
Computer-Assisted
Language Comparison in
Practice
Tutorials on Computational Approaches
to the History and Diversity of Languages

Contributions from 2019

Edited by

Johann-Mattis List and Tiago Tresoldi

Jena, Max-Planck Institute for the Science of
Human History

Contents

Introduction (Johann-Mattis List) 4
From Fieldwork to Trees III: CLDF recipes (Gereon A. Kaiping) . . 5
A Primer on Automatic Inference of Sound Correspondence Patterns

I: Introduction (Johann-Mattis List) 10
A Primer on Automatic Inference of Sound Correspondence Pat-

terns II: Initial Experiments with Alignments from the Tableaux
Phonétiques des Patois Suisses Romands (Johann-Mattis List) 14

A Primer on Automatic Inference of Sound Correspondence Patterns
III: Extended Experiments with Alignments from the Tableaux
Phonétiques des Patois Suisses Romands (Johann-Mattis List) 25

Using pyconcepticon to map concept lists I (Tiago Tresoldi) 33
Using pyconcepticon to map concept lists II (Tiago Tresoldi) . . . 44
Behind the Sino-Tibetan Database of Lexical Cognates: Introductory

remarks (Johann-Mattis List) 57
Biological metaphors and methods in historical linguistics I: Intro-

duction (Nathanael E. Schweikhard) 62
Rooting MADness (Gerhard Jäger) 67
Behind the Sino-Tibetan Database of Lexical Cognates: Concept

selection (Johann-Mattis List) 76
Using the Waterman-Eggert algorithm for sentence alignment

(Johann-Mattis List) . 83

2

Computer-Assisted Language Comparison in Practice

Feature-Based Alignment Analyses with LingPy and CLTS I (Johann-
Mattis List) . 91

Feature-Based Alignment Analyses with LingPy and CLTS II
(Johann-Mattis List) . 105

Biological metaphors and methods in historical linguistics II: Words
and genes (Nathanael E. Schweikhard) 112

Illustrating linguistic data reuse: a modest database for semantic
distance (Tiago Tresoldi) 118

Biological metaphors and methods in historical linguistics III: Homol-
ogy and homoplasy (Nathanael E. Schweikhard) 125

Linguists love plants, too! (Yunfan Lai) 133

3

Computer-Assisted Language Comparison in Practice

Introduction

By comparing the languages of the world, we gain invaluable insights into
human prehistory, predating the appearance of written records by thousands of
years. The traditional methods for language comparison are based on manual
data inspection. With more and more data available, they reach their practical
limits. Computer applications, however, are not capable of replacing experts’
experience and intuition. In a situation where computers cannot replace experts
and experts do not have enough time to analyse the massive amounts of data,
a new framework, neither completely computer-driven, nor ignorant of the help
computers provide, becomes urgent.

The weblog Computer-Assisted Language Comparison in Practice, published on
the Hypotheses platform for scientific blogging, offers tutorials and discussion
notes on computer-assisted approaches to the history and diversity of languages.
A substantial part of its content is contributed as part of the ERC Starting
Grant “Computer-Assisted Language Comparison” (CALC, 715618), funded by
the European Research Council. But on the long run, we want to make this
blog a platform for everybody willing to share ideas on small or big problems
involving data preparation and analysis in computer-assisted or computer-based
approaches to language comparison.

This document summarizes all contributions from 2019. If you want to cite
them, please follow the instructions at the end of each contribution. I ex-
press my gratitude to all contributors, who helped to make this an interesting
collection of tutorials, algorithms, and initial theories related to the fields of
computer-assisted language comparison.

Johann-Mattis List (Jena, November 2020)

4

Computer-Assisted Language Comparison in Practice

From Fieldwork to Trees III: CLDF recipes

Gereon A. Kaiping (21/01/2019)

Categories: Code

Tags: Austronesian Languages, CLDF recipes, cross-linguistic data formats,
example, lexical data

In the previous two posts, I took you from a matrix of word lists from fieldwork
to a LingPy-compatible CLDF Wordlist with cognate codes and alignments.
We can now feed this dataset into existing tools and recipes for visualizing and
analyzing CLDF Wordlists.

If we add geolocations to the languages in our dataset, we can use an existing
CLDF recipe from the CLDF cookbook (Forkel et al. 2018) to plot the density
of the data on a map. Some more metadata on the lects would be a good thing
to have anyway, so let us add a table to the dataset. Dialects are described in
another CSV or TSV table, like this:

ID Name Glottocode Latitude Longitude

dul Dulolong alor1247 8.2357 124.4444

alk Alor Kecil alor1247 8.2591 124.4092

alb Alor Besar alor1247 8.2224 124.4079

The metadata file then gets some additional entries (mostly the description of
this new table, as well as a “Foreign Key” relationship linking the form table
to this table) to make sure that this data is found and properly associated with

5

https://github.com/cldf/cookbook/tree/master/recipes/plot_representation
https://github.com/cldf/cookbook/tree/master/recipes/plot_representation
https://github.com/cldf/cookbook

Computer-Assisted Language Comparison in Practice

the forms in the table, which I have added to Alorese-Lects-metadata.json. If we
had descriptions of the concepts, eg. with links to Concepticon (List, Cysouw
& Forkel 2016), they would also be associated using the metadata file.

Before we start using this enriched wordlist for other purposes, it may be useful
to see whether the file is indeed valid CLDF. The Python pycldf package comes
with a tool to validate and list statistics of datasets.

1 $ pip install pycldf...

2 $ cldf validate Alorese-Lects-metadata.json

3 $ cldf stats Alorese-Lects-metadata.json

4 <cldf:v1.0:Wordlist at .>

5 key value

6 special:publisher_url http://www.universiteitleiden.nl/en/humanities/

leiden-university-centre-for-linguistics

7 dc:license (C) 2018 Yunus Sulistyono

8 special:contact g.a.kaiping@hum.leidenuniv.nl

9 dc:identifier Alorese Dialects 0.1.0, abridged

10 dc:conformsTo http://cldf.clld.org/v1.0/terms.rdf#Wordlist

11 dc:title Alorese Dialects, abridged

12 dc:publisher Leiden University Centre for Linguistics

13 dc:isReferencedBy https://calc.hypotheses.org/803

14 dc:creator ['Sulistyono, Yunus', '', 'Kaiping, Gereon

Alexander']

15 dc:description Lexical data of 13 Alorese [alor1247] dialects,

abridged

16 dc:coverage http://vocab.getty.edu/page/tgn/1009828

17 special:publisher_place Leiden, The Netherlands

18 Path Type Rows

19 aligned.tsv FormTable 53

20 languages.tsv LanguageTable 3

The lack of output after the second command is a good thing: It means that
no problems were found in our dataset. If there were errors in the word list,
cldf validate would complain.

6

https://concepticon.clld.org

Computer-Assisted Language Comparison in Practice

This dataset is now easy to visualize. Get the cookbook recipe and its de-
pendencies (admittedly, getting basemap to work can be a bit of a hassle), and
then a simple python plot_representation.py Alorese-Lects-metadata.json alorese

.png --cmap viridis_r will generate a figure containing the three Alorese villages,
each with the number of forms sampled from there. (The viridis color map is
slightly greener, where the default magma cmap has a yellow that is even more
similar to the land background color.)

Figure 1: Number of forms given in the abridged Alorese dataset, for each of
the three different dialects. The black line is the coastline of the birdshead
peninsula of the island of Alor.

Another interesting tool to analyze CLDF wordlists comes in the Python library
accompanying the LexiRumah dataset (Kaiping, Edwards & Klamer 2019). For
creating orthographies for the languages in that dataset, we needed to know

7

https://github.com/cldf/cookbook/tree/master/recipes/plot_representation

Computer-Assisted Language Comparison in Practice

what sounds they use. The pylexirumah.get_phonetic_inventories module goes
through the CLDF wordlist and counts the frequency of all segments that
appear, both per-language and overall.

1 $ python -m pylexirumah.get_phonetic_inventories --dataset Alorese-Lects-

metadata.json

2 alk

3 a 11

4 o 8

5 i 8

6 e 7

7 m 5

8 k 4

9 n 4

10 r 4

11 f 3

12 p 3

13 h 2

14 _ 2

15 g 2

16 l 1

17 u 1

18 dul

19 a 16

20 i 6

21 e 5

22 _ 5

23 n 5

24 t 5

25 r 4

26 f 3

27 (...)

This again shows that the [full] data is not entirely clean: ; and h̃ are both
unexpected as phonetic segments.

8

Computer-Assisted Language Comparison in Practice

Any other CLDF Wordlist tool you might come along should also work with
this dataset. For example, have a look at pylexibank (Forkel 2018), the python
package for working with the Wordlists in the LexiBank project. The list
of useful tools also includes the BEASTling tool for generating phylogenetic
inference driver files, which we will work with in the next step.

References

Forkel, Robert. 2018. pylexibank. Python lexibank. https://github.com/lexibank/pylexibank
(19 January, 2019).

Forkel, Robert, Sebastian Bank, Gereon A. Kaiping, Christoph Rzymski & Simon J. Greenhill.
2018. pycldf. Python. Cross-Linguistic Data Formats. https://github.com/cldf/pycldf
(19 January, 2019).

Forkel, Robert, Christoph Rzymski, Gereon A. Kaiping & Mattis List. 2019. The CLDF
Cookbook. Jupyter Notebook. Cross-Linguistic Data Formats. https://github.com/cldf/
cookbook (19 January, 2019).

Kaiping, Gereon A., Owen Edwards & Marian Klamer. 2019. LexiRumah 2.0.0. Zenodo.
doi: 10.5281/zenodo.2540954. https://zenodo.org/record/2540954#.XENYWaHrC00
(19 January, 2019).

List, Johann-Mattis, Michael Cysouw & Robert Forkel (eds.). 2016. Concepticon. Jena:
Max Planck Institute for the Science of Human History. doi: 10.5281/zenodo.51259.
http://concepticon.clld.org/.

Cite this article as: Gereon A. Kaiping, “From Fieldwork to Trees 3:
CLDF recipes”, in Computer-Assisted Language Comparison in Practice,
21/01/2019, https://calc.hypotheses.org/867.

9

https://github.com/lexibank/pylexibank
https://glottobank.org/#lexibank
https://github.com/lexibank/pylexibank
https://github.com/cldf/pycldf
https://github.com/cldf/cookbook
https://github.com/cldf/cookbook
https://doi.org/10.5281/zenodo.2540954.
https://zenodo.org/record/2540954#.XENYWaHrC00
https://doi.org/10.5281/zenodo.51259.
http://concepticon.clld.org/
https://calc.hypotheses.org/867

Computer-Assisted Language Comparison in Practice

A Primer on Automatic Inference of Sound
Correspondence Patterns I: Introduction

Johann-Mattis List (30/01/2019)

Categories: Primer

Tags: cognate detection, correspondence patterns, phonetic alignment, tutorial

After about three years of work on the matter, I have managed (with help
of many colleagues who helped in testing) to develop a first approach for
the automatic inference of sound correspondence patterns, which will soon be
published with Computational Linguistics (List 2019). The key task which this
algorithm solves is to take aligned data as input and to compute explicit sound
correspondence patterns from the alignments.

Correspondence patterns are hereby understood as recurring alignment sites
(i.e., columns per alignment) in a given dataset. In contrast to regular sound
correspondences (or systematic sound correspondences, as Trask (2000) calls
them), a correspondence pattern is a statement of sound correspondences
across multiple languages, while regular sound correspondences are usually
discussed for two languages only, at least in automatic (see Kondrak 2002)
and formal approaches (see e.g., Hoenigswald 1960).

The result of an automatic correspondence pattern analysis can be thought of
as some kind of a table, in which languages are placed in the columns, and
correspondence patterns are placed in rows, with each cell indicating for each
individual correspondence pattern, which reflex sound a given language shows
for this pattern.

10

http://bibliography.lingpy.org?key=List2019a
http://bibliography.lingpy.org?key=Trask2000
http://bibliography.lingpy.org?key=Kondrak2002a
http://bibliography.lingpy.org?key=Hoenigswald1960

Computer-Assisted Language Comparison in Practice

As an example, consider the following table, which shows four varieties of
the Tableaux Phonétiques des Patois Suisses Romands (Gauchat et al. 1925),
which were included as test set for the alignment algorithm presented in my
thesis (List 2014).

Pattern Frequency Champéry Lourtier Plagne Courtedoux

r 21 r r r r

-(1) 8 -- -- ə --

t 8 t t t t

m 8 m m m m

f 8 f f f f

p 7 p p p p

-(2) 4 -- -- -- ə

s 4 s ʃ s s

k 3 k k k tʲ

The table provides some ecclectic information (and I could easily provide more),
namely some “identifier” for the pattern (which I created in an ad-hoc manner
here), the frequency of attested alignment sites, where the pattern occurs, and
the concrete reflexes in the four varieties.
While most of the patterns look boring, showing the same reflex in all varieties
(which should not be surprising, given that we’re dealing with dialect data
here), some show some degree of variation, such as the two patterns which I
label as *-(1) and *-(2), respectively, or the pattern *s and *ku. The first two
patterns illustrate different degrees of metathesis across the varieties, as they
surface in words like “du poivre”, where prototypical reflexes would be Cham-

11

http://bibliography.lingpy.org?key=Gauchat1925
http://bibliography.lingpy.org?key=List2014d

Computer-Assisted Language Comparison in Practice

péry [paːvro] as opposed to Plagne [paːvər] for the first, and Champéry
[pɛrdy] as opposed to Courtedoux [prədʒy]. The *s pattern illustrates the
pronunciation of original [s] as [ʃ] initials in Lourtrier, and the third pattern
illustrates a specific palatalization process of velars in Courtedoux.

What is interesting and important about these data is how useful they are
for additional tasks in historical linguistics. Correspondence patterns can, for
example, be used to predict the pronunciation of missing reflexes in a given
dataset (as I show in my forthcoming paper, List 2019), they can also be used to
reconstruct a given ancestor form semi-automatically, given that all alignment
sites which are assigned to the same correspondence pattern directly reflect the
same common ancestor sound, and they can be used to investigate conditioning
context, given that patterns that look very similar but differ regarding the
reflexes of a few varieties often derive from the same proto-sound whose change
was then modified in specific environments.

While correspondence patterns can be investigated manually, and people have
been doing this in the past, the new computer-assisted methods which we
have developed so far greatly facilitate the systematic investigation of corre-
spondence patterns in historical linguistics. The only problem is that — in
order to successfully carry out an automatic search for sound correspondence
patterns, the data needs to be provided in a very good state, with a very high
level of consistency and annotation.

In the following couple of weeks, I want to provide examples for different
datasets, illustrating how these can be analyzed with help of the tools for
automatic correspondence pattern detection, which have been developed in
the past. In this context, I plan to select different datasets and show how
they have to be prepared in order to properly analyze them. The posts will
be accompanied by supplementary data and code, so that interested users can
directly apply and test the examples discussed.

12

http://bibliography.lingpy.org?key=List2019a

Computer-Assisted Language Comparison in Practice

References

Gauchat, Louis and Jeanjaquet, Jules and Tappolet, Ernest (1925): Tableaux phonétiques
des patois suisses romands. Relevés comparatifs d’environ 500 mots dans 62 patois-types.
Publiés avec introduction, notes, carte et répertoires . Neuchâtel:Attinger.

Hoenigswald, Henry M. (1960): Phonetic similarity in internal reconstruction. Language 36.2.
191-192.

Kondrak, Grzegorz (2002): Determining Recurrent Sound Correspondences by Inducing Trans-
lation Models. In: Nineteenth International Conference on Computational Linguistics
(COLING 2002). 488-494.

List, Johann-Mattis (2014): Sequence comparison in historical linguistics. Düssel-
dorf:Düsseldorf University Press.

List, Johann-Mattis (forthcoming): Automatic inference of sound correspondence patterns
across multiple languages. Computational Linguistics ?? 1-24.

Trask, Robert L. (2000): The dictionary of historical and comparative linguistics. Edin-
burgh:Edinburgh University Press.

Cite this article as: Johann-Mattis List, “A Primer on Automatic Infer-
ence of Sound Correspondence Patterns (1): Introduction”, in Computer-
Assisted Language Comparison in Practice, 30/01/2019, https://calc.
hypotheses.org/1802.

13

https://calc.hypotheses.org/1802
https://calc.hypotheses.org/1802

Computer-Assisted Language Comparison in Practice

A Primer on Automatic Inference of Sound
Correspondence Patterns II: Initial Experiments
with Alignments from the Tableaux
Phonétiques des Patois Suisses Romands

Johann-Mattis List (27/02/2019)

Categories: Analysis, Primer

Tags: Benchmark Database of Phonetic Alignments, correspondence patterns,
EDICTOR, LingPy, Python, Tableaux Phonétiques des Patois Suisses Romands

Following up on my announcement to present in more detail how the algo-
rithms for automatic correspondence pattern detection can be applied, this
post introduces the preliminary preparations needed to run a first experiment
with aligned data. In order to avoid that we have to align a dataset com-
pletely from scratch, we make use of already aligned data from the Tableaux
Phonétiques des Patois Suisses Romands by Gauchat et al. (1925), which were
originally aligned for the study in List (2014) and later published as part of the
Benchmark Database of Phonetic Alignments (List and Prokić 2014). In this
post, I will introduce how we can harvest the alignments from this dataset with
help of LingPy, and later analyze them with help of the sound correspondence
pattern algorithms.

The Tableaux Phonétiques des Patois Suisses Romands (Gauchat et al. 1925)
is a large collection of dialect data on French dialects spoken in Switzerland.
Originally collected by Gauchat and colleagues, it was digitized in a project
by Hans Geisler (Heinrich Heine Universität Düsseldorf) but could by then not

14

http://bibliography.lingpy.org?key=Gauchat1925
http://bibliography.lingpy.org?key=List2014d
http://alignments.lingpy.org
http://bibliography.lingpy.org?key=List2014e
http://lingpy.org

Computer-Assisted Language Comparison in Practice

be published officially due to copyright restrictions. Fortunately, however, I
could use parts of the data for my dissertation (List 2014), where I aligned
76 of the charts for as many as 62 dialect points. While the data in its form
used by then can still be interactively searched from the website offering all
supplementary material accompanying my dissertation, I figured later that it
would be better to share it officially as part of a larger benchmark database
of phonetic alignments, which I published together with Jelena Prokić, who
contributed alignments for Bulgarian dialects to that sample (List and Prokić
2014). This Benchmark Database of Phonetic Alignments (BDPA) offers a
potentially more convenient way of browsing and inspecting alignment data,
although the data is not necessarily offered in a convenient form to reuse.
As of now, the original alignment data underlying the BDPA has also been
submitted to Zenodo, from where it can still be downloaded. The data on
the Zenodo repository is of a very simple structure, containing a bunch of zip-
folders for each of the different datasets from which we harvested the align-
ments, along with two redundant master-folders, containing all 750 multiple
sequence alignments. Each of the folders contains two sub-folders, one called
msa, containing the multiple alignments in the so-called msa-format, which can
be readily imported and processed by LingPy, as well as a psa-folder, contain-
ing all corresponding pairwise phonetic alignments (i.e., pairwise alignments
automatically derived from the multiple alignments by extracting all possible
pairs).
The msa-format is basically outdated, and we don’t use it anymore, although
LingPy still parses it. For testing purposes, this is quite useful, although we
now usually tend to use alignments exclusively in wordlists, where we have
more consistent ways of handling the data, and also doing more interesting
analyses. The msa-format is described in detail on the LingPy website, so I will
spare the readers and myself a closer description here. What is important to
know is that we want to convert those files corresponding to the TPPSR in the

15

https://sequencecomparison.github.io
http://alignments.lingpy.org
https://zenodo.org/record/11880
http://lingpy.org/tutorial/formats.html#multiple-alignments-msq-and-msa

Computer-Assisted Language Comparison in Practice

BDPA, asprovided in msa-format on Zenodo to the “normal” wordlist-format, as
it is used by the LingPy package (see List et al. 2018 for a closer description)
and also required in order to compute correspondence patterns with help of
LingRex and the correspondence pattern recognition algorithm (List 2019).

Assuming that you have downloaded the data from Zenodo and unpacked the
multiple.zip folder, placing the msa-folder in your current working directory (or
cd-ing into it), we can now get started to convert the data. Our goal is to
select some 15 representative dialects from the data, extract their alignments,
and store them in the wordlist-format, so that we can later analyze the corre-
spondence patterns in the data. We thus start by setting up our Python script
in which we import the packages required:

1 from lingpy import *

2 from glob import glob

3 import re

4 import tqdm

5 from lingpy.align.sca import normalize_alignment

We use glob to retrieve the paths of the files, and tqdm to have a status bar
that informs us about the process. We further need the re module to retrieve
some information about the data, lingpy in general, and the normalize_alignment

function in specific. This latter function will delete all those columns from an
alignment, which consist only of gaps. This can happen when taking only a
small selection of language varieties from a larger selection of aligned words.

We can now retrieve all files with help of glob.

1 files = glob('msa/*.msa')

To make sure that we find the varieties we want, I made a manual pre-selection,
which we represent as a Python dictionary:

16

http://bibliography.lingpy.org?key=List2018d
https://github.com/lingpy/lingrex
http://bibliography.lingpy.org?key=List2019a

Computer-Assisted Language Comparison in Practice
1 selection = {'Boudry': '46',

2 'Cerneux-Péquignot': '53',

3 'Champéry': '18',

4 'Courtedoux': '62',

5 'Courtepin': '41',

6 'Côte-aux-Fées': '50',

7 'Dompierre': '42',

8 'Evoléne': '30',

9 'Grimentz': '31',

10 'Hermance': '36',

11 'Lourtier': '22',

12 '’LAuberson': '3',

13 'Ormont-Dessus': '15',

14 'Plagne': '56',

15 }

We also represent our wordlist as a Python dictionary, where the 0-key
represents the column header.

1 D = {0: [

2 'doculect',

3 'language_id',

4 'concept',

5 'latin',

6 'french',

7 'form',

8 'tokens',

9 'alignment',

10 'cogid'

11]}

As we want to fill the wordlist with identifiers for the words themselves and for
cognates consecutively, we set them now as variables.

17

Computer-Assisted Language Comparison in Practice

1 idx, cogid = 1, 1

We also define a very lazy converter, since we want to replace all underscores in
the alignments by a + symbol, which is now the standard marker for morpheme
boundaries, which we decided for during the last year (but older versions have
still the underscore _ as a marker for word boundaries).

