathrm{jk}},
$$

which implies

$$
[\mathrm{jt}]\{\mathrm{rst}\}_{\mathrm{ijk}}=\{\mathrm{rt}\}_{\mathrm{ij}}\{\mathrm{st}\}_{\mathrm{jk}}-\{\mathrm{st}\}_{\mathrm{ij}}\{\mathrm{rt}\}_{\mathrm{jk}} .
$$

iv) Taking $\mathrm{k}=\mathrm{j}$ in ii), we have

$$
\{\mathrm{ru}\}_{\mathrm{ij}}\{\mathrm{st}\}_{\mathrm{ij}}+\{\mathrm{su}\}_{\mathrm{ij}}\{\mathrm{tr}\}_{\mathrm{ij}}+\{\mathrm{tu}\}_{\mathrm{ij}}\{\mathrm{rs}\}_{\mathrm{ij}}=[\mathrm{iu}]\{\mathrm{rst}\}_{\mathrm{ijj}}=0 .
$$

v) $\quad\{u r\}_{\mathrm{ij}}\{\mathrm{ust}\}_{\mathrm{ijk}}+\{\mathrm{us}\}_{\mathrm{ij}}\{\mathrm{utr}\}_{\mathrm{ijk}}+\{\mathrm{ut}\}_{\mathrm{ij}}\{\mathrm{urs}\}_{\mathrm{ijk}}$

$$
=\{\mathrm{ur}\}_{\mathrm{ij}}\left([\mathrm{iu}]\{\mathrm{st}\}_{\mathrm{jk}}+[\mathrm{ju}]\{\mathrm{st}\}_{\mathrm{ki}}+[\mathrm{ku}]\{\mathrm{st}\}_{\mathrm{ij}}\right)
$$

$$
+\{\mathrm{us}\}_{\mathrm{ij}}\left([\mathrm{iu}]\{\operatorname{tr}\}_{\mathrm{jk}}+[\mathrm{ju}]\{\operatorname{tr}\}_{\mathrm{ki}}+[\mathrm{ku}]\{\operatorname{tr}\}_{\mathrm{ij}}\right)
$$

$$
+\{\mathrm{ut}\}_{\mathrm{ij}}\left([\mathrm{iu}]\{\mathrm{rs}\}_{\mathrm{jk}}+[\mathrm{ju}]\{\mathrm{rs}\}_{\mathrm{ki}}+[\mathrm{ku}]\{\mathrm{rs}\}_{\mathrm{ij}}\right)
$$

$$
=[\mathrm{iu}]\left(\{\mathrm{ur}\}_{\mathrm{ij}}\{\mathrm{st}\}_{\mathrm{jk}}+\{\mathrm{us}\}_{\mathrm{ij}}\{\operatorname{tr}\}_{\mathrm{jk}}+\{\mathrm{ut}\}_{\mathrm{ij}}\{\mathrm{rs}\}_{\mathrm{jk}}\right)
$$

$$
+[\mathrm{ju}]\left(\{\mathrm{ur}\}_{\mathrm{ij}}\{\mathrm{st}\}_{\mathrm{ki}}+\{\mathrm{us}\}_{\mathrm{ij}}\{\mathrm{tr}\}_{\mathrm{ki}}+\{\mathrm{ut}\}_{\mathrm{ij}}\{\mathrm{rs}\}_{\mathrm{ki}}\right)
$$

$$
+[\mathrm{ku}]\left(\{\mathrm{ur}\}_{\mathrm{ij}}\{\mathrm{st}\}_{\mathrm{ij}}+\{\mathrm{us}\}_{\mathrm{ij}}\{\mathrm{tr}\}_{\mathrm{ij}}+\{\mathrm{ut}\}_{\mathrm{ij}}\{\mathrm{rs}\}_{\mathrm{ij}}\right)
$$

$$
=[\mathrm{iu}][\mathrm{ju}]\{\mathrm{rst}\}_{\mathrm{jik}}+[\mathrm{ju}][\mathrm{iu}]\{\mathrm{rst}\}_{\mathrm{ijk}}+[\mathrm{ku}][\mathrm{iu}]\{\mathrm{rst}\}_{\mathrm{ijj}}=0 .
$$

We shall introduce convenient notations for all possible corner solutions of the given problem. For $\mathrm{i}, \mathrm{j}=1,2,3$, let $w_{\mathrm{ij}}=[0 \mathrm{j}]([\mathrm{i} 4] /[\mathrm{ij}])$. For an ascending code ij , let ${ }^{\mathrm{mn}} w_{\mathrm{ij}}=[0 \mathrm{i}]^{\mathrm{mn}} x_{\mathrm{ij}}+[0 \mathrm{j}]^{\mathrm{mn}} x_{\mathrm{ji}}$, where $\left({ }^{\mathrm{mn}} x_{\mathrm{ij}},{ }^{\mathrm{mn}} x_{\mathrm{ji}}\right)$ is the possible non-degenerated solution of

$$
[\mathrm{ui}] x_{\mathrm{i}}+[\mathrm{uj}] x_{\mathrm{j}}=[\mathrm{u} 4], \quad \mathrm{u}=\mathrm{m}, \mathrm{n},
$$

i.e. ${ }^{\mathrm{mn}} x_{\mathrm{ij}}=\{4 \mathrm{j}\}_{\mathrm{mn}} /\{\mathrm{ij}\}_{\mathrm{mn}}$ and ${ }^{\mathrm{mn}} x_{\mathrm{ji}}=\{\mathrm{i} 4\}_{\mathrm{mn}} /\{\mathrm{ij}\}_{\mathrm{mn}}$. Note that m and n are interchangeable in the above notations. Furthermore, let $w^{*}=[01] x_{1}{ }^{*}+[02] x_{2}{ }^{*}+[03] x_{3}{ }^{*}$, where $\left(x_{1}^{*}, x_{2}{ }^{*}, x_{3}{ }^{*}\right)$ is the possible non-degenerated solution of

$$
[\mathrm{i} 1] x_{1}+[\mathrm{i} 2] x_{2}+[\mathrm{i} 3] x_{3}=[\mathrm{i} 4], \quad \mathrm{i}=1,2,3,
$$

i.e. $x_{1}^{*}=\{423)_{123} /\{123)_{123}, x_{2}^{*}=\{143)_{123} /\{123)_{123}$ and $x_{3}^{*}=\{124)_{123} /\{123)_{123}$.

In the tableau T_{1} :

$[01]$	$[02]$	$[03]$	
$[11]$	$[12]$	$[13]$	$[14]$
$[21]$	$[22]$	$[23]$	$[24]$
$[31]$	$[32]$	$[33]$	$[34]$

[11] is the pivot because of $\left(1_{j}\right)$ and $\left(2_{i}\right), j, i=2,3$.

Lemma 2.

If $w_{i 1}>w_{11}$, then $([i 4] /[i 1], 0,0)$ is not a feasible solution.

Proof.

Since $w_{\mathrm{il}}>w_{11},\{14\}_{1 \mathrm{i}}>0$. It follows that $[11]([14] /[\mathrm{i} 1])+[12](0)+[13](0)>[14]$,
i.e. ([i4]/[i1], 0, 0) does not satisfy $\left(\mathrm{I}_{1}\right)$. Perform the cross-multiplication at [11] to yield T_{2} :

0	$\{12\}_{10}$	$\{13\}_{10}$	
$[11]$	$[12]$	$[13]$	$[14]$
0	$\{12\}_{12}$	$\{13\}_{12}$	$\{14\}_{12}$
0	$\{12\}_{13}$	$\{13\}_{13}$	$\{14\}_{13}$

Theorem 1.

If
(3) $\{12\}_{01} \geq 0$
and
(4) $\{13\}_{01} \geq 0$,
then [11] is the only pivot of T_{0} and w_{11} is the maximum of w.

Proof.

Since there is no positive coefficient in the top row of T_{2}, [11] is the only pivot of T_{0}.

Due to Lemma 2, it suffices to show that $w_{11} \geq w$ in each of the following cases.

Case 1. $w=w_{\mathrm{kj}}$, where w_{kj} is the least among $w_{\mathrm{ij}}, \mathrm{i}=1,2,3$ and $\mathrm{j}=2,3$.

