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NOMENCLATURE 

 

C(n, k), (𝑛
𝑘

)     combination 

 

Σ                        sum 

 

     Bernoulli coefficient 

 

      the natural sequence 

 

                       the sum of the first kth powers of the natural sequence 

 

∫                            integral  

 

P(n, k) ,  nPk      the permutation of n elements taken k at a time  

k!       k factorial  

                  small Stirling number  

 

            large Stirling number 

 

                   small Euler number 

 

                  large Euler number 

 

                        first-order Eulerian number 

 

                     second-order Eulerian number 

 

                     the permutation of n elements taken k at a time 

 

                           Stirling number of the first kind 

 

                           Stirling number of the second kind 
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 arithmetically progressive sequence 

 

              Stirling triangle of the first kind for  

 

             Stirling triangle of the second kind for  

 

              first-order Eulerian number for  

 

          second-order Eulerian number for  

 

            general triangular array for  

 

∏                     product 

 

               - Gaussian coefficient 

 

𝐵𝑛                    Bell number 

               the force of interest     

 

x   the force of mortality                 

 

a(x)   the accumulation function 

 

i  the nominal rate of interest 

 

i (m)   the nominal rate of interest payable m times a year 

 

d (m)  the nominal rate of discount payable m times a year 

 
)(m

na                  the present value of an annuity due which pays m-1 at the beginning of 

each mth of a  year for n years 

 
)(m

na                  the present value of an annuity immediate which pays m-1 at the end of 

each mth of a year for n years   
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 na              the present value of a continuous annuity payable continuously for n years  

with the total of 1 paid during each year  

               
)(m

ns             the future value of an annuity due which pays m-1 at the beginning of each  

mth of a  year for n years 

 
)(m

ns              the future value of an annuity immediate which pays m-1 at the end of each  

mth of a year for n years                                                                                             

 

ns                 the future value of a continuous annuity payable continuously for n years,  

with the total of 1 paid during each year 

 

X         the random variable of a newborn’s age-at-death  

 

           the terminal age 

 

F(x)          the distribution function  (d. f.) of X  

 

S(x)           the survival function   

 

(x)          the life aged x 

 

xut q|           the probability that a life (x) aged x will die between ages x + t and x + t + u  

 

xt q            the probability that (x) will die within t years 

 

xt p            the probability that (x) will survive for t years 

 

xq            the probability that (x) will die within a year  

 

 px           the probability that (x) will survive for a year 

 

L(0)           the cohort of newborns  

 

0l            the number of newborns in L(0) 

 

L(x)           those in L(0) who survive to age x 

 

xl            the number of lives in L(x) 

 

ndx              the number of those in L(x) who will die within n years  
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dx             those in L(x) who will die within a year 

 
z

xP   the number of persons aged between x and x + 1 at the beginning of the  

calendar year z 

 
z

xE   the number of persons attained age x during the calendar year z 

 
z

xD     the number of deaths among z

xE during the calendar year z 

  
z

xD     the number of deaths among z

xP before the attainment of age x + 1 

 
z

xm   the number of migrants in addition to z

xE during the calendar year z 

  
z

xm     the number of migrants in addition to z

xP before the attainment of age x + 1       

 
1

:nxA   n-year term insurance of 1 payable at the end of the year of death 

 
1

:nxA                  n-year pure endowment of 1 payable at the end of the nth year when (x) 

lives 

 

A x : n    n-year endowment insurance of 1 payable either at the end of the year of  

death or at the end of the nth year when (x) survives 

                 

a x : n    n-year annuity of 1 payable at the end of each year while (x) survives 

 

nxa :
    n-year annuity of 1 payable at the beginning of each year while (x)  

survives 

 
1

:nx   n-year term life contingency function with the death benefit k  payable at  

the end of the year of death 

 
1

:nx    n-year pure endowment of n  at the date of maturity 

 
1

:nxA   n-year term insurance of 1 payable at the end of the year of death 

 
1

:nxA     n-year pure endowment of 1 payable at the end of the nth year when (x)  

lives  
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A x : n    n-year endowment insurance of 1 payable either at the end of the year of  

death or at the end of the nth year when (x) lives 

 

),( txd       the discount function of interest  

 

),( txd   the discount function of mortality 

 

nxh :|    an h-year deferred n-year continuous life contingency function  

 

xh |   an h-year deferred whole life continuous contingency function 

 

nx:    an n-year continuous life contingency function 

 

x    a whole life continuous contingency function 

 

)( :| nxhr P         the continuously paid net level premium of nxh :|  , with payments for r  

years 

 

nxI :)(               an n-year continuous contingency function providing the present value of  

the death benefit tt )1(   at time t and the maturity benefit nn .  

 
1

:)( nxI             an n-year continuous contingency function providing the present value of  

the death benefit tt )1(   at time t and the maturity benefit 0 

 
1

:)( nxD            an n-year continuous contingency function providing the present value of  

the death benefit ttn )(   at time t 

 
1

:

)( )( nx

mD  ,      an mthly decreasing life contingency function   

 
1

:

)(
)( nx

m

hD        an mthly decreasing life contingency function with only h years death  

benefit decrease  

   

610(86)b6:6(75): u56c3b3/c9b9         The tenth step with the law of unique solution to  

avoid the dilemma of double choices between 5, 6  

in column 3 of box 3 and 6, 5 in column 9 of box 9  

so as to place 6 at (86) box 6 

 

37r3: fcr-56(32)(33)&49(36)(39)         The seventh step with row move to place 3 in row 

3 since 3 is the residue of the flipflops chain 

56(32)(33)&49(36)(39) in row 3. 
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PROLOGUE 

 
I am an amateur mathematician, who has been working rather diligently all my life. After  

 

receiving Ph.D. from UIUC in the area of combinatorics and teaching for two years in  

 

college, I pursued my actuarial career for eight years before returning to teach. I have  

 

published (22) in Chinese, an English excerpt of which was published in (20). During the  

 

17 years of teaching at SFSU, I used the textbook “College Mathematics” tailor-made for  

 

my own students in College of Business. Since these books contain fruitful of innovative  

 

ideas, I am eager to benefit undergraduate students worldwide. 

 
 

Ever since my retirement in the year of 2002, I have been working on the classic Number  

 

Theory. Although I only used elementary methods, I was able to get a breakthrough and  

 

recently published a “EVOLUTIONARY MATHEMATICS AND SCIENCE FOR  

 

NUMBER INTRICACY INVESTIGATION” (in addition to “EVOLUTIONARY  

 

MATHEMATICS AND SCIENCE FOR LIFE CONTINGENCY INVESTIGATION”)  

 

by Lenox Institute Press. I hope my efforts and results could evolve into an  

 

undergraduate textbook in the area of Number Theoretical Combinatorics.  

 

 

I also published “Cracking Sudoku Completely” in Chinese. It contains the detailed  

 

solution of the hardest Sudoku puzzle posted online which I solved manually in 2013.  

 

Besides being referenced by a course of Computer Games in Taiwan, its excerpt was  

 

published in (17). I believe the inclusion of the English version of it should benefit the  

 

vast majority of Sudoku lovers worldwide. As a matter of  fact, four “EVOLUTIONARY  

 

MATHEMATICS AND ART FOR SUDOKU” e-books have recently published. 
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1. Number Theory 

 
Dated back to the Eighteenth Century, James Sterling, Leonhard Euler and Jacob  

Bernoulli have collectively set up a solid foundation for the number theoretically  

combinatorics. You might have heard of numbers bearing their names, but I bet most  

people are not familiar with their work.  

 

Although my doctoral dissertation included some discussion of certain properties of  

Stirling numbers, I should admit that I knew very little about them. Late until around  

the turn of this Century, I came across a book titled Concrete Mathematics in a Stanford  

library which was used as a textbook for the first year graduate students of Computer  

Science major. 

 

At that time, I was about to retire from teaching in the College of Business, San  

Francisco State University and got interested in pursuing the explicit polynomial  

expression for the sum of powers of the natural numbers. Through my tireless efforts, I  

came up with two unusual arrays of numbers to be used for my purpose. No sooner I  

flipped through that textbook than I realized that those unusual numbers were indeed  

Stirling numbers of the first and second kind in disguise!  

 

The authors of the book did suggest some plausible approach for expressions of the sum  

of powers of the natural numbers without reaching the goal, as an example of a failed  

attempt. I would like to share with you my successful attempt. I further generalize the  

related numbers based on the natural sequence to those that are arithmetically  

progressive sequence-based. As a result, various structures of triangular arrays can be  

built on top of different underlying bases.  
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2. Actuarial Mathematics 

 
We shall start with the accumulation function and use the geometric point of view to  

generalize and simplify the theory of interest. Then survey the laws of mortality from both  

points of view of stochastic theory and traditional actuaries. There is a thorough discussion  

and simple visualization of Balducci and uniform distribution of deaths assumptions of  

mortality rates of fractional ages. 

 

Two least square-fit cubic survivorship functions for fitting the Male Table of 1958 CSO  

are presented. Various complicated exposure formulas for a mortality study are obtained  

by a simple inspection of the valuation schedule in demography. 

 

Life insurance and annuities are first introduced in three different points of view:  

deterministic, stochastic and dynamic. Then a uniform representation of a general life  

contingency function and its derivative is defined in such a fashion that deferred, term,  

endowment, life insurance and life annuity with level or varying benefit and premium can  

be treated all in one shot. 

 

3. Sudoku Solving 

 
We provide a unique step-by-step Sudoku solving procedure by using subscripts and  

annotations so that the entire solving process can be recorded. We train the beginners  

into champion players with enabling “kung fu skills” coupled with surprisingly easy  

measures. In the end, we demonstrate how to crack down the hardest Sudoku ever! 

 

   4. Optimization Teaching 

 

We introduce more efficient methods in Differential Calculus and Linear Programming. 
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1.         TALK ELEGANCY 

 

1.1. TOWER OF HANOI 

 

We are given a tower of eight disks, initially stacked in decreasing size on one of three  

 

pegs. The objective is to transfer the entire tower to one of the other pegs, moving only  

 

one disk at a time and never moving a larger one onto a smaller. 

 

 

The problem of the Tower of Hanoi was invented by E. Lucas in 1883 and had been  

 

discussed extensively without touching on the number system in (6). Let us first give an  

 

optimal solution to this problem with four disks by imposing subscripts to each number to  

 

keep track of the number of moves hereunto taken for the corresponding disk as follows. 

 

 

Step 0       10                 

        20                          

       30     

40     

      peg 1          peg 2             peg 3 

 

Step 1       20                          

       30     

40                                                         11      

      peg 1          peg 2             peg 3 

 

Step 2       30     

40                                                         11                                                    21  

      peg 1          peg 2             peg 3 

 

Step 3       30                                                                                                                 12  

40                                                                                                                21  

      peg 1          peg 2             peg 3 

 

Step 4                                                                                                                         12  

40                                                        31                                                     21  

      peg 1          peg 2             peg 3 
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Step 5       13                                                                                                                    

40                                                        31                                                     21  

 

                 peg 1           peg 2              peg 3                   

 

Step 6       13                                       22                                                                               

40                                                        31                                                       

      peg 1          peg 2             peg 3 

 

Step 7                                               14 

                                                                                           22                                                                               

40                                                    31                                                        

       peg 1          peg 2             peg 3 

 

Step 8                                               14 

                                                                                           22                                                                               

                                                         31                                                       41 

       peg 1          peg 2             peg 3 

 

Step 9                                                               22                                                      15 

                                                               31                                                      41  

      peg 1          peg 2             peg 3 

 

Step 10                                                                                                                         15  

23                                                        31                                                      41  

      peg 1          peg 2             peg 3                          

       

Step 11            16                                                                                                                    
23                                                        31                                                      41  

      peg 1          peg 2             peg 3 

 

        

Step 12            16                                                                                                  32 

23                                                                                                                 41  

      peg 1          peg 2             peg 3 

 

Step 13                                                                                                            32 

23                                                         17                                                   41  

      peg 1          peg 2             peg 3 

 

Step 14                                                                                       24 

                                                                                                                                                      32 

                                                         17                                                       41 

       peg 1          peg 2              peg 3 
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Step 15                                                                                         18         

                                                                                          24              

                                                                                         32     

41   

       peg 1           peg 2                peg 3 

 

 

The general problem with n disks can be solved the same way. Let nT  denote the total  

 

number of moves taken to accomplish the objective in the general case. Then we see from  

 

the above illustration that 

                                                                                           

    1512483 T   

 

and in general 

 

    





1

0

122
n

i

ni

nT . 

 

 

Now with a modification we can convert our problem into the binary number system.  

 

Give some of the disks the weight 0 and the others the weight 1. Then the weighted sum  

 

2;nT  of all the moves would represent a unique binary number such as 

 

,)0,1,0,1,1(222)0,1,0,1,1( 2

134

2;5 T   

 

where (1,1,0,1,0) represents 5 disks with weights listed in the ascending order of sizes.        

  

 

If we further restrict that all moves can only be made between the adjacent pegs and  

 

consider each move as a half count, then the direct solution of the modified problem with  

 

three disks can be demonstrated as follows. 

 

 

Step 0       10                          

       20      

30                                                               

      peg 1          peg 2             peg 3 
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Step 1       20 

30                                                       10.5                                                      

      peg 1          peg 2             peg 3 

 

Step 2       20                                                                                                                    

30                                                                                                                11   

      peg 1          peg 2             peg 3                          

 

Step 3       30                                                      20.5                                                  11   

      peg 1          peg 2             peg 3                                                                                                                  

 

Step 4                                                               11.5                                                            

30                                                       20.5                                                           

      peg 1          peg 2             peg 3 

 

Step 5       12                                                                                                                      

30                                                       20.5                                                           

      peg 1          peg 2             peg 3 

 

Step 6       12                                                                                                                      

30                                                                                                                 21 

      peg 1          peg 2             peg 3 

 

Step 7       30                                                      12.5                                                  21   

      peg 1          peg 2             peg 3  

 

Step 8                                                                                                        13  

30                                                                                                               21 

      peg 1          peg 2             peg 3 

 

Step 9                                                                                                        13  

                                                             30.5                                                  21 

      peg 1          peg 2             peg 3 

 

Step 10                                              13.5                                                              

                                                             30.5                                                  21 

      peg 1          peg 2             peg 3 

 

Step 11       14                                                       30.5                                                 21   

      peg 1          peg 2             peg 3   

 

Step 12                                               21.5                                                              

14                                                        30.5                                                   

      peg 1          peg 2             peg 3 
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Step 13                    14.5             

                                                              21.5 

                                                               30.5   

      peg 1          peg 2             peg 3 

 

Step 14                                              21.5                                                              

                                                         30.5                                                  15 

      peg 1          peg 2             peg 3                          

 

Step 15       22                                                       30.5                                                 15   

      peg 1          peg 2             peg 3   

 

Step 16                                              15.5                                                              

22                                                       30.5                                                   

      peg 1          peg 2             peg 3 

 

Step 17       16                                                                                                      

22                                                       30.5                                                   

      peg 1          peg 2             peg 3 

 

Step 18       16                                                                                                      

22                                                                                                                 31 

      peg 1          peg 2             peg 3 

 

Step 19       22                                                       16.5                                                  31   

      peg 1          peg 2             peg 3   

 

Step 20                                                                                                          17  

22                                                                                                                31   

      peg 1          peg 2             peg 3 

 

Step 21                                                                                                        17  

                                                              22.5                                                 31   

      peg 1           peg 2              peg 3 

 

Step 22                                                17.5                                                     

                                                               22.5                                                 31   

      peg 1           peg 2              peg 3 

 

Step 23       18                                                        22.5                                                  31   

      peg 1           peg 2              peg 3   

 

Step 24                                                                                                          23 

18                                                                                                                31   

      peg 1           peg 2              peg 3 
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Step 25                                                                                                          23 

                                                          18.5                                                   31   

      peg 1          peg 2              peg 3 

 

Step 26                                                            19  

                                                                                                      23 

                                                                                                      31 

       peg 1           peg 2               peg 3                          

 

 

The above detailed process can be recapped as follows. 

 

  10           14.5                                  19 

  20   12       16                      11.5         13.5    21.5   15.5           17.5                       13           17     23           

  30   30   14   22   18         10.5   20.5   12.5   30.5    30.5    30.5   16.5    22.5   18.5       11   21   15   31     31 

           peg 1              peg 2                             peg 3 

 

 

As before, with a modification we can convert our problem into the tri-nary system. Give  

 

some of the disks the weight 0, some others the weight 1 and the rest the weight 2. Then  

 

the weighted sum 3;nT  of all the moves would represent a unique tri-nary number. For  

 

example,  

 

,)2,0,1,0,2(23)3(2)2,0,1,0,2( 3

24

3;5 T   

 

where (2,0,1,0,2) represents 5 disks with weights listed in the ascending order of sizes. 

  

 

The initial problem can be generalized as follows.  

 

 

General Tower of Hanoi with k pegs. We are given a tower of n disks, initially stacked in  

 

decreasing size on the first of k ordered pegs. The objective is to transfer the entire tower  

 

to the last peg, moving only one disk at a time and never moving a larger one onto a  

 

smaller. We further restrict that all moves can only be made between the adjacent pegs.  

 

 

Can we convert the problem of General Tower of Hanoi into the k-ary number system? 
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1.2. EINSTEIN RIDDLE 

 

The question is: Based on the following hints, who owns the fish? 

 

1) There are five houses in five different colors. 

 

2) In each house lives a person with a different nationality. 

 

3) These five owners drink a certain type of beverages, smoke a certain brand of cigar 

 

and keep a certain pet. 

 

4) No owners have the same pet, smoke the same brand of cigar or drink the same  

 

beverage. 

 

5) The Brit lives in the red house. 

 

6) The Swede keeps dogs as pets. 

 

7) The Dane drinks tea. 

 

8) The green house is on the left of the white house. 

 

9) The green house’s owner drinks coffee. 

 

10) The person who smokes Pall Mall rears birds. 

 

11) The owner of the yellow house smokes Dunhill. 

 

12) The man living in the center house drinks milk. 

 

13) The Norwegian lives in the first house. 

 

14) The man who smokes blends lives next to the one who keeps cats. 

 

15) The man who keeps horses lives next to the man who smokes Dunhill. 

 

16) The owner who smokes Blue Master drinks beer. 

 

17) The German smokes Prince. 

 

18) The Norwegian lives next to the blue house. 

 

19) The man who smokes blends has a neighbor who drinks water. 
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The author’s motivation came from the notion that only two percent of people in the  

 

whole world could solve Einstein Riddle. He would try to prove it otherwise by using an  

 

illustrative method incorporate with subscripted annotations.  

 

 

Many logical reasoning problems can be solved this way, especially Sudoku puzzles. He  

 

was invited to present the following talk at “The 2017 International Conference in  

 

Management Sciences and Decision Making” (Tamkang University), which is an  

 

example of a talk that could appeal to general audience with no math background.   

 

 

1.2.1   Talk Topic: Illustrative Problem Solving   

 

 

First of all, I would like to thank Professor Ruey-Chyn Tsaur for inviting me cordially  

 

here at the Department of Management Sciences, which is by no means a stranger to me.  

 

It has to trace back to its origin the Institute of Management Sciences, where I was  

 

invited by Professor Horng-Jinh Chang to be a visiting professor for three months in the  

 

year of 1984.  

 

 

As you might have known, Professor Chang was a student of Professor Wen-tao Huang,  

 

who has been my dearest friend since our graduate student years together in Tsinghua  

 

University, where Professor Tsaur received his PhD from much later. 

 

 

I still remember quite vividly the founding year of the Institute of Mathematics there  

 

nearly fifty five years ago. Wen-tao was the first student to register, but to his dismay  

 

was soon called back to fulfill his obliged teaching duty in Tainan as required for every  

 

student graduated from the National Taiwan Normal University.  
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Among the seven students registered in the Spring semester of 1962, six (one female)  

 

graduated from the National Taiwan Normal University and one from the National  

 

Taiwan University. Despite of the wide range of age disparity, we got along pretty well in  

 

the male student dorm. After the first day of orientation, we had dinner together. To make  

 

the story short, let me propose the following three problems that are most suitable for our  

 

theme: the illustrative problem solving. 

 

 

Problem 1. From the following requirements, can you figure out the order of the age 

 

seniority and the gift-exchanging arrangement?  

 

#1. The sitting is three on each side of the table. 

 

#2. Each gives gift in a non-reciprocate fashion. 

 

#3. HT gives gift to the one sitting opposite him. 

 

#4. WH sitting opposite to the second oldest gives gift to the second youngest. 

 

#5. HL sitting by the side of the second youngest gives gift to the youngest. 

 

#6. CH not giving gift to the second oldest sits between the youngest and the third  

 

youngest. 

 

#7. FH and the third oldest do not give gift to each other. 

 

#8. WL being not the oldest sits in a corner and gives gift to the third youngest. 

 

#9. The third youngest sits opposite the oldest. 

 

 

Solution 

 

According to #1, divide the table surface into six parts as shown in Figure 1, each of  

 

which is to place one’s number of the age seniority with 1 being the youngest.  
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Figure 1.    The table surface for placing 

 

 

According to #6, sit CH first with the subscript indicating the order of occurrence and co- 

 

place 1 and 3 as shown in Figure 2. According to #9, place 6 opposite to 3. 

 

 

CH1  (#6)      

 

                                          32  (#6)                               12  (#6) 
                                                                     
                     

 

  63  (#9)                  

 

 

 

 

 

Figure 2.      The first stage of placing 

 

 

According to #4 and #6, place 5 in the remaining corner and sit WH opposite to the  

 

second oldest. According to #8, sit WL (being neither the oldest nor the third youngest)  

 

in the remaining right corner. 
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CH1        WH5  (#4) 

 

                                              32                                       12 
                                                                     
                        

 63                                 54  (#4.6) 

 

 

WL6  (#8) 

 

 

Figure 3.    The second stage of placing 

 

 

Therefore, CH must be the third oldest. Otherwise, co-place 2 and 4 as shown below.  

 

According to #5, sit HL by the side of CH. According to #7, sit FH (being not the third  

 

oldest) in the remaining corner. According to #3, HT gives gift to CH contradicting #4  

 

(WH gives gift to CH). 

 

 

HL2 (#5)      CH          WH  

 

                                                3                  21                  1 
                                                                     
                                 

 6                  41                  5  
 

 

FH3 (#7)    HT4  (#3)      WL 

 

 

Figure 4.       The third stage of placing 

 

 

Therefore, the only two possible cases are displayed below.                         
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Case 1. 

 

 

HT         CH          WH  

 

                                         3                 4                   1 
                                                                     
                        

  6                 2                    5  
 

 

HL          FH           WL 

 

 

Figure 5.    The fourth stage of placing 

 

 

The gift-giving arrangement is displayed with the requirement number as follows. 

 

 

 

     WH (1)   CH (4)   HT (3)   WL (5)   FH (2)   HL (6) 

 

WH (1)                                      #4 

 

CH (4)                                                      #6 

 

HT (3)                           #3            

 

WL (5)                                                                      #8 

 

FH (2)                                                                                     #2 

 

HL (6)            #5 

 

 

Table 1. The first stage of gift-giving arrangement 

 

 

The requirement #6 prevents FH from giving gift to CH, so nobody gives gift to CH. 

 

 
 

27 



Case 2. 

 

 

FH         CH          WH  

 

 

                                         3                 4                   1 
                                                                     
                        

 6                 2                   5  
 

 

 

HL         HT           WL                    
 

 

Figure 6.       The fifth stage of placing 

 

 

The gift-giving arrangement is displayed with the requirement number and the age  

 

seniority order is WH, HT, FH, CH, WL, HL as illustrated below. 

 

 

 

                  WH (1)   CH (4)   HT (2)   WL (5)   FH (3)   HL (6) 

 

 

WH (1)                                       #4 

 

CH (4)                                                        #6 

 

HT (2)                            #3                                               

 

WL (5)                                                                       #8 

 

FH (3)                                                                                       #2 

 

HL (6)             #5 

 

 

Table 2.     The second stage of gift-giving arrangement 
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Problem 2. On the second day, we three young ones decided to elect courses among  

 

Statistics, Analysis, Algebra and Topology according to the following agreements. From  

 

the following agreements, can you figure out who does not elect Topology? 

 

#1. Each elects exactly three courses. 

 

#2. Each course is elected by exactly two. 

 

#3. If WH elects Statistics, so does he Topology.  

 

#4. If HT elects Algebra, so does he Analysis.   

 

#5. If FH elects Algebra, so does he Analysis.  

 

#6. If WH elects Topology, so does he Analysis.  

 

#7. If FH elects Topology, so does he Analysis. 

 

Solution  

 

Assumption 1. WH does not elect Topology.   

 

According to #2, TH and FH elect Topology, abbreviated as (HT, TP) and (FH,TP) in  

 

Figure 7. 

 

 

                         ST              AN               AL             TP 

 

           WH          1.1.1                                 1.1          1.1.1 (#3)       < 4 

      

HT                            1.1 (#4)           1.1                1               < 4 

                                                                     
            FH                              1 (#7)                                  1              < 4 

 

 

                               = 2             = 2               = 2              = 2                  

  

 

Figure 7.       Assumption 1 of course electing 

 

 

According to #7, (FH, AN). 
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Assumption 1.1. (WH, AL), (HT, AL). 

 

According to #4, (HT, AN). 

 

 

Assumption 1.1.1. (WH, ST). 

 

According to #3, (WH, TP), contradicting #2, since Topology is elected by three. 

 

Assumption 1.2. (WH, AL), (FH, AL). 

 

 

                            ST                AN                  AL                TP 

 

           WH                                                           1.2                

     

  

HT                                                                                   1                

     

                                                                
            FH                                      1                    1.2                  1      

  

 

                    Figure 8.        Assumption1.2 of course electing 

 

 

According to #2, (WH,ST), (HT,ST). Or else, FH would elect four courses, contradicting  

 

#1. According to #3, (WH, TP), contradicting Assumption 1. 

 

Assumption 1.3. (HT, AL), (FH, AL). 

 

According to #4, (HT, AN). 

 

 

                          ST                 AN                  AL                TP 

 

           WH                                              

      

HT                                                           1.3                  1               

 

            FH                                      1                    1.3                 1       

 

 

Figure 9.       Assumption1.3 of course electing 
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Same as before, (WH, TP), contradicting Assumption 1. So instead of Figure 8 and  

 

Figure 9, let us look at Figure 10 under Assumption 2. 
 

 

Assumption 2. HT does not elect Topology. According to #2, (WH,TP), (FH,TP).  

 

According to #6, (WH, AN). According to #7, (FH, AN). 

 

 

                            ST                AN                  AL                 TP 

 

           WH                                 2 (#6)                                        2 

      

HT                                2.1 (#4)               2.1                           
                                                                    
            FH                                  2 (#7)                                         2       

              

 

Figure 10.          Assumption 2 of course electing 

 

 

Assumption 2.1. (HT, AL). 

 

According to #4, (HT, AN), contradicting #2, since Analysis is elected by three. 

 

Assumption 2.2. (WH, AL), (FH, AL). 

 

 

                             ST                AN                AL                 TP 

 

           WH                                  2 (#6)              2.2                   2 

      

HT                                                           
                                                                    
            FH                                   2 (#7)               2.2                   2       

 

 

Figure 11.         Assumption 2.2 of course electing 

 

 

So instead of Figure 11, let us look at Figure 12 under Assumption 3. According to #1,  

 

HT can only elect Topology, contradicting #2.  
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Assumption 3. FH does not elect Topology. 

 

According to #2, (WH,TP), (HT,TP). According to #6, (WH, AN).    

 

 

                             ST                 AN                 AL                TP 

 

         WH                                   3 (#6)                3.1                 3 

      

HT                                  3.1 (#4)               3.1                 3               

                                                                    
          FH                                            

              
 

 

 

 

 

Figure 12.           Assumption 3 of course electing 

 

 

Assumption 3.1. (WH, AL), (HT, AL). According to #4, (HT, AN). 

 

According to #1, FH can only elect Statistics, contradicting #2. 

 

Assumption 3.2. (HT, AL), (FH, AL). According to #4, (HT, AN). 

 

 

              ST                AN                  AL               TP 

 

           WH                                 3 (#6)                                      3 

      

HT                                3.2 (#4)               3.2                 3               

                                                                    
            FH                                 3.2 (#5)               3.2              

              
 

 

 

 

Figure 13.         Assumption 3.2 of course electing 

 

 

According to #5, (FH, AN), contradicting #2, since Analysis is elected by three. The false  

 

attempt shown in Figure 13 leads us to Assumption 3.3 for the last resort.  

 

 

Assumption 3.3. (WH, AL), (FH, AL). According to #7, (FH, AN). 

 

Assumption 3.3.1. (HT, ST), (FH, ST). 
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              ST                AN                  AL               TP 

 

           WH                                 3 (#6)                 3.3                3 

      

HT             3.3.1                                                            3                

                                                                    
            FH              3.3.1          3.3 (#7)                3.3              

 

 

Figure 14.      Assumption 3.3.1 of course electing 

 

 

Agreements #1 and #2 are satisfied in Figure 14. Therefore, FH does not elect Topology. 

 

 

 

Problem 3. Oddly enough, we all came from different places (P), later majored in  

 

Different fields (F), with advisors of different nationalities (N) and now each of us lives  

 

in different cities (C) . Based on the hints below, can you figure out who resides in San  

 

Francisco? 

 

#1. CH came from Danshuei. 

 

#2. HL lives in Hsinchu. 

 

#3. FH advised by American. 

 

#4. The individual who came from Taipei registered before that from Chiayi. 

 

#5. The individual who came from Taipei majored in Number Theory. 

 

#6. The individual who advised by Canadian lives in Taipei. 

 

#7. The individual who came from Tainan advised by Indian. 

 

#8. The individual who registered third majored in Geometry. 

 

#9. WH registered first. 

 

#10. The individual who advised by American registered either right before or right after  

 

that lives in Danshuei. 
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#11. The individual who lives in Los Angeles registered either right before or right after  

 

that advised by Indian. 

 

#12. The individual who advised by Japanese majored in Game Theory. 

 

#13. HT advised by Chinese.   

 

#14. WH registered right before the one came from Changhua. 

 

#15. The individual who advised by American registered either right before or right after  

 

that majored in Geometry. 

 

 

Solution. (This is, in fact, the Einstein Riddle in disguise.)  
 

By rearranging the hints in the new order: 9, 14, 8, 4, 5, 1, 7 and 11, we can first come up  

 

with Table 3 of the first stage information. 

 

 

 

       1            2          3                   4                 5 

 

I        WH (#9)                             CH (#1) 

 

P        TN (#1)        CH (#14)       DS (#1)      TP (#4,#5)*     CY (#4)    

  
F                                                   GM (#8)        NT (#5) 

 

N        IN (#7) 

 

C                             LA (#11)              

 

 

*. Had TP been placed in (P, 3), NT would have to be placed in (F, 3) according to #5,  

 

contradicting GM (F, 3). 

 

 

Table 3.       Table of the first stage of information 

 

 

According to #15, we have the following two cases to consider. 
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Case 1. AM (N, 4) 

 

             1             2          3                   4                 5 

 

I         WH (#7)                           CH (#1)         FH (#3)          HL (#2) 

 

P         TN (#1)      CH (#14)       DS (#1)       TP (#4,#5)        CY (#4)      

 

F                                                  GM (#8)         NT (#5) 

 

N         IN (#7)                                                    AM (1) 

 

C                             LA (#11)                                                    HC (#2) 

 

 

Table 4.    Table of the second stage of information in Case 1 

 

 

According to #3, we place FH in (I, 4). According to #2, we place HL in (I, 5), HC in  

 

(C, 5) and HT in (I, 2), contradicting #13. 

 

 

Case 2. AM (N, 2) 

 

             1            2          3                  4                5 

 

I        WH (#7)       FH (#3)        CH (#1)       HT (#13) 

 

P        TN (#1)      CH (#14)        DS (#1)      TP (#4,#5)      CY (#4)   

    
F                                                  GM (#8)       NT (#5)        GT (#12) 

 

N        IN (#7)        AM (2)                              CH (#13)       JA (#12)  

 

C                           LA (#11)    

 

 

Table 5.     Table of the second stage of information in Case 2 

 

 

According to #3, we place FH in (I, 2). According to #12, we place JA in (N, 5) and GT  

 

in (F, 5). According to #13, we place CH in (N, 4) and HT in (I, 4). 
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We can now use the rest of the hints to complete Table 6 for the answer.  

 

     1       2       3       4       5 

 

I       WH    FH   CH    HT    HL 

 

P       TN    CH   DS    TP     CY  

               
F       ST    AN   GM    NT    GT 

 

N       IN    AM   CN    CH    JA 

 

C       DS    LA    TP     SF    HC 

 
 

Table 6.        The final table of the complete information 

 

 

Therefore, HT lives in San Francisco.                                            
 

 

 

Now you know the rest of the story. Not quite! Let me finish with the following episode. 

 

 

 

Fifty four years ago, 

 

 

HT: “WH, Where is your Home?” 

 

WH: ”HT, Home is in Tainan.” 

 

 

Fifty four years later, 

 

 

Rock watching    HT 

 

White waves splash upon shore rock slate, 

 

One dashes another lest getting there late; 

 

An idle by-passer simply sits still watching, 

 

Poetic rhythms well up during long gazing. 
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Watching waves   WH 

 

White waves seize the rocks, 

 

Waves went yet turning back; 

 

If only for sentimental blocks, 

 

Nag forever not holding back. 

 

 

 

Wen-tao and I have been teasing each other (first by mail, then through e-mail) ever  

 

since we graduated from Tsinghua University. In conclusion, I would like to challenge  

 

Wen-tao with the following poem in hope that our exchange of teasing would continue. 

 

 

I have almost left my heart in San Francisco, 

 

Come over here to talk about fifty years ago; 

 

Along the bank of the same old Damshueiho*,  

 

Hope for your applaud and a long loud acho. 

 

 

* Damshueiho means Damshuei river. 
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1.3. GEOMETRY VIA TRIGONOMETRY 

 

In high school mathematics, Geometry and Trigonometry are taught separately in that  

 

order.  

 

 

Here are some the other way around examples 

 

 

1.3.1 Pythagorean Theorem      
 
                                                  (c + d) cos x = a (c + d) cos2 x = c 

                         d y 

           c                  b             (c + d) sin x = b (c + d) sin2 x = d 

        x               y  x                  

               a                            cos2 x + sin2 x = 1 a2 + b2 = (c + d)2  

 

Figure 15.       Figure for P. T. 
 

 

1.3.2 Tsao’s Theorem I 
 

Let ADEK be a rectangle.  If OB = 3 OA and OC = 4 OA, then BK = HG. 

 

      C    

 

        x     

         
                      

G
   

                                                                                                   x      F                    

              H    

                   

                 

                       

                B 

    A                          

                         K    

            x                   

            x       

x 

O               D            E  

                                                                                                            

          Figure 16.           Figure for T. T. 1 
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Proof via the trigonometrical identity sin 3x = 3 sin x - 4 sin3 x  

 

Let OA = 1. Then OB = 3 and OC = 4. It follows that 

 

         4 sin x = CF, 4 sin2 x = FG, 4 sin3 x = HG, sin 3x = AD and 3 sin x = BE.  

 

Therefore,  

 

HG = 4 sin3 x = 3 sin x - sin 3x = BE – AD = BK. 

 

 

1.3.3 Tsao’s Theorem II 

 

If BF and OE are perpendicular, then BC = DF. 

 

                                                            

                                  B   

            y      

                

                       C               

             

                    D    

            y        

 O     x      y                          A             

                         x     E                      

            F                

 

Figure 17.    Figure for T. T. 2 

 

 

Proof via the formula tan (x + y) = (tan x + tan y)/(1 – tan x tan y) 

 

Let OA = 1. Then tan (x + y) = BA, tan x = CA, tan y = DA, tan (x + y) tan y = EA and  

 

tan (x + y) tan y tan x = FA. It follows that 

 

     BC = tan (x + y) – tan x = tan y + tan (x + y) tan y tan x = DA + FA = DF.  

 

 

 

1.4. PROOFS WITHOUT WORDS: PYTHAGOREAN THEOREM 

 

 

1.4.1 a2 + b2 = c2 
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Figure 18.    Figure with three squares    

                                                              

                                           

                      

                     

                           

               

                

          

                                  

 

Figure 19.       Figure with three half circles 

 

 

1.4.2 a2 + b2 = 2ab + (b-a)2   

       b 

  
             a     

                                   

 

 

             (b-a)2                       

                  

 

       

          a 

                                   a 

                            

Figure 20.    Figure with  (b-a)2  off center 
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1.4.3 2ab + (b-a)2  

          

              b       a 

         a   

 
                 (b-a)2                        c    

            b 

          

           

                                                                            c 

                                                                         

Figure 21.     Figure with  (b-a)2  centered 

 

 

2.4.4 c2 = (b – a cos C)2 + a2 sin2 C = a2 + b2 – 2ab cos C                                  

 

  

 

                    

   (b – a cos C)2                                

                                          

                                        a2 sin2 C                                       

b          C          a                   

a sin C  

              

 

            c2 

                 

 

 

 

Figure 22.       Figure for obtuse triangle                                  a cos C 

 

(b – a cos C)2                  C 

a 

 

 

a sin C 

 

 

c2 

 

 

Figure 23.         Figure for acute triangle 

 

41 



1.5. GEOMETRY PLUS TRIGONOMETRY 

 

Let ABCD be a square such that  

 

BE = CE  

 

and  

 

BF = 2 AF.  

 

 

If FG is perpendicular to DE and DH is perpendicular to EF, then  

 

DG = FG  

 

and  

 

HB // DE.    

 

 

 

F 

              A                                                                          B 

            

             H    
                         

                                                                                                              

           

                   

                 

                      E           

                

                        G   

                            

                              

                  

                                      

 

               D                                                                         C 

 

 

              Figure 24.     Figure for DG = FG and HB // DE 
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Let AB = 1. Then Pythagorean Theorem gives  

 

DE = 5 /2,  

 

DF = 10 /3,  

 

EF = 5/6  

 

and Law of Cosines gives  

 

cos x = (DE2 + DF2 - EF2)/2(DE)(DF) = 2 /2,  

 

where x = angle EDF. 

 

 

It follows that DG = 5 /3 = FG and the rest is clear.  

 

 

The following figure and table can further be obtained. 

 

 

 

                             1/3       2/3                             

                       215/3      110/3              x (。)  tan x             

       215/3         

                                       55/3   1/3 
                         

                                                                                                                      1/2               80/3   1/2 

              160/3 

                                              110/3   3/4 

       190/3            

    1                               135/3     1         

                      190/3  

                                     160/3    4/3 

       55/3                           

                                       ½          190/3      2 

                  

                     45                           215/3      3 

                         80/3                                            

                                                                           

 

Figure 25.       Figure supplemented by a convenient table 
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1.6. COUNTING TIDBITS   

 

The author shall touch on miscellaneous combinatorial problems that can be pondered in  

 

a jail house.  

 

 

He gave two talks of the same nature at Sonoma State University (1988) and National  

 

Taiwan Normal University (2017). Since the time span is nearly thirty years, the contents  

 

had been modified a great deal.  

 

 

The following is a combined excerpt of both talks that could appeal to general audience  

 

with some math background.  

 

 

1.6.1. Talk Topic: Jail House Mathematics  

 

 

I was once caught speeding and put in jail overnight.  At first, I was eager to get  

 

out of the jail-cell.  I could not help but to stare at the grid gate. 

 

 

 

 

 

 

 

 

 

 

 

 

  
 

 

 

 
 

 
 

F

Figure 26.        Figure for the grid gate 

 

 

After some inner struggle, I calmed myself down and began to wonder how many squares  

 

were there in the grid.  
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The answer was .
1

2




n

r

r   

 

 

I continued to indulge in my wonderland and became a combinatorialist. I’ll tell you what  

 

happened inside and out. Unlike many long-term inmates (who later became  

 

philosophers, writers or politicians), I was fortunate just being in jail one night to become  

 

a mathematician.          

 

 

First, let’s get back to the grid. What came to my mind was, in fact, “how many  

 

different (shortest) paths connecting A and B?”  (See Figure 27) 

 

 

In jail, people usually use the brute force approach. There are 1 (via 5) plus 4 (via 4) plus  

 

10(via 3) plus 20 (via 2) plus 35 (via 1),i.e. 70 paths.  

 

 

                   B 

 

 

    

 

 

    

 

 

   1                2          3  4       5   

 

 

             

A                                  

 

Figure 27. Figure for the grid gate with two corners marked A and B 

 

 

A combinatorial approach is to pick all possible 4 horizontal (or vertical) moves out of 8  

 

moves needed to go from A to B. There are, therefore, 70
8

4









 ways.  
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After such mind boggling, I rested myself in the restroom. Then I saw the graded  

 

window. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28.       Figure for the graded window 

 

 

I wondered “how many of triangles of all sizes in a subdivided triangle of n layers?”  To  

 

come up with the answer in a rather academic way. 

 

 

Theorem 1 

 

 Let T(n) be the number in question and S(n) = 


n

r

r
1

.  Then 

 

  T(n-1) + T(n) = 2





1

1

)(
n

r

rS 


n

r

rS
1

).(            

 

Proof 

 

As can be seen from the figure, when extending from n-1 layers to n+1 layers  

 

S(n) + S(n+1) new forward triangles and S(n) new backward triangles are added.  Hence  

 

   T(n+1) = T(n-1) + 2S(n) + S(n+1). 

 

 

We shall only show the inductive step of the mathematical induction:   
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T(n) + T(n+1) = T(n) + T(n-1) + 2S(n) + S(n+1) 

 

    = 2





1

1

)(
n

r

rS 


n

r

rS
1

)( + 2S(n) + S(n+1) 

 

    = 2



n

r

rS
1

)( 




1

1

)(
n

r

rS . 

                     

Theorem 2 

 

S(2)(n) = 



n

r

r
1

2  C(n+1, 3) + C(n+2, 3).      

 

Proof 

  

Since S(r-1) + S(r) = r2 and since 



n

r

rC
2

)2,( C(n+1, 3), we have 

 

     S(2)(n) = 





1

1

)(
n

r

rS 


n

r

rS
1

)(  = 





1

1

)2,1(
n

r

rC 



n

r

rC
1

)2,1( = C(n+1, 3) + C(n+2, 3). 

 

 

Corollary 

 

T(n) = C(n+1, 3) + S(2)(n) – T(n-1). 

                                                                                                                                        

 

We can use Theorem 2 and Corollary to come up with S(2)(n) and T(n) recursively.   

                                                                                                                      
 n C(n+1, 3) C(n+2, 3)  S(2)(n)            T(n-1)            T(n) 

 

 1        0         1       1                 0    1 

 2        1         4       5          1    5 

 3        4        10      14          5   13 

 4       10        20      30        13   27 

 5       20        35      55        27   48 

 6       35        56      91        48        78 

 7       56        84                140             78  118 

 8       84       120     204      118  170 

 9      120       165     285      170  235 

           10      165       220     385      235  315        

 

Table 7.     Table for recursive calculations of S(2)(n) and T(n)  
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Theorem 3  

 

               T(n) = [ n(n+2)(2n+1)/8 ], 

 

where [ x ] is the integral part of x. 

 

Proof 

 

Due to Theorem 1, we can write 

 

     T(n) + T(n-1) = 2C(n+1, 3) + C(n+2, 3) = (n+1)n(n-1)/3 + (n+2)(n+1)n/6 = n3/2 + n2/2 

 

    = (2n3 + 5n2 + 2n)/8 + [(2(n-1)3 + 5(n-1)2 + 2(n-1)]/8 – 1/8, 

 

from which we see that 

 

 T(n) =  (2n3 + 5n2 + 2n)/8 + [-1 + (-1)n]/16 = [ n(n+2)(2n+1)/8 ].  

 

 

When leaving the jail, I left behind the following graffiti on the wall. 

 

1)  



n

r

r
1

)2,1( nC  

                    O   O   O   O   O   O    

X   O   O   O   O   O    

X   X   O   O   O   O    

X   X   X   O   O   O    

X   X   X   X   O   O    

X   X   X   X   X   O    

X   X   X   X   X   X    

 

Figure 29.       Figure for graffiti picture 1 

 

 2)  



n

r

r
1

2
)3,2( nC  + )3,1( nC  

 1  +  (1+2)  +  (1+2+3)  +    .     .     .     +  (1+2+3+ … +n) = )3,2( nC          

 O     O   O     O   O   O     O   O   O   O     O   O   O   O   O 

         X   O     X   O   O     X   O   O   O     X   O   O   O   O 

                       X   X   O     X   X   O   O     X   X   O   O   O 

                                          X   X   X   O     X   X   X   O   O 

                                                                X   X   X   X   O 

        1     +     (1+2)     +     .     .     .    +   [1+2+. . .+(n-1)] = )3,1( nC  

 

Figure 30.        Figure for graffiti picture 2 
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3)  



n

r

r
1

3 2)]2,1([ nC         

 13  +  23    +         33        +       .     .     .   +            n3  

 X   O   O   X   X   X   O   O   O   O   X   X   X   X   X 

 O   O   O   X   X   X   O   O   O   O   X   X   X   X   X 

 O   O   O   X   X   X   O   O   O   O   X   X   X   X   X 

 X   X   X   X   X   X   O   O   O   O   X   X   X   X   X 

 X   X   X   X   X   X   O   O   O   O   X   X   X   X   X 

 X   X   X   X   X   X   O   O   O   O   X   X   X   X   X 

 O   O   O   O   O   O   O   O   O   O   X   X   X   X   X 

 O   O   O   O   O   O   O   O   O   O   X   X   X   X   X 

 O   O   O   O   O   O   O   O   O   O   X   X   X   X   X   

 O   O   O   O   O   O   O   O   O   O   X   X   X   X   X 

 X   X   X   X   X   X   X   X   X   X   X   X   X   X   X 

X   X   X   X   X   X   X   X   X   X   X   X   X   X   X 

            X   X   X   X   X   X   X   X   X   X   X   X   X   X   X    

 X   X   X   X   X   X   X   X   X   X   X   X   X   X   X    

X   X   X   X   X   X   X   X   X   X   X   X   X   X   X   

(1 + 2 + 3 +  . . .  + n)2                            

 

Figure 31.   Figure for graffiti picture 3 

 

 

The moment that I got out, I was able to see a better picture below and wrote a couple of  

 

articles (19) and (18) about .
1




n

r

kr   

 

 

 

 

 

 

 

 

            

 

 

 

 

 

 

 

Figure 32.        Figure for the jail house 
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1.7. GLOBAL APPROACH TO PROBABILITY PROBLEMS 

 

For the instructional purpose, both global and local approaches are equally important  

 

to solve probability problems. There are excellent demonstrations of the latter in (13),  

 

from which the author shall select four problems, namely twin knights, the ballot box,  

 

ties in matching pennies and the theater row for the global approach. The author shall  

 

also provide the combinatorial realization of the probability for “Squares among  

 

rectangles” and the graphical visualization of the odds for “Same birthday among  

 

classmates”.  

 

 

1.7.1. Talk Topic: Probability Problems and Concepts Made Simple 

              

Let us start with the following four problems selected from (13). 

 

1) Twin knight 

 

Suppose King Arthur holds a jousting tournament where the jousts are in pairs as in a  

 

tennis tournament. The 8 knights in the tournament are evenly matched, and they  

 

include the twin knights Balin and Balan. What is the chance that the twins meet in a  

 

match during the tournament?                                                                                        

 

 

If the knights were not evenly matched, the calculations of each probability for all  

 

possible locations that the twins meet as in the book would have been necessary. In our  

 

case, all we need  is to divide the total number of matches by the total number of pairs.  

 

Therefore, in the case of n2  knights, the answer is  

 

12

2

2

112














n

n

n
,  

 

which was proved by induction in (13). 
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2) The ballot box 

 

In an election, two candidates, Albert and Benjamin, have in a ballot box a  and b  votes  

 

respectively, ba  . If ballots are randomly drawn and tallied, what is the chance that at  

 

least once after the first tally the candidates have the same number of tallies? 

 

 

If we approach this problem by considering the last tie in the tallying, then the detail  

 

discussions of the first tie as in (13) can be avoided.  Out of ba   positions in a tallying  

 

sequence, the last tie can occur with A or B being tallied at each of the b2  even positions  

 

so that the answer is 
ba

b



2
.                 

 

3) Ties in matching pennies  

 

Players A and B match pennies N times. They keep a tally of their gains and losses. After  

 

the first toss, what is the chance that at no time during the game will they be even? 

 

 

The solution in (13) made use of its previous problem and 
 


























n

k

n

kn

n

k

n

n 0

2

.  

 

In fact, when nN 2  or 12  nN , the answer is 
n

n

n

2

2

2










.  