1 converter = {

2 '_': '+'

3 }

We can now start by looping over all files and extracting the relevant data. In
this loop, we open each of the msa-files with help of LingPy, and assess it’s
dataset property. If the dataset is French, we keep the file and try to process
it further. We use a regular expression to parse the HTML-like coding of the
so-called sequence identifier of the alignment, which is the counterpart of the
aligned word forms in French and its projected ancestral form in Latin. Since
the msa format does not specify how the dataset or the sequence identifier
should be structured, the formats are pretty free, and by then, I used HTML-
like tags for convenience (1).

Once we have extracted the dataset, made sure it is French, and also extracted
the Latin and the French word form, we can extract the aligned data from
the MSA-object, stored in the variable msa. Here, we iterate over its properties
msa.taxa and msa.alignment and check if the name of the variety also occurs
in our dictionary of pre-selected varieties. If this is the case, we retrieve the
unaligned but segmented form (called tokens) by stripping off all dashes from
the alignment, and we also retrieve the raw, unsegmented form by even deleting
the spaces that would otherwise indicate the boundaries between the sound
segments.

18

Computer-Assisted Language Comparison in Practice

We can now add all data to our wordlist (or our dictionary, 3), but we should
not forget to incremend the index for the word identifier (idx) and the cognate
set identifier (cogid).

19

Computer-Assisted Language Comparison in Practice
1 for f in tqdm.tqdm(files):

2 # (1: initiate MSA object)

3 msa = MSA(f)

4 if msa.dataset == 'French':

5 french, latin = re.findall(

6 r'*(.*?)*',

7 msa.seq_id

8)

9 # (2: extract alignments)

10 for taxon, alm in zip(msa.taxa,

11 msa.alignment):

12 taxon_id = selection.get(taxon, '')

13 if taxon_id:

14 tokens = [converter.get(

15 x,

16 x

17) for x in alm if x != '-']

18 form = ''.join(tokens)

19 # (3: add data to wordlist)

20 D[idx] = [

21 taxon,

22 taxon_id,

23 french,

24 latin,

25 french,

26 form,

27 tokens,

28 alm,

29 cogid

30]

31 idx += 1

32 cogid += 1

Now that we have assembled the data readily, we can load it with help of
LingPy’s Alignments class, which we call by passing the dictionary with cogid as
the keyword for the reference (ref), which we use to construct our alignments.

20

Computer-Assisted Language Comparison in Practice

1 alms = Alignments(D, ref='cogid')

We need to do this in order to make sure that all alignments are “normalized”,
i.e., they should not contain empty columns. We do this by iterating over all
alignments in the Alignments object, which we can access as a dictionary, in
which the key is the cognate identifier, and the value is a dictionary identical
with the data needed to construct an MSA object. The normalization is now
straightforward, and we re-write all individual alignments attached to individual
word forms to make sure this is readily stored.

1 for cogid, msa in alms.msa['cogid'].items():

2 for idx, alm in zip(

3 msa['ID'],

4 normalize_alignment(

5 msa['alignment']

6)

7):

8 alms[idx, 'alignment'] = alm

We can now write the data to file. By passing the prettify keyword and setting
it to False, we make sure that the data will be written to plain TSV format.

1 alms.output(

2 'tsv',

3 filename='tppsr-bdpa',

4 prettify=False

5)

How we can use this file to calculate correspondence patterns with help of
the correspondence pattern recognition algorithm described in List (2019) is
something I will describe in more detail in a follow-up post. But what we can do
already with the data by now is loading it into EDICTOR (List 2017), and use
the built-in tool for correspondence pattern analyses. This tool is less accurate

21

http://edictor.digling.org
http://bibliography.lingpy.org?key=List2017d

Computer-Assisted Language Comparison in Practice

than the Python implementation in the LingRex package, since it is written in
plain JavaScript. All it does is that it tries to sort the sound correspondences
in a rather smart way, using JavaScripts rather convenient ways to sort arrays.
This works — at least to some degree— surprisingly well, as you can see
yourself, when opening the EDICTOR at http://edictor.digling.org and then
either dragging the file tppsr-bdpa.tsv to the BROWSE button or selecting it by
clicking on this button. You then click on ANALYZE in the menu, and select
CORRESPONDENCE PATTERNS from there. Select “full cognates”, as we
are not dealing with partial cognates here, and press OK.

Figure 1: Correspondence pattern display in EDICTOR

What you will see is a collection of all your correspondence patterns which
EDICTOR’s simple method extracts from the alignments.The arrangement is
by language variety in the columns, and by cognate set (or alignemnt) in each
row. By clicking on a given value, EDICTOR will show you the full word for
that entry.

Clicking on the cognate ID on the very left, it will show you the alignment.

It would take too long to describe all possibilities for searching here, so I recom-
mend those interested in exploring this further, to simply download the dataset,
prepared with the script described here from the Github.Gist accompanying this

22

http://edictor.digling.org
https://gist.github.com/LinguList/994317214fbdc78460feb551b113b05f

Computer-Assisted Language Comparison in Practice

Figure 2: Viewing original words for a given correspondence pattern

Figure 3: Alignment popups in EDICTOR’s correspondence pattern viewer

tutorial, and see yourself what can be done. If you have ideas on how the tool
could be enhanced, I would furthermore be happy about any kind of feedback
or questions or suggestions, which you shoudl ideally share via our project page
with GitHub/digling/edictor.

23

https://github.com/digling/edictor

Computer-Assisted Language Comparison in Practice

References

Gauchat, Louis and Jeanjaquet, Jules and Tappolet, Ernest (1925): Tableaux phonétiques
des patois suisses romands. Relevés comparatifs d’environ 500 mots dans 62 patois-types.
Publiés avec introduction, notes, carte et répertoires . Neuchâtel:Attinger.

List, Johann-Mattis (2014): Sequence comparison in historical linguistics. Düssel-
dorf:Düsseldorf University Press.

List, J.-M. and Prokić, J. (2014): A benchmark database of phonetic alignments in historical
linguistics and dialectology. In: Proceedings of the Ninth International Conference on
Language Resources and Evaluation. 288-294.

List, Johann-Mattis (2017): A web-based interactive tool for creating, inspecting, editing, and
publishing etymological datasets. In: Proceedings of the 15th Conference of the European
Chapter of the Association for Computational Linguistics. System Demonstrations. 9-12.

List, Johann-Mattis and Walworth, Mary and Greenhill, Simon J. and Tresoldi, Tiago and
Forkel, Robert (2018): Sequence comparison in computational historical linguistics. Jour-
nal of Language Evolution 3.2. 130–144.

List, Johann-Mattis (2019): Automatic inference of sound correspondence patterns across
multiple languages. Computational Linguistics 1.45. 1-24.

Cite this article as: Johann-Mattis List, “A Primer on Automatic In-
ference of Sound Correspondence Patterns (2): Initial Experiments with
Alignments from the Tableaux Phonétiques des Patois Suisses Romands”,
in Computer-Assisted Language Comparison in Practice, 27/02/2019,
https://calc.hypotheses.org/1807.

24

https://calc.hypotheses.org/1807

Computer-Assisted Language Comparison in Practice

A Primer on Automatic Inference of Sound
Correspondence Patterns III: Extended
Experiments with Alignments from the
Tableaux Phonétiques des Patois Suisses
Romands

Johann-Mattis List (27/03/2019)

Categories: Code, Primer

Tags: correspondence patterns, introduction, Python, TPPSR

Having illustrated how a quick correspondence pattern analysis can be done
with help of readily formatted data and the EDICTOR tool alone, it is now time
to show how we can use the LingRex package in order to carry out a full-fledged
correspondence pattern analysis. While EDICTOR uses a simple algorithm
that is based on sorting the patterns, the Python algorithm for correspondence
pattern detection, which is described in detail in List (2019), uses a greedy
approach inspired by the Welsh-Powell algorithm for graph coloring (Welsh and
Powell 1967), in order to cluster all alignment sites in the data into clusters
which are compatible with each other.

In the following, I will demonstrate how the LingRex package, which I plan to
include into LingPy in the future, after sufficient tests have been written, can
be used to apply the correspondence pattern detection algorithm, and how the
results can — again — be investigated with help of EDICTOR. In order to get
started, you should make sure to install the package with its dependencies. In

25

http://edictor.digling.org
https://github.com/lingpy/lingrex
http://bibliography.lingpy.org?key=List2019a
http://bibliography.lingpy.org?key=Welsh1967
http://bibliography.lingpy.org?key=Welsh1967
http://lingpy.org

Computer-Assisted Language Comparison in Practice

order to do so, the easiest way is to download the package from GitHub or to
clone it with GIT, and to install the depencencies with help of PIP.

1 $ git clone https://github.com/lingpy/lingrex.git

2 $ cd lingrex

3 $ pip install -r pip-requirements.txt

4 $ python setup.py develop

As data for testing, we will use the same dataset of 70 alignments taken from
the Tableaux Phonétiques des Patois Suisses Romands (Gauchat et al. 1925),
which were included as alignments in the Benchmark Database for Phonetic
Alignments (http://alignments.lingpy.org, List and Prokić 2014). Now, that
the data has already been prepared as a wordlist that can be accessed by LingPy
and EDICTOR, we can directly access it from Python. Since LingRex uses
LingPy’s datastructures, it expects the same data as input. In fact, the major
class that we will use to carry out the correspondence pattern detection is an
extension of LingPy’s Alignments class which can be used to handle alignments
in wordlists. That means, that all the functions that are available as part of
the Alignments class in LingPy are also available as part of the CoPaR class in
LingRex. We thus start by loading the data.

1 from lingrex.copar import CoPaR

2 cop = CoPaR(

3 'tppsr-bdpa.tsv',

4 ref='cogid',

5 segments='tokens'

6)

7 print('{0} / {1} / {2}'.format(

8 cop.height,

9 cop.width,

10 len(cop)

11)

26

http://bibliography.lingpy.org?key=Gauchat1925
http://bibliography.lingpy.org?key=List2014e

Computer-Assisted Language Comparison in Practice

Now that we have imported the data, we need to add prosodic information to
all sequences. This information serves as some kind of an initial clustering of
the data, based on the prosodic environment of a given alignment site. In its
simplest form, we treat all sites alike. But since we know, for example, that
our alignments never place a vowel and a consonants into the same column,
we can already use that information to make the task a little bit easier for the
algorithm. This can be done by adding, what is called structure in the LingRex
package.

1 cop.add_structure(model='cv', structure='structure')

This method will add another column to our data, in which each sound se-
quence is characterized by a string that indicates if the segment is a vowel or a
consonant. The result of this can be seen when looking at the first ten entries
of our wordlist, as shown in the table below.

ID DOCULECT TOKENS STRUCTURE

1 Ormont-Dessus ʃ e C V

2 Champéry ʃ i C V

3 Lourtier ʃ e C V

4 Grimentz ʃ aː C V

5 Hermance s e C V

6 Courtepin ʃ eː C V

7 Dompierre s e C V

8 Boudry s aː C V

9 Côte-aux-Fées s a C V

27

Computer-Assisted Language Comparison in Practice

ID DOCULECT TOKENS STRUCTURE

10 Cerneux-Péquignot s aː v u C V C V

Now that we have added the STRUCTURE to our data, we can start with the real
analysis. We start by retrieving the alignment sites with all relevant information,
restricting the sites we consider to those which have at least two reflexes
(indicated by the minrefs keyword).

1 cop.get_sites(minrefs=2, structure='structure')

This method will add a new attribute to our CoPaR object, called sites. These
sites are organized as a dictionary, with tuples of the cognate identifier and
the position in the alignment as a key, and the structure (if it is consonant or
vowel, in our case) along with the concrete alignment site as a value. If a site
contains missing entries, this is by default represented with help of the symbol
Ø, which we use to denote missing data (in contrast to - denoting a gap in an
alignment. The following table illustrates this for the cognate sets 31 and 63
in the data, which contain reflexes for the concepts le chasseur and la hache,
with the latter being only reflected in 8 out of 12 varieties in our dataset. The
alignment site column shows the reflex for each variety in alphabetical order
by the variety name.

Now that we have stored the alignment sites, we can start clustering them.

1 cop.cluster_sites()

This analysis will add another property to our CoPaR object, called clusters.
This is again a Python dictionary, consisting of the structure segment and the

28

Computer-Assisted Language Comparison in Practice

COGID POSITION STRUCTURE ALIGNMENT SITE
31 3 V œː u œː u aː œ aː ou œ ɔː au u

31 4 C r - - - - - - - - - - -

63 0 C ʦ ʧ Ø ʧ ʦ ʦ ʦ Ø θ Ø Ø ʧ

63 1 V - ɔ Ø ɑ ɛ - ɛ Ø õ Ø Ø a

63 2 C - t Ø t t - t Ø - Ø Ø t

63 3 V - ɛ Ø - a - a Ø - Ø Ø -

pattern as a key, and the alignment sites, represented by cognate identifier
and position as value. If we now check in the data for the alignment sites for
cognate set number 31 and 63, we can see that the initials in both cognate
sets are assigned to the same pattern (as they are compatible), and that the
last site in cognate set 31 is clustered with the last site in cognate set 50
(not shown here), while the rest of the sites are singletons, which do not recur
anywhere else in the data. That we find a lot of singletons in the data is not
surprising, given that we have a very limited number of cognate sets.

In order to analyze the clusters further, we can now make a secondary analysis,
during which we compare all patterns that were inferred in this run with each
alignment site a second time, this time assigning alignment sites to all patterns
with which they are compatible. This may result in a fuzzy clustering, as one
alignment site could easily be compatible with two or more patterns, provided
it contains enough missing data.

1 cop.sites_to_pattern()

The results of this analysis are stored in the attribute patterns of the CoPaR

object, and they are again provided in form of a Python dictionary, with the
cognate set and the position as the key for the alignment site, and the patterns

29

Computer-Assisted Language Comparison in Practice

to which the site was assigned provided in a list as value, with each pattern
represented by its size, its structure, and the pattern itself. In our analysis,
only three sites occur, which could be assigned to more than one pattern. One
of these is the second column of the alignment of cognate set 24 m’appeler,
reflected in only three varieties. Given the large number of missing data in this
alignment, it is compatible with seven different patterns in the data, shown
below in the table.

Ø Ø Ø Ø Ø Ø Ø r r Ø r Ø

r r r r r r r r r r r r

l r r r r r r r r r r r

r r r -- r r r r r r r --

r r rː r r r r r r ʁ r r

-- r r Ø r r r r r r r Ø

r r -- r r r r Ø r Ø Ø r

Ø Ø r Ø Ø Ø r r Ø ʁ Ø Ø

Since it is difficult to spot the differences between these patterns, I have marked
all those sounds which are different from a normal r with bold font. We can see
that the pattern is indeed compatible with all seven patterns, and that the seven
patterns themselves are incompatible with each other. We can, however, also
see that the differences are minor. There are different possibilities to explain
the differences. They could be due to errors in the data or the alignments,
they could be due to borrowing, due to individual irregular sound changes,
or due to some specific phonetic environment that triggered a certain sound
change in the individual varieties. What holds in all cases needs to be checked
qualitatively, by investigating the variety in detail.

30

Computer-Assisted Language Comparison in Practice

As a final step, we add the patterns to our wordlist, and write both the patterns
and the wordlist to a new file.

1 cop.add_patterns(ref='patterns')

2 cop.output('tsv', filename='tppsr-copped')

3 cop.write_patterns('patterns.tsv')

This will result in two new files, the file tppsr-copped.tsv being a wordlist, which
we can inspect in EDICTOR, and the file patterns.tsv being a spreadsheet that
shows all patterns for each language variety along with the reflexes and the
alignment sites. If you open the file tppsr-copped.tsv now with EDICTOR and
inspect the correspondence patterns, as shown in the previous post, you will
find, that EDICTOR displays the patterns inferred with the Python algorithm
instead of using its own simple method. In this way, you can conveniently
investigate the results with the interactive EDICTOR application that facilitates
the detailed inspection of correspondence pattern data.

Instead of investigating the data further, I will end here, and leave it
to interested readers to check the data and the results themselves. A
script to run the analysis along with the data is available in form of a
GitHub Gist, which you can find at https://gist.github.com/LinguList/
6bd37f375c9715e3ecda395e23a17fcb.

31

https://calc.hypotheses.org/1807
https://gist.github.com/LinguList/6bd37f375c9715e3ecda395e23a17fcb
https://gist.github.com/LinguList/6bd37f375c9715e3ecda395e23a17fcb

Computer-Assisted Language Comparison in Practice

References

Gauchat, Louis and Jeanjaquet, Jules and Tappolet, Ernest (1925): Tableaux phonétiques
des patois suisses romands. Relevés comparatifs dénviron 500 mots dans 62 patois-types.
Publiés avec introduction, notes, carte et répertoires . Neuchâtel:Attinger.

List, J.-M. and Prokić, J. (2014): A benchmark database of phonetic alignments in historical
linguistics and dialectology. In: Proceedings of the Ninth International Conference on
Language Resources and Evaluation. 288-294.

List, Johann-Mattis (2019): Automatic inference of sound correspondence patterns across
multiple languages. Computational Linguistics 1.45. 137-161.

Welsh, D. J. A. and Powell, M. B. (1967): An upper bound for the chromatic number of a
graph and its application to timetabling problems. The Computer Journal 10.1. 85-86.

Cite this article as: Johann-Mattis List, “A Primer on Automatic Infer-
ence of Sound Correspondence Patterns (3): Extended Experiments with
Alignments from the Tableaux Phonétiques des Patois Suisses Romands”,
in Computer-Assisted Language Comparison in Practice, 27/03/2019,
https://calc.hypotheses.org/1823.

32

https://calc.hypotheses.org/1823

Computer-Assisted Language Comparison in Practice

Using pyconcepticon to map concept lists I

Tiago Tresoldi (01/04/2019)
Categories: Analysis, Annotation
Tags: concepticon, concept mapping

A major problem for data reuse in computer-assisted historical linguistics, es-
pecially when employing data collected with no computational workflows in
mind, is linking datasets in terms of the meanings of the words (or, techni-
cally, “forms”) they carry. Just as linking languages across different datasets
is not as straightforward as one might naively assume, demanding a complex
reference catalog such as Glottolog, linking the concepts used in a wordlist (a
“concept list”) to our Concepticon project might well be the most intensive
task in preparing a dataset for cross-linguistic studies.
We could discuss the more theoretical issues at hand, ranging from pragmatic
lexicographic decisions to deep philosophical disputations on hermeneutics —
even though it is always worth remembering, Concepticon is not an ontology,
but a catalog for linking concept lists. However, for the time being, let’s take
a hard-headed view and look at the practical issues at play. Common issues
are:

• Plain errors in the glosses, especially when OCR or typing from published
sources is involved, such as in a recent concept list where I had a typo
barl for bark (readers will note how “L” and “K” are next to each other
in the most common keyboard layouts).

• Problems with homonyms where the meaning is not specified, such as
in bark itself (which could be either a noun, the “skin” of a tree, or a

33

https://glottolog.org/
https://concepticon.clld.org/

Computer-Assisted Language Comparison in Practice

verb, “to bark”) or in the recurring examples of fly (either the insect or
the verb meaning “to move in the air”) and of dull (either as opposed
to “sharp” or to “smart”).

• Problems with synonyms, such as in the case of a word being annotated
as eggplant in one concept list but as AUBERGINE in Concepticon.

• Glosses given in a language other than English, and perhaps one you
are not entirely familiar with, or sometimes in multiple languages (like
Chinese and English) where the difference in semantics might be more
of a hindrance than a help.

These problems alone would be enough to make concept mapping tedious, but
most people involved in Concepticon would be happy if they were the only ones.
Other common issues can lead almost to frustration are:

• The same dataset using slightly similar (and sometimes visually alike)
glosses for the same concept, such as dog and dog (note the trailing
whitespace in the second one).

• Just like when reporting forms, authors including all kind of notes in their
glosses, some useful for the mapping (like fly (noun)), some less so (such
as poor (dubious)) some which would better be in a “Comments” column
(like happy [given by only one speaker]).

• People never shy on coming up with different ways to annotate addi-
tional information, such as part-of-speech, hardly in a consistent way.
Using the flying insect as a common denominator, our collection already
includes specimens such as fly (noun) , fly (n.), fly (n) , fly noun, fly:n,
fly [n.], (N)fly, fly (insect), the fly, a fly, the/a fly, and fly (mouche),
besides mutations such as FLY (n) and fly (noun (note the missing close-
parenthesis).

34

Computer-Assisted Language Comparison in Practice

• Notations for polysemies being just as innovative and free, with commas
(hand,arm), semicolons (hand;arm), slashes (hand/arm), or even nothing
(hand arm), also allowing for inverted orders and spaces (e.g., arm / hand).

• The lists of basic vocabulary including, and for good reasons, terms which
are very culture-specific or not colloquial in other languages, when it is
not immediately obvious if the concept is already found in Concepticon
(and, if not, whether it should be added) and under which gloss.

When facing repetitive tasks, programmers will immediately think of ways to
facilitate and automate them. The Concepticon team did just that, with a
set of tools from which we can gain a lot in terms of mapping speed and
consistency, and it is fundamental to demonstrate such tools and make them
known — after all, programmers also tend to have the bad habit of reinventing
the wheel.

The first idea for mapping, and which can be used for some quick exploration, is
probably to query the Concepticon catalog either online or from the command-
line. For example, if we were to map a single coconut-related concept, we
would likely think about querying for the string coco using the online catalog
or just using the tool “grep” from the command line:

35

https://concepticon.clld.org/parameters

Computer-Assisted Language Comparison in Practice
1 $ grep -i "coco" concepticondata/concepticon.tsv

2 147 COCONUT TREE Agriculture and vegetation A tropical tree with

feathery leaves which bears coconuts. Person/Thing

3 970 COCONUT Agriculture and vegetation The large hard-shelled oval

nut with a fibrous husk of the cocos palm. Person/Thing

4 1641 SILK Clothing and grooming One of the finest textiles,

obtained from cocoons of certain species of caterpillars; it is soft,

very strong and absorbent and has a brilliant sheen. Person/Thing

5 2442 COCOA BEAN Agriculture and vegetation The dried and fully

fermented fatty seed of Theobroma cacao, from which cocoa solids and

cocoa butter are extracted. Person/Thing

6 2649 COCONUT SHELL LADLE Food and drink A large spoon made from

coconut shell. Person/Thing

7 3034 GREEN COCONUT Agriculture and vegetation A green (i.e., not

mature) oval nut with a fibrous husk of the cocos palm, used as source

of coconut water. Person/Thing

8 3035 RIPE COCONUT Agriculture and vegetation A ripe (i.e., mature)

oval nut with a fibrous husk of the cocos palm, used as source of

coconut meat. Person/Thing

This strategy would work for straightforward cases, however missing most of
the problems listed above, including homonyms, synonyms, and typos. Some
could be circumvented by expanded strategies, such as by collecting synonyms
(like the case of eggplant) in the more of 200 concept lists already mapped,
checking to which Concepticon gloss the entries are mapped to. Once more,
something far from practical.