From the inequality $(\mathrm{j}+1)$, we have

$$
w_{11}-w \geq w_{11}-\mathrm{w}_{1 \mathrm{j}}=[01][14] /[11]-[0 \mathrm{j}][14] /[1 \mathrm{j}]=[14]\{1 \mathrm{j}\}_{01} /([11][1 \mathrm{j}]) \geq 0
$$

Case 2. $w={ }^{\mathrm{mn}} w_{\mathrm{ij}}$, where ${ }^{\mathrm{mn}} x_{\mathrm{ij}}$ and ${ }^{\mathrm{mn}} x_{\mathrm{ji}}$ are positive and satisfying $\left(\mathrm{I}_{1}\right)$ with other variables 0 .

From the inequalities (3) and (4), we have

$$
\begin{aligned}
w_{11}-w & =[01][14] /[11]-[0 \mathrm{i}]^{\mathrm{mn}} x_{\mathrm{ij}}-[0 \mathrm{j}]^{\mathrm{mn}} x_{\mathrm{ji}} \\
& =[01][14] /[11]-([0 \mathrm{i}][11] /[11])^{\mathrm{mn}} x_{\mathrm{ij}}-([0 \mathrm{j}][11] /[11])^{\mathrm{mn}} x_{\mathrm{ji}} \\
& \geq[01][14] /[11]-([01][1 \mathrm{i}] /[11])^{\mathrm{mn}} x_{\mathrm{ij}}-([01][1 \mathrm{j}] /[11])^{\mathrm{mn}} x_{\mathrm{ji}} \\
& =([01] /[11])\left([14]-[1 \mathrm{i}]^{\mathrm{mn}} x_{\mathrm{ij}}-[1 \mathrm{j}]^{\mathrm{mn}} x_{\mathrm{ji}}\right) \geq 0 .
\end{aligned}
$$

Case 3. $w=w^{*}$, where $x_{\mathrm{j}}{ }^{*} \geq 0, \mathrm{j}=1,2,3$.

From (3) and (4), we have

$$
\begin{aligned}
w_{11}-w^{*} & =[01][14] /[11]-\left([01] x_{1}^{*}+[02] x_{2} *+[03] x_{3}{ }^{*}\right) \\
& \geq[01][14] /[11]-([01][11] /[11]) x_{1}^{*}-([01][12] /[11]) x_{2}^{*}-([01][13] /[11]) x_{3}{ }^{*} \\
& =([01] /[11])\left([14]-[11] x_{1}^{*}-[12] x_{2}^{*}-[13] x_{3}^{*}\right) \geq 0 .
\end{aligned}
$$

If the pivot in T_{2} exists, we can assume that
(3') $\{12\}_{01}<0$.

If the pivot is [12], it replaces [11] as a pivot of T_{0}. In this case, we can rearrange T_{2} into
$\mathrm{T}_{2}{ }^{\prime}$:

$\{12\}_{10}$	$\{13\}_{10}$	0	
$[12]$	$[13]$	$[11]$	$[14]$
$\{12\}_{12}$	$\{13\}_{12}$	0	$\{14\}_{12}$
$\{12\}_{13}$	$\{13\}_{13}$	0	$\{14\}_{13}$

and T_{0} into $\mathrm{T}_{0}{ }^{\prime}$:

$[02]$	$[03]$	$[01]$	
$[12]$	$[13]$	$[11]$	$[14]$
$[22]$	$[23]$	$[21]$	$[24]$
$[32]$	$[33]$	$[31]$	$[34]$

If [12] is the only pivot of $\mathrm{T}_{0}{ }^{\prime}$, then similar to Theorem 1 , we can prove that w_{12} is the maximum of w. Otherwise, we can assume that [12] and [23] are the only pivots of $\mathrm{T}_{0}{ }^{\prime}$ and use the same method in the proof of the next theorem to prove that ${ }^{12} w_{23}$ is the maximum of w.

Now, let us go back to T_{2} and assume that $\{12\}_{12}$ is the pivot. Then we have
(5) $\{12\}_{10} \geq\{13\}_{10}$
(6) $\{12\}_{12}>0$
(7) $\quad[12]\{14\}_{12}-[14]\{12\}_{12}=[11]\{24\}_{12} \leq 0$
and
(8) $\{14\}_{12}\{12\}_{13}-\{12\}_{12}\{14\}_{13}=[11]\{124\}_{123} \geq 0$.

The slope check from [01] to [22] gives either
(9) $\{12\}_{02} \geq 0$
or
(9') $\{12\}_{02}<0$.

Theorem 2.

If the inequalities (9) and
(10) $\{123\}_{012} \leq 0$
hold, then [11] and [22] are the only pivots of T_{0} and ${ }^{12} w_{12}$ is the maximum of w.

Lemma 3.

$w^{*}-{ }^{\mathrm{mn}} w_{\mathrm{jk}}=x_{\mathrm{i}}^{*}\{123\}_{0 \mathrm{mn}} /\{(\mathrm{jk})\}_{\mathrm{mn}}$, where $(21)=(12)=12,(32)=(23)=23,(13)=(31)$
$=31$.

Proof.

Solving

$$
\begin{aligned}
& {[01] x_{1}+[02] x_{2}+[03] x_{3}=w^{*}} \\
& {[\mathrm{u} 1] x_{1}+[\mathrm{u} 2] x_{2}+[\mathrm{u} 3] x_{3}=[\mathrm{u} 4] \quad \mathrm{u}=\mathrm{m}, \mathrm{n}}
\end{aligned}
$$

for x_{i}, we get $x_{\mathrm{i}}^{*}\{123\}_{0 \mathrm{mn}}=w^{*}\{(\mathrm{jk})\}_{\mathrm{mn}}+[0 \mathrm{j}]\{\mathrm{k} 4\}_{\mathrm{mn}}+[0 \mathrm{k}]\{4 \mathrm{j}\}_{\mathrm{mn}}=\left(w^{*}-{ }^{\mathrm{mn}} w_{\mathrm{jk}}\right)\{(\mathrm{jk})\}_{\mathrm{mn}}$.

Lemma 4.

Let $(01)^{\prime}=10,(02)^{\prime}=02,1^{\prime}=2$ and $2^{\prime}=1$. Then, for $k=1,2$.
i) ${ }^{12} w_{12}-w_{\mathrm{k} 3}=\left(\{12\}_{\mathrm{k} 0}\{34\}_{12}-[\mathrm{k} 4]\{123\}_{012}\right) /\left([\mathrm{k} 3]\{12\}_{12}\right)$.
ii) ${ }^{12} w_{12}-{ }^{12} w_{\mathrm{k} 3}=-{ }^{12} x_{3 \mathrm{k}}\{123\}_{012} /\{12\}_{12}$.
iii) ${ }^{12} w_{12}-{ }^{\mathrm{k} 3} w_{12}=\left(\{12\}_{(0 \mathrm{k})^{\prime}} /\{12\}_{12}\right)\left(\left[\mathrm{k}^{\prime} 4\right]-\left[\mathrm{k}^{\prime} 1\right]^{\mathrm{k} 3} x_{12}-\left[\mathrm{k}^{\prime} 2\right]^{\mathrm{k} 3} x_{21}\right)$.
iv) ${ }^{12} w_{12}-{ }^{\mathrm{k} 3} w_{\mathrm{k}^{\prime} 3}=\left(\{12\}_{(0 \mathrm{k})^{\prime}} /\{12\}_{12}\right)\left(\left[\mathrm{k}^{\prime} 4\right]-\left[\mathrm{k}^{\prime} \mathrm{k}^{\prime}\right]^{\mathrm{k} 3} x_{\mathrm{k}^{\prime} 3}-\left[\mathrm{k}^{\prime} 3\right]^{\mathrm{k} 3} x_{3 \mathrm{k}^{\prime}}\right)-{ }^{\mathrm{k} 3} x_{3 \mathrm{k}^{\prime}}\{123\}_{012} /\{12\}_{12}$. v) ${ }^{12} w_{12}-{ }^{\mathrm{k} 3} w_{\mathrm{k} 3}=\left(\{12\}_{(0 \mathrm{k})} /\{12\}_{12}\right)\left(\left[\mathrm{k}^{\prime} 4\right]-\left[\mathrm{k}^{\prime} \mathrm{k}\right]^{\mathrm{k} 3} x_{\mathrm{k} 3}-\left[\mathrm{k}^{\prime} 3\right]^{\mathrm{k} 3} x_{3 \mathrm{k}}\right)-{ }^{\mathrm{k} 3} x_{3 \mathrm{k}}\{123\}_{012} /\{12\}_{12}$.

Proof.