 

(To achieve no tie, the first n  tallies out of the first n2  need to be of the same kind.)    

 

 

Combinatorial solution                                                                                 

 

To achieve no tie, the first n tallies but not the second n tallies out of the first 2n tallies  

 

need to be of the same kind. For the case of n=2, no tie tallies: 

 

N=4:  

 

AAAA, AAAB, AABB, BBAB, BBBA, BBBB. 
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N=5:  

 

AAAAA, AAAAB, AAABA, AABBA, AAABB, AABAB,  

 

BBABA, BBBAA, BBABB, BBBAB, BBBBA, BBBBB 

 

4) The theater row 

 

With b  elements of one kind and m  of another, randomly arranged in a line, what is the  

 

expected number of unlike adjacent elements?  

 

 

Instead of being caught up with “unlike adjacent elements”, we shall consider the  

 

matching of unlike pair. A match will produce two adjacent cases. Since each of the first  

 

kind has the chance of 
b

1
 to match with the second kind and each of the second kind has  

 

the chance of 
m

1
 to match with the first kind, the answer is 

bm

mb

mb






2

11

2
.   

 

5) Squares among rectangles  

 

What is the chance )(nP  that a randomly selected rectangle from a gridded square of  

 

size n  is a square? (See Figure 33 for 𝑛 = 4)                                                                                                        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 33.   Figure for the gridded square 
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We can certainly use the local approach to find that  

 

1)1( P ,  

 

9

5
)2( P ,  

 

18

7
)3( P ,  

 

10

3
)4( P   

 

and 

 

 
45

11
)5( P .   

                                                                        

 

Globally, we need to realize that a pair of identical lengths and a pair of identical widths  

 

determine a unique rectangle so that the total number of rectangles is  

 
2

1

2








 n

.   

 

On the other hand, the total number of squares is 


n

i

i
1

2 .  Therefore, we have 

 

 
)1(3

11

6

)12)(1(
4

)1(

)(

22











nn

n

nnnn

nn

nP  . 

 

 

Two observations are in order.  

 

First, 
n

nP
1

)(  .  Second, 








n

i

n

i

i

i

nP

1

3

1

2

)( .                        
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6) Same birthday among classmates 

 

What is the probability that two students in a classroom have the same birthday? 

                                                                                                                                         
 

During my teaching at San Francisco State University, I did the experiment for each of  

 

my classes. This is how the experiment went. Each student was asked to submit his/her  

 

birthday written in a piece of paper. Then I collected them according to the birth month,  

 

from January to December. I still remember vividly the very experiment the match of  

 

birthdays late until December papers were collected. Then came a loud laughter, when  

 

two Korean twin students walked all the way from the last row to submit their papers. 

 

 

Let us first consider the following figure, in which 25 points are uniformly spread over  

 

the uniform sample space of 441 points as in Figure 34. 
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Figure 34.          Figure for the uniform sample space of 441 points 
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This is equivalent of saying that if there were 441 days in a year, then the maximum  

 

number of people to have different ‘birthdays’ spread out uniformly would be 25 so that  

 

among 25 people the probability of at least two having the same ‘birthday’ would be 

 

    1 – 441P25 / 44125 = 0.5. 

 

 

 

Similarly, Figure 35 shows that if there were 368 days in a year, then among 23 people 

 

the probably of at least two having the same ‘birthday’ would be 

 

           1 – 368P23 / 36823 = 0.5.                                                   
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Figure 35.            Figure for the uniform sample space of 368 points 

 

 

 

Since there are actually 365 days in a year, it follows that among 23 people the  

 

probability of at least two having the same birthday is slightly exceeding 50%. 
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1.8. MUTUAL INDEPENDANCY VERSUS MUTAL EXCLUSIVENESS 

 

It was pointed out in (12) that the concepts of mutual exclusivity and probabilistic  

 

independency are difficult for students to grasp. However, the concept of the former is  

 

self-explanatory. Two events that are likely to occur are said to be mutually exclusive if  

 

the occurrence of one prevents the other from occurring. This concept does not involve  

 

the probability.   

 

 

So the problem comes from the definition of the latter:  two events are said to be  

 

independent if the occurrence of one does not affect the probability of the other to occur.  

 

Since this concept involves the probability, there shouldn’t be any confusion with the  

 

previous concept.  Rather, the difficulty lies on the judgment of the “affection”.   

 

 

One way of solving this problem is to introduce a measure of evaluating the degree of  

 

dependency. 

 

 

Let A  and B  be events. The conditional probability )|( ABP  of B  given A  is the  

 

probability of B  given that A  has already occurred.  

 

 

Thus two events A  and B  are independent if and only if )()|( BPABP   and/or  

 

)()|( APBAP  . 

 

 

 Since 
)(

)(
)|(

AP

ABP
ABP


 , we can also say that A  and B  are independent if and only  

 

if  

 

)()()( APBPABP  .   Eq. 1 
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To help judging of the “affection”, we define the discrepancy of independency )|( ABDI   

 

in the probability of B  given A  to be the percentage change in the probability of B   

 

affected by the occurrence of A , namely 

 

1
)()(

)(

)(

)()|(
)|( 







APBP

ABP

BP

BPABP
ABDI                Eq. 2 

 

which is 0 if A  and B  are independent due to Eq. 1.  

 

 

In an experiment of picking 6 distinct months randomly from the calendar year, construct  

 

2 events that are mutually exclusive.  

 

 

Apparently, the event A  of picking the odd months and the event B  of picking the even  

 

months are mutually exclusive.  Are they independent?  Certainly not, since the  

 

occurrence of A  does affect the probability of B  to occur.  

 

 

To be more specific,  

 

0
)(

)(
)|( 




AP

ABP
ABP ,  

 

 
2

1
)( BP , 

 

1

2

1
2

1
0

)(

)()|(
)|( 







BP

BPABP
ABDI .   

 

 

For convenience, let the sample space be }12,11,10,9,8,7,6,5,4,3,2,1{S .  

 

 

By setting }5,4,3,2,1,{  iiiiiiEi , we can use Eq. 74 to find  
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1)|( 11 EEDI ,  

 

3

2
)|( 21 EEDI ,  

 

3

1
)|( 31 EEDI ,  

 

0)|( 41 EEDI ,  

 

3

1
)|( 51 EEDI ,  

 

3

2
)|( 61 EEDI , 

 

1)|( 71 EEDI .  

 

We see from the above 1E  is 100% dependent to itself, 1E  and 7E  are mutually  

 

exclusive (-100% dependent to each other), whereas 1E  and 4E  are independent (0% ). 

 

 

The following graphical views might further help readers to envision the matter. 

 

Case 1. A and B are mutually exclusive. 

 

                                       A                                                       S 

 

B 

 

                          0.3                                                              

 

                                                                   0.2  

                                                      

  

 

 

Figure 36.     Figure for the mutually exclusive case 

 

 

In this case, 11
3.02.0

0
1

)()(

)(
)|( 




XAPBP

ABP
ABDI            

 58 



Case 2. A and B are independent. 
 

  

                                                                                             S 

 

              A                                                                 B  

 

 

 

                   0.2                 0.2                    0.3 

 

 

 

 

 

 

Figure 37.   Figure for the independent case 

 

In this case, 01
4.05.0

2.0
1

)()(

)(
)|( 




XAPBP

ABP
ABDI  

 

Case 3. A and B are nearly independent. 

 

 

  

                                                                                             S 

        A                                                                           B  

                    

 

     0.1 

 

                                                   0.7                                     

 

 

 

 

0.1 

 

 

 

Figure 38.         Figure for the nearly independent case 

 

In this case, 09375.01
8.08.0

7.0
1

)()(

)(
)|( 




XAPBP

ABP
ABDI  
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1.9. THE SOLID GROUND IN A BIG PICTURE OF LIFE INSURANCE 

 

The main theme of this speech is to demonstrate how not to be lost in a big picture by  

 

way of diligently laying down a solid foundation, especially for actuaries. I am very  

 

pleased to have this opportunity to inform you about two explosive well-kept secrets.  

 

 

The life actuarial theory had been well developed to a near perfection throughout the  

 

twentieth century. The whole hundred years of development is like the entire life span of  

 

an ideal individual in the insurance industry. For a human life, the mid-age is the juncture  

 

of two distinguishing stages: growing and maturing. Therefore, it is not coincidental that  

 

the formation of the SOA organization in U. S. A. and the construction of the CSO life  

 

table in 1958 came about all in the mid-century. By constructing two cubic models for  

 

1958 CSO male life table, I discovered the first secret: the live curve is symmetrical with  

 

respect to the mid-age! 

 

 

Analogous to the apparent deterioration at the very end of a human life, near the turning  

 

point of the last century the life contingency theory suffered a severe setback and in  

 

despair bizarrely resorted to some fuzzy model for savage!  

 

 

Through the tireless effort of unifying the insurance and annuity functions from both  

 

deterministic and stochastic points of view, I discovered the second secret: the dynamic  

 

model could very well be an important tool to cope with the drastic change of the  

 

financial environment in this new century!  

 

 

You might have been confused by these two secrets, especially the first one. What is  

 

exactly the mid-age? If it means 50, then what I just told you shouldn’t be true at all.  
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In my studies, the mid-age is actually 65, the age of retirement!  

 

 

As I have shown in (20), my models fit well with 1958 CSO male life table up to age 75.  

 

This is good enough for practical use, isn’t it?  

 

 

My first secret would have been true, if the terminal age of a human life were 130. Who  

 

knows? Some day we might reach that goal. Although actuaries should not develop  

 

theories without looking at the reality, they won’t prosper without relying on theories  

 

either. Most theories are based on two important factors: mortality rate and interest rate.  

 

Life actuaries in the last century collectively built up a gigantic mansion by laying down  

 

a solid foundation. 

 

 

After giving you my perspectives ranging from mortality models construction to  

 

unification of life contingencies in an orderly manner, I’ll then elaborate on my second  

 

secret. In there, I’ll point out that the mansion we have built is now precarious, not  

 

because of the mortality pillar, rather of the interest pillar. In the big picture, there is an  

 

urgent need for a revolutionary change in the concept of interest rate. Otherwise, we  

 

would run into the same unrealistic dilemma as I mentioned in the first secret.  

 

 

The key word in the actuarial profession is fairness. In the past experience, actuaries have  

 

not been able to predict correctly about the interest rate. For that matter, nobody could  

 

have.  

 

 

Therefore, the dynamic approach using discounting functions of interest and mortality  

 

retrospectively should be the way to go in this new century. 
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1.10. SUDOKU PREVIEW 

 

The following is an excerpt of the introduction in (17). 

 

Maze with clues has been built in every foreseeable place, 

 

            All barriers could be removed without any frustrating face 

;  

            In idle time please come to visit the three treasures palace, 

 

            Relax your mood and nerves and indulge in Sudoku space.   

 

 

The inventor of Sudoku games was Tetsuya Nishio, who first came across a game named  

 

Number Place in Dell Magazine in early 1980’s while visiting U.S. and then developed it  

 

into a more complicated puzzle to be played in Japan. Its name was immediately changed  

 

to Sudoku by Nikoli Magazine in Japan and prevailed there for a while. Now, people all  

 

over the world are indulging in this game thanks to Wayne Gould, a retired Hong Kong  

 

judge from New Zealand. Not until 1997 while touring Tokyo, he encountered this  

 

gadget. After six years of study, he came up with the computer software named  

 

Pappocom which enabled him to massively produce fiendish Sudoku puzzles. In 2004,  

 

this wonderful workmanship game frantically hit the entire England and subsequently the  

 

whole Europe. Soon after that, it returned to U.S. and Japan, further extended to Taiwan  

 

in 2005. Surging from the outset of this century, “Sudoku” is indeed self-entertaining,  

 

time-killing, loneliness-removing, solitude-exempting and senile-preventing. 

 

 

The purpose of the Sudoku game is using logical inference, starting from the puzzle form  

 

of Figure 39, to uncover those un-starred numbers in Figure 40 step by step according to  

 

the order of subscripts. The rule of Sudoku game is to require each row, each column and  

 

each box to have each of all numbers ranging from 1 through 9.   
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Figure 39.          The first figure of Sudoku preview 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 40.          The second figure of Sudoku preview 

 

 

Freshly retired from the teaching post of San Francisco State Business School, I started to  

 

play this game sporadically. No sooner than 2005, the returning year of my son Michael  

 

from medical training, I began to indulge myself in this fascinating game, thanks to his  

 

thoughtful choices of all sorts of challenging Sudoku books as birthday, father day and  

 

Chistmas presents for the subsequent three years.  

 

 

 

 

63 

 5* 7* 1*  9* 4* 3* 2* 

9* 1* 3* 4* 5* 2* 7* 6* 8* 

4*  2* 3*  7* 9* 5* 1* 

  9* 2*  4* 5*  7* 

  1*   5* 6*  4* 

5*  4* 6*  8* 3* 1* 9* 

2* 4* 6* 5*  1* 8*  3* 

1* 3* 8*  4* 6* 2*  5* 

7* 9* 5* 8* 2* 3* 1* 4* 6* 

614 5* 7* 1* 818 9* 4* 3* 2* 

9* 1* 3* 4* 5* 2* 7* 6* 8* 

4* 815 2* 3* 619 7* 9* 5* 1* 

312 613 9* 2* 11 4* 5* 83 7* 

816 717 1* 97 36 5* 6* 22 4* 

5* 24 4* 6* 75 8* 3* 1* 9* 

2* 4* 6* 5* 99 1* 8* 710 3* 

1* 3* 8* 78 4* 6* 2* 911 5* 

7* 9* 5* 8* 2* 3* 1* 4* 6* 



Those books include 1001 SUDOKU (Thunder’s Mouth Press, copy right to Nicoli) and  

 

SUDOKU GENIUS (Tom Scheldon, 144 of the Most Friendish Puzzles Ever Devised) of  

 

2005; Su Doku (Wayne Gould, Challenging Sudoku 4), HIGHER SUDOKU (Tetsuya  

 

Nishio, New Variations from Japan) and Sudoku Puzzles (Aline Ribeiro de Almeida,TOP  

 

100 HARDEST) of 2006; Extreme Sudoku (Dell, Sudoku puzzles with an X factor!) of  

 

2007.  

 

 

Therefore, I literally ate and drank Sudoku during the entire period of those three years.  

 

However, unlike most speed-oriented players, I took my time to enjoy the logical  

 

reasoning provided by each puzzle and kept the detailed record of the whole solving  

 

process. The joy of life is to share. With this belief, I had prepared a draft of my book  

 

“Completely Cracking Sudoku“  way back in 2007 blending the most inspiring ideas of  

 

puzzle structures enlightened by the afore-mentioned books in order to introduce the  

 

unique step by step method. The key is to take and record each step in accordance with a  

 

logical reasoning instead of hasty trials and errors, so that everyone can enjoy and refresh  

 

one’s memorable moments.                                                                       

 

 

That draft was then sent to my youngest brother Yung-Shyeng who never played a single  

 

game of Sudoku. He made lots of valuable suggestions from a beginner’s point of view.  

 

He also added a finishing touch, liking of the secrete codes in kung-fu practice, on this  

 

originally scrupulous and methodical manuscript of knowhow. This has revived the spirit  

 

of my book as if bringing the painted dragon to life by putting in the pupils of its eyes.  

 

Soon after that, I was sidetracked by my breakthrough in the classic number theory.  
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Coincidentally, the afore-mentioned Euler was a famous classic number theorist, who  

 

along with Gauss, Bernoulli and Stirling had almost simultaneously discovered various  

 

formulas for expressing the sum of powers of the natural sequence. Imaging that, had he  

 

had spare time to spend on Latin squares, Sudoku games could have come about some  

 

three hundred years ago! As to my breakthrough, I generalized most of those formulas  

 

from the natural sequence to arithmetically progressive sequences and obtained their  

 

polynomial expressions.  

 

 

Just around the conclusion of my breakthrough, I was informed by Mr. Ray Leo in early  

 

July of 2012 that the hardest Sudoku was newly posted online. After being able to crack  

 

down this hardest Sudoku in a couple of days using my Sudoku-solving techniques, I  

 

have revived the desire of publishing my book. During this five years of “idling period“,  

 

I have actually perfected the method of explaining how puzzles can be solved step by  

 

step using various techniques with the aid of shorthand annotations to be introduced in  

 

my book. In fact, most of so called challenging puzzles turned out to be so so under the  

 

scrutiny of my examination. Nevertheless, they more or less reflected those authors’  

 

special view points and therefore should not be categorically denied.   

 

 

Interestingly, in 2008 I picked up and studied “Cracking Sudoku“ (in Chinese, by Wang  

 

Tung Chiao) while strolling the “Bookstore Street“ in Taipei. The following year, I have  

 

pointed out an erroneous puzzle of (16) and received three of his new books in return. So  

 

it is fair to say that I have not given up on Sudoku completely. Thus in the final section of  

 

this article, we shall let readers take part in solving the hardest Sudoku to manifest what  

 

they are about to learn is by no means a “flowery boxing“.  
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Furthermore, we might as well let veterans peek at a few puzzles from the above two  

 

books now so that they can foresee what would unfold in the later sections, for fear that  

 

they might give up on this article due to the unchallenging nature of the first few sections.  

 

 

Although most puzzles we shall encounter were labeled as rank 5, they could be solved  

 

rather easily with patience and perseverance; even the beginners could follow the step by  

 

step guidance and enjoy the wonderful feeling.  

 

 

Otherwise, they can skip this foreplay and come back to visit these puzzles after learning  

 

the basic skills. To begin with, let us try the most challenging puzzle claimed by Wang  

 

Tung Chiao in Cracking Sudoku.  

 

 

First star all given numbers in Figure 41 and then start with the smallest number ready to  

 

be filled, according to the prescribed order of up-down and left-right.     

 

 

After failing with 1, 2  

 

and 3 for all boxes, you  

 

could try 4 in box 1.  

 

The junction of row 1  

 

& column 2,Grid (12),  

 

is the only place for 4,  

 

abbreviated as 4(12).  

 

So the first step is  

 

41(12). 

Figure 41.          The third figure of Sudoku preview  
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1*    9*    3* 

 7*   5*   6*  

  2* 8*  1* 4*   

4*        5* 

  6*    7*   

9*        8* 

  4* 5*  9* 2*   

 3*   6*   5*  

2*    4*    6* 



The second step is to  

 

enter 4 into the grid of  

 

row 8 and column 9 in  

 

box 9, abbreviated as  

 

42(89) and the third  

 

step is to enter 5 into  

 

the grid of row 1 and      

 

column 7 in box 7,  

 

abbreviated as 53(17). 

Figure 42.       The fourth figure of Sudoku preview 

 

 

Now the first obstacle is encountered. With patience and perseverance, readers might find  

 

the grid in row 1 and column 3, but what number to fill in? Please scan in Figure 42 from  

 

left to right, row 1 has 1, 4, 9, 5, 3 and column 3 has 2, 6, 4, hence only 7 and 8 are left to  

 

be filled. But, wait! 7 can not be filled here either, due to the fact that box 1 where the  

 

grid in question is situated has 7. Hence for the fourth step, we can take 84(13) as shown  

 

in Figure 42. This is called a grid move (g), abbreviated as 84(13)g, since this move is  

 

determined by the surroundings (row, column & box) intersecting with this grid. After  

 

85(27) and 16(29), you can look at box 7. The 2 can only be entered into (18),  

 

abbreviated as 27(18)b7. This is called a box move (b), since this move is determined by  

 

the surroundings (all rows & columns) intersecting with this box. After 28(59), you can  

 

look at row 2. The 9 can only be entered into (23), abbreviated as 99(23)r2. This is called  

 

a row move (r), since this move is determined by the surroundings (all columns & boxes)  

 

intersecting with this row.  
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1* 41 84  9*  53 27 3* 

 7* 99  5*  85 6* 16 

  2* 8*  1* 4* 714 913 

4*        5* 

  6*    7*  28 

9*        8* 

  4* 5*  9* 2*  715 

 3*   6*  912 5* 42 

2* 910 511  4*    6* 



After 910(92), 511(93) and 912(87), you can look at column 9. The 9 can only be entered  

 

into (39), abbreviated as 913(39)c9. This is called a column move (c), since this move is  

 

determined by the surroundings (all rows & boxes) intersecting with this column. After  

 

714(38) and 715(79), once again a stalemate, is encountered. By scanning three unfilled  

 

grids in box 1, readers can easily know to fill 3 into (21), abbreviated as 316(21)g as  

 

shown in figure 43.  

 

 

Readers can then move rather smoothly by taking 317(35), 318(78)r7, 819(98) , 120(97) and  

 

721(81)c1 as shown. The rest is easy with the following annotations. 

 

 

122(83)g        

 

824(55)g        

 

232(62)c2        

 

234(45)c5       

 

638(67)g       

 

640(46)g       

 

946(58)r5 

 

 

Figure 43.       The fifth figure of Sudoku preview 

 
 

1.11.    TEACHING EFFICIENCY 
       

In Chapter 5, among other things, we shall use the idea of the boundary being the  

 

marginal change of a well-rounded region (a region possessing an inscribed circle) with  

 

respect to the inradius (the radius of the inscribed circle) to solve optimization problems  

 

more efficiently and categorically. 
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1* 41 84 641 9* 742 53 27 3* 

316 7* 99 448 5* 249 85 6* 16 

628 529 2* 8* 317 1* 4* 714 913 

4* 825 736 954 234 640 339 155 5* 

530 133 6* 345 824 447 7* 946 28 

9* 232 337 153 735 531 638 452 8* 

826 627 4* 5* 123 9* 2* 318 715 

721 3* 122 251 6* 850 912 5* 42 

2* 910 511 743 4* 344 120 819 6* 



2.         NUMBERS INTRICACY 

 

 

2.1.       INTRODUCTION 

  

I have a unique experience of linking the following famous mathematicians together.  

 

 

Pascal-Bernoulli-Stirling-Euler-Bell-Gauss 

 

 

Frankly speaking, I was not familiar with their works when I first started the process of  

 

transforming product-sums to power-sums! Prior to all this, I have submitted an article to  

 

Mathematical Gazette using a simpler approach which will be presented in the end. All  

 

these endeavors had been undertaken two years after I retired from teaching at College of  

 

Business, San Francisco State University in 2002.  

 

 

We first define the linear factorization of the “polynomial” in  or : 

 

, 

 

by way of factorization of ordinary polynomials.  

 

 

Let P(n, k) be the permutation of n elements taken k at a time. It is well-known that 

 

P(n, k) = n(n-1)(n-2)...(n-k+1). 

 

 

We shall use , which is , to denote  

 

  

 

and use  to denote  

 

,  

 

where .                    
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Lemma 1 

 

 

 

Proof.  

 

We shall only show the inductive step of mathematical induction on : 

 

   . 

 

Therefore, any polynomial in  can be converted into a polynomial in . For example,  

 

. 

 

 

Lemma 2 

 

                        or . 

 

Proof.  

 

We shall only show the inductive step of mathematical induction on : 

 

. 

 

 

Therefore, any even (respectively, odd) polynomial in  can be converted into an odd  

 

(respectively, even) polynomial in , since 

 

; 

 

.   

 

For example,  and 

 

.              
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Lemma 3 

 

. 

 

Proof. 

 

We shall only show the inductive step of mathematical induction on : 

 

 

 

 

 

 

 

 

 

and 

 

                               

 

                             

 

                              

 

.                                        

 

In addition to  

 

,  

 

we can use Lemma 3 to derive  

 

    ,  

 

     

 

and in general 
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, 

where ,  and  denote the sums of all products of j elements of  

 

the sets and , respectively.                                                                                        

 

 

We can use Lemma 3 to derive the summation formulas for each . For example,    

 

            

 

                   

 

                     

and 

             

 

 

                   

 

                    . 

 

 

Soon after that, I received a notice of passing of the referee from Mathematical Gazette  

 

and the request of the new referee for some final revisions of my pending manuscript.  

 

Having already generalized my findings to power-sums of arithmetic progressions based  

 

on the above three lemmas, I submitted the new version of my article with an essentially  

 

different approach, which is quoted as follows.              
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We define the general permutation notation, with  , 

 

 ;  

 

  

 

with  

 

.  

 

 

In such “polynomials”,  is a linear operator over any commutative ring; in particular,  

 

if , then  since in three “polynomial” expansions  

 

all the coefficients of the same “power” are equal. Our method is based on the following.  

 

 

Theorem 1. 

 

 .   

 

Proof. 

 

 .    

 

 

It then follows from  that  

 

.  

 

Next we can first obtain 

 

  

 

via expanding  and then use mathematical induction 

 

on  to prove 
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, 

 

with  and  being interchangeable. Since , it follows from 

 

Theorem 1 that   

 

,  

 

which can be used to derive the polynomial expression in  for  as follows. 

 

;  

       

 

 

 

          

 

        ;    
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During the new pending period, I received a letter from the referee to recommend reading  

 

(1). Accordingly, I incorporated the integration method into my new article (18) evolved  

 

from the following. 

 

 

Lemma 4.  

 

Let . Then 

 

                           Eq. 3 

 

where  

 

.               

 

Proof.  

 

We shall only show the inductive step of mathematical induction on :  

 

 

 

         

 

        .                   
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By using Lemma 4, we can successively obtain  
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Lemma 5.  

 

Let . Then 

 

, 

 

where  

 

.             

 

Proof  

 

We shall only show the inductive step of mathematical induction on : 

 

 

 

                      

 

 

 

 

The following list can be obtained by successive use of Lemma 5.  
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Furthermore, by letting , we can obtain   
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, 

 

, 

 

where the second factor of  is the derivative of that of .  

 

 

The above two lemmas led to the following. 

                                                                         
Theorem 2. 

 

 Let , where  is a polynomial in  and . Then   

 

,                       Eq. 4 

 

where  is a polynomial in  and  that can be determined by .  

 

Proof.  

 

We use mathematical induction on :   

                                                                         

  

 

           

 

           

 

          , 

 

where the last step is true, since  when .                   

 

 

By abbreviating  to , I came up with the following interesting approximation  

 

         Eq. 5 
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by taking  and  in  

 

 

 

respectively and then via long division. Note that Eq. 5 is exact for : 

 

                          ; 

 ;  

.         

 

Although Eq. 5 is not exact for , it only underestimates the exact value of  

                          

   

 

with the discrepancy approximately 2/3. In the similar manner, we can also derive the  

 

following approximation formulas     

 

 ; 

 

. 

 

Three years prior to the publication of (18), I gave a few talks among universities in  

 

Taiwan and a class of gifted students of my Alma Mater (High School of National  

 

Taiwan Normal University). I was then invited to present “General Triangular Arrays of  

 

Numbers” by “22nd Asian Technology Conference in Mathematics” (Chung Yuan  

 

Christian University, December 19, 2017). I am also grateful that Professor Ronald  

 

Graham [author of (6)] replied promptly to my e-mails with two separate attachments of  

 

my manuscripts that I generalized most of the special functions in Chapter 6 of (6). 
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2.2.    PASCAL-BERNOULLI-STIRLING-EULER-BELL-GAUSS 

 

I am presenting here a systemic but rather long account of my personal excursion into the  

 

realm of numbers initiated by Blaise Pascal, James Stirling, Leonhard Euler and Jacob  

 

Bernoulli, which is therefore not meant to be a categorical survey of the topic.         

 

 

2.2.1    Pascal-Bernoulli 

 
 

Nothing is more impressive than the Pascal triangle, 

 

                It displays those numbers ever so natural and simple; 

  

                I have long dreamed of writing a prospective article,  

 

                To show the inner beauty of numbers from my angle.   

 

 

Binomial coefficients  can be displayed as Pascal triangle (see Table 8), which was  

 

discovered about one thousand years ago by Al-Karaji. In fact, it could trace back to the  

 

second century B.C. by Pingala and for the subsequent thousand years there had been  

 

documentary evidences that Pascal triangle had been mentioned independently in India,  

 

Greece, China and Persia.  

 
     

 

   0     1       2       3         4         5         6          7         8        9       10 

 

   0          1 

1    1     1 

   2    1     2       1 

   3    1     3       3     1 

   4    1     4       6     4         1 

   5    1     5      10    10        5   1                                                 

6    1     6      15     20       15   6  1         

   7    1     7      21     35   35       21        7  1 

   8    1     8      28     56   70       56       28  8         1 

   9    1     9      36     84  126     126      84        36        9        1 

  10    1    10     45    120  210     252     210      120      45      10       1 

 

Table 8.   Pascal Triangle 
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As a matter of fact,  and  got intertwined in the Eighteen Century by Blaise  

 

Pascal, James Stirling, Leonhard Euler and Jacob Bernoulli.  

 

 

My goal had been to use  in Table 8 to find the general Bernoulli coefficient 

 

, with  denoting Bernoulli numbers, in the following expression  

 

,                                    Eq.6                          

 

which is also denoted as  , displayed in the Bernoulli triangle in Table 9. 

 

 
 

        1                             4           5         6          7                                     

  

         

           

                              

             0                          

                                                              

                                                       

                                               
 

                

                                                                              

    
   

                                                    

                                                                                  

 
 

Table 9.      Bernoulli triangle 
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The Intuitive approach is to equate the coefficients of the like terms in the expansions of  

 

                                           Eq. 7 

 

for , then use the identity 

 

                                           Eq. 8 

 

to obtain  

 

.                                       Eq. 9 

 

Take  in Eq. 7 for instance, by equating the coefficients of the like terms of  

 

  

 

 

 

 

 

 

 

 

 

  

 

 

 

we can obtain   

 

     ;  

 

 

 

and 

 

. 
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Moreover, let us generalize Eq. 6 to 

 

                        Eq. 10 

 

for an arithmetically progressive sequence  with .      

 

Likewise, we can equate the coefficients of the like terms for  in the 

 

expansions of both sides of the identity                                            

 

to obtain the following generalization of Eq. 7:   

 

.                                Eq. 11 

 

When  in Eq. 4,  

 

  

 

gives  

 

;  

 

               

gives  

 

  

 

and  

 

  

 

gives     

 

.  
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In this manner, we can successively obtain  

 

, 

 

, 

 

, 

 

, 

 

, 

 

which certainly would not lead to Eq. 11. So it is time to introduce my approach.  

 

 

2.2.2     Stirling 

 

Let  be the product-sum (sum of products) of all  numbers of row  of the  

 

unity triangle , where .By further assuming , we see that  

 

 as displayed in Table 8. For example, ,  
 

, , , 

 

 and .  

 

 

Likewise, we define the small Stirling numbers  with  and   

 

being the product-sum of all  numbers in row  of the natural triangle , where  

 

. For example, as in Table 10, , , , 

 

, , . 
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  0    1     2        3           4          5            6     7              8               9  

 

 1    1 

 2    1    1          

 3    1    3      2         

 4    1    6     11       6          

 5    1   10    35      50       24                                                           

 6    1   15    85     225      274       120           

 7    1   21   175    735     1624      1764        720    

 8    1   28   322   1960    6769     13132     13068       5040         

 9    1   36   546   4536   22449    67284    118124    109584      40320          

10   1   45   870   9450   63273   269325   723680   1172700   1026576   362880     

 

Table 10.   The small Stirling triangle 

 

 

We further notice that  and 

 

  , .              Eq. 12 

 

Next, we define the large Stirling numbers  by way of 

 

.                                                  Eq. 13 

 

Since  and  , we have  

 

,  and .  

 

 

Likewise, since 

                                                                                                       

 

 

 

 

, 

 

we have ,  and ; 
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and since 

 

 

 

           

 

                    

 

  

 

, 

 

we have  , ,  and . 

 

We can further find that , ,  and 

 

 ,    Eq. 14 

 

via which we can obtain the large Stirling triangle as in Table 11.                      

  

 

 1     2         3            4             5             6             7               8            9            10 

 

  1   1 

2   1     1 

3   1     3         2  

4   1     7        12           6            

5    1   15       50          60           24                                                       

6   1    31      180        390         360          120 

7   1    63      602       2100       3360        2520        720 

8   1   127    1932     10206     25200      31920      20160      5040  

9   1   255    6050     46620    166284    317520    332640   181440    40320 

10   1   511  188660  204630  1017900  2736540  4233600 3780000 1814400 362880 

 

Table 11.     The large Stirling triangle 
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Next we shall show how to come up with Bernoulli coefficients 𝑏(𝑘, 𝑗) by observing both  

 

Tables 10 and 11 simultaneously. For example,   

 

 
𝑠(4,0)𝑆(4,4)

4!
=

1

4
= 𝑏(3,4), 

3(3,0)𝑆(4,3)

3!
−

𝑠(4,1)𝑆(4,4)

4!
=

1

2
= 𝑏(3,3) 

   

 
𝑠(2,0)𝑆(4,2)

2!
−

𝑠(3,1)𝑆(4,3)

3!
+

𝑠(4,2)𝑆(4,4)

4!
=

1

4
= 𝑏(3,2) 

 

       
𝑠(1,0)𝑆(4,1)

1!
−

𝑠(2,1)𝑆(4,2)

2!
+

𝑠(3,2)𝑆(4,3)

3!
−

𝑠(4,3)𝑆(4,4)

4!
= 0 = 𝑏(3,1).               

 

In general, we have 

 

                            𝑏(𝑘, 𝑗) = ∑
(−1)𝑡𝑠(𝑗+𝑡,𝑡)𝑆(𝑘+1,𝑗+𝑡)

(𝑗+𝑡)!
 

𝑘+1−𝑗
𝑡=0 ,                              Eq. 15 

 

which can be substituted in Eq. 6 to yield  

  

.                 Eq. 16 

 

 

2.2.3      Euler 

 

Let us define the small Euler numbers  by  and   

 

.                    Eq. 17 

 

For example, 

 

, 

 

,    

 

, 

 

,    

 

, 

 

. 
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In addition to , we can further observe  

 

, ,  

 

, ,  

 

, ,  

 

to come up with   

 

                   Eq. 18 

 

and the small Euler triangle as shown in Table 12.                                                     

 

   1      2          3           4              5                6             7            8          9        10 

 

  1    1 

2    1      1 

3    1      4          1  

4    1     11        11           1            

5    1     26        66          26             1                                                   

6    1     57       302        302           57               1 

7    1    120     1191      2416        1191           120           1 

8    1    247     4293     15619      15619         4293        247          1  

9    1    502    14608    88234     156189       88234     14608      502        1 

10    1   1013   47840   455192   1310354   1310354   455192   47840   1013     1 

 

                   Table 12.       The small Euler triangle 

 

Since , we can also obtain  via  

 

:                                         Eq. 19 

,  
 

,  

 

, 

 

,…                                               

 

By virtue of Eq. 14, we can use mathematical induction to establish 

89 

),( jke )1,( jkke 

)2,2(2)1,2()213()2,3( eee  )2,3(2)1,3()214()2,4( eee 

)3,3(3)2,3()314()3,4( eee  )2,4(2)1,4()215()2,5( eee 

)3,4(3)2,4()315()3,5( eee  )4,4(4)3,4()415()4,5( eee 

),1()1,1()1(),( jkjejkejkjke 

e

)1,1()1( 1  nCn ),( jke





k

j

k kjnCjken
1

),(),()1(

)2,2()2,1()1( 2  nCnCn

)3,3()3,2(4)3,1()1( 3  nCnCnCn

)4,4()4,3(11)4,2(11)4,1()1( 4  nCnCnCnCn

)5,5()5,4(26)5,3(66)5,2(26)5,1()1( 5  nCnCnCnCnCn



:                                         Eq. 20           
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For , we can write  
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Since  and , we can write Eq. 16  

 

as 

 

.        Eq. 21 

 

 

Next, let us observe Table 11 diagonally. We can recognize that the second rightmost  

 

diagonal entries, in fact, give . We further dictate the trend:  

                                        

,  

 

,  
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,…             

 

 

In such manner, we can define the large Euler number  by way of  

 

.               Eq. 22 

 

and come up with ,  and in general 

 

  ,                       Eq. 23  

 

via which we can generate the large Euler triangle in Table 13 

.                               

 

 1    2         3             4              5               6                  7                8              9      

 

1   1 

2   1     2 

3   1     8         6  

4   1    22       58          24            

5   1    52      328        444           120                                                           

6   1   114    1452      4400         3780          720 

7   1   240    5610     32129       58140        33984         5040 

8   1   494   19950   198580     644020      785304      341136       40320 

9   1  1004  67260  1062500   5765500   12440064  11026296   3733920   362880  

 

Table 13.      The large Euler triangle 

 

On the other hand, we can also obtain 

 

                            Eq. 24 

 

Since Eq. 24 is true for :  

 

,  

 

all we need to show is that 
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                   Eq. 25 

 

by assuming Eq. 24 is true for . Prior to proving Eq. 24 by mathematical induction,  

 

let us do it in the case of . Using Eqs. 12 and 23, we can write 

                                                   

 

 

 

 

 

 

 

 

and  

                                                                                                      

 

 

 

 

 

 

. 

 

The coefficients of the like term  are equal, since 

 

   

 

 

 

 

 

 

 

. 
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Thus we have proved that . In general, we can write 

 

 

 

 

 

. 

 

 

The coefficients of the like term  are equal, since 

 

   

 

 

 

 

 

 

 

 

 

 . 

 

 

We have completed the proof of Eq. 24 by the mathematical induction. Therefore, by  

 

virtue of Eqs. 15, 22 and 24, 𝑏(𝑘, 𝑗) can be expressed in terms of the large Euler  

 

numbers. Note that the small and large Euler numbers are in essence the same as the first- 

 

order and second-order Eulerian numbers  and  (which will be introduced  

 

next), since  and .                                                    
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2.2.4      Sorting 

 

The number  of ways of sorting the first  terms of the natural sequence    

 

into  subsets with  elements in the  subset is , where .  

 

 

In particular, the number of ways of sorting the first  terms of  into  subsets with  

 

 elements in one and elements in another is the combination ,  

 

which will be further abbreviated as the binomial coefficient  or ; while the  

 

number of ways of sorting the first  terms of  into  singletons and a subset of  

 

 elements is the permutation , which will be abbreviated as  

 

 or . Hence we write  

 

                    Eq. 26 

 

 

and 

 

,             Eq. 27 

 

where .  
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Since this first level of sortation can be expressed as the product of a  

 

combination and one or more permutations such as  and  

 

, the familiar recursive formulas  

 

         Eq. 28 

 

and 

 

.                                Eq. 29 

 

 

We can use Eq. 28 to generate the first-order Pascal triangle, same as Table 8, in  

 

Table 14. 

 

 

      0        1       2          3          4           5        6          7       8       9     10 

 

  0            1 

1     1        1 

  2     1   2       1 

  3     1   3       3          1 

  4     1        4       6          4          1 

  5     1   5      10        10         5          1                                                

  6     1   6      15        20        15         6         1         

  7     1   7      21        35        35        21        7         1 

  8     1   8      28        56        70        56       28        8        1 

  9     1   9      36        84       126      126      84       36       9       1 

 10     1  10     45       120      210      252     210     120     45     10      1 

 

Table 14.    The first-order Pascal triangle 

 

 

Likewise, we can use Eq. 29 to generate the second-order Pascal triangle as in Table 15.  
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 0    1    2       3       4         5             6   7            8              9              10 

 

    1   1    1 

    2        1    2    2 

    3   1    3    6       6 

    4        1    4   12     24     24 

    5        1    5   20     60    120      120                                                       

    6        1    6   30    120   360      720         720      

    7   1    7   42    210   840     2520       5040       5040 

8        1    8   56    336  1680    6720      20160     40320     40320  

    9        1    9   72    504   3024   15120    60480    181440   362880    362880  

   10       1  10   90    720   5040   30240   151200   604800  1814400  3628800  3628800 

 

Table 15.      The second-order Pascal triangle 

 

 

We further write Eq. 26 into 

 

      ,                             Eq. 30 

 

where  is the small Stirling number as in Table 10. For example,  

                                                                

.  

 

 

Next, let us proceed to sorting of the second level: Stirling numbers. 

 

 

The number of ways of sorting the first  terms of  into  cycles is the Stirling  

 

number of the first kind . Clearly, . In general, sorting the first  terms of   

 

into  cycles, there are  ways including the one-cycle , since the number of  

 

ways of sorting the first  terms into  cycles is .                                                                                                      
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For any one of the  ways of sorting, not including , we need to insert  into 1  

 

(say, a -cycle) of the  cycles. Since there are  ways of doing such insertion, the  

 

total possible ways of inserting  into any of those  cycles is .  

 

 

Thus we have 

 

,                                  Eq. 31 

 

which is the same as Eq. 12, since .  

 

 

Also, we can write Eq. 30 as 

 

.                                Eq. 32  

 

 

We can use Eq. 31 to generate the Stirling triangle of the first kind as shown in Table 16. 

 

 

     1              2               3              4             5           6           7         8       9     10 

 

   1     1 

   2     1         1 

   3     2         3              1 

   4     6         11              6      1 

   5    24        50             35     10         1                                        

   6   120       274           225       85        15           1         

   7   720      1764         1624         735       175         21          1 

   8        5040     13068       13132       6769      1960       322        28        1 

   9       40320     109584     118124     67284     22449     4536      546      36      1 

  10     362880   1026576   1172700   723680   269325   63273    9450    870    45    1   

 

              Table 16.     Table for Stirling numbers of the first kind 
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On the other hand,  can be built from  via ,  and   

 

              Eq. 33 

 

as shown in Table 17. 

 

 

 1              2                                          3                   4              5 

 

1       1 

2       1                         1 

3       2                                           1 

4       6                                    1 

5      24     1   

                                                                                            

Table 17.      Stirling triangle of the first kind via the recursive formula 

 

 

By using Eq. 26 to expand both sides of 

  

,  

 

we can obtain Eq. 28 by equating the like terms of 

 

   .    

 

 
  

Let us continue our excursion of this second level of sortation. The number of ways of  

 

sorting the first  terms of  into  sets is the Stirling number of the second kind  

 

.  
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Clearly, . In general, sorting the first  terms of  into  sets, there are two  

 

cases to consider. First, there are  ways if the singleton  is included in the sorted  

 

arrangements, since the number of ways of sorting the first  terms into  sets is  

 

. Second, there are  ways if the singleton  is not included in the sorted  

 

arrangements, since for any one of  ways of sorting the term  can be inserted into  

 

any one of those  sets. Thus we have proved the recursive formula 

 

,                                      Eq. 34 

 

which is equivalent to Eq. 14, since .  

 

 

The Stirling triangle  of the second kind can be generated via Eq. 34 as in Table 18.  

                                                                                            

  1         2           3            4            5       6        7       8       9     10  

 

    1      1 

    2      1         1 

    3      1         3 1 

4      1         7 6   1 

    5      1        15         25  10     1                                                 

    6      1        31         90    65    15       1         

    7      1        63        301        350   140         21          1             

    8      1       127       966       1701      1050       266       28        1 

    9      1       255      3025      7770      6951      2646      462      36      1 

10      1       511      9330     34105    42525    22827    5880    750    45     1 

 

Table 18.    Stirling triangle of the second kind via the recursive formula 
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To attain our goal, we first derive the following identity  

 

   .                     Eq. 35 

 

We shall only look at the case for  and , since the general case is similar. So 

 

we use Eqs. 31 and 34 to show the inductive step:  

                   

 
 

 
 

 

 

.                                            

 

 

Alternatively, the Stirling triangle  of the second kind can be constructed based on  

 

,  and  via the inversion formula 

 

                            Eq. 36 

 

as follows. 

 

 

  , , 

 

  , … 
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We then derive the following identity  

 

.                         Eq. 37 

 

We only look at the case where  . From Eq. 8, we can use Eqs. 35 and 36 to write 

                                       

      

 

      

 
 

 
 

  

 

          

 
 

.               

 

 

Next, we use the mathematical induction to prove  

 

,                             Eq. 38 

 

with Eq. 37 being used in the inductive step:       

                                       

 
 

         

  

.

                       

Eq. 39
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Finally, we can obtain   

 

                  Eq. 40  

 

by regrouping the following display of Eq. 39: 

 

        

 

 

 + ,,, 

 

        .           

 

 

 

We finally come to the third level of sortation.  

 

The first-order Eulerian number  is the number of permutations  of the set  

 

 that have  ascents, i.e.  places where . Let us first look at simple  

 

examples:  gives  and ;  gives ;  gives  and  

 

;  gives ; , , ,  gives ;  gives  and  

 

;  gives ;  gives  and  

 

; , , , , , , , , , ,  gives  
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and , , , , , , , , , ,  gives . 

 

 

In general, for a permutation  of  with  ascents, we have two  

 

cases to consider.  

 

 

Case 1. We can insert  into  either after  or between  and   

 

whenever  to form a permutation of  that increases the number of  

 

ascents by 1 so that the total number of permutations of  that have  ascents in  

 

this case is .  

 

 

Case 2. For a permutation  of  with  ascents, we can insert   

 

into  either before  or between  and whenever  to form  

 

a permutation of  that maintains the same number of ascents so that the total  

 

number of permutations of  that have  ascents in this case is .  

 

 

Therefore, we have proved that 

 

,                                   Eq. 41 

 

Comparing Eqs. 41 and 18, we see that  and Eq. 41 can be written as 

 

.                                                  Eq. 42 
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Now, by virtue of Eq. 35, we can derive                                     

 

   

 
 

 
 

.          Eq. 43 

 

 

The second-order Eulerian number  is the number of permutations  of the 

multiset  that have  ascents, i.e.  places where , provided that  

 

all numbers between the two occurrences of  are greater than m for .  

 

Here are some simple cases:  gives  and ;  gives ; 

 

,  gives ;  gives ;  gives ;  

 

, , , , , , ,  gives  and  

 

, , , , ,  gives . For a permutation  

 

 of  with  ascents, we can insert  into  

 

 either after  or between  and  whenever  to form a  

 

permutation of  that increases the number of ascents by 1 so that the total  

 

number of permutations of  that have  ascents is ;   
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whereas for a permutation  of  with  ascents, we can  

 

insert  into  either before  or between  and  whenever  

 

 to form a permutation of  that maintains the same number of  

 

ascents so that the total number of permutations of  that have  ascents is 

 

.  

 

 

Therefore, we have proved that 

 

,  

 

which is equivalent to Eq. 18, since .                                    

  

 

Furthermore, there is a curious link between Stirling numbers of the second kind and the  

 

first-order Eulerian numbers , that is,   

 

,                                Eq.44 

 

as can be verified via Tables 18 and 12. 

 

 

For , the Stirling triangle of the first kind  can be constructed via  

 

                   Eq.45 

 

with  and the Stirling triangle of the second kind  can be constructed via  
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                           Eq.46 

 

with . On the other hand, Eq.36 can be generalized to 

   .          Eq. 47 

 

Next, we shall prove 

 

 ,          Eq. 48 

 

which is the generalization of Eq. 37. By virtue of  and Eq. 46,  

 

we first use mathematical induction to prove 

 

                      Eq. 49 

 

as follows. Since the inductive basis is trivially true, we only show the inductive step.  

 

   

 

 

 

  

 

  

 

.                                                          
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We can now use mathematical induction to prove Eq. 48 via Eq. 49:  

     

 

                           

 

 
 

.          

 

Finally, we can obtain Eq. 49 by regrouping the following display of Eq. 48. 

 

           

 
 

        + …   

 

        . 

 

Based on  and , we can use Eq. 45 to tabulate  in Table 19.  

                                   

               1                        2              3                     4       5 

 

  1                   1 

22                                           1                                             

  3                                                         1             

4                                                         1 

5      1 

 

Table 19.     Table for general Stirling numbers of the first kind  
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Next, we shall come up with the second-order Stirling numbers of the second kind in the  

 

same manner. Based on  and , we can use Eq. 46 to tabulate   

 

in Table 20. 

 

          

    1                2         3                    4         5 

 

  1        1 

  2                        1                                                                

  3                                              1  

  4                                                     1 

  5                         1 

 

Table 20.     Table for general Stirling numbers of the second kind  

 

 

Lastly, we shall generalize Eulerian numbers  and  for . It is  

 

quite easy to derive  

 

,                                                      Eq. 50 

 

                                                                                                     

,       Eq. 51 

 

and                

 

 
 

                      .              Eq. 52 
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Now, we can define  according to Eqs. 50-52 analogous to . By virtue of  

 

Eq. 50, we define  and  so that . Unlike ,  

 

we start with  for . Due to Eqs. 51 and 52, we can define ,  

 

, , , ,  

 

 and . Thus we have generalized Eq. 42 up  

 

to , which is sufficient for us to generalize Eq. 41.                                                                   

 

 

For our purpose, let us first define . Then we write ,  

 

, , ,  

 

,  and  

 

.  