The pyconcepticon library offers a much better alternative for this kind of
query: a JavaScript library with pre-computed information (such as glosses
from already mapped concepts lists, as just discussed) which also takes care
of performing a number of string manipulations that we would probably need
to perform by hand (in particular, all the common and not-so-common kinds
of part-of-speech annotation). With pyconcepticon installed, just call

36

https://pypi.org/project/pyconcepticon/

Computer-Assisted Language Comparison in Practice

1 concepticon app

from the command line, and a new browser-tab will be opened where you can
run your queries, as in the images below. Alternatively, you can also visit
http://calc.digling.org/concepticon/ where we store a version corresponding
to the most recent release of the Concepticon. Note that, depending on how
you installed pyconcepticon, you might need to pass as an argument the path to
your Concepticon data repository, such as in concepticon --repos /home/tresoldi

/concepticon-data/ map_concepts conceptlist.tsv.

You can see that with this application not only eggplant is matched to
AUBERGINE as desired, but also that basic fuzzy matching is allowed, like in
the query for fly returning a list of potential mappings FLY (INSECT), FLY
(MOVE THROUGH AIR), and FRY. The output includes a similarity score

37

http://calc.digling.org/concepticon/

Computer-Assisted Language Comparison in Practice

which we might investigate in more detail in future posts, but in its essence
the lower the score, the higher the match probability.

This tool is a great improvement on manual searching, but it would still be im-
practical for mapping entire concept lists, which usually range anywhere from
100 to 2,500 concepts. Thankfully, we already have a set of Python functions
in pyconcepticon that allow automating this procedure, and which can be used
from the command line. Let’s create a fake concept list with different map-
ping issues (some clear-cut cases, but also glosses with annotations, colexified
concepts, typing errors, etc.), which we store in a text file with one entry per
line (note the mandatory GLOSS column name in the first line):

38

Computer-Assisted Language Comparison in Practice
1 GLOSS

2 dog

3 eggplant

4 fly (N)

5 to fly

6 hand/arm

7 dull

8 bambu

By running the command

1 concepticon map_concepts conceptlist.tsv

we obtain the following output:
1 GLOSS CONCEPTICON_ID CONCEPTICON_GLOSS SIMILARITY

2 dog 2009 DOG 2

3 eggplant 1146 AUBERGINE 2

4 fly (N) 1504 FLY (INSECT) 2

5 to fly 1441 FLY (MOVE THROUGH AIR) 1

6 hand/arm 2121 ARM OR HAND 2

7 #<<<

8 dull 1518 STUPID 2

9 dull 379 BLUNT 2

10 #>>>

11 bambu ???

12 # 6/7 86%

We can see that the method had no problem to map the five first entries, dog

(a straightforward case), eggplant (using data already mapped), fly (N) (using
an annotation for nouns), to fly (using an annotation for verbs), and hand/

arm (using an annotation for colexifications). It was not possible to decide if
dull should be linked to STUPID or to BLUNT (equal similarity scores), but
the items are grouped together and clearly marked, so that review should be
easy. Finally, a case of a typo or different orthography, such as bambu, was not

39

Computer-Assisted Language Comparison in Practice

mapped as the method does not try to be too clever, but the unmapped item
is clearly identified as such with a triple question mark (a fall-back fuzzy string
search for these cases might be implemented in the future). The method also
informs us about how many concepts were mapped in the last line.

While glosses in English will perform better, due to its status as default lan-
guage for glosses and a consequent higher count of entries, the same method
can be used for other languages. For example, the concept list below, in
Spanish:

1 GLOSS

2 perro

3 hombre

4 mujer

5 mano

6 mosca

7 hacer

can be linked with the same method by passing the --language es argument to
concepticon map_concepts, with the output:

1 GLOSS CONCEPTICON_ID CONCEPTICON_GLOSS SIMILARITY

2 perro 2009 DOG 2

3 hombre 1554 MAN 2

4 mujer 962 WOMAN 2

5 mano 1277 HAND 2

6 mosca 1504 FLY (INSECT) 2

7 hacer 2575 DO OR MAKE 2

8 # 6/6 100%

It is worth giving some notes on the inner workings of this method, also intro-
ducing the internals aspects of Concepticon. The map_concepts command wraps
a call to the internal api.map() method, which will read entries from column
GLOSS or ENGLISH and parse them with the parse_gloss() function. This helper

40

Computer-Assisted Language Comparison in Practice

method offered in the pyconcepticon library is used to extract the most impor-
tant information from the “raw” gloss, along with its annotated part-of-speech
(if any), as illustrated by the code snippet below:

1 from pyconcepticon import glosses

2
3 for gloss in ['kill', 'kill (v)', 'to kill', 'to kill (somebody)']:

4 parsed_gloss = glosses.parse_gloss(gloss)[0]

5 print([gloss, parsed_gloss.main, parsed_gloss.pos])

Which returns:
1 ['kill', 'kill', '']

2 ['kill (v)', 'kill', 'verb']

3 ['to kill', 'kill', 'verb']

4 ['to kill (somebody)', 'kill', 'verb']

The main part of glosses and their part-of-speech tags are used in combination
with mappings in already included concept lists, where each “raw” gloss is
aligned to Concepticon as in the snippet below (a full list can be found in the
repository tests):

41

https://github.com/concepticon/pyconcepticon/blob/master/tests/fixtures/mappings/map-en.tsv
https://github.com/concepticon/pyconcepticon/blob/master/tests/fixtures/mappings/map-en.tsv

Computer-Assisted Language Comparison in Practice
1 1504 FLY (INSECT)///FLY 1

2 1504 FLY (INSECT)///Fly (n.) 1

3 1504 FLY (INSECT)///a fly 4

4 1504 FLY (INSECT)///blowfly/housefly 4

5 1504 FLY (INSECT)///fly 16

6 1504 FLY (INSECT)///fly (N) 1

7 1504 FLY (INSECT)///fly (animal) 1

8 1504 FLY (INSECT)///fly (insect) 5

9 1504 FLY (INSECT)///fly (n) 3

10 1504 FLY (INSECT)///fly (n.) 2

11 1504 FLY (INSECT)///fly (nn.) 1

12 1504 FLY (INSECT)///fly (noun) 1

13 1504 FLY (INSECT)///fly (sb.) 1

14 1504 FLY (INSECT)///fly_N 1

15 1504 FLY (INSECT)///housefly 2

16 1504 FLY (INSECT)///the fly 2

17 1504 FLY (INSECT)///the fly (insect) 46

18 1504 FLY (INSECT)///the fly (insect)s 46

19 1441 FLY (MOVE THROUGH AIR)///(the bird) flew 1

20 1441 FLY (MOVE THROUGH AIR)///FLY 1

21 1441 FLY (MOVE THROUGH AIR)///FLY (VERB) 1

22 1441 FLY (MOVE THROUGH AIR)///FLY (v.) 1

23 1441 FLY (MOVE THROUGH AIR)///Fly 2

24 1441 FLY (MOVE THROUGH AIR)///TO FLY 3

25 1441 FLY (MOVE THROUGH AIR)///To fly 1

26 1441 FLY (MOVE THROUGH AIR)///fly 59

27 1441 FLY (MOVE THROUGH AIR)///fly (as a bird) 1

28 1441 FLY (MOVE THROUGH AIR)///fly (of bird) 2

29 1441 FLY (MOVE THROUGH AIR)///fly (to) 1

30 1441 FLY (MOVE THROUGH AIR)///fly (v) 4

31 1441 FLY (MOVE THROUGH AIR)///fly (v.) 4

32 1441 FLY (MOVE THROUGH AIR)///fly (vb) 3

33 1441 FLY (MOVE THROUGH AIR)///fly (vb.) 2

34 1441 FLY (MOVE THROUGH AIR)///fly [vb] 1

35 1441 FLY (MOVE THROUGH AIR)///fly v. 4

36 1441 FLY (MOVE THROUGH AIR)///fly vb 1

37 1441 FLY (MOVE THROUGH AIR)///fly, to 2

38 1441 FLY (MOVE THROUGH AIR)///fly_V 1

39 1441 FLY (MOVE THROUGH AIR)///flying 2

42

Computer-Assisted Language Comparison in Practice

This mapping does more than inform us that, say, the gloss the fly (insect) is
mapped 46 times to the concept FLY (ANIMAL) or that to fly is mapped 26
times to FLY (MOVE THROUGH AIR). It also allows the algorithm to inter-
nally parse all the different glosses for “fly” as either a noun or a verb, so that
it collects enough information to link any different and still unobserved gloss
to the correct concept. We can also take a first glimpse at how pyconcepticon
works under the hood, preparing for future blog posts where the internals will
be explored in more detail.

Other commands in pyconcepticon might help the mapping process, such
as link (to link concepts to a concept set, so that if either CONCEPTI-
CON_GLOSS or CONCEPTICON_ID is given, the other is added) and mergers

(which prints the Concepticon id of potential mergers), but map_concepts and
app are the most important ones which cannot be lacking from your computer-
assisted language comparison toolbox.

References

List, Johann Mattis & Cysouw, Michael & Greenhill, Simon & Forkel, Robert (eds.) 2018.
Concepticon. Jena: Max Planck Institute for the Science of Human History. (Available
online at http://concepticon.clld.org, Accessed on 2019-03-26.)

Cite this article as: Tiago Tresoldi, “Using pyconcepticon to map
concept lists”, in Computer-Assisted Language Comparison in Practice,
01/04/2019, https://calc.hypotheses.org/1820.

43

http://concepticon.clld.org
https://calc.hypotheses.org/1820

Computer-Assisted Language Comparison in Practice

Using pyconcepticon to map concept lists II

Tiago Tresoldi (08/04/2019)

Categories: Code

Tags: code example, concept mapping, Concepticon, Tucanoan languages

Mapping a given concept list to Concepticon can be done in a straight-forward
way, even if automatic mappings need manual refinement. But what can we
do when having to deal with larger datasets, say, a dictionary, from which we
want to extract specific concepts, such as, for example, the ones in the classical
Swadesh list of 100 items (Swadesh 1955)?

In the previous post on this topic, we discussed how the tools offered by the
pyconcepticon library, in particular, the concepticon program that can be used
from the command line or with a JavaScript interface, make concept mapping
easier and more consistent. We also mentioned that they should be enough for
automating many of the tasks that make up the mapping of a concept list to
Concepticon, especially in those cases when programmers might be tempted
to come up with half-baked implementations that are not reusable. Still, cases
of one-time, dataset-specific solutions might be desirable or even necessary,
such as when dealing with difficult concept lists that need to be pre-processed
for manual intervention. While Concepticon, as part of the CLDF standard, is
composed of plain-text files that could be loaded and manipulated with any
programmer’s favorite language or approach, in most cases it makes sense to
use the internal component of the pyconcepticon library, wrapping them around
our functions and workflows.

44

https://concepticon.clld.org/contributions/Swadesh-1955-100

Computer-Assisted Language Comparison in Practice

Let’s illustrate this with an actual example, presented step-by-step. We recently
had to start mapping a dataset for Barasana, a Tukanoan language spoken in
Colombia. We had the following issues:

• Unlike most desirable cases for computer-assisted language comparison,
at least in its more common current settings, the data does not come
from lists of basic vocabulary (usually collected with the comparative
method in mind), but from a bilingual Barasana-Spanish dictionary com-
piled by Jones and Jones (2009).

• The “dictionary” feature leads to two issues: first, most of the entries
are far from comparable in the sense that they are too culture-specific or
are clearly the output of word formation processes; second, second, the
definitions, while occasionally similar to glosses, are in most cases long
and complex lexicographic definitions.

• As the source is a bilingual dictionary, and not a bilingual wordlist or vo-
cabulary, in many cases different words in our source language (Barasana)
are translated with the same Spanish “gloss”, especially in case of com-
mon vocabulary.

• The same definitions constitute our proxy to the forms glosses, but as
mentioned they are given in Spanish, a language with less representation
in Concepticon due to the majority of the concept lists already there
using English or Mandarin for elicitation.

• For the purpose of the analysis, we did not want to map all possible
concepts found in the data and already in Concepticon, but only the
essential Swadesh-100 list, thus excluding entries with perfect matches
like TELEPHONE.

Most of the issues above should be clear just from the first lines of our raw
data:

45

Computer-Assisted Language Comparison in Practice
1 $ head barasana.tsv

2 SOURCE-ORTHOGRAPHY SOURCE-PHONETIC SOURCE-WORD-CLASS SOURCE-DEF

ENGLISH-GLOSS DIALECT-NOTE GRAMMAR-NOTEʉ

3 abarij ɑ́ˈɑ bɾ.i.ɨh́ Eɑ][ɑ́bˈɾ.í.ɨh J s.v.inan. cosa blanda (como

tierra, fruta de árbol, coca pilada, herida, abdomen)

4 abase ɑ́ˈɑ b.se Eɑˈ][ɑ́b.sé J v.i. (ser/estar) blando, blanda (casabe

, lodo) ntg BARS,91 //aba// ‘’soft with the stative verb //

aba// ‘to be ’soft is// aba-se// ‘that which is ’soft, no459; lf caus.

5 abee ɑˈ béé interj. ¡ay no! (exclamación de amor frustrado)

ntg BARS,91 //Abe!// ‘expression of love for ’someone p40,

2.27-2.30 Interjections, 2.29. Exclamatory;

6 abi ɑˈ bí interj. ¡ay! ntg BARS,91 //Abi!// ‘Oh, how

small!/Oh, what a small quantity’!, p39, 2.29. Exclamatory. //Abo!//

‘oh, how big!; oh, what a huge quantity’! is an example of an

exclamatory interjection. /o/ is used iconically for ‘’bigness and /i/

is used for ‘’smallness. Thus, //Abi//! ‘oh, how small!; oh, what a

small quantity’! We have recorded over thirty exclamatory interjections

, many of which are synonymous, and most of which begin with /a/. Some

of these are listed in (118);

7 aboo ɑˈ bóo interj. ¡ah! va abuu , ph ɑˈbúúú , ntg BARS

,91 //Abo!// ‘Oh, how big!/Oh, what a huge quantity’!, p.39, 2.29.

Exclamatory. is an example of an exclamatory interjection. o is used

iconically for ‘’bigness and i is used for ‘’smallness. Thus, //Abi!//

‘oh, how small!; oh, what a small quantity’! We have recorded over

thirty exclamatory interjections, many of which are synonymous, and

most of which begin with a. Some of these are listed in (118);

8 abore v.caus.dep. ser.blando-CAUS-nS ntg BARS,91 //

abo// (soft.CAUS) p70, no311;

No acceptable automatic mapping seems possible, which makes this one more
supporting evidence for our insistence in computer- assisted language compar-
ison: assisted mappings, where our algorithm does not try to be too clever
but gives enough information for an expert decision later, are possible. We
can demonstrate how such data can be generated, all while relying on previous

46

Computer-Assisted Language Comparison in Practice

work by means of the concept_map() and concept_map2() functions of pylexibank

(briefly mentioned in the previous post).

While there are some differences in their inner workings, with concept_map()

more a “full search” than concept_map2(), both mapping functions work similarly,
requiring two lists of strings: - The first one, glosses, is a list of glosses or
definitions we want to map, as found in the source data.- The second one,
map_reference, is a list of reference points composed of Concepticon glosses
and reference glosses, separated by triple slashes "///". Examples, as those
provided in the previous post and available on-line in pre-compiled lists (such
as this for English), are "FLY (INSECT)///fly (insect)" and "FLY (MOVE THROUGH

AIR)///fly (as a bird)".

The items composing the glosses list can be pre-processed by the user in terms
of textual manipulations, like removing leading and trailing spaces, or infor-
mation extraction (such as obtaining the actual gloss from definitions with
comments, like dog from the dog (noun)), but both functions take care of that
by default. The map_reference list can also be compiled by the user as needed,
but, in most cases, we will use pyconcepticon ’s _get_map_for_language() func-
tion, which loads the precompiled, per-language references from concept lists
mapped in the past, allowing us to quickly stand in the shoulders of past
concept mappers.

Let’s explore these data structures: we load our raw data using Python’s
default csv library, extract the glosses with a list comprehension, and build a
reference map from the second element of each item of the value returned by
_get_map_for_language() (readers are free to explore the additional information
returned by this function; the "es" parameter is the language code for Spanish,
which is necessary as pyconcepticon defaults to "en" for English).

47

https://github.com/concepticon/pyconcepticon/blob/master/tests/fixtures/mappings/map-en.tsv

Computer-Assisted Language Comparison in Practice
1 # Imports the necessary libraries

2 import csv

3 import pyconcepticon.api

4
5 # Loads the Concepticon API with data from the specified path

6 # NOTE: REMEMBER TO SET YOUR OWN PATH IF NECESSARY!!!

7 CONCEPTICON_PATH = "/home/tresoldi/src/concepticon-data"

8 Concepticon = pyconcepticon.api.Concepticon(CONCEPTICON_PATH)

9
10 # Loads the raw data

11 with open('barasana.tsv') as csvfile:

12 reader = csv.DictReader(csvfile, delimiter='\t')

13 data = [row for row in reader]

14
15 # Loads the full language mapping, also setting the `lang`uage

16 lang = "es"

17 spanish_map = Concepticon._get_map_for_language(lang)

18
19 # Builds lists of glosses and references, and shows some contents

20 glosses = [entry.get('SOURCE-DEF') for entry in data]

21 map_reference = [entry[1] for entry in spanish_map]

22 print("glosses", glosses[:5])

23 print("map_reference", map_reference[:5])

Which returns:
1 glosses ['cosa blanda (como tierra, fruta de árbol, coca pilada, herida,

abdomen)', '(ser/estar) blando, blanda (casabe, lodo) ', '¡ay no! (

exclamación de amor frustrado) ', '¡ay! ', '¡ah! ']

2 map_reference ['ABACUS///Ábaco', 'ABSTAIN FROM FOOD///ayunar', 'ACCORDION

///Acordeón', 'ACCUSE///acusar, denunciar', 'ACHIOTE///achiote, bija']

We can now obtain the automatic mapping for each gloss, by calling either
concept_map() or concept_map2() on the glosses list (from which we first remove
any empty glosses); the differences between the methods will be explained
in a future post, but it should be enough to know that they are essentially

48

Computer-Assisted Language Comparison in Practice

interchangeable, both returning a dictionary with the indexes in glosses as
the keys and a tuple with the list of matched entries in map_reference and the
similarity score as the values (concept_map2() return all entries with a similarity
score lower than the requested one). Such formal description might be a bit
unintuitive, so let’s demonstrate with code:

1 # Import the functions for the mapping

2 from pyconcepticon.glosses import concept_map, concept_map2

3
4 # Remove empty glosses

5 glosses = [gloss for gloss in glosses if gloss]

6
7 # Perform the mapping and show some of the entries (if they are found,

8 # otherwise print `None`)

9 mapping = concept_map(glosses, map_reference, language=lang,

similarity_level=5)

10 for i in range(5):

11 print([i, glosses[i], mapping.get(i, None)])

And, especially, with its results (also noting as some definitions, here “glosses”,
are not mapped as the algorithm is unable to find an acceptable match with
the similarity range we requested), below. The first entry, ([1757], 4), means
that a single match, of index 1757 and similarity score of 4, was found for the
gloss starting with cosa blanda... ; gloss of indexes 2 to 4, all interjections such
as ¡ay! , had no match.

1 [0, 'cosa blanda (como tierra, fruta de árbol, coca pilada, herida, abdomen

)', ([1757], 4)]

2 [1, '(ser/estar) blando, blanda (casabe, lodo) ', ([978], 4)]

3 [2, '¡ay no! (exclamación de amor frustrado) ', None]

4 [3, '¡ay! ', None]

5 [4, '¡ah! ', None]

49

Computer-Assisted Language Comparison in Practice

As humans, we prefer textual representations to indexes of list indexes. The
code should do us the heavy and boring work of mapping the latter to the
former, so we collect the matched glosses by iterating over the mapping dic-
tionary and extracting the part of the reference string found before the "///"

delimiter— note that we do so by setting a default value ([], None), which
indicates no matched concepts (its first element is an empty list) and, conse-
quently, no similarity score (thus, None). As the list of matched elements will
likely have repeated elements (because more than one reference gloss might
be matched, and those will likely share their Concepticon ID), we also take a
set of the elements before storing the results we care about in mapped_glosses.
This programming logic could be done in a single Python list comprehension,
but it is better to proceed stepwise here and collect each gloss match within a
for loop.

1 # Collect matched glosses and show some of them

2 mapped_glosses = {}

3 for gloss_idx, gloss in enumerate(glosses):

4 match_idxs, sim = mapping.get(gloss_idx, ([], None))

5
6 match_glosses = set([

7 map_reference[match_idx].split('///')[0]

8 for match_idx in match_idxs

9])

10
11 mapped_glosses[gloss] = list(match_glosses)

12
13 for item in sorted(mapped_glosses.items())[:10]:

14 print(item)

The output shows that our code works and, once more, that most definitions
will not be mapped.

50

Computer-Assisted Language Comparison in Practice
1 ('(ãno, semana) pasado', [])

2 ('(estar) abierto, abierta', [])

3 ('(estar) agotado, agotada (persona, animal) ', ['ANIMAL'])

4 ('(estar) agotado, agotada (personas, animales) ', [])

5 ('(estar) agotado, agotada (una persona, un animal) ', [])

6 ('(estar) agrio, agria (limón, lulo, casabe hecho del almidón guardado por

demasiado tiempo) ', ['SOUR'])

7 ('(estar) alerto, alerta; ', [])

8 ('(estar) apretado, apretada ', [])

9 ('(estar) arrugada ', [])

10 ('(estar) atrancado, atrancada; ', [])

At this point, we have our automatic mapping of all lexicographic definitions in
the source as a list of potential matches in Concepticon with no, one, or mul-
tiple elements. We now need to filter only the entries with potential matches
in the Swadesh 100 list.