We derive one formula in each category via Lemma 1 due to the similarity.

$$
\text { i) } \begin{aligned}
& { }^{12} w_{12}-w_{23} \\
= & \left([01]\{42\}_{12}+[02]\{14\}_{12}\right) /\{12\}_{12}-[03]([24] /[23]) \\
= & {[23]([01][14][22]-[01][12][24]+[02][11][24]-[02][14][21]) /\left([23]\{12\}_{12}\right) } \\
& -[24][03]\{12\}_{12} /\left([23]\{12\}_{12}\right) \\
= & \left\{[23][14]\{12\}_{02}+[24]\left([23]\{12\}_{10}+[03]\{12\}_{21}\right)\right\} /\left([23]\{12\}_{12}\right) \\
= & \left\{[23][14]\{12\}_{02}+[24]\left(\{312\}_{210}-[13]\{12\}_{02}\right)\right\} /\left([23]\{12\}_{12}\right) \\
= & \left.\left(\{12\}_{20}\{34\}_{12}-[24]\{123\}_{012}\right) /\left([23]\{12\}_{12}\right)\right\} .
\end{aligned}
$$

ii)

$$
\begin{aligned}
& { }^{12} w_{12}-{ }^{12} w_{23} \\
= & \left([01]\{42\}_{12}+[02]\{14\}_{12}\right) /\{12\}_{12}-\left([02]\{43\}_{12}+[03]\{24\}_{12}\right) /\{23\}_{12} \\
= & \left\{[01]\{42\}_{12}\{23\}_{12}+[02]\left(\{14\}_{12}\{23\}_{12}+\{34\}_{12}\{12\}_{12}\right)-\right. \\
& {\left.\left.[03]_{\{24}\right\}_{12}\{12\}_{12}\right\} /\left(\{12\}_{12}\{23\}_{12}\right) } \\
= & \left([01]\{24\}_{12}\{32\}_{12}+[02]\{24\}_{12}\{13\}_{12}+[03]\{24\}_{12}\{21\}_{12}\right) /\left(\{12\}_{12}\{23\}_{12}\right) \\
= & \left.\left(\{24\}_{12} /\{23\}_{12}\right\}\right) /\left(\{132\}_{012} /\{12\}_{12}\right)=-{ }^{12} x_{32}\{123\}_{012} /\{12\}_{12} .
\end{aligned}
$$

iii)

$$
\begin{aligned}
& { }^{12} w_{12}-{ }^{13} w_{12} \\
= & \left([01]\{42\}_{12}+[02]\{14\}_{12}\right) /\{12\}_{12}-\left([01]\{42\}_{13}+[02]\{14\}_{13}\right) /\{12\}_{13} \\
= & \left\{[01]\left(\{12\}_{21}\{42\}_{13}-\{42\}_{21}\{12\}_{13}\right)+[02]\left(\{21\}_{21}\{41\}_{13}-\right.\right. \\
& \left.\left.\{41\}_{21}\{21\}_{13}\right)\right\} /\left(\{12\}_{12}\{12\}_{13}\right) \\
= & \left([01][12]\{142\}_{213}+[02][11]\{241\}_{213}\right) /\left(\{12\}_{12}\{12\}_{13}\right) \\
= & \{12\}_{01}\{124\}_{123} /\left(\{12\}_{12}\{12\}_{13}\right)=\left(\{12\}_{10} /\{12\}_{12}\right)\left([24]-[21]^{13} x_{12}-[22]^{13} x_{21}\right) .
\end{aligned}
$$

iv)

$$
\begin{aligned}
& { }^{12} w_{12}-{ }^{23} w_{13} \\
= & \left([01]\{42\}_{12}+[02]\{14\}_{12}\right) /\{12\}_{12}-\left([01]\{43\}_{23}+[03]^{\prime}\{14\}_{23}\right) /\{13\}_{23} \\
= & \left\{[01]\left(\{42\}_{21}\{31\}_{23}+\{12\}_{21}\{43\}_{23}\right)+[02]\{14\}_{12}\{13\}_{23}-\right. \\
& {\left.[03]\{12\}_{12}\{14\}_{23}\right\} /\left(\{12\}_{12}\{13\}_{23}\right) } \\
= & \left\{[01]\left([22]\{431\}_{213}-\{32\}_{21}\{14\}_{23}\right)+[02]\{41\}_{21}\{13\}_{23}+\right. \\
& {\left.[03]\{12\}_{21}\{14\}_{23}\right\} /\left(\{12\}_{12}\{13\}_{23}\right) } \\
= & \left\{-[01][22]\{143\}_{123}+\{14\}_{23}\left([01]\{23\}_{21}+[03]\{12\}_{21}\right)+\right. \\
& {\left.[02]\{41\}_{21}\{13\}_{23}\right\} /\left(\{12\}_{12}\{13\}_{23}\right) } \\
= & \left\{-[01][22]\{143\}_{123}+\{14\}_{23}\left(\{123\}_{021}-[02]\{31\}_{21}\right)+[02]\{41\}_{21}\{13\}_{23}\right\} /\left(\{12\}_{12}\{13\}_{23}\right) \\
= & \left\{-[01][22]\{143\}_{123}-\{14\}_{23}\{123\}_{012}+[02]\left(\{41\}_{12}\{31\}_{23}-\right.\right. \\
& \left.\left.\{31\}_{12}\{41\}_{23}\right)\right\} /\left(\{12\}_{12}\{13\}_{23}\right) \\
= & \left(-[01][22]\{143\}_{123}-\{14\}_{23}\{123\}_{012}+[02][21]\{431\}_{123}\right) /\left(\{12\}_{12}\{13\}_{23}\right) \\
= & \left.\{12\}_{20}\{143\}_{123} /\{12\}_{12}\{13\}_{23}-\left(\{14\}_{23} /\{13\}_{23}\right)\left(\{123\}_{012}\right) /\{12\}_{12}\right) \\
= & \left(\{12\}_{02} /\{12\}_{12}\right)\left([14]-[11]^{23} x_{13}-[13]^{23} x_{31}\right)-23 x_{31}\{123\}_{012} /\{12\}_{12} .
\end{aligned}
$$

v)

$$
\begin{aligned}
& { }^{12} w_{12}-{ }^{13} w_{13} \\
= & \left([01]\{42\}_{12}+[02]\{14\}_{12}\right) /\{12\}_{12}-\left([01]\{43\}_{23}+[03]\{14\}_{13}\right) /\{13\}_{13} \\
= & \left\{[01]\left(\{42\}_{12}\{13\}_{13}+\{12\}_{12}\{34\}_{13}\right)+[02]\{14\}_{12}\{13\}_{13}-\right. \\
& {\left.[03]\{12\}_{12}\{14\}_{13}\right\} /\left(\{12\}_{12}\{13\}_{13}\right) } \\
= & \left\{[01]\left([12]\{413\}_{123}-\{32\}_{12}\{41\}_{13}\right)+[02]\{14\}_{12}\{13\}_{13}-[03]\{12\}_{12}\{14\}_{13}\right\} /\left(\{12\}_{12}\{13\}_{13}\right) \\
= & \left\{-[01][12]\{143\}_{123}+\{14\}_{13}\left([01]\{32\}_{12}+[03]\{21\}_{12}\right)+\right. \\
& {\left.[02]\{14\}_{12}\{13\}_{13}\right\} /\left(\{12\}_{12}\{13\}_{13}\right) } \\
= & \left\{-[01][12]\{143\}_{123}+\{14\}_{13}\left(\{132\}_{012}-[02]\{13\}_{12}\right)+[02]\{14\}_{12}\{13\}_{13}\right\} /\left(\{12\}_{12}\{13\}_{13}\right) \\
= & \left\{-[01][12]\{143\}_{123}-\{14\}_{13}\{123\}_{012}+[02]\left(\{41\}_{12}\{31\}_{13}-\right.\right. \\
& \left.\left.\{31\}_{12}\{41\}_{13}\right)\right\} /\left(\{12\}_{12}\{13\}_{13}\right) \\
= & \left(-[01][12]\{143\}_{123}-\{14\}_{13}\{123\}_{012}+[02][11]\{431\}_{123}\right) /\left(\{12\}_{12}\{13\}_{13}\right) \\
= & \left.\{12\}_{10}\{143\}_{123} /\{12\}_{12}\{13\}_{13}-\left(\{14\}_{13} /\{13\}_{13}\right)\left(\{123\}_{012}\right) /\{12\}_{12}\right) \\
= & \left(\{12\}_{10} /\{12\}_{12}\right)\left([24]-[21]^{13} x_{13}-[23]^{13} x_{31}\right)-{ }^{13} x_{31}\{123\}_{012} /\{12\}_{12} .
\end{aligned}
$$

Perform the cross-multiplication at $\{12\}_{12}$ in T_{2} to yield T_{3} :

0	0	$[11]\{123\}_{012}$	
$[11]\{12\}_{12}$	0	$[11]\{32\}_{12}$	$[11]\{42\}_{12}$
0	$\{12\}_{12}$	$\{13\}_{12}$	$\{14\}_{12}$
0	0	$[11]\{123\}_{123}$	$[11]]\{124\}_{123}$

Because of (10), there is no pivot in T_{3}. Because of (6), it follows from (7) and (22) that ${ }^{12} x_{12}$ and ${ }^{12} x_{21}$ are non-negative. We shall assume the non-degenerated case so that $\{42\}_{12},\{14\}_{12},{ }^{12} x_{12}$ and ${ }^{12} x_{21}$ are all positive.