 

 

As we can check, the above are the special cases of  

 

,      Eq. 53 

 

which is the generalization of Eq. 36 and can be used to tabulate in Table 21.  
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      -1            0             1                 2 

  

  0     0  

  1                                                                                  

  2         -2a2+2ad+d2                         a2
 

  3                   3a3-6a2d+4d3           -3a3+3a2d+3ad2+d3            a3
 

 

Table 21.      Table for general first order Eulerian numbers  

 

 

Moreover, we can write 

 

,                                 

 

,            

 

 
                      

  

 

and in general 

 

, 

 

which the generalization of Eq. 19 since . Therefore, the proof of Eq. 20  

 

can be generalized to prove 

 

.                                
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By recalling  and , we generalize Eq. 51 as follows.  

 

Since , to generalize Eq. 51 we assume  

 

. Taking , we have  

 

,  

 

 and  so that  

 

,  and . Thus, we have arrived at 

 

   

 . 

 

Likewise, we can obtain  

 

 
 

                             . 

 

By defining ,  and , we can use  

 

   Eq. 54 

 

to tabulate in Table 22.  

 

112 

),( knns
n

k







)1,(  knE

n

k























 




nnn

ida

n

n

aaddia
2

1

2

1

1;1

)(])1([
































 



1

44

1

4;2

nnn

da

n

n

zyx 3,2,1n

adaz
da







 2

;

3

1

22

;

4

2

2635 dadazy
da







 22

;

5

3

11186155 dadazyx
da









2)( adx  22 22 daday  )( daaz 
































 



1

44

22
1

4

2

;2

)()22()(
nnn

da

n

n

daadadaad























 



nn

da

n

n

daddaaad
6

3223
1

6

3

;3

)8733()(




















 2

6

1

6

3223 )2)(()6833(
nn

dadaadaddaa

1
;

0

1


 da

ad
da


 ;

1

1

a
da


;

1

0

da

n

kda

n

kda

n

k

dkadkna
;

1

;

1

1;

])2([])22([






da

n

k ;



     -1         0      1     2 

  

0    1  

 1                                                                              

 2                                 

 3          

 

Table 22.   Table for general second order Eulerian numbers  

Accordingly, we can derive   so that is the second- 

 

order Eulerian number for .          

 

 

2.2.5      Bell 

 

Let us now consider the ordered Bell polynomial 

 

 for                     Eq. 55 

 

and the Eulerian Bell polynomial  

 

  for .                     Eq. 56 

 

Can we generalize Eq. 44 for ? We shall see that  only when  

 

. For our purpose, let us define the difference Bell polynomial  to be  

 

.                                   Eq. 57 

 

The Bell number  satisfying  can be generalized to  

 

 

as follows.  
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so that  

 

, 

 

,  

 

, 

 

                             

 

and in general, 

 

.  

 

Finally, we use Eq. 55 to find 

 

, 

 

, 

 

 

 

and use Eq. 56 to find 

 

, 

 

, 

 

 

 

In the same fashion, we can use Eq. 57 to obtain 
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and in general, we propose the following 

  

CONJECTURE
             

.        Eq. 58
 

                                                                      

 

2.2.6      General triangular arrays 

 

We shall further rewriting Eqs. 45, 46, 53 and 54 as 

 

,       Eq. 59 

 

,       Eq. 60 

 

                

 

          ,                                  Eq. 61 

                                                                                                        

  

 

          ,                               Eq. 62 
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where . In the same token, Eqs. 28 and 29 can be written as 

 

;                       Eq. 63 

 

.                                                     Eq. 64 

 

 

More generally, a triangular array  for  can be defined as  for  

 

 and , ,  and  

 

,            Eq. 65 

 

where  and  can be taken the following model list.  

 

, , , , 𝑀(4) = 𝑎𝑛−𝑘 , 
 
 

 

        𝑀(5) = (𝑛 + 𝑘)𝑎𝑛 − (𝑛 + 1 + 𝑘) − (𝑛 + 1 + 𝑘)𝑎𝑛−1 , 

 

𝑀(6) = (𝑛 − 𝑘)𝑎𝑛 − (𝑛 − 1 − 𝑘)𝑎𝑛−1                                                            Eq. 66
 

 

 

So, Eqs. 63 and 64 can be rewritten as   and , 

 

where  is the unity sequence and  is the natural sequence. Moreover, Eqs. 59-62  

 

can be rewritten as  

  

                    [
𝑛
𝑘

]
(𝑎𝑖)1

∞
= 𝑇

(𝑎𝑖)1
∞

1,2 (𝑛, 𝑘 − 1) ,                           

 

                                                           {
𝑛
𝑘

}
(𝑎𝑖)1

∞
= 𝑇(𝑎𝑖)1

∞
1,3 (𝑛, 𝑘 − 1) ,                           

 

                                                            〈
𝑛
𝑘

〉(𝑎𝑖)1
∞ = 𝑇(𝑎𝑖)0

∞
3,4 (𝑛, 𝑘) ,                                   

 

                                                            〈〈
𝑛
𝑘

〉〉(𝑎𝑖)0
∞ = 𝑇(𝑎𝑖)0

∞
5,4 (𝑛, 𝑘).                                  
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2.2.7      Gauss 

 

To close out, let us consider Stirling numbers based on the sequence  with . 

 

First, we look at . Based on  and , we can derive from  

 

Eq. 59 for , namely   

 

, 

 

the following: 

 

 , , 

 

     ,  , , 

 

    ,  ,  , , … 

    

and in general 

, 

 

where  is known to be a - Gaussian coefficient. Likewise, we can use Eq. 63 for  

 

, namely  

 

to arrive at 

.              

 

In conclusion, the properties of unimodal and log concave in (36) can be generalized. 
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2.3.     MULTIPLE ANGLE FORMULAS IN TRIGONOMETRY 

 

 

We shall derive the general formula for , which is hitherto not known. 

 

 

We can derive  

 

                           Eq. 67 

 

and  

   

                                         Eq. 68 

 

by using 

 

.                            Eq. 69  

 

 

Although the general formulas for  and  have been known due to  

 

De Moivre’s Theorem, we can use Eq. 67 to derive   

 

     Eq. 70 

 

and 

 

      ;                Eq. 71 

 

and use Eq. 68 to derive, via combinatorial method, 

 

                  Eq. 72 
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and 

 

                      Eq. 73 

 

 

Since  

 

,  

 

we can use Eq. 69 to derive 

 

          

   

and in turn 

 

 

 

 

 

, 

 

due to .  

 

 

In general, we can derive 
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,   

 

which leads to Eq. 67.  

 

 

Similarly, we can derive 

 

   

 

and in turn 

 

 

 

             

 

           .                 Eq. 74 
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In general, we can derive 

 

 

     

 

   

 

  , 

 

which leads to Eq. 68. Before deriving Eq. 70, we first look at the case when .  

 

From Eq. 67, we can derive  

 

 

 

                       

 

                        

 

                       .                Eq. 75 

 

Obviously, the denominator of Eq. 75 equals the right-hand side of Eq. 70 for .  

 

121 

n2tan











































































1

1

12
22

12

1
1

0

2
22

2

2

1

1

12
22

12

122
1

0

22

2

tan)1(tan2tan)1()tan1(

tan)1()tan1(tan)1(tan2

n

k

k
n

k

k
n

k

k
n

k

k

n

k

k
n

k

kk
n

k

n

k

k









221
1

2

22
32

42

32

22

32

32

1

12112
2

1

22

12

22

12

22

2

tan)12()1(tan2)1(1

tan2)1(tan2)1(tan2


















































































































nn
n

k

k
n

k

n

k

n

k

k

nnk
n

k

n

k

n

k

n

k

k

n

nn

4n






6

7

6

4
7

4

2
7

2

7

0

7
7

7

5
7

5

3
7

3

7

1

tantantan

tantantantan

7tan











































































32
7

6

22
7

4

2
7

2

7

0

32
7

7

22
7

5

2
7

3

7

1

)1(sec)1(sec)1(sec

)1(sec)1(sec)1(sec

tan





















































































  



  








































3

0

4

1

2
7

22

1

3

0

4

1

2
7

12

1

sec)1(cos

sec)1(sin

k ki

k

i

i

k

k

k ki

k

i

i

k

k









 







 












































3

0

4

1

)3(2
7

22

1

3

0

4

1

32
7

12

1

cos)1(cos

)sin1()1(sin

k ki

k

i

i

k

k

k ki

k

i

i

k

k





4n



Instead of showing that the numerator of Eq. 75 equals the right-hand side of Eq. 71 for  

 

, we can likewise derive 

 

   

 

so that the denominator of which equals the right-hand side of Eq. 71.  

 

 

In general, we get 

 

   

 

and 

 

   

 

so that Eqs. 67 and 70 are true. Finally, we note that the numerator and the denominator  

 

of Eq. 74 equal to  and , respectively. Similarly, Eqs. 72 and 73 can be  

 

derived from Eq. 68.  

 

 

All the multiple angle formulas derived above can be proved by mathematical induction.  

 

We shall only prove Eq. 67, which is obviously true for . So we are left to prove  

 

.              Eq. 76 
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Using Eq. 64, we first obtain  

 

 .      Eq. 77 

 

 

Then use Eq. 28 to regroup the numerator of Eq. 77 successively as 

 

 

 

                     

 

 

    

 

 

 

    

 

 

 

    

 

 

 

, 

 

which is the numerator of Eq. 71. The proof for denominator case is similar.    
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3.          LIFE CONTINGENCY 

 

3.1.           INTRODUCTION  

 

Some forty years ago, I started out my eight years of actuarial career as an actuarial  

 

student and was provided by all my employers with study time and materials to prepare  

 

for Actuarial Exams sponsored by SOA. By studying the only one textbook (9) inside  

 

out, I personally invented many short cuts for solving various problems. I later published  

 

thirteen papers (23)-(35), a lecture note (20) and a textbook (22) in Chinese, which I did  

 

consult (2). Recently, I found out that my innovative ideas such as the uniform  

 

representation of a general life contingency function and its derivative were not even  

 

mentioned in (15). Thus, I feel obliged to write this chapter for the benefit of readers.  

 

 

A life actuarial model is based on three major factors: interest, mortality and expense. We  

 

first give a general way of constructing it in terms of accumulation functions.  

 

 

  Force of Interest    Force of Mortality              Expense Percentage 

                              x        

 

Interest Related Accumulation Function     Mortality Related Accumulation Function     

 teta 

 )(         





t

ux

x

du

eta 0)(


  

 

          Annuity                  Endowment Insurance 




n

nx dttataa
x0

1

: )]()([         1

0

11

: )]()([})]([{)]([    nanadtta
dt

d
taA

xx

n

nx   

  

            Net Level Premium    Gross Level Premium 

              nxnxnx aAP ::: /         )1(::  nxnx PG  

 

              Net Level Premium Reserve at Year t     Cash Value at Year t  

               
tntxnxtntxnxt aPAV   ::::
         𝐶𝑥̅:𝑛 = 𝐴̅𝑥+𝑡:𝑛−𝑡 −𝑟

  𝐺̅𝑥:𝑛𝑎̅𝑥+𝑡:𝑛−𝑡 

 

Figure 44.  The structure of an n  year continuous life actuarial model 
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In the model outlined in Figure 45, let 


t

duuata
0

1)]([)(  . Then by using the  

 

integration by parts, we can write 

 

 1

0

1

: )]()[(})]([{)(    nanadtta
dt

d
taa

xx

n

nx    

 

so that all life contingency functions can be written as  

 

1

0

1

: )]()[(})]([{)(    nandtta
dt

d
t

xx

n

nx   ,  

 

where )(t  is the present value of the benefit at time t  so that the first term 1

:nx  is the  

 

death benefit and the second term 
1

:nx  is the maturity benefit. This is generally true in  

 

any model.  

 

 

 

3.2.      THEORY OF COMPOUND INTEREST        

 

3.2.1    Functions of compound interest 

 

We shall start with the accumulation function and use the geometric point of view to  

 

generalize and simplify the theory of interest. 

 

 

Let a(x) be an increasing positive function satisfying 

 

    a(-x) = [a(x)]-1.               Eq. 78 

 

 

From Eq. 78, it follows that a(0) = 1 and that 

 

   [a(0) – a(-x)]-1 – [a(x) – a(0)]-1 = 1, x > 0.                         Eq. 79 

 

 

A continuous a(x) further requires the existence of a’(0) (denoted by  ). For example,   

 

a(x) = (1+i)x, where i is the nominal rate of interest.  
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We first list the notations and definitions of major functions with the illustrative Figures  

 

45-50 as follows: 

 

 

i (m) = the nominal rate of interest payable m times a year 

 

d (m) = the nominal rate of discount payable m times a year 

 

 = the force of interest 

 
)(m

na  = the present value of an annuity due which pays m-1 at the beginning of each mth of  

 

a year for n years 

 

   m-1 m-1 m-1 .  .  .  .  .  .  .  .  .  .  .  .  .  m-1    

 

   0              n 

                                  )(m

na   

Figure 45.        The present value of )(m

na  

 

 
)(m

na  = the present value of an annuity immediate which pays m-1 at the end of each mth  

 

of a year for n years   

 

            m-1         m-1   m-1 .  .  .  .  .  .  .  .  .  .  .   m-1    

 

   0              n 

                                  )(m

na                                                                                                          

Figure 46. The present value of )(m

na  

 

 

na = the present value of a continuous annuity payable continuously for n years, with the  

 

total of 1 paid during each year  

 

    ---1---  ---1---   ---1---   .  .  .  .  .  .  .  .  .  .   ---1---   

 

   0 1 2 3          n-1       n 

                                   na   

Figure 47. The present value of na  
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)(m

ns  = the future value of )(m

na   

 

   m-1 m-1 m-1 .  .  .  .  .  .  .  .  .  .  .  .  .  m-1    

 

   0              n 

                                              )(m

ns   

Figure 48.          The future value of )(m

na  

 

 
)(m

ns  = the future value of )(m

na  

 

            m-1         m-1   m-1 .  .  .  .  .  .  .  .  .  .  .   m-1    

 

   0              n 

                                              )(m

ns   

Figure 49. The future value of )(m

na  

 

 

ns = the future value of na  

 

    ---1---  ---1---   ---1---   .  .  .  .  .  .  .  .  .  .   ---1---   

 

   0 1 2 3          n-1       n 

                                                 ns  

Figure 50. The present value of na  

 

 

When m = 1, the superscript (m) of the above notations is simply dropped.  

 

 

On the other hand, we can generalize the definition of the force of interest at time x to be 

 

    (x) = lim {[a(x+t) – a(x)]/a(x)}/t . 

          t0                       

 

Then           

 

   (x) = a’(x)/a(x) 

 

and 

 

          = (0).                                                                    
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In the case that 

 

           a(x) = (1+i)x, 

 

we have 

 

(x) = lim {[a(x+t) – a(x)]/t}/a(x) = lim [(1+i)t – 1]/t =   

          t0                              t0                    

 

for all x and 

 

   = ln (1+i)                          

 

or 

 

.1 ei                                                           

       

 

3.2.2      Geometric point of view 

 

Let a(x) be an accumulation function. Define i(m)  to be the slope of the line joining (0, 1)  

 

and (m-1, a(m-1)). Let d(p) = i(-p). Then d(p) is the slope of the line joining (0, 1) and 

 

 (-p-1, a(-p-1)).  

 

              Y           (m-1, a(m-1))   

                       

 

 

                (0, 1) 

                                       (-p-1, a(-p-1))      

  

 

             X  

                                                         -p-1      O       m-1      

           

          Figure 51.         Geometric visualization of the force of interest 

    

 

We can visualize from Figure 8 that 

 

       d(p) <  < i(m) 

 

and 
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       lim d(p) =  = lim i(m).      

     p    m                    

 

The latter can also be derived as follows according to the definitions of d(p),  and i(m): 

 

lim d(p) = lim [a(-p-1) – a(0)]/(-p-1) = a’(0) =  = a’(0) = lim [a(m-1) – a(0)]/(m-1) = lim i(m).      

 p    -p-10                            m-10                         m  

 

 

                                                                           Y                         a(x)      

 

                  Pn 

               

 

              P 1m
  

     Q n           Q 1m
 O   Q 1m

     Q n   

                                 P n               P 1m
                                                                     

 X                                                                             

             

                                                                          

                              Figure 52.         Geometric visualization of annuity functions                                                                  

 

 

Referring to Figure 52, we define the following annuity functions: 

  

)(m

na  the ratio of the length of  P-nQ–n to the slope of  O 1m
P   

      

)(m

na  the ratio of the length of  P-nQ–n to the slope of  O 1m
P   

 

na  the ratio of the length of  P-nQ–n to the slope of  the tangent at O  

 

)(m

ns  the ratio of the length of  PnQn to the slope of  O 1m
P   

 

)(m

ns  the ratio of the length of  PnQn to the slope of  O 1m
P   

 

ns  the ratio of the length of  PnQn to the slope of  the tangent at O       

 

 

With the exception of continuous functions, the above can also be defined as follows: 

 

)(m

na  the ratio of the length of  nnQP  to m times that of 1m
P Q 1m
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)(m

na  the ratio of the length of  nnQP  to m times that of 1m
P Q 1m

  

   

)(m

ns  the ratio of the length of  nnQP to m times that of 1m
P Q 1m

  

 

)(m

ns  the ratio of the length of  nnQP to m times that of 1m
P Q 1m

                                    

 

 

Hence 

 

)(m

na [1 – a(-nm)]/d(m) = [1 – a(-nm)]/{m[1 – a(-m-1)]}, 

 

)(m

na [1 – a(-nm)]/i(m) = [1 – a(-nm)]/{m[a(m-1) - 1]}, 

 

na [1 – a(-n)]/a’(0)  = [1 – a(-n)]/,  

  

)(m

ns [a(nm) - 1]/d(m) = [a(nm) - 1]/{m[1 - a(-m-1)]}, 

 

)(m

ns [a(nm) - 1]/i(m) = [a(nm) - 1]/{m[a(m-1) - 1]}, 

 

ns [a(n) - 1]/a’(0)  = [a(n) - 1]/. 

 

 

In conclusion, we shall derive the following important formulas from Eqs. 78 and 79. 

          

 i(m) = a(m-1)d(m);                           Eq. 80 

 

[d(m)] -1 - [i(m)] -1 = m-1 ;            Eq. 81 

 

[ 1)( ]m

na - 1)( ][ m

ns  = d(m);            Eq. 82 

 

[ 1)( ]m

na - 1)( ][ m

ns  = i(m);             Eq. 83 

 

[   11 ][][ nn sa  .              Eq. 84 

 

 

Since a(0) = 1, we can derive Eq. 80 from Eq. 78 as follows. 
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Eq. 81 can be derived from Eq. 80 as follows. 
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From Eq. 79, we can derive Eq. 82 [similar for Eqs. 83 and 84] as follows. 
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In the case that  

 

            a(x) = (1+i)x,  

 

we have 

 

                                                         n

n

n

n isdia   )1(/])1(1[  ; 

 

                                                         n

n

n

n isiia   )1(/])1(1[ ; 

 

             .)1(/])1(1[ n

n

n

n isia     

                            

 

From these formulas we can readily derive Eqs. 84-81 for the case that m = 1, which can  

 

also be visualized from Figures 53-55.  

           

 

              n-year payments of annuity due        future value 

 

         1/ ns          1/ ns          1/ ns  .  .  .  .  .  .  .   1/ ns          1 

 

   +       d             d     d    .  .  .  .  .  .  .  .   d  d ns  

 

   =    1/ na         1/ na         1/ na  .  .  .  .  .  .  .   1/ na       ni)1(                                                      

   

           (1/ na ) ns  = ni)1(  = 1 + d ns = (1/ ns ) ns + d ns    

 

Figure 53.         Future value of n-year payments of annuity due   
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          n-year payments of annuity immediate        future value 

                                                

        1/ ns          1/ ns           1/ ns  .  .  .  .  .  .  .  1/ ns        1 + i 

 

    +     i             i                i   .  .  .  .  .  .  .  .   i             i ns      

 

    =   1/ na        1/ na           1/ na  .  .  .  .  .  .  .  1/ na    1)1(  ni                                                

           

        (1/ na ) ns  = 1)1(  ni = (1 + i) + [ 1)1(  ni - (1 + i)] = (1/ ns ) ns + i ns    

 

Figure 54.         Future value of n-year payments of annuity immediate   

 

 

        n-year payments of continuous annuity        future value 

 

         1/ ns          1/ ns          1/ ns  .  .  .  .  .  .  .  1/ ns         /d 

 

   +                 .  .  .  .  .  .   .  .               ns    

               

   =    1/ na          1/ na         1/ na   .  .  .  .  .  .  . 1/ na   (/d) ni)1(     

                                                 

         (1/ na ) ns  = (/d) ni)1(  = /d + (/d)[ ni)1(  - 1] = (1/ ns ) ns  +  ns  

 

Figure 55.         Future value of n-year payments of continuous annuity    

 

 

 

3.3. LAWS OF MORTALITY  

 

3.3.1  Point of view of stochastic theory 

 

Let us first introduce the conventional notations as follows. 

 

 

X : The random variable of a newborn’s age-at-death.  

 

 : The terminal age. 

 

F(x) : The distribution function (d. f.) of X.  

 

S(x) = 1 – F(x) : The survival function.   
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Let xut q|  be the probability that a life (x) aged x will die between ages x + t and x + t + u.  

 

Then 
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where F( ) = 1 and S( ) = 0. The above relationships can be visualized from Figure 57. 
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                                    |  |    |        |        | 

   0 x x + t  x + t + u        

      ————————————————  

 

                 Figure 56.         Linear visualization of the death rate xut q|  

 

 

When u = 1, we have (by omitting 1) 
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and when t = 0, we have (by omitting 0 and replacing u by t) 
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Let xt p = 1 - xt q  be the probability that (x) will survive for t years. Then 

 

.| txuxttxuxtxtxutxtxtxutxut qppppppqqq    

                 

 

3.3.2   Point of view of traditional actuaries 

 

In a life table, we can always find xq , x = 0, 1, 2, 3,  .  .  .   , which is the probability  

 

that (x) will die within a year, namely xq1  as introduced in the previous section; while  

 

xx pp 1  is the probability that (x) will survive in a year.   
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Let S(x) be a survival function. Then 
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Let L(0) be a cohort of 0l  newborns. Then the survivorship function )(0 xSllx   is the  

 

number of those in L(0) who survive to age x. Let L(x) denote such a set.   

 

 

In this manner, the number of survivors can be tracked down as follows: 

 

 

 

 

,)2( 1110002002 plpplplSll   

 

,)3( 22210003003 plppplplSll  … 

  

.0...)( 11132100000     plppppplplSll         

 

 

Let  ndx  be the number of those in L(x) who will die within n years and let dx be those in  

 

L(x) who will die within a year. Then 

 

 

                                                  

          xxx ldq / ,    

                

      xxnxxn ldlp /)(  , 
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,nxxxn lld 

,1 xxx lld

,/ xxnxn ldq 



        xxxx ldlp /)(  , 

 

      .)/)(/(/| txuxttxtxuxtxxtxuxutxtxut qpldllldqqq    

 

 

The above relationships can be visualized in Figure 57. 

 

 

           xut q  

 ——————–———— 

                                                 ———— 

          xt q  

                                    |  |     |         |        | 

   0 x x + t  x + t + u        

      -----------——————–                        

          xt p    txu q    

 

                 Figure 57.         Linear visualization of various death rates 

 

 

Now let us look at the instantaneous rate of mortality 

 

           )/lim( tqxtx  ,                                                  Eq. 85 

                                       0t   

 

called the force of mortality. Since  
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Hence  xx p 0  is the p. d. f. (probability density function) of X. 

 

 

3.4. MORTALITY RATES OF FRACTIONAL AGES 

 

When 0 < t < 1, tqx can not be found in a life table.   

135 



The following two methods are commonly used to solve this problem. 

 

 

1) Linear interpolation:   

 

 

 

2) Reciprocal interpolation: 

 

 

 

The first method assumes the uniform distribution of deaths throughout a year, called  

 

U-Assumption; while the second method is due to Balducci, called B-Assumption. 

 

 

Dual Theorem.  xl  imposes B-Assumption if and only if 1

xl imposes U-Assumption. 

 

Proof.  We shall assume that l is close to 0 but not 0 to avoid 1

l  being undefined.  Let 
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Then the theorem can be proved as follows: 
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Now, we shall derive the formula of hqx+t for the following two cases. 

 

 

Case 1.  xl  imposes U-Assumption. 

 

The following formula can also be visualized from Figure 58. 
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    x   x + t   x + t + h    x + 1  
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Figure 58.         Linear visualization of the death rate in Case 1 

 

 

It follows from 
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and that 
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By taking t = 0 in Eq. 87, we have 
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and by taking  h = 1 – t , we have 
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Case 2.  xl  imposes B-Assumption. 

 

According to Dual Theorem, *

xl  imposes U-Assumption. From Case 1, we have 
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Since 
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it follows that 
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                                                                                                                                    Eq. 88 

                                                                                                                                                                                               

 

Eq. 88 can be visualized from Figures 58 and 59. 
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Figure 59.         Linear visualization of the death rate in Case 2 

 

 

To simplify the matter, we can further combine Figures 58 and 59 into Figure 60 as  

 

though the time is running from x + 1 to x (having in mine that the time is actually  

 

running from )1(  x  to  x .) 
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Figure 60.         Linear visualization of the death rate in both cases 

 

By taking  t = 0 in Eq. 88, we have 
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and by taking  h = 1 – t , we have 
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Similar to Case 1, we can also derive 
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Because of the simplicity of Eq. 89, B-Assumption is often used as the basis of  

 

calculating the mortality rates.                            

 

 

 

3.5. MODELS OF THE SURVIVALSHIP FUNCTION 

 

Mathematicians have long been searching for appropriate models for the survivorship 

 

function xl . From Eq. 86, we can derive  
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In 1724 de Moivre first introduced, as the basis of the model, 
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the survivorship function of which can be calculated from Eq. 90 as 
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where 105 . This was used in those days for simplifying the calculation of life  

 

annuities primarily only for the range of ages from 12 to 86, which was generalized to 
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the survivorship function of which being 
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In 1825, Gompertz believed that the force of mortality was increasing in geometric  

 

progression and introduced 
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the survivorship function of which being 
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By suitably adjusting B and c, this model could fit the range of ages from 10 to 55.  

 

Therefore, it was used to construct the 1937 Standard Annuity Table.  

 

 

In 1860, Makeham further generalize the model to 

 
x

x BcA                Eq. 92 

 

and later to 
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the survivorship function of which being 
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By suitably adjusting A, B and c, this model could fit any age over 20 and was used to  

 

construct the Commissioners 1941 Standard Ordinary Mortality Table and also the  

 

Annuity Table for 1949.  Furthermore, both Eqs. 91 and 92 are often used nowadays to  

 

simplify compound probability problems involving multiple life insurance. 
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Later, the model based on 
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the survivorship function of which being 
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In 1939, Weibull introduced 
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the survivorship function of which being 
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In 1997, the author obtained the following two least-square-fit cubic survivorship  

 

functions: 
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The function Eq. 93 was derived based on ,6l  ,16l  ,26l  . . . 86l  of 1958 CSO Male Life  

 

Table and fit well the range of ages from 0 to 70. The function Eq. 94 was derived based  

 

on ,6l  ,16l  ,26l  . . . 76l  of the same table and fit well the range of ages from 3 to 79. The  

 

error for each of these models is within 1% for most of the ages described above and  

 

about 2% for few ages as can be seen in the following comparison chart (Tables 23 and  

 

24 combined). 
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 x 1958 CSO  xl    Tsao’s  O

xl  % Error  Tsao’s  E

xl       % Error 

 

 0  10,000,000   9,999,794       .00            10,312,057     3.12 

 1    9,929,200   9,965,185       .36  10,233,904     3.07 

 2    9,911,725   9,933,529       .22  10,161,596     2.52 

 3    9,896,659   9,904,662       .08  10,094,887     2.00 

 4    9,882,210   9,878,418     - .04  10,033,535     1.53 

 5    9,868,375   9,854,634     - .14      9,977,296     1.10 

 6    9,855,053   9,833,146        - .22    9,925,926       .72 

 7    9,842,241   9,813,788     - .29    9,879,181       .38 

 8    9,829,840   9,796,397     - .34    9,836,818       .07 

 9    9,817,749   9,780,808     - .38    9,798,593     - .20 

          10    9,805,870   9,766,856     - .40    9,764,263     - .42 

          11    9,794,005   9,754,378     - .40    9,733,584     - .62 

          12    9,781,958   9,743,210     - .40    9,706,312     - .77 

          13    9,769,633   9,733,185     - .37    9,682,203     - .89 

          14    9,756,737   9,724,141     - .33    9,661,014     - .98   

          15    9,743,175   9,715,913     - .28    9,642,502   - 1.03 

          16    9,728,950   9,708,336     - .21    9,626,422   - 1.05 

          17    9,713,967   9,701,246     - .13    9,612,531   - 1.04 

          18    9,698,230   9,694,479     - .04    9,600,585   - 1.01 

          19    9,681,840   9,687,870        .06   9,590,341     - .95 

          20    9,664,994   9,681,255        .17    9,581,555     - .86 

          21    9,647,694   9,674,470        .28   9,573,984     - .76 

          22    9,630,039   9,667,350        .39   9,567,382     - .65 

          23    9,612,127   9,659,730        .50   9,561,508     - .53 

          24    9,593,960   9,651,447        .60   9,556,118     - .39 

          25    9,575,636   9,642,336        .70   9,550,966     - .26 

          26    9,557,155   9,632,232        .79   9,545,812     - .12 

          27    9,538,423   9,620,972        .87   9,540,409        .02 

          28    9,519,442   9,608,391        .93   9,534,515        .16 

          29    9,500,118   9,594,324        .99   9,527,886        .29 

          30    9,480,358   9,578,607      1.04    9,520,279        .42 

          31    9,460,165   9,561,076      1.07   9,511,449        .54 

          32    9,439,447   9,541,566      1.08   9,501,154        .65 

          33    9,418,208   9,519,913      1.08   9,489,148        .75 

          34    9,396,358   9,495,952      1.06   9,475,190        .84 

          35    9,373,807   9,469,520      1.02   9,459,035        .91 

          36    9,350,279   9,440,450        .96   9,440,439        .96 

          37    9,325,594   9,408,582        .89   9,419,160      1.00 

          38    9,299,482   9,373,748        .80   9,394,952      1.03 

          39    9,271,491   9,335,785        .69   9,367,573      1.04 

           

Table 23. First half of the comparison chart 
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40    9,241,359   9,294,527        .56    9,336,779      1.03 

41    9,208,737   9,249,812        .45   9,302,326      1.02 

          42    9,173,375   9,201,474        .31    9,263,970        .99 

          43    9,135,122   9,149,350        .16   9,221,468        .95 

          44    9,093,740   9,093,273        .01   9,174,577        .89 

          45    9,048,999   9,033,082      - .18   9,123,052        .82 

          46    9,000,587   8,968,610      - .36   9,066,651        .73 

          47    8,948,114   8,899,694      - .54   9,005,128        .64 

          48    8,891,204   8,826,168      - .73   8,938,241        .53 

          49    8,829,410   8,747,870      - .92   8,865,746        .41 

          50    8,762,306   8,664,634    - 1.11    8,787,400        .29 

          51    8,689,404   8,576,296    - 1.30   8,702,958        .16 

          52    8,610,244   8,482,692    - 1.48    8,612,177        .02 

          53    8,524,486   8,383,657    - 1.65   8,514,814        .11 

          54    8,431,654   8,279,027    - 1.81   8,410,624        .25 

          55    8,331,317   8,168,637    - 1.95   8,299,364        .38 

          56    8,223,010   8,052,324    - 2.08   8,180,791        .51 

          57    8,106,161   7,929,922    - 2.17   8,054,660        .64 

          58    7,980,191   7,801,267    - 2.24   7,920,729        .75 

          59    7,844,528   7,666,196    - 2.27   7,778,752        .84 

          60    7,698,698   7,524,543    - 2.26    7,628,488        .91 

          61    7,542,106   7,376,144    - 2.20   7,469,692        .96 

          62    7,374,370   7,220,835    - 2.08    7,302,120        .98 

          63    7,195,099   7,058,452    - 1.90   7,125,529        .97 

          64    7,003,925   6,888,829    - 1.64   6,939,675        .92 

          65    6,800,531   6,711,803    - 1.30   6,744,315        .83 

          66    6,584,614   6,527,210      - .87   6,539,205        .69 

          67    6,355,865   6,334,884      - .33   6,324,100        .50 

          68    6,114,088   6,134,662         .34   6,098,759        .25 

          69    5,859,253   5,926,379       1.15   5,862,936        .06 

          70    5,592,012   5,709,870       2.11    5,616,388        .44 

          71    5,313,586   5,484,972       3.23   5,358,872        .85 

          72    5,025,855   5,251,520       4.49    5,090,144      1.28 

          73    4,731,089   5,009,350       5.88   4,809,960      1.67 

          74    4,431,800   4,758,296       7.37   4,518,077      1.95 

          75    4,129,906   4,498,196       8.92   4,214,251      2.04 

          76    3,826,895   4,228,884     10.50   3,898,238      1.86 

          77    3,523,881   3,950,196     12.10   3,569,794      1.30  

          78    3,221,884   3,661,968     13.66   3,228,677        .21 

          79    2,922,055   3,364,034     15.13   2,874,642     - .62 

 

Table 24. Second half of the comparison chart 
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3.6. SIMPLE VISUALIZATIONS FOR SCHEDULE EXPOSURE FORMULAS  

 

We shall introduce the method of valuation schedule in demography to be used to  

 

calculate the mortality rates for any observed group in the insurance industry such as the  

 

insured of a life insurance company, the annuitants of an annuity contract or the  

 

participants of a pension plan. To undertake a mortality study for such a group, we need  

 

to specify the observation period and the mechanism of calculating the exposure and  

 

deaths. These calculations involve with starters, new entrants, withdrawers, deaths and  

 

enders. For a large group, the valuation schedule exposure formulas are often considered  

 

rather than the individual record exposure formulas because of the obvious reason. These  

 

formulas are based only on the observed deaths and the periodic numeration of the  

 

individuals in the observed group, which are readily available from the data for the  

 

valuation purpose just as in the population study in demography.   

 

 

We first adopt pertinent notations from the demography. 

 

 

z

xP   the number of persons aged between x and x + 1 at the beginning of the calendar  

 

year z; 

 

z

xE   the number of persons attained age x during the calendar year z; 

 

z

xD   the number of deaths among z

xE during the calendar year z; 

  

z

xD   the number of deaths among z

xP before the attainment of age x + 1; 

 

z

xD   the number of deaths at age x last birthday during the calendar year z; 

 

z

xD \ 

z

xD 1
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xD  

 

1\ zz

xD z

xD ;1z

xD  
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z

xm   the number of migrants in addition to z

xE during the calendar year z; 

  

z

xm   the number of migrants in addition to z

xP before the attainment of age x + 1.       
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Figure 61.    The observed deaths and the periodic numeration of the individuals 

 

 

From the above figure, we have 
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The number of migrants is the number of new entrants minus the number of withdrawers.  

 

In the insurance industry, the migration can be assumed to occur either at the insured’s  

 

birthday or at the end of calendar year. Different migration and mortality assumptions  

 

will lead to different exposure formulas. The mortality rate is calculated as the ratio of the  

 

number of deaths over the total exposure. The treatment of deaths plays the major role in  

 

the calculation of different exposure formulas as discussed below. Let k be the number of  

 

months after January 1 for the average birthday of an observed group. For a large group,  

 

k is usually assumed to be 6. If the observation period is the calendar year z, we can  

 

group the deaths by age last birthday or by calendar age. If the observation period is from  

 

birthday in z to the birthday in z + 1, then the grouping is always by age last birthday. 

 

 

Case 1.  Calendar year study, deaths by age last birthday. 

 

In the following figure, we assume that z

xm  occurs m months after January 1 and z

xm   

 

occurs n months after January 1. 
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Figure 62. Visualization of Case 1 
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1) B-Assumption on deaths 

 

Using the idea of potential and cancelled exposure, we can obtain 
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It follows from Eqs. 89, 95 and 96 that 
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If the migration occurs on birthdays (m = 0 and n = 12), then 
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which can be visualized directly from the diagram below. 
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Figure 63.        The migration occurs on birthdays under B-Assumption 
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The coefficient (exposure) of z

xP  is the length of the line segment X---O, the coefficient  

 

of 1z

xP  is the length of the line segment O---X and  the coefficient of z

xD  is the length  

 

of the line segment O---O.   

 

 

If the migration occurs at year-ends (m = n = k), then 
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which can be visualized directly from the diagram below. 
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Figure 64.        The migration occurs at year-ends under B-Assumption 

 

The coefficient of z

xE 1  is the length of the line segment X---O, the coefficient of z

xE  is  

 

the length of the line segment O---X, the coefficient of z

xD  is the length of the line  

 

segment X---O and the coefficient of z

xD  is the length of the line segment X---O.   

 

 

2) U-Assumption on deaths 

 

Since the equivalent formula to Eq. 87 is far more complicated under U-Assumption, we  

 

shall use the direct approach by tracing down the deaths from segment to segment in the  

 

original diagram to obtain 
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Due to the fact that U-Assumption is usually accompanied with the migration assumption  

 

either on birthdays or at year-ends,  we shall only discuss these two special cases. If the  

 

migration occurs on birthdays (m = 0 and n = 12), then 
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We shall make use of the following identity 
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By multiplying xk p
12

 to Eq. 97 and making use of the above, we can obtain 
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It then follows from U-Assumption, as can be visualized from the figure below, that 
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Figure 65.        The migration occurs at year-ends under U-Assumption 
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The coefficient of z

xP  is the length of the line segment O---X, the coefficient of 1z

xP  is  

 

the length of the line segment X---O, the coefficient of z

xD  is the length of the line  

 

segment X---O and the coefficient of z

xD  is the length of the line segment X---O. If the  

 

migration occurs at year-ends (m = n = k), by multiplying xk p
12

 to Eq. 97 and making use 

of Eq. 96, we can obtain 
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xxk
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x PpE , by applying Eq. 96 and U-Assumption to the above we can obtain 
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which can be visualized directly from the figure below. 
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Figure 66.        The migration occurs at year-ends under U-Assumption 
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The coefficient of z

xE 1  is the length of the line segment O---X, the coefficient of z

xE  is  

 

the length of the line segment X---O, and  the coefficient of z

xD  is the length of the line  

 

segment O---O. The derivation of exposure formulas for the last two of the following  

 

cases is similar to the first and therefore will be omitted.  However, we shall summarize  

 

the formulas of the case with accompanying figures and follow suit. 

 

Case 1.  Calendar year study, deaths by age last birthday. 

 

 Case 2.  Calendar year study, deaths by calendar year.   

 

 Case 3.  Birthday to birthday study, deaths by age last birthday.                           

                         

                                                                                                                           

Case 1.  Calendar year study, deaths by age last birthday.  

    

     Exposure formulas    
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Figure 67.        Calendar year study, deaths by age last birthday, migration on birthdays 
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Figure 68.        Calendar year study, deaths by age last birthday, migration at year-ends 

 

 

 Case 2.  Calendar year study, deaths by calendar year.     

 

     Exposure formulas    
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Figure 69.      Calendar year study, deaths by calendar year, migration on birthdays 
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Figure 70.      Calendar year study, deaths by calendar year, migration at year-ends 

 

 

 

3.7. LIFE INSURANCE AND ANNUITIES 

 

3.7.1 Deterministic point of view 

 

Let k-1|q x be the probability that a life (x) aged x will die between ages x + k –1 and x + k.   

 

Let  k p x be the probability that (x) will survive to age x + k.  Let i be the nominal interest  

 

rate and let v = 1/(1 + i). 

 

 

Let 1

:nxA denote an n-year term insurance of 1 payable at the end of the year of death. Then 
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nx qvA .           Eq. 99 

 

Let 
1

:nxA   denote an n-year pure endowment of 1 payable at the end of the nth year when  

 

(x) survives. Then 

 

     xn

n

nx pvA 
1

:  .             Eq. 100 

 

153 



Let A x : n  denote an n-year endowment insurance of 1 payable either at the end of the  

 

year of death or at the end of the nth year when (x) survives. Then 
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:
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:: nxnxnx AAA  .            Eq. 101 

                 

 

Let a x : n  denote an n-year annuity of 1 payable at the end of each year while(x) survives.   

 

Then it is called an annuity immediate and 

 

     



n

k

xk

k

nx pva
1

:  . 

    

 

Let nxa :
  denote an n-year annuity of 1 payable at the beginning of each year while (x)  

 

survives. Then it is called an annuity due and 
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An annuity due can also be interpreted as an endowment insurance with ka  payable at the  

 

year of death and na  payable at the date of maturity. Hence 
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Therefore, we can consider an n-year term life contingency function 
1

:nx with the death  

 

benefit k  payable at the end of the year of death. Then 
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and an n-year endowment contingency function with n  payable at the date of maturity is 
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where 
1

:nx  is an n-year pure endowment of n  at the date of maturity, namely 

 

     xnnnx p 
1

: .             Eq. 104 

 

 

By taking k

k v  in Eq. 103, we can obtain Eq. 99. In this case, Eq. 100 follows from  

 

Eq. 104. These are the formulas for life insurance.  

 

 

By taking kk a  in Eq. 103, we can obtain 
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In this case, Eq. 102 follows from Eq. 141 and the above. These are the formulas for  

 

annuity due.   

 

 

By taking kk a  in Eq. 103, we can obtain 
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Finally, from Eqs. 100 and 101, we can derive 
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Likewise, we can obtain 
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3.7.2 Stochastic point of view 

 

Let K be the random variable of the integral future-life-time of (x). Then its p.d.f.is  

 

10,|  xkq xk  , where   is the terminal age.   

 

 

Let nxh :|  be an h-year deferred n-year life contingency function, with the random  

 

variable of the present value of the benefit being 
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As in Eqs. 103 and 104, we write 
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Let nxh A :|  be an h-year deferred n-year endowment payable at the end of the year. Then   
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 
1

|

1

:|

nh

hk

xnh

nh

xk

k

nxh pvqvA .       Eq. 106 
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Let 
1

:| nxh A  be an h-year deferred n-year term insurance payable at the end of the year.  

 

Then from Eq. 105, we have 

 

       





1

|

11

:|

nh

hk

xk

k

nxh qvA ,                     Eq. 107 

 

since 0nh . From Eqs. 106 and 107, we have 

 

    



xnhnxhxnh

nh

nxhnxh EApvAA 1

:|

1

:|:|

1

:|

1

:| nxhnxh AA  .            

 

 

Let nxh a :|  be an h-year deferred n-year annuity payable at the end of the year. By taking   

 

hkk aa   in Eq. 105, we have 

 

 








 
nh

hk

nh

hk

xnhnhxhhxkkxnhhnhxkhknxh papaqapaaqaaa
1 1

1||:| )()(    Eq. 108  

 

and 

 

                                                             





nh

hk

xkknxh qaa
1

|

1

:| .                                                    

 

   

Since  ak = v + v2 + v3 + . . . + vk  and  k|qx = kpx – k+1px , from Eq. 108 we have 

 

     





nh

hk

xk

k

nxh pva
1

:| .  

 

 

Let nxh a :|
  be an h-year deferred n-year annuity payable at the beginning of the year. By  

 

taking  1kk a ,ha  we can, likewise, obtain 

                      

      










 
11

1|1:|

nh

hk

xk

k

xnh

nh

hk

nhxhhxkknxh pvpapaqaa  ; 

 

     





1

|1

1

:| .
nh

hk

xkknxh qaa                                                     
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Let T be the random variable of the life-until-death of (x). Then its p.d.f. is  ,txxt p    

 

where tx  is the force of mortality at age x+t.   

 

 

Let  nxh :|  be an h-year deferred n-year continuous life contingency function with the  

 

present value of the death benefit at time t being t  and that of the maturity benefit being   

 

.nh    

 

When n = ,x  nxh :|  becomes xh | , called an h-year deferred whole life continuous  

 

contingency function. When h = 0, they are denoted as nx:  and x , respectively.   

 

 

Since the random variable of the present value of the benefit is 

 

T   h  T  h+n 

                                           
nxh

Z
:|

 

       nh  T > h+n , 

 

it follows that 

 

                                               


 
nh

h
xnhnhtxxttnxh pdtpZE

nxh
  ][

:|:| .    Eq. 109 

                            

By taking t

t v  in Eq. 106, we obtain 

 

    






 
nh

h
xnh

nh

txxt

t

nxh pvdtpvA :|              Eq. 110 

 

and 

 

    



nh

h
txxt

t

nxh dtpvA 1

:| ,       

 

                             

where  ),( 1

:|:| nxhnxh AlyrespectiveA  is an h-year deferred n-year endowment (respectively,  

 

term)insurance of 1 payable at the moment of death or at the date of maturity. 
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Let nxh a :|  denote an h-year deferred n-year continuous annuity. Then 

 

 

      0   hT 0  

 

      )( :| nxh aZZ   nT aa    nhTh   

 

      hnh aa    .nhT                     

 

 

It follows from Eq. 106 that 

 

                          


 
nh

h
xnhhnhtxxthtanxh paadtpaaZEa

nxh
)()(][

:|:|  .       Eq. 111 

 

 

Since  

 

     


t

t

v
a




1
 , 

 

we can obtain from Eqs. 110 and 111 that 

 

                                       /)1(/)( ::|:| nhxxhnxhxhnxh AEAEa  , 

 

where 
xh

h

xh pvE   and    is the force of interest.       

 

 

 

3.7.3 Dynamic point of view 

 

Let  ),( txd  and  ),( txd   be the discount function of interest and mortality,  

 

respectively. Define an h-year deferred n-year continuous annuity as 

 

                                      dttxdtxda
nh

h
nxh ),(),(:| 



  

 

and an h-year deferred n-year continuous term insurance as 

 

                                       
1

:| nxh A .)],([),( dttxd
dt

d
txd

nh

h
  


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Then an h-year deferred n-year continuous endowment insurance is defined to be 

 

                  ,
1

:|

1

:|:| nxhnxhnxh AAA    

 

where 

 

    ),(),(
1

:| nhxdnhxdAE
nxhxnh    

 

is an h-year deferred n-year pure endowment. This is the model of life contingency  

 

functions based on discount functions. In particular, if we let 

  

           tetxd 



),(   

 

and 

           ,),( 0


t

sx ds

etxd


   

 

then we can obtain the familiar (traditional) expressions for life contingency functions. 

 

 

Another alternative is to let 

 

           ,),(
txetxd






   

 

where x  is the force of interest at the issue age x.  By integration by parts, we can obtain 

 

       ),(),(:|

1

:| nhxdnhxdaEA nxhxxhnxh      

 

and 

 

                 .:|:| nxhxxhnxh aEA       

 

 

Note that  x  could be updated according to a certain national index. It can also include  

 

the expense factor for the calculation of the gross premiums, while  ),( txd   could be  

 

updated according to the national life table. On the other hand, ),( nxa  can always be  

 

approximated. As for the discrete case, the conventional approximations are handy. 
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3.8. NET ANNUAL PREMIUMS AND RESERVES 

 

3.8.1     Net annual premiums  

 

Let  )( :| nxhr P   be the continuously paid net level premium, or simply net premium of  

 

nxh :|  , with payments for r years.   

 

 

In the annuity case, it only makes sense that r < h + n. The reason is as follows. The  

 

insured pays r years of premiums when financially able, then starts receiving payments  

 

after h years for n years when financially needy.  When h = 0, then the paying period  

 

should be less than the receiving period. There is no such restriction in the insurance  

 

case. In fact, when h = 0, r is usually equal to n.  In this case, )( :nxn AP  is abbreviated as   

 

nxP :  ,  )( 1

:nxn AP  as  1

:nxP   and  )(
1

:nxn AP  as 
1

:nxP  . 

 

 

Let L be the random variable of the present value of the insurer’s loss. Then 

 

                                           ).()()( ::|:| nxnxhrnxh aZPZL        

 

If  E[L] = 0, then 

  

    ./)( ::|:| rxnxhnxhr aP    

 

 

Hence we have 

 

                                                         ,/)( ::|:| rxnxhnxhr aaaP      

 

                                                         ,/)( :

1

:|

1

:| rxnxhnxhr aaaP   

  

                                                         ,/)( ::|:| rxnxhnxhr aAAP      

 

                                                         rxnxhnxhr aAAP :

1

:|

1

:| /)(   

 

161 



and 

 

    ./)( :

1

:|

1

:| rxnxhnxhr aAAP   

 

 

For the special cases, we have 

 

    ,/ ::: nxnxnx aAP   

 

    nxnxnx aAP :

1

:

1

: /  

 

and 

 

    ./ xxx aAP       

 

 

For the discrete case, similar formulas can be derived. 