As mentioned earlier, given that Concepticon data is stored in plain-text files,
we could just read the raw concepticon-data/concepticondata/conceptlists/Swadesh

-1964-100.tsv file and collect all its gloss under the CONCEPTICON_GLOSS column.
However, pyconcepticon already has functions in place for iterating over the
properties of a concept list, so that it is easier and faster for us to just wrap
it in our own code. Considering that we need to perform some checks and
operations, and especially that such code might be useful in the future, we can
write our own function for collecting the glosses of an existing concept list.

51

Computer-Assisted Language Comparison in Practice
1 # Define a function for obtaining the glosses of a concept list

2 def glosses_from_list(list_id):

3 """

4 Returns a list with the Concepticon glosses for a given conceptlist.

5
6 Takes care of removing duplicates, empty entries, etc.

7
8 Parameters

9 ----------

10 list_id : str

11 The unique identifier for the list, as used in Concepticon, such

12 as "Swadesh-1964-100".

13 """

14
15 # Obtain the concept list with a list comprehension; note the [0]

16 # subsetting for getting the first element of the comprehension

17 concept_list = [

18 cl for cl in Concepticon.conceptlists.values()

19 if cl.id == list_id

20][0]

21
22 # Obtain all the Concepticon glosses in the list; remember that they

23 # glosses might be duplicated or empty at this point

24 glosses = [

25 concept.concepticon_gloss for concept

26 in concept_list.concepts.values()

27]

28
29 # Remove any empty (i.e., non mapped) glosses and make sure there are

30 # no duplicates (using `set`)

31 glosses = set([gloss for gloss in glosses if gloss])

32
33 # Return as a list

34 return sorted(glosses)

35
36 # Obtain the glosses from the Swadesh 100 list and show some of them

37 swadesh = glosses_from_list("Swadesh-1964-100")

38 print(swadesh[:10])

52

Computer-Assisted Language Comparison in Practice

Which works as expected:
1 ['ALL', 'ASH', 'BARK', 'BELLY', 'BIG', 'BIRD', 'BITE', 'BLACK', 'BLOOD', '

BONE']

We are now ready to generate our results, iterating over the data we collected
earlier and writing to a barasana-swadesh.tsv file the rows that hold potential
Swadesh entries. A better output than the one coded below could be provided,
making the reviewing task even easier— for example, by sorting entries by sim-
ilarity score, listing glosses alphabetically, or already including the Concepticon
ID. However, this should be easy to any Python programmer and is beyond
our scope of illustrating the inner working of pyconcepticon.

53

Computer-Assisted Language Comparison in Practice
1 # Write the output

2 with open('barasana-swadesh.tsv', 'w') as handler:

3 # Write headers

4 handler.write('FORM\tPHONETIC\tDEFINITION\tGLOSSES\tNOTES\n')

5
6 # Iterate over all rows looking for potential Swadesh data

7 for row in data:

8 # Extract the list of glosses per form, defaulting to an empty list

9 glosses = mapped_glosses.get(row['SOURCE-DEF'], [])

10
11 # Get the subset of glosses that are in Swadesh 100

12 glosses = [gloss for gloss in glosses if gloss in swadesh]

13
14 # If there is at least one Swadesh gloss, build a buffer from the

15 # row, adding an information on all potential glosses (separated

with a

16 # vertical bar in case of multiple glosses), and print it

17 if glosses:

18 buf = [

19 row['SOURCE-ORTHOGRAPHY'],

20 row['SOURCE-PHONETIC'],

21 row['SOURCE-DEF'],

22 '|'.join(glosses),

23 row['GRAMMAR-NOTE'],

24]

25
26 handler.write('%s\n' % '\t'.join(buf))

We can finally inspect the results and confirm that the code is working, such
as in good potential matches as ãmo for HAND and baáre for EAT. We can
already spot problems, as well: adocʉ̃ was mapped to PERSON due to the
parsing of its definition, and baásãare, clearly a word formation including the
baáre above, is also mapped to EAT (which was expected in our logic, as both
have the same Spanish gloss “comer”). Nevertheless, we surely saved a lot of
time for the linguists that would correct this first mapping, also gaining much in

54

Computer-Assisted Language Comparison in Practice

terms of consistency. Even better, once the results will be finished and included
in Concepticon, the new concept list from Barasana with Spanish definitions
will improve the results for future semi-automatic and automatic mappings,
especially in case of other datasets with glosses in Spanish (thus helping, for
example, to include more Native American Languages in Lexibank).

1 $ head barasana-swadesh.tsv

2 FORM PHONETIC DEFINITION GLOSSES NOTESʉ̃

3 adoc ɑˈ dó.ɨ̃́k este tamaño de (animal, persona) PERSON

4 ãmo ˈɑ̃́ mõ Eˈɑ̃́][ṍm J mano HANDʉ

5 ãma ɑ̃́ˈɨɑ̃̃ m Eˈɑ́̃][ɨ̃́ɑ́̃m J cuello (ser humano, botella) NECKʉ

6 ãmtutu ɑ̃́ɨ̃ m.ˈtutú Eɑ́̃][ˈɨ̃́m.tútu J cuello (ser humano, botella)

NECK

7 baare ˈɑ́ɑ́ bɾ.e Eˈ][ɑ́ɑ́bɾ.é J nadar SWIM

8 baáre ˈɑɑ́ bɾ.e comer EAT ntg BARS,91 //ba// ‘’eat no4;

9 baásãare ˈɑɑ́ b.ɑ́̃ɑ́̃sɾẽ. Eˈ][ɑɑ́b.ɑ́̃ɑ̃sɾẽ. J comer EAT

10 bajirocare ɑˈ bhíɾ.óɑkɾ.e morir (una persona) DIE ntg BARS,91 p

.23, 2.4. Verbs with only a subject argument, p.24, Verbs which agree

in number with the subject. A very productive verb used in verb

compounds, both transitive and intransitive, is roka 'to move down/away

(s)'; roka becomes rea with plural subjects. For example, baji roka '

to die (s)' and baji rea 'to die (p)';ʉ

11 boag, boago ˈ bóɑ́.ɨg (ser/estar) podrido, podrida (animal, persona)

PERSON

The entire source code here developed is available as a GitHub Gist.

55

Computer-Assisted Language Comparison in Practice

References

Barasana Literacy Committee, Paula S. Jones and Wendell H. Jones (compilers). 2009. Dic-
cionario bilingüe: Eduria & Barasana-Español, Español-Eduria & Barasana. Bogotá, D.C.:
Editorial Fundación para el Desarrollo de los Pueblos Marginados. 613pp.

Swadesh, M. (1955): Towards greater accuracy in lexicostatistic dating. International Journal
of American Linguistics. 21.2. 121-137.

Cite this article as: Tiago Tresoldi, “Using pyconcepticon to map con-
cept lists (II)”, in Computer-Assisted Language Comparison in Practice,
08/04/2019, https://calc.hypotheses.org/1844.

56

https://calc.hypotheses.org/1844

Computer-Assisted Language Comparison in Practice

Behind the Sino-Tibetan Database of Lexical
Cognates: Introductory remarks

Johann-Mattis List (13/05/2019)

Categories: Primer

Tags: data curation, database, EDICTOR, lexical cognates, lexicostatistics

One of the major efforts behind our recently published paper on the origin and
spread of the Sino-Tibetan languages (Sagart et al. 2019) was the creation of
a database of lexical cognates which was used to run the phylogenetic analyses.
The creation of this database started about four years ago, when I joined the
Centre des Recherches Linguistiques sur l’Asie Oriental in Paris as a research
fellow in January 2015, and Guillaume Jacques and Laurent Sagart approached
me with the idea of making a phylogenetic study of Sino-Tibetan languages. In
December 2017, almost three years after having started, our database consisted
of 180 concepts translated into 50 different languages. Since creating the
database was not directly straightforward from the beginning, with quite a few
situations in which we realized we had to re-arrange the data or the procedure,
I thought it might be useful to share our experience in a series of blog posts,
as it might be interesting for scholars who wish to create their own database.

A database of lexical cognates is nothing else than a comparative wordlist in
which cognate relations between words from different languages are annotated.
For the database itself, no specific software is needed, and spreadsheet editors
like LibreOffice, Excel, or Google Sheets can easily be used for this purpose.
As a minimal requirement, such a database provides information on how a
given language expresses a given concept and with which other words the

57

https://www.pnas.org/content/early/2019/04/30/1817972116
https://www.pnas.org/content/early/2019/04/30/1817972116
http://bibliography.lingpy.org?key=Sagart2019

Computer-Assisted Language Comparison in Practice

word denoting this concept in the language is etymologically related. Ideally,
more information should be supplied, of course, for example, regarding the
source of information (be it a reference or original fieldwork), if the word has
been borrowed or not, or how the word is pronounced. If one wants to be very
detailed, one can also indicate who made the respective cognate judgments, or
even supply alignments that indicate where the experts think that the words
are cognate.
While it sounds rather straightforward to create such a database at a first
glance, there are many pitfalls one should better be aware of before starting
to build one from scratch. There is a large amount of potential problems one
can encounter during the creation process. It can turn out that the data for
a key language is insufficient, key collaborators may leave the project, coding
data may turn out to require much more time than estimated, and the results
may also be disappointing in the end.
In order to be prepared for what can happen, it would be ideal, if we had some
kind of a guideline on how to create datesets of lexical cognates. Given large
projects of datasets that were prominently used in the past, such as ABVD
(Greenhill et al. 2008), IELex (Dunn et al. 2012), or the datasets published
as part of the Global Lexicostatistical Database project (Starostin and Krylov
2011), one might even think that this problem has been discussed long enough,
so that scholars who want to build a new database on their own should not
have a hard time to find enough guidance on how to get started. Unfortunately,
when going from theory to practice, our own experience in working with lexical
data from different scholars as part of large data aggregation projects like
CLICS² (List et al. 2018) has shown that this is usually not the case. While
fieldworkers have their toolbox to create dictionaries, there is no equivalent for
historical linguists working on comparative databases of lexical cognates. As
a result, scholars who start datasets from scratch often reinvent many wheels,
and the wheels they reinvent may be squared at times.

58

https://abvd.shh.mpg.de
http://bibliography.lingpy.org?key=Greenhill2008
http://bibliography.lingpy.org?key=Dunn2012
http://starling.rinet.ru/new100/
http://bibliography.lingpy.org?key=Starostin2011
http://bibliography.lingpy.org?key=Starostin2011
http://bibliography.lingpy.org?key=List2018f
https://software.sil.org/toolbox/

Computer-Assisted Language Comparison in Practice

Our experience with building the Sino-Tibetan Database of Lexical Cognates
underlying the study by Sagart et al. (2019) does not solve these problems.
We were making use of tools like EDICTOR (List 2017), which facilitate the
process of cognate coding and making alignments of the data, but in order to
get the data in a first instance, we mostly relied on the fact that we had people
(mostly also myself) in our team who could quickly prepare custom scripts to
parse available data and extract the data we needed. We also profited much
from the fact that some projects, especially STEDT (Matisoff 2015), but also
Tower of Babel, had been digitizing large amounts of data in a rather regular
form in the past. We were also lucky to have people in our team who have
done original fieldwork (which enabled them to quickly fill in a list of certain
varieties, consulting informants where data was missing), and to have external
collaborators who generously shared their data and answered our queries on
specific items (see the list of acknowledgments in Sagart et al. 2019 for details).
The way in which we assembled the data for our study was not straightforward,
but rather a winding road of many dead-ends, some surprises, lots of discus-
sions, some disappointments, and a lot of lessons we learned for the future.
We did not reach our (or maybe preliminary my) initial goal of providing a
database of cognates that would provide fully aligned cognate sets and list all
correspondence patterns in an indisputable way, so that it could be inspected,
challenged, and improved by our colleagues in all kind of details one could
think of as a historical linguist. But we achieved to provide a dataset of 180
concepts translated into 50 different varieties of Sino-Tibetan, along with an
interface to easily inspect the data which goes beyond many of the datasets
that have been published in the past.
Our data is open, scholars can easily inspect it in detail from its URL, and they
can even correct the cognate judgments, add alignments, and further expand
or correct it. In order to do so, however, one needs to learn a bit about the
way in which we (1) assembled the data, (2) coded the data, and (3) how the

59

https://dighl.github.io/sinotibetan
http://bibliography.lingpy.org?key=Sagart2019
http://tsv.lingpy.org
http://bibliography.lingpy.org?key=List2017d
http://stedt.berkeley.edu/
http://bibliography.lingpy.org?key=Matisoff2015
http://starling.rinet.ru/
https://dighl.github.org/sinotibetan

Computer-Assisted Language Comparison in Practice

tools for data curation and annotation can be used. In order to make it easier
to understand what was going on behind the Sino-Tibetan Database of Lexical
Cognates, we plan to write a couple of blog posts in which we will explain how
the data was assembled, curated, and analyzed.

References

Dunn, Michael (2012): Indo–European Lexical Cognacy Database (IELex). Hosted at
https://ielex.mpi.nl/.

Greenhill, Simon J. and Blust, Robert and Gray, Russell D. (2008): The Austronesian Basic
Vocabulary Database: From bioinformatics to lexomics. Evolutionary Bioinformatics 4.
271-283.

List, Johann-Mattis (2017): A web-based interactive tool for creating, inspecting, editing, and
publishing etymological datasets. In: Proceedings of the 15th Conference of the European
Chapter of the Association for Computational Linguistics. System Demonstrations. 9-12.

List, Johann-Mattis and Simon Greenhill and Cormac Anderson and Thomas Mayer and Tiago
Tresoldi and Robert Forkel (eds.) (2018): CLICS: Database of Cross-Linguistic Colexifica-
tions. Max Planck Institute for the Science of Human History. Jena: http://clics.clld.org/.

Matisoff, James A. (2015): The Sino-Tibetan Etymological Dictionary and Thesaurus project.
Berkeley: University of California.

Sagart, Laurent and Jacques, Guillaume and Lai, Yunfan and Ryder, Robin and Thouzeau,
Valentin and Greenhill, Simon J. and List, Johann-Mattis (2019): Dated language phylo-
genies shed light on the ancestry of Sino-Tibetan. Proceedings of the National Academy
of Science of the United States of America. 1-6. DOI: 10.1073/pnas.1817972116

Starostin, George S. and Krylov, Phil (eds.) (2011): The Global Lexicostatistical Database.
Compiling, clarifying, connecting basic vocabulary around the world: From free-form to
tree-form. http://starling.rinet.ru/new100/main.htm.

60

https://doi.org/10.1073/pnas.1817972116
//starling.rinet.ru/new100/main.htm”

Computer-Assisted Language Comparison in Practice

Cite this article as: Johann-Mattis List, “Behind the Sino-Tibetan
Database of Lexical Cognates: Introductory remarks”, in Computer-
Assisted Language Comparison in Practice, 13/05/2019, https://calc.
hypotheses.org/1882.

61

https://calc.hypotheses.org/1882
https://calc.hypotheses.org/1882

Computer-Assisted Language Comparison in Practice

Biological metaphors and methods in historical
linguistics I: Introduction

Nathanael E. Schweikhard (15/05/2019)

Categories: Methodology

Tags: biology, discussion, interdisciplinary research, metaphors, methodologi-
cal transfer

Evolutionary biology and historical linguistics share a long history of scientific
exchange, reflected both not only in the sharing and transfer of metaphors but
more recently also in the transfer of methods. Already Charles Darwin claimed
that both species and languages evolve in tree-like patterns, and linguists, like
Wilhelm Meyer-Lübke, used terms like “sprachliche[n] Biologie” (“linguistic
biology”) when referring to the history of languages (Meyer-Lübke 1890, x).
While the discipline of historical-comparative linguistics allowed biologists to
adopt evolutionary thought against religious dogma in the late 19th century
(Wells 1987: 54), it was biological applications which opened up the possibility
of large quantitative studies in linguistics based on computational approaches
(Geisler and List 2013, 111).

Many articles and essays have been written listing possible similarities between
the disciplines (for recent ones see for example Pagel 2016 or List et al. 2016).
Yet biology is considered a natural science, while linguistics is thought to belong
to the humanities. One could even say that their research objects belong to
two different worlds, the objective universe, on the one hand, and the world of
the products of the subjective mind, on the other hand (Geisler and List 2013:

62

Computer-Assisted Language Comparison in Practice

121). Therefore, one may rightfully ask what it is that makes the exchange of
ideas so fruitful.

Both disciplines deal with historical processes and can therefore be seen as be-
longing to the wider field of historical sciences which are dealing with the past
and how it lead to the present by “analyz[ing] persistence with modification
of systems (‘descent with modification’)” (Stevick 1963, 160). In other words,
they describe and reconstruct earlier stages of their research objects, propos-
ing ancestral character states in biology or proto-forms in linguistics (Atkinson
and Gray 2005, 519), or investigate earlier stages directly, where they are still
attested as fossils or in form of manuscripts and inscriptions (ibid: 514). Addi-
tionally, both disciplines propose theories that seek to explain the transmission
of their research objects, be it vertical (in form of inheritance) or horizontal
(in form of direct exchange).

Change in linguistics and biology can be studied from different perspectives.
One can restrict oneself to study only one language or species at the same time,
investigating its internal history from its oldest attestations to the present,
or one can compare several languages or species, which form a family, and
investigate how they separated and interacted after separation.

In addition, one can also carry out a general comparison of languages and
species in order to find the general laws and tendencies by which they change,
which is part of the typologogical approach in linguistics. Both fields are thus
based on the assumption that all languages and species change through time.
Already August Schleicher stated that “Sprachen sich verändern so lange sie
leben” (Schleicher 1863: 18, “Languages change as long as they are alive”).
There is some debate among scholars as to whether the principles of change
might also change with time or whether they remain constant.

Considering these similarities, but also the obvious differences between the
fields, looking at historical linguistics against the contrast of evolutionary bi-

63

Computer-Assisted Language Comparison in Practice

ology is of particular benefit when modeling language history as it forces one
to be explicit about one’s assumptions. This inspired us to start a series of
blogposts on comparisons between biology and linguistics. In future posts we
will describe in more detail which correspondences and differences there are
between the research objects of biology and linguistics and what needs to be
taken into account when using methods from evolutionary biology to tackle
problems in historical linguistics.

64

Computer-Assisted Language Comparison in Practice

References

Atkinson, Quentin D., and Russell D. Gray. 2005. “Curious Parallels and Curious Connections:
Phylogenetic Thinking in Biology and Historical Linguistics.” Systematic Biology 54 (4):
513–26. http://www.jstor.org/stable/20061257.

Geisler, H., and J.-M. List. 2013. “Do Languages Grow on Trees? The Tree Metaphor in
the History of Linguistics.” In Classification and Evolution in Biology, Linguistics and the
History of Science. Concepts– Methods – Visualization, edited by Heiner Fangerau, Hans
Geisler, Thorsten Halling, and William Martin, 111–24. Stuttgart: Franz Steiner Verlag.

Gray, Russell D., Simon J. Greenhill, and Malcolm D. Ross. 2007. “The Pleasures and Perils
of Darwinzing Culture (with Phylogenies).” Biological Theory 2 (4): 360–75.

List, Johann-Mattis, Jananan Sylvestre Pathmanathan, Philippe Lopez, and Eric Bapteste.
2016. “Unity and Disunity in Evolutionary Sciences: Process-Based Analogies Open Com-
mon Research Avenues for Biology and Linguistics.” Biology Direct, nos. 39, 11: 1–17.

Meyer-Lübke, Wilhelm. 1890. Italienische Grammatik. Leipzig: Verlag von O. R. Reisland.

Pagel, Mark. 2016. “Darwinian Perspectives on the Evolution of Human Languages.” Psycho-
nomic Bulletin & Review, 1–7. https://doi.org/10.3758/s13423-016-1072-z.

Schleicher, August. 1863.] [Die darwinsche Theorie und die Sprachwissenschaft. Weimar:
Hermann Böhlau.

Stevick, Robert D. 1963. “The Biological Model and Historical Linguistics.” Language, nos.
2, 39: 159–69. https://www.jstor.org/stable/411199.

Wells, Rulon S. 1987. “The Life and Growth of Language: Metaphors in Biology and Lin-
guistics.” In Biological Metaphor and Cladistic Classification: An Interdisciplinary Perspec-
tive; [Papers from Symposium on Biological Metaphor Outside Biology (1982.03.04-05,
Philadelphia) Interdisciplinary Round-Table on Cladistics and Other Graph Theoretical
Representations (1983.04.28-29, Philadelphia)], edited by Henry Max Hoenigswald, 39–
80. Philadelphia: Univ. of Pennsylvania Pr.

65

http://www.jstor.org/stable/20061257
https://doi.org/10.3758/s13423-016-1072-z
https://www.jstor.org/stable/411199

Computer-Assisted Language Comparison in Practice

Cite this article as: Nathanael E. Schweikhard, “Biological metaphors
and methods in historical linguistics (1): Introduction”, in Computer-
Assisted Language Comparison in Practice, 15/05/2019, https://calc.
hypotheses.org/1866.

66

https://calc.hypotheses.org/1866
https://calc.hypotheses.org/1866

Computer-Assisted Language Comparison in Practice

Rooting MADness

Gerhard Jäger (22/05/2019)
Categories: Analysis
Tags: phylogenetic reconstruction, rooting

Rooting of phylogenetic trees is an important task, not only in evolutionary
biology, but also in historical linguistics. So far, however, different rooting
methods have not yet been sufficiently tested on linguistics data. Given that a
new method for the automatic rooting of phylogenetic trees has been presented
recently in biology, it seemed to be a good occasion to test in detail how well
this new method works in comparison with alternative methods.
A few months ago, Mattis List pointed my attention to a (relatively) novel
method for rooting phylogenetic trees with branch lengths: Minimal Ancestor
Deviation rooting (Kümmel Tria et al. 2017). I will not go into the details of
that algorithm here; the interested reader is referred to the mentioned article.
Suffice it to give two quotations:

“The MAD method operates on binary unrooted trees and assumes that
branch lengths are additive and that OTUs are contemporaneous.” (Küm-
mel Tria et al. 2017:1)

and
Branch ancestor deviations quantify the departure from strict clock-like
behaviour, reflecting the level of rate heterogeneity among lineages. Wrong
positioning of the root will lead to erroneous iden- tification of ancestor
nodes, and apparent deviations will tend to be larger. We therefore infer

67

Computer-Assisted Language Comparison in Practice

the MAD root as the branch and position that minimizes the ancestor
deviation […]. (Kümmel Tria et al. 2017: 2)

Several standard algorithms for phylogenetic infernce (e.g., Neighbor Joining,
most off-the-shelf implementations of Maximum Likelihood) produce unrooted
trees with branch lengths, and one needs to perform rooting as a separate step.
So if this new kid in town is better than standard techniques such as midpoint
rooting or outgroup rooting, this might come in handy.