Proof of Theorem 2.

From Lemma 1.i) and (8), it follows that $\left({ }^{12} x_{12},{ }^{12} x_{21}, 0\right)$ satisfies $\left(\mathrm{I}_{3}\right)$:

$$
\begin{aligned}
{[31]^{12} x_{12}+[32]^{12} x_{21} } & =\left([31]\{42\}_{12}+[32]\{14\}_{12}\right) /\{12\}_{12} \\
& =\left(-\{124\}_{123}+[34]\{12\}_{12}\right) /\{12\}_{12} \leq[34] .
\end{aligned}
$$

To prove that ${ }^{12} w_{12}$ is the maximum of w, due to Lemma 2, we need only show that ${ }^{12} w_{12}$ $\geq w$.

Case 1. $w=w^{*}$, where $x_{3}{ }^{*}$ is non-negative.
Because of (10), it follows from lemma 3 that ${ }^{12} w_{12}-w=-x_{3}{ }^{*}\{123\}_{012} /\{12\}_{12} \geq 0$.
Case 2. $w=w_{\mathrm{k} 2}$, where $w_{\mathrm{k} 2}$ is the least among $w_{\mathrm{i} 2}, \mathrm{i}=1,2,3$.
From (9), we have

$$
\begin{aligned}
{ }^{12} w_{12}-w & \geq[01]^{12} x_{12}+[02]^{12} x_{21}-w_{22} \\
& =\left(\{12\}_{02} /[22]\right)^{12} x_{12}+([02] /[22])\left([21]^{12} x_{12}+[22]^{12} x_{21}-[24]\right) \geq 0 .
\end{aligned}
$$

Case 3. $w=w_{\mathrm{k} 3}$, where $w_{\mathrm{k} 3}$ is the least among $w_{\mathrm{i} 3}, \mathrm{i}=1,2,3$.
Because of (3'), (6), (9), (10) and Lemma 4.i), we have either ${ }^{12} w_{12} \geq w_{13}$ or ${ }^{12} w_{12} \geq w_{23}$.
Case 4. $w={ }^{12} w_{\mathrm{k} 3}$, where ${ }^{12} x_{3 \mathrm{k}} \geq 0, \mathrm{k}=1,2$.
Because of (6) and (10), it follows from Lemma 4.ii) that

$$
{ }^{12} w_{12}-w=-{ }^{12} x_{3 \mathrm{k}}\{123\}_{012} /\{12\}_{12} \geq 0 .
$$

Case 5. $w={ }^{\mathrm{k} 3} w_{12}$, where $\left({ }^{\mathrm{k} 3} x_{12},{ }^{\mathrm{k} 3} x_{21}, 0\right)$ satisfies $\left(\mathrm{I}_{\mathrm{k}^{\prime}}\right), \mathrm{k}=1,2$.
Because of (3'), (6) and (9), it follows from Lemma 4.iii) that

$$
{ }^{12} w_{12}-w=\left(\{12\}_{(0 \mathrm{k})} \cdot /\{12\}_{12}\right)\left(\left[\mathrm{k}^{\prime} 4\right]-\left[\mathrm{k}^{\prime} 1\right]^{\mathrm{k} 3} x_{12}-\left[\mathrm{k}^{\prime} 2\right]^{\mathrm{k} 3} x_{21}\right) \geq 0 .
$$

Case 6. $w={ }^{\mathrm{k} 3} w_{\mathrm{k}^{\prime} 3}$, where ${ }^{\mathrm{k} 3} x_{3 \mathrm{k}^{\prime}} \geq 0, \mathrm{k}=1,2,\left(0,{ }^{13} x_{23},{ }^{13} x_{32}\right)$ satisfies $\left(\mathrm{I}_{2}\right)$ and $\left({ }^{23} x_{13}, 0\right.$, $\left.{ }^{23} x_{31}\right)$ satisfies $\left(I_{1}\right)$.

Because of (3'), (6), (9) and (10), it follows from Lemma 4.iv) that
${ }^{12} w_{12}-w=\left(\{12\}_{(0 \mathrm{k})} /\{12\}_{12}\right)\left(\left[\mathrm{k}^{\prime} 4\right]-\left[\mathrm{k}^{\prime} \mathrm{k}^{\prime}\right]^{\mathrm{k} 3} x_{\mathrm{k}^{\prime} 3}-\left[\mathrm{k}^{\prime} 3\right]^{\mathrm{k} 3} x_{3 \mathrm{k}^{\prime}}\right)-{ }^{\mathrm{k} 3} x_{3 \mathrm{k}^{\prime}}\{123\}_{012} /\{12\}_{12} \geq 0$.
Case 7. $w={ }^{\mathrm{k} 3} w_{\mathrm{k} 3}$, where ${ }^{\mathrm{k} 3} x_{3 \mathrm{k}} \geq 0, \mathrm{k}=1,2,\left(0,{ }^{13} x_{13},{ }^{13} x_{31}\right)$ satisfies $\left(\mathrm{I}_{2}\right)$ and $\left({ }^{23} x_{23}, 0\right.$,
${ }^{23} x_{32}$) satisfies $\left(\mathrm{I}_{1}\right)$.
Because of (3'), (6), (9) and (10), it follows from Lemma 4.v) that

$$
{ }^{12} w_{12}-w=\left(\{12\}_{(0 \mathrm{k})^{\prime}} /\{12\}_{12}\right)\left(\left[\mathrm{k}^{\prime} 4\right]-\left[\mathrm{k}^{\prime} \mathrm{k}\right]^{\mathrm{k} 3} x_{\mathrm{k} 3}-\left[\mathrm{k}^{\prime} 3\right]^{\mathrm{k} 3} x_{3 \mathrm{k}}\right)-{ }^{\mathrm{k} 3} x_{3 \mathrm{k}}\{123\}_{012} /\{12\}_{12} \geq 0 .
$$

Now, if the slope check from [01] to [22] in T_{0} gives $\{12\}_{02}<0$, the pivot [11] is eliminated.

Rearrange T_{0} into $\mathrm{T}_{0}{ }^{\prime}{ }^{\prime}$:

$[02]$	$[03]$	$[01]$	
$[22]$	$[23]$	$[21]$	$[24]$
$[32]$	$[33]$	$[31]$	$[34]$
$[12]$	$[13]$	$[11]$	$[14]$

and T_{2} into $\mathrm{T}_{2}{ }^{\prime \prime}$:

$\{12\}_{10}$	$\{13\}_{10}$	0	
$\{12\}_{12}$	$\{13\}_{12}$	0	$\{14\}_{12}$
$\{12\}_{13}$	$\{13\}_{13}$	0	$\{14\}_{13}$
$[12]$	$[13]$	$[11]$	$[14]$

If [22] is the only pivot in $\mathrm{T}_{0}{ }^{\prime}$, then w_{22} is the maximum of w due to Theorem 1. If [22] and [33] are the only pivots in $\mathrm{T}_{0}{ }^{\prime}{ }^{\prime}$, then ${ }^{23} w_{23}$ is the maximum of w due to Theorem 2.

Finally, let's go back to T_{3}. If
(10') $\{123\}_{012}>0$
holds, due to Theorem 1 and Theorem 2, we need only consider the case that
$[11]\{123\}_{123}$ is the pivot. In the three-pivot case, we require that
(11) $\{123\}_{123}>0$
(12) $[11]^{2}\left(\{42\}_{12}\{123\}_{123}-\{32\}_{12}\{124\}_{123}\right)=[11]^{2}\{12\}_{12}\{423\}_{123}>0$
(13) $[11]\left(\{14\}_{12}\{123\}_{123}-\{13\}_{12}\{124\}_{123}\right)=[11]\{12\}_{12}\{143\}_{123}>0$
(14) $\{124\}_{123}>0$

$$
\begin{equation*}
\{13\}_{03} \geq 0 \tag{15}
\end{equation*}
$$

and
(16) $\{23\}_{03} \geq 0$.