  

 

3.8.2  Net premium reserves 

 

We shall discuss the reserves based on the net level premium ).( :| nxh

r P    

 

 

Define 

 

 )( :| nxh

r

tV   the reserve needs to be provided for (x) by the insurer at  

 

  the end of the t-th year, abbreviated as the reserve for (x) at  

 

  the end of the t-th year or simply the reserve for (x + t).   

 

 

Let U be the random variable of the future-life-time of (x + t). Then its p.d.f. is  

 

     utxtxu p   . 

 

Let Lt  be the random variable of the loss of the insurer at the end of the t-th year. Then 

     

    ],[)( :| LEV tnxh

r

t   

 

the value of which is as follows. 
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i) If  r < h, then 

 

     trtxnxh

r

ntxth aP   ::|:| )(    rt   

 

     )( :| nxh

r

tV    ntxth :|       htr   

 

       thntx  :   nhth   

 

              

ii) If  r = h, then 

 

     trtxnxh

r

ntxth aP   ::|:| )(    ht   

     )( :| nxh

r

tV     

       thntx  :   nhth   

 

 

iii) If  r > h, then 

 

     trtxnxh

r

ntxth aP   ::|:| )(    ht   

 

     )( :| nxh

r

tV    trtxnxh

r

thntx aP   ::|: )(    rth   

 

       thntx  :   nhtr   

 

 

The above formulas also hold for 
1

:| nxh , with .0)( 1

:|  nxh

r

nh V    

 

 

If h = 0, then 

 

     trtxnx

r

tntx aP   ::: )(   rt   

     )( :nx

r

tV     

       tntx  :   ntr    

 

and 

 

     trtxnx

r

tntx aP   :

1

:

1

: )(   rt   

     )( 1

:nx

r

tV     

       1

: tntx    ntr   
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In the case of r = n, we have 

 

     
tntxnx

r

tntx aP   ::: )(   nt   

     )( :nxtV     

       0:nx   nt   

and 

 

     )( 1

:nxtV 
tntxnxtntx aP   :

1

:

1

: )(     nt   

 

 

We write )( :nxt AV  and )( 1

:nxt AV , respectively as  nxtV :  and 1

:nxtV . Thus 

 

      tntxnxtntx aPA   :

1

:

1

:    nt   

              
1

:nxtV )(
1

:nxt AV  

        1  nt          

 

 

3.9. VARYING LIFE CONTINGENCY FUNCTIONS 

 

3.9.1 Increasing life contingency functions 

 

Let nxI :)(   be an n-year continuous contingency function providing the present value of  

 

the death benefit tt )1(   at time t and the maturity benefit nn , where x  is the floor  

 

function of x (the greatest integer less than x). If the maturity benefit is 0, then the  

 

function is denoted by 1

:)( nxI . Thus 

 

    nxI :)(  1

:)( nxI .xnn pn                                           

 

It follows from Eq. 108 that 

 

     
n

txxttnx dtptI
0

1

: .)1()(   

 

Since the death benefit of both functions increases by 1 each year, they are called  

 

annually increasing life contingency functions with the difference only in the maturity  

 

benefit.  
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If the present value of the death benefit at time t is  

 

    ,
)1(

t
m

tm



 

 

then the above functions are denoted by nx

mI :

)( )(   and, called mthly increasing life  

 

contingency functions.   

 

 

If the death benefit increases only for h years, then the pertinent functions are written as  

 

nx

m

hI :

)(
)(   and 

1

:

)(
)( nx

m

hI  . 

 

 

3.9.2  Decreasing life contingency functions 

 

Let 1

:)( nxD  be an n-year continuous contingency function providing the present value of  

 

the death benefit ttn )(   at time t. Then it follows from Eq. 109 that 

 

     
n

txxttnx dtptnD
0

1

: .)()(   

             

 

The death benefit decreases by 1 annually from n to 1. Thus such a function is called an  

 

annually decreasing life contingency function.  Since the maturity benefit is 0, the  

 

notation nxD :)(   is redundant.   

 

 

If the present value of the death benefit at time t is  

 

    ,)
)(

( t
m

tm
n   

 

then the pertinent function is denoted by 1

:

)( )( nx

mD  , called an mthly decreasing life  

 

contingency function. If the death benefit decreases only for h years, then the pertinent  

 

functions is written as 
1

:

)(
)( nx

m

hD  . 
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3.9.3  The supplementary relationships 

 

 

Since 

 

    


m

tm )1(
,

1
)

)(
(

m
n

m

tm
n   

 

we have 

 

    1

:

)( )( nx

mI  .)
1

()( 1

:

1

:

)(

nxnx

m

m
nD            Eq. 112 

 

This supplementary relationship can also be seen from the following figure. 

 

      

                                                         1/m 

 

 

                 1

:

)( )( nx

mD   

              n 

                                                         n 

                1

:

)( )( nx

mI       

           

 

           1/m 

 

Figure 71.      The supplementary relationship of 1

:

)( )( nx

mD   and 1

:

)( )( nx

mI   

 

                  

If ,m  then from Eq. 112 we have 

 

    1

:)( nxI ,)( 1

:

1

: nxnx nD                    Eq. 113 

 

where 1

:)( nxI  is an n-year continually increasing life contingency function and 1

:)( nxD   

 

is an n-year continually decreasing life contingency function.  

 

If the present value of the maturity benefit is ,nn  then the pertinent function is 

 

   .)()(lim)( 1

::

)(

: xnnnxnx

m

mnx pnIII   
           Eq. 114 
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The supplementary relationship in Eq. 113 can be seen from the following figure. 

 

      

                                                          

 

 

                        1

:)( nxD  

               

     

                1

:)( nxI      

           

 

            

 

Figure 72. The supplementary relationship of 1

:)( nxD  and 1

:)( nxI  

 

The triangle representing 1

:)( nxI  consists of all the horizontal line segments, each  

 

representing 
1

:| snxs  , .0 ns   This relationship can also be proved as follows. 

  

    

n n t

txxtttxxttnx dtpdsdtptI
0 0 0

1

:)(  .
1

:0
|

0
dsdtdsp

snx

n

s

n n

s
txxtt


        

Eq. 115 

 

Similarly, we have 

 

    

n n n

t
txxtttxxttnx dtpdsdtptnD

0 0

1

: )()(  .
1

:0
ds

sx

n

                     Eq. 116             

       

 

Combining Eqs. 115 and 116, we have 

 

 nxI :)(  
 dspxnn

snx

n

s )(
1

:0
|  .

0
:| ds

n

snxs             Eq. 117 

 

 

On the other hand, we can use the integration by parts to obtain 

 

 nxI :)(   dtpxt

n

t
0
 dtpt xt

n

t '
0  ;                  Eq. 118 

 

   nxD :)(   dtpn xt

n

t
0

0  .')(
0

dtptn xt

n

t              Eq. 119 

167 



3.9.4  Varying life insurance and annuities 

 

 

By taking t

t v  in the hitherto derived functions, we can obtain the formulas for  

 

,)( :nxAI ,)( 1

:nxAI ,)( 1

:nxAD ,)( :

)(

nx

m AI ,)( 1

:

)(

nx

m AI ,)( 1

:

)(

nx

m AD ,)( :

)(

nx

m

h AI ,)( 1

:

)(

nx

m

h AI  

 

,)( 1

:

)(

nx

m

h AD ,)( :nxAI 1

:)( nxAI  and .)( 1

:nxAD    

 

 

By taking t

t v' , we can obtain the formulas for  

 

,)( :nxaI ,)( 1

:nxaI ,)( 1

:nxaD ,)( :

)(

nx

m aI ,)( 1

:

)(

nx

m aI ,)( 1

:

)(

nx

m aD ,)( :

)(

nx

m

h aI ,)( 1

:

)(

nx

m

h aI  

 

,)( 1

:

)(

nx

m

h aD ,)( :nxaI 1

:)( nxaI  and .)( 1

:nxaD    

 

 

Note that, in the case of annuities, tt a  except for the last three types and for the last  

 

three types, 

 

                       .0)(limlim 00  


 t

tt

t
ttt

s

tt aadsv  

 

 

Hence, from Eq. 141, we have 

 

    nxAI :)( 1

:)( nxAI nxa :  

 

and 

 

    nxaI :)( .)( 1

:nxaI  

 

              

From Eq. 113, we have 

 

    1

:)( nxAI 1

:)( nxAD
1

:nxAn  

 

and 

 

    1

:)( nxaI 1

:)( nxaD nxan : .           Eq. 120 
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Furthermore, from Eqs. 115 and 116, we have 

 

    nxaI :)( 1

:)( nxaI dsa
n

snxs 
0

1

:|  

 

and 

 

    1

:)( nxaD dsa
n

sx0
1

: . 

 

 

Let t

t v' . Since ,0t  from Eq. 118 we have 

 

    nxaI :)( .
0

dtptv
n

xt

t

         Eq. 121 

 

 

As a special case, we have 

 

    nxa :
.

0
dtpv

n

xt

t

           Eq. 122 

 

 

From Eq. 119, we can also derive Eq. 120 as follows: 

 

   1

:)( nxaD  dtpvtn
n

xt

t

0
)( nxan : .)( :nxaI  

 

 

For insurance, from Eqs. 115-118, we can obtain 

 

    1

:)( nxAI dsA
n

snxs 
0

1

:| , 

     

    1

:)( nxAD dsA
n

sx0
1

:  

and 

 

    nxAI :)( dsA
n

snxs 
0

:| .          Eq. 123 

                

 

Let t

t v . From Eqs. 118-120, we have 

 

   nxAI :)(  dtpv
n

xt

t

0
 dtpvt

n

xt

t

0
 nxa : .)( :nxaI  

169 



From Eqs. 119, 122 and 123 we have 

 

1

:)( nxAD   dtpvtnn
n

xt

t

0
)(  dtpv

n

xt

t

0
nxaDn :)(  nxa :

n
nxa :  nxan :  

.)( :nxaI  

 

Similar to Eq. 120, we can obtain 

 

    





1

0

:|:)(
n

k

knxknxI   

and then 

 

  nxAI :)( nxaI :)( 







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1
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:

1

0

:|:| .)(
n

k

nxxk

n

k

knxkknxk aEaA   

 

 

3.10. DERIVATIVES OF LIFE CONTINGENCY FUNCTIONS 

 

3.10.1  Derivatives of continuous life insurance and annuities 

 

Let xl  be the survivorship function. Since 

 

   ,xx

x l
dx

dl
  

 

we have 
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txtxx
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l
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
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



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                Eq. 124 

 

 

It follows that 

 

  )(
)(

txxxt

txt
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Using Eq. 125, we can differentiate Eq. 122 to obtain 
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Since 
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Using the integration by parts, we have 
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3.10.2       Derivatives of discrete life insurance and annuities 

 

From Eqs. 105 and 124, we can derive 
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3.10.3  Derivatives of varying life insurance and annuities 

 

From Eqs. 117 and 126, we can derive 
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3.11.         SOME USEFUL THEOREMS IN ACTUARIAL MATHEMATICS  

 

 

Theorem A. Let a, c, d and e be positive numbers. Then the function 

 

cax

edx
xf






2
)(  

 

attains its maximum value 

 

 
c

e

a

d 22

  at 
ae

cd
x  . 

 

Proof.  We first derive 

 

322

2

2

)(

)(

)('
cax

aexcd

cax

cax

edxax
caxd

xf












 ; 

 

52

32

32

32

2

)(

)(3)(

)(

)(

)(3
)(

)("
cax

aexcdacaxae

cax

cax

aexcda
caxae

xf














. 

 

Since the value of )(" xf  at the critical point 
ae

cd
x   is  

 

5
2

3
2













































c
ae

cd
ae

c
ae

cd
aae

,  

 

the maximum value is 

 










ae

cd
f

c
ae

cd
a

e
ae

cd
a




















2























c

e

a

d

e

c

c

e

a

d

e

c

22

2

2

22

c

e

a

d 22

 . 

173 



Corollary A.      For an insurance organization, let S denote the random loss on a segment  

 

of its risks and let x be the retention limit the minimizes the probability  
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where f(x) is the ratio of the security loading g(x) = dx + e and the standard deviation  
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Corollary B.      Let a, b, c, d and e be positive numbers such that 4ac > b2 and 2ae > bd.  

 

Then  

 

 
cbxax

edx
xf






2
)(   

 

attains its maximum value 

 

       
)4(

)2(

2

2
2

baca

bdae
a

d




  

at 
bdae

becd
x






2

2
. 

 

Proof.      Write  

 

a

bac

a

b
xa

a

bdae

a

b
xd

xf

4

4

2

2

2

2
)(

22
























  

 

and use Theorem A. 
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Theorem B.        Let )][exp()( bxqbxf   and )exp()( axxg  . Then 
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Corollary C.      Let p be the probability that a property will not be damaged in the next  

 

period and let f(x) in Theorem B be the probability density function of a positive random  

 

variable X with q = 1 – p. If the owner of the property with wealth w has a utility function  

 

g(x) in Theorem B and is offered an insurance policy that will pay1 – c portion of any loss  

 

during the next period, then the maximum premium G that the property owner will pay for  
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Proof.       Equating the utilities with and without insurance, we have 
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The corollary follows. 

 

 

175 



Theorem C.       Let  
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be the probability density function of a random variable X. Then  
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Corollary D.     The mean and variance of the random variable X in Theorem C are  
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Theorem D.        A decision maker has wealth w, has a utility function  
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and faces a random loss X with a uniform distribution on [0,w]. Then the maximum amount  

 

this decision maker will pay for the complete insurance against the random loss is 
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Proof.        Equating the utilities with and without insurance, we have 
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The theorem follows. 
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Theorem E.      Assume that a decision maker will retain wealth w with probability p and  

 

will suffer a loss c with probability q = 1 – p. Based on the utility function   
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the maximum insurance premium that the decision maker will pay for the complete  
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Proof.        Equating the utilities with and without insurance, we have 
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The theorem follows. 

 

 

Theorem F.     Let Xi , i = 1, 2, 3, …, n, be nonnegative mutually independent random  

 

variable with the probability density function fi(t). If the moment generating function  
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Proof.      We shall only prove the case with n = 2. For any t in the given interval, we have 
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4.         SUDOKU ECSTACY 

 

 

4.1.  ORIENTATIONAL MOVES 

 

On top of all sorts of skills, we have also developed shorthand annotations for keeping  

 

track of the order, location and type of each move! At the same time, the nomenclature of  

 

types of moves is very easy to remember and describe. For example, the move developed  

 

within a single box is called a “box move“ and the way of scanning among boxes and  

 

blocks is called the “scanning method“. As shown in Figure 73, the playground of  

 

Sudoku is divided into 81 grids, to be combined horizontally as nine rows top-down,  
 
vertically as nine columns left-right, and 3x3 squares as nine boxes. We follow the  
 
prescribed order of up-down and left-right, so the referral of each grid will be row first  
 

column next; for instance column next; for instance grid (32) stands for the grid located  

 

at the intersection of row 3 (r3) and column 2 (c2).  

 

                                           c1        c2        c3      c4        c5       c6       c7       c8        c9 

 

r1 

 

r2  

r3  

 

r4                   

r5  

 

r6 

 

r7  

r8  

 

r9 
 

Figure 73. The playground of Sudoku 
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 b1   b4   b7   

         

         

 b2   b5   b8  

         

         

 b3   b6   b9  

         



Similarly, the order of boxes is the same: box 1, box 2, box 3, box 4, box 5, box 6, box 7,  

 

box 8 and box 9 are called top-down and then left-right respectively as b1, b2, b3, b4, b5,  

 

b6, b7, b8 and b9. We shall later use the same prescribed order to place numbers at grids  

 

in rows, columns or boxes. The reason for doing so is simply to facilitate our  

 

explanations and mutual understanding with readers, but by no means to limit your  

 

flexibility in manipulation! Our unique invention is to combine three consecutive boxes  

 

as blocks: b1b2b3 as Left Block (abbreviated as LB), b4b5b6 as Middle Block  

 

(abbreviated as MB), b7b8b9 as Right Block (abbreviated as RB), b1b4b7 as Up Block  

 

(abbreviated as UB), b2b5b8 as Central Block (abbreviated as CB) and b3b6b9 as Down  

 

Block (abbreviated as DB).  

 

 

A move that can be determined by scanning a single block is called a “single block  

 

move“, while a move that requires the cross reference of two blocks is called a “double  

 

block move“ such as left block move, up block move, up left block move, center middle  

 

block move, down right block move, etc. 

 

 

4.2. FUNDAMENTAL MOVES 
 

 

 

1) Single block move 

  
Here we find the 1 in question can only be entered into grid (45), so as to avoid two 1’s  

 

appearing either in the same row or column of central block. This is not only because  

 

both rows 5 and 6 have 1, but also the 1 in row 4 can neither be placed at grid (41) or grid  

 

(42) (which would contradict with the 1 in box 2) nor at any other grids already filled;  

 

just so we can gradually recognize the relationships of numbers among rows, columns  

 

and grids in the block, which is the skill of a block move. 
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The above first step was using central block move to place 1 at grid (45) , abbreviated as  

 

11(45)CB, where the subscript 1 indicates that this is the “first step“.    
 

 

2) Double block move  
 

Since each box is located in the intersection of two perpendicular blocks, we can  

 

simultaneously use both horizontal and vertical block moves to gradually find out the  

 

fillable number. There are altogether nine double block moves: up-left (UL), central-left  

 

(CL), down-left (DL), up-middle (UM), central-middle (CM), down-middle (DM), up- 

 

right (UR), central-right (CR) and down-right (DR).  

 

 

Here we find 2 can only be entered into box 8 (grid (48) or grid (58)), because in right  

 

block both box 7 and box 9 have 8; had we entered 2 into grid (48), it would contradict  

 

with the 2 in row 4 of central block. Hence by double scanning of central and right  

 

blocks, we can only entered 2 into grid (58), abbreviated as 22(58)CR.           

 
 

 

3) Terminating move (t) 

 

After each move, we should scan each related row, column and box to see if there is only  

 

one grid remained to be filled; if so, we should terminate it right away by filling in the  

 

very last number so that more easy target could reveal.   

6 
 

 

4) Row move (r) 

 

Scanning unfilled grids of each row to gradually find among unfilled numbers a potential  

 

one to fill that won’t cause any conflict with the existing numbers in each column and  

 

each box.  
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5) Column move (c) 
 

Scanning unfilled grids of each column to gradually find among unfilled numbers a  

 

potential one to fill that won’t cause any conflict with the existing numbers in each row  

 

and each box.   
 

 

6) Box move (b) 

 

Scanning unfilled grids of each box to gradually find among unfilled numbers a potential  

 

one to fill that won’t cause any conflict with the existing numbers in each row and each  

 

column.  

 

 

7) Grid move (g) 

 

Scanning unfilled grids of each row, column and box to gradually find among unfilled  

 

numbers a potential one to fill that won’t cause any conflict with the existing numbers in  

 

its situated row, column and box. Unlike the above row column combo, after locating a  

 

grid we still need to preclude more than one potential unfilled number. Therefore,  

 

sometimes even the veterans would find the grid move “nowhere to set foot in“. We first  

 

introduce the traditional solving methods, and later introduce our “unique secret skills“. 
 

 

8) Law of unique solution (u) 

 

Suppose that a number has only two potential grids to fit in a row, column or box in  

 

attempting row column combo. If the choice of one of them would cause multiple  

 

solutions of the puzzle, then the number in question needs to be filled into the other grid.  

 

Sudoku puzzles do not allow multiple solutions to screw up the logical reasoning needed  

 

in the solving process. 
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4.3. EDUCATIONAL MOVES 

 

Puzzle 1 

 

When facing a  

 

y-junction, we don’t  

 

simply take one road.  

 

Rather, be prepared  

 

for some easy way to  

 

pop up. 

Figure 74.     Figure 1 for Puzzle 1 
 

 

For the puzzle in  

 

Figure 74, we can take  

 

to the thirteenth step  

 

as shown in Figure 75. 

 

22b3         23c6     

 

48r1         410c7     

 

611b7       712313c1  
 

 

Figure 75.    Figure 2 for Puzzle 1 

 

 

 

The situation shown in  

 

Figure 76 allows us to  

 

take 

 

714r1: 7c9b9. 

 

 
 
 

 

 

 

Figure 76.     Figure 3 for Puzzle 1 
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5*   6* 2*     

1*       4*  

        1* 

   1*  4*  7*  

2*          

     3*    

 3*     6*   

    8*  2*   

 4* 7*       

5*  48 6* 2* 11    

1* 27      4* 611 

712       26 1* 

313   1*  4*  7* 25 

2*       410   

49   24  3*    

 3* 22    6*   

    8*  2*   

 4* 7*   23    

5*  48 6* 2* 11 714   

1* 27      4* 611 

712       26 1* 

313   1*  4*  7* 25 

2*       410   

49   24  3*    

 3* 22    6*  7? 

    8*  2*  7? 

 4* 7*   23    



The situation shown in  

 

Figure 77 allows us to  

 

take the next twenty  

 

one steps in Figure 78. 

 

315c7: 3(18)(19) 

 

417718619920r8        

    

132b9          834b5    

 

735c4 

 

Figure 77.    Figure 4 for Puzzle 1 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

 

 
 

Figure 78.    Figure 5 for Puzzle 1 

Now we are  

 

facing a  

 

y- junction to  

 

choose between 

 

8(42) and 8(47)  

 

as shown in  

 

Figure 79. 

 

Figure 79.     Figure 6 for Puzzle 1 
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5*  48 6* 2* 11 714 3? 3? 

1* 27      4* 611 

712       26 1* 

313   1*  4*  7* 25 

2*       410   

49   24  3*    

 3* 22    6*   

    8*  2*   

 4* 7*   23    

5*  48 6* 2* 11 714   

1* 27  735 325   4* 611 

712 627 326  424   26 1* 

313  630 1*  4*  7* 25 

2*   834   628 410   

49   24  3* 133 629  

 3* 22 423 122  6*  731 

619   316 8* 718 2* 320 417 

 4* 7*  621 23 315 132  

5*  48 6* 2* 11 714   

1* 27  735 325   4* 611 

712 627 326  424   26 1* 

313 8? 630 1*  4* 8? 7* 25 

2*   834   628 410   

49   24  3* 133 629  

 3* 22 423 122  6*  731 

619   316 8* 718 2* 320 417 

 4* 7*  621 23 315 132  



 

As displayed in  

 

Figure 80,  

 

taking the road  

 

of 8(42), we  

 

would come  

 

to a dead end. 

 
 

 
 

 

 

Figure 80.     Figure 7 for Puzzle 1 

Therefore, we  

 

should take  

 

the road not  

 

taken, namely 

 

  836r4: 8(42) 

→8(69) 

→8(78) 

→No8r1 

 

in Figure 81. 

Figure 81.     Figure 8 for Puzzle 1 

 

 

 

 

We thus complete the  

 

puzzle in  

 

Figure 82. 

 

937r1: 9c7b7 

 

 
 

 

 

 
 

Figure 82.     Figure 9 for Puzzle 1 
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5* No8 48 6* 2* 11 714 No8 No8 

1* 27  735 325   4* 611 

712 627 326  424   26 1* 

313 81 630 1*  4*  7* 25 

2*   834   628 410   

49   24  3* 133 629 82 

 3* 22 423 122  6* 83 731 

619   316 8* 718 2* 320 417 

 4* 7*  621 23 315 132  

5*  48 6* 2* 11 714   

1* 27  735 325   4* 611 

712 627 326  424   26 1* 

313  630 1*  4* 836 7* 25 

2*   834   628 410   

49   24  3* 133 629  

 3* 22 423 122  6*  731 

619   316 8* 718 2* 320 417 

 4* 7*  621 23 315 132  

5* 937 48 6* 2* 11 714 852 351 

1* 27 838 735 325 562 961 4* 611 

712 627 326 959 424 863 564 26 1* 

313 543 630 1* 945 4* 836 7* 25 

2* 740 141 834  547 628 410 350 949 

49 839 944 24 746 3* 133 629 548 

855 3* 22 423 122 960 6* 553 731 

619 142 557 316 8* 718 2* 320 417 

956 4* 7* 558 621 23 315 132 854 



Puzzle 2 

 

After taking  

 

  51b1     62b9     83b5 

 

in Figure 84 of the  

 

puzzle in Figure 83, 

 

we spot two sets of  

 

flipflops. 

 

 

Figure 83.     Figure 1 for Puzzle 2 

As we can see the  

 

flipflop 23(26)(29)  

 

leads us nowhere,  

 

while 58(81)(91)  

 

would help! We can  

 

take  

 

  34b3: 58(81)(91). 

 
 

Figure 84.    Figure 2 for Puzzle 2 

We can now complete  

 

the puzzle as in  

 

Figure 85. 

 

 712b3      715r2 

  

 219120321r5 

 

 525g       128629c5 

 

 139b7      442b8 

 

 452b1      525g                                         Figure 85.    Figure 3 for Puzzle 2 
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2* 3*        

    8*  5*   

7*         

   3*  1*   6* 

 8* 5*        

   2*      

1*       2*  

  6*  4*     

      7* 3*  

2* 3*        

    8* 2/3 5*  3/2 

7* 51        

   3*  1*   6* 

 8* 5*        

   2*  83    

1*  34    62 2*  

5/8  6*  4*     

8/5      7* 3*  

2* 3* 953 532 128 718 444 658 849 

452 638 140 959 8* 26 5* 715 38 

7* 51 850 661 37 462 139 960 223 

954 455 211 3* 717 1* 827 526 6* 

321 8* 5* 463  629 964 219 120 716 

637 122 713 2* 525 83 324 442 943 

1* 712 34 835 930 534 62 2* 436 

548 210 6* 714 4* 35 945 847 141 

851 956 457 131 29 633 7* 3* 546 



 

Puzzle 3 
 

 

For the puzzle in  

 

Figure 86, we can take  

 

to the sixteenth step as  

 

shown in Figure 87. 

 

 

 
86 

6Figure 86.    Figure 1 for Puzzle 3 

1152r7 

 

84b3 

 

25c2 

 

59910r4 

 

    711r7 

 

    812b8 

 

    913b4 

 
 

Figure 87.     Figure 2 for Puzzle 3 

As in Figure 87, we  

 

need to choose from  

 

column 5 or 6 for 3  

 

to be in box 5, but  

 

the latter would run  

 

into the dilemma in  

 

Figure 88.       
 

 

 
 

Figure 88.    Figure 3 for Puzzle 3 
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 9*       1* 

    2*  4*   

   3*      

2*  8*  6*     

        9* 5* 

     1*    

   4*   8* 2*  

1* 5*        

7*         

 9*   514  27  1* 

   13 2*  4*  915 

 25 16 3* 913    816 

2*  8* 59 6* 910    

     3? 3?  9* 5* 

    3? 1*  812 28 

   4* 11 52 8* 2* 711 

1* 5*        

7* 84        

 9*   514  27  1* 

   13 2*  4*  915 

 25 16 3* 913    816 

2*  8* 59 6* 910    

     3?   9* 5* 

    3? 1*  812 28 

   4* 11 52 8* 2* 711 

1* 5*        

7* 84   No#     



Therefore, we can  

 

Take in Figure 89 

 

  317b5: 

3c5b5→No#(95),  

 

but with the question  

 

mark left behind.  

 

What number to fill in     

 

(95)?  (See Figure 90) 

Figure 89.    Figure 4 for Puzzle 3 

You guessed it, it is 3!  

 

That’s the exactly  

 

place for 3! What we  

 

are playing is Sudoku,  

 

the Japanese meaning  

 

of which is “Unique  

 

Number Placement”. 

 

Figure 90.    Figure 5 for Puzzle 3 

 

 

Now, as in Figure 91,  

 

let us take a step back,  

 

as in Figure 87, prior  

 

to the seventeenth step  

 

and ask: What number  

 

to fill in (95)?  

 
 

Figure 91.    Figure 6 for Puzzle 3 
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 9*   514  27  1* 

   13 2*  4*  915 

 25 16 3* 913    816 

2*  8* 59 6* 910    

     317  9* 5* 

     1*  812 28 

   4* 11 52 8* 2* 711 

1* 5*        

7* 84   ?     

 9*   514  27  1* 

   13 2*  4*  915 

 25 16 3* 913    816 

2*  8* 59 6* 910    

   2  317  9* 5* 

     1*  812 28 

   4* 11 52 8* 2* 711 

1* 5*        

7* 84   3     

 9*   514  27  1* 

   13 2*  4*  915 

 25 16 3* 913    816 

2*  8* 59 6* 910    

        9* 5* 

     1*  812 28 

   4* 11 52 8* 2* 711 

1* 5*        

7* 84   ?     



Let us now look back  

 

to those two choices  

 

between columns 5  

 

and 6 in box 5 for the  

 

number 3. Because of  

 

3(95) as in Figure 92,  

 

the right choice has to  

 

be column 6. 

 

Figure 92.    Figure 7 for Puzzle 3 

Since things are  

 

straighten out, let us  

 

go back to Figure 90.  

 

We can continue to  

 

the twenty-third step  

 

as shown in Figure 93. 

 

421b5 

 
 

Figure 93.     Figure 8 for Puzzle 3 

 

 

 

From the inferences  

 

displayed in  

 

Figure 94, we can take 

 

624g: 59(61)(63) 

→3c2b2 

 
 

 

Figure 94.     Figure 9 for Puzzle 3 
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 9*   514  27  1* 

   13 2*  4*  915 

 25 16 3* 913    816 

2* 
 8* 59 6* 910    

      32  9* 5* 

     1*  812 28 

   4* 11 52 8* 2* 711 

1* 5*        

7* 84   31     

 9*   514  27  1* 

   13 2*  4*  915 

 25 16 3* 913    816 

2*  8* 59 6* 910    

   218 819 317  9* 5* 

   722 421 1*  812 28 

   4* 11 52 8* 2* 711 

1* 5*   723     

7* 84   320     

 9*   514  27  1* 

   13 2*  4*  915 

 25 16 3* 913    816 

2* 3? 8* 59 6* 910    

   218 819 317  9* 5* 

5/9 3? 9/5 722 421 1*  812 28 

 ?  4* 11 52 8* 2* 711 

1* 5*   723     

7* 84   320     



 

 

From the situation  

 

shown in Figure 95,  

 

we can take 

 

625326r6: 59(61)(63) 

 

in Figure 96. 

 

 

 

Figure 95.    Figure 10 for Puzzle 3 

 

 

What number to fill in  

 

(22)? The grid move  

 

again! Accordingly,  

 

we take 

 

727g 

 

in Figure 96. 

 

Figure 96.    Figure 11 for Puzzle 3 

 

Finally, we can  

 

complete the  

 

puzzle in Figure 97. 

 

430r5 

 

336c7 

 

347c9 

 

650r3 
 

 

 
 

Figure 97.    Figure 12 for Puzzle 3 
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 9*   514  27  1* 

   13 2*  4*  915 

 25 16 3* 913    816 

2*  8* 59 6* 910    

   218 819 317  9* 5* 

5/9  9/5 722 421 1*  812 28 

 624  4* 11 52 8* 2* 711 

1* 5*   723     

7* 84   320     

 9*   514  27  1* 

 ?  13 2*  4*  915 

 25 16 3* 913    816 

2*  8* 59 6* 910    

   218 819 317  9* 5* 

 326  722 421 1* 625 812 28 

 624  4* 11 52 8* 2* 711 

1* 5*   723     

7* 84   320     

446 9* 660 859 514 738 27 355 1* 

856 727 361 13 2* 662 4* 554 915 

551 25 16 3* 913 439 737 650 816 

2* 132 8* 59 6* 910 336 740 441 

629 430 728 218 819 317 131 9* 5* 

953 326 552 722 421 1* 625 812 28 

357 624 958 4* 11 52 8* 2* 711 

1* 5* 244 663 723 864 935 442 347 

7* 84 443 949 320 245 534 133 648 



 

Puzzle 4 
 

 

 

For the puzzle in  

 

Figure 98, we can take  

 

to the twentyninth step  

 

as shown in Figure 99. 

 

 
 

Figure 98.    Figure 1 for Puzzle 4 

 

 

 

1243b1  

 

211712613c1 

 

420r5 

 

524b9 

 

525r5 

 
 

 

 

 
 

Figure 99.    Figure 2 for Puzzle 4 

 

 

 

 

Now, we come to a  

 

y-junction as shown in  

 

Figure 100: 8(42) or  

 

8(44). 

 

 
 

 

 
 

 

Figure 100.    Figure 3 for Puzzle 4 
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 6*      1*  

 7* 2*       

   3*      

1*  5*  3*     

     2*  8*   

4*         

      7*  2* 

5*   1*      

   4*   3*   

 6* 43 215   527 1*  

 7* 2*  18 528 423   

 51 12 3* 422     

1*  5*  3* 421    

712   525  2* 17 8*  420 

4*      16  526 

613 14   529 316 7* 410 2* 

5* 49 317 1* 719 214    

211  718 4*   3* 524 15 

 6* 43 215   527 1*  

 7* 2*  18 528 423   

 51 12 3* 422     

1* 8? 5* 8? 3* 421    

712   525  2* 17 8*  420 

4*      16  526 

613 14   529 316 7* 410 2* 

5* 49 317 1* 719 214    

211  718 4*   3* 524 15 



 

From Figure 100, we  

 

can see that 

 
 830r4: 8(44) 

→8(73)&679r6b5 

→No#(63), 

 

to be taken in  

 

Figure 101. 

 

 

Figure 101.    Figure 4 for Puzzle 4 

 

After the thirtysixth  

 

step, from the  

 

situation shown in  

 

Figure 102, we can  

 

take 

 

937c3:9r6b5 

 

as in Figure 103. 
 

Figure 102.    Figure 5 for Puzzle 4 

 

 

 

 

Finally, we can  

 

complete the puzzle in  

 

Figure 103. 

 

741c4 

 

 

 
 

 

Figure 103.    Figure 6 for Puzzle 4 
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 6* 43 215   527 1*  

 7* 2*  18 528 423   

 51 12 3* 422     

1*  5* 81 3* 421    

712   525  2* 17 8*  420 

4*  No# 7? 6? 9? 16  526 

613 14 82  529 316 7* 410 2* 

5* 49 317 1* 719 214    

211  718 4*   3* 524 15 

 6* 43 215   527 1*  

 7* 2*  18 528 423   

 51 12 3* 422     

1* 830 5*  3* 421    

712 332  525  2* 17 8*  420 

4* 231   9? 9? 16 336 526 

613 14 834 935 529 316 7* 410 2* 

5* 49 317 1* 719 214    

211 933 718 4*   3* 524 15 

852 6* 43 215 947 748 527 1* 351 

353 7* 2* 842 18 528 423 955 650 

954 51 12 3* 422 643 262 761 859 

1* 830 5* 640 3* 421 963 264 760 

712 332 937 525  2* 17 8* 639 420 

4* 231 638 741 846 949 16 336 526 

613 14 834 935 529 316 7* 410 2* 

5* 49 317 1* 719 214 656 858 957 

211 933 718 4* 644 845 3* 524 15 



Puzzle 5 
 

 
 

 
 

 

We can take to the  

 

thirtyfifth step in  

 

Figure 105 of the  

 

puzzle in Figure 104. 

 

52c1     7829c7   215b1       

 

317c6    319c7    920b4     

 

922b9    229r4    434b2 

Figure 104.    Figure 1 for Puzzle 5 

 

It’s time for a chain of  

 

flipflops. Let us start  

 

from box 8 and then  

 

expand the chain to  

 

cover the entire right  

 

block as displayed in  

 

Figure 106. 
 

Figure 105.    Figure 2 for Puzzle 5 

 

 

We are going to  

 

introduce here a  

 

brand new move,  

 

called “the residue of  

 

flpflops chain move”. 

 

 

 
 

Figure 106.    Figure 3 for Puzzle 5 
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6*    7*     

 3*     9*   

      5*   

1*   5*   4*   

7*  2*    8*    

         

    3*   7*  

  3*     2*  

 5*  9*      

6*  931  7* 54 29 329  

52 3*  228   9*  714 

215 713   920 317 5*   

1*   5* 226 710 4* 923 324 

7* 930 2* 318  434 8*  57  

31 433 53   921 78 835 225 

932 216   3*   7* 56 

  3* 711 55   2* 922 

 5* 712 9*  227 319   

6*  931  7* 54 29 329 8/4 

52 3*  228   9* 1/6 714 

215 713   920 317 5* 6/1 4/8 

1*   5* 226 710 4* 923 324 

7* 930 2* 318  434 8* 1/6 57 6/1 

31 433 53 1/6 6/1 921 78 835 225 

932 216   3*   7* 56 

  3* 711 55   2* 922 

 5* 712 9*  227 319  1/6 



 

In Figure 107, we can  

 

find the residue 4(98)  

 

in column 8. So, we  

 

can take 

 

  436c8: rcf-16(28)(38) 

 

in Figure 108. 

 

 

Figure 107.    Figure 4 for Puzzle 5 

 

 

 

As a result, we can  

 

take to the fortythird  

 

step as shown in  

 

Figure 109. 

 

443r2 

 
 
 

 
 

 

 
 

 
 

 

 
 

 
 

 

Figure 108.    Figure 5 for Puzzle 5 

 

 

In order to have a  

 

better read, we  

 

expand the chain  

 

further as displayed in  

 

Figure 110. 

 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

Figure 109.    Figure 6 for Puzzle 5 
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6*  931  7* 54 29 329 8/4 

52 3*  228   9* 1/6 714 

215 713   920 317 5* 6/1 4/8 

1*   5* 226 710 4* 923 324 

7* 930 2* 318  434 8* 1/6 57 6/1 

31 433 53   921 78 835 225 

932 216   3*   7* 56 

  3* 711 55   2* 922 

 5* 712 9*  227 319 4 1/6 

6*  931  7* 54 29 329 8/4 

52 3*  228   9* 1/6 714 

215 713   920 317 5* 6/1 4/8 

1*   5* 226 710 4* 923 324 

7* 930 2* 318  434 8* 1/6 57 6/1 

31 433 53   921 78 835 225 

932 216   3*   7* 56 

  3* 711 55   2* 922 

 5* 712 9*  227 319 436 1/6 

6*  931  7* 54 29 329 8/4 

52 3* 443 228 841  9* 1/6 714 

215 713   920 317 5* 6/1 4/8 

1*   5* 226 710 4* 923 324 

7* 930 2* 318  434 8* 1/6 57 6/1 

31 433 53   921 78 835 225 

932 216  838 3* 440 6/1 7* 56 

437  3* 711 55  842 2* 922 

839 5* 712 9*  227 319 436 1/6 



We can easily spot 4  

 

as the residue of  

 

box 4. Hence, we  

 

take  

 

  444b4: rcf-

16(26)(34)  

 

as shown in  

 

Figure 111. 
 
 

 

Figure 110.     Figure 7 for Puzzle 5 

 

  

 

 

 

Now, we are ready to  

 

break the whole thing  

 

up in Figure 112. 

 

 
 
 

 

 
 

 

 

 
 

Figure 111.    Figure 8 for Puzzle 5 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 112.    Figure 9 for Puzzle 5 
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6*  931 4 7* 54 29 329 8/4 

52 3* 443 228 841 6/1 9* 1/6 714 

215 713  1/6 920 317 5* 6/1 4/8 

1*   5* 226 710 4* 923 324 

7* 930 2* 318  434 8* 1/6 57 6/1 

31 433 53 6/1 1/6 921 78 835 225 

932 216 1/6 838 3* 440 6/1 7* 56 

437 6/1 3* 711 55 1/6 842 2* 922 

839 5* 712 9* 6/1 227 319 436 1/6 

6*  931 444 7* 54 29 329 8/4 

52 3* 443 228 841 6/1 9* 1/6 714 

215 713  1/6 920 317 5* 6/1 4/8 

1*   5* 226 710 4* 923 324 

7* 930 2* 318  434 8* 1/6 57 6/1 

31 433 53 6/1 1/6 921 78 835 225 

932 216 1/6 838 3* 440 6/1 7* 56 

437 6/1 3* 711 55 1/6 842 2* 922 

839 5* 712 9* 6/1 227 319 436 1/6 

6* 146 931 444 7* 54 29 329 845 

52 3* 443 228 841 660 9* 162 714 

215 713 847 159 920 317 5* 663 464 

1* 849 650 5* 226 710 4* 923 324 

7* 930 2* 318  434 8* 153 57 654 

31 433 53 658 157 921 78 835 225 

932 216 151 838 3* 440 652 7* 56 

437 648 3* 711 55 161 842 2* 922 

839 5* 712 9* 656 227 319 436 155 



Puzzle 6 

 

We can take to the  

 

seventh step  

 

in Figure 114 of the  

 

puzzle in Figure 113. 

 

31c4        

 

57b2     

 
 
 

Figure 113.    Figure 1 for Puzzle 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 114.    Figure 2 for Puzzle 6 

 

Normally, it’s too  

 

early to take the “two  

 

roads” approach. But  

 

let us try it for row 9  

 

in Figure 115 to take a  

 

choice between 4(93)  

 

and 4(99).  
 
 

 

Figure 115.    Figure 3 for Puzzle 6 
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    2* 3* 6*   

 1*      5*  

         

3*  2*  7*     

   5*     4*  

6*         

   1*     8* 

 5*  4*      

7*      3*   

58    2* 3* 6*   

 1* 34     5*  

       33  

3*  2*  7*     

   5*     4* 32 

6*  57 31      

 35  1*     8* 

 5*  4* 36     

7*      3*   

58    2* 3* 6*   

 1* 34     5*  

       33  

3* 4? 2*  7*     

   5*     4* 32 

6* 4? 57 31      

 35  1*     8* 

 5*  4* 36     

7*  4?    3*  4? 



 

The choice of  

 

4(93) would  

 

lead us to the  

 

dilemma as  

 

demonstrated in  

 

Figure 116.  

 

 

Figure 116.    Figure 4 for Puzzle 6 

 

 

So in Figure 117, we  

 

take 

 

  49r9: 4(93) 

→4(19) 

→4(77) 

→1(18) 

→1(99) 

→No5b9. 

 

 

Figure 117.    Figure 5 for Puzzle 6 

We can take to the  

 

thirteenth step in  

 

Figure 117 

 

410r1: 4c2b2      

 

512b9   

 

and in Figure 118 take  

 

214715r7&216r8:2c6b5. 
 

 

Figure 118.    Figure 6 for Puzzle 6 
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58    2* 3* 6* 14 42 

 1* 34     5*  

       33  

3*  2*  7*     

   5*     4* 32 

6*  57 31      

 35  1*   43 No5 8* 

 5*  4* 36  No5 No5 No5 

7*  41    3* No5 15 

58  410  2* 3* 6*   

 1* 34     5*  

       33  

3* 4? 2*  7*    513 

   5*     4* 32 

6* 4? 57 31      

411 35  1*   512  8* 

 5*  4* 36     

7*      3*  49 

58  410  2* 3* 6*   

 1* 34     5*  

       33  

3*  2*  7*    513 

   5*   2?  4* 32 

6*  57 31  2?    

411 35  1*  715 512 214 8* 

216 5*  4* 36     

7*      3*  49 



 

We then take to the  

 

fortyseventh step in  

 

Figure 119. 

. 

  618719b1     122b2 

   

  623r7     625c9    229r5        

 

838b7     839c4 

 

 

Figure 119.    Figure 7 for Puzzle 6 

 

In Figure 120, the  

 

equilibrium of the  

 

chain of flipflops is  

 

maintained, i.e. all  

 

flipflops involved in  

 

each row, column or  

 

box are cancellable.  

Figure 120.    Figure 8 for Puzzle 6 

 

In Figure 120, we can  

 

find the residue 9(86)  

 

in box 6 and take 

 

 948b6: rcf-58(95)(96), 

 

which forces us to  

 

take all the flops   

 

in Figure 121. 
12 

1Figure 121.    Figure 9 for Puzzle 6 

197 

58 719 410 940 2* 3* 6* 838 141 

946 1* 34 628   734 5* 232 

847 217 618 733   435 33 942 

3*  2* 839 7*   626 513 

122 844 721 5*  945 627 229 4* 32 

6*  57 31  230 843  737 

411 35 924 1* 623 715 512 214 8* 

216 5*  4* 36   736 625 

7* 620  231   3*  49 

58 719 410 940 2* 3* 6* 838 141 

946 1* 34 628 4/8 8/4 734 5* 232 

847 217 618 733 5/1 1/5 435 33 942 

3* 9/4 2* 839 7* 4/1 1/9 626 513 

122 844 721 5*  945 627 229 4* 32 

6* 4/9 57 31 1/4 230 843 9/1 737 

411 35 924 1* 623 715 512 214 8* 

216 5*  4* 36 9 9/1 736 625 

7* 620  231 8/5 5/8 3* 1/9 49 

58 719 410 940 2* 3* 6* 838 141 

946 1* 34 628 857 458 734 5* 232 

847 217 618 733 360 359 435 33 942 

3* 453 2* 839 7* 155 950 626 513 

122 844 721 5*  945 627 229 4* 32 

6* 954 57 31 456 230 843 151 737 

411 35 924 1* 623 715 512 214 8* 

216 5* 863 4* 36 948 149 736 625 

7* 620 164 231 861 562 3* 952 49 



Puzzle 7 

 

 

We can readily take  

 

the first thirty-five  

 

steps of the puzzle  

 

in Figure 122 as  

 

shown in Figure 123. 

 

 
 

Figure 122.    Figure 1 for Puzzle 7 

 

 

71r1       47c8    

 

111b5  212b8      

 

314b6      815916617c5      

 

122c1      123r9    

 

928b3  933r5:  

 

9c9b7 

 
 

Figure 123.     Figure 2 for Puzzle 7 

 

 

Although we spot a  

 

blank grid in box 9 of  

 

Figure 124, we are  

 

not sure what number  

 

can fit there.   

 

 

 

Figure 124.     Figure 3 for Puzzle 7 
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9*      6* 8*  

4*    7*     

      2*   

 8*      1* 7* 

   4* 2*     

         

 7*  8*  1*    

   9*   4*   

3*         

9*  71 127 518  6* 8*  

4*  819  7*  126   

122    815  2* 72  

213 8* 48  916   1* 7* 

76 124  4* 2* 835 933   

 929  75 111  834 47 212 

 7* 928 8* 410 1*  232  

820  231 9* 314 74 4*  125 

3* 49 123  617  73 930 821 

9*  71 127 518  6* 8*  

4*  819  7*  126   

122    815 4/9 2* 72 9/4 

213 8* 48  916  3/5 1* 7* 

76 124  4* 2* 835 933   

5/6 929  75 111  834 47 212 

6/5 7* 928 8* 410 1* 5/3 232  

820 5/6 231 9* 314 74 4* 6/5 125 

3* 49 123  617  73 930 821 



 

We can expand the  

 

chain of flipflops in  

 

Figure 124 as far as  

 

we can so that the  

 

equilibrium is  

 

mantained as in  

 

Figure 125. 
 

Figure 125.     Figure 4 for Puzzle 7 

We can take 

 

  336r3: rcf-

56(32)(33) 

          &49(36)(39) 

   

637r4: rcf-

35(44)(47) 

 

and  

 

338(28)g  

 

in Figure 126. 
 

 

 

Figure 126.     Figure 5 for Puzzle 7 

 

Finally, we can break  

 

up the flipflop chain  

 

in Figure 126 by  

 

taking all flips and  

 

complete the puzzle  

 

as shown in 

 

Figure 127.   
 

 

Figure 127.     Figure 6 for Puzzle 7 
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9*  71 127 518  6* 8*  

4*  819  7*  126  5/3 

122 6/5 5/6  815 4/9 2* 72 9/4 

213 8* 48 5/3 916  3/5 1* 7* 

76 124 3/5 4* 2* 835 933 5/3 6/5 

5/6 929 6/3 75 111 3/5 834 47 212 

6/5 7* 928 8* 410 1* 5/3 232 3/6 

820 5/6 231 9* 314 74 4* 6/5 125 

3* 49 123  617  73 930 821 

9*  71 127 518  6* 8*  

4*  819  7*  126 338 5/3 

122 6/5 5/6 336 815 4/9 2* 72 9/4 

213 8* 48 5/3 916 637 3/5 1* 7* 

76 124 3/5 4* 2* 835 933 5/3 6/5 

5/6 929 6/3 75 111 3/5 834 47 212 

6/5 7* 928 8* 410 1* 5/3 232 3/6 

820 5/6 231 9* 314 74 4* 6/5 125 

3* 49 123  617  73 930 821 

9* 355 71 127 518 257 6* 8* 458 

4* 256 819 662 7* 963 25 338 539 

122 654 551 336 815 460 2* 72 959 

213 8* 48 546 916 637 345 1* 7* 

76 124 349 4* 2* 835 933 540 648 

544 929 650 75 111 347 834 47 212 

643 7* 928 8* 410 1* 552 232 353 

820 542 231 9* 314 74 4* 641 125 

3* 49 123 261 617 564 73 930 821 



Puzzle 8 

 

 

We can readily take  

 

the first thirtyfive  

 

steps of the puzzle in  

 

Figure 128 as shown  

 

in Figure 129. 
 