Mattis and me were interested in how well this method performs in comparison
to other rooting methods when applied to language trees derived from word
lists. So I did a little experiment.

In Jäger (2018), I describe a method to apply automatic cognate detection to
the data from the ASJP project (Wichmann et al. 2016), to extract character
matrices and to apply Maximum Likelihood (ML) phylogenetic inference (Data
and code are available at https://osf.io/cufv7/). In the meantime I have up-
dated my database to ASJP v. 18. I used those data to infer ML trees for
all Glottolog families for which ASJP contains at least 10 contemporaneous
doculects, using the Glottolog classification as constraint tree. This gave me
64 unrooted trees. (To my dismay, I noticed along the way that the Glot-
tolog classification that is shipped with ASJP is incomplete, so I extracted the
Glottolog classification from the Glottolog website.)

I will use Ndu (a language family spoken in Papua New Guinea; traditionally
considered as part of the Sepik family) as my running example. The Glottolog
classification looks like this:

68

https://asjp.clld.org/
https://osf.io/cufv7/
https://glottolog.org/resource/languoid/id/nduu1242

Computer-Assisted Language Comparison in Practice

My ML-tree (obtained using the great software RAxML) is here:

The task is to find the correct root of the unrooted tree. However, the goldstan-
dard does not identify a unique root, as Glottolog identifies three subgroups
(Boikin, Ngala, and Nuclear Ndu).

Consider, e.g., the midpoint-rooted version of the ML tree:

69

https://cme.h-its.org/exelixis/web/software/raxml/index.html

Computer-Assisted Language Comparison in Practice

This looks pretty bad, but can we quantify how bad it is?

One way to do it is to harness the triplet distance (Sand et al. 2014) between
the rooted tree and the Glottolog goldstandard.

To see what this is about, consider the triplet (Yengoru, Yelogu, Wosera). In
the goldstandard tree, it is grouped as (Yengoru, (Yelogu, Wosera)).

In the midpoint rooted tree, the grouping is (Wosera, (Yelogu, Yengoru)).

70

Computer-Assisted Language Comparison in Practice

So this triplet is mis-classified by midpoint rooting. This evaluation is per-
formed for each triplet of doculects. We disregard triplets like (Ngala, Boikin,
Nyaura), which remain unresolved in the goldstandard. I call the number of
misclassified triplets, divided by the number of goldstandard-resolved triplets,
the Generalized Triplet Distance (GTD) between the rooted binary-branching
tree and the goldstandard tree. (This is inspired by the Generalized Quartet
Distance from Pompei et al. 2011).

I compared four rooting methods:

1. MAD rooting.

2. Midpoint rooting.

3. Outgroup rooting. For this I created an artificial outgroup, with a
character vector consisting entirely of 0s.

4. Yule rooting. This method is derived from (Steel and McKenzie 2001).
They give a formula to compute the likelihood of a rooted tree topology
under the assumption that it was generated by a Yule process. The tree
is rooted by calculating this likelihood for each possible root location and

71

Computer-Assisted Language Comparison in Practice

picking the one with the maximal likelihood. If there was a tie between
different branches, I picked one at random.

Here is the MAD rooted tree for Ndu (which happens to be identical to the
midpoint rooted version here):

The outgroup-rooted tree:

And the Yule-rooted version:

72

Computer-Assisted Language Comparison in Practice

Outgroup rooting is the only method here that produces a tree consistent with
the goldstandard. The GTDs are

1. MAD: 0.61

2. midpoint: 061

3. outgroup: 0.00

4. Yule: 0.21

It seems that both MAD and midpoint rooting are thrown off-stride here by
the extra-long branch extending to Hanga Hundi.

When we perform this comparison over all 64 families, we get a different picture
though:

mean GTD

MAD 0.0704

midpoint 0.0941

outgroup 0.1437

Yule 0.1771

73

Computer-Assisted Language Comparison in Practice

These numbers indicate quite clearly that MAD and midpoint rooting are su-
perior to both outgroup and Yule rooting. The difference between MAD and
midpoint rooting seems to be small, but closer examination reveals that MAD
is in fact substantially better than midpoint rooting. - MAD rooting achieved
a GTD of 0.0 (meaning: finds a root fully consistent with the goldstandard)
for 42 families (66%), but midpoint rooting only for 35 families (55%).- Both
MAD and midpoints rooting have a median of 0, but the 75th quantile for
MAD is at 0.10, and for midpoint at 0.16).

The difference is also clearly visible in the boxplots:

To conclude, Minimal Ancestor Deviation rooting seems to be better suited
to root language phylogenies than more established methods. The usual dis-

74

Computer-Assisted Language Comparison in Practice

claimers apply – we cannot be sure how much of these results depend on the
particular data and phylogenetic inference method I used here. Different data
might produce different results. Still, MAD rooting deserves to be included
into the standard toolbox of phylogenetic linguistics.

Code and data, including all trees and the complete evaluation results, are
available at https://github.com/gerhardJaeger/competititiveRooting.git.

References

Jäger, G. (2018): Global-scale phylogenetic linguistic inference from lexical resources, Scientific
Data 5, 180189. URL: https://doi.org/10.1038/sdata.2018.189

Kümmel Tria, F. D., Landan, G., and T. Dagan (2017): Phylogenetic rooting using minimal an-
cestor deviation. Nature Ecology and Evolution. URL: http://dx.doi.org/10.1038/s41559-
017-0193

Pompei, S., Loreto, V., & Kümmel Tria, F. D. (2011): On the accuracy of language trees.
PloS one, 6 (6), e20109.

Steel, M., & McKenzie, A. (2001): Properties of phylogenetic trees generated by Yule-type
speciation models. Mathematical biosciences, 170 (1), 91-112.

Sand et al. (2014): tqDist: a library for computing the quartet and triplet distances between
binary or general trees, Bioinformatics, 30.14, 2079–2080.

Wichmann, Søren, Eric W. Holman, and Cecil H. Brown, eds., 2016. The ASJP Database,
version 17. URL: https://asjp.clld.org

Cite this article as: Gerhard Jäger, “Rooting MADness”, in Computer-
Assisted Language Comparison in Practice, 22/05/2019, https://calc.
hypotheses.org/1899.

75

https://github.com/gerhardJaeger/competititiveRooting.git
https://calc.hypotheses.org/1899
https://calc.hypotheses.org/1899

Computer-Assisted Language Comparison in Practice

Behind the Sino-Tibetan Database of Lexical
Cognates: Concept selection

Johann-Mattis List (26/06/2019)
Categories: Primer
Tags: code example, concept list, Concepticon, database, Sino-Tibetan

One of the crucial steps in creating a database of lexical cognates is the se-
lection of concepts one wants to use for a given study. While many scholars
use the classical Swadesh list of 200 items) (Swadesh 1952) for this purpose,
or the combined list of 207 items, in which the former has been merged with
Swadesh’s updated list of 100 items (Swadesh 1955), and which is often mistak-
enly attributed to Swadesh himself, although the first official reference seems
to be Comrie (1977), it is useful to give the selection of concepts some more
thought initially.
What scholars underestimate usually in this context is that there are quite dif-
ferent reasons why the classical Swadesh lists, or any pre-compiled concept lists,
may not be apt for the investigation of a given language family. Apart from the
obvious reason that a concept list may contain terms that cannot be found in
the target languages, additional problems resulting from concept choice result
from language-specific characteristics of lexical typology, such as: (A) sound
symbolism, which may differ across languages, (B) compoundhood, which also
shows language-specific patterns, (C) polysemy or homophony, which both may
show areal or family-specific aspects.
In addition, one should not underestimate the importance of data availability.
Given that the majority of lexical databases are not compiled from scratch,

76

https://concepticon.clld.org/contributions/Swadesh-1952-200
http://bibliography.lingpy.org?key=Swadesh1952
https://concepticon.clld.org/contributions/Comrie-1977-207
https://concepticon.clld.org/paramters/Swadesh-1955-100
http://bibliography.lingpy.org?key=Swadesh1955
http://bibliography.lingpy.org?key=Comrie1977

Computer-Assisted Language Comparison in Practice

but derived from existing data collections which serve as some kind of the
backbone of the database, one should make sure to check which concepts
have been recorded in the major sources upon which one wants to base the
database.

When compiling the Sino-Tibetan Database of Lexical Cognates for our study
on the origin of Sino-Tibetan (Sagart et al. 2019 , we had to struggle with
all of the above-mentioned points. Since our initial goal was to create a
database of high mutual coverage in terms of attested words per language
(see List et al. 2018 for a discussion of this concept), we had to pay specific
attention to the problem of data availability. For this reason, we started from
an initial comparison of concepts available different sources (including those
digitized by the STEDT project, Matisoff 2015). To compare the concepts
available in the different sources, we made use of the Concepticon project (
concepticon.clld.org, List et al. 2016, see List 2018 for an introduction to the
goals of the project) and the pyconcepticon library, which offers quick access to
the resources offered by Concepticon.

When having installed the pyconcepticon package, following the instructions
provided at the project’s GitHub repository , one can easily check the overlap
between several concept lists using the intersection command that can be
invoked from the terminal (you have to replace PATH with the path to your
local Concepticon repository):

77

https://dighl.github.io/sinotibetan
http://bibliography.lingpy.org?key=Sagart2019
http://bibliography.lingpy.org?key=List2018d
http://bibliography.lingpy.org?key=Matisoff2015
https://concepticon.clld.org
http://bibliography.lingpy.org?key=List2016a
http://bibliography.lingpy.org?key=List2018h
https://github.com/concepticon/pyconcepticon/

Computer-Assisted Language Comparison in Practice
1 $ concepticon --repos=PATH intersection Yakhontov-1991-35 Swadesh-1952-200

Swadesh-1955-100 Dolgopolsky-1964-15

2 1 EYE [1248]

3 2 I [1209]

4 3 LOUSE [1392]

5 4 NAME [1405]

6 5 THOU [1215]

7 6 TONGUE [1205]

8 7 TOOTH [1380]

9 8 TWO [1498]

10 9 WATER [948]

This code example checks which of the concepts given in the concept lists by
Swadesh (100 and 200) plus the lists by Yakhontov (published in Starostin
1991) and Dolgopolsky (1964) recur in all lists, and outputs them both with
their Concepticon Gloss, and their Concepticon IDs. Note that you do not need
to use the lists that are provided by Concepticon alone, you can also compare
with your own concept lists, and this is exactly what we did, as we wanted
to work with data that was not yet officially linked to Concepticon (see the
tutorial by List 2017 for more information).
While our first concept list consisted of as many as 250 concepts, we had to
reduce it further, once we started to add more languages to our sample. Often,
we ran into simple coverage problems, as some of the concepts we thought
would be useful turned out to be missing from sources, and other concepts,
like, e.g., MOSQUITO, were not lexified in some regions of the Himalaya.
As a result, our final “master list”, which we used for the phylogenetic analy-
ses, only comprises 180 concepts. The criteria for exclusion of concepts was
strictly technical. We ranked all concepts by their coverage with respect to
the languages in our sample, and set up a coverage of at least 80% (each
concept should be reflected in at least 80% of our languages). We further
removed some remaining concepts from the list which had been shown to be
problematic with respect to compoundhood, sound symbolism, and polysemy.

78

https://concepticon.clld.org/contributions/Yakhontov-1991-35
https://concepticon.clld.org/contributions/Dolgopolsky-1964-15
http://bibliography.lingpy.org?key=Dolgopolsky1964
https://github.com/digling/edictor-tutorial
http://bibliography.lingpy.org?key=List2017LECTUREd
https://concepticon.clld.org/parameters/1509

Computer-Assisted Language Comparison in Practice

Using Concepticon to check for coverage and overlap across concept lists turned
out to be very efficient, as it helped us to avoid to include data into our
database which did not provide enough coverage. To illustrate how this can
be done, we can compare the coverage of our current list of 250 concepts
in the database with the coverage of a resource that we might want to add
to our database in the future. This resource is the database of cognates in
Kho-Bwa languages, compiled by T. A. Bodt (available from Bodt and List
2019). As Bodt’s data and our data are linked to Concepticon (following
the recommendations of the CLDF initiative, Forkel et al. 2018), we can
compare their intersection with a simple command from the terminal, in which
we combine the original intersection command of pyconcepticon with the wc

command shipped with all Unix terminals by using the famous and incredibly
useful pipe | :

1 $ concepticon --repos=PATH intersection Sagart-2018-250.tsv Bodt-2019-664.

tsv | wc -l

2 202

To run this code as illustrated here, the concept lists need to show a certain
format. You can check this out yourself by installing pyconcepticon, downloading
the Concepticon data, and the two concept lists, which I have all uploaded to
this GitHub Gist.

79

http://bibliography.lingpy.org?key=Bodt2019
http://bibliography.lingpy.org?key=Bodt2019
https://cldf.clld.org
http://bibliography.lingpy.org?key=Forkel2018a
https://gist.github.com/LinguList/fa93b0829fede0d6cbb01f4ca5f5b864

Computer-Assisted Language Comparison in Practice

References

Bodt, Timotheus A. and List, Johann-Mattis (2019): Testing the predictive strength of the
comparative method: An ongoing experiment on unattested words in Western Kho-Bwa
langauges. Papers in Historical Phonology 4.1. 22-44.

Comrie, Bernard and Smith, Norval (1977): Lingua Descriptive Series: Questionnaire. Lingua
42. 1-72.

Dolgopolsky, Aron B. (1964): Gipoteza drevnejšego rodstva jazykovych semej Severnoj Evrazii
s verojatnostej točky zrenija [A probabilistic hypothesis concering the oldest relationships
among the language families of Northern Eurasia]. Voprosy Jazykoznanija 2. 53-63.

Forkel, Robert and List, Johann-Mattis and Greenhill, Simon J. and Rzymski, Christoph and
Bank, Sebastian and Cysouw, Michael and Hammarström, Harald and Haspelmath, Martin
and Kaiping, Gereon A. and Gray, Russell D. (2018): Cross-Linguistic Data Formats,

80

Computer-Assisted Language Comparison in Practice

advancing data sharing and re-use in comparative linguistics. Scientific Data 5.180205.
1-10.

List, Johann-Mattis and Cysouw, Michael and Forkel, Robert (2016): Concepticon. A resource
for the linking of concept lists. In: Proceedings of the Tenth International Conference on
Language Resources and Evaluation. 2393-2400.

List, Johann-Mattis (2017): Historical Language Comparison with LingPy and EDICTOR
[Historischer Sprachvergleich mit LingPy und EDICTOR]. Department of Linguistic and
Cultural Evolution: Max-Planck Institute for the Science of Human History.

List, Johann-Mattis and Walworth, Mary and Greenhill, Simon J. and Tresoldi, Tiago and
Forkel, Robert (2018): Sequence comparison in computational historical linguistics. Jour-
nal of Language Evolution 3.2. 130–144.

List, Johann-Mattis (2018): Towards a history of concept list compilation in historical linguis-
tics. History and Philosophy of the Language Sciences 5.10. 1-14.

Matisoff, James A. (2015): The Sino-Tibetan Etymological Dictionary and Thesaurus project.
Berkeley:University of California.

Sagart, Laurent and Jacques, Guillaume and Lai, Yunfan and Ryder, Robin and Thouzeau,
Valentin and Greenhill, Simon J. and List, Johann-Mattis (2019): Dated language
phylogenies shed light on the ancestry of Sino-Tibetan. Proceedings of the National
Academy of Science of the United States of America 116. 10317–10322. DOI:
10.1073/pnas.1817972116

Swadesh, Morris (1952): Lexico-statistic dating of prehistoric ethnic contacts. With special
reference to North American Indians and Eskimos. Proceedings of the American Philo-
sophical Society 96.4. 452-463.

Swadesh, Morris (1955): Towards greater accuracy in lexicostatistic dating. International
Journal of American Linguistics 21.2. 121-137.

81

https://doi.org/10.1073/pnas.1817972116

Computer-Assisted Language Comparison in Practice

Cite this article as: Johann-Mattis List, “Behind the Sino-Tibetan
Database of Lexical Cognates: Concept selection”, in Computer-Assisted
Language Comparison in Practice, 26/06/2019, https://calc.hypotheses.
org/1933.

82

https://calc.hypotheses.org/1933
https://calc.hypotheses.org/1933

Computer-Assisted Language Comparison in Practice

Using the Waterman-Eggert algorithm for
sentence alignment

Johann-Mattis List (15/07/2019)

Categories: Code

Tags: code snippet, sentence alignment, sequence alignment, Waterman-
Eggert algorithm

During the 24th International Conference of Historical Linguistics, I was asked
by a colleague whether I would know a good way to align and scores sentences
available in form of phonetic transcriptions. While it is clear that one can
roughly compare the difference between sequences rather easily by aligning
them, and calculating, for example, the edit distance between them, it is clear
that the task of sentence alignment could be done in a somewhat more subtle
way.

The first obstacle that we may meet when trying to align sentences is that a
completely linear alignment may yield problems, since sentences may contain
the same or similar words, but differ with respect to word order. The first
alignment algorithm that comes to mind when trying to deal with this question
is the so-called Waterman-Eggert algorithm, first proposed and named after
Waterman and Eggert (1987).

Long time ago, I provided an implementation of this algorithm as part of the
LingPy package. The basic idea compared to traditional alignment algorithms
is to expand upon local alignment when searching for optimal subsequences
between two strings. While local alignment stops after having identified the

83

http://www.bioinformatics.nl/cgi-bin/emboss/help/matcher
http://bibliography.lingpy.org?key=Waterman1987

Computer-Assisted Language Comparison in Practice

longest similar subsequence between two strings, the Waterman-Eggert algo-
rithm does not stop, but instead continuous searching for more similar subse-
quences in the data, just until all of them have been readily identified.

This is not the place to get into the details of the algorithmics here. For
those interested in the topic, I recommend to have a look at List (2014),
where the major algorithms for alignment analyses have been rdescribed and
discussed for usability in linguistic applications. To get a sbrief glimpse at the
crucial difference between Waterman-Eggert and the famous local alignment
algorithm by Smith-Waterman (Smith and Waterman 1981), let us open a
terminal and test the Waterman-Eggert algorithm in a short LingPy session
(List et al. 2018).

1 >>> from lingpy import *

2 >>> for a, b, c in we_align('abcd', 'cdab'):

3 ... print(' '.join(a))

4 ... print(' '.join(b))

5 ... print('-')

6 a b

7 a b

8 -

9 c d

10 c d

What should be clear from this illustration is that the algorithm does not simply
align strings locally, but instead that it searches for substring matches. This is
internally done by identifying the highest-scoring subsequence in the alignment
matrix at first, and then searching again for the next-high-scoring subsequence,
until none are left.

To use this for sentence alignment of sentences provided in phonetic transcrip-
tion, we can write a wrapper function that makes use the Waterman-Eggert
implementation given in LingPy. In addition to simply aligning two sentences,

84

http://bibliography.lingpy.org?key=List2014d
http://bibliography.lingpy.org?key=Smith1981
http://lingpy.org
http://bibliography.lingpy.org?key=List2018i

Computer-Assisted Language Comparison in Practice

however, we would also like to score them, and we will soon see how this can
be done. We first start by loading a patch for the Waterman-Eggert algorithm,
since I realized that the current LingPy implementation contains a bug. This
patch is provided along with the code in a GitHub-Gist accompanying this post.

We start our script by loading the libraries. Here, we load LingPy, the patch
(which will soon be included when we do the next update), and the product

function from itertools, which we need to populate our scoring dictionary.
1 from lingpy import *

2 from patch_we_align import we_align

3 from itertools import product

We now start by defining our function. It has a rather simple call signature
with a few parameters. The first parameters are the sentences, which should
be given in IPA transcription without any punctuation marks. The gap penalty
is the classical gap penalty passed to the alignment algorithm. The model
refers to the sound class model, i.e., it determines how we represent sounds
internally in our function. The default is the sca model also widely used in
LingPy. The limit-argument tells the function which subsequences it should
still accept as matches. I think, for initial tests, subsequences of length two
seem like a good start here.

1 def salign(

2 senA,

3 senB,

4 gap=-1,

5 model='sca',

6 limit=2

7):

8 """Align and score two sentences"""

In the next step, we convert the sentences into sound classes, using the sound
class model. To do so, we first tokenize them, i.e., we determine what should

85

https://gist.github.com/LinguList/8189f06f231909fbf1d1eed30998bd83

Computer-Assisted Language Comparison in Practice

count as a sound. This function will treat combinations of base-letters and
diacritics as one sound. If you do not want to use it, just provide your data
already in space-segmented form, and this function won’t do anything. We
then convert the segmented data (a Python list as data type) into sound class
representations.

1 # retrieve sound class model

2 if not hasattr('scorer', model):

3 model = Model(model)

4 # convert to sound classes

5 tokA, tokB = list(map(

6 lambda x: ipa2tokens(

7 x.replace(' ', '_')),

8 [senA, senB]))

9
10 # assume segmentation by underscore

11 clsA, clsB = list(map(

12 lambda x: tokens2class(

13 x,

14 model

15),

16 [tokA, tokB]

17))

Before we can now align the data with the Waterman-Eggert algorithm, we
need to create a scorer that tells the algorithm how segments should be com-
pared with each other. Here, we simply use the built-in scorer provided along
with the LingPy package, setting the matching of _ with itself to 0 , because
we do not want to enourage the algorithm to align too many boundary markers
with each other.

86

Computer-Assisted Language Comparison in Practice
1 scorer = {(a, b): -1 if \

2 (a != b or '_' in (a, b)) \

3 else 1 for a, b in product(

4 set(clsA+clsB),

5 set(clsA+clsB))

6 }

7 # make sure boundaries don't score

8 scorer['_', '_'] = 0

We can now start to compute the alignments. While doing so, we iterate over
each identified segment and store their similarity in a specific list, so we can
later used it for scoring the similarity of the sentences. Our patch has the
advantage of offering a detailed index of which elements have been aligned
(different from the original call signature). We use this to extract the original
transcriptions as alignments, rather than the aligned sound classes.