Theorem 3.

If the inequalities (9), (10'), (11), (12), (13), (14), (15) and (16) hold, then [11], [22] and [33] are the pivots of T_{0} and w^{*} is the maximum of w.

Proof.

Because of (15) and (16), there is no elimination of pivots as a result of the slope checks. Perform the cross-multiplication at $[11]\{123\}_{123}$ in T_{3} to yield T_{4} :

0	0	0	
$[11]^{2}\{12\}_{12}\{123\}_{123}$	0	0	$[11]^{2}\{12\}_{12}\{423\}_{123}$
0	$[11]\{12\}_{12}\{123\}_{123}$	0	$[11]\{12\}_{12}\{143\}_{123}$
0	0	$[11]\{123\}_{123}$	$[11]\{124\}_{123}$

This is the final tableau, from which we see that $\left(x_{1}{ }^{*}, x_{2}{ }^{*}, x_{3}{ }^{*}\right)$ is the positive solution due to (12), (13) and (14). Similar to (10'), we can rotate the pivots [11], [22] and [33] to obtain the inequalities
(17) $\{123\}_{031}>0$
and
(18) $\{123\}_{023}>0$.

To prove that w^{*} is the maximum of w, due to Lemma 2, we need only show that $w^{*} \geq w$ in each of the following cases.

Case 1. $w={ }^{12} w_{12}$.
Because of $\left(10^{\prime}\right)$, it follows from lemma 3 that $w^{*}-w=x_{3}{ }^{*}\{123\}_{012} /\{12\}_{12}>0$.
Case 2. $w=w_{\mathrm{k} 2}$, where $w_{\mathrm{k} 2}$ is the least among $w_{\mathrm{i} 2}, \mathrm{i}=1,2,3$.

From Case 2 in the proof of Theorem 2 and Case 1, we have $w^{*}>{ }^{12} w_{12} \geq w_{22} \geq w$.
Case 3. $w=w_{\mathrm{k} 3}$, where $w_{\mathrm{k} 3}$ is the least among $w_{\mathrm{i} 3}, \mathrm{i}=1,2,3$.
Because of (3'), (6), (9) and (10'), it follows from Lemma 4.i) and Case 1 that either $w^{*} \geq{ }^{12} w_{12} \geq w_{13}$ or $w^{*} \geq{ }^{12} w_{12} \geq w_{23}$.

Case 4. $w={ }^{\mathrm{k} 3} w_{12}$, where $\left({ }^{\mathrm{k} 3} x_{12},{ }^{\mathrm{k} 3} x_{21}, 0\right)$ satisfies $\left(\mathrm{I}_{\mathrm{k}^{\prime}}\right), \mathrm{k}=1,2$.

Because of (3'), (6) and (9), it follows from Lemma 4.iii) and Case 1 that

$$
\begin{aligned}
w^{*}-w & =\left(w^{*}-{ }^{12} w_{12}\right)+\left({ }^{(12} w_{12}-w\right) \\
& \geq\left(\{12\}_{(0 \mathrm{k})} \cdot /\{12\}_{12}\right)\left(\left[\mathrm{k}^{\prime} 4\right]-\left[\mathrm{k}^{\prime} 1\right]^{\mathrm{k} 3} x_{12}-\left[\mathrm{k}^{\prime} 2\right]^{\mathrm{k} 3} x_{21}\right) \geq 0 .
\end{aligned}
$$

Case 5. $w={ }^{12} w_{\mathrm{k} 3}$, where ${ }^{12} x_{3 \mathrm{k}} \geq 0, \mathrm{k}=1,2$, where $\left({ }^{12} x_{13}, 0,{ }^{12} x_{31}\right)$ and $\left(0,{ }^{12} x_{23},{ }^{12} x_{32}\right)$ satisfy $\left(\mathrm{I}_{3}\right)$.

Since $\{14\}_{12}$ and $\{42\}_{12}$ are positive, it follows from

$$
{ }^{12} x_{3 \mathrm{k}}\left(\{\mathrm{k} 43\}_{123} /\{\mathrm{k} 4\}_{12}\right)=\{\mathrm{k} 43\}_{312} /\{\mathrm{k} 3\}_{12}=[3 \mathrm{k}]^{12} x_{\mathrm{k} 3}+[33]^{12} x_{3 \mathrm{k}}-[34] \leq 0 .
$$

that ${ }^{12} x_{3 \mathrm{k}}=0$ because of (12) and (13). Hence, by Case 3, we have $w^{*} \geq w_{\mathrm{k} 3} \geq w$.

Case 6. $w={ }^{\mathrm{k} 3} w_{\mathrm{k} \prime 3}, \mathrm{k}=1,2$, where $\left(0,{ }^{13} x_{23},{ }^{13} x_{32}\right)$ and $\left({ }^{23} x_{13}, 0,{ }^{23} x_{31}\right)$ are feasible.

From (12), (13), (17), (18) and Lemma 3, it follows that

$$
\begin{aligned}
w^{*}-{ }^{\mathrm{k} 3} w_{\mathrm{k}^{\prime} 3} & =x_{\mathrm{k}}^{*}\{123\}_{0 \mathrm{k} 3} /\left\{\left(\mathrm{k}^{\prime} 3\right)\right\}_{\mathrm{k} 3} \\
& \left.=x_{\mathrm{k}^{*}}\{123\}_{0 \mathrm{k} 3}\left(\left[\mathrm{k}^{\prime} 4\right]-\left[\mathrm{k}^{\prime} \mathrm{k}^{\prime}\right]^{\mathrm{k} 3} x_{\mathrm{k}^{\prime} 3}-\left[\mathrm{k}^{\prime} 3\right]^{\mathrm{k} 3} x_{3 \mathrm{k}^{\prime}}\right) /\left\{4\left(\mathrm{k}^{\prime} 3\right)\right\}_{\mathrm{k}^{\prime} \mathrm{k} 3}\right\} \geq 0 .
\end{aligned}
$$

Case 7. $w={ }^{\mathrm{k} 3} w_{\mathrm{k} 3}, \mathrm{k}=1,2$, where $\left(0,{ }^{23} x_{23},{ }^{23} x_{32}\right)$ and $\left({ }^{13} x_{13}, 0,{ }^{13} x_{31}\right)$ are feasible.
From (12), (13), (17), (18) and Lemma 3, it follows that

$$
\begin{aligned}
w^{*}-{ }^{\mathrm{k} 3} w_{\mathrm{k} 3} & =x_{\mathrm{k}^{\prime}}{ }^{*}\{123\}_{0 \mathrm{k} 3} /\{(\mathrm{k} 3)\}_{\mathrm{k} 3} \\
& \left.\left.=x_{\mathrm{k}^{\prime}}, * 123\right\}_{0 \mathrm{k} 3}\left(\left[\mathrm{k}^{\prime} 4\right]-\left[\mathrm{k}{ }^{\prime} \mathrm{k}\right]^{\mathrm{k} 3} x_{\mathrm{k} 3}-\left[\mathrm{k}^{\prime} 3\right]^{\mathrm{k} 3} x_{3 \mathrm{k}}\right)\{4(\mathrm{k} 3)\}_{\mathrm{k}^{\prime} \mathrm{k} 3}\right\} \geq 0 .
\end{aligned}
$$

GLOSSARY

Pythagorean Theorem: The sum of the squares of the lengths of each of the right triangle's legs is the same as the square of the length of the triangle's hypotenuse. Combinatorics: The branch of mathematics dealing with combinations of objects belonging to a finite set in accordance with certain constraints.

Mathematical induction: To prove a statement $\mathrm{S}(\mathrm{n})$ is true for any natural number n, it suffices first to establish the inductive basis [to prove $S(1)$ is true] and then to provide the inductive step [to prove $S(m+1)$ is true by assuming $S(m)$ is true].

Row move: A move to place a number in a grid by observing a certain row.
Column move: A move to place a number in a grid by observing a certain column.
Box move: A move to place a number in a grid by observing a certain box.
Grid move: A move to place a number in a grid by observing a certain grid.
Terminating move: A move to place a number in a grid to fill up a row, column or box.
Situational move: A move after carefully studying the whole situation when stuck.
Balducci assumption: When $0<t<1$, the mortality rate ${ }_{\mathrm{t}} \mathrm{q}_{\mathrm{x}}$ can not be found in a life table. Under this assumption, the reciprocal interpolation is used.
\mathbf{U}-assumption: When $0<\mathrm{t}<1$, the mortality rate t_{q} can not be found in a life table. Under this assumption, the linear interpolation is used.