 
 

 

 

 
 

 

 

Figure 128.    Figure 1 for Puzzle 8 

 

225314r7      110r4      

 

411b6         

 

512113c5      

 

622c6           623c3    

 

732b6           833c6   

 

934c5 
 

 

 

Figure 129.    Figure 2 for Puzzle 8 

We first come up  

 

with the chain in  

 

Figure 130. Note that 

 

7/3(16) will be added  

 

to maintain the  

 

equilibrium as shown  

 

in Figure 131. 

 
 

 

Figure 130.    Figure 3 for Puzzle 8 
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 5*  6*   2*   

    8*     

        9* 

  7*  4*   3*  

5*       1*   

2*         

 6* 4*     7*  

   2*  5*    

   1*      

427 5*  6* 113  2* 835  

626  29 520 8*  428 116 9* 

  114 421 28   519 625 

 110 7*  4* 27 624 3* 518 

5*      622 1* 26  

2*  623  512 115  934  

14 6* 4*   833 53 7* 22 

   2* 631 5*  429 117 

 25 51 1* 732 411  630  

427 5*  6* 113  2* 835 3/7 

626 7/3 29 520 8* 3/7 428 116 9* 

  114 421 28  7/3 519 625 

9/8 110 7* 8/9 4* 27 624 3* 518 

5*    9/3 622 1* 26  

2*  623  512 115  934  

14 6* 4* 9/3 3/9 833 53 7* 22 

   2* 631 5*  429 117 

 25 51 1* 732 411  630  



 

We can take  

 

  936r1: rcf-

37(16)(19) 

 

and 

 

  937b2: rcf-

37(16)(26) 

 

in Figure 132, 

 

 

Figure 131.    Figure 4 for Puzzle 8 

 

 

We shall expand  

 

the chain by further  

 

adding 7/3(54) and  

 

3/7(64) in  

 

Figure 133. 

 

 

 
 

Figure 132.    Figure 5 for Puzzle 8 

 

 

Unlike the previous  

 

puzzles, we can right  

 

away take all the flips  

 

in column 4 of this  

 

chain as shown in  

 

Figure 134.   

 
 

 
 

Figure 133.    Figure 6 for Puzzle 8 
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427 5*  6* 113 7/3 2* 835 3/7 

626 7/3 29 520 8* 3/7 428 116 9* 

  114 421 28  7/3 519 625 

9/8 110 7* 8/9 4* 27 624 3* 518 

5*    9/3 622 1* 26  

2*  623  512 115  934  

14 6* 4* 9/3 3/9 833 53 7* 22 

   2* 631 5*  429 117 

 25 51 1* 732 411  630  

427 5* 936 6* 113 7/3 2* 835 3/7 

626 7/3 29 520 8* 3/7 428 116 9* 

  114 421 28 937 7/3 519 625 

9/8 110 7* 8/9 4* 27 624 3* 518 

5*    9/3 622 1* 26  

2*  623  512 115  934  

14 6* 4* 9/3 3/9 833 53 7* 22 

   2* 631 5*  429 117 

 25 51 1* 732 411  630  

427 5* 936 6* 113 7/3 2* 835 3/7 

626 7/3 29 520 8* 3/7 428 116 9* 

  114 421 28 937 7/3 519 625 

9/8 110 7* 8/9 4* 27 624 3* 518 

5*   7/3 9/3 622 1* 26  

2*  623 3/7 512 115  934  

14 6* 4* 9/3 3/9 833 53 7* 22 

   2* 631 5*  429 117 

 25 51 1* 732 411  630  



 

 

Then we take all flips  

 

for the chain related,  

 

followed by three  

 

block moves as  

 

shown in Figure 135. 

 

 

 
 
 

Figure 134.    Figure 7 for Puzzle 8 

 

Now by adding  

 

3/7(22) to maintain  

 

the equilibrium for  

 

the remaining chain, 

 

we cantake  

 

  848b1: rcf-

37(16)(19).  

 
 
 

Figure 135.    Figure 8 for Puzzle 8 

 

 

 

 

We can finally  

 

complete the puzzle  

 

as shown in  

 

Figure 136. 

 

 

 
 
 

Figure 136.    Figure 9 for Puzzle 8 
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427 5* 936 6* 113 7/3 2* 835 3/7 

626 7/3 29 520 8* 3/7 428 116 9* 

  114 421 28 937 7/3 519 625 

9/8 110 7* 838 4* 27 624 3* 518 

5*   739 9/3 622 1* 26  

2*  623 340 512 115  934  

14 6* 4* 941 3/9 833 53 7* 22 

   2* 631 5*  429 117 

 25 51 1* 732 411  630  

427 5* 936 6* 113 7/3 2* 835 3/7 

626 7/3 29 520 8* 3/7 428 116 9* 

848 3/7 114 421 28 937 7/3 519 625 

942 110 7* 838 4* 27 624 3* 518 

5*   739 944 622 1* 26  

2*  623 340 512 115  934  

14 6* 4* 941 343 833 53 7* 22 

746 945  2* 631 5*  429 117 

 25 51 1* 732 411 947 630  

427 5* 936 6* 113 758 2* 835 359 

626 756 29 520 8* 357 428 116 9* 

848 355 114 421 28 937 754 519 625 

942 110 7* 838 4* 27 624 3* 518 

5* 861 353 739 944 622 1* 26 463 

2* 462 623 340 512 115 860 934 764 

14 6* 4* 941 343 833 53 7* 22 

746 945 852 2* 631 5* 351 429 117 

349 25 51 1* 732 411 947 630 850 



Puzzle 9 

 

We can take to the  

 

fourteenth  step in  

 

Figure 138 of the  

 

puzzle in Figure 137. 

 

22c1     79b5    914b3 

 

 

 

Figure 137.    Figure 1 for Puzzle 9 

The 3 in box 5  

 

restricts 3 of box 4 to  

 

be in column 5 as  

 

shown in Figure 138,  

 

which triggers the  

 

moves in row 7 

 

115316517r7: 3c5b4.       

. 

Figure 138.    Figure 2 for Puzzle 9 

 

Again, the 4 in box 8  

 

restricts 4 of box 5 to  

 

be in column 6 as  

 

shown in Figure 139,  

 

which triggers the of  

 

move in box 6 

 

419b6: 4c6b5.        
 

Figure 139.    Figure 3 for Puzzle 9 
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3*   5*   6*   

     7*  2*  

         

 2*      7* 4* 

   3*  1*     

         

4*  8*      7* 

    2*  9*   

5*   1*      

3*  712 5* 3? 24 6*   

    3? 7*  2*  

22    3? 15 71   

 2*      7* 4* 

713   3*  1*    28 

   26 79     

4* 914 8* 618 517 316 27 115 7* 

   710 2*  9*   

5* 711 23 1*      

3*  712 5*  24 6*   

     7*  2*  

22     15 71   

 2*      7* 4* 

713   3*  1* 4?   28 

   26 79 4?    

4* 914 8* 618 517 316 27 115 7* 

   710 2*  9*   

5* 711 23 1* 419     



 

 

We can then take to  

 

the twentyeighth step  

 

in Figure 140 . 

 

425126r1        

 

528b7    

 

    

 

Figure 140.    Figure 4 for Puzzle 9 

 

 

 

Now, it’s time to look  

 

at the following chain  

 

of flipflops in  

 

Figure 141. 

 

 

 

 

Figure 141.    Figure 5 for Puzzle 9 

Look at the only grid  

 

left to be filled in box  

 

7, where 3 is the  

 

residue of the chain in  

 

question! So, we take 

 

 329b7: rcf-89(18)(39) 

 

in Figure 142. 

 

Figure 142.    Figure 6 for Puzzle 9 
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3* 425 712 5*  24 6*  126 

     7* 421 2*  

22   427  15 71 528  

 2*      7* 4* 

713   3*  1*    28 

   26 79     

4* 914 8* 618 517 316 27 115 7* 

   710 2* 824 9* 420 522 

5* 711 23 1* 419 923    

3* 425 712 5* 8/9 24 6* 9/8 126 

8/9   9/8  7* 421 2*  

22   427  15 71 528 8/9 

1/6 2*  8/9 9/8   7* 4* 

713   3*  1*    28 

9/8   26 79     

4* 914 8* 618 517 316 27 115 7* 

6/1   710 2* 824 9* 420 522 

5* 711 23 1* 419 923    

3* 425 712 5* 8/9 24 6* 9/8 126 

8/9   9/8  7* 421 2* 329 

22   427  15 71 528 8/9 

1/6 2*  8/9 9/8   7* 4* 

713   3*  1*    28 

9/8   26 79     

4* 914 8* 618 517 316 27 115 7* 

6/1   710 2* 824 9* 420 522 

5* 711 23 1* 419 923    



We can continue to  

 

take seven more  

 

moves in Figure 143 

 

632g 

 

334c8 

 

and break down as  

 

in Figure 144! 

 

Figure 143.    Figure 7 for Puzzle 9 

 

Now, we can see 8 in  

 

box 9 will force us to  

 

take all the flops of  

 

the chain in question,  

 

excluding the  

 

flipflops 16(41)(81). 

 

  

Figure 144.    Figure 8 for Puzzle 9 

 

 

Thereafter, we can  

 

complete the puzzle  

 

rather easily as shown  

 

in Figure 145. 

 

654c2 

 

 

 

Figure 145.    Figure 9 for Puzzle 9 
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3* 425 712 5* 8/9 24 6* 9/8 126 

8/9   9/8 631 7* 421 2* 329 

22   427 330 15 71 528 8/9 

1/6 2* 335 8/9 9/8   7* 4* 

713   3*  1*    28 

9/8   26 79   334 632 

4* 914 8* 618 517 316 27 115 7* 

6/1 336  710 2* 824 9* 420 522 

5* 711 23 1* 419 923 337 633 838 

3* 425 712 5* 8/9 24 6* 9/8 126 

8/9   9/8 631 7* 421 2* 329 

22   427 330 15 71 528 8/9 

1/6 2* 335 8/9 9/8   7* 4* 

713   3*  1*    28 

9/8   26 79   334 632 

4* 914 8* 618 517 316 27 115 7* 

6/1 336  710 2* 824 9* 420 522 

5* 711 23 1* 419 923 337 633 838 

3* 425 712 5* 942 24 6* 840 126 

946 161 560 843 631 7* 421 2* 329 

22 848 649 427 330 15 71 528 939 

158 2* 335 944 845 656 163 7* 4* 

713 654 452 3*  1* 555 850 941 28 

847 562 951 26 79 453 564 334 632 

4* 914 8* 618 517 316 27 115 7* 

657 336 159 710 2* 824 9* 420 522 

5* 711 23 1* 419 923 337 633 838 



Puzzle 10 

 

 

We can take to the  

 

sixth step in  

 

Figure 146 of the  

 

puzzle in Figure 147. 

 

22b2     43b6    46r2 

 

 

Figure 146.    Figure 1 for Puzzle 10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 147.    Figure 2 for Puzzle 10 

 

 

 

 

In the setting of  

 

flipflops of  

 

Figure 148, 6 is the  

 

residue of column 5.  

 

 

 

Figure 148.    Figure 3 for Puzzle 10 
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3*    4*     

       5* 7* 

    1*     

1* 6*     3*   

   2*    8*   

4*    8*     

 2*  7*  6*    

   5*      

      4*   

3*    4*     

 46      5* 7* 

    1*     

1* 6* 81 45   3*   

   2*    8*   

4*  22  8*     

 2* 44 7*  6*    

   5*  43    

      4*   

3*    4* 5/7    

 46   6   5* 7* 

    1* 7/5    

1* 6* 81 45 5/7  3*   

   2*  7/5  8*   

4*  22  8*     

 2* 44 7*  6*    

   5*  43    

      4*   



 

 

So, in Figure 149 we  

 

take the residue move  

 

67c5: rcf-57(45)(55), 

 

followed by the  

 

middle block move 

 

68MB. 

 

Figure 149.    Figure 4 for Puzzle 10 

 

 

In the setting of  

 

flipflops of  

 

Figure 150, we can  

 

see 6 being the  

 

residue of column 5.  

 

 

 

Figure 150.    Figure 5 for Puzzle 10 

 

 

 

 

Therefore, we take  

 

the residue move  

 

19r5: rcf-46(58)(59) 

 

in Figure 151. 

 

 

 

Figure 151.    Figure 6 for Puzzle 10 
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3*    4*     

 46   67   5* 7* 

    1*     

1* 6* 81 45   3*   

   2*    8*   

4*  22 68 8*     

 2* 44 7*  6*    

   5*  43    

      4*   

3*    4*     

 46   67   5* 7* 

    1*     

1* 6* 81 45   3*   

   2*   1 8* 4/6 6/4 

4*  22 68 8*     

 2* 44 7*  6*    

   5*  43    

      4*   

3*    4*     

 46   67   5* 7* 

    1*     

1* 6* 81 45   3*   

   2*   19 8*   

4*  22 68 8*     

 2* 44 7*  6*    

   5*  43    

      4*   



 

 

In the setting of  

 

flipflops of  

 

Figure 152, we can  

 

see 3 and 9 being the  

 

residue of box 5.  

 

 

 

Figure 152.    Figure 7 for Puzzle 10 

Therefore, we take  

 

310911b5: rcf-    

57(45)(55), 

 

followed by the next  

 

Eleven steps in  

 

Figure 153. 

 

313r2        814b6 

 

118c2       221r2 

Figure 153.    Figure 8 for Puzzle 10 

 

Now let us look at  

 

box 1 of Figure 154,  

 

we should take 

 

  623b1: u57c3b1c6b4 

 

in Figure 155 to avoid  

 

possible multiple  

 

solutions. 

Figure 154.    Figure 9 for Puzzle 10 
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3*    4*     

 46   67   5* 7* 

    1*     

1* 6* 81 45 5/7 9 3*   

   2*  7/5 19 8*   

4*  22 68 8* 3    

 2* 44 7*  6*    

   5*  43    

      4*   

3* 118   4*     

815 46 922 313 67 221 120 5* 7* 

216    1*     

1* 6* 81 45  911 3*   

   2*   19 8*   

4*  22 68 8* 310    

 2* 44 7*  6*    

 817 119 5*  43    

   112  814 4*   

3* 118 7/5  4* 5/7    

815 46 922 313 67 221 120 5* 7* 

216  5/7  1* 7/5    

1* 6* 81 45  911 3*   

   2*   19 8*   

4*  22 68 8* 310    

 2* 44 7*  6*    

 817 119 5*  43    

   112  814 4*   



 

 

 

We also add two  

 

flipflops  

 

7/5(13) and 5/7(32) in  

 

Figure 155. 

 

 

 

 

Figure 155.     Figure 10 for Puzzle 10 

 

 

In order to get a  

 

better view of the  

 

situation, let us  

 

expland the chain of  

 

flipflops as displayed  

 

in Figure 156. 

 

Figure 156.     Figure 11 for Puzzle 10 

 

In order to speed up  

 

the solving process,  

 

let us further extend  

 

the chain of flipflops  

 

to much larger extent  

 

as displayed in  

 

Figure 157. 

Figure 157.     Figure 12 for Puzzle 10 
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3* 118 7/5  4* 5/7    

815 46 922 313 67 221 120 5* 7* 

216 5/7 623  1* 7/5    

1* 6* 81 45  911 3*   

   2*   19 8*   

4*  22 68 8* 310    

 2* 44 7*  6*    

 817 119 5*  43    

   112  814 4*   

3* 119 7/5  4* 5/7    

816 46 922 313 68 212 121 5* 7* 

217 5/7 623  1* 7/5  3/4 4/3 

1* 6* 81 45 5/7 911 3*   

   2*  7/5 17 8* 4/6 6/4 

4*  22 69 8* 310    

 2* 44 7*  6*    

 818 120 5*  43    

   115  814 4*   

3* 119 7/5  4* 5/7    

816 46 922 313 68 212 121 5* 7* 

217 5/7 623  1* 7/5  3/4 4/3 

1* 6* 81 45 5/7 911 3*   

5/7   2*  7/5 17 8* 4/6 6/4 

4* 7/5 22 69 8* 310 5/7   

 2* 44 7*  6*    

 818 120 5*  43    

7/5  5/7 115  814 4*   



 

Now, we can readily  

 

take to the  

 

thirtysecond step as  

 

in Figure 158. 

 

629230c7 

 

732r8 

 

 

Figure 158.     Figure 13 for Puzzle 10 

 

 

We come to the point  

 

to break the chain  

 

almost all the way  

 

through as shown in  

 

Figure 159. 

 

 

 

Figure 159.     Figure 14 for Puzzle 10 

 

 

 

 

Finally, we can easily  

 

complete the puzzle  

 

in Figure 160. 

 

544c7 

 

 

 

Figure 160.     Figure 15 for Puzzle 10 
 
 

 

210 

3* 119 7/5  4* 5/7 629   

816 46 922 313 68 212 121 5* 7* 

217 5/7 623  1* 7/5  3/4 4/3 

1* 6* 81 45 5/7 911 3*   

5/7 925 324 2*  7/5 17 8* 4/6 6/4 

4* 7/5 22 69 8* 310 5/7   

928 2* 44 7*  6*    

627 818 120 5*  43 230 732  

7/5 326 5/7 115 231 814 4*   

3* 119 536  4* 742 629   

816 46 922 313 68 212 121 5* 7* 

217 735 623  1* 543  3/4 4/3 

1* 6* 81 45 741 911 3*   

737 925 324 2*  540 17 8* 4/6 6/4 

4* 534 22 69 8* 310 733   

928 2* 44 7*  6*    

627 818 120 5*  43 230 732  

538 326 739 115 231 814 4*   

3* 119 536 947 4* 742 629 861 262 

816 46 922 313 68 212 121 5* 7* 

217 735 623 846 1* 543 945 351 452 

1* 6* 81 45 741 911 3* 263 564 

737 925 324 2*  540 17 8* 453 654 

4* 534 22 69 8* 310 733 957 158 

928 2* 44 7* 349 6* 544 159 860 

627 818 120 5* 948 43 230 732 350 

538 326 739 115 231 814 4* 655 956 



4. WASTEFUL MOVES 

 

Puzzle 11 
 

Among 5000 Sudoku  

 

puzzles with 17 initial  

 

values in (2), I found  

 

the puzzle in  

 

Figure 161 is a rare  

 

unsolvable one!     
 
 
 

 
 

 

Figure 161.    Figure 1 for Puzzle 11 

 

 

We can easily take to  

 

the fifteenth step as  

 

shown in Figure 162 

 

  82r7        83r3 

 

  1869r2      411b4, 

 
    

 

Figure 162.    Figure 2 for Puzzle 11 

 

we found that no 2  

 

could be filled in  

 

column 8 as shown in   

 

Figure 91. 

 

 

 

 

 
 

 

Figure 163       Figure 3 for Puzzle 11 

211 

     1*   8* 

5*       2*  

 4*   6*     

   2*   4*   

8*       3*   

  1*       

 2*     7* 4*  

    9* 5*    

   8*      

    211 1*   8* 

5* 84 69    18 2* 41 

110 4* 212  6* 83    

   2*   4* 86  

8*       3*   

213  1*  85     

 2* 82    7* 4*  

    9* 5* 87  215 

   8*  214    

    211 1* No2  8* 

5* 84 69    18 2* 41 

110 4* 212  6* 83 No2   

   2*   4* 86  

8*       3*   

213  1*  85  No2   

 2* 82    7* 4*  

    9* 5* 87  215 

   8*  214 No2   



Puzzle 12 

 

Unfortunately or  

 

fortunately, I further  

 

found the puzzles in  

 

Figures 164 and 167  

 

are also rare  

 

unsolvable ones!  

 
 

Figure 164.    Figure 1 for Puzzle 12 

 

We can take the first  

 

eight steps in  

 

Figure 165 for the  

 

puzzle in Figure 164. 
   

21r1    

 

76b5    

 

7788r4 
 
    
 

 

Figure 165.    Figure 2 for Puzzle 12 

 

 

We shall find that  

 

no 1 can be  

 

filled in box 5 as  

 

indicated in  

 

Figure 166. 

 

 

    
 

Figure 166.    Figure 3 for Puzzle 12 
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   6*  7* 8*   

 4* 2*       

         

   3* 5*    2* 

 7*      1*  

8*    4*     

  5*  2*     

1*      7*   

   9*      

   6*  7* 8* 21  

 4* 2*       

         

   3* 5* 88  77 2* 

24 7*      1*  

8*   75 4* 26    

  5*  2*     

1* 23     7*   

   9*   22   

   6*  7* 8* 21  

 4* 2*       

         

   3* 5* 88  77 2* 

24 7*  No1 No1 No1  1*  

8*   75 4* 26    

  5*  2*     

1* 23     7*   

   9*   22   



Puzzle 13 

 

 

For the puzzle of  

 

Figure 167, we can  

 

take the first thirty   

 

steps as shown in  

 

Figure 168. 

 

 

Figure 167.     Figure 1 for Puzzle 13 

 

 

 22b8        1849r7 

 

 311b6       312r1 

 

 414b8       615r4 

 

 816b2       817518c9 

 

 423c3       625c2 

 

626b9       729b6. 

 

Figure 168.    Figure 2 for Puzzle 13 

Next, we spot the  

 

grid (17), where only  

 

9 fits. So we take 

 

 931g 

 

in Figure 169 and we  

 

face a y-junction in  

 

column 5. 

 

Figure 169.     Figure 3 for Puzzle 13 
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4*   6*    2*  

       1*  

 8*        

    3*  8*  5* 

  6*     3*   

2*         

5* 3*     7*   

   2*  1*    

   4*      

4*   6*    2* 312 

 26      1* 822 

 8*   27   518 728 

  423  3* 23 8* 615 5* 

816  6*     3*  22 

2*  31    110  414 

5* 3* 25    7* 49 18 

930 424 821 2* 729 1* 519 313 626 

 625  4* 520 311 24 817 927 

4*   6* 1?  931 2* 312 

 26      1* 822 

 8*   27   518 728 

  423  3* 23 8* 615 5* 

816  6*   1?  3*  22 

2*  31    110  414 

5* 3* 25    7* 49 18 

930 424 821 2* 729 1* 519 313 626 

 625  4* 520 311 24 817 927 



 

Road 1. 1(15)  

 

Case1. 1(31) 

 

 

 

 

 

 

 

 

 

 
 

Figure 170.     Figure 4 for Puzzle 13 

 

Case2. 1(33) 

 

 

From Figures 170  

 

and 171, we see  

 

that the first road  

 

took us to the dead  

 

end. 

  

Figure 171.    Figure 5 for Puzzle 13 

Road 2. 1(55)  

 

 

From Figure 172, the  

 

road not taken leads  

 

to nowhere either.  

 

Therefore, this puzzle  

 

is unsolvable. What a  

 

lesson to learn! 

Figure 172.     Figure 6 for Puzzle 13 
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4* No3 No3 6* 11  931 2* 312 

63 26 No3    45 1* 822 

12 8* 98 37 27 46 64 518 728 

  423  3* 23 8* 615 5* 

816  6*     3*  22 

2*  31    110  414 

5* 3* 25    7* 49 18 

930 424 821 2* 729 1* 519 313 626 

 625  4* 520 311 24 817 927 

4*   6* 11  931 2* 312 

64 26 97  No#  46 1* 822 

33 8* 12  27  65 518 728 

  423  3* 23 8* 615 5* 

816  6*     3*  22 

2*  31    110  414 

5* 3* 25    7* 49 18 

930 424 821 2* 729 1* 519 313 626 

 625  4* 520 311 24 817 927 

4*   6*   931 2* 312 

64 26   45  No# 1* 822 

33 8*  12 27   518 728 

  423  3* 23 8* 615 5* 

816  6*   11  3*  22 

2*  31    110  414 

5* 3* 25    7* 49 18 

930 424 821 2* 729 1* 519 313 626 

 625  4* 520 311 24 817 927 



Puzzle 14 

 

The puzzle in  

 

Figure 173 is a rare  

 

one with seventeen  

 

initial values, with  

 

two solutions as in 

 

Figures 174 and 175 ! 

 

Figure 173.    Figure 1 for Puzzle 14 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 
 
 
    
 

 
 
 
 

Figure 174.     Figure 2 for Puzzle 14 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

 

 

 
 

 

Figure 175.     Figure 3 for Puzzle 14 
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4*   7*     5* 

       7*  

   2*      

6* 3*     8*   

5*       2*   

    1*     

     4* 1*   

 7*        

  1* 5*    9*  

4* 6 8 7* 3 1 9 2 5* 

1 5 2 8 4 9 3 7* 6 

7 9 3 2* 5 6 4 8 1 

6* 3* 7 4 2 5 8* 1 9 

5* 1 4 9 8 7 2* 6 3 

8 2 9 6 1* 3 5 4 7 

9 8 6 3 7 4* 1* 5 2 

2 7* 5 1 9 8 6 3 4 

3 4 1* 5* 6 2 7 9* 8 

4* 6 8 7* 3 1 9 2 5* 

1 5 2 9 4 8 3 7* 6 

7 9 3 2* 5 6 4 8 1 

6* 3* 7 4 2 5 8* 1 9 

5* 1 4 8 9 7 2* 6 3 

8 2 9 6 1* 3 5 4 7 

9 8 6 3 7 4* 1* 5 2 

2 7* 5 1 8 9 6 3 4 

3 4 1* 5* 6 2 7 9* 8 



Puzzle 15 
 

Here is another one!  

 

The puzzle in  

 

Figure 176 will lead to  

 

two solutions as  

 

shown in  

 

Figures 177 and 178. 
 

 

Figure 176.     Figure 1 for Puzzle 15   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 177.    Figure 2 for Puzzle 15 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 
 

 

 

 

Figure 178.    Figure 3 for Puzzle 15 
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1*        8* 

    3*  7*   

6*         

 3*     5* 2*  

   1*     6* 

 7*        

   2*  1*  4*  

      3* 5*  

   6*      

1* 5 3 7 9 2 4 6 8* 

2 9 4 8 3* 6 7* 1 5  

6* 8 7 5 1 4 2 9 3 

 4 3* 1 9 6 8 5* 2* 7 

 5  2 8 1* 4 7  9 3 6* 

9 7* 6 3 2 5  1 8 4 

3 8 5 2* 7 1*  6 4* 9 

7 6 2 4 8 9 3* 5* 1 

4 1 9 6* 5 3 8 7 2 

1* 5 3 7 9 4 2 6 8* 

2 9 4 8 3* 6 7* 1 5  

6* 8 7 5 1 2 4 9 3 

 4 3* 1 9 6 8 5* 2* 7 

 5  2 8 1* 4 7  9 3 6* 

9 7* 6 3 2 5  1 8 4 

3 8 5 2* 7 1*  6 4* 9 

7 6 2 4 8 9 3* 5* 1 

4 1 9 6* 5 3 8 7 2 



5. SITUATIONAL MOVES 
 

 

Puzzle 16 

 

For the puzzle in  

 

Figure 179, if I told  

 

you that I could fill  

 

1, 2, 3 in those grids  

 

in Figure 180, would  

 

you believe me? 

Figure 179.      Figure 1 for Puzzle 16 
 

 

How in the world can  

 

we see them? In fact,  

 

there are some hidden  

 

numbers as indicated  

 

in Figure 181, that  

 

might help you! 

 

Figure 180.     Figure 2 for Puzzle 16 
 

In box 4, 1 and 6 can  

 

only be filled in (35)  

 

and (36) as shown. 

 

Since 6 can only be  

 

filled in either (45) or  

 

(46), where 1 should  

 

be avoided.  

 

Figure 181.     Figure 3 for Puzzle 16         
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4*    8* 2*    

1*       6*  

         

  5*    7*  2* 

 6*  3*       

 9*        

   6* 5*   3*  

3*      2*   

   1*      

4*    8* 2*    

1* 2   3   6*  

         

  5*    7* 1 2* 

 6*  3*       

 9*        

   6* 5*   3*  

3*      2*   

   1*      

4*    8* 2*    

1*       6*  

    1/6 6/1    

  5*  6? 6? 7*  2* 

 6*  3*       

 9*        

   6* 5*   3*  

3*      2*   

   1*      



Otherwise, we could  

 

flip flop 1 and 6 in  

 

Figure 182, if we  

 

were able to complete  

 

the puzzle so that  

 

multiple solutions  

 

would be obtained. 

 

Figure 182.    Figure 4 for Puzzle 16 

Now, could we fill 1  

 

in (42) as shown in  

 

Figure 183?  The  

 

answer is no, since  

 

that is exactly the right  

 

spot for 3. So the right  

 

spot for 1 is (48). 

 

Figure 183.    Figure 5 for puzzle 16 

 

 

 

Next, let us look at  

 

column 5.  

 

Where can we fit 3 in  

 

Figure 184? 

 

 

 

 

Figure 184.     Figure 6 for puzzle 16 
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4*    8* 2*    

1*       6*  

    1/6 6/1    

  5*  6/1 1/6 7*  2* 

 6*  3*       

 9*        

   6* 5*   3*  

3*      2*   

   1*      

4*    8* 2*    

1*       6*  

         

 1? 5*    7*  2* 

 6*  3*       

 9*        

   6* 5*   3*  

3*      2*   

   1*      

4*    8* 2*    

1*       6*  

    1/6 6/1    

 3 5*    7*  2* 

 6*  3*       

 9*        

   6* 5*   3*  

3*      2*   

   1*      



 

Now, could we fill 3  

 

in (95) as shown in  

 

Figure185?  The  

 

answer is no, since  

 

that is exactly the  

 

right spot for 2. So the  

 

right spot for 3 is (25). 

 
 

Figure 185.     Figure 7 for puzzle 16 

Could we fill 2 at (23)  

 

as in Figure 186?  

 

Since 6 needs to be at  

 

(13) in row 1 and in  

 

turn at (91), 3 and 5  

 

are forced to be at (33)  

 

and (31), as shown  

 

in Figure 187, respectively.                  Figure 186.     Figure 8 for puzzle 1 

 

 

As a result, 9 would  

 

not be able to fit in  

 

box 1 at all!  

 

 

Therefore, the right  

 

spot for 2 is (22). 

 
 

Figure 187.     Figure 9 for puzzle 16 
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4*    8* 2*    

1*       6*  

    1/6 6/1    

 3 5*    7*  2* 

 6*  3*       

         

 9*        

   6* 5*   3*  

3*      2*   

   1* 3?     

4*    8* 2*    

1*  2?     6*  

         

 3 5*    7*  2* 

 6*  3*       

 9*        

   6* 5*   3*  

3*      2*   

   1*      

4*  61  8* 2*    

1*  2?     6*  

54  33       

 3 5*    7*  2* 

 6*  3*       

 9*        

   6* 5*   3*  

3*      2*   

62   1*      



Now, let us use the  

 

prescribed order to  

 

solve the puzzle in  

 

question restarting  

 

from Figure 188. 

 

 2233b6    

 

35r4 

 

Figure 188.   Figure 10 for puzzle 16 

Next, to avoid the  

 

potential multiple  

 

solutions by  

 

flipflopping 1 and 6 as  

 

shown in Figure 188,  

 

we take in Figure 189 

 

16 r4: u16r3b4r4b5. 

 

Figure 189.   Figure 11 for puzzle 16 

The rest is easy as in  

 

Figure 190. 

 

37c5: 16(35)(36)  68r1        

 

313b8    314115r1   

 

117c2    518b3     521r1    

 

522c6: 5r5b8   923b1 

 

428829c2   732c1     

 

734c8        847r5.                                         Figure 190.    Figure 12 for puzzle 16 
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4*    8* 2*    

1*       6*  

    1/6 6/1  21  

 35 5*  6/1 1/6 7*  2* 

 6*  3*       

 9*  24      

   6* 5*   3*  

3*      2*   

   1* 22 33    

4*    8* 2*    

1*       6*  

       21  

 35 5*    7* 16 2* 

 6*  3*       

 9*  24      

   6* 5*   3*  

3*      2*   

   1* 22 33    

4* 730 68 521 8* 2* 314 931 115 

1* 224 923 758 37 459 839 6* 540 

519 818 39 960 656 155 443 21 742 

833 310 5* 461 962 657 7* 16 2* 

226 6* 152 3*  753 847 541 450 946 

732 9* 451 24 154 522 612 849 313 

927 428 220 6* 5* 737 116 3* 838 

3* 117 735 821 463 964 2* 521 67 

610 518 836 1* 22 33 944 734 445 



Puzzle 17  
 

The first fifteen steps  

 

of the puzzle in 

 

Figure 191 is easy. 

 

 1293c64r7   710b2    

 

811b6         912b8      

 

914r1          615c4 

 

Figure 191.    Figure 1 for Puzzle 17 

 

We take this rare  

 

opportunity to  

 

show you the  

 

“intersection  

 

move” 7(74) as  

 

shown in  

 

Figure 192. 

Figure 192.     Figure 2 for Puzzle 17 

 

 

Taking 7(75)/(76),  

 

we would run into  

 

the dilemma of  

 

having no 7 in  

 

column 4 as shown  

 

in Figure 193. 

 

Figure 193.      Figure 3 for Puzzle 17 
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 4*     3*   

7*   5*      

        1* 

 8* 9*       

   8*     7*  

  1*    6*   

3*      2* 8*  

    9* 1*    

    6*     

15 4*  914   3*   

7*   5* 16     

   615     1* 

 8* 9* 17      

   8*   913 18 7*  

 710 1*    6* 912 81 

3* 12 64 716   2* 8* 93 

    9* 1*    

    6* 811  19  

15 4*  914   3*   

7*   5* 16     

   615     1* 

 8* 9* 17      

   8*   913 18 7*  

 710 1* No7   6* 912 81 

3* 12 64 No7 7? 7? 2* 8* 93 

   No7 9* 1*    

   No7 6* 811  19  



If we took  

 

7(84)/(94), we  

 

would run into  

 

the dilemma of  

 

having no 7 in  

 

row 7 as shown  

 

in Figure 194.  

 

Figure 194.     Figure 4 for Puzzle 17 

 

 

Thus we have 

 

7(74): 7(75)/(76)     

→No7c4 

&7(84)/(94) 

→No7r7 

 

as shown in 

 

Figure 195. 

 

 

Figure 195.     Figure 5 for Puzzle 17 

 

However, we shall  

 

follow the  

 

prescribed order to  

 

take four more  

 

steps as in 

 

Figure 196. 

 

  618b1 

                                                          Figure 196.     Figure 6 for Puzzle 17 
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15 4*  914   3*   

7*   5* 16     

   615     1* 

 8* 9* 17      

   8*   913 18 7*  

 710 1*    6* 912 81 

3* 12 64 No7 No7 No7 2* 8* 93 

   7? 9* 1*    

   7? 6* 811  19  

15 4*  914  7? 3*   

7* 618  5* 16 7?    

   615  7?   1* 

 8* 9* 17 717 616    

619   8*   913 18 7*  

 710 1* 421   6* 912 81 

3* 12 64 720 4? 4? 2* 8* 93 

    9* 1*    

    6* 811  19  

15 4* 529 914 830 231 3* 626 725 

7* 618 824 5* 16 334 922   

942   615 435 728 823 532 1* 

 8* 9* 17 717 616    

619   8*  241 913 18 7*  

240 710 1* 421 339 538 6* 912 81 

3* 12 64 720 537 436 2* 8* 93 

833    9* 1*   627 

 943   6* 811  19  



Finally, as in  

 

Figure 197, we  

 

can take 

 

 444g: 5(47) 

→5(52) 

→5(91) 

→No5b9 

 

as shown in  

 

Figure 198. 

Figure 197.    Figure 7 for Puzzle 17 

 

Now, according to  

 

the situation shown  

 

in Figure 198, we  

 

can take in  

 

Figure 200 

 

720421r7: 

7c6b4$4r7b6. 

 

Figure 198.    Figure 8 for Puzzle 17 

 

The rest is easy as 

 

in Figure 199. 

 

  922c7: 9r3b1     

 

725b7     529830r1         

 

334r2      339r6            

 

942g   

 

 

Figure 199.    Figure 9 for Puzzle 17 
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15 4* 529 914 830 231 3* 626 725 

7* 618 824 5* 16 334 922   

942   615 435 728 823 532 1* 

 8* 9* 17 717 616 51   

619 52  8*  241 913 18 7*  

240 710 1* 421 339 538 6* 912 81 

3* 12 64 720 537 436 2* 8* 93 

833    9* 1* No5 No5 627 

53 943   6* 811 No5 19 No5 

15 4* 529 914 830 231 3* 626 725 

7* 618 824 5* 16 334 922   

942   615 435 728 823 532 1* 

 8* 9* 17 717 616 444   

619   8*  241 913 18 7*  

240 710 1* 421 339 538 6* 912 81 

3* 12 64 720 537 436 2* 8* 93 

833    9* 1*   627 

 943   6* 811  19  

15 4* 529 914 830 231 3* 626 725 

7* 618 824 5* 16 334 922 262 463 

942 251 350 615 435 728 823 532 1* 

547 8* 9* 17 717 616 444 361 264 

619 348 445 8*  241 913 18 7* 549 

240 710 1* 421 339 538 6* 912 81 

3* 12 64 720 537 436 2* 8* 93 

833 552 256 358 9* 1* 754 459 627 

446 943 755 257 6* 811 553 19 360 



Puzzle 18 

 

 

This very puzzle as  

 

shown in Figure 200  

 

has many virtues that  

 

will teach us what  

 

Sudoku is really  

 

about. 

Figure 200.     Figure 1 for Puzzle 18 

We can take to  

 

the eighth step 

 

  1122r4 

 

as in Figure 201. 

 

In Figure 202, 2  

 

can only fit (13)  

 

or (16) in row 1.  

 

Figure 201.    Figure 2 for Puzzle 18     

 

 

 If we took 2(13)  

 

in Figure 203, it  

 

would force no  

 

room for 5 to be  

 

in box 1. 

 

 

 

Figure 202.    Figure 3 for Puzzle 18             
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    4*  7*   

   5*   3*   

 1* 8*       

3*      5* 4*  

  6* 1*      

   2*      

5* 2*   3*     

        1* 

       6*  

    4*  7* 16  

   5* 15  3*   

 1* 8*       

3*  11    5* 4* 22 

28  6* 1*      

   2*   17   

5* 2*   3* 14    

        1* 

13       6*  

  2?  4* 2? 7* 16  

   5* 15  3*   

 1* 8*       

3*  11    5* 4* 22 

28  6* 1*      

   2*   17   

5* 2*   3* 14    

        1* 

13       6*  



 

 

 

So we take 

 

29r1:2(13) 

→3(12) 

→No5b1 

 

in Figure 204. 

 

 

 

 

Figure 203.    Figure 4 for Puzzle 18             

 

Since 3 hidden in  

 

column 6 of box 5 as  

 

shown, we can take     

 

311r3: 3c6b5 

 

and the next nineteen  

 

steps in Figure 205. 

 

 

Figure 204.    Figure 5 for Puzzle 18             

612r7      613b8    

 

516417r3  320b9       

 

521c6:    

34(65)(66) 

 

622823b4   627g 

 

We now face a  

 

stalemate.  

 

Don’t panic!  

Figure 205.    Figure 6 for Puzzle 18             
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No5 3 2?  4* 2? 7* 16  

No5 No5 No5 5* 15  3*   

No5 1* 8*       

3*  11    5* 4* 22 

28  6* 1*      

   2*   17   

5* 2*   3* 14    

        1* 

13       6*  

    4* 29 7* 16  

  210 5* 15  3*   

 1* 8*       

3*  11    5* 4* 22 

28  6* 1*  3?    

   2*  3? 17   

5* 2*   3* 14    

        1* 

13       6*  

627 330 531 823 4* 29 7* 16 926 

  210 5* 15 622 3* 825 418 

417 1* 8* 311   614 215 516 

3*  11  624 8? 5* 4* 22 

28  6* 1*  3/4 8?  8? 

   2* 8? 4/3 17  613 

5* 2*  612 3* 14    

8 628 329 No8 No8 No8  519 1* 

         

13   No8 No8 521  6* 320 



There are only  

 

(47) and (65)  

 

for 8 to fit in  

 

box 5, but 8(65)  

 

would lead to  

 

the dead end in 

 

Figure 206.  

 

Figure 206.    Figure 7 for Puzzle 18 

So, in Figure 207,  

 

we take  

 

 832b5: 34c6b5& 

  8(65)→8(81) 

→No8b6, 

 

 433c4:4(65)→4(73) 

→4(87)→2(97) 

→2(85)→8(81) 

→8(62)→2(52) 

→No4b2. 

 

Figure 207.    Figure 8 for Puzzle 18 

 

 

 

 

Finally, we can  

 

readily complete this  

 

puzzle in Figure 208. 

 

 

 

 

 

Figure 208.    Figure 9 for Puzzle 18 
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627 330 531 823 4* 29 7* 16 926 

  210 5* 15 622 3* 825 418 

417 1* 8* 311   614 215 516 

3* No4 11  624 832 5* 4* 22 

28 58 6* 1*      

No4 87 No4 2*   17  613 

5* 2* 42 612 3* 14    

86 628 329  25  43 519 1* 

13   41 85 521 24 6* 320 

627 330 531 823 4* 29 7* 16 926 

7/9 9/7 210 5* 15 622 3* 825 418 

417 1* 8* 311 9/7 7/9 614 215 516 

3* 7/9 11 9/7 624 832 5* 4* 22 

28 541 6* 1* 7/9 438 846 336 745 

9/7 840 434 2* 539 337 17 7/9 613 

5* 2* 7/9 612 3* 14 443 9/7 844 

835 628 329 433  9/7  519 1* 

13 442 9/7 7/9  521  6* 320 

627 330 531 823 4* 29 7* 16 926 

951 750 210 5* 15 622 3* 825 418 

417 1* 8* 311 760 959 614 215 516 

3* 949 11 748 624 832 5* 4* 22 

28 541 6* 1* 947 438 846 336 745 

752 840 434 2* 539 337 17 953 613 

5* 2* 955 612 3* 14 443 754 844 

835 628 329 433 262 758 961 519 1* 

13 442 756 957 863 521 264 6* 320 



Puzzle 19  
 

The puzzle of  

 

Figure 209 can be  

 

solved rather easily as  

 

shown in Figure 210.  

 

 

 

 

 

                                                            Figure 209.     Figure 1 for Puzzle 19 

 

133495r1   611b4      

 

512 r2       213b4      

 

314 915b2      217c4  

 

218c3       923b5      

 

 924325826627r7 

 

430c4        832r4   

 

 

Figure 210.     Figure 2 for Puzzle 19 

 

Would the  

 

flipflopping of  

 

9(32) and 7(38)  

 

with 7(82) and  

 

9(88) cause  

 

multiple  

 

solutions?  

Figure 211.     Figure 3 for Puzzle 19        
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  1* 7*      

       5* 3* 

         

5* 3*   2*     

   1*    7*  8* 

6*         

4* 2*    5*  3*  

   6*   1*   

         

237 59 1* 7* 335 953 636 827 454 

746 650 440 230 848 117 955 5* 3* 

847 951 334 58 649 452 239 715 116 

5* 3* 720 821 2* 613 456 118 957 

943 442 238 1*  55 36 7* 67 8* 

6* 12 822 431 959 760 31 219 510 

4* 2* 624 925 14 5* 823 3* 714 

333 762 512 6* 458 861 1* 944 228 

13 863 941 329 764 232 511 445 626 

237 59 1* 7* 335 No8 636 827  

71   230 No8 117  5* 3* 

82 9 334 58 No8 No8 239 715 116 

5* 3* 720 821 2* 613  118  

  238 1*  55 36 7* 67 8* 

6* 12 822 431   31 219 510 

4* 2* 624 925 14 5* 823 3* 714 

333  512 6*   1* 9 228 

13 7  329 83 232 511  626 



The answer is no,  

 

since the new 7(32)  

 

would conflict 7(21)  

 

in box1 as displayed  

 

in Figure 212. We  

 

need to look at  

 

the surroundings.  

 

Figure 212.     Figure 4 for Puzzle 19 

 

 

For example, by  

 

moving 7(82) to  

 

7(92), we would  

 

face the dilemma in  

 

Figure 213. 

 

 

 

Figure 213.     Figure 5 for Puzzle 19 

 

In fact, the three  

 

different ways to  

 

move 9(32) as  

 

shown separately  

 

in Figures 212-214  

 

each leading to a  

 

dilemma. 

Figure 214.     Figure 6 for Puzzle 19 
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237 59 1* 7* 335  636 827  

9?   230  117  5* 3* 

9?  334 58   239 715 116 

5* 3* 720 821 2* 613  118  

No4 91 238 1*  55 36 7* 67 8* 

6* 12 822 431   31 219 510 

4* 2* 624 925 14 5* 823 3* 714 

333 7 512 6*   1* 9 228 

13   329  232 511  626 

237 59 1* 7* 335  636 827  

 9 43 230  117 No# 5* 3* 

  334 58   239 715 116 

5* 3* 720 821 2* 613  118  

91 42 238 1*  55 36 7* 67 8* 

6* 12 822 431   31 219 510 

4* 2* 624 925 14 5* 823 3* 714 

333 7 512 6*   1* 9 228 

13   329  232 511  626 

237 59 1* 7* 335  636 827  

  9 230  117  5* 3* 

  334 58   239 715 116 

5* 3* 720 821 2* 613  118  

  238 1*  55 36 7* 67 8* 

6* 12 822 431   31 219 510 

4* 2* 624 925 14 5* 823 3* 714 

333 7 512 6*   1* 9 228 

13  No# 329  232 511  626 



Puzzle 20 

 

We can readily fill  

 

with basic moves to  

 

the seventeenth step as  

 

shown in Figure 216  

 

for the puzzle in  

 

Figure 215. 

 

Figure 215.   Figure 1 for Puzzle 20 

 

 

2182r4      65b5  

 

1657r5      513r7      

 

514c7       219c8 

 

  320621r1: 3c8b8  

 

  322r7        723b5   

 

 825c8 

 

Figure 216.   Figure 2 for Puzzle 20 
 

 

We can now complete  

 

the puzzle in  

 

Figure 217. 

 

426827c4: 4(74) 

→4(49) 

→No4b9 

 

  334c5     439c9 

 

  345c1     446r2 
 

 

Figure 217.   Figure 3 for Puzzle 20 
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2*    7*  4*   

 3*  1*      

         

 5* 1* 3*      

     4*  8*   

  6*    2*   

8*     2*    

   6*    5*  

       1*  

2* 19   7* 516 4* 621 320 

 3*  1*   514 219  

515   23   18 825  

 5* 1* 3* 21 82    

   57 4* 65 8*  16 

 84 6* 723 924 112 2*  518 

8*  513  111 2* 322   

110   6*    5*  

    517   1*  

2* 19 928 827 7* 516 4* 621 320 

749 3* 830 1* 635 446 514 219 751 

515 636 448 23 334 947 18 825 752 

950 5* 1* 3* 21 82 644 753 439 

345 257 758 57 4* 65 8* 934 16 

440 84 6* 723 924 112 2* 341 518 

8* 743 513 929 111 2* 322 442 638 

110 453 360 6* 831 762 963 5* 233 

637 956 259 426 517 361 764 1* 832 



Puzzle 21 

 

We can readily fill  

 

with basic moves to  

 

the thirty-nineth step  

 

as shown in  

 

Figure 219 for the  

 

puzzle in Figure 218. 

 

Figure 218.   Figure 1 for Puzzle 21 

 

 

21b3       2354c4 
 

57r7      812213b4 
 

121c3     427r8 
 

430b1     634335b5 
 

   640c7: 6r9b3. 

 

 
 

 

Figure 219.   Figure 2 for Puzzle 21 

From Figure 220, we  

 

have 

 

  641(18)c8: 6(68) 

→6(42) 

→6(13) 

→No6b3 

 

  642c3. 

 

The rest is easy as  

 

shown. 

Figure 220.   Figure 3 for Puzzle 21 
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3*   1*   8*   

  2*   6*    

   4*      

    8*  1*   

  5*       2* 

   7*      

1* 3*      4*  

 8*    5*    

    2*     

3* 510 63 1*  213 8*  431 

815 430 2* 54  6*   126 

  121 4*  812 59 214  

433 62 317 23 8* 936 1* 58  

 122 5* 634  429 335  818 2* 

 25 816 7* 56 123 432 61  

1* 3* 939 820 638 737 22 4* 57 

21 8* 427  124 5* 640   

511 No6 No6  2* 428  124 819 

3* 510 743 1* 945 213 8* 641 431 

815 430 2* 54 362 6* 761 955 126 

651 950 121 4* 763 812 59 214 364 

433 649 317 23 8* 936 1* 58 748 

746 122 5* 634  429 335 947 818 2* 

952 25 816 7* 56 123 432 354 653 

1* 3* 939 820 638 737 22 4* 57 

21 8* 427 358 124 5* 640 756 957 

511 744 642 959 2* 428 360 124 819 



Puzzle 22 

 

We can readily fill  

 

with basic moves to  

 

the sixteenth step as  

 

shown in Figure 222  

 

for the puzzle in  

 

Figure 221. 