1 out, scores = [], []

2 for a, b, score, iA, iB in we_align(

3 clsA, clsB, scorer=scorer, gap=gap

4):

5 if len(a) < limit:

6 pass

7 else:
8 out += [

9 (a, b, score)

10]

11 scores += [score]

While we could already output the data as is, it would be useful to score
the data as well, in order to offer us a way to retrieve some general distance
between the two sentences. In order to do so, we just follow Downey et al.
(2008) in computing a normalized distance score from the similarity scores that
we retrieve for each aligned subsequence in comparison with the alignments of
each sentence with itself.

87

http://bibliography.lingpy.org?key=Downey2008
http://bibliography.lingpy.org?key=Downey2008

Computer-Assisted Language Comparison in Practice
1 # compute self-scores

2 sA = sum([scorer[a, a] for a in clsA])

3 sB = sum([scorer[a, a] for a in clsB])

4 sAB = sum(scores) / len(scores)

5
6 score = 1 - (2 * sAB / (sA + sB))

7 return out, score

Equipped with this code, we can now carry out our first sentence alignment.
Let’s compare two random sentences from German with each other in which
we deliberately re-arrange some words.

1 alms, scores = salign(

2 'əʁːmainuɪ.ɪɛs͡thnsainhrts',

3 'ɛʁ͡ːhrtsmainuə.sain',

4 gap=-2

5)

6 for a, b, score in alms:

7 print(' '.join(a))

8 print(' '.join(b))

9 print('{0:.2f}'.format(score))

10 print('{0:.2f}'.format(scores))

The output of this comparison (the first sentence is inspired by Goethe’s “Meine
Ruh’ ist hin”) yields the following results:

1 H E R C

2 H E R C

3 4.00

4 S A N

5 S A N

6 3.00

7 M A N E R Y

8 M A N - R Y

9 3.00

10 0.38

88

Computer-Assisted Language Comparison in Practice

In total, the algorithm yields three blocks, which correspond to four words in the
original data, with the third block (corresponding to “meine Ruh”) showing the
same order in both test sequences. The last score, 0.38, is the overall distance
of the two sequences, which is rather low, given the high number of words
occuring in the sequence.

It is clear that more can be done to arrive at a good sentence alignment. This
post was not meant to present a complete solution to the problem, it was
rather intended to illustrate how we can use the tools we offer in libraries such
as LingPy to carry out quick tests on new topics that have so far not yet been
thoroughly discussed in the field of comparative linguistics. Code and patch
are available in form of a GitHub Gist, which you can download from here.

References

Downey, Sean S. and Hallmark, Brian and Cox, Murray P. and Norquest, Peter and Lansing,
Stephen (2008): Computational feature-sensitive reconstruction of language relationships:
developing the ALINE distance for comparative historical linguistic reconstruction. Journal
of Quantitative Linguistics 15.4. 340-369.

List, Johann-Mattis (2014): Sequence comparison in historical linguistics. Düssel-
dorf:Düsseldorf University Press.

List, Johann-Mattis and Greenhill, Simon and Tresoldi, Tiago and Forkel, Robert (2018):
LingPy. A Python library for quantitative tasks in historical linguistics. Max Planck
Institute for the Science of Human History. Jena: http://lingpy.org.

Smith, T. F. and Waterman, M. S. (1981): Identification of common molecular subsequences.
Journal of Molecular Biology 1. 195-197.

Waterman, M. S. and Eggert, M. (1987): A new algorithm for best subsequence alignments
with application to tRNA-rRNA comparisons. Journal of Molecular Biology 197. 723-728.

89

https://gist.github.com/LinguList/8189f06f231909fbf1d1eed30998bd83
//lingpy.org”

Computer-Assisted Language Comparison in Practice

Cite this article as: Johann-Mattis List, “Using the Waterman-Eggert
algorithm for sentence alignment”, in Computer-Assisted Language Com-
parison in Practice, 15/07/2019, https://calc.hypotheses.org/1941.

90

https://calc.hypotheses.org/1941

Computer-Assisted Language Comparison in Practice

Feature-Based Alignment Analyses with LingPy
and CLTS I

Johann-Mattis List (19/08/2019)

Categories: Code

Tags: alignment, cross-linguistic transcription systems, distinctive features,
phonetic alignment, Python, scoring function

In the past, people have repeatedly asked me how they could use their own
scoring functions in combination with LingPy’s alignment algorithms. Their
major concern was that the sound-class-based scoring systems we use in LingPy
might fail to reflect true phonetic similarity of sounds, specifically also because
they are not informed by classical ideas about distinctive features in phonology.
As described in detail in List (2014), LingPy converts sounds in phonetic tran-
scription to an internal alphabet of less than 30 letters, to which the alignment
algorithms are then applied in a second stage.

What my colleagues wanted to do instead was to test feature-based scoring
systems (e.g. Chomsky and Halle 1968) and then use these features to derive
distance or similarity scores between phonetic segments which would then be
used to carry out the alignment analysis. In addition, some colleagues had
created their own similarity matrix, and wanted to apply it more flexibly to
other datasets (see, for example, Jäger 2015). My answer was usually, that
this could be done in principle, but that it would require some amount of
data preprocessing, depending on what data one wants to align. Not many
colleagues asked me a second time, maybe because they thought it would be
too complicated to use their own distance or similarity scores in LingPy.

91

http://bibliography.lingpy.org?key=List2014d
http://bibliography.lingpy.org?key=Chomsky1968
http://bibliography.lingpy.org?key=Jaeger2015

Computer-Assisted Language Comparison in Practice

When I recently started working on a modified alignment algorithm myself, I
had to work on the same question again, and I figured, that it is in fact not
that difficult to use a custom scoring function in Lingpy. Most of the things
one needs to use LingPy along with custom scoring functions are already in
place. Furthermore, with our recently published pyclts package, underlying
the Database of Cross-Linguistic Transcription Systems (see Anderson et al.
(2018) for an overwiew), there is now even a large collection of sounds for which
we have distinctive feature sets. The major reason why I never tested feature-
based alignment methods so far, was that I could not find a feature-system
that would offer feature for all the sounds I usually find in linguistic datasets.
Even datasets like Phoible (Moran et al. 2014), which offers huge amounts of
transcriptions barely touch the surface of the variation one encounters when
working with real transcriptions.

Luckily, our CLTS system has shown to be very robust so far. It understands
some 8000 different phonetic segments, including clicks, tones, dipththongs,
and certain consonant clusters, and we have developed first approaches to con-
vert a given dataset into a form of IPA that CLTS accepts. For the conversion,
we now use orthography profiles (Moran and Cysouw 2018), which I have pre-
sented in past tutorials (List 2017), and for which I recently also wrote an
implementation in JavaScript, called SegmentsJS.

I therefore think that it is time to get back to my colleagues’ request and
illustrate how one can first create a custom, feature-based scoring function
with help of CLTS, and then use this scoring function to carry out pairwise
alignments of phonetic sequences. Given my limited time to write tutorial
blogposts, I furthermore decided to divide this post into two (potentially three)
posts, and discuss the creation of the scoring function in this post, while I
will get back to the question of how to use LingPy’s methods for sequence
comparison in one or two follow-up posts.

92

https://github.com/cldf/clts
https://clts.clld.org
http://bibliography.lingpy.org?key=Anderson2018
http://bibliography.lingpy.org?key=Anderson2018
https://phoible.org
http://bibliography.lingpy.org?key=Moran2014
http://bibliography.lingpy.org?key=Moran2018
http://bibliography.lingpy.org?key=List2017LECTUREd
http://calc.digling.org/

Computer-Assisted Language Comparison in Practice

Before we start with the actual code, it is important to understand how scoring
functions work. Basically there are two different kinds of scoring functions:
those based on distances between segments, and those based on similarities
between segments. One may intuitively think that there is no real difference
with respect to the use of similarities or distances. When looking closer into
the algorithmics underlying the sequence alignment problem, however, this
assumption is not correct, since only similarity-based scoring functions allow
for both semi-global and local alignment analyses (for details on these problems,
compare List 2014, where all algorithms are described in detail).

For this reason, it is not useful to start from the computation distance scores
for phonetic segments. Instead, I recommend everybody who wishes to work
seriously on phonetic alignment algorithms to work with those algorithms that
make use of similarities between segments. While distance scores are probably
easy to understand, since we can think of them in form of distance in space,
or distance along pathways, or distance in trees. Distance between identical
objects is always 0, and the more dissimilar two objcts become, the higher
the distance score between them. Similarity scores, on the other hand, as-
sume some high score for the identity of objects, which may vary, depending
on the object under question, and smaller scores for dissimilar objects, with
scores beyond zero being reserved for those objects that have almost nothing
in common.

In order to derive a distance score between two sound segments which are de-
fined by a given feature system, the easiest and seemingly most straightforward
way (recommended and defended by some colleagues in personal communica-
tion) is to compute the so-called Hamming distance (Hamming 1950). This
distance reflects the proportion of features where two segments differ. Turning
the Hamming distance into a similarity score is straightforward, since we only
need to calculate the proportion of features where two segments are identical.

93

http://bibliography.lingpy.org?key=List2014d
http://bibliography.lingpy.org?key=Hamming1950

Computer-Assisted Language Comparison in Practice

If we look at the CLTS feature system, we find 37 features in total, which
cover three major classes of sounds, consonants, vowels, and tones, which
themselves may vary with respect to the features that define them. The fea-
tures themselves can be binary or have multiple values. Retrieving the features
of a given sound linked to the CLTS system is straightforward. The features
can be found in the featuredict attribute of a Sound object.

1 from pyclts import TranscriptionSystem

2 bipa = TranscriptionSystem('bipa')

3 sound = bipa['ts']

4 for i, (k, v) in enumerate(sorted(sound.featuredict.items())):

5 print('{0:5} | {1:22} | {2:10}'.format(i+1, k, v or '-'))

When you type in this code in your commandline (provided you have installed
the pyclts package, e.g., with help of pip, by typing pip install pyclts), you
will receive the output shown in the following table in text form.

No. Feature Value

1 articulation –

2 aspiration –

3 breathiness –

4 creakiness –

5 duration –

6 ejection –

7 glottalization –

8 labialization –

9 laminality –

10 laterality –

94

https://pypi.org/project/pyclts/

Computer-Assisted Language Comparison in Practice

No. Feature Value

11 manner affricate

12 nasalization –

13 palatalization –

14 pharyngealization –

15 phonation voiceless

16 place alveolar

17 preceding –

18 raising –

19 relative _ articulation –

20 release –

21 sibilancy sibilant

22 syllabicity –

23 velarization –

24 voicing –

We can see from the output that CLTS currently uses as many as 24 different
features to define consonants, which mostly reflect the traditional way in which
sounds are defined by the International Phonetic Alphabet (IPA 1999). You can
apply the same procedure to check for the vowel and the tone features applied
by CLTS, by replacing the line sound = bipa['ts'] by the line sound = bipa['a']

or sound = bipa['55'], respectively.
With our feature vector and a system like CLTS which offers feature values,
it is straightforward to write a short function that allows us to compare the

95

http://bibliography.lingpy.org?key=IPA1999

Computer-Assisted Language Comparison in Practice

hamming distance between different sounds transcribed in Broad IPA (bipa)
system offered by the CLTS database.

We start by defining our function for scoring two sound segments. This function
accepts two paremeters (the sound segments, passed as strings), and three
keywords, bipa (referring to the bipa transcription system offered by the pyclts

package), classes (a function that defines to which score we want to normalize
our Hamming similarities), and features, the list of feature vectors, as offered
per class in our transcription system.

96

Computer-Assisted Language Comparison in Practice
1 from pyclts.transcriptionsystem import TranscriptionSystem

2 from itertools import combinations

3
4 def score_sounds(

5 a,

6 b,

7 features=None,

8 classes=None,

9 bipa=None

10):

11 """

12 Score sounds with Hamming distance from feature system.

13 """

14 # load bipa object

15 bipa = bipa or TranscriptionSystem('bipa')

16
17 # define the features

18 features = features or {

19 "consonant": list(

20 bipa['t'].featuredict),

21 "vowel": list(

22 bipa['a'].featuredict),

23 "tone": list(

24 bipa['⁵⁵'].featuredict)

25 }

26 # define base score for the classes

27 classes = classes or {

28 "consonant": 1,

29 "vowel": 1,

30 "tone": 1

31 }

You can see from this first code block that I was lazy and did not spell out
the feature systems, but retrieved them from dummy sounds. As we will see
later, however, we will usually create our feature vectors before and pass them

97

Computer-Assisted Language Comparison in Practice

to the method via the keywords, also to avoid that the Broad IPA is loaded on
every call, which will drastically influence the performance of this method.

Our next step consists in the conversion of our sounds to our TranscriptionSystem
in CLTS, and to check for dipthongs or clusters. Dipthongs and clusters are
not defined by their own features in CLTS, but rather have separate features for
the first and the second sound, which can be accessed through their attributes
from_sound and to_sound. To keep the demonstration simple for the time being,
we will for now simply represent the complex sounds by their first sound.

1 # convert sounds to transcription system

2 sA, sB = bipa(a+' '+b)

3
4 # check for diphthongs or clusters

5 if hasattr(sA, 'from_sound'):

6 sA = sA.from_sound

7 if hasattr(sB, 'from_sound'):

8 sB = sB.from_sound

Now we make sure to return a high negative value in those cases where the
base classes for all sounds in CLTS turn out to be different. This score is in fact
arbitrary, as long as it is low enough, since we want to avoid no matter what,
that alignments mix the sound classes (some colleagues were not happy with
this decision in the past, but my experience clearly shows that not separating
classes leads to an unexpected alignment behavior that is extremely difficult
to control).

1 # return -10 if classes don't match

2 if sA.type != sB.type:

3 return -10

Now, we are almost done with our function that calculates segment similari-
ties based on distinctive feature systems. In order to compute the Hamming
similarity, we first define the base similarity, which is reflecting the size of the

98

Computer-Assisted Language Comparison in Practice

feature vector, and then calculate the factor needed to normalize the data
consistently. According to our defaults, which we wrote into the function, the
highest similarity score for all sound classes is 1, so normalization will yield
scores between 0 and 1 for our Hamming similarities.

1 # base score is the number of features

2 sim = len(features[sA.type])

3
4 # normalization factor

5 normalize = classes[sA.type] / sim

6
7 # return in case of identity

8 if a == b:

9 return sim * normalize

10
11 # reduce similarity in case of mismatch

12 for feature in features[sA.type]:

13 if sA.featuredict[feature] != sB.featuredict[feature]:

14 sim -= 1

15 return sim * normalize

Now that we can compute our Hamming similarities, we can test this function
directly by feeding it different sounds. In order to get a full-fledged scoring
dictionary, however, which we will need to carry out a phonetic alignment
analysis, it is useful to write another function that takes a couple of sounds as
input and returns a scoring dictionary in which all sounds are compared with
each other. The function takes a bunch of letters as parameter, and also the
three keywords, which we already defined for the score_sounds function.

99

Computer-Assisted Language Comparison in Practice
1 def get_scorer(

2 letters,

3 bipa=None,

4 classes=None,

5 features=None

6):

7 """

8 Retrieve a scoring dictionary for alignment algorithms.

9 """

10 # load bipa object

11 bipa = bipa or TranscriptionSystem('bipa')

12
13 # define the features

14 features = features or {

15 "consonant": list(

16 bipa['t'].featuredict),

17 "vowel": list(

18 bipa['a'].featuredict),

19 "tone": list(

20 bipa['⁵⁵'].featuredict)

21 }

22 # define base score for the classes

23 classes = classes or {

24 "consonant": 1,

25 "vowel": 1,

26 "tone": 1

27 }

After this boring part, where we repeat the same code (this may definitely be
enhanced further, but for demonstration purposes, it is surely enough), we can
now compute the scorer. This can be done in a very straightforward way with
help of the combinations method offered by the itertools module, which is part
of Python.

100

Computer-Assisted Language Comparison in Practice
1 scorer = {}

2 bipa = bipa or TranscriptionSystem('bipa')

3 for a, b in combinations(letters, r=2):

4 scorer[a, b] = scorer[b, a] = score_sounds(a, b, bipa=bipa)

5 scorer[a, a] = score_sounds(a, a, bipa=bipa)

6 scorer[b, b] = score_sounds(b, b, bipa=bipa)

7
8 return scorer

Now, we can finally start and see, how well this approach works. For conve-
nience, I use the tabulate package for printing of tables, and define a couple
of sounds whose similarity I want to investigate.

1 from tabulate import tabulate

2 cons = ['p', 't', 'b', 'd', 'ʰp', 'ʰt']

3 vows = ['a', 'e', 'i', 'o', 'u']

4 scorer = get_scorer(cons+vows)

When retrieving the similarity matrix from the scorer now, we can easily con-
struct a matrix, which illustrates the difference between the sounds in our
sample.

1 matrix = [[1 for x in cons] for y in cons]

2 for (i, a), (j, b) in combinations(enumerate(cons), r=2):

3 matrix[i][j] = matrix[j][i] = round(scorer[a, b], 2)

4 for i, (c, r) in enumerate(zip(cons, matrix)):

5 matrix[i] = [c]+r

6 print(tabulate(matrix, headers=cons, tablefmt='pipe'))

The matrix for the consonants in our sample is shown in the following table.

p t b d p� t�

p 1 0.96 0.96 0.92 0.96 0.92

t 0.96 1 0.92 0.96 0.92 0.96

b 0.96 0.92 1 0.96 0.92 0.88

101

Computer-Assisted Language Comparison in Practice

d 0.92 0.96 0.96 1 0.88 0.92

p� 0.96 0.92 0.92 0.88 1 0.96

t� 0.92 0.96 0.88 0.92 0.96 1

By replacing the cons variable by vows, we can produce the same matrix for our
vowels.

a e i o u

a 1 0.95 0.95 0.85 0.85

e 0.95 1 0.95 0.9 0.85

i 0.95 0.95 1 0.85 0.9

o 0.85 0.9 0.85 1 0.95

u 0.85 0.85 0.9 0.95 1

Those experienced in phonetics and distinctive features and historical sound
change may find the results strange, especially those for the consonants. We
see that [p] is as similar to a [t] as to a [b], although most scholars would
usually say that [p] and [b] are much closer to each other. The problem, and
this is also one of the challenges when using feature systems for alignment anal-
yses, is that all features are given the same weight by our Hamming similarity
approach. When comparing the features by which [p], [t], and [d] differ,
according to the CLTS feature system, we can see that [p] and [t] differ by
one feature (“place”), and [p] and [b] differ by another feature (“voicing”).
Since the similarity measure presented here does not allow for a differential
weighting of features and feature values, it yields the same similarity of 0.96,
since both sounds differ in one out of 24 features.

102

Computer-Assisted Language Comparison in Practice

References

Anderson, Cormac and Tresoldi, Tiago and Chacon, Thiago Costa and Fehn, Anne-Maria and
Walworth, Mary and Forkel, Robert and List, Johann-Mattis (2018): A Cross-Linguistic
Database of Phonetic Transcription Systems. Yearbook of the Poznań Linguistic Meeting
4.1. 21-53.

Chomsky, Noam and Halle, Morris (1968): The sound pattern of English. New York and
Evanston and London: Harper and Row.

Hamming, Richard W. (1950): Error detection and error detection codes. Bell System Tech-
nical Journal 29.2. 147–160.

Jäger, Gerhard (2015): Support for linguistic macrofamilies from weighted alignment. Pro-
ceedings of the National Academy of Sciences 112.41. 12752–12757.

List, Johann-Mattis (2014): Sequence comparison in historical linguistics. Düsseldorf: Düssel-
dorf University Press.

List, Johann-Mattis (2017): Historical Language Comparison with LingPy and EDICTOR
[Historischer Sprachvergleich mit LingPy und EDICTOR]. Department of Linguistic and
Cultural Evolution: Max-Planck Institute for the Science of Human History.

Steven Moran and Daniel McCloy and Richard Wright (eds.) (2014): PHOIBLE Online. Max
Planck Institute for Evolutionary Anthropology. Leipzig: http://phoible.org/.

Moran, Steven and Cysouw, Michael (2018): The Unicode Cookbook for Linguists: Managing
writing systems using orthography profiles. Berlin:Language Science Press.

Supplementary Information

The code demonstrated here can be found on this GitHub Gist.

103

https://gist.github.com/LinguList/7fac44813572f65259c872ef89fa64ad

Computer-Assisted Language Comparison in Practice

Cite this article as: Johann-Mattis List, “Feature-Based Alignment Anal-
yses with LingPy and CLTS (1)”, in Computer-Assisted Language Compar-
ison in Practice, 19/08/2019, https://calc.hypotheses.org/1962.

104

https://calc.hypotheses.org/1962

Computer-Assisted Language Comparison in Practice

Feature-Based Alignment Analyses with LingPy
and CLTS II

Johann-Mattis List (16/09/2019)

Categories: Code

Tags: algorithm, distinctive features, phonetic alignment

Having seen how we can obtain a simple scorer derived from the feature system
in CLTS (List et al. 2019) in last month’s post, what is missing now, in
order to use the scorer for alignment analyses, is an alignment function which
can take the scorer as an argument. If one does not have higher ambitions
with respect to the alignment function itself, this step can be achieved in a
very straightforward way with help of LingPy’s (List et al. 2018) nw_align()

or sw_align() method. As can be seen from the documentation, this method
takes as input two sequences (i.e., lists of sounds), along with a scoring function.
Obviously, all we need to do now is to create our specific scorer based on the
CLTS features, and then pass this scoring function along with our sequences
to the function.

Let’s test this by writing a small function that takes two sequences as input
and then (a) creates the scorer using the procedure we illustrated in the pre-
ceding post, and (b) aligns the sequences, using either the Needleman-Wunsch
algorithm (Needleman and Wunsch 1970) for global alignment, or the Smith-
Waterman algorithm (Smith and Waterman 1981) for local alignment. We
start by importing the malign package of LingPy which offers simple alignment
methods, as well as LingPy proper, and adding this to the start of our file
features.py which we used last time.