CSO: The acronym for Commissioners Standard Ordinary.
SOA: The acronym for Society of actuaries.
ARCH: The acronym for Actuarial Research Clearing House, which is one of the two SOA publications of articles, the other is Transactions.

REFERENCES

1. Barnard S. and Child J., "HIGHER ALGEBRA", MacMillan Publishers, Stuttgart, Germany, 1936.
2. Bowers, N., Gerber, H., Hickman, J., Jones D. and Nesbitt, C., "ACTUARIAL MATHEMATICS", SOA, Schaumberg, Illinois, USA, 1997.
3. Cipra, B., "THE BEST OF THE 20^{TH} CENTURY", SIAM News, Vol. 33, No. 4, May, 2000.
4. Dantzig, G. B., "LINEAR PROGRAMMING EXTENSION", Princeton University Press, Princeton, New Jersey, USA, 1963.
5. Dantzig, G. B. and Thapa, M. N., "LINEAR PROGRAMMING", Springer, New York, New York, USA (1997).
6. Graham R. L., Knuth D. E. and Patashnik O., "CONCRETE

MATHEMATICS", Addison-Wesley Publishing Company, Boston, Massachusetts, USA 1994.
7. Heesterman, A. R. G., "MATRICES AND SIMPLEX ALGORITHMS", Reidel Publishing, Dordrecht, Netherlands, 1983.
8. Janusz, J., "SOLVING SUDOKU, ILLUSTRATED STRATEGIES", Trustworthy Communications, LLC, Ann Arbor, Michigan, USA, 2016.
9. Jordan, C. W., "LIFE CONTINGENCIES", SOA, Schaumberg, Illinois, USA, 1975.
10. Lial, M. L. and T. W. Hungerford, "MATHEMATICS WITH APPLICATION", Addison-Wesley Publishing Company, Boston, Massachusetts, USA, 2003.
11. Loyale, G., "GORDEN LOYALE LIST", Online.
12. Manage, A. and Scariano, S., "A CLASSROOM NOTE ON: STUDENT MISCONCEPTIONS REGARDING PROBABILISTIC INDEPENDENCE VS. MUTUALLY EXCLUSIIVITY", Mathematics and Computer education, Bethpage, New York, USA, 2010.
13. Mosteller, F., "FIFTY CHALLENGING PROBLEMS IN PROBABILITY WITH SOLUTIONS", Dover Publications, Mineola, New York, USA, 1965.
14. Owen, G., "GAME THEORY", Academic Press, Cambridge, Massachusetts, USA, 1995.
15. Promislow, S. D., "FUNDAMENTALS OF ACTUARIAL MATHEMATICS", Wiley Publishing, Hoboken, New Jersey, USA, 2015.
16. Shortz, W., "DANGEROUS BOOK OF SUDOKU", St. Martin’s Press, New York, New York,, USA, 2009.
17. Tsao, H., "SODOKU", e-JMT, Redford, Virginia, USA, 2017.
18. Tsao H., "EXPLICIT POLYNOMIAL EXPRESSIONS FOR SUMS OF POWERS OF AN ARITHMETIC PROGRESSION", Mathematical Gazette, Cambridge, England, 2008.
19. Tsao H., "PROOF WITHOUT WORDS", Mathematical Gazette, Cambridge, England, 2005.
20. Tsao, H., "GENERAL VIEW OF ACTUARIAL MATHEMATICS", Tamkang University Press, New Taipei City, Taiwan, 2001.
21. Tsao, H., "BIKINI AND OPEN TOP PROBLEMS AND MORE", Mathematics and Computer Education, Vol. 35, No. 1, Old Bethpage, New York, USA, 2001.
22. Tsao, H., "ACTUARIAL MATHEMATICS MADE SIMPLE", Tsang Hai Book Publishing Company, Taichung, Taiwan, 1997.
23. Tsao, H., "SOME USEFUL THEOREM IN ACTUARIAL MATHEMATICS", ARCH, SOA, Schaumberg, Illinois, USA, 1993.
24. Tsao, H., "LIFE CONTINGENCY FUNCTIONS AND THEIR DERIVATIVES", ARCH, SOA, Schaumberg, Illinois, USA, 1993.
25. Tsao, H., "GEOMETRIC REALIZATION OF CONVOLUTION OF UNIFORM", ARCH, SOA, Schaumberg, Illinois, USA, 1993.
26. Tsao, H., "AN EXPLICIT FORMULA FOR THE PROBABILITY OF RUIN", ARCH, SOA, Schaumberg, Illinois, USA, 1993.
27. Tsao, H., "GEOMETRIC REALIZATION OF FUNCTIONS IN THE THEORY OF INTEREST", Risks and Rewards, SOA, Schaumberg, Illinois, USA, 1993.
28. Tsao, H., "MOMENTS OF SURVIVAL FUNCTIONS WITH CERTAIN CLASS OF HAZARD RATES", ARCH, SOA, Schaumberg, Illinois, USA, 1992.
29. Tsao, H., "ON THE DIFFERENCE-EQUATION METHOD OF GRADUATION", ARCH, SOA, Schaumberg, Illinois, USA, 1988.
30. Tsao, H., "ON DERIVATIVES LIFE CONTINGENCY FUNCTIONS", ARCH, SOA, Schaumberg, Illinois, USA, 1987.
31. Tsao, H., "A NEW DERIVATION OF LIFE INSURANCE AND LIFE ANNUITY FUNCTIONS", ARCH, SOA, Schaumberg, Illinois, USA, 1985.
32. Tsao, H., "ON KING'S PIVOTAL-POINT FORMULA", ARCH, SOA, Schaumberg, Illinois, USA, 1984.
33. Tsao, H., "A MORE GENERAL PRESENTATION OF PENSION FUNDING", ARCH, SOA, Schaumberg, Illinois, USA, 1983.
34. Tsao, H., "BALDUCCI AND UNIFORM DISTRIBUTION OF DEATHS HYPOTHESES", ARCH, SOA, Schaumberg, Illinois, USA, 1983.
35. Tsao, H., "SOLUTIONS TO STATIONARY POULATION PROBLEMS", Transactions, SOA, Schaumberg, Illinois, USA, 1981.
36. Tsao, H., "SOME EXTREMAL PROBLEMS IN ORDERED STRUCTURES", UIUC , Urbana-Champaign, Illinois, USA, 1976.

APENDIX A: LIST OF TABLES

Table 1. The first stage of gift-giving arrangement
Table 2. The second stage of gift-giving arrangement
Table 3. Table of the first stage of information
Table 4. Table of the second stage of information in Case 1
Table 5. Table of the second stage of information in Case 2
Table 6. The final table of the complete information
Table 7. Table for recursive calculations of $S^{(2)}(n)$ and $T(n)$
Table 8. Pascal Triangle
Table 9. Bernoulli triangle
Table 10. The small Stirling triangle
Table 11. The large Stirling triangle

Table 12. The small Euler triangle
Table 13. The large Euler triangle
Table 14. The first-order Pascal triangle
Table 15. The second-order Pascal triangle
Table 16. Table for Stirling numbers of the first kind
Table 17. Stirling triangle of the first kind via the recursive formula
Table 18. Stirling triangle of the second kind via the recursive formula
Table 19. Table for general Stirling numbers of the first kind $\left[\begin{array}{l}n \\ k\end{array}\right]_{a ; d}$
Table 20. Table for general Stirling numbers of the second kind $\left\{\begin{array}{l}n \\ k\end{array}\right\}_{a ; d}$
Table 21. Table for general first order Eulerian numbers $\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle_{a ; d}$
Table 22. Table for general second order Eulerian numbers $\left\langle\left\langle\begin{array}{l}n \\ k\end{array}\right\rangle\right\rangle_{a ; d}$

Table 23. First half of the comparison chart.
Table 24. Second half of the comparison chart.