 

Figure 221.   Figure 1 for Puzzle 22 

11b2      235495c1 

 

377889610c4: 37r5b2 

 

413g  414g  615g  716c4. 

 

As in Figure 222, we  

 

can take 

 
717c6: 

7r5b2&36(86)(96) 

 

In Figure 223. 

Figure 222.    Figure 2 for Puzzle 22 

We can complete the  

 

puzzle in Figure 223. 

 

  718c2: u47c2b3c5b6 

 

  920c7: 9r3b4&r5b5 

   

829630r6      

 

136c7   

 

142c5 

 

Figure 223.    Figure 3 for Puzzle 22 
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7*    3*  8*   

   5*   2*   

         

 2* 5*  6* 8*    

        1*  

 9*        

3*      4* 7*  

1*   9*      

   2*      

7*  414 610 3* 26 8*   

95   5*   2*  712 

23   78      

413 2* 5* 12 6* 8* 716   

 7? 7? 411     1*  

 9* 11 37  717    

3* 615  89   4* 7*  

1*   9*  3/6    

54   2*  6/3    

7* 140 414 610 3* 26 8* 561 960 

95 358 657 5* 841 146 2* 452 712 

23 559 856 78 940 447 136 355 663 

413 2* 5* 12 6* 8* 716 954 353 

632 718 319 411  225 933 535 1* 834 

829 9* 11 37 531 717 630 224 426 

3* 615 921 89 142 543 4* 7* 223 

1* 850 222 9* 728 445 337 664 562 

54 449 727 2* 644 339 920 851 138 



Puzzle 23 

 

 

 

We can take to the  

 

thirty-second step in  

 

Figure 225 of the  

 

puzzle in Figure 224. 

 

 

 

Figure 224.     Figure 1 for Puzzle 23 

1233c4   311b8    

 

515c7 

 

617418219820r9 

 

422r5    623724b5 

 

725r8    2264247c5 

 

831b2: 46(62)(63)    

 

832g. 

 

Figure 225.    Figure 2 for Puzzle 23 

Due to the dilemma  

 

in Figure 225, we can  

 

complete the puzzle  

 

in Figure 226. 

 

  533934r4: 5(43) 

→5(65)→8(55) 

→9(45)→No9b8 

 

539c1     956r3 

 

Figure 226.     Figure 3 for Puzzle 23 
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2*       5*  

  8*  3*     

    1*     

   4*   2* 6*  

 1*         

   2*      

6*      1*  3* 

4*   5*  9*    

      7*   

2*  313  427   5* 16 

15  8*  3*     

    1*   312  

314 831 51 4* 94 18 2* 6* No9 

 1* 21 33  83 623 515 No9 422 

   2* 52 724 311 17 85 

6*   829 226 428 1* 930 3* 

4* 310 14 5* 725 9*    

820 219 921 12 617 39 7* 418 516 

2* 663 313 746 427 832 964 5* 16 

15 962 8* 658 3* 551 461 249 745 

738 555 457 956 1* 250 847 312 653 

314 831 735 4* 533 18 2* 6* 934 

940 1* 21 33  842 623 515 743 422 

539 459 660 2* 941 724 311 17 844 

6* 736 537 829 226 428 1* 930 3* 

4* 310 14 5* 725 9* 654 848 252 

820 219 921 12 617 39 7* 418 516 



4.5.  EXPERIMENTAL MOVES 

 
PRACTICE SET 1 
 

 

 

Puzzle 24 
 

 

 

 

 

 

 

 

 

   

 

 

 

 

 
 

 

 

Puzzle 25 
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   3* 6*  5*   

4*        2* 

1*         

      7* 1*  

2*   8*      

 8*  5*      
 3* 

    6*   

    1* 4*    

    7*     

3* 7*   9*     

       8* 1* 

 2*        

  1* 6*    4*  

5*     7*  3*   

         

2*      9*   

   1*  4*    
   8*      



Puzzle 26 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Puzzle 27 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Puzzle 28 
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 1*  4*      

    8*  5*   

      7*   

7*   3*  4*    

   1*     2*  

8*         

2*    9*     

       4* 3* 

      6*  1* 

    6*    1* 

 2*  5*      

         

   3*    2*  

  7*     4*   

1*    5*     

7* 3*    1*    

6*       5*  

   2*   8*   

       5* 1* 

2*   8*      

4*         

 1*   5* 7*    

3*       2*   

    6*  4*   

 5* 7*     6*  

   2*   3*   

         



Puzzle 29 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Puzzle 30 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Puzzle 24 
 

127344c4   313b6 

 

 414c2         616c6      

 

717b7        224r4 

 

228b3        634r9

   

936b3        838b9 
 

943r1 
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 7*  4*  6* 5*   

   2*   3* 4*  

         

 8*   1*     

       4*   

1*         

3*       1* 7* 

   5*     8* 

2*         

1*       3* 2* 

 5*  8*      

         

 6*  5*   4*   

2*   3*      

7*         

    2* 1*    

 4*     6*   

    7*  5*   

844 723 943 3* 6* 230 5* 411 15 

4* 550 648 12 857 956 358 717 2* 

1* 229 351 73 410 553 863 641 964 

333 949 552 44 224 616 7* 1* 81 

2* 18 421 8* 361 712 962 540 642 

632 8* 720 5* 960 19 422 225 359 

719 3* 17 230 554 855 6* 937 415 

545 647 846 935 1* 4* 226 327 718 

936 414 228 634 7* 313 16 838 539 



Puzzle 25 
 

11b1     87r1    88r7 

 

49b9     911b6 

 

412813c5: 4r2b1     

 

415r1   114b9  516b3    

 

816417r5    221g       

 

622r3: 6r1b7   623r5          

 

331232633b7   436637c1   252c4   

 

Puzzle 26 
 

12c1     2697b9   38c5        

 

310b7    512g      813b5       

 

814g    616g: 57r7b9    

 

917g     118g   620g    

 

821g   223g   

 

923c6: 26c6b4 

 

 526b8: u57r6b8r7b9   732b6    534635b5   246647r3   951c1 

 

Puzzle 27 
 

 

2384b3    110r8  316b2         

 

318b9   519r5   520321r1 

 

 622b6   425r7   630831r5       

 

535b7      536c7         

 

639740r2    853r1         
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3* 7* 87 534 9* 12 415 633 232 

927 439 540 252 353 650 748 8* 1* 

11 2* 622 747 412 814 546 930 331 

738 342 1* 6* 813 544 229 4* 928 

5* 816 924 417  7* 221 3* 14 623 

436 641 225 920 13 345 819 760 559 

2* 16 410 354 651 749 9* 555 88 

818 926 362 1* 556 4* 635 258 761 

637 543 763 8* 257 911 15 364 49 

620 1* 739 4* 38 540 917 821 222 

951 263 362 737 8* 649 5* 15 450 

448 843 544 938 14 246 7* 311 647 

7* 958 259 3* 635 4* 118 526 823 

352 545 655 1*  731 813 454 2* 925 

8* 460 119 534 236 924 353 629 730 

2* 364 461 616 9* 13 814 728 527 

12 656 957 817 533 732 26 4* 3* 

512 741 842 210 41 39 6* 97 1* 

520 754 444 945 6* 321 28 853 1* 

857 2* 114 5* 433 740 336 639 956 

337 963 662 113 27 851 535 755 434 

958 664 861 3* 112 442 147 2* 538 

25 519 7* 831  932 630 4* 111 317 

1* 443 316 741 5* 26 642 959 860 

7* 3* 52 622 823 1* 926 425 29 

6* 84 23 449 329 952 110 5* 727 

445 115 946 2* 728 51 8* 318 624 



Puzzle 28 

 

1152b1    18c7     29r4          

 

315b3     416r4    317b5 

 

118r6      419320r1

  

823r4      125g     726c1         

 

627g       830131c6

       
634135c1: 6r4b8      

 

340r9       743b8      849r1 

     

Puzzle 29 
  

14b4        5839b9     

 

710511b7     215316r1 

 

719820r9  424r3: 23r3b1        

 

825526c1 

 

438939c2: 23(32)(52)    

 

346247c2          

 
 

 

Puzzle 30 
 

2132c7     

  

1879910c4: 4b3&6b9    

 

112c2     513c1: 5r8b6 

 

 714115c7: 7r3b1

   

317718c2:      

17r4b8→3r4b2   
 

 

 

830b6      831c7: 8r1b1     933r2      934c2     936c6   937838r4      549r1    
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726 320 950 627 214 419 849 5* 1* 

2* 652 52 8* 762 131 963 442 360 

4* 851 11 57 361 932 764 213 659 

936 1* 29 416 5* 7* 658 348 857 

3* 454 653 125 933 830 2* 743 54 

53 744 845 317 6* 211 4* 118 939 

823 5* 7* 924 421 322 18 6* 212 

634 955 456 2* 137 56 3* 847 746 

135 210 315 728 838 629 55 940 441 

917 7* 15 4* 316 6* 5* 811 215 

825 648 550 2* 712 14 3* 4* 951 

21 21 249 836 937 535 12 710 652 

526 8* 660 945 1* 442 714 259 329 

721 247 962 330 534 833 4* 663 11 

1* 438 361 723 653 254 813 964 528 

3* 532 831 644 443 955 257 1* 7* 

627 17 440 5* 256 722 958 39 8* 

2* 939 719 16 820 318 641 58 43 

1* 835 644 79 549 450 932 3* 2* 

933 5* 25 8* 116 319 714 659 460 

443 317 722 24 651 936 115 862 563 

339 6* 838 5* 937 23 4* 724 125 

2* 112 555 3* 457 711 831 948 653 

7* 934 456 18 858 652 21 554 329 

513 718 941 645 2* 1* 32 461 864 

828 4* 127 910 320 521 6* 27 723 

642 26 340 446 7* 830 5* 126 947 



PRACTICE SET 2 

 
 

 

 

 

Puzzle 31  
 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

  

 
 

 

Puzzle 32  
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6* 7*     4*   

8*    1*     

   2* 5*     

   4*  3* 7*   

1*        5*  

         

 4* 2* 7*      

       6* 1* 

         

    5* 1*    

 2*     3*   

         

7*       1* 5* 

   2*  3*     

   4*     8* 

5* 7* 8*       

      6* 4*  

1*         



Puzzle 33  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Puzzle 34  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Puzzle 35  
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1*  4*       

      8* 2*  

      6*   

   3*  6* 7*   

 2*         

   7*      

6*    5*    4* 

   4* 2*   5*  

 8*        

5*  4*  2*     

9*   8*   1*   

2*         

    9*   2*  

 1*      8*   

 3*        

       4* 9* 

   6*  1*    

   3*      

   6*     1* 

 2*   8*     

         

1* 9* 4*       

     3* 2* 8*   

         

7*   1*    5*  

6*   4*      

      2* 3*  



Puzzle 36  
 

 

 

 

 

 

 

 

 

 

 

 

 

Puzzle 37  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Puzzle 31  
 

11r4 2758b1   411r2          

 

412r8      613r7    

 

715616b4   618519r4    

 

422c1    523c4      825b3     

 

826r3    828229r4  

 

333r1     742r8 

 

351c7: u38c2b2c7b8 
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  1* 5*      

     1* 3*   

      8*   

      6* 9*  

   7*     2*  

3*     8*    

   2* 1*     

8* 4*        

 3*   6*     

  1* 7*      

       5* 3* 

         

5* 3*   2*     

   1*    7*  8* 

6*         

4* 2*    5*  3*  

   6*   1*   

         

6* 7* 13 832 333 934 4* 210 59 

8* 27 58 616 1* 411 351 755 958 

422 950 349 2* 5* 715 12 826 617 

519 618 930 4* 828 3* 7* 11 229 

1* 359 747 936 239 662 863 5* 454 

220 860 448 16 740 561 664 957 358 

944 4* 2* 7* 613 15 524 346 827 

742 521 825 335 412 238 943 6* 1* 

345 14 614 523 937 831 241 452 753 



Puzzle 32  
 

59810c7        712b9      

 

214b9: 2c7b8    216r1      

 

717r8: 7c7b5    819r5    

 

521b1 525726b3: 69r5b8     

 

729c4     432c7 438639b3    

 

645c8    448r1    653c4 
 

 
 

 

 

 

Puzzle 33  
 

23b3   25b5   49b7       

 

610811r8   813b1  814c4 

 

518b5     419c6   520b8   

 

622523r1   724b6: 7r9b9     

 

725r1   329r1:    

3r9b6→3c7b9   

 

930c9    932633b6   136g        

 

137g   938g      952c1      755c2  

 

 

 

 

 

 

 

 

Puzzle 34 
 

 

1233b1    311r4   

 

613r7: 6c2b1    

 

914b6     916417r8  

 

218419520c2: 2r7b6    

  

423r2    524b6   525r2  

 

828c5    830631732r4: 78c3b3    636r6    738c5  

241 

448 644 724 349 5* 1* 810 946 216 

951 2* 17 729 830 458 3* 523 757 

350 820 521 655 959 256 16 728 460 

7* 336 234 831 662 963 432 1* 5* 

819 18 437 2*  3* 525 726 645 947 

640 522 941 4* 14 727 233 31 8* 

5* 7* 8* 13 461 664 915 214 313 

235 943 342 52 717 818 6* 4* 15 

1* 438 639 954 253 352 59 811 712 

1* 622 4* 27 817 329 928 725 523 

544 953 754 146 651 419 8* 2* 348 

24 349 813 545 750 935 6* 49 147 

816 541 938 3* 440 6* 7* 137 26 

763 2* 658 814 136 518 421 364 930 

362 442 143 7* 939 25 520 661 815 

6* 156 23 932 5* 724 359 812 4* 

952 755 357 4* 2* 811 160 5* 610 

41 8* 52 633 327 134 28 931 726 

5* 856 4* 14 2* 640 959 760 354 

9* 639 33 8* 738 423 1* 525 21 

2* 757 12 915 312 526 458 647 855 

830 419 533 732 9* 311 631 2* 16 

737 1* 946 551 641 243 8* 353 452 

636 3* 245 450 15 829 534 948 749 

18 520 613 244 828 742 310 4* 9* 

39 916 762 6* 417 1* 221 861 527 

422 218 863 3* 524 914 764 17 635 



Puzzle 35  
 

114293r5   25c1  2637c4      

 

39r4     311c1  413b9       

 

514g    815b7   817418c1 

 

827528c4:8r6b2&5r6b8 

 

730r4       631c8           

 

536b3       942543c9  

          

 

Puzzle 36  
 

12b3     83b6    8435c8      

 

47b6     38c4    113r4 

 

115616217r8  

 

622223924r6  

 

726427r4     832r1  

 

435r5       554c8   

 

 

Puzzle 37 
 

12b2          553667r5

           

714r7: 7c3b2    116b7     

 

219b8     720821r4 

 

823624r7      228b9 

 

329230c4     636237r1 

 

440c3          746c1   
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312 760 841 6* 426 546 963 28 1* 

919 2* 659 37 8* 123 764 416 543 

418 122 545 26 956 755 658 815 311 

1* 9* 4* 827 547 648 39 730 210 

514 661 762 93 3* 2* 8* 11 42 

25 839 338 729 124 425 544 631 942 

7* 337 933 1* 235 851 413 5* 650 

6* 536 234 4* 757 340 14 932 852 

817 420 121 528 649 954 2* 3* 753 

757 832 1* 5* 310 253 960 646 440 

548 956 437 642 834 1* 3* 755 250 

647 251 31 439 744 952 8* 118 549 

225 113 726 38 427 528 6* 9* 812 

435 536 833 7*  931 630 114 2* 311 

3* 622 924 19 223 8* 561 441 762 

958 759 538 2* 1* 36 421 84 620 

8* 4* 616 943 529 745 217 35 115 

12 3* 219 83 6* 47 763 554 964 

237 59 1* 7* 335 953 636 827 454 

746 650 440 230 848 117 955 5* 3* 

847 951 334 58 649 452 239 715 116 

5* 3* 720 821 2* 613 456 118 957 

943 442 238 1*  55 36 7* 67 8* 

6* 12 822 431 959 760 31 219 510 

4* 2* 624 925 14 5* 823 3* 714 

333 762 512 6* 458 861 1* 944 228 

13 863 941 329 764 232 511 445 626 



PRACTICE SET 3 
 

 

 

 

 

Puzzle 38  
 

 

 

 

 

 

  

 

 

 

 
 

 

 

 

Puzzle 39  
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    2* 9* 6*   

 1* 4*       

         

   7*     1* 

6*     8*     

  2*    3*   

2*      5* 6*  

 7*    1*    

   3*      

    8*  7* 2*  

5*  1*       

         

6* 2*       1* 

   5*     4*  

3*    7*     

 7*     3*   

   4*  6*    

   1*      



Puzzle 40  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Puzzle 41  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Puzzle 42  
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

244 

    8* 3*  6*  

 5* 4*       

         

    7*  2*   

 1*  4*       

8*       3*  

   6*   4*  1* 

  9*    5*   

3*         

 7*  4*   2*   

  8*  5*     

         

  5*  8* 3*    

6*       7*   

    9*     

7* 4*  6*      

       8* 9* 

   1*      

 3*       6* 

2*     4*    

         

 7* 1*     3*  

  6*   8*  2*   

         

3*      4* 7*  

5*   6* 2*     

   1*      



Puzzle 43  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Puzzle 44  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Puzzle 38  
 

13r7   29c4     610b1        

 

215316b5   717b2   320r7 

 

721222b9      725326r1 

 

528r8  829r6     531g     

 

433b      938r9    541c4  

 

448c5 455c7     
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 5* 2* 6*  7*    

    1*  4*   

       9*  

   5* 8*   2*  

1*          

         

 6*  2*     3* 

4*      1*   

   9*      

2* 1*   3*     

  4*     6* 5* 

         

 8*  2*   3*   

   6*   4*    

     5*    

    7*  1*   

6*  5*       

3*         

725 531 326 450 2* 9* 6* 17 854 

855 1* 4* 614 749 346 957 544 224 

956 21 610 541 16 853 758 345 459 

532 433 934 7* 316 613 223 830 1* 

6* 318 717 15  8* 215 462 961 547 

14 829 2* 940 542 443 3* 719 62 

2* 935 13 851 448 752 5* 6* 320 

327 7* 528 29 612 1* 863 464 960 

437 611 836 3* 938 539 18 222 721 



Puzzle 39  
 

 

54r1     65b5    76b6           

 

772889c4&210c5:   

27r3b1 

 

414c5    517b2   718319r4 

 

924r6      826g     

 

827328b1: 27(31)(33) 

 

433b7    639540c2    547r7    549c7 

  

Puzzle 40  
 

4152r1    16b3  17b8         

 

38b9     815b1    118r1 

 

619r8     517c1  318r7 

 

622523r4: 6c1b1  

 

925r1: 9c1b1   827728c7 

 

738c4     740b3    951r2  
 

 

 
 

Puzzle 41  
 

8394r7     312c4     513b6      

 

514315b3      716417r8     

 

120g   621b5     123g        

 

624g       925326527r5  

 

533334r1    239r8  

 

543344c7 
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943 438 642 331 8* 11 7* 2* 54 

5* 328 1* 77 210 416 826 645 946 

757 827 258 932 611 512 130 329 433 

6* 2* 517 89 414 319 920 718 1* 

855 941 756 5*  12 225 622 4* 321 

3* 13 415 65 7* 924 549 852 251 

435 7* 948 28 547 813 3* 137 644 

136 540 854 4* 361 6* 250 963 723 

259 639 360 1* 962 76 434 564 853 

118 742 243 52 8* 3* 925 6* 41 

951 5* 4* 134 653 739 314 832 236 

652 313 815 960 257 459 728 133 535 

523 924 622 310 7* 111 2* 43 817 

245 1* 312 4*  947 816 621 537 746 

8* 44 744 256 555 654 17 3* 948 

740 829 526 6* 39 962 4* 263 1* 

45 619 9* 830 931 250 5* 749 38 

3* 241 16 738 458 561 827 964 631 

931 7* 635 4* 134 123 2* 533 86 

148 249 8* 911 5* 752 344 659 458 

537 346 441 85 636 251 930 155 760 

442 932 5* 72 8* 3* 145 262 663 

6* 88 228 527 120 422 7* 925 326 

347 150 71 229 9* 621 87 457 556 

7* 4* 94 6* 219 83 543 353 154 

239 638 140 312 716 513 417 8* 9* 

89 514 315 1* 418 910 624 761 264 



Puzzle 42  
 

 

2253b2    44b6     65r7        

 

18b3      212r7   413c2 

 

715c1  317b6     120b4   

 

726427r5   236r1    638r4 

  
542r9  744545r2 

 

 

Puzzle 43  
 

11c4       449536r1           

 

29510r2      414715c4     

 

216c5: 79(55)(65)  

 

519g  520c1     921r8 

 

922323624r8: 79(55)(65)

        →36c6b5 

 

928429r4   841b9    351c2 

 

 

Puzzle 44  
 

11b3          32r2      

 

33r5          55r1   

 

611412213c5    420r4    

 

723b5    125r4     

 

127c4           429c7  

 

    732933c1       739c3 

 

    342r7          745c7 
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19 3* 548 236 735 847 951 414 6* 

2* 957 744 545 67 4* 123 861 324 

66 413 858 946 319 120 752 241 562 

855 7* 1* 430 534 231 638 3* 956 

427 53 6* 318 8* 928 2* 122 726 

954 22 31 729 121 633 853 543 432 

3* 65 212 849 937 550 4* 7* 110 

5* 18 411 6* 2* 716 325 963 864 

715 859 960 1* 44 317 542 639 240 

95 5* 2* 6* 44 7* 36 13 87 

659 750 857 361 1* 98 4* 510 29 

360 430 131 862 216 518 744 9* 643 

747 928 429 5* 8* 353 658 2* 12 

1* 852 655 414 740 217 563 346 938 

212 351 556 11 939 654 864 745 437 

849 6* 748 2* 519 133 927 436 3* 

4* 212 922 715 323 825 1* 624 521 

520 132 335 9* 626 434 211 841 742 

2* 1* 615 55 3* 837 429 753 952 

933 32 4* 724 213 128 836 6* 5* 

732 510 834 414 611 938 255 351 154 

59 8* 926 2* 125 723 3* 420 617 

122 240 33 6*  958 4* 58 862 763 

421 616 739 34 859 5* 456 157 260 

835 431 241 943 7* 619 1* 57 342 

6* 947 5* 127 412 348 745 261 864 

3* 146 11 844 56 249 618 950 428 



PRACTICE SET 4 

 
 

 

 

Puzzle 45  
 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

Puzzle 46  
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    4*   7*  

6* 5*        

 2*        

   3*   6*  8* 

1*     7*     

      2*   

     2* 5* 3*  

7*   8*      

4*         

 3*   7* 9*    

       1*  

         

 9*     2*   

1*   4*       

   1* 8*     

6*   5*  3*    

    4*  9*  7* 

         



Puzzle 47  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Puzzle 48  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Puzzle 49 
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  8* 5*  4*    

 3*       1* 

   7*      

   6*    5*  

1* 2*         

         

4* 1*   2*     

2*      3*   

      8* 6*  

 7* 4*   3*    

   6*   1*  2* 

         

5*   1* 2*     

 3*       4*  

    6*     

2*   5*      

      8* 7*  

1*         

8*  9* 6*   4*   

   3*  5*   7* 

         

   7*  2*  5*  

  4*   9*     

         

1* 3*        

    2*  9*   

 5*        



Puzzle 50 
 

 

 

 

 

 

 

 

 

 

 

 

 

Puzzle 51 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Puzzle 45 

 
2152c1  76r4:7c3b1 

 

410c4       413c2 

 

115b8 316r6:3c2b3 

 

819b9       621522c8   

  

125g  326g    931g

       

932g     933c1  

 

135r3: 47(23)(33)    326g 
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   8* 6*  4*   

 2* 3*       

 5*     7*   

    4* 2*    

1*       6*   

         

     5*  3* 2* 

6*   1*      

       8*  

    1*  4*  5* 

6*   9*     8* 

3*      2*   

9*       1*  

     2*     

     5*    

   6*    3*  

 2* 8*       

   1*      

330 956 157 650 4* 551 837 7* 25 

6* 5* 739 125 24 840 436 923 326 

834 2* 438 932 342 741 135 621 524 

21 76 931 3* 554 153 6* 414 8* 

1* 213 846 23 7* 648 327 522 928 

52 647 316 410 845 949 2* 115 77 

933 855 658 719 160 2* 5* 3* 412 

7* 344 520 8* 662 411 929 218 161 

4* 159 219 552 963 343 78 817 664 



Puzzle 46  
 

 

13b4    95b5     210g       

 

711112r7       713c4       

 

317b5  418c2     524c5 

 

730331232c1      234r2       

 

335c4       838r1 

 

 

Puzzle 47  
 

1546b9    271849310c4 

           

317r1      419b8     524c3

  

527728r2   829b3    632r7     

 

633b2     534c2    835c4 

 

937b3      940741b1 

 

846747r5    550r6  

 

 

Puzzle 48  
 

2112r1    2314r8  314b5 

 

415716r2: 4c6b5   

 

617r5: 6c1b1   718c1:    

7r5b5     

 

419b2     624c2: 6r7b9     

 

525326r8            729c4   

 

931r5: u59r3b4r5b5    

 

933b1       934c5      539840941642c8  
 
 

 

251 

232 3* 14 636 7* 9* 423 539 838 

4* 648 749 234 524 829 337 1* 99 

98 843 544 335 13 42 753 255 654 

533 9* 841 713 317 642 2* 420 11 

1* 247 661 4*  95 551 840 752 363 

730 418 362 1* 8* 250 660 958 564 

6* 711 97 5* 210 3* 112 822 421 

331 545 246 826 4* 115 9* 627 7* 

828 116 419 96 625 714 559 357 256 

741 940 8* 5* 12 4* 644 215 317 

527 3* 23 835 658 959 426 728 1* 

643 425 11 7* 318 211 962 863 556 

322 742 424 6* 953 114 212 5* 854 

1* 2* 951 49 846 552 747 320 645 

830 633 550 27 748 321 113 419 955 

4* 1* 632 310 2* 131 561 964 749 

2* 829 738 936 557 660 3* 15 46 

937 534 323 18 416 739 8* 6* 24 

645 7* 4* 21 12 3* 948 539 847 

844 528 933 6* 415 716 1* 343 2* 

346 17 29 830 934 535 462 642 761 

5* 419 623 1* 2* 937 760 840 359 

931 3* 16 129 536 828 211 4* 617 

718 210 832 314 6* 421 550 15 949 

2* 853 357 5* 755 18 663 941 464 

420 624 525 927 326 23 8* 7* 14 

1* 952 756 422 854 615 358 212 551 



Puzzle 49 
 

523324r1  711b1    

 

912b4       815r2       

 

416b4       417r4 

 

919b3   222c1     

 

623g        424g  

 

129c3   831r4         

 

333c5        440c4 

 

Puzzle 50 
 

 

61b1  62b9  17b5        

 

2839810c7     417b1       

 

120521322b4: 1r1b1 

 

328829r8       537c1     

 

538c5           543r5  

 

 

Puzzle 51 
 

22c4       3869r1           

 

111b7     514415r2    

 

119b9: 58(77)(79) 

 

    321622923724r8 

 

526c8        528429c1 

 

    644c7: 6r4b5 

 

    747c5  
 
 

 

252 

8* 24 9* 6* 734 133 4* 33 52 

424 630 129 3* 815 5* 214 913 7* 

310 711 59 21 416 912 650 851 145 

623 920 328 7* 132 2* 831 5* 417 

58 143 4* 841  9* 648 346 758 259 

222 842 727 440 57 347 144 649 918 

1* 3* 262 921 637 756 55 463 860 

725 426 654 56 2* 855 9* 139 338 

919 5* 861 135 336 457 752 264 653 

761 156 962 8* 6* 322 4* 215 521 

417 2* 3* 739 538 120 810 66 926 

816 5* 61 214 925 418 7* 124 323 

537 65 835 945 4* 2* 39 746 127 

1* 949 211 332 833 742 6* 543 448 

330 453 754 544 17 64 28 950 834 

960 836 452 63 740 5* 159 3* 2* 

6* 328 563 1* 213 829 964 451 747 

212 755 157 519 331 941 558 8* 62 

830 954 753 22 1* 38 4* 69 5* 

6* 112 23 9* 514 415 310 716 8* 

3* 561 462 850 747 648 2* 917 111 

9* 359 560 432 649 851 746 1* 25 

429 855 656 752 2* 11 942 526 340 

24 745 113 341 943 5* 644 827 431 

120 463 964 6* 835 27 533 3* 738 

724 2* 8* 518 321 923 119 425 622 

528 659 358 1* 436 737 834 26 939 



PRACTICE SET 5 
 

 

Puzzle 52  
 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 
 

 

 

Puzzle 53 
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5*      3* 4*  

4*     1*    

   7*   8*   

  2*      1* 

6*   3*       

         

    3* 2*    

 7*      9*  

 1*   8*     

   1*  3*   4* 

7*  6*       

8*         

 8*       5* 

     6*   3*  

   4*      

      8* 1*  

 1*  5*      

   2*   6*   



Puzzle 54 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Puzzle 55 
 

 

 

 

 

 

 

 

 

 

 

 

 

Puzzle 56 
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   4*  2*  5*  

8*      7*   

    6*     

 2*  7*   4*   

 6*  3*       

      1*   

       3* 8* 

    2*   6*  

1*         

 5*      9*  

   1* 3*     

         

    5* 8*  4*  

1*  2*        

     9*    

3*   6*   2*  1* 

      3*   

 9*        

   6* 2*     

  3*       

1*         

6* 2*  3*      

        5* 1* 

      8*   

  4*  5* 1*    

 5*     6* 3*  

        7* 



Puzzle 57 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Puzzle 58 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Puzzle 52  
 

 

13b7      57r3 

 

78b71       812513r2      

 

715216917c5 

 

223624c2       327828b2 

 

830g        335236137r8 

 

940c6  

   
 
 

 

255 

5*     1*    

      2* 7*  

      3*   

   2* 5*    8* 

6* 3*         

  7*       

4*       1* 5* 

   7* 6*     

   3*      

   7*  5*  6*  

 9* 1*    4*   

         

6*       7* 8* 

3*   2*       

    9*     

    1*  9*   

7*   8*      

 2*        

5* 814 14 641 216 940 3* 4* 711 

4* 39 78 812 513 1* 946 247 645 

926 223 625 7* 42 31 8* 13 57 

710 456 2* 555 917 834 643 329 1* 

6* 957 828 3*  16 458 722 548 249 

15 553 327 219 715 642 451 833 952 

830 624 563 964 3* 2* 139 721 454 

335 7* 460 137 618 559 236 9* 831 

138 1* 962 461 8* 720 550 644 332 



Puzzle 53 
 

11b1       628374r1           

 

510b9         811c3     

 

117c9       720b8 

 

722323c4      325r6:  

 

3c2b1         526337c7     

 

432b1          433934c8     

 

436b6     742c5  748r8  
 

 

Puzzle 54 
 

12b7       633485c7           

 

111r1: 1c3b2    

 

212c1      414b7  

 

618819c4    720b4  

 

722b9    425r7 

 

530g        734335c2      

 

141r4       549r8 

 

Puzzle 55 
 

11b5     39210c8           

 

211312c2   515b2   616b5

  

617718c2: 48c2b2  

 

920r2      922r7 

 

526827c4    735b6 

 

438r8     842c1     444c5  
 

 

256 

562 956 263 1* 83 3* 74 62 4* 

7* 331 6* 924 441 543 120 235 816 

8* 432 11 69 742 244 526 934 329 

66 8* 946 323 245 119 440 721 5* 

439 554 753 811  6* 957 259 3* 117 

118 255 325 4* 547 758 960 815 65 

961 67 564 722 328 436 8* 1* 250 

249 1* 814 5* 937 68 327 433 748 

331 752 438 2* 113 812 6* 510 951 

347 111 746 4* 810 2* 63 5* 915 

8* 416 66 557 962 361 7* 19 213 

212 953 554 121 6* 720 34 88 414 

542 2* 840 7* 141 638 4* 933 336 

745 6* 143 3*  463 964 85 231 530 

451 335 955 21 544 839 1* 732 637 

67 552 425 956 723 124 227 3* 8* 

950 734 348 819 2* 428 549 6* 12 

1* 829 226 618 359 558 960 417 722 

443 5* 14 827 745 231 646 9* 314 

920 617 719 1* 3* 548 462 210 861 

842 211 313 923 444 647 549 13 750 

641 312 921 755 5* 8* 12 4* 252 

1* 857 2* 454 616 38 925 756 533 

7* 458 515 253 11 9* 859 39 631 

3* 718 837 6* 922 436 2* 532 1* 

229 15 438 526 834 735 3* 640 924 

528 9* 639 37 230 16 763 860 464 



Puzzle 56 
 

 

12r8       6839710r7    

 

220b1      421r9 

 

    623224b8  227c4 

 

    529r2       234835c9    

 

    837c3       740441r5 

 
 
 

 
 

Puzzle 57 
 

11b6       32r7           

 

55b7      76r1       

 

615r7      516r2:  

 

5c6b6     217b4       

 

220r5       622r4  

 

626c9     129b8: 1c9b7 

 

834r6      836r7: 8c4b4  

 

 

Puzzle 58 
 

9112r1      19b3           

 

214r4        216b6       

 

717r2        825226rb9

  

830c1        434b4 

 

435c1  440c4:4r6b8 

 

641b5       442r5 
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532 455 948 6* 2* 314 17 757 835 

119 844 3* 15 758 529 462 961 626 

1* 756 616 843 959 454 313 260 533 

6* 2* 531 3* 14 851 463 464 936 

441 311 839 942 625 740 224 5* 1* 

946 13 747 530 450 228 8* 623 312 

39 68 4* 710 5* 1* 938 837 234 

718 5* 12 227 852 953 6* 3* 422 

845 949 220 421 315 617 51 16 7* 

5* 76 218 440 34 1* 947 846 227 

33 843 456 516 938 625 2* 7* 155 

960 161 626 839 714 217 3* 55 457 

959 458 962 2* 5* 710 622 312 8* 

6* 3* 835 124 442 741 530 220 79 

232 531 7* 623 834 311 129 450 951 

4* 615 32 937 219 836 78 1* 5* 

844 233 154 7* 6* 153 448 949 313 

77 963 564 3* 11 552 845 628 221 

218 445 346 7* 832 5* 12 6* 91 

830 9* 1* 354 655 217 4* 537 719 

536 639 724 97 434 18 828 229 338 

6* 543 94 111 356 457 214 7* 8* 

3* 831 442 2*  722 641 544 93 112 

110 723 215 548 9* 833 663 362 460 

435 347 551 653 1* 721 9* 825 226 

7* 19 652 8* 216 96 364 461 550 

95 2* 827 440 549 358 720 113 659 



PRACTICE SET 6 
 

 

 

Puzzle 59 

  
 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

  

 
 

 

 

Puzzle 60 
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1*     2*    

   5*    7*  

         

   7* 6*   5*  

2*       1*   

   3*      

    7*  8*  6* 

4* 7* 5*       

 3*        

 8*     7* 4*  

 3*   2*     

    1*     

2*   6*    8*  

1*          

      5*   

9*        2* 

   8*   3*   

   4*  3*    



Puzzle 61 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Puzzle 62 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Puzzle 63 
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3*        8* 

   1*    6*  

2*         

    3* 2* 5* 4*  

 1*         

      2*   

 6*  7* 1*     

4*   6*      

      3*   

 5* 7* 3*      

4*        2* 

         

2*  4*  9*     

    3*  6* 5*  

1*         

 8*     3* 7*  

   1*      

     4*    

4*  1*  3*     

       2*  

8*         

 9*  2*  6*    

       1*  4* 

   7*      

    4*  3*   

 2*      6*  

5*   1*      



Puzzle 64 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Puzzle 65 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Puzzle 59 
 

26b5   57b9     310r7 

 

311r5       313614815c1 

 

317418r7       320r5 

 

821b3        222123r9    

 

228c8        329c6    

 

833234r2     939b5       

 

945g           946c8 
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  3* 4*    1*  

     8*  2*  

8*   6*      

3* 7*     6*   

     1*     

6*         

   3*   8*   

 1*     5*   

  2*       

8* 1*        

   8*   5*   

   3*      

  3*  9* 4*    

6*       2*   

     1*    

    3*   1* 9* 

2*   7*      

       4*  

1* 652 72 840 456 2* 512 946 357 

313 833 234 5* 955 632 458 7* 126 

511 951 450 125 354 71 653 228 843 

815 137 945 7* 6* 440 359 5* 260 

2* 448 320 939 59 841 1* 647 74 

73 510 649 3* 26 138 962 844 463 

916 235 136 418 7* 58 8* 317 6* 

4* 7* 5* 630 831 329 261 127 964 

614 3* 821 222 123 924 75 419 57 



Puzzle 60 
 

23b6      19b1   311c8        

 

815c1     419b9    123b8 

 

425826c5   429r3   531b7      

 

933c7: 9r3b1  635r2 

 

737c1    940c4     144r5 

 

545b5  157r7 

 

 

 

Puzzle 61 
 

 

16c1     37c4    29b7          

 

415516717c9: 7r5b5    

 

421b9    327r8 331b5 

 

632c1    733r4 935c1 

 

438b2    844c4 655r3 

 

   

 

Puzzle 62 
 

14r7      4526r5           

 

59610r4      212r1     

 

216r7      720c2 

 

329b1   535r7: 5c6b4 

  

 637r2      738r4 

 

 251c8  
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538 8* 27 314 660 959 7* 4* 110 

635 3* 19 736 2* 430 933 531 817 

429 753 952 541 1* 818 634 26 313 

2* 954 427 6* 312 545 25 8* 756 

1* 547 751 942 826 144 422 311 650 

32 648 828 24 425 746 5* 123 949 

9* 420 31 143 556 658 816 757 2* 

737 122 539 8* 962 23 3* 661 419 

815 28 640 4* 763 3* 124 164 532 

3* 951 156 445 543 659 758 29 8* 

734 446 547 1* 210 852 953 6* 38 

2* 850 655 37 760 954 157 520 415 

632 733 837 936 3* 2* 5* 4* 12 

539 1* 23 844 462 761 65 314 918 

935 330 438 541 631 11 2* 819 717 

840 6* 329 7* 1* 542 421 925 213 

4* 212 726 6* 928 327 822 123 516 

16 548 949 211 863 464 3* 724 64 

630 5* 7* 3* 212 923 154 453 855 

4* 921 828 637 114 741 542 333 2* 

329 115 216 844 413 543 949 648 740 

2* 610 4* 59 9* 18 738 839 334 

827 720 926 45 3* 26 6* 5* 17 

1* 319 511 745 647 846 452 251 922 

925 8* 14 216 535 636 3* 7* 43 

760 42 632 1* 862 31 263 950 558 

159 217 331 924 761 4* 864 156 657 



Puzzle 63 
 

21b1   47b5    613b6      

 

617r5      621r1    923b1 

 

124c8   525b9 

  

127r8   830c2 

 

931r7      733b2 

 

837g       338c8 

 

944r1   549c4 

 

Puzzle 64 
 

14c1   210c7    213b2      

 

318c6     622b7    824b3 

 

532c4: 5r1b4    733r5  

 

735r4    538b1      739r7  

 

743b4 
 

 

 

Puzzle 65 
 

12c4 9849c4     211r7       

 

413r5    914415c7   417r2

   

221b4    322923c1   230r2

  

633r6: 6c5b4→6c5b6 

 

837c6     838c7: 8r7b3 

 

839r5     743c1 

 

648b3     755r1  
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4* 745 1* 843 3* 22 621 539 944 

618 551 923 412 762 161 842 2* 353 

8* 352 21 549 622 955 747 411 154 

733 9* 48 2* 129 6* 540 338 841 

26 617 559 316 956 860 1* 935 4* 

334 128 858 7* 557 47 25 936 620 

931 830 732 613 4* 526 3* 124 24 

127 2* 328 950 863 764 410 6* 525 

5* 49 614 1* 23 315 946 837 748 

214 623 3* 4* 944 542 748 1* 83 

14 538 959 743 319 8* 458 2* 622 

8* 455 760 6* 215 15 321 537 961 

3* 7* 19 217 445 946 6* 831 535 

952 826 453 532 1* 62 210 733 320 

6* 213 536 827 734 318 18 963 462 

739 954 625 3* 541 216 8* 464 17 

451 1* 824 947 629 750 5* 312 211 

540 31 2* 16 828 456 957 630 749 

8* 1* 955 98 221 554 415 659 325 

417 324 230 8* 17 658 5* 929 760 

923 552 656 3* 418 757 16 231 832 

14 742 3* 234 9* 4* 838 562 661 

6* 916 413 535 839 31 2* 741 15 

544 236 845 633 740 1* 914 320 419 

743 851 553 49 3* 211 647 1* 9* 

2* 410 13 7* 649 928 326 863 564 

322 648 927 12 550 837 746 4* 212 



PRACTICE SET 7 
 

 

 

Puzzle 66  
 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

  

 

 
 

 

 

Puzzle 67  
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6*   1*    4*  

   2*   8*   

9*         

   5* 4*   6*  

 8*        1* 

 2*        

4*    6*  3*   

 7*     2*   

         

    1* 6* 7*   

 4* 8*       

         

1*     7* 6*   

  2* 8*       

   3*      

    4*   8* 2* 

7* 5*        

       3*  



Puzzle 68  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Puzzle 69  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Puzzle 70  
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6*    5*   3*  

   2* 1*     

         

   1*  3*   4* 

5*  2*        

8*         

     7* 8* 6*  

 1*  4*   5*   

         

   4* 5*     

1*      6*   

    8*     

6*   7*  1*    

       3*  8* 

       4*  

 4* 8* 2*      

 7*     1*   

  9*       

7*      6*  1* 

    4* 3*    

         

1*   7*      

      5*  4*  

  6*    8*   

 4* 5*     9*  

 6*   2*     

   1*      



Puzzle 71  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Puzzle 72 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Puzzle 66  
 

21c1    67c2     111b7 

 

413b9      414r2: 4c3b2 

 

815c1    118r7        

 

819120321r4: 3c3b3    

 

323c1    724b1  727r4 

 

529930b7: 37(19)(39)       

 

932833c9     336c8     537r7     135r3: 47(23)(33)    326g 
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7*    1*     

4*      8*   

   2*   3*   

   3*  8*    

5*        4*  

   6*      

 3*  5*   2*   

    4*   7*  

 1*        

 1*  2*      

6*       3*  

      5* 7*  

7*  3*       

   1*       

5*         

 6*     2*  1* 

4*    3*     

    5*    8* 

6* 525 26 1* 822 353 930 4* 752 

323 414 724 2* 931 610 8* 111 529 

9* 117 816 462 751 563 69 25 354 

120 321 928 5* 4* 819 727 6* 24 

548 8* 644 942 23 750 446 336 1* 

749 2* 445 643 355 156 547 835 932 

4* 926 118 738 6* 22 3* 537 833 

815 7* 560 361 157 464 2* 940 68 

21 67 359 834 558 941 112 739 413 



Puzzle 67  
 

71b9    83r1     27b3           

 

38b6: 28(85)(86)  

 

411b3       512r7      

 

613114c4:6r8b9     

 

115b9     716r2 

 

320221c7: 3r5b2  

 

423r4: 4c4b4     427c7      139r2     540r1: 5c3b2    942r4 
 

 
Puzzle 68 

 

13b2   5728c6   810211r4  

 

414r6 315b2   816617r8     

 

320c4   921g:56(92)(93) 

→7c1b3 

 

222c1: 2r9b9    423324r7 

 

429830231r1     445b5  

 
 
 

Puzzle 69  
 
11b3     84r4     48c7           

 

312r4     613b3     

 

 714g: 259r4b8   520c3 

 

 223524c7  729b7 

 

 330r1: 3c2b2     933r3 

 

636937738r7       941g 

 

345g   247r9: u23r3b7r9b9 
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231 332 941 430 1* 6* 7* 540 83 

656 4* 8* 261 710 549 321 139 962 

550 753 155 960 317 818 222 659 429 

1* 85 543 942 225 7* 6* 423 310 

333 645 2* 8*  544 435 928 726 137 

434 951 752 3* 646 136 84 224 538 

957 154 658 72 4* 38 512 8* 2* 

7* 5* 39 114 819 220 427 963 664 

86 27 411 613 547 948 115 3* 71 

6* 830 736 937 5* 429 15 3* 231 

427 541 328 2* 1* 649 957 847 758 

14 232 942 320 735 848 651 446 550 

921 738 639 1* 810 3* 211 59 4* 

5* 315 2* 653  434 944 755 16 813 

8* 414 13 754 212 57 356 959 652 

222 925 423 519 324 7* 8* 6* 12 

362 1* 816 4* 617 28 5* 760 963 

761 640 543 818 926 11 445 233 364 

85 631 221 4* 5* 330 925 729 118 

1* 334 49 941 763 262 6* 86 522 

719 933 520 13 8* 632 48 248 351 

6* 84 312 7* 411 1* 223 526 927 

410 260 715 643 942 559 3* 117 8* 

935 561 116 346 264 858 714 4* 628 

339 4* 8* 2* 12 937 524 636 738 

548 7* 613 855 345 454 1* 940 249 

247 11 9* 556 644 757 87 352 453 



Puzzle 70  
 

 

11b3   47r1  711b4      

 

612813b8: 6c4b4   616c6 

 

717618r7   719b8   524b2 

 

927r8   828r7      232c6 

 

337g       338b3      948c2

  

 

Puzzle 71 

 

31c1   47b5    713b3           

 

514r9      715b7 

 

716117818c4    

 

225926727c6 

 

131r7: 1c8b7   

 

132533c7     234c6 

 

636r7: 6c8b7      241c1       645b2       647b7  

 

 

Puzzle 72 

 
1162b2    15b7    28b6        

 

39r7        515716r1   

 

723b5     426b9    827r8 

 

629r9    631b4 

 

832r3       233c1 

 

935c3       646r4 
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7* 249 47 552 936 831 6* 341 1* 

563 16 951 664 4* 3* 258 723 843 

662 842 340 261 711 15 956 555 457 

1* 524 826 7* 612 49 347 254 953 

337 948 250 813 14 5* 719 4* 614 

48 720 6* 933 330 232 8* 13 525 

218 4* 5* 329 828 616 12 9* 717 

927 6* 11 410 2* 722 545 844 346 

839 338 721 1* 535 934 439 615 260 

7* 824 36 48 1* 635 533 962 263 

4* 249 648 919 35 534 8* 144 715 

142 952 551 2* 823 727 3* 647 49 

241 412 143 3* 960 8* 722 561 654 

5* 645 839 716  257 120 956 4* 32 

31 721 946 6* 559 47 132 258 838 

636 3* 411 5* 728 926 2* 837 131 

840 553 250 117 4* 34 655 7* 964 

930 1* 713 818 629 225 410 33 514 

934 1* 515 2* 716 311 455 854 650 

6* 239 737 522 462 861 15 3* 945 

832 310 438 941 16 631 5* 7* 240 

7* 858 3* 442 244 959 646 17 520 

233 452 62 1*  860 521 724 953 314 

5* 957 11 312 647 723 856 243 451 

39 6* 828 730 963 464 2* 519 1* 

4* 517 218 827 3* 14 949 648 725 

13 736 935 629 5* 28 313 426 8* 



PRACTICE SET 8 
 

 

 

Puzzle 73 

  
 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 
 

 

 

Puzzle 74 
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3*    6*  2*  7* 

    5* 8*    

     1*    

4* 3*  9*      

        5* 2* 

         

   2*   4*   

 5*      8*  

  1*       

5* 3*    1*    

   7*   2*   

         

4*  2*       

     9*    3* 

7*       1*  

  6* 2*   4*   

 8*   3*     

      7*   



Puzzle 75 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Puzzle 76 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Puzzle 77 
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9*     4* 2*   

 6*  1*      

         

2*   3* 9*     

   8*     1* 4* 

6*         

  1*   5*    

    2*  9*   

 8*        

4*  1*      6* 

   7*   2*   

5*         

 7*  3*  2*    

        1* 4* 

         

   5* 4* 6*    

      8* 3*  

    1*     

4*     7* 3*   

 5*  6*      

         