105

https://clts.clld.org
http://bibliography.lingpy.org?key=CLTS
https://calc.hypotheses.org/1962
http://lingpy.org
http://bibliography.lingpy.org?key=LingPy
http://lingpy.org/reference/lingpy.algorithm.cython.html#lingpy.algorithm.cython.malign.nw_align
http://lingpy.org/reference/lingpy.algorithm.cython.html#lingpy.algorithm.cython.malign.sw_align
http://bibliography.lingpy.org?key=Needleman1970
http://bibliography.lingpy.org?key=Smith1981

Computer-Assisted Language Comparison in Practice

1 from lingpy.algorithm.cython import malign

We can now define our alignment function. Following general LingPy nomencla-
ture, we distinguish between global and local alignment as different alignment
modes (see List 2014 for details on alignment modes). We just write this
function below the functions for scoring elements and for creating the scorer
in our script.

1 def feature_align(seqA, seqB, mode='global', gap=-1):

2 if mode == 'global':

3 align = malign.nw_align

4 elif mode == 'local':

5 align = malign.sw_align

6 scorer = get_scorer(list(set(seqA+seqB)))

7 return align(seqA, seqB, scorer, gap)

In order to run this function, we must input the data as a list. This can be done
by splitting IPA sequences with help of LingPy’s ipa2tokens function, or by using
software specifically devoted to segmentation, such as the segments package,
that uses orthography profiles to split data into segments (Moran and Cysouw
2018), of which I recently produced a JavaScript version for demonstration
purposes, called SegmentsJS.

For a first test, we simply segment the data directly.
1 seqA = 'ʰt ɔ x t ɐ'.split()

2 seqB = 'd ɔː t ə r'.split()

3 almA, almB, score = feature_align(seqA, seqB)

4 print('\t'.join(almA))

5 print('\t'.join(almB))

6 print('{0:.2f}'.format(score))

From the output, we can see, that the method correctly aligns the two se-
quences.

106

http://bibliography.lingpy.org?key=List2014d
http://lingpy.org/reference/lingpy.sequence.html#lingpy.sequence.sound_classes.ipa2tokens
https://github.com/cldf/segments
http://bibliography.lingpy.org?key=Moran2018
http://bibliography.lingpy.org?key=Moran2018
http://calc.digling.org/profile/

Computer-Assisted Language Comparison in Practice

tʰ ɔ x t ɐ -

d ɔː - t ə r

-1.00

What you may find to be strange is the negative score for this alignment. But
as the alignment itself is correct, we do not need to worry about this too much.
The alignment has two gaps, and our gap penalty is -1. This will result in a
score of -2 for the gaps alone. Since each perfect match scores with 1 as well,
and we have only one perfect match, the rest of the scores cannot outweigh
the penalties introduced by the gap score. This shows, as we will try to look at
in a follow-up post, that we need to re-design our scoring function to account
more properly for the specific needs of alignment algorithms.

But let us now make a general test of the feature-based alignment method by
using it to align all the sequences in a benchmark. Here, we use the bench-
mark proposed by Covington (1996), which is available from the Benchmark
Database of Phonetic Alignments (BDPA, List and Prokić 2014). We use this
dataset for convenience, because it is small, and can therefore easily be added
to a GitHub Gist repository. Interested users can easily obtain the more elab-
orated and larger benchmark data from the BDPA and test the algorithm on
more and more challenging datasets.

To load the data from the benchmark, we first download the data and extract
the file covington.psa, which contains the alignments in the “PSA” format
that LingPy uses for partial alignments. This format is outdated for different
reasons. First, because the main interest of LingPy’s algorithms has now shifted
to cognate detection and multiple alignments, and pairwise alignments are no
more considered the key task of the library. Second, with new standards such
as CLDF (Forkel et al. 2018), we are generally re-evaluating the usefulness
of formats that are too idiosyncratic. Third, with LingPy’s wordlist format,

107

http://bibliography.lingpy.org?key=Covington1996
http://alignments.lingpy.org
http://alignments.lingpy.org
http://bibliography.lingpy.org?key=List2014e
https://cldf.clld.org
http://bibliography.lingpy.org?key=Forkel2018a

Computer-Assisted Language Comparison in Practice

that has been offering for a long time now the possibility to store multiple
alignments, and to also edit them with the EDICTOR tool (List 2017), we
do no longer need specific formats, but could render the same data without
problem in a multi-lingual wordlist, even if it only consists of aligned pairs. But
since LingPy has not yet abandoned the PSA format and can readily read it,
we can use it now to read in the file, align the data, and check if the alignment
matches the gold standard. To evaluate the alignments, we simply score the
number of perfect alignments which are identical with the gold standard.

1 psa = PSA('covington.psa')

2 scores = []

3 for i, (seqA, seqB) in enumerate(psa.tokens):

4 almA, almB, score = feature_align(seqA, seqB)

5 if almA == psa.alignments[i][0] and almB == psa.alignments[i][1]:

6 scores += [1]

7 else:
8 scores += [0]

9 print('{0:.2f}'.format(sum(scores)/len(scores)))

As we can see from the output, the algorithm reaches a score of 0.82, that is,
82% of the alignments are identical with the gold standard. In total, these are
67 out of 82 alignments in the benchmark. With this score, the feature-based
alignment in this form shows a very mediocre performance, as we can see when
comparing with scores reported for other alignment algorithms, specifically SCA
(List 2014) with 80 perfect alignments (98%), Kondrak’s ALINE (Kondrak
2000 with 78 perfect alignments (95%), or Covington’s algorithm (1996) with
68.8 perfect alignments (84%).

From these results, we can thus see what was already mentioned in last month’s
post: by simply computing the Hamming distances of distinctive feature sys-
tems, we do not necessarily arrive at linguistically meaningful alignments, sim-
ilarities, or distances. In a follow-up blog post, I will try to show what we

108

http://edictor.digling.org
http://bibliography.lingpy.org?key=List2017d
http://bibliography.lingpy.org?key=List2014d
http://bibliography.lingpy.org?key=Kondrak2000
http://bibliography.lingpy.org?key=Kondrak2000

Computer-Assisted Language Comparison in Practice

can do to cope with the problems introduced by naive Hamming distances for
feature vectors. The code accompanying this post is again available in form
of a GitHub Gist repository.

References

List, Johann-Mattis and Anderson, Cormac and Tresoldi, Tiago and Rzymski, Christoph
and Greenhill, Simon and Forkel, Robert (2019): Cross-Linguistic Transcription Systems.
Jena:Max Planck Institute for the Science of Human History.

Covington, Michael A. (1996): An algorithm to align words for historical comparison. Com-
putational Linguistics 22.4. 481-496.

Forkel, Robert and List, Johann-Mattis and Greenhill, Simon J. and Rzymski, Christoph and
Bank, Sebastian and Cysouw, Michael and Hammarström, Harald and Haspelmath, Martin
and Kaiping, Gereon A. and Gray, Russell D. (2018): Cross-Linguistic Data Formats,

109

https://gist.github.com/LinguList/ce6da48112018365bccb94bcbec891b1

Computer-Assisted Language Comparison in Practice

advancing data sharing and re-use in comparative linguistics. Scientific Data 5.180205.
1-10.

Kondrak, Grzegorz (2000): A new algorithm for the alignment of phonetic sequences. In:
Proceedings of the 1st North American chapter of the Association for Computational
Linguistics conference. 288-295.

List, Johann-Mattis and Greenhill, Simon and Tresoldi, Tiago and Forkel, Robert (2018):
LingPy. A Python library for quantitative tasks in historical linguistics. Version 2.6.4.
Max Planck Institute for the Science of Human History. Jena: http://lingpy.org.

List, Johann-Mattis (2014): Sequence comparison in historical linguistics. Düssel-
dorf:Düsseldorf University Press.

List, J.-M. and Prokić, Jel (2014): A benchmark database of phonetic alignments in historical
linguistics and dialectology. In: Proceedings of the Ninth International Conference on
Language Resources and Evaluation. 288-294.

List, Johann-Mattis (2017): A web-based interactive tool for creating, inspecting, editing, and
publishing etymological datasets. In: Proceedings of the 15th Conference of the European
Chapter of the Association for Computational Linguistics. System Demonstrations. 9-12.

Moran, Steven and Cysouw, Michael (2018): The Unicode Cookbook for Linguists: Managing
writing systems using orthography profiles. Berlin:Language Science Press.

Needleman, Saul B. and Wunsch, Christan D. (1970): A gene method applicable to the search
for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology
48. 443-453.

Smith, T. F. and Waterman, M. S. (1981): Identification of common molecular subsequences.
Journal of Molecular Biology 1. 195-197.

110

//lingpy.org”

Computer-Assisted Language Comparison in Practice

Cite this article as: Johann-Mattis List, “Feature-Based Alignment Anal-
yses with LingPy and CLTS (2)”, in Computer-Assisted Language Compar-
ison in Practice, 16/09/2019, https://calc.hypotheses.org/1971.

111

https://calc.hypotheses.org/1971

Computer-Assisted Language Comparison in Practice

Biological metaphors and methods in historical
linguistics II: Words and genes

Nathanael E. Schweikhard (18/09/2019)

Categories: Theory

Tags: analogies, biology, historical linguistics

As was mentioned in the introduction to this series of blogposts, both species
and languages are often presented in a tree model. In biology, trees of each
individual gene are created in order to account for horizontal transmission and
other processes in which the history of a gene differs from the general history
of its genome. From the sum of these trees, the species trees are then derived,
a method called gene tree reconciliation (Nakhleh 2013). In linguistics on the
other hand, phylogenetic trees normally are built on cognate sets of related
words, from which the most likely tree of the languages is calculated. A closer
equivalent however would be to describe the history of each individual word
or word form, including regular sound change, irregular changes to its form,
semantic changes, borrowings, and processes of word formation, and to derive
the language tree based on the sum of the word histories (Gray, Greenhill, and
Ross 2007, 15). Unlike its biological equivalent, this is normally done manually.

While anthropological, including linguistic, data behaves more like phenotype
data than like genotype data in biology (Morrison 2014), the mechanisms
themselves seem much more directly comparable between genes and language
data since phenotypes would add an unnecessary layer of complexity, being
expressions of genes, while genes are what is replicated from one generation
to the next.

112

Computer-Assisted Language Comparison in Practice

Similarly, Stevick, while maintaining the general equation between species and
languages, suggests that it would be better to compare actual utterances with
individual organisms (Stevick 1963, 161) or their genomes, since language is
replicated through its use in communication. In this model, gene replication
with mutation corresponds to communication (i.e. word exchange) with inno-
vation (Pagel 2009, 406, 408).

One obvious difference is that in genetic, i.e. sexual, reproduction, the whole
genome is recombined, whereas in each instance of communication, only part
of the mental lexicon is typically affected, an exception being systemic changes
like the change of one set of phonemes to another set. These systemic changes
are another difference: in the genome, most genes are fairly independent, but
a change to one word in the lexicon can easily reflect a wide-reaching change
to many parts of the lexicon as in regular sound change.

Besides these systemic changes, words in the lexicon can also influence each
other and cause sporadic changes called analogy, which is typically based on the
meanings of the words. This is comparable to linked loci in the genome, even
if the underlying mechanisms are — of course — entirely different (Nakhleh
2013, 720, 726). From this, one can conclude that word-meaning-pairs (what
Gévaudan 2007 refers to as “lexikalische Einheit”, i.e., “lexical unit”, on page
28), and not word forms on their own, correspond to individual genes coupled
either with their function or with their position in the genome.

While individuals and not whole species reproduce, evolutionary biology nor-
mally treats the samples taken from individuals as representing the species as
a whole. Similarly, linguists normally talk about language stages being de-
rived from previous language stages spoken at least a generation before, more
typically several centuries: they do not put much focus on how language
usage changes during the course of the life of a person beyond the language
acquisition phase (but see e.g. Labov 1981 as an influential exception).

113

Computer-Assisted Language Comparison in Practice

To go even a level deeper, some scholars compare the amino acids that make up
a gene with the phonemes that make up a given word (Hruschka et al. 2015, 1),
but while this may seem to make sense in the context of the other metaphors
mentioned, I have not yet found a way to apply this equation in our research.
More interesting in this regard is that the distribution of morphemes in a given
language can be modeled in a similar manner as the distribution of protein
domains within genomes (Keller and Schultz 2014).

At times, whole sequences of genes have been likened to words. This is a
methodologically valid comparison, as in both disciplines, sequences of genes
on the one hand and sequences of sound strings denoting the same concept
on the other hand can be aligned in order to gain insights into the likelihood
that a given gene or word is orthologous or cognate with another (Koonin
2005, 217f; List et al. 2016, 6), even if it otherwise does not fit well into the
metaphors employed here. An important difference in that regard is also that
while gene sequences consist of the same four nucleotides, words of different
languages more typically make use of different sets of phonemes. For example
click sounds famously can be found in some languages of southern Africa, but
are almost missing in most other parts of the world (Trask 2007, 12).

Overall, one can conclude that despite some similarities, the research objects of
linguists and biology are obviously very different and it therefore should depend
on the fruitfulness of the research method whether adopting a given metaphor
makes sense or not. Nevertheless, thinking about these metaphors can support
finding potential methods to adopt, also by pointing out which approaches one
takes for granted in one’s own field but which might be handled differently in
another.

114

Computer-Assisted Language Comparison in Practice

115

Computer-Assisted Language Comparison in Practice

References

Gévaudan, Paul. 2007. Typologie des lexikalischen Wandels: Bedeutungswandel, Wortbildung
und Entlehnung am Beispiel der romanischen Sprachen. Stauffenburg-Linguistik ; 45.
Tübingen: Stauffenburg.

Gray, Russell D., Simon J. Greenhill, and Malcolm D. Ross. 2007. “The Pleasures and Perils
of Darwinzing Culture (with Phylogenies).” Biological Theory 2 (4): 360–75.

Hruschka, D. J., S. Branford, E. D. Smith, J. Wilkins, A. Meade, M. Pagel, and T. Bhat-
tacharya. 2015. “Detecting Regular Sound Changes in Linguistics as Events of Concerted
Evolution.” Current Biology 25 (1): 1–9.

Keller, Daniela Barbara, and Jörg Schultz. 2014. “Word Formation Is Aware of Morpheme
Family Size.” PLoS ONE.

Koonin, Eugene V. 2005. “Orthologs, Paralogs, and Evolutionary Genomics.” Annual Review
of Genetics 39: 309–38. https://doi.org/ [10.1146/annurev.genet.39.073003.114725]

Labov, William. 1981. “Resolving the Neogrammarian Controversy.” Language 57(2): 267–
308. JSTOR: 413692.

List, Johann-Mattis, Jananan Sylvestre Pathmanathan, Philippe Lopez, and Eric Bapteste.
2016. “Unity and Disunity in Evolutionary Sciences: Process-Based Analogies Open Com-
mon Research Avenues for Biology and Linguistics.” Biology Direct 11 (39): 1–17.

Morrison, David A. 2014. “Are Phylogenetic Patterns the Same in Anthropology and Biology?”
bioRxiv. https://doi.org/10.1101/006486.

Nakhleh, Luay. 2013. “Computational Approaches to Species Phylogeny Inference and Gene
Tree Reconciliation.” Trends in Ecology and Evolution 28 (12): 719–28.

Pagel, Mark. 2009. “Human Language as a Culturally Transmitted Replicator.” Nature
Reviews. Genetics 10: 405–15.

Stevick, Robert D. 1963. “The Biological Model and Historical Linguistics.” Language 39 (2):
159–69. https://www.jstor.org/stable/411199.

Trask, Robert L. 2007. Language and Linguistics: The Key Concepts. Abingdon: Routledge.

116

https://doi.org/10.1146/annurev.genet.39.073003.114725
https://doi.org/10.1101/006486
https://www.jstor.org/stable/411199

Computer-Assisted Language Comparison in Practice

Cite this article as: Schweikhard, Nathanael E. “Biological metaphors
and methods in historical linguistics (2): Words and genes”, in Computer-
Assisted Language Comparison in Practice, 18/09/2019, https://calc.
hypotheses.org/1951.

117

https://calc.hypotheses.org/1951
https://calc.hypotheses.org/1951

Computer-Assisted Language Comparison in Practice

Illustrating linguistic data reuse: a modest
database for semantic distance

Tiago Tresoldi (30/10/2019)

Categories: Code, Dataset, Organization

Tags: colexification network, fair data, semantic distance

Besides new algorithms and tools that facilitate established workflows, one
change prompted by computer-assisted approaches to language comparison is
a distinct relationship between scientists and their data. A critical part of our
work, and perhaps the one with the most lasting impact, is to promote an
approach in which the data life-cycle is not constrained within the limits of
planning and publishing a study. Data are organized and planned for reuse in
investigations perhaps not even considered during collection, with the output
of one project becoming the input of another.

An ongoing project at our department, the Cross-Linguistic Data Formats
(CLDF) initiative (Forkel et al. 2018), embodies this life cycle of data in line
with the FAIR principles of data management (Wilkinson et al., 2016). Part
of the ambitious umbrella project Glottobank, a global research consortium to
document and understand linguistic diversity and evolution, datasets collected
in CLDF formats can be quickly aggregated from different sources to form new
datasets. An example of how CLDF stands at the heart of a data life-cycle is
our CLICS project (Rzymski, Tresoldi et al., 2019), in which we carry out a
comprehensive analysis of colexifications (i.e., words used to express two differ-
ent concepts, either due to polysemy or to homonymy), automatically inferred
from lexical sources that we converted to CLDF format and aggregated. CLICS

118

https://cldf.clld.org
https://glottobank.org/
https://matthew.clld.org/clics/

Computer-Assisted Language Comparison in Practice

is a derivative database, and the success and interest among the public, from
psycholinguists to conlangers, also owes to the coding framework that backs
it. Using the Python APIs that we have developed, anybody can recompute
the network of colexifications and its clusters, experiment with other designs
and algorithms, or apply the published network to alternative objectives.
We can illustrate this progression with the case of a less ambitious personal
project in which, for two distinct goals, I lacked some measure of semantic dis-
tance (however approximate) between pairs of concepts from our Concepticon
project (List et al. 2019). I needed distances both for predicting the preva-
lence of accidental resemblances (Tresoldi, 2019), and for simulating linguistic
change to test novel phylogenetic techniques. There are several interpreta-
tions of “semantic distance,” as in hierarchic or otherwise structural ontologies
(for example, the amount of nodes that needs to be traversed in WordNet,
cf. Princeton University, 2010) or in complementary occurrences in corpora
(as in vogue with word vectors, in the often repeated “king – man + woman =
queen” equation, but see Nissim 2019). Neither method was adequate because,
more as with typologies presented in semantics and semiology (cf. Traugott &
Dasher 2001, Bloomfield 1933, Blank 1999), I needed an approximate proba-
bility for a word changing its meaning following a given “semantic path” (as in
“awesome”, formerly “inspiring awe” and now “exciting”, or “villain”, formerly
“countryman” and now “vile”) as well as the chance for apparently unrelated
lexemes having a common, albeit remote, source (such as “mouse” and “mus-
cle”). A network linking all concepts, but where the path between WOOD and
TREE was shorter than the one between CUSHION and COOKING.
Before running community detection algorithms such as “infomap” (Rosvall
et al. 2009), CLICS first normalizes lexeme transcriptions and then imposes
thresholds of occurrence. These steps and limits are helpful in a study for
establishing global and areal patterns, but results in a graph with singletons
(words not linked to any other) and independent subgraphs. There is no

119

https://concepticon.clld.org/
https://concepticon.clld.org/
https://speakerdeck.com/tresoldi/a-cross-linguistic-computational-approach-on-chance-resemblances
https://speakerdeck.com/tresoldi/a-cross-linguistic-computational-approach-on-chance-resemblances
https://wordnet.princeton.edu/
https://en.wikipedia.org/wiki/Word_embedding

Computer-Assisted Language Comparison in Practice

guarantee that it will link all concept pairs, no matter how long the path
between them. Likewise, edge weights are computed for the same goal of
community identification rather than for approximate semantic closeness.

As a tool developed with principles of FAIR data in mind, the CLICS library
allows to deal with the first issue by allowing to collect any and every occur-
rence of colexification. The table below presents a sample of the output, with
each pair of concepts followed by its counts, ranging from the most common,
MOON/MONTH, to spurious associations (like LOOK/BURNING, but notice
how, among the minimum counts, we find semantically similar concepts, such
as FLOWER/SPROUT (VERB)):

Concept A Concept B Families Languages Words
MOON MONTH 57 320 328
WOOD TREE 57 298 405
CLAW FINGERNAIL 55 217 225
...
LOOK BURNING 1 1 1
STEPDAUGHTER CHILD-IN-LAW 1 1 1
FLOWER SPROUT (VERB) 1 1 1

This new output, in a textual tabular format, can be combined with the com-
munities published with CLICS to get the desired distance matrix. With the
script available on GitHub, we can define different correction parameters for
the counts of each pair (favoring families over languages, and languages over
words), as well as reducing the distance between concepts of the same cluster.
The result is what we call for: a graph of which all Concepticon concepts are a
part (i.e., a partially connected network), with edge weights based on colexifi-
cation counts and corrected according to cluster membership. The hypothesis
is that meanings change according to semantic distance, with changes within

120

https://github.com/tresoldi/semantic_distance

Computer-Assisted Language Comparison in Practice

the same cluster meaning more likely. Our script generates a file in standard
GML format, available here which can be explored with ordinary graph tools.

Despite not all concept pairs being linked by means of a single edge, it is
now possible to find a path between every pair, with the distance between
the concepts, taken as a surrogate for the semantic distance, corresponding to
the sum of the edge weights involved. We can obtain the shortest and best
path, or even sub-optimal ones, with pathfinding algorithms such as the ones
of Dijkstra (1959) and Yen (1971). Computing the shortest path for the over
3 million pairs in this experiment is not particularly useful, as many of the links
would be spurious and an actual account would need to look for the mean
distance of non-overlapping shortest path (as performed in network analysis).
However, it is still fun to play and look for the distance between a handful
of random pairs (here the defined as the mean distance of the three shortest
paths), along with the best overall solution for each pair:

Concept A Concept B Distance Steps
BALL HALF 36.70 2
FODDER MAPLE TREE 188.73 2
COCONUT FINE (PENALTY) 154.25 2
BOLT (MOVE IN HASTE) CABBAGE 326.74 3
BRAID (VERB) SLEEP 155.17 1

While these semantic distances are tentative and far from ideal, as a quick
exploration can confirm, it is worth looking at how FAIR data made it feasible
to promptly and easily obtain a database to test both the prototypes mentioned
in the beginning. As part of a scientific cycle, it not only suggested that it was
worth to continue investing both ideas, but it further allowed to generate data
that other scientists can use just as promptly and quickly, spending even less
time in data collection and processing (thus also saving computing power). We

121

https://github.com/tresoldi/semantic_distance/blob/master/output/graph.gml

Computer-Assisted Language Comparison in Practice

could use these data, for example, to bootstrap projects for developing similar
but better data, perhaps combining the different approaches to “semantic
distance” mentioned above, and which likewise would not need to be restricted
within the boundaries of a single publication.