APENDIX B: LIST OF FIGURES

Figure 1. The table surface for placing
Figure 2. The first stage of placing
Figure 3. The second stage of placing
Figure 4. The third stage of placing

Figure 5. The fourth stage of placing
Figure 6. The fifth stage of placing
Figure 7. Assumption 1 of course electing
Figure 8. Assumption1.2 of course electing
Figure 9. Assumption1.3 of course electing
Figure 10. Assumption 2 of course electing
Figure 11. Assumption 2.2 of course electing
Figure 12. Assumption 3 of course electing
Figure 13. Assumption 3.2 of course electing
Figure 14. Assumption 3.3.1 of course electing
Figure 15. Figure for P. T.
Figure 16. Figure for T. T. 1
Figure 17. Figure for T. T. 2
Figure 18. Figure with three squares
Figure 19. Figure with three half circles
Figure 20. Figure with $(b-a)^{2}$ off center
Figure 21. Figure with $(b-a)^{2}$ centered
Figure 22. Figure for obtuse triangle
Figure 23. Figure for acute triangle
Figure 24. Figure for $\mathrm{DG}=\mathrm{FG}$ and $\mathrm{HB} / / \mathrm{DE}$
Figure 25. Figure supplemented by a convenient table
Figure 26. Figure for the grid gate
Figure 27. Figure for the grid gate with two corners marked A and B

Figure 28. Figure for the graded window
Figure 29. Figure for graffiti picture 1
Figure $30 . \quad$ Figure for graffiti picture 2
Figure 31. Figure for graffiti picture 3
Figure 32. Figure for the jail house
Figure 33. Figure for the gridded square
Figure 34. Figure for the uniform sample space of 441 points
Figure 35. Figure for the uniform sample space of 368 points
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.

Figure 46.

Figure 47.

Figure 48.

Figure 49. The future value of $a_{n}^{(m)}$

Figure 50.

Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.

Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure $62 . \quad$ Visualization of Case 1
Figure 63. The migration occurs on birthdays under B-Assumption
Figure 64. The migration occurs at year-ends under B-Assumption
Figure 65. The migration occurs at year-ends under U-Assumption
Figure 66. The migration occurs at year-ends under U-Assumption
Figure 67. Calendar year study, deaths by age last birthday, migration on birthdays
Figure 68. Calendar year study, deaths by age last birthday, migration at year-ends
Figure 69. Calendar year study, deaths by calendar year, migration on birthdays
Figure 70. Calendar year study, deaths by calendar year, migration at year-ends
Figure 71. \quad The supplementary relationship of $\left(D^{(m)} \bar{\alpha}\right)_{x: n}^{1}$ and $\left(I^{(m)} \bar{\alpha}\right)_{x: n}^{1}$

Figure 72. \quad The supplementary relationship of $(\bar{D} \bar{\alpha})_{x: n}^{1}$ and $(\bar{I} \bar{\alpha})_{x: n}^{1}$
Figure 73. The playground of Sudoku
Figure 74. Figure 1 for Puzzle 1
Figure 75. Figure 2 for Puzzle 1
Figure 76. Figure 3 for Puzzle 1
Figure 77. Figure 4 for Puzzle 1
Figure 78. Figure 5 for Puzzle 1
Figure 79. Figure 6 for Puzzle 1
Figure 80. \quad Figure 7 for Puzzle 1
Figure 81. Figure 8 for Puzzle 1
Figure 82. Figure 9 for Puzzle 1
Figure 83. Figure 1 for Puzzle 2
Figure 84. Figure 2 for Puzzle 2
Figure 85. Figure 3 for Puzzle 2
Figure 86. Figure 1 for Puzzle 3
Figure 87. Figure 2 for Puzzle 3
Figure 88. Figure 3 for Puzzle 3
Figure 89. Figure 4 for Puzzle 3
Figure $90 . \quad$ Figure 5 for Puzzle 3
Figure 91. Figure 6 for Puzzle 3
Figure 92. Figure 7 for Puzzle 3
Figure 93. Figure 8 for Puzzle 3

Figure 94. Figure 9 for Puzzle 3
Figure 95. Figure 10 for Puzzle 3
Figure $96 . \quad$ Figure 11 for Puzzle 3
Figure 97. Figure 12 for Puzzle 3
Figure $98 . \quad$ Figure 1 for Puzzle 4
Figure 99. Figure 2 for Puzzle 4
Figure 100. Figure 3 for Puzzle 4
Figure 101. Figure 4 for Puzzle 4
Figure 102. Figure 5 for Puzzle 4
Figure 103. Figure 6 for Puzzle 4
Figure 104. Figure 1 for Puzzle 5
Figure 105. Figure 2 for Puzzle 5
Figure 106. Figure 3 for Puzzle 5
Figure 107. Figure 4 for Puzzle 5
Figure 108. Figure 5 for Puzzle 5
Figure 109. Figure 6 for Puzzle 5
Figure 110. Figure 7 for Puzzle 5
Figure 111. Figure 8 for Puzzle 5
Figure 112. Figure 9 for Puzzle 5
Figure 113. Figure 1 for Puzzle 6
Figure 114. Figure 2 for Puzzle 6
Figure 115. Figure 3 for Puzzle 6
Figure 116. Figure 4 for Puzzle 6

Figure 117. Figure 5 for Puzzle 6
Figure $118 . \quad$ Figure 6 for Puzzle 6
Figure 119. Figure 7 for Puzzle 6
Figure 120. Figure 8 for Puzzle 6
Figure 121. Figure 9 for Puzzle 6
Figure 122. Figure 1 for Puzzle 7
Figure 123. Figure 2 for Puzzle 7
Figure 124. Figure 3 for Puzzle 7
Figure 125. Figure 4 for Puzzle 7
Figure 126. Figure 5 for Puzzle 7
Figure 127. Figure 6 for Puzzle 7
Figure 128. Figure 1 for Puzzle 8
Figure 129.
Figure 130.
Figure 131.
Figure 132.
Figure 133.
Figure 134.
Figure 135.
Figure 136.
Figure 137.
Figure 138.
Figure 139.
Figure 3 for Puzzle 9

Figure 140. Figure 4 for Puzzle 9

Figure 141.
Figure 142.
Figure 143.
Figure 144.
Figure 145.
Figure 146.
Figure 147.
Figure 148.
Figure 149.
Figure 150.
Figure 151.
Figure 152.
Figure 153.
Figure 154.
Figure 155.
Figure 156.
Figure 157.
Figure 158.
Figure 159.
Figure 160.
Figure 161.
Figure 162.

Figure 5 for Puzzle 9
Figure 6 for Puzzle 9
Figure 7 for Puzzle 9
Figure 8 for Puzzle 9
Figure 9 for Puzzle 9
Figure 1 for Puzzle 10
Figure 2 for Puzzle 10
Figure 3 for Puzzle 10
Figure 4 for Puzzle 10
Figure 5 for Puzzle 10
Figure 6 for Puzzle 10
Figure 7 for Puzzle 10
Figure 8 for Puzzle 10
Figure 9 for Puzzle 10
Figure 10 for Puzzle 10
Figure 11 for Puzzle 10
Figure 12 for Puzzle 10
Figure 13 for Puzzle 10
Figure 14 for Puzzle 10
Figure 15 for Puzzle 10
Figure 1 for Puzzle 11
Figure 2 for Puzzle 11

Figure 163.
Figure 164.
Figure 165.
Figure 166.
Figure 167.
Figure 168.
Figure 169.
Figure 170.
Figure 171.
Figure 172.
Figure 173.
Figure 174.
Figure 175.
Figure 176.
Figure 177.
Figure 178.
Figure 179.
Figure 180.
Figure 181.
Figure 182.
Figure 183.
Figure 184.
Figure 185.

Figure 3 for Puzzle 11
Figure 1 for Puzzle 12
Figure 2 for Puzzle 12
Figure 3 for Puzzle 12
Figure 1 for Puzzle 13
Figure 2 for Puzzle 13
Figure 3 for Puzzle 13
Figure 4 for Puzzle 13
Figure 5 for Puzzle 13
Figure 6 for Puzzle 13
Figure 1 for Puzzle 14
Figure 2 for Puzzle 14
Figure 3 for Puzzle 14
Figure 1 for Puzzle 15
Figure 2 for Puzzle 15
Figure 3 for Puzzle 15
Figure 1 for Puzzle 16
Figure 2 for Puzzle 16
Figure 3 for Puzzle 16
Figure 4 for Puzzle 16
Figure 5 for Puzzle 16
Figure 6 for Puzzle 16
Figure 7 for Puzzle 16

Figure 186.
Figure 187.
Figure 188. Figure 189.

Figure 190.

Figure 191.
Figure 192.
Figure 193.
Figure 194.
Figure 195.
Figure 196.
Figure 197.
Figure 198.
Figure 199.
Figure 200.
Figure 201.
Figure 202.
Figure 203.
Figure 204.
Figure 205.
Figure 206.
Figure 207.
Figure 208.