  6* 5* 1*     

        8* 2* 

      4*   

   2*    7* 6* 

3* 4*        

9*         



Puzzle 78 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Puzzle 79 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Puzzle 73 

  
2293b4  548516r1 

 

5829r4      119r7 

 

820b6   

 

822123624r4  

 

427c5: 4r6b8           

 

130b5: 1r6b8 

 

336g     
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6*   1*     2* 

 7*   3*   8*  

         

 3*     9* 4*  

 4*  5*       

   2*      

2*  1*       

    9*  4*   

5*         

6*   3* 4*     

      5* 1*  

2*         

4* 3*     7*   

     1* 8*    

         

 5*  2*     4* 

  8*   7*    

 1*        

3* 85 54 47 6* 93 2* 16 7* 

112 211 462 759 5* 8* 646 361 948 

654 756 963 360 22 1* 517 464 818 

4* 3* 27 9* 725 58 822 624 123 

755 957 858 130 427 633 329 5* 2* 

514 131 634 832 328 213 945 743 444 

852 653 337 2* 119 741 4* 949 516 

210 5* 740 635 921 439 126 8* 336 

951 450 1* 515 820 338 742 21 647 



Puzzle 74 

 

21r1  32b2     3314c7           

 

77r5: 24(58)(69) 

 

416r5      118b5    

 

420321b3      129330r7 

 

834b2   637r1     638r8   

 

547c7     848b8    855r 

 
 

 

 

Puzzle 75 

 

11c1    47b5     59b5       

 

210611r5      817518b2  

 

420b1       921b3  

 

824325426627b6: 6r8b3 

 

335g        636r1      

 

737c2      544445c7 

 

 

Puzzle 76 

 

1142r4   3384b6   4516r8

           

219c1: 2r6b8&r7b9    

 

520r2      625c4     517c1 

 

318r7      628r4    731b1 

 

232r3   736237r9 

 

939r1      345r3      752r6  
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5* 3* 850 637 21 1* 949 425 727 

635 422 951 7* 861 35 2* 563 141 

213 712 142 945 424 560 33 864 640 

4* 656 2* 36 118 855 547 728 952 

834 131 526 416 9* 77 636 29 3* 

7* 957 32 546 658 28 848 1* 417 

129 521 6* 2* 710 944 4* 330 843 

933 8* 711 839 3* 423 14 638 215 

332 214 420 119 562 659 7* 954 553 

9* 737 338 529 636 4* 2* 832 12 

819 6* 213 1* 754 931 544 449 356 

11 420 539 212 355 830 746 659 960 

2* 16 47 3* 9* 615 833 751 552 

341 922 742 8*  58 210 611 1* 4* 

6* 518 817 47 15 716 335 961 262 

751 214 1* 923 824 5* 445 357 658 

447 340 643 728 2* 14 9* 548 834 

550 8* 921 627 426 325 13 263 764 

4* 840 1* 234 327 939 524 732 6* 

355 630 954 7* 520 18 2* 415 847 

5* 233 731 414 626 842 110 946 345 

11 7* 42 3* 859 2* 628 523 961 

219 341 856 625 960 521 762 1* 4* 

953 522 629 112 752 413 348 849 251 

857 17 358 5* 4* 6* 963 250 764 

68 45 57 935 244 743 8* 3* 16 

136 938 237 84 1* 33 416 617 518 



Puzzle 77 

 

43r7   3596r7     67b3       

 

511112r5    513114r7  

 

716g      817218r4    719g 

 

721322c2   226527r1  

 

834r1    337938c4   544c6      

 

846c7: u58c5b6c7b9 
 

 

 

847b9: 34(98)(99)   251c7 

 

Puzzle 78 
 

211253c2  49b3           

 

410r1:     

39(56)(66)→4c5b5 
 
 
 

313c4: 3r8b3    

 

314c1: 14(21)(31)  

 

715b3     916g     617g   

 

818g      819g     920c4     

 

823g    824b5: 39(56)(66)    327r1    131c5   533r4  944r7  556c9 
 

 

Puzzle 79 
 

115283c1   37b1:    

15(13)(33)           
 

48r2      112r8   218b3    

 

319b5 621c2   823b4 

 

727228c5      727228c5 

 

530631r4      740341r7 

 

548b9    653c8  
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4* 923 834 135 226 7* 3* 69 527 

220 5* 355 6* 957 845 152 458 725 

68 721 154 44 356 544 846 263 962 

817 218 6* 5* 1* 42 716 964 361 

511 112 41 337 742 943 610 8* 2* 

719 322 924 832 631 228 4* 529 120 

114 815 513 2* 43 35 96 7* 6* 

3* 4* 740 938 549 633 251 153 847 

9* 67 241 739 848 136 550 360 459 

6* 53 826 1* 728 410 327 922 2* 

145 7* 916 617 3* 24 537 8* 447 

146 21 330 920 529 825 144 757 656 

823 3* 28 721 131 634 9* 4* 533 

959 4* 636 5*  824 353 27 143 758 

760 12 535 2* 411 961 662 352 854 

2* 949 1* 412 632 742 851 538 348 

314 617 715 818 9* 539 4* 26 140 

5* 850 49 313 25 141 763 664 955 

6* 936 115 3* 4* 517 239 738 826 

83 48 37 634 727 129 5* 1* 935 

2* 737 516 214 823 933 455 653 356 

4* 3* 932 530 228 631 7* 86 14 

52 621 762 963 1* 8* 357 454 260 

11 85 261 764 319 411 958 552 659 

740 5* 622 2* 942 113 825 341 4* 

343 218 8* 410 650 7* 112 945 548 

944 1* 49 824 551 320 649 247 746 



PRACTICE SET 9 
 

 

 

 

Puzzle 80 
 

 

 

 

 

 

 

 

 

   

 

 
 

 

 

 

 

Puzzle 81 
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   3*   5* 9*  

 1*      7*  

4*    6*     

   5*   3*  4* 

  1*        

   2*      

 6*   1* 7*    

3*      8*   

         

2* 1*   3*     

  4*     6* 5* 

         

 8*  2*   3*   

   6*   4*    

     5*    

    7*  1*   

6*  5*       

3*         



Puzzle 82 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Puzzle 83 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Puzzle 84 
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 8*    1*    

      6* 3*  

         

   3* 4*  2*   

 7*       1* 5* 

   6*      

    8*    1* 

3*  2*       

6*      4*   

    6*    1* 

 2*  5*      

         

   3*    2*  

  7*     4*   

1*    5*     

7* 3*    1*    

6*       5*  

   2*   8*   

  7* 1*  5*    

 6* 3*    7*   

         

    6*  3*  2* 

1*          

   5*      

5* 2*  4*    8*  

    3*     

9*         



Puzzle 85 
 

 

  

 

 

 

 

 

 

 

 

 

 

Puzzle 86 
 

 

 

 

 

 

 

 

 

   

 

 

 

 

Puzzle 80 
 

12r1: 1c6b5  47b7 

 

28g      69r7     910g 

 

711b4    714b8    320c8 

 

322r7     524g  826g 

     

627428c4 

 

231c5: u25c5b6c7b9    

 

333g    537r7     445b2    247r5 
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    3*  7*   

 1*  6*      

      2*   

   1*    8* 9* 

2*          

5*         

 9* 6*     1*  

   4*  2* 5*   

    7*     

    4*  7*   

   5*   3*   

 1* 8*       

3*      5* 4*  

  6* 1*      

   2*      

5* 2*   3*     

        1* 

       6*  

658 862 261 3* 711 412 5* 9* 12 

525 1* 323 929 231 832 47 7* 69 

4* 755 956 16 6* 524 28 320 821 

757 260 659 5* 952 15 3* 849 4* 

848 539 1* 713  446 333 616 247 919 

949 334 445 2* 850 630 14 540 714 

238 6* 537 826 1* 7* 910 418 322 

3* 453 754 627 536 944 8* 13 242 

11 963 864 428 335 243 715 617 541 



Puzzle 81 
 

11b3       32r2           

 

33r5      55r1    

 

611412213c5  

 

  420r4      723b5  

 

  125r4 127c4 

 

  128r2      429c7 

 

  732933c1     337c3      342r7  145c7 

 

 

Puzzle 82 
 

12b5        634435r5    

 

216b9     218c2     

 

220b4       423b6    

 

427b1       831b3 

 

835r5: 8c4b4 937b4      

 

939c2       447c3 

 

 

Puzzle 83 
 

2384b3    110r8       

           

316b2     318b9    

 

319r1522r1 

 

  623r9 426r7 

 

  630831r5 535c9 

 

  639740r2    450851r1 
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2* 1* 615 55 3* 837 429 753 952 

933 32 4* 724 213 128 836 6* 5* 

732 510 834 414 611 938 255 351 154 

59 8* 926 2* 125 723 3* 420 617 

122 240 33 6*  958 4* 58 862 763 

421 616 739 34 859 5* 956 157 260 

835 431 241 943 7* 619 1* 57 342 

6* 947 5* 127 412 348 745 261 864 

3* 746 11 844 56 249 618 950 430 

552 8* 311 757 69 1* 958 429 222 

134 218 748 554 937 426 6* 3* 855 

953 68 427 856 310 220 11 551 759 

832 939 133 3* 4* 544 2* 746 615 

44 7* 63 936 221 835 35 1* 5* 

219 312 440 6* 12 745 862 963 430 

749 428 947 217 8* 37 550 614 1* 

3* 125 2* 423 543 613 761 864 960 

6* 941 831 124 742 938 4* 216 36 

522 752 450 945 6* 319 28 851 1* 

857 2* 114 5* 433 740 337 638 956 

339 963 662 113 27 846 536 755 434 

958 664 861 3* 112 442 748 2* 535 

25 521 7* 831 932 630 4* 111 317 

1* 443 316 741 5* 26 649 959 860 

7* 3* 52 624 825 1* 927 426 29 

6* 84 23 444 320 947 110 5* 728 

453 115 954 2* 729 51 8* 318 623 



Puzzle 84 
 

326374c1     18g    110c5 

 

313r1      514915b1 

 

524g: 48c3b3   518419r4     

 

921g:     

18(86)(96)→2c4b6  

 

222g   

 

723r3:  

6(17)(19)→367r3b4    224925c5: 48(15)(25)    728r6     630r1     732r6    450c8 

 

Puzzle 85 
 

21r4 59b3    710411r7  

 

114r9    116r1   617918b6 

 

523424b8    726r2   828c7 

 

929b2      830b3: 8c2b2  

 

332c7: 3r4b2     334g       

 

736c3     641g    947c4 

 

551b4     956c5   861r6  

 

Puzzle 86 
 
 

 

 
 

53r7  49c2     610b1       

 

711312c4: 7r6b8   

 

120b5    221b9   322c9        

 

323c2  424c6   428b8 

 

132r5     134r4: 1c2b1 

 

137r7       240c2 
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245 915 7* 1* 863 5* 464 313 630 

861 6* 3* 921 462 243 7* 516 112 

460 19 514 336 723 642 959 244 856 

74 518 917 820 6* 919 3* 111 2* 

1* 854 627 733 224 334 558 450 857 

32 463 226 5* 110 935 855 631 732 

5* 2* 18 4* 925 728 629 8* 36 

63 77 448 222 3* 841 139 951 552 

9* 35 847 637 51 140 238 746 449 

948 540 437 24 3* 850 7* 641 116 

849 1* 25 6* 551 726 922 453 345 

642 739 335 947 115 452 2* 554 846 

334 438 736 1* 23 525 633 8* 9* 

2* 662 929 359 455 863 12 721 523 

5* 861 11 727 956 664 332 28 424 

710 9* 6* 558 857 360 411 1* 27 

113 331 830 4* 617 2* 5* 919 720 

412 26 59 918 7* 114 828 344 643 

851 323 252 57 4* 1* 7* 6* 717 

610 139 7* 5* 257 424 3* 56 944 

4* 1* 8* 711 614 313 227 138 843 

3* 240 134 4* 5* 845 5* 4* 322 

330 8* 6* 1* 719 933 132 2* 55 

942 54 635 2* 120 246 848 718 428 

5* 2* 850 2* 3* 72 949 431 137 

155 71 362 959 425 615 5* 861 1* 

254 49 963 156 860 58 7* 6* 616 



 

 
 

 

PRACTICE SET 10 

 

 

 

 

 

 

Puzzle 87 
 

 

 

 

 

 

 

 

 

   

 

 

 

 
 

 

Puzzle 88 
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6* 3*     5*   

   4*     8* 

         

    6* 1*    

        4* 2* 

 8*        

3*  4* 2*      

    5*  8*   

7*       1*  

7*   5*   6* 8*  

2*         

    1*     

 9*  2*   5*   

   7*    2*   

 1*        

    3*   1* 9* 

       3*  

4*         



Puzzle 89 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Puzzle 90 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Puzzle 91 
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   4*    3* 8* 

 5* 1*       

         

    1*  5*  7* 

7*   3*       

 2*     1*   

3*   8*    6*  

2*         

      9*   

6* 1*   2*     

       3* 9* 

  7*     4*  

2*      8*  5* 

   4*       

 9*        

   1*  4*    

5*      2*   

   3*      

1*   5*  6* 3*   

   7*    4*  

         

 4*      2*  

 3*    8*     

5*   1*      

    4*  9*   

7*        5* 

    2*     



Puzzle 92 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

Puzzle 93 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Puzzle 87 
 

42r1     26b5 

 

27b9         58b3      

 

517b3        320b9 

 

521c1        723r8

   

124825b6     826127r1 

 

635c4       736937b5 

 

750r1 
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4*       1* 9* 

 6*  2*      

       7*  

   8* 3*  2*   

7*       3*   

  1*       

 8*   6*  5*   

     7*  4*  

         

2* 4*        

   3*   7*   

         

    4* 5*  6*  

7*       8*   

  3*  2*     

1*   7*      

 6*      5*  

     2*   4* 

6* 3* 127 826 216 951 5* 757 42 

214 945 559 4* 761 637 129 363 8* 

810 411 760 128 362 558 215 964 655 

412 742 213 522 6* 1* 347 81 948 

521 131 339 937  834 736 640 4* 2* 

933 8* 641 338 45 26 743 519 130 

3* 517 4* 2* 124 825 949 656 754 

132 644 946 723 5* 44 8* 27 320 

7* 29 88 635 952 353 43 1* 518 



Puzzle 88 
 

1293c1 14r1: 1c9b8

           

15c4      169738c7    

 

710b2 911c4 

 

 223r1      530c8  

 

732433r3    436r6:   

4c6b6 
 

540r5     850c4 

 

Puzzle 89 
 

1354r1    29b1:     

34(32)(33)

      

310b8     512c1    617g 

 

819c7     720r8    223b9   

 

726927c1:    

34r3b1→68(21)(31) 

 

 431g     335b1    737c2 

 

 443r4     948r7    752c4 
 

 

Puzzle 90 
 

23c4     25b7 3798r1      

           

411312r4:   

3r7b9→3c1b2 

 

516817c4: 58r2b1 818g 

 

719g: 3r7b9       

521222823c2 

 

 626g: 13c1b2  627c4 

 

 730b4    932g: 3r7b9 333b3     136r4    741r8      150r5      754c7 
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7* 424 14 5* 917 315 6* 8* 223 

2* 531 314 850 652 753 16 99 434 

93 648 847 433 1* 225 38 530 732 

643 9* 710 2* 842 119 5* 437 321 

322 841 429 7*  540 918 2* 638 120 

544 1* 21 316 436 646 97 735 839 

845 228 560 651 3* 461 755 1* 9* 

12 749 659 911 227 858 456 3* 563 

4* 313 912 15 754 562 857 226 664 

726 928 29 4* 54 13 617 3* 8* 

855 5* 1* 653 356 250 433 720 925 

654 335 432 951 863 762 234 17 58 

927 638 336 244 1* 842 5* 443 7* 

4* 11 741 3* 946 513 819 245 618 

512 2* 840 752 660 459 1* 947 310 

3* 431 516 8* 249 948 721 6* 16 

2* 830 929 15 764 661 311 515 424 

12 737 639 514 458 357 9* 822 223 

6* 1* 42 98 2* 37 754 561 862 

818 521 225 627 41 730 131 3* 9* 

99 310 7* 516 138 839 629 4* 25 

2* 411 626 728 312 136 8* 937 5* 

150 720 845 4* 943 547 352 26 649 

451 9* 546 23 844 648 415 760 159 

719 222 932 1* 657 4* 555 858 353 

5* 624 335 817 741 942 2* 135 414 

413 823 134 3* 556 24 940 663 764 



Puzzle 91 
 

41r1       24b9 

 

25r1       514715616c5

  

318b5      322923r8    

 

827r8       829730r1    

 

932533c8    738c9      

 

142r4       848149c2 

 

Puzzle 92 
 

21b7      721394c7:  

 

7r6b5     113r2    317g     

 

419b8      420b3   422c5       

 

526b7  927b5: 9c6b4    

 

628c4      331r1       

 

233g       345946c3 
 
 

 

 

 
 

Puzzle 93 
  

72b5  38b1     39r4         

 

210r8:    

2(28)(29)/(58)(59)          

 

411c4       219b8 

 

622c1       825b5 

 

527128b2   532c1    

 

936c4        839r9        

 

548c7  
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1* 25 41 5* 931 6* 3* 730 829 

937 550 362 7* 161 826 210 4* 659 

654 740 863 29 364 411 534 932 160 

843 4* 739 617 514 318 142 2* 935 

27 3* 144 412 8* 919 646 533 738 

5* 645 936 1* 715 28 847 320 413 

355 149 556 825 4* 757 9* 652 24 

7* 923 26 322 616 128 43 827 5* 

42 848 653 924 2* 558 741 151 321 

4* 76 27 628 532 331 830 1* 9* 

113 6* 848 2* 78 951 424 318 526 

550 949 345 423 116 852 629 7* 21 

659 425 946 8* 3* 112 2* 560 710 

7* 234 547 927 422 662 3* 863 111 

858 354 1* 79 233 561 94 664 419 

938 8* 75 115 6* 421 5* 237 317 

236 553 644 356 940 7* 13 4* 842 

355 114 420 557 841 235 72 939 643 

2* 4* 854 535 77 953 149 344 643 

622 930 562 3* 158 418 7* 221 863 

38 76 161 21 642 860 417 951 564 

929 128 220 825 4* 5* 39 6* 73 

7* 527 623 936  357 159 8* 416 219 

415 826 3* 624 2* 72 548 150 952 

1* 213 412 7* 534 641 947 846 345 

833 6* 75 411 955 356 210 5* 138 

532 314 931 137 839 2* 640 74 4* 



PRACTICE SET 11 
 

 

 

 

 

 

Puzzle 94 
 

 

 

 

 

 

 

 

 

  

 

 
 

 

 

 

 

Puzzle 95 
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     1*  6*  

  7*    3*   

4*  5*       

7*   4* 5*     

 8*  6*     2*  

         

 6*  2* 3*     

      5*   

      7*   

   3* 5*   4*  

 7* 6*       

         

  5*    7*  6* 

3*     2*     

      1*   

 1*  7*  6*    

8*       2*  

   5*      



Puzzle 96 
 

 

 

 

 

 

 

 

 

 

 

 

 

Puzzle 97 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Puzzle 98 
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1*  6*  3*     

     5* 4*   

7*         

 2*  8*  4*    

        7* 1* 

   2*      

5*    1*   6*  

 4*     8*   

         

 6*    1*    

2*       7*  

         

3*   2* 6*     

8*        1*  

   3*   4*   

 4*  5*     8* 

 1*   7*     

      3*   

    5*   2*  

6*      4*   

3*         

 8* 2* 1*      

        5*  

        6* 

 5* 4*    2*   

   3*  6* 1*   

   7*      



Puzzle 99 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Puzzle 100 
 

 

 

 

 

 

 

 

 

 

 

 

 

Puzzle 94 

 

53r7    49c2 

 

610b1      711312c4:  

 

7r6b8      120b5        

 

221b9       322c9        

 

323c2     424c6        

 

428b8       132r5        

 

134r4: 1c2b1       137r7       240c2 
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4*       1* 9* 

 6*  2*      

       7*  

   8* 3*  2*   

7*       3*   

  1*       

 8*   6*  5*   

     7*  4*  

         

7*    8*     

    4*   1*  

     3*  2*  

3*  7*    5*   

   1*  6*    

5*   2*      

6* 1*        

      8*   

        9* 

851 323 252 57 953 1* 426 6* 717 

610 139 7* 858 257 424 3* 56 944 

4* 941 5* 711 614 313 227 138 843 

7* 240 134 4* 5* 845 636 947 322 

330 8* 429 6* 719 933 132 2* 55 

942 54 635 312 120 246 848 718 428 

53 6* 850 2* 3* 72 949 431 137 

155 71 362 959 425 615 5* 861 221 

254 49 963 156 860 58 7* 364 616 



Puzzle 95 
 

21b6       22b8

            

 

63r1        79c1    

 

114b9      516b3 

 

    321b1      325426c9 

 

827g: 49c3b3 

 

130b2       445c2

   

Puzzle 96 
 

12b5      48b1  714r4        

 

715b4    617r2        

 

619r4: 6c1b3 

 

620721c2: 6r5b5      

 

825b8    526c7: 5r4b8        

 

330c2     533b5        

 

837238c5    842r1    

 

Puzzle 97 
 

12b5         48c1  

 

612213r5    714c7 

 

719c9      622c4 

 

823b5      825b6 

 

327b3    636c3 539r9            

 

546c8    550r4   754c6 
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237 829 131 3* 5* 712 63 4* 938 

957 7* 6* 236 456 852 323 115 520 

458 518 321 133 68 955 224 711 839 

130 235 5* 853 341 454 7* 949 6* 

3* 946 728 67  2* 132 848 544 426 

66 445 827 947 713 543 1* 342 22 

516 1* 217 7* 959 6* 463 850 325 

8* 65 961 460 134 340 519 2* 710 

79 322 462 5* 851 21 964 64 114 

1* 931 6* 49 3* 715 526 842 243 

247 330 848 17 617 5* 4* 944 716 

7* 527 48 941 837 240 16 332 618 

362 2* 13 8* 714 4* 619 536 963 

413 829 528 652 939 353 21 7* 1* 

961 620 722 2* 533 12 360 412 825 

5* 721 246 354 1* 855 959 6* 411 

650 4* 357 724 238 956 8* 15 535 

849 14 958 534 410 651 723 245 364 

48 6* 761 834 958 1* 563 321 249 

2* 331 956 622 418 555 835 7* 17 

14 833 562 759 330 245 964 620 417 

3* 951 13 2* 6* 410 714 824 550 

8* 213 49 960 559 754 612 1* 31 

541 752 636 3* 12 823 4* 247 953 

732 4* 327 5* 243 638 16 944 8* 

940 1* 826 411 7* 329 248 546 619 

637 539 228 15 825 942 3* 416 715 



Puzzle 98 
 

12b8          53b6 

 

29r6: 2c5b6     610r4  

 

611312713r7 217c4 

 

319b7     421r3: 4c5b6 

       

422c4        423224825r8 

 

931c1        833c4    

 

937g: 8c7b8     439c8     147b1        

 

 

Puzzle 99 
 

112233c1    211b4 

 

315b6     618b3   419g         

 

420c5     722r4    524c3

  

830r4      632b5   738b8         

 

543c7   347r1 

 

 

Puzzle 100 
  

12b2    2869r4     

 

210b4       613b9 

 

214615c5: 2r7b9          

 

320721922b5: 48c5b4        

 

324c4: 3r7b9 

 

325g:489r5b2&7c8b9    

 

826927c8      430331r1       543r2        946c1  
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828 429 147 934 5* 320 614 2* 752 

6* 748 56 217 849 146 4* 319 936 

3* 218 935 615 750 421 55 840 153 

58 8* 2* 1* 610 755 356 938 442 

931 157 658 422 351 854 759 5* 21 

430 362 763 57 943 29 860 12 6* 

713 5* 4* 833 145 944 2* 611 312 

224 926 825 3* 423 6* 1* 716 54 

132 661 364 7* 227 53 937 439 841 

22 347 419 535 740 941 8* 1* 648 

7* 649 825 17 3* 429 214 562 963 

5* 950 18 6* 211 828 346 759 460 

6* 722 9* 316 830 531 4* 210 14 

33 421 524 933 1* 2* 753 651 852 

11 826 29 7* 420 632 543 945 344 

842 527 723 4* 939 16 6* 317 213 

956 2* 3* 834 636 738 15 461 564 

457 1* 618 212 537 315 954 855 758 

7* 430 211 532 8* 14 619 927 331 

844 333 617 942 4* 210 740 1* 543 

13 962 563 741 615 3* 439 2* 845 

3* 28 7* 852 922 453 5* 69 15 

946 849 448 1* 51 6* 236 325 737 

5* 612 12 2* 320 721 928 826 429 

6* 1* 850 454 723 959 334 558 235 

216 761 964 324 17 560 8* 455 613 

447 557 338 618 214 851 16 756 9* 



5.          PADAGOGY EFFICIENCY  

 

5.1.       BIKINI AND OPEN TOP PROBLEMS  

 

This is an excerpt from (21). The purpose to share some intuitive insights of typical 

optimization problems with those teaching as well as learning the standard method of 

using the differential calculus. Among other things, we shall explain intuitively the reason 

for the optimal solution to be attained at the critical point of the objective function in 

question. This kind of interpretation is often missing in existing textbooks. 

 

In addition, we shall use the idea of the boundary being the marginal change of a well-

rounded region (a region possessing an inscribed circle) with respect to the inradius (the 

radius of the inscribed circle) to solve optimization problems more efficiently and 

categorically. 

We shall first explore the following three optimization problems. 

 Bikini problem. Given a fixed material to form the total area of a bikini (two 

identical circles and one equilateral triangle), what is the maximum enclosure 

(combined perimeter)? 

 Minimum enclosure problem. Given a fixed length, how can two well-rounded 

regions be formed with the minimum combined area? 

 Open top problem. How can the largest open box be formed from a rectangular 

sheet of cardboard by first cutting off identical squares in all corners and then folding 

up the resulting flaps? 

 

Take the last problem for example, we shall explain that to require the resulting box to be 

neither too shallow nor too narrow is the reason for the maximum volume to be attained 

at the critical point of the objective function in question. 

 

In addition, we shall introduce a quick way of solving a wide spectrum of optimization 

problems in differential calculus based on the following three theorems. In other words, 

for a well-rounded region or a rectangle its boundary is the marginal change of its area.  

Theorem I. For a polygon with an inscribed circle, its perimeter is the derivative of its 

area with respect to the inradius or apothem, the radius of the inscribed circle. 

 

Theorem II. For a circle, its circumference is the derivative of its area with respect to the 

radius. 

 

Theorem III. For a rectangle, its perimeter is the total differential derivative of its area. 

 

288 



GENERALIZATION OF BIKINI PROBLEM 

 

Theorem 1. Let A be the sum of the areas of p identical circles and q identical regular n-

gons. Then the maximum combined perimeter is attained when the radius of the circles 

equals the inradius of the polygons. In this case, the maximum combined perimeter is 

 

   2√(𝑝𝜋 + 𝑞𝑛 tan
𝜋

𝑛
) 𝐴 . 

Proof. Let x be the radius of each circle and y(x) the inradius of each n-gon. Since 

 

   𝑝𝜋𝑥2+qntan
𝜋

𝑛
𝑦(𝑥)2=A , 

It follows that 

   𝑦′(𝑥) = −
𝑝𝜋𝑥

𝑞𝑛𝜋 tan
𝜋

𝑛
𝑦(𝑥) 

and  

   𝑦"(𝑥) = −
𝑝𝜋

𝑞𝑛 tan
𝜋

𝑛

[
𝑥

𝑦(𝑥)
] ′=-

𝑝𝜋[𝑞𝑛 tan
𝜋

𝑛
𝑦(𝑥)2+𝑝𝜋𝑥2]

(𝑞𝑛 tan
𝜋

𝑛
)2𝑦(𝑥)3

< 0 . 

 

Let P(x) denote the combined perimeter 2𝑝𝜋𝑥 + 2𝑞𝑛 tan
𝜋

𝑛
𝑦(𝑥). Then 

 

                                     𝑃′(𝑥) = 2𝑝𝜋 + 2𝑞𝑛 tan
𝜋

𝑛
𝑦′(𝑥) = 2𝑝𝜋 - 

2𝑝𝜋𝑥

𝑦(𝑥)
 

and then 

    𝑃"(𝑥) = 2𝑞𝑛 tan
𝜋

𝑛
y”(x) < 0. 

Hence the maximum of P(x) is attained when P'(x) = 0 , i.e. y(x) = x . In this case, 

 

   𝑃(𝑥) = 2(𝑝𝜋 + 𝑞𝑛 tan
𝜋

𝑛
 )x 

 

              = 2(𝑝𝜋 + 𝑞𝑛 tan
𝜋

𝑛
)√

𝐴

𝑝𝜋+𝑞𝑛 tan
𝜋

𝑛

 

 

              = 2√(𝑝𝜋 + 𝑞𝑛 tan
𝜋

𝑛
) 𝐴 . 

 

Similarly, we can prove the following theorems.  

Theorem 2. Let A be the sum of the areas of p identical regular m-gons and q identical 

regular n-gons. Then the maximum combined perimeter is attained when all of the inradii 

are equal. In this case, the maximum combined perimeter is 

2√(𝑝𝑚 tan 𝜋/𝑚 + 𝑞𝑛 tan 𝜋/𝑛)𝐴 . 
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Theorem 3. Let the sum of the volumes of p identical equilateral tetrahedrons, q identical 

spheres and r identical cubes be fixed. Then the maximum combined surface area is 

attained when all the inradii and radii are identical. 

ENCLOSURE OF THE MINIMUM COMBINED AREA OF TWO REGIONS 

WITH A FIXED SUM OF BOUNDARIES 

Let P be a circle of radius x and Q a regular n-gon (or a triangle with fixed interior angles)  

of inradius y. We shall show that if the sum of P (the circumference of P) and Q (the  

perimeter of Q) is fixed, then the minimum combined area enclosed is attained when     

x =y . This is certainly not the case for an irregular n-gon Q with n > 3 . However, the  

same method will be applied to find the minimum combined area enclosed by P and Q  

with P + Q being fixed for various Q's. 

 

Theorem 4. If the sum of P and Q is fixed, when y = x the minimum combined 

area of P and Q (a regular n-gon) is attained as (𝜋 + 𝑛 tan 𝜋/𝑛)𝑥2. 

 

Proof. Write y = y(x) . Since 2𝜋𝑥 + 2𝑛𝑦(𝑥) tan 𝜋/𝑛 is fixed, we have  

 

    𝑦′(𝑥) = −
𝜋

𝑛 tan 𝜋/𝑛
 

Let A(x) be the combined area of P and Q. Then 𝐴(𝑥) = 𝜋𝑥2 + 𝑛𝑦(𝑥)2 tan 𝜋/𝑛 . It 

follows that 

     𝐴′(𝑥) = 2𝜋𝑥 + 2𝑛𝑦(𝑥)𝑦′(𝑥) tan 𝜋/𝑛 = 2𝜋[𝑥 − 𝑦(𝑥)] 
and  

      A"(x) = 2𝜋[1 − 𝑦′(𝑥)] > 0 . 

Therefore, the required minimum is attained when y(x) = x . 
 

 

Similarly, we can prove the following theorems. 

Theorem 5. If the sum of Qm and Qn is fixed for regular m-gon Qm with inradius xm 

and n-gon Qn with inradius xn , then then the minimum combined area enclosed is 

attained as (𝑚 tan 𝜋/𝑚 + 𝑛 tan 𝜋/𝑛)𝑥𝑚
2. 

 

Theorem 6. Let a circle P and an equilateral triangle (or a square) Q be enclosed by 

a fixed length. Then the minimum combined area is attained when P can be 

inscribed in Q. 
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Theorem 7. Let a sphere P and an equilateral tetrahedron (or a cube) Q be enclosed 

by a fixed surface area. Then the minimum combined volume enclosed is attained 

when P can be inscribed in Q. 

 

 

OPEN TOP PROBLEMS 
 

Let V(x) be the volume of the open box formed from the  cardboard of length 

a and width 𝑏 (≤ 𝑎) by cutting off identical squares of length x in all corners. Then 

       𝑉(𝑥) = (𝑎 − 2𝑥)(𝑏 − 2𝑥)𝑥, 0 ≤ 𝑥 ≤ 𝑏/2 . 

Since  

                              𝑉′(𝑥) = (𝑎 − 2𝑥)(𝑏 − 2𝑥) − 2𝑥[(𝑎 − 2𝑥) + (𝑏 − 2𝑥)]                                               

 

and since V(0)=0=V(b/2) , it follows that the maximum volume is attained when the 

area of the bottom equals the lateral area of the open box so that the resulting box is 

neither too shallow nor too narrow; or when  
2𝑥

𝑎−2𝑥
+

2𝑥

𝑏−2𝑥
= 1, namely when 

 

       𝑥 =
𝑎+𝑏−√𝑎2+𝑏2−𝑎𝑏

6
 . 

 

In the two dimensional case, the area of the open rectangle formed from a string of length 

a by folding up both end segments of length x is V (x) = (a — 2x)x , which attains the 

maximum when x=a/4. 

 

 

A QUICK WAY OF SOLVING OPTIMIZATION PROBLEMS 

 

In some calculus textbooks such as [1], there are limited discussions along the line of 

Theorem II of section I which can be obtained by taking 𝑛 → ∞  in Theorem I, n being 

the number of sides of the polygon. 

 

Proof of Theorem I. Let x be the inradius and 0 the center of the inscribed circle of 

the polygon Q. Let A and B be any two adjacent vertices of Q. Then the area of the 

triangle AOAB is the derivative of which is the length x(cot A +cot B) of the side AB.  

Since the sum of the areas of all such triangles and the sum of the  

lengths of all such sides are, respectively, the area and the perimeter of Q,  

the proof is completed. 

 

The implication of Theorem I is that for a well-rounded region (with an inscribed 

circle), the marginal change of its area is its boundary. 
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Proof of Theorem III. Let x and y be the 1/2 of the length and width, respectively. 

Since x and y vary independently, the total differential derivative of the area 4xy is the 

perimeter 4(x + y) . 

 

Theorems I, II and III along with their extensions Theorem IV, V and VI can be used 

to solve many optimization problems more efficiently and categorically as follows. 

 

Theorem IV. For a circular right cylinder (or a polygonal right cylinder with an inscribed 

circular right cylinder), the area of its top (or bottom) is the derivative of its volume with 

respect to the height, and the area of its lateral surface is the derivative of its volume with 

respect to the radius (or inradius). 

Theorem V. For a sphere (or a polygonal solid with an inscribed sphere), its surface area 

is the derivative of its volume with respect to the radius (or inradius). 

Theorem VI. For a rectangular box, its surface area is the total differential derivative of 

its volume. 

 

Example 1. Open Top Problem revisited. 

 

Solution. Let V(x) be the volume and A(x) the area of the bottom of the open box. 

Then V(x) = xA(x) . Thus the required maximum is attained when 

xA'(x)+ A(x) = V'(x)= 0 . 

Since A(x) varies negatively with x, 

A’(x) = - 2[(a - 2x) + (b - 2x)]. 

Therefore, the required x can be obtained by solving the following  equation 

2x[(a - 2x) + (b – 2x)] = (a - 2x)(b - 2x). 

Example 2. Let c be the sum of the areas of two well-rounded regions. Find the maximum 

sum P(x) of the boundaries. 

Solution. Let x be the inradius of one region with the area ax2 and y(x) the inradius of the 

other region with the area b[y(x)]2 . From ax2 + b[y(x)]2 = c, we can obtain  

y'(x) = -ax/by(x) . Since P(x)= 2ax + 2by(x) , it follows that  

                                        𝑃′(𝑥) = 2𝑎 + 2𝑏𝑦′(𝑥) = 2𝑎[1 − 𝑥/𝑦(𝑥)] 

and 

                                         𝑃"(𝑥) = 2𝑎{−[𝑦(𝑥) − 𝑥𝑦′(𝑥)]/𝑦(𝑥)2}=-ac/𝑦(𝑥)3  <  0 . 

 

Therefore, the maximum of P(x) is 2√𝑐(𝑎 + 𝑏)  when 𝑦(𝑥) = 𝑥 = √𝑐/(𝑎 + 𝑏) . 
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Example 3. Given a fixed length c to form two well-rounded regions, find the 

minimum combined area. 

Solution. Let x and y(x) be the inradii of the given regions with the areas ax2 and 

b[y(x)]2 , respectively. Since the sum of the boundaries is  2ax + 2by(x) = c , it follows 

that  y'(x) = -a/b . Hence the derivative of the combined area A(x) is                                       

 

    A’(x) = 2ax + 2by(x)y’(x) = 2a[x – y(x)] 

so that 
    A’(x) = 2a[1 – y’(x)] = 2a(1 + a/b) > 0 . 

 

Therefore, the minimum of A(x) is  c2 /4(a + b) when  y(x) = x = c/2(a +b) . 

 

Example 4. Find the minimum surface area of a right circular cylindecr (or a 
right cylinder with an inscribed circular cylinder) of fixed volume c. 

Solution. Let x be the radius (or inradius) of the top and y(x) the height of the 

cylinder. Then the area and the circumference (or the  perimeter) of the top are 

A(x) = ax2 and A'(x) = 2ax , respectively. Since the volume y(x)A(x) is fixed, it 

follows that 

    y’(x) = - y(x)A’(x)/A(x) = - 2y(x)/x . 

Let S(x) be the surface area of the cylinder. Then 

S(x) = 2A(x) + 2axy(x). 

Hence 

S’(x) = 2A’(x)+2a[xy'(x)+ y(x)] = 2a[2x — y(x)] ,  
and 

     S”(x) = 2a[2 – y’(x)] = 4a[1 + y(x)/x] > 0 . 

 

Therefore, the minimum of S(x) is  3√2𝑎𝑐23
  when 𝑦(𝑥) = 2𝑥 = √𝑐/2𝑎3  . 

 

Example 5. Find the maximum volume of the above cylinder if the sum of the height 
and the girth (the circumference or the perimeter of the top) is fixed to be c. 

Solution. We adopt the same notations and some of the results from Example 4. Since 

y(x) + 2ax = c , the volume V(x) of the cylinder attains the maximum when  

 

 0 = V’(x) = y(x)A’(x) + A(x)y’(x) = y(x)(2ax) + ax2(-2a) = 2ax[y(x) – ax] , 

namely when the height equals half of the girth. In this case,  x = c/3a so that the 

maximum volume is c3/27a 
, since 

 

          V”(x) = 2ax[y’(x) – a] + 2a[y(x) – ax] = -6a2x < 0 .  
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5.3.       SIMPLIFIED SIMPLEX METHOD 

 

We shall simplify the simplex method of linear programming substantially by using 

 

cross-multiplication.  

 
 

The simplex method in (4) was named in (3) among the top ten algorithms of the 20th  

 

century. Although a number of variations in (7) and (14) have been introduced since  

 

then, the original algorithm has remained widely used for both reference and instruction  

 

in (5) and (10). 

 

 

Over the years of teaching out of (10), I have encountered different types of "abnormal"  

 

problems that would give erroneous solutions had the algorithm stated in that book been  

 

used.  For the remedies, whenever a pivot is found in either the same row or the same  

 

column as an old one (first type of abnormality), restart with the new pivot in the original  

 

system; otherwise, perform the "slope check" for each old pivot and when the "check  

 

number" is negative for a certain pivot (second type of abnormality), eliminate the entire  

 

inequality involving that pivot and restart with the new system. Furthermore, the new  

 

method of using cross-multiplication substantially simplified the process of finding the  

 

solutions of "normal" problems. 

 

 

The proof of the maximization algorithm for the case of three variables will be given in  

 

theend via comparisons among values of the objective function at all feasible solutions of 

 

the variables. Short-hand notations for pertinent determinants of the coefficients of linear  

 

equations under the inequality constraints of a given problem enable us to efficiently  

 

express the relationship between function values at any pair of feasible solutions.  
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Example 1.    Maximize w = 3 x +  4 y 

          subject to           x +  2 y     8  

               2 x +  3 y   13    

                     x  0, y  0. 

                            

Solution.   

 

In stead of forming the first tableau T1 of the coefficients of the original system T0 as  

 

below  

 

                    

3 4 

1     2       8 

2       3      13  

 

we shall directly find the pivot on T0: 

 

                                      v 

Maximize w = 3 x + 4 y 

              subject to           x + 21y   8 8/2  v 

                  2x + 3 y  13     13/3 

                     x  0, y  0. 

 

 

As illustrated above, find the greatest positive coefficient in the top row to yield the pivot 

 

column (as checked), find the least positive quotient of the last column over the pivot  

 

column to yield the pivot row (as checked) and find the pivot (as subscripted with 1).  

         

 

Copy the pivot row from T0, change the other coefficients of the pivot column to 0,  

 

Perform the cross-multiplication from the pivot 21 to each of the remaining coefficients to  

 

yield the second tableau T2 and find the pivot 12  as illustrated below. 

 

 

               v 

       2x3 - 4x1 = 2 0 

                   1 2   8   8/1 

2x2 - 3x1 = 12 0   2 = 2x13 - 3x8 2/1  v                                             
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Proceed as before to obtain the third tableau T3: 

 

    0 0 

0 2    6  y = 6/2 = 3           

                    1  0   2   x = 2/1 = 2 

      

No pivot can be found in T3 and from which the variables involving pivots are solved.             

 

 

This is a simplification of the method using the transformation [6], 

 

    p q  1/p q/p 

       
    r s            - r/p     s - r/p  

        

where p is the pivot, q is any other entry in the pivot row, r is any other entry in the pivot  

 

column and s is the entry in the row of r and the column of q as shown below. 

                    

 

   T1: x y 1 

    21 1        - 8  = - u 

    3 2       - 13  = - v    

    4  3  0  = w  

            

 

   T2: u y 1 

                                1/2       1/2       - 4  = - x 

          - 3/2       1/22      - 1  = - v    

             -2 1  1  = w  

 

 

   T3: u v 1 

                       2         -1        - 3  = - x 

            - 3           2        - 2  = - y 

    1         -2        18  = w 

 

 

Since w = 3(6.5) + 4(0) = 19.5, we see that “the solution” obtained above was erroneous!  

 

This type of error occurs whenever the slope of w is either greater than or less than the  

 

slopes of all non-trivial equations under the inequality constraints imposed on the  

 

problem.   
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Therefore, after finding each new pivot, the “slope check” is indispensable. To do that, in  

 

our case, perform the cross-multiplication from the top coefficient of the y-column of T0  

 

(the old pivot column) to the new pivot: 

 

    Slope check: (4)(2) – (3)(3) = - 1 < 0. 

 

The negative check number eliminates the pivot in the y-column. Restart with the new  

 

pivot in  

 

T1: 3 4 

1 2  8 

21 3 13 

                

T'2: 0         -1 

0 1  3 y = 0 (no pivot in y column) 

2 3 13 x = 13/2 = 6.5 

 

Therefore, the maximum of w = 3(6.5) + 4(0) = 19.5. 

 

                          v 

Example 2.    Maximize w = 18 x + 7 y               

          subject to          31x +    y   6  6/3  v 

                        3 x + 2 y   15 15/3 

                          x  0,  y  0.              

Solution. 

 T2:   v 

 0  3  

 3  12  6  6/1  v  

 0  3 27 27/3   

                   

The new pivot is in the same row as the one previously found.  Restart with the new  

 

pivot.  

T1:      18 7 

 3 11 6 

 3 2         15 

 

T2’:    - 3 0 

 3 1 6 y = 6/1 = 6 

          - 3 0 3          x = 0 (no pivot in x column) 

                    
Therefore, the maximum of w = 18(0) + 7(6) = 42. 
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The algorithm for maximization with non-negative variables bounded from above: 

 

1) Use the original system of linear inequalities as the first tableau. If there is only one  

 

non-trivial inequality constraint, form the quotients to the top. The only pivot is on the  

 

variable of the column with the greatest quotient. Otherwise, find the greatest positive  

 

coefficient in the top row to yield the pivot column and then form the quotients of  

 

coefficients in the last column over the corresponding positive coefficients in the pivot  

 

column. Find the least positive quotient to determine the pivot row. Mark the pivot with  

 

an appropriate subscript.  In the event of a tie when comparing quantities, all options  

 

need to be executed.  

                   

2) From the previous tableau, copy the pivot row and make the coefficients of the pivot 

 

column 0 except for the pivot. Starting with the pivot, cross-multiply the pivot column  

 

witheach of the other columns to yield the new tableau. Refer the pivot found in the new  

 

tableauback to the corresponding coefficient of the original system. If the new pivot is in  

 

the same row as an old one, restart with the new pivot in the original system. 

                    

3) In the original system, perform the slope check by cross-multiplying from each of the  

 

top   coefficients of the columns involving pivot to the new pivot. If the check number of  

 

a certain  column is negative, eliminate the inequality involving pivot in that column and  

 

restart with the new system.                                                                                     

 

4) Continue the same process until no more pivot could be found in the new tableau. 

      

5) The solutions of the variables involving pivot can be obtained from the final tableau.  

 

The variables not involving pivot will yield the solution 0. 

 

6) The maximum value of the objective function can be obtained by comparing the  

 

Function values among all options.                 
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The algorithm for minimization with non-negative variables bounded from below: 

 

1) Use the original system of linear inequalities as the first tableau. If there is only one  

 

non-trivial inequality constraint, form the quotients to the top. The only pivot is on the  

 

variable of the column with the least quotient. Otherwise, find the greatest positive  

 

coefficient in the last column to yield the pivot row and then form the quotients of  

 

coefficients in the top row over the corresponding positive coefficients in the pivot row.  

 

Find the least positive quotient to determine the pivot column. Mark the pivot with an  

 

appropriate subscript. In the event of a tie when comparing quantities, all options need to  

 

be executed.                      

   

 

2) From the previous tableau, copy the pivot column and make the coefficients of the 

 

pivot row 0 except for the pivot. Starting with the pivot, cross-multiply the pivot row  

 

with each of the other rows to yield the new tableau. Refer the pivot found in the new  

 

tableau back to the corresponding coefficient of the original system. If the new pivot is in  

 

the same column as an old one, restart with the new pivot in the original system. 

                         

 

3) Alongside each new tableau, display the table obtained by omitting the top row of the 

                    
corresponding tableau constructed as though in the maximization case.  

                   

 

4) In the original system, perform the slope check by cross-multiplying from each of the  

 

top coefficients of the columns involving pivot to the new pivot. If the check number of a  

 

certain column is negative, eliminate the inequality involving the pivot in that column  

 

and restart with the new system. 

   

 

5) Continue the same process until no more pivot could be found in the new tableau. 
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6) The solutions of the variables involving pivot can be obtained from the final table. The  

 

variables not involving pivot will yield the solution 0. If one of the solutions is negative,  

                   
eliminate the inequality involving the first pivot and restart with the new system.  

  

 

7) The minimum value of the objective function can be obtained by comparing the  

 

function values among all options. 

 

 

            v 

         5/2      6/3   

Example 3.    Minimize w = 5 x  +  6 y  

           subject to           x  +     y   10 

       2 x  +  31y   12  v 

                    x  0,  y  0. 

                   

Solution.  

 

T2: v 

           3/1        6/1 

 3  6  

 12  1 18  v           12 0 18 

    0  3   0                2 3 12 

    

 

   Slope check: (6)(1) – (1)(5) = 1 > 0. 

 

 

T3: 3  3  

 1  0   0  1 0 18 x = 18/1 = 18  

 0  3    0  0 3        - 24 y = - 24/3 = -8       

 

                 

Since y = - 8, eliminate the inequality involving the first pivot and restart with T':   

 

           5/1        6/1  

 5  6  y = 0 (no pivot in y column)  

 11  1 10 x = 10/1 = 10             

 

 

Therefore, the maximum of w = 5(10) + 6(0) = 50. 
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           3/2      1/1     2/2     

Example 4. Minimize        w  = 3 x  +    y  + 2 z 

  subject to           x  +    y  +    z     42   

            3 x  + 2 y  +    z     49 

       2 x  +    y  + 2 z     56  v 

          x  0, y  0, z  0. 

Solution.   

 

   Option 1.   

 

T1:      v 

          3/2 1/1  2/2 

3   1    2 

 1   1    1   42       

3   2    1     49     

2   11    2   56  v 

  

                            
 T2:   1  1   0 

          - 1  1  - 1 - 14          - 1         0       - 1       - 14         x = 0 

          - 1           2         - 3   - 63         - 1         0       - 3       - 63         z  = 0 

  0  1   0     0            2          1         2         56         y  = 56  

 

Hence w = 3(0) + 1(56) + 2(0) = 56.               

       

 

   Option 2.   