Figure 8 for Puzzle 16
Figure 9 for Puzzle 16
Figure 10 for Puzzle 16
Figure11 for Puzzle 16

Figure 12 for Puzzle 16

Figure 1 for Puzzle 17
Figure 2 for Puzzle 17
Figure 3 for Puzzle 17
Figure 4 for Puzzle 17
Figure 5 for Puzzle 17
Figure 6 for Puzzle 17
Figure 7 for Puzzle 17
Figure 8 for Puzzle 17
Figure 9 for Puzzle 17
Figure 1 for Puzzle 18
Figure 2 for Puzzle 18
Figure 3 for Puzzle 18
Figure 4 for Puzzle 18
Figure 5 for Puzzle 18
Figure 6 for Puzzle 18
Figure 7 for Puzzle 18
Figure 8 for Puzzle 18
Figure 9 for Puzzle 18

Figure 209.
Figure 210.
Figure 211.
Figure 212.
Figure 213.
Figure 214.
Figure 215.
Figure 216.
Figure 217.
Figure 218.
Figure 219.
Figure 220.
Figure 221.
Figure 222.
Figure 223.
Figure 224.
Figure 225.
Figure 226.

Figure 1 for Puzzle 19
Figure 2 for Puzzle 19
Figure 3 for Puzzle 19
Figure 4 for Puzzle 19
Figure 5 for Puzzle 19
Figure 6 for Puzzle 19
Figure 1 for Puzzle 20
Figure 2 for Puzzle 20
Figure 3 for Puzzle 20
Figure 1 for Puzzle 21
Figure 2 for Puzzle 21
Figure 3 for Puzzle 21
Figure 1 for Puzzle 22
Figure 2 for Puzzle 22
Figure 3 for Puzzle 22
Figure 1 for Puzzle 20
Figure 2 for Puzzle 20
Figure 3 for Puzzle 20

EDITORS PAGE

Editors of＂EVOLUTIONARY PROGRESS IN SCIENCE，TECHNOLOGY， ENGINEERING，ARTS AND MATHEMATICS（STEAM）＂

1．Dr．Lawrence K．Wang（王抗曝）

Lawrence K．Wang has over 30＋years of professional experience in facility design， environmental sustainability，natural resources，STEAM education，global pollution control，construction，plant operation，and management．He has expertise in water supply， air pollution control，solid waste disposal，drinking water treatment，waste treatment，and hazardous waste management．He was the Director／Acting President of the Lenox Institute of Water Technology，Engineering Director of Krofta Engineering Corporation and Zorex Corporation，and a Professor of RPI／SIT／UIUC，in the USA．He was also a Senior Advisor of the United Nations Industrial and Development Organization（UNIDO） in Austria．Dr．Wang is the author of over 700 technical papers and $45+$ books，and is credited with 24 US patents and 5 foreign patents．He earned his two HS diplomas from the High School of National Taiwan Normal University and the State University of New York．He also earned his BS degree from National Cheng－Kung University，Taiwan，ROC， his two MS degrees from the University of Missouri and the University of Rhode Island， USA，and his PhD degree from Rutgers University，USA．Currently he is the Chief Series Editor of the Handbook of Environmental Engineering series（Springer）；Chief Series Editor of the Advances in Industrial and Hazardous Wastes Treatment series，（CRC Press， Taylor \＆Francis）；co－author of the Water and Wastewater Engineering series（John Wiley \＆Sons）；and Co－Series Editor of the Handbook of Environment and Waste Management series（World Scientific）．Dr．Wang is active in professional activities of AWWA，WEF， NEWWA，NEWEA，AIChE，ACS，OCEESA，etc．

2．Dr．Hung－ping Tsao（曹恆平）

Hung－ping Tsao has been a mathematician，a university professor，and an assistant actuary，serving private firms and universities in the United States and Taiwan for 30＋ years．He used to be an Associate Member of the Society of Actuaries and a Member of the American Mathematical Society．His research have been in the areas of college mathematics，actuarial mathematics，management mathematics，classic number theory and Sudoku puzzle solving．In particular，bikini and open top problems are presented to share some intuitive insights and some type of optimization problems can be solved more efficiently and categorically by using the idea of the boundary being the marginal change of a well－rounded region with respect to its inradius；theory of interest，life contingency functions and pension funding are presented in more simplified and generalized fashions； the new way of the simplex method using cross－multiplication substantially simplified the process of finding the solutions of optimization problems；the generalization of triangular arrays of numbers from the natural sequence based to arithmetically progressive sequences based opens up the dimension of explorations；the introduction of step－by－step attempts to solve Sudoku puzzles makes everybody＇s life so much easier and other STEAM project development．Dr．Tsao is the author of 3 books and over 30 academic publications．Among all of the above accomplishments，he is most proud of solving manually in the total of ten hours the hardest Sudoku posted online by Arto Inkala in early July of 2012．He earned his high school diploma from the High School of National Taiwan Normal University，his BS and MS degrees from National Taiwan Normal University，Taipei，Taiwan，his second MS degree from the UWM in USA，and a PhD degree from the University of Illinois，USA．

Editors of the eBOOK Series of the＂EVOLUTIONARY PROGRESS IN
SCIENCE，TECHNOLOGY，ENGINEERING，ARTS AND MATHEMATICS （STEAM）＂

Dr．Lawrence K．Wang（王抗曝）－left
Dr．Hung－ping Tsao（曹恆平）－－right

E-BOOK SERIES AND CHAPTER INTRODUCTON

Introduction to the eBOOK Series of the "EVOLUTIONARY PROGRESS IN SCIENCE, TECHNOLOGY, ENGINEERING, ARTS AND MATHEMATICS (STEAM)" and This

Chapter "MATHEMATICS OF HUNG-PING TSAO"

The acronym STEM stands for "science, technology, engineering and mathematics". In accordance with the National Science Teachers Association (NSTA), "A common definition of STEM education is an interdisciplinary approach to learning where rigorous academic concepts are coupled with real-world lessons as students apply science, technology, engineering, and mathematics in contexts that make connections between school, community, work, and the global enterprise enabling the development of STEM literacy and with it the ability to compete in the new economy". The problem of this country has been pointed out by the US Department of Education that "All young people should be prepared to think deeply and to think well so that they have the chance to become the innovators, educators, researchers, and leaders who can solve the most pressing challenges facing our nation and our world, both today and tomorrow. But, right now, not enough of our youth have access to quality STEM learning opportunities and too few students see these disciplines as springboards for their careers." STEM learning and applications are very popular topics at present, and STEM related careers are in great demand. According to the US Department of Education reports that the number of STEM jobs in the United States will grow by 14% from 2010 to 2020, which is much faster than the national average of $5-8 \%$ across all job sectors. Computer programming and IT jobs top the list of the hardest to fill jobs. Despite this, the most popular college majors are business, law, etc., not STEM related. For this reason, the US government has just extended a provision allowing foreign students that are earning degrees in STEM fields a seven month visa extension, now allowing them to stay for up to three years of "on the job training". So, at present STEM is a legal term.

The acronym STEAM stands for "science, technology, engineering, arts and mathematics". As one can see, STEAM (adds "arts") is simply a variation of STEM. The word of "arts" means application, creation, ingenuity, and integration, for enhancing STEM inside, or exploring of STEM outside. It may also mean that the word of "arts" connects all of the humanities through an idea that a person is looking for a solution to a very specific problem which comes out of the original inquiry process. STEAM is an academic term in the field of education. The University of San Diego and Concordia University offer a college degree with a STEAM focus. Basically STEAM is a framework for teaching or R\&D, which is customizable and functional, thence the "fun" in functional. As a typical example, if STEM represents a normal cell phone communication tower looking like a steel truss or concrete column,STEAM will be an artificial green tree with all devices hided, but still with all cell phone communication functions. This ebook series presents the recent evolutionary progress in STEAM with many innovative chapters contributed by academic and professional experts.

This ebook chapter, "MATHEMATICS OF HUNG-PING TSAO" is Dr. Hungping Tsao's collection of thoughts, works and talks about various basic mathematical problems encountered through twenty years of learning plus twenty years of teaching. From time to time, he would share his innovative and artful ideas with all levels of audience by giving talks to college and high school students in U.S. as well as in Taiwan.

[^0]: *. Had TP been placed in (P, 3), NT would have to be placed in (F, 3) according to \#5, contradicting GM (F, 3).

[^1]: 430 r 5
 336 C 7

 347 C 9

 6sor3