 

T1:                    v 

          3/2 1/1  2/2 

 3   1    2 

 1   1    1   42       

   3   2    1     49     

2   1    21   56  v       

       

 

T2: v 

          2/4  2/1 

   2  0   2 

            0  1   1    28               0  1  0  28  

            42   3           1           42  v    4  3  0  42        

  0  0   2     0               2          1          2          56          

 

                   

 Slope check: (2)(3) – (1)(3) = 3 > 0.  
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T3:      v 

     6/4 

  2 - 6    6 

  0   4    43        112  v 

  4   0    0      0 

  0   0    8      0 

                   
 

Since the new pivot is in the same column as the first one, restart from T1with the new  

 

pivot: 

 

  

T1: 3   1    2 

 1   1    11   42       

3   2    1     49     

2   1    2   56   

            

 

T’2: v 

          1/2  2/1 

   1          - 1   2 

            0  0   1     0               1  1  1 42  

            22   1           1            7   v    22  1  0  7        

  0 - 1   2  - 28               0         - 1         0      - 28          

 

 

 Slope check: (2)(3) – (1)(3) = 3 > 0. 

 

                   
T’3: 1         - 3   3 

            0  0   2     0               0  1  2 77      z = 77/2  

             2   0           0            0       2  1  0  7       x = 7/2      

  0          - 2   4  - 56               0         - 2         0      - 56      y = 0          

 

 

Hence w = 3(7/2) +1(0) +2(77/2) = 87.5. 

   

 

 

Therefore, Option 1 gives the minimum of w = 56. 
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The proof of the maximization algorithm 

    

We can rearrange the variables and the given inequalities in such a manner that the pivots 

 

are to be found diagonally (in ascending order of both rows and columns). Since the  

 

method used here can be extended for more variables, we shall only consider the  

 

following problem with three positive variables in which all coefficients are positive. 

                   

 Maximize w = a01 x1 + a02 x2 + a03 x3 

 subject to         ai1 x1 + ai2 x2  + ai3 x3  ai4              (Ii)     i = 1, 2, 3  

         a01  a0j             (1j)     j = 2, 3 

         ai4a11 - a14ai1  0.           (2i)     i = 2, 3   

         
We shall abbreviate aij as [ij] and use {123}123 to denote the determinant of the matrix 

 

([ij])i, j  123, where i 123 means that i takes on one element of {1, 2, 3} at a time in that  

 

order. Let c be a code consisting of some elements in {0, 1, 2, 3} and let d be a code  

 

consisting of some elements in {1, 2, 3, 4}. We shall further use {d}c to denote the  

 

determinant ([ij])i  c, j  d.  

 

Thus, the inequality (2i) can be rewritten as {41}i1  0.  Note that 

 

{rst}ijk = [ir]{st}jk + [is]{tr}jk + [it]{rs}jk. 

                    

 

We shall first state and derive the following formulas concerning decompositions of 

 

determinants. 

 

Lemma 1. 

 

i)     {rst}ijk = [kt]{rs}ij + [jt]{rs}ki + [it]{rs}jk. 

  

ii)  [iu]{rst}ijk = {ru}ij{st}ik + {su}ij{tr}ik + {tu}ij{rs}ik. 

           

iii)         [jt]{rst}ijk = {rt}ij{st}jk - {st}ij{rt}jk. 

  

iv) {ru}ij{st}ij + {su}ij{tr}ij + {tu}ij{rs}ij = 0. 

 

v)   {ur}ij{ust}ijk + {us}ij{utr}ijk + {ut}ij{urs}ijk = 0. 
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Proof.  

                  
 i) {rst}ijk = [ir]{st}jk + [is]{tr}jk + [it]{rs}jk  

 

  = [ir][js][kt] - [ir][jt][ks] + [is][jt][kr] - [is][jr][[kt] + [it]{rs}jk  

  

  = [kt]([ir][js] - [is][jr]) + [jt]([kr][is] - [ks][ir]) + [it]{rs}jk 

 

  = [kt]{rs}ij + [jt]{rs}ki + [it]{rs}jk. 

                 

ii)  {ru}ij{st}ik+{su}ij{tr}ik+{tu}ij{rs}ik 

 

          = [ir][ju][is][kt] - [ir][[ju][it][ks] - [iu][jr]{st}ik + [is][ju][it][kr] - [is][ju][ir][kt] 

 

           - [iu][js]{tr}ik + [it][ju][ir][ks] - [it][[ju][is][kr] - [iu][jt]{rs}ik 

 

        = - [iu]([jr]{st}ik + [js]{tr}ik + [jt]{rs}ik) = - [iu]{rst}jik = [iu]{rst}ijk.   

                        

iii) Taking k = j, j = i and u = t in ii), we have 

 

    [jt]{rst}jik = {rt}ji{st}jk + {st}ji{tr}jk + {tt}ji{rs}jk, 

             

which implies 

   

     [jt]{rst}ijk = {rt}ij{st}jk - {st}ij{rt}jk.  

 

iv) Taking k = j in ii), we have 

 

    {ru}ij{st}ij + {su}ij{tr}ij + {tu}ij{rs}ij = [iu]{rst}ijj = 0. 

        

   v)         {ur}ij{ust}ijk + {us}ij{utr}ijk + {ut}ij{urs}ijk  

 

= {ur}ij([iu]{st}jk + [ju]{st}ki+ [ku]{st}ij) 

 

    + {us}ij([iu]{tr}jk + [ju]{tr}ki+ [ku]{tr}ij) 

 

    + {ut}ij([iu]{rs}jk + [ju]{rs}ki+ [ku]{rs}ij) 

 

= [iu]({ur}ij{st}jk + {us}ij{tr}jk + {ut}ij{rs}jk) 

 

   +  [ju]({ur}ij{st}ki + {us}ij{tr}ki + {ut}ij{rs}ki) 

 

   + [ku]({ur}ij{st}ij + {us}ij{tr}ij + {ut}ij{rs}ij) 

 

= [iu][ju]{rst}jik + [ju][iu]{rst}ijk + [ku][iu]{rst}ijj = 0. 
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We shall introduce convenient notations for all possible corner solutions of the given 

            

problem. For i, j = 1, 2, 3, let wij = [0j]([i4]/[ij]). For an ascending code ij, let 

 
mn wij = [0i]mnxij + [0j]mnxji , where (mnxij , 

mnxji) is the possible non-degenerated solution of 

 

    [ui]xi + [uj]xj = [u4] ,    u = m, n, 

 

i.e. mnxij = {4j}mn/{ij}mn and mnxji = {i4}mn/{ij}mn . Note that m and n are interchangeable  

 

in the above notations.  Furthermore, let w* = [01]x1* + [02]x2* + [03]x3*, where  

 

(x1*, x2*, x3*) is the possible non-degenerated solution of 

 

[i1]x1 + [i2]x2 + [i3]x3 = [i4],    i = 1, 2, 3, 

      

i.e.  x1* ={423)123/{123)123 , x2* ={143)123/{123)123  and  x3* ={124)123/{123)123. 

 

 

In the tableau T1: 

                  
   [01] [02] [03] 

   [11] [12] [13] [14] 

   [21] [22] [23] [24] 

   [31] [32] [33] [34] 

 

[11] is the pivot because of (1j) and (2i), j, i = 2, 3. 

 

 

Lemma 2.   

 

  If wi1 > w11, then ([i4]/[i1], 0, 0) is not a feasible solution. 

 

Proof.   

 

  Since wi1 > w11, {14}1i  > 0. It follows that [11]([i4]/[i1]) + [12](0) + [13](0) > [14], 

 

i.e. ([i4]/[i1], 0, 0) does not satisfy (I1). Perform the cross-multiplication at [11] to yield  

 

T2: 

 

   0        {12}10  {13}10 

           [11]      [12]  [13]    [14] 

             0        {12}12  {13}12    {14}12  

0        {12}13  {13}13    {14}13                 
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Theorem 1.  

 

If  

                  

(3) {12}01  0   

 

and 

 

(4) {13}01  0,   

 

then [11] is the only pivot of T0 and w11 is the maximum of w. 

 

          

Proof.   

 

Since there is no positive coefficient in the top row of T2, [11] is the only pivot of T0.  

 

 

Due to Lemma 2, it suffices to show that w11  w in each of the following cases. 

 

 

Case 1.  w = wkj , where wkj is the least among wij , i =1, 2, 3 and j = 2, 3. 

      

 

From the inequality (j+1), we have 

 

  w11 - w   w11 - w1j = [01][14]/[11] - [0j][14]/[1j] = [14]{1j}01/([11][1j])  0. 

 

 

Case 2.  w = mnwij , where mnxij and mnxji are positive and satisfying (I1) with other  

 

variables 0. 

                  
 

From the inequalities (3) and (4), we have 

 

             

  w11 - w = [01][14]/[11] - [0i]mnxij - [0j]mnxji  

 

    = [01][14]/[11] - ([0i][11]/[11])mnxij - ([0j][11]/[11])mnxji  

 

      [01][14]/[11] - ([01][1i]/[11])mnxij - ([01][1j]/[11])mnxji  

 

    = ([01]/[11])([14] - [1i] mnxij - [1j]mnxji)  0. 
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Case 3.  w = w*, where xj*  0, j = 1, 2, 3. 

 

 

From (3) and (4), we have 

 

    w11 - w* = [01][14]/[11] - ([01]x1* + [02]x2* + [03]x3*) 

 

        [01][14]/[11] - ([01][11]/[11])x1* - ([01][12]/[11])x2* - ([01][13]/[11])x3* 

                                                            

       = ([01]/[11])([14] - [11]x1* - [12]x2* - [13]x3*)  0. 

                                                

 

If the pivot in T2 exists, we can assume that 

                 
(3’) {12}01 < 0.    

 

 

If the pivot is [12], it replaces [11] as a pivot of T0.  In this case, we can rearrange T2 into  

 

 

T2’: 

                            

  {12}10   {13}10        0 

  [12]   [13]     [11]      [14] 

  {12}12   {13}12        0       {14}12  

{12}13   {13}13        0       {14}13        

 

               

and T0 into T0’: 

 

 

[02] [03] [01] 

   [12] [13] [11] [14] 

   [22] [23] [21] [24] 

   [32] [33] [31] [34] 

 

      

If [12] is the only pivot of T0’, then similar to Theorem 1, we can prove that w12 is the  

 

maximum of w. Otherwise, we can assume that [12] and [23] are the only pivots of T0’  

 

and use the same method in the proof of the next theorem to prove that 12w23 is the  

 

maximum of w.     
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Now, let us go back to T2 and assume that {12}12 is the pivot. Then we have 

 

(5) {12}10  {13}10        

 

(6) {12}12 > 0      

 

(7) [12]{14}12 - [14]{12}12 = [11]{24}12  0      

 

and 

 

(8) {14}12{12}13 - {12}12{14}13 = [11]{124}123  0.     

 

 

The slope check from [01] to [22] gives either 

                  

(9) {12}02  0       

 

or 

 

(9’) {12}02 < 0.                                                                                      

                               

 

Theorem 2.   

 

If the inequalities (9) and 

                 

(10) {123}012  0        

 

hold, then [11] and [22] are the only pivots of T0 and 12w12 is the maximum of w.          

     
 

Lemma 3.   

 

 w* - mnwjk = xi*{123}0mn/{(jk)}mn , where (21) = (12) = 12, (32) = (23) = 23, (13) = (31)  

 

= 31. 

                    

Proof.   

 

Solving 

    [01]x1 + [02]x2 + [03]x3 = w* 

[u1]x1 + [u2]x2 + [u3]x3 = [u4]   u = m, n        

 

for xi, we get xi*{123}0mn = w*{(jk)}mn + [0j]{k4}mn + [0k]{4j}mn = (w* - mnwjk){(jk)}mn. 

 

308 



Lemma 4.   

 

Let (01)’ = 10, (02)’ = 02, 1’ = 2 and 2’ = 1. Then, for k = 1, 2. 

 

 i) 12w12 - wk3 = ({12}k0{34}12 - [k4]{123}012 )/([k3]{12}12). 

 

ii) 12w12 - 
12wk3 = -12x3k{123}012/{12}12. 

 

iii) 12w12 - 
k3w12 = ({12}(0k)’ /{12}12)([k’4] - [k’1]k3x12 - [k’2]k3x21).                                              

 

iv) 12w12 - 
k3wk’3 = ({12}(0k)’ /{12}12)([k’4]-[k’k’]k3xk’3-[k’3]k3x3k’) - 

k3x3k’{123}012/{12}12. 

 

 v) 12w12 - 
k3wk3 = ({12}(0k)’ /{12}12)([k’4]-[k’k]k3xk3-[k’3]k3x3k) - 

k3x3k{123}012/{12}12 . 

 

Proof.   

 

We derive one formula in each category via Lemma 1 due to the similarity. 

 

i)    12w12 – w23  

 

= ([01]{42}12 + [02]{14}12)/{12}12 - [03]([24]/[23]) 

 

 = [23]([01][14][22] - [01][12][24] + [02][11][24] - [02][14][21])/([23]{12}12) 

 

   - [24][03]{12}12/([23]{12}12)            

 

= {[23][14]{12}02 + [24]([23]{12}10 + [03]{12}21)}/([23]{12}12)            

 

= {[23][14]{12}02 + [24]({312}210 - [13]{12}02)}/([23]{12}12)  

 

= ({12}20{34}12 - [24]{123}012)/([23]{12}12)}.                                                              

 

ii) 

 

   12w12  - 
12w23  

 

= ([01]{42}12 + [02]{14}12)/{12}12 - ([02]{43}12 + [03]{24}12)/{23}12   

 

= {[01]{42}12{23}12 + [02]({14}12{23}12 + {34}12{12}12) –  

 

[03]{24}12{12}12}/({12}12{23}12) 

 

= ([01]{24}12{32}12 + [02]{24}12{13}12 + [03]{24}12{21}12)/({12}12{23}12) 

 

= ({24}12/{23}12})/({132}012/{12}12) = - 12x32{123}012/{12}12. 
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iii) 

 

     12w12  - 
13w12  

 

  = ([01]{42}12 + [02]{14}12)/{12}12 - ([01]{42}13 + [02]{14}13)/{12}13 

 

  = {[01]({12}21{42}13 -{42}21{12}13) + [02]({21}21{41}13 – 

 

{41}21{21}13)}/({12}12{12}13) 

 

  = ([01][12]{142}213  + [02][11]{241}213)/({12}12{12}13) 

 

  = {12}01{124}123/({12}12{12}13) = ({12}10 /{12}12)([24] - [21] 13x12 - [22] 13x21). 

 

                                                                                                                                                                                                                                                                                                        
iv) 

 

   12w12 - 
23w13  

 

= ([01]{42}12 + [02]{14}12)/{12}12 - ([01]{43}23 + [03]{14}23)/{13}23 

 

= {[01]({42}21{31}23 + {12}21{43}23) + [02]{14}12{13}23 –  

 

[03]{12}12{14}23}/({12}12{13}23)   

 

= {[01]([22]{431}213 - {32}21{14}23) + [02]{41}21{13}23 +  

 

[03]{12}21{14}23}/({12}12{13}23) 

 

= {-[01][22]{143}123 + {14}23([01]{23}21 + [03]{12}21) +  

 

[02]{41}21{13}23}/({12}12{13}23) 

 

= {-[01][22]{143}123 + {14}23({123}021 - [02]{31}21) + [02]{41}21{13}23}/({12}12{13}23) 

 

= {-[01][22]{143}123 - {14}23{123}012 + [02]({41}12{31}23 –  

 

{31}12{41}23)}/({12}12{13}23) 

                             
= (-[01][22]{143}123 - {14}23{123}012 + [02][21]{431}123)/({12}12{13}23) 

 

= {12}20{143}123/{12}12{13}23 - ({14}23/{13}23)({123}012)/{12}12) 

 

= ({12}02 /{12}12)([14] - [11]23x13 - [13]23x31) - 
23x31{123}012/{12}12. 
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v)                   
 

     12w12 - 
13w13  

 

= ([01]{42}12 + [02]{14}12)/{12}12 - ([01]{43}23 + [03]{14}13)/{13}13 

 

= {[01]({42}12{13}13+{12}12{34}13)+[02]{14}12{13}13- 

 

[03]{12}12{14}13}/({12}12{13}13) 

 

= {[01]([12]{413}123-{32}12{41}13)+[02]{14}12{13}13-[03]{12}12{14}13}/({12}12{13}13) 

 

= {-[01][12]{143}123 + {14}13([01]{32}12+[03]{21}12) +  

 

[02]{14}12{13}13}/({12}12{13}13) 

      

= {-[01][12]{143}123 + {14}13({132}012 - [02]{13}12) + [02]{14}12{13}13}/({12}12{13}13) 

 

= {-[01][12]{143}123 - {14}13{123}012 + [02]({41}12{31}13 –  

 

{31}12{41}13)}/({12}12{13}13) 

 

= (-[01][12]{143}123 - {14}13{123}012 + [02][11]{431}123)/({12}12{13}13) 

 

= {12}10{143}123/{12}12{13}13 - ({14}13/{13}13)({123}012)/{12}12) 

 

= ({12}10 /{12}12)([24] - [21]13x13 - [23]13x31) - 
13x31{123}012/{12}12. 

 

                  

 

Perform the cross-multiplication at {12}12  in T2 to yield T3: 

 

                  
   0  0   [11]{123}012   

       [11]{12}12  0     [11]{32}12       [11]{42}12   

   0        {12}12        {13}12           {14}12 

   0  0   [11]{123}123    [11] ]{124}123 

 

 

Because of (10), there is no pivot in T3. Because of (6), it follows from (7) and (22) that  

 
12x12 and 12x21 are non-negative. We shall assume the non-degenerated case so that  

 

{42}12, {14}12, 
12x12 and 12x21 are all positive. 
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Proof of Theorem 2.   

 

From Lemma 1.i) and (8), it follows that (12x12,
12x21, 0) satisfies (I3): 

 

 [31]12x12 + [32]12x21 = ([31]{42}12 + [32]{14}12)/{12}12 

 

          = (-{124}123 + [34]{12}12)/{12}12   [34].                                      

 

To prove that 12w12 is the maximum of w, due to Lemma 2, we need only show that 12w12  

 

 w. 

                                                                                                                                                                                  
Case 1.  w = w*, where x3* is non-negative. 

 

Because of (10), it follows from lemma 3 that 12w12 - w = - x3*{123}012/{12}12  0. 

 

Case 2.  w = wk2 , where wk2 is the least among wi2 , i = 1, 2, 3. 

 

From (9), we have 

 
12w12 - w  [01]12x12 +  [02]12x21 – w22  

 

    = ({12}02/[22])12x12+ ([02]/[22])([21]12x12 + [22]12x21 - [24])  0.  

 

Case 3.  w = wk3 , where wk3 is the least among wi3 , i = 1, 2, 3.           

 

Because of (3’), (6), (9), (10) and Lemma 4.i), we have either 12w12  w13 or 12w12  w23. 

 

Case 4.  w =  12wk3 , where 12x3k  0, k = 1, 2. 

 

Because of (6) and (10), it follows from Lemma 4.ii) that 

 

  12w12 - w = - 12x3k{123}012/{12}12   0.  

 

Case 5.  w =  k3w12 , where (k3x12 , 
k3x21 , 0) satisfies (Ik’), k= 1, 2. 

 

Because of (3’), (6) and (9), it follows from Lemma 4.iii) that                                       

 

 12w12 - w = ({12}(0k)’/{12}12)([k’4] - [k’1]k3x12 - [k’2]k3x21)  0. 

 

Case 6.  w =  k3wk’3 , where k3x3k’  0, k = 1, 2, (0, 13x23 , 
13x32) satisfies (I2) and (23x13 , 0,  

 
23x31) satisfies (I1). 

 

Because of (3’), (6), (9) and (10), it follows from Lemma 4.iv) that 
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   12w12 - w = ({12}(0k)’/{12}12)([k’4] - [k’k’]k3xk’3 - [k’3]k3x3k’) - 
k3x3k’{123}012/{12}12   0. 

  

Case 7.  w =  k3wk3 , where k3x3k  0, k = 1, 2, (0, 13x13 , 
13x31) satisfies (I2) and (23x23 , 0,  

 
23x32) satisfies (I1).        

                            

Because of (3’), (6), (9) and (10), it follows from Lemma 4.v) that 

      

       12w12 - w = ({12}(0k)’/{12}12)([k’4] - [k’k]k3xk3 - [k’3]k3x3k) - 
k3x3k{123}012/{12}12   0. 

                      
Now, if the slope check from [01] to [22] in T0 gives {12}02  < 0, the pivot [11] is  

 

eliminated.  

               

 

Rearrange T0 into T0’’: 

    [02] [03] [01] 

    [22] [23] [21] [24] 

    [32] [33] [31] [34] 

    [12] [13] [11] [14] 

and T2 into T2’’: 

   {12}10   {13}10  0 

   {12}12  {13}12  0 {14}12 

   {12}13  {13}13  0 {14}13 

    [12]   [13]           [11]  [14] 

                              

If [22] is the only pivot in T0’’, then w22 is the maximum of w due to Theorem 1.  If [22]  

 

and [33] are the only pivots in T0’’, then 23w23 is the maximum of w due to Theorem 2.   

 

Finally, let’s go back to T3 . If 

 

(10’) {123}012  > 0      

 

holds, due to Theorem 1 and Theorem 2, we need only consider the case that   

 

[11]{123}123 is the pivot. In the three-pivot case, we require that 

                                                                                                                                                      
(11) {123}123 > 0       

 

(12) [11]2({42}12{123}123 - {32}12{124}123) = [11]2{12}12{423}123 > 0   

  

(13) [11] ({14}12{123}123 - {13}12{124}123) = [11]{12}12{143}123 > 0     

 

(14) {124}123 > 0       
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(15) {13}03  0               

 

and 

  

(16)      {23}03  0. 

         

 

Theorem 3.   

 

If the inequalities (9), (10’), (11), (12), (13), (14), (15) and (16) hold, then [11], [22] and  

 

[33] are the pivots of T0 and w* is the maximum of w.        

                  

Proof.   

 

Because of (15) and (16), there is no elimination of pivots as a result of the slope  

 

checks. Perform the cross-multiplication at [11]{123}123 in T3 to yield T4: 

 

 0   0   0 

        [11]2{12}12{123}123   0   0 [11]2{12}12{423}123  

   0          [11]{12}12{123}123  0  [11]{12}12{143}123 

  0   0    [11]{123}123        [11]{124}123 

 

This is the final tableau, from which we see that (x1*, x2*, x3*) is the positive solution  

 

due to (12), (13) and (14). Similar to (10’), we can rotate the pivots [11], [22] and [33] to  

 

obtain the inequalities 

 

(17) {123}031 > 0       

 

and 

   

(18) {123}023 > 0.       

 

To prove that w* is the maximum of w, due to Lemma 2, we need only show that  

 

w*  w in each of the following cases.  

 

Case 1.  w =  12w12. 

 

Because of (10’), it follows from lemma 3 that w* - w = x3*{123}012/{12}12 > 0.         

 

Case 2.  w = wk2 , where wk2 is the least among wi2 , i = 1, 2, 3. 
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From Case 2 in the proof of Theorem 2 and Case 1, we have w* > 12w12  w22   w. 

                  

Case 3.  w = wk3 , where wk3 is the least among wi3 , i = 1, 2, 3. 

 

Because of (3’), (6), (9) and (10’), it follows from Lemma 4.i) and Case 1 that either 

 

w*  12w12  w13 or w*  12w12  w23.           

               

Case 4.  w =  k3w12 , where (k3x12 , 
k3x21 , 0) satisfies (Ik’), k= 1, 2. 

                 

 

Because of (3’), (6) and (9), it follows from Lemma 4.iii) and Case 1 that 

 

w* - w = (w* - 12w12) + (12w12 – w)  

 

 ({12}(0k)’/{12}12)([k’4] - [k’1]k3x12 - [k’2]k3x21)  0. 

        

Case 5.  w =  12wk3 , where 12x3k  0, k = 1, 2, where (12x13, 0, 12x31) and (0, 12x23, 
12x32)  

 

  satisfy (I3). 

 

Since {14}12 and {42}12 are positive, it follows from 

                    

    12x3k({k43}123/{k4}12 ) = {k43}312/{ k3}12 = [3k]12xk3 + [33]12x3k – [34]  0. 

 

that 12x3k = 0 because of (12) and (13). Hence, by Case 3, we have w*  wk3  w. 

 

 

Case 6.  w =  k3wk’3 , k = 1, 2, where (0, 13x23 , 
13x32) and (23x13 , 0, 23x31) are feasible. 

      

 

From (12), (13), (17), (18) and Lemma 3, it follows that 

 

  w* - k3wk’3 = xk*{123}0k3/{(k’3)}k3 

    

        = xk*{123}0k3([k’4] - [k’k’]k3xk’3 - [k’3]k3x3k’)/{4(k’3)}k’k3}  0. 

 

Case 7.  w =  k3wk3 , k = 1, 2, where (0, 23x23 , 
23x32) and (13x13 , 0, 13x31) are feasible. 

 

From (12), (13), (17), (18) and Lemma 3, it follows that  

 

  w* - k3wk3 = xk’*{123}0k3/{(k3)}k3 

    

        = xk’*{123}0k3([k’4] - [k’k]k3xk3 - [k’3]k3x3k){4(k3)}k’k3}  0.    
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GLOSSARY 

 

Pythagorean Theorem:     The sum of the squares of the lengths of each of the right  

 

triangle’s legs is the same as the square of the length of the triangle’s hypotenuse. 

 

Combinatorics: The branch of mathematics dealing with combinations of objects  

 

belonging to a finite set in accordance with certain constraints. 

 

Mathematical induction:   To prove a statement S(n) is true for any natural number  

 

n, it suffices first to establish the inductive basis [to prove S(1) is true] and then to  

 

provide the inductive step [to prove S(m+1) is true by assuming S(m) is true]. 

 

Row move:     A move to place a number in a grid by observing a certain row. 

 

Column move:    A move to place a number in a grid by observing a certain column. 

 

Box move:     A move to place a number in a grid by observing a certain box. 

 

Grid move:     A move to place a number in a grid by observing a certain grid. 

 

Terminating move:   A move to place a number in a grid to fill up a row, column or box. 

 

Situational move: A move after carefully studying the whole situation when stuck. 

 

Balducci assumption:     When 0 < t < 1, the mortality rate tqx can not be found in a life  

 

table. Under this assumption, the reciprocal interpolation is used. 

 

U-assumption:     When 0 < t < 1, the mortality rate tqx can not be found in a life table.  

 

Under this assumption, the linear interpolation is used.   

 

CSO:         The acronym for Commissioners Standard Ordinary. 

 

SOA:          The acronym for Society of actuaries. 
 

ARCH:      The acronym for Actuarial Research Clearing House, which is one of the two  

 

SOA publications of articles, the other is Transactions. 
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APENDIX A: LIST OF TABLES 

 

Table 1. The first stage of gift-giving arrangement 

 

Table 2. The second stage of gift-giving arrangement 

 

Table 3. Table of the first stage of information 

 

Table 4. Table of the second stage of information in Case 1 

 

Table 5. Table of the second stage of information in Case 2 

 

Table 6. The final table of the complete information 

 

Table 7.  Table for recursive calculations of S(2)(n) and T(n) 

 

Table 8.   Pascal Triangle 

 

Table 9.   Bernoulli triangle 

 

Table 10.    The small Stirling triangle 

 

Table 11.   The large Stirling triangle 
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Table 12.            The small Euler triangle 

 

Table 13.    The large Euler triangle 

 

Table 14.    The first-order Pascal triangle 

 

Table 15.    The second-order Pascal triangle 

 

Table 16.            Table for Stirling numbers of the first kind 

 

Table 17.    Stirling triangle of the first kind via the recursive formula 

 

Table 18.    Stirling triangle of the second kind via the recursive formula 

 

Table 19.     Table for general Stirling numbers of the first kind  

 

Table 20.     Table for general Stirling numbers of the second kind  

 

Table 21.     Table for general first order Eulerian numbers  

 

Table 22.     Table for general second order Eulerian numbers  

 

Table 23. First half of the comparison chart. 

 

Table 24. Second half of the comparison chart. 

 

 

 

 

APENDIX B: LIST OF FIGURES 

 

 

Figure 1.      The table surface for placing 

 

Figure 2.      The first stage of placing 

 

Figure 3.      The second stage of placing 

 

Figure 4.      The third stage of placing 
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Figure 5.      The fourth stage of placing 

 

Figure 6.      The fifth stage of placing 

 

Figure 7.       Assumption 1 of course electing 

 

Figure 8.       Assumption1.2 of course electing 

 

Figure 9.       Assumption1.3 of course electing 

 

Figure 10.       Assumption 2 of course electing 

 

Figure 11.       Assumption 2.2 of course electing 

 

Figure 12.              Assumption 3 of course electing 

 

Figure 13.        Assumption 3.2 of course electing 

 

Figure 14.        Assumption 3.3.1 of course electing 

 

Figure 15.               Figure for P. T. 
 

Figure 16.               Figure for T. T. 1 

 

Figure 17.         Figure for T. T. 2 

 

Figure 18.         Figure with three squares   

 

Figure 19.         Figure with three half circles 

 

Figure 20.         Figure with  (b-a)2  off center 

 

Figure 21.         Figure with  (b-a)2  centered 

 

Figure 22.                Figure for obtuse triangle 

 

Figure 23.         Figure for acute triangle 

 

Figure 24.         Figure for DG = FG and HB // DE 

 

Figure 25.         Figure supplemented by a convenient table 

 

Figure 26.         Figure for the grid gate 

 

Figure 27.         Figure for the grid gate with two corners marked A and B 
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Figure 28.         Figure for the graded window 

 

Figure 29.         Figure for graffiti picture 1 

 

Figure 30.         Figure for graffiti picture 2 

 

Figure 31.         Figure for graffiti picture 3 

 

Figure 32.         Figure for the jail house 

 

Figure 33.         Figure for the gridded square 

 

Figure 34.                Figure for the uniform sample space of 441 points 

 

Figure 35.                Figure for the uniform sample space of 368 points 

 

Figure 36.          Figure for the mutually exclusive case 

 

Figure 37.          Figure for the independent case 

 

Figure 38.          Figure for the nearly independent case 

 

Figure 39.          The first figure of Sudoku preview 

 

Figure 40.                 The second figure of Sudoku preview 

 

Figure 41.           The third figure of Sudoku preview 

 

Figure 42.           The fourth figure of Sudoku preview 

 

Figure 43.                 The fifth figure of Sudoku preview 

 

Figure 44.                 The structure of an n  year continuous life actuarial model 

 

Figure 45.                 The present value of )(m

na  

 

Figure 46.                 The present value of )(m

na  

 

Figure 47.                 The present value of na  

 

Figure 48.                  The future value of )(m

na  

 

Figure 49.                  The future value of )(m

na  
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Figure 50.            The present value of na  

 

Figure 51.                   Geometric visualization of the force of interest 

 

Figure 52.                   Geometric visualization of annuity functions 

 

Figure 53.                   Future value of n-year payments of annuity due 

 

Figure 54.                   Future value of n-year payments of annuity immediate 

 

Figure 55.                   Future value of n-year payments of continuous annuity 

 

Figure 56.                   Linear visualization of the death rate xut q|  

 

Figure 57.                   Linear visualization of various death rates 

 

Figure 58.                   Linear visualization of the death rate in Case 1 

 

Figure 59.                   Linear visualization of the death rate in Case 2 

 

Figure 60.                   Linear visualization of the death rate in both cases 

 

Figure 61. The observed deaths and the periodic numeration of the individuals 

 

Figure 62. Visualization of Case 1 

 

Figure 63.             The migration occurs on birthdays under B-Assumption 

 

Figure 64.             The migration occurs at year-ends under B-Assumption 

 

Figure 65.             The migration occurs at year-ends under U-Assumption 

 

Figure 66.             The migration occurs at year-ends under U-Assumption 

 

Figure 67.                Calendar year study, deaths by age last birthday, migration on birthdays 

 

Figure 68.              Calendar year study, deaths by age last birthday, migration at year-ends 

 

Figure 69.       Calendar year study, deaths by calendar year, migration on birthdays 

 

Figure 70. Calendar year study, deaths by calendar year, migration at year-ends 

 

Figure 71.       The supplementary relationship of 1

:

)( )( nx

mD   and 1

:

)( )( nx

mI   
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Figure 72. The supplementary relationship of 1

:)( nxD  and 1

:)( nxI  

 

Figure 73.       The playground of Sudoku 
 

Figure 74.              Figure 1 for Puzzle 1 

 

Figure 75.        Figure 2 for Puzzle 1 

 

Figure 76.               Figure 3 for Puzzle 1 

 

Figure 77.               Figure 4 for Puzzle 1 

 

Figure 78.               Figure 5 for Puzzle 1 

 

Figure 79.         Figure 6 for Puzzle 1 

 
Figure 80.                Figure 7 for Puzzle 1 
 
Figure 81.         Figure 8 for Puzzle 1 

 

Figure 82.         Figure 9 for Puzzle 1 

 

Figure 83.        Figure 1 for Puzzle 2 

 
Figure 84.              Figure 2 for Puzzle 2 

 
Figure 85.       Figure 3 for Puzzle 2 

 
Figure 86.              Figure 1 for Puzzle 3 

 

Figure 87.        Figure 2 for Puzzle 3 

 
Figure 88.        Figure 3 for Puzzle 3 

 
Figure 89.        Figure 4 for Puzzle 3 

 
Figure 90.        Figure 5 for Puzzle 3 

 
Figure 91.        Figure 6 for Puzzle 3 

 

Figure 92.               Figure 7 for Puzzle 3 

 
Figure 93.               Figure 8 for Puzzle 3 
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Figure 94.         Figure 9 for Puzzle 3 

 
Figure 95.          Figure 10 for Puzzle 3 

 

Figure 96.          Figure 11 for Puzzle 3 

 

Figure 97.                Figure 12 for Puzzle 3 

 

Figure 98.         Figure 1 for Puzzle 4 

 

Figure 99.          Figure 2 for Puzzle 4 

 
Figure 100.               Figure 3 for Puzzle 4 
 

Figure 101.           Figure 4 for Puzzle 4 

 
Figure 102.                Figure 5 for Puzzle 4 

 

Figure 103.            Figure 6 for Puzzle 4 

 
Figure 104.            Figure 1 for Puzzle 5 

 

Figure 105.            Figure 2 for Puzzle 5 

 
Figure 106.                 Figure 3 for Puzzle 5 

 

Figure 107.            Figure 4 for Puzzle 5 

 

Figure 108.            Figure 5 for Puzzle 5 

 
Figure 109.            Figure 6 for Puzzle 5 

 
Figure 110.            Figure 7 for Puzzle 5 

 

Figure 111.            Figure 8 for Puzzle 5 

 

Figure 112.            Figure 9 for Puzzle 5 
 

Figure 113.            Figure 1 for Puzzle 6 

 

Figure 114.            Figure 2 for Puzzle 6 

 

Figure 115.                 Figure 3 for Puzzle 6 

 

Figure 116.                 Figure 4 for Puzzle 6 
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Figure 117.                 Figure 5 for Puzzle 6 

 

Figure 118.             Figure 6 for Puzzle 6 

 

Figure 119.             Figure 7 for Puzzle 6 

 

Figure 120.             Figure 8 for Puzzle 6 

 

Figure 121.                  Figure 9 for Puzzle 6 

 

Figure 122.              Figure 1 for Puzzle 7 

 

Figure 123.              Figure 2 for Puzzle 7 

 

Figure 124.                   Figure 3 for Puzzle 7 

 

Figure 125.                   Figure 4 for Puzzle 7 

 

Figure 126.               Figure 5 for Puzzle 7 

 

Figure 127.                Figure 6 for Puzzle 7 

 

Figure 128.                     Figure 1 for Puzzle 8 

 

Figure 129.                     Figure 2 for Puzzle 8 

 

Figure 130.                     Figure 3 for Puzzle 8 

 

Figure 131.                 Figure 4 for Puzzle 8 

 

Figure 132.                 Figure 5 for Puzzle 8 

 

Figure 133.                 Figure 6 for Puzzle 8 

 

Figure 134.                 Figure 7 for Puzzle 8 

 

Figure 135.                 Figure 8 for Puzzle 8 

 

Figure 136.                  Figure 9 for Puzzle 8 

 

Figure 137.                  Figure 1 for Puzzle 9 

     

Figure 138.                  Figure 2 for Puzzle 9 

 

Figure 139.                  Figure 3 for Puzzle 9 
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Figure 140.                  Figure 4 for Puzzle 9 

 

Figure 141.                  Figure 5 for Puzzle 9 

 

Figure 142.                   Figure 6 for Puzzle 9 

 

Figure 143.                   Figure 7 for Puzzle 9 

 

Figure 144.                   Figure 8 for Puzzle 9 

 

Figure 145.                    Figure 9 for Puzzle 9 

 

Figure 146.                    Figure 1 for Puzzle 10 

 

Figure 147.                    Figure 2 for Puzzle 10 

 

Figure 148.                    Figure 3 for Puzzle 10 

 

Figure 149.                    Figure 4 for Puzzle 10 

 

Figure 150.                     Figure 5 for Puzzle 10 

 

Figure 151.                     Figure 6 for Puzzle 10 

 

Figure 152.                     Figure 7 for Puzzle 10 

 

Figure 153.                     Figure 8 for Puzzle 10 

 

Figure 154.                     Figure 9 for Puzzle 10 

 

Figure 155.                      Figure 10 for Puzzle 10 

 

Figure 156.                      Figure 11 for Puzzle 10 

 

Figure 157.                      Figure 12 for Puzzle 10 

 

Figure 158.                      Figure 13 for Puzzle 10 

 

Figure 159.                      Figure 14 for Puzzle 10 

 

Figure 160.                      Figure 15 for Puzzle 10 

 

Figure 161.                      Figure 1 for Puzzle 11 

 

Figure 162.                      Figure 2 for Puzzle 11 
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Figure 163.                       Figure 3 for Puzzle 11 

 

Figure 164.                       Figure 1 for Puzzle 12 

 

Figure 165.                       Figure 2 for Puzzle 12 

 

Figure 166.                       Figure 3 for Puzzle 12 

 

Figure 167.                       Figure 1 for Puzzle 13 

 

Figure 168.                        Figure 2 for Puzzle 13 

 

Figure 169.                        Figure 3 for Puzzle 13 

 

Figure 170.                        Figure 4 for Puzzle 13 

 

Figure 171.                        Figure 5 for Puzzle 13 

 

Figure 172.                        Figure 6 for Puzzle 13 

 

Figure 173.                         Figure 1 for Puzzle 14 

 

Figure 174.                          Figure 2 for Puzzle 14 

 

Figure 175.                          Figure 3 for Puzzle 14 

 

Figure 176.                           Figure 1 for Puzzle 15 

 

Figure 177.                           Figure 2 for Puzzle 15 

 

Figure 178.                           Figure 3 for Puzzle 15 

 

Figure 179.                           Figure 1 for Puzzle 16 

 

Figure 180.                           Figure 2 for Puzzle 16 

 

Figure 181.                           Figure 3 for Puzzle 16 
 

Figure 182.                           Figure 4 for Puzzle 16 

 

Figure 183.                           Figure 5 for Puzzle 16 

 

Figure 184.                           Figure 6 for Puzzle 16 

 

Figure 185.                           Figure 7 for Puzzle 16 
 

329 



Figure 186.                           Figure 8 for Puzzle 16 

 

Figure 187.                                Figure 9 for Puzzle 16 

 

Figure 188.                            Figure 10 for Puzzle 16 

 

Figure 189.                                 Figure11 for Puzzle 16 

 
Figure 190.                                 Figure 12 for Puzzle 16 

 
Figure 191.                             Figure 1 for Puzzle 17 

 

Figure 192.                             Figure 2 for Puzzle 17 

 

Figure 193.                             Figure 3 for Puzzle 17 

 

Figure 194.                              Figure 4 for Puzzle 17 

 

Figure 195.                              Figure 5 for Puzzle 17 

 

Figure 196.                                   Figure 6 for Puzzle 17 

 

Figure 197.                              Figure 7 for Puzzle 17 
 

Figure 198.                              Figure 8 for Puzzle 17 

 

Figure 199.                                   Figure 9 for Puzzle 17 

 

Figure 200.                               Figure 1 for Puzzle 18 

 

Figure 201.                               Figure 2 for Puzzle 18 

 

Figure 202.                               Figure 3 for Puzzle 18 

 

Figure 203.                                Figure 4 for Puzzle 18 

 

Figure 204.                                Figure 5 for Puzzle 18 

 

Figure 205.                                     Figure 6 for Puzzle 18 

 

Figure 206.                                 Figure 7 for Puzzle 18 
 

Figure 207.                                 Figure 8 for Puzzle 18 

 

Figure 208.                                      Figure 9 for Puzzle 18 
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Figure 209.                                  Figure 1 for Puzzle 19 

 

Figure 210.                                  Figure 2 for Puzzle 19 

 

Figure 211.                                  Figure 3 for Puzzle 19 

 

Figure 212.                                   Figure 4 for Puzzle 19 

 

Figure 213.                                   Figure 5 for Puzzle 19 

 

Figure 214.                                        Figure 6 for Puzzle 19 

 

Figure 215.                                    Figure 1 for Puzzle 20 

 

Figure 216.                                    Figure 2 for Puzzle 20 

 

Figure 217.                                    Figure 3 for Puzzle 20 

 

Figure 218.                                     Figure 1 for Puzzle 21 

 

Figure 219.                                     Figure 2 for Puzzle 21 

 

Figure 220.                                     Figure 3 for Puzzle 21 

 

Figure 221.                                     Figure 1 for Puzzle 22 

 

Figure 222.                                     Figure 2 for Puzzle 22 

 

Figure 223.                                      Figure 3 for Puzzle 22 

 

Figure 224.                                      Figure 1 for Puzzle 20 

 

Figure 225.                                      Figure 2 for Puzzle 20 

 

Figure 226.                                      Figure 3 for Puzzle 20 
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EDITORS PAGE 

 

Editors of "EVOLUTIONARY PROGRESS IN SCIENCE, TECHNOLOGY,  

ENGINEERING, ARTS AND MATHEMATICS (STEAM)" 

 

1.  Dr. Lawrence K. Wang  (王抗曝)   
 

Lawrence K. Wang has over 30+ years of professional experience in facility design,  

 

environmental sustainability, natural resources, STEAM education, global pollution  

 

control, construction, plant operation, and management.  He has expertise in water supply,  

 

air pollution control, solid waste disposal, drinking water treatment, waste treatment, and  

 

hazardous waste management.  He was the  Director/Acting President of the Lenox  

 

Institute of Water Technology, Engineering Director of Krofta Engineering Corporation  

 

and Zorex Corporation, and a Professor of RPI/SIT/UIUC, in the USA.  He was also a  

 

Senior Advisor of the United Nations Industrial and Development Organization (UNIDO)  

 

in Austria.  Dr. Wang is the author of over 700 technical papers and 45+ books, and is  

 

credited with 24 US patents and 5 foreign patents.  He earned his two HS diplomas from  

 

the High School of National Taiwan Normal University and the State University of New  

 

York.  He also earned his BS degree from National Cheng-Kung University, Taiwan, ROC,  

 

his two MS degrees from the University of Missouri and the University of Rhode Island,  

 

USA, and his PhD degree from Rutgers University, USA.  Currently he is the Chief Series  

 

Editor of the Handbook of Environmental Engineering series (Springer); Chief Series  

 

Editor of the Advances in Industrial and Hazardous Wastes Treatment series, (CRC Press,  

 

Taylor & Francis); co-author of the Water and Wastewater Engineering series (John Wiley  

 

& Sons);  and Co-Series Editor of the Handbook of Environment and Waste Management  

 

series (World Scientific).  Dr. Wang is active in professional activities of AWWA, WEF,  

 

NEWWA, NEWEA, AIChE, ACS, OCEESA, etc.                                                        332 



2. Dr. Hung-ping Tsao  (曹恆平) 

 

Hung-ping Tsao has been a mathematician, a university professor, and an assistant  

 

actuary, serving private firms and universities in the United States and Taiwan for 30+  

 

years. He used to be an Associate Member of the Society of Actuaries and a Member of  

 

the American Mathematical Society. His research have been in the areas of college  

 

mathematics, actuarial mathematics, management mathematics, classic number theory  

 

and Sudoku puzzle solving. In particular, bikini and open top problems are presented to  

 

share some intuitive insights and some type of optimization problems can be solved more  

 

efficiently and categorically by using the idea of the boundary being the marginal change of  

 

a well-rounded region with respect to its inradius; theory of interest, life contingency  

 

functions and pension funding are presented in more simplified and generalized fashions;  

 

the new way of the simplex method using cross-multiplication substantially simplified  

 

the process of finding the solutions of optimization problems; the generalization of  

 

triangular arrays of numbers from the natural sequence based to arithmetically  

 

progressive sequences based opens up the dimension of explorations; the introduction of  

 

step-by-step attempts to solve Sudoku puzzles makes everybody’s life so much easier and  

 

other STEAM project development. Dr. Tsao is the author of 3 books and over 30  

 

academic publications. Among all of the above accomplishments, he is most proud of  

 

solving manually in the total of ten hours the hardest Sudoku posted online by Arto  

 

Inkala in early July of 2012. He earned his high school diploma from the High School of  

 

National Taiwan Normal University, his BS and MS degrees from National Taiwan  

 

Normal University, Taipei, Taiwan, his second MS degree from the UWM in USA, and a  

 

PhD degree from the University of Illinois, USA.   
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E-BOOK SERIES AND CHAPTER INTRODUCTON 

 

Introduction to the eBOOK Series of the "EVOLUTIONARY PROGRESS IN SCIENCE, 

 

TECHNOLOGY, ENGINEERING, ARTS AND MATHEMATICS (STEAM)" and This  

 

Chapter “MATHEMATICS OF HUNG-PING TSAO” 

 

The acronym STEM stands for “science, technology, engineering and mathematics”.  In 

accordance with the National Science Teachers Association (NSTA), “A common 

definition of STEM education is an interdisciplinary approach to learning where rigorous 

academic concepts are coupled with real-world lessons as students apply science, 

technology, engineering, and mathematics in contexts that make connections between 

school, community, work, and the global enterprise enabling the development of STEM 

literacy and with it the ability to compete in the new economy”. The problem of this country 

has been pointed out by the US Department of Education that  “All young people should 

be prepared to think deeply and to think well so that they have the chance to become the 

innovators, educators, researchers, and leaders who can solve the most pressing challenges 

facing our nation and our world, both today and tomorrow. But, right now, not enough of 

our youth have access to quality STEM learning opportunities and too few students see 

these disciplines as springboards for their careers.”  STEM learning and applications are 

very popular topics at present, and STEM related careers are in great demand.  According 

to the US Department of Education reports that the number of STEM jobs in the United 

States will grow by 14% from 2010 to 2020, which is much faster than the national average 

of 5-8 % across all job sectors. Computer programming and IT jobs top the list of the 

hardest to fill jobs. Despite this, the most popular college majors are business, law, etc., 

not STEM related. For this reason, the US government has just extended a provision 

allowing foreign students that are earning degrees in STEM fields a seven month visa 

extension, now allowing them to stay for up to three years of “on the job training”. So, at 

present STEM is a legal term.  
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The acronym STEAM stands for “science, technology, engineering, arts and mathematics”.    

 

As one can see, STEAM (adds “arts”) is simply a variation of STEM.  The word of “arts”  

 

means application, creation, ingenuity, and integration, for enhancing STEM inside, or  

 

exploring of STEM outside.  It may also mean that the word of “arts” connects all of the  

 

humanities through  an idea that a person is looking for a solution to a very specific problem  

 

which comes out of the original inquiry process.  STEAM is an academic term in the field  

 

of education. The University of San Diego and Concordia University offer a college degree  

 

with a STEAM focus. Basically STEAM is a framework for teaching or R&D, which is  

 

customizable and functional, thence the “fun” in functional. As a typical example, if STEM  

 

represents a normal cell phone communication tower looking like a steel truss or concrete  

 

column,STEAM will be an artificial green tree with all devices hided, but still with all cell  

 

phone communication functions.   This ebook series presents the recent evolutionary  

 

progress in STEAM with many innovative chapters contributed by academic and  

 

professional experts. 

 

 

This ebook chapter, “MATHEMATICS OF HUNG-PING TSAO” is Dr. Hung- 

 

ping Tsao’s collection of thoughts, works and talks about various basic mathematical  

 

problems encountered through twenty years of learning plus twenty years of teaching.  

 

From time to time, he would share his innovative and artful ideas with all levels of audience  

 

by giving talks to college and high school students in U.S. as well as in Taiwan. 
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