References

Blank, Andreas. 1999. “Why do new meanings occur? A cognitive typology of the motivations
for lexical semantic change” in Blank, Andreas; Koch, Peter (eds.), Historical Semantics
and Cognition. Berlin/New York: Mouton de Gruyter, pp. 61-90.

Bloomfield, Leonard. 1933. Language. New York: Allen & Unwin.

Dijkstra, Edsger W. 1959. “A note on two problems in connexion with graphs.” Numerische
mathematik 1, no. 1: 269-271.

Forkel, Robert; List, Johann-Mattis; Greenhill, Simon J.; Rzymski, Christoph; Bank, Sebastian;
Cysouw, Michael; ammarström, Harald; Haspelmath, Martin; Kaiping, Gereon A.; and
Gray, Russell D. 2018. “Cross-Linguistic Data Formats, advancing data sharing and re-use
in comparative linguistics.” Scientific data 5.

List, Johann Mattis; Greenhill, Simon J.; Rzymski, Christoph; Schweikhard, Nathanael; Forkel,
Robert (eds.). 2019. Concepticon 2.1.0. Jena: Max Planck Institute for the Science of

122

Computer-Assisted Language Comparison in Practice

Human History. (Available online at http://concepticon.clld.org, Accessed on 2019-10-
28.)

Nissim, Malvina; van Noord, Rik; van der Goot, Rob. 2019. Fair is Better than Sensa-
tional:Man is to Doctor as Woman is to Doctor. arXiv:1905.09866

Princeton University “About WordNet.” WordNet. Princeton University. 2010.

Rosvall, Martin; Axelsson, Daniel; and Bergstrom, Carl T. 2009. “The map equation.” in The
European Physical Journal Special Topics 178, no. 1: 13-23.

Rzymski, C., T. Tresoldi, S. Greenhill, M. Wu, N. Schweikhard, M. Koptjevskaja-Tamm, V.
Gast, T. Bodt, A. Hantgan, G. Kaiping, S. Chang, Y. Lai, N. Morozova, H. Arjava, N.
Hübler, E. Koile, S. Pepper, M. Proos, B. Epps, I. Blanco, C. Hundt, S. Monakhov, K.
Pianykh, S. Ramesh, R. Gray, R. Forkel, and J. List. 2019. The Database of Cross-
Linguistic Colexifications, reproducible analysis of cross-linguistic polysemies. Manuscript.
1-24. Preprint, currently under review.

Traugott, Elizabeth C.; Dasher, Richard B. 2001. Regularity in Semantic Change. Cambridge:
Cambridge University Press.

Tresoldi, T. 2019. “A cross-linguistic computational approach on chance resemblances”. Pre-
sented at the workshop Computer-assisted approaches in historical and typological lan-
guage comparison, organized as part of the Annual Meeting of the Societas Linguistica
Europea (2019/08/21-24, Leipzig).

Wilkinson, Mark D., Dumontier, Michel; Aalbersberg, IJsbrand J.; Appleton, Gabrielle; Axton,
Myles; Baak, Arie; Blomberg Niklas et al. 2016. “The FAIR Guiding Principles for scientific
data management and stewardship.” in Scientific data, 3.

Yen, Jin Y. 1971. “Finding the k shortest loopless paths in a network.” Management Science
17, no. 11: 712-716.

123

Computer-Assisted Language Comparison in Practice

Cite this article as: Tiago Tresoldi, “Illustrating linguistic data reuse: a
modest database for semantic distance”, in Computer-Assisted Language
Comparison in Practice, 30/10/2019, https://calc.hypotheses.org/1980.

124

https://calc.hypotheses.org/1980

Computer-Assisted Language Comparison in Practice

Biological metaphors and methods in historical
linguistics III: Homology and homoplasy

Nathanael E. Schweikhard (20/11/2019)

Categories: Theory

Tags: analogies, language change, phylogenetic reconstruction, word forma-
tion, word trees

As we have seen in previous instances of this blog post series, there are many
parallels but also many differences between the evolutionary branches of biology
and of linguistics. In the following, I will present a comparison of the causes
due to which two related inheritable entities (e.g. two words or two genes of
different languages or species) may differ from each other, or two unrelated
ones resemble each other. The linguistic categories presented here can also
be found in List (2016) whereas the biological categories are largely based on
Koonin (2005).

Common ancestry

Genes that are related to each other are called homologues. There is no well-
established linguistic catch-all term for words that are related to each other,
but they could be said to have an etymological relation. The most common
causes due to which such related entities differ from each other in related
languages or species are the processes of regular sound change and random
gene mutation, respectively. Both of these happen all the time, and affect all
words or genes in the same way (with certain exceptions), and can therefore be

125

Computer-Assisted Language Comparison in Practice

considered the default baseline process that does not demand a different name
for the type of homology (Gévaudan 2007, 14). Only their absence (as in for
example certain iconic words that did not take part in regular sound change,
like English peep /piːp/ having retained its Middle English form instead of
turning into /paɪp/ (Flaksman 2017, 17)) or irregular cases of sound change
caused by frequency effects (Bybee 2017) or analogy, or areas of the genome
especially prone to mutation may warrant new terms.

There are also other processes that can be involved in the relation between
individual genes or words but they are quite different from each other in the
different fields and cannot as easily be equated with each other. For language,
there are the various kinds of word formation processes in which a new word
is derived based on existing words. The closest counterpart in genetics is
gene duplication (List 2014, 40), in which the same gene is included twice,
thereby increasing the amount of genes in the genome. As with word formation
products, duplicate genes then continue evolving more or less independently
from each other but still may have an influence on each other’s future evolution.
This is related to their functional similarity in the genome (Koonin 2005, 318,
323), and to processes of analogy in the lexicon.

However, a product of word formation rarely has the same shape as the word it
is derived from (the only exception being the process of conversion), whereas
duplicated genes initially are the same, only later they may diverge by mutation.
Additionally, word formation processes normally involve either more than one
word or morpheme as the input (e.g. in compounding or affixation) or at
least combine a word with a pattern to derive the new word. The processes
in biology most similar to that are fusion and fission, i.e. the merger of two
genes and the split of a gene into two, but here the original genes cease to
exist, whereas for example compounding does not cause the simplexes to stop
being part of the lexicon. These different processes nevertheless share the fact

126

Computer-Assisted Language Comparison in Practice

that they challenge the established types of homology (Koonin 2005, 327) and
cognacy, respectively.

Xenology is a special type of homology in which a horizontal transmission
was involved (Koonin 2005, 315). This happens either in the context of hy-
bridization, when genomes of different species are combined by interspecies
reproduction, or, in microbes, by a variety of mechanisms. In the tree model it
leads to reticulation. Its obvious linguistic equivalent are borrowings from one
language to another (Atkinson and Gray 2005, 513). Hybrids could be likened
to creole languages (Gray et al. 2007, 10).

In natural species there are normally only four letters of the genetic alphabet,
the four chemicals guanine, cytosine, adenine and thymine. Yet also artificial
new letters have been created (Hoshika et al. 2019). Once these molecules
undergo reproduction, the replication mechanism might encounter problems
interpreting them and treat them like errors (Ledbetter et al. 2018). Similar
things happen in language: Since different languages normally have different
phoneme systems, the shape of a borrowed word is typically adapted to the
phoneme system of the borrowing language (see for example Lin (2008) on the
adaptation of English words borrowed into Mandarin). Yet overall linguistic
change is much less restricted.

To summarize, in regards to homology, only a few corresponding processes can
be found when comparing evolutionary genetics and linguistics, even though
the basic ideas are the same.

Other factors of similarity

Common ancestry is not the only possible cause of similarities. Two of the
causes most frequently considered are chance resemblances and universal ten-

127

Computer-Assisted Language Comparison in Practice

dencies. Both of these are called homoplasy, making this the complement term
to homology as it describes similarity independent of common ancestry.

If languages or species are only very distantly related, similarities between them
are usually considered chance resemblances. In languages, words can with
reasonable certainty be proven to go back to a common ancestor by searching
for patterns of regular sound correspondences between the languages (Lass
1997, 129). Failing to find any regular sound correspondences that would
explain the similarity between two words does however not necessarily disprove
their relatedness as it can be confounded by processes of analogy and word
formation. On the other hand, in some cases actual homoplasies are not purely
due to chance, but may result from universal tendencies (List 2016, 120), e.g.
high vowels being associated with smallness (Sidhu and Pexman 2018) or words
derived from baby-talk having simple syllable structures. As a third possibility,
a borrowing can be postulated as the cause.

In a comparable way to linguists putting their trust in regular sound corre-
spondences over surface similarity, biologists tend to trust comparisons on the
genetic more than comparisons on the phenetic (morphological) level, the lat-
ter of which tend to suffer from increased degrees of homoplasy, as in the very
basic example of both birds and bats developing wings. Also in the evolution
of species, universal tendencies are at play, meaning the same evolutionary
development might occur independently in different species based on universal
or environment-specific demands on natural life. Therefore, phenetic similarity
is mainly considered in those cases where genetic data is not available (e.g. in
fossiles).

But also closely related languages or species may share characteristics indepen-
dent of any of the causes mentioned thus far even though it is known that
their common ancestor did not have them. This is called parallel evolution,
or, in linguistics, drift. It means that both descendants changed an ancestral

128

Computer-Assisted Language Comparison in Practice

characteristic in a parallel fashion. This is believed to be caused by interdepen-
dencies within the system of a given language or genome that cause them to
evolve in similar directions independent from each other, combined with uni-
versal tendencies (List et al. 2016, 9f). One basic linguistic example for this
are processes of word formation. The same derivation, especially in the case of
the ubiquitous process of compounding, can easily be formed independently in
the same manner in two related languages and it is often difficult to determine
whether the word formation in question was already created in the ancestor or
only in the daughter languages (or both).

What may result in a pattern in the data similar to homoplasy is the phe-
nomenon of incomplete lineage sorting. Here, a polymorphism (i.e. differ-
ent members of a population having partially different genes) in the ancestor
species is resolved in different directions in daughter species (Nakhleh 2013,
721; List et al. 2016, 6f; Jacques and List 2019, see also the recent post by
Jacques) which can mean that more distantly related branches share homolo-
gous characteristics that their respective closer relatives are missing.

This has been thus far mostly ignored in computational linguistics even though
examples for polymorphisms can also be found in language evolution. A
language may have two synonymous words, while each of its two daughter
languages loses a different synonym. Or it may have suppletive forms in a
paradigm that either end up spreading out onto the whole paradigm and remov-
ing the regular word forms, or getting replaced by regular word forms. Unlike
in species, the polymorphism occurs not in different organisms but within the
same lexicon, potentially within the same utterance. A polymorphism between
different mental lexicons of the same population on the other hand is exhibited
by sociolects, in which speakers utilize slightly different languages depending
on the social context.

129

Computer-Assisted Language Comparison in Practice

If these reasons for similarities can be excluded, the shared innovations may
be interpreted to point towards a closer relationship between the descendants
sharing them.

Conclusion

Linguistics tends to work with much less data than genetics, so shortcomings
of the model that genetics can simply skip over due to the large amount of
data they have will come much more to the forefront in linguistics, forcing us
to be very clear in what we are actually trying to model. Whether we adopt
biological methods in linguistics or develop linguistic models for computational
approaches independently, describing the differences and similarities in the way
I tried to do in this blogpost can serve as a new perspective to see which
aspects may have been neglected.

References

Atkinson, Quentin D., and Russell D. Gray. 2005. “Curious Parallels and Curious Connections:
Phylogenetic Thinking in Biology and Historical Linguistics.” Systematic Biology 54 (4):
513–26. http://www.jstor.org/stable/20061257.

Bybee, Joan L. 2017. “Grammatical and Lexical Factors in Sound Change: A Usage-Based
Approach.” Language Variation and Change 29: 273–300.

Flaksman, Maria. 2017. “Iconic Treadmill Hypothesis: The Reasons Behind Continuous
Onomatopoeic Coinage.” In Dimensions of Iconicity, edited by Angelika Zirker, Matthias

130

Computer-Assisted Language Comparison in Practice

Bauer, Olga Fischer, and Christina Ljungberg, 15–38. John Benjamins Publishing Com-
pany. https://doi.org/10.1075/ill.15.02fla.

Gévaudan, Paul. 2007. Typologie des lexikalischen Wandels: Bedeutungswandel, Wortbildung
und Entlehnung am Beispiel der romanischen Sprachen. Stauffenburg-Linguistik ; 45.
Tübingen: Stauffenburg.

Gray, Russell D., Simon J. Greenhill, and Malcolm D. Ross. 2007. “The Pleasures and Perils
of Darwinzing Culture (with Phylogenies).” Biological Theory 2 (4): 360–75.

Hoshika, Shuichi, Nicole A. Leal, Myong-Jung Kim, Myong-Sang Kim, Nilesh B. Karalkar,
Hyo-Joong Kim, Alison M. Bates, et al. 2019. “Hachimoji DNA and RNA: A Genetic
System with Eight Building Blocks.” Synthetic Biology 363: 884–87.

Jacques, Guillaume, and Johann-Mattis List. 2019. “Save the Trees: Why We Need Tree
Models in Linguistic Reconstruction (and When We Should Apply Them).” Journal of
Historical Linguistics 9 (1): 128–67. https://doi.org/10.1075/jhl.17008.mat.

Koonin, Eugene V. 2005. “Orthologs, Paralogs, and Evolutionary Genomics.” Annual Review
of Genetics 39: 309–38. https://doi.org/10.1146/annurev.genet.39.073003.114725.

Lass, Roger. 1997. Historical Linguistics and Language Change. Cambridge: Cambridge
University Press.

Ledbetter, Michael P., Rebekah J. Karadeema, and Floyd E. Romesberg. 2018. “Reprograming
the Replisome of a Semisynthetic Organism for the Expansion of the Genetic Alphabet.”
Journal of the American Chemical Society 140: 758–65.

Lin, Yen-Hwei. 2008. “Patterned Vowel Variation in Mandarin Loanword Adaptation: Evidence
from a Dictionary Corpus.” In Proceedings of the 20th North American Conference on

131

Computer-Assisted Language Comparison in Practice

Chinese Linguistics (Naccl-20), edited by Marjorie K. M. Chan and Hana Kang, 1:175–87.
Columbus, Ohio.

List, Johann-Mattis. 2014. “Sequence Comparison in Historical Linguistics.” PhD thesis,
Heinrich-Heine Universität Düsseldorf.

List, Johann-Mattis. 2016. “Beyond Cognacy: Historical Relations Between Words and Their
Implication for Phylogenetic Reconstruction.” Journal of Language Evolution 1 (2): 119–
36. https://doi.org/10.1093/jole/lzw006.

List, Johann-Mattis, Jananan Sylvestre Pathmanathan, Philippe Lopez, and Eric Bapteste.
2016. “Unity and Disunity in Evolutionary Sciences: Process-Based Analogies Open Com-
mon Research Avenues for Biology and Linguistics.” Biology Direct 11 (39): 1–17.

Nakhleh, Luay. 2013. “Computational Approaches to Species Phylogeny Inference and Gene
Tree Reconciliation.” Trends in Ecology and Evolution 28 (12): 719–28.

Sidhu, David M., and Penny M. Pexman. 2018. “Five Mechanisms of Sound Symbolic
Association.” Psychon Bull Rev 25: 1619–43.

Cite this article as: Nathanael E. Schweikhard, “Biological metaphors
and methods in historical linguistics (3): Homology and homoplasy”, in
Computer-Assisted Language Comparison in Practice, 20/11/2019, https:
//calc.hypotheses.org/2000.

132

https://calc.hypotheses.org/2000
https://calc.hypotheses.org/2000

Computer-Assisted Language Comparison in Practice

Linguists love plants, too!

Yunfan Lai (20/11/2019)

Categories: Methodology

Tags: Anthropology, Ethnobotany, fieldwork, Rgyalrongic, Sino-Tibetan

Linguists can never solely concentrate on language. This is especially true
for field linguists who document a previously unknown language. Unveiling
the charm of an undocumented language requires the researcher to explore
as much as possible about the people, the society, and of course, the nature
around them.

Linguists sometimes (well, sometimes always) do better than anthropologists
when it comes to the interaction between linguistics and anthropology (change
my mind!). Studies on kinship systems are a good example. A lot of linguists
have done researches in this domain, like Loungsbury (1956), who did a thor-
ough study on Pawnee (Caddoan) kinship terms, published in Language; Harry
Hoijer, a student of Edward Sapir, published in the same year a paper on Atha-
paskan kinship terms (Hoijer 1956). Returning from the good old days, recent
years see the emergence of interest in anthropological issues among linguists
who study Sino-Tibetan languages. Guillaume Jacques published a paper in
2012, on the kinship system in Tangut, an extinct language once spoken in
Today’s Ningxia, China (Jacques 2012). Another exciting work comes from my
colleague, Zhang Shuya, has been interested in Kinship systems of Rgyalrong
languages (Sino-Tibetan, spoken in Sichuan, China). Rgyalrong languages in
general exhibit complex phonology (see the descriptions in Hsie 1999, Jacques
2004 and Jacques 2008), and for untrained ears, distinguishing phonemes with

133

https://glottolog.org/resource/languoid/id/pawn1254
https://glottolog.org/resource/languoid/id/atha1247
https://glottolog.org/resource/languoid/id/atha1247
https://panchr.hypotheses.org
https://glottolog.org/resource/languoid/id/tang1334
https://inalco.academia.edu/zhangshuya

Computer-Assisted Language Comparison in Practice

subtle differences would be a pain in the neck. In Bragbar Situ (an Eastern
Rgyalrong language), kinship terms are full of similar but distinctive phonemes
that if we aren’t able to make the distinction, we risk making serious errors.

For example, the prefixes t�- and ta- are different in that their vocalisms anno-
tate the gender, t�- for female and ta- for male: t�-“tsi-pu* ’mother’s sister’s
brother” vs ta-kə-pō* “mother’s brother’s sister”. Further, historical linguistic
analyses can help us understand how kinship systems changed in time, compar-
ing the different systems of a few dialects and observing the semantic changes
of cognates. I would doubt that an anthropologist can figure all these things
out without collaborating with an experienced field linguist. If you are in-
terested in this study, please wait impatiently for Shuya’s forthcoming paper,
Brag-bar kinship system in synchronic and diachronic perspectives, to appear
next year in BSOAS.

This post, however, is not about kinship terms, but about plant terms, which is
arguably a greater challenge than kinship terms. This summer (June – August
2019), I went on a field trip with Shuya to document plant terms in two of the
Rgyalrongic languages, Brag-bar Situ and Siyuewu Khroskyabs Khroskyabs.

The languages in question are spoken in the mountainous regions in the high-
lands of Western Sichuan. The area is covered by two vegetation zones, the
mid-mountain vegetation zone in the southeast margin and the alpine canyon
vegetation zone in the southeast. You can find a good number of species there,
from evergreen broad-leaved forests to alpine shrub meadows. The high botani-
cal diversity are pretty much comparable to the linguistic diversity there. Native
speakers, quite imaginably, live in interactions with the natural environment,
and their minds could well be an encyclopedia of local plants.

134

https://glottolog.org/resource/languoid/id/situ1238
https://glottolog.org/resource/languoid/id/siya1242

Computer-Assisted Language Comparison in Practice

Figure 1: The Siyuewu village

We are both botany laymen, so we collaborated with botanists from Yunnan
University of Traditional Chinese Medicine, in order to accomplish our goal.

We went into the mountains together and learn from one another. The field
work is generally accompanied by one or several native speaker(s), who identify
plants and tell us about them: the name in the local language, the morphology,
and the uses.

The botanists help us collect specimens, and teach us how to conserve them.
Normally, it is best to have flowers or fruits on the specimens, so the botanists
can make accurate identifications. But not everyone of them happens to bloom

135

Computer-Assisted Language Comparison in Practice

Figure 1: Shuya taking notes from native speakers

or bear fruit within a given period of a year, and that means we need field trips
in different seasons. Summer is good enough, anyway, as you can see most of
the flowers and the weather is pleasant.

136

Computer-Assisted Language Comparison in Practice

Figure 2: A bsang gsol (bsang offering)

The specimens were then brought back to Yunnan, where the botanists are
based. They may have some secret weapon to help identify the species and
report us back with the scientific names. And us, the linguists, stayed in
the Rgyalrongic speaking regions to do our job: recording and transcribing.
Several native consultants are needed, as they might make mistakes with the
plant terms.

Some terms are quite funny. The burdock (Arctium lappa L.), is called pə�ə-
rtsôs in Brag-bar Situ. Literally, pə�ə̄ means “mouse” and rtsôs means “to
touch”, so the term globally means “touch by the mouse”.

The Khroskyabs term m�̂venono, literally meaning “grandmother’s breasts”,
designates the flower of Salvia przewalskii Maxim, as the purple flowers, ac-
cordingly, look like female breasts with ptosis as they age.

137

Computer-Assisted Language Comparison in Practice

Figure 3: Me making specimens

So, what could we do with linguistic ethnobotany? There could be many bene-
fits, both synchronically and diachronically, linguistically and non-linguistically.

138

Computer-Assisted Language Comparison in Practice

Figure 4: Shuya learning from the botanists

By comparing cognates between plant terms, we may get a better idea about
the sound correspondences across different Rgyalrongic languages and improve
our understanding of Rgyalrongic historical linguistics. That some of the terms

139

Computer-Assisted Language Comparison in Practice

Figure 5: Burdock

can be reconstructed into the proto-language implies that the ancestors of all
Rgyalrongic people already knew and probably made use of those plants. Terms
borrowed from other languages can be sorted by layers, according to different

140

Computer-Assisted Language Comparison in Practice

Figure 6: Salvia przewalskii Maxim

stages of sound change. We know that sound correspondences are always
messy in Sino-Tibetan languages, but plant term comparisons may tidy up the
mess, and we can also implement automatic methods (see for example [this
post]) So it is not impossible to know the relative chronology of plants known

141

Computer-Assisted Language Comparison in Practice

by native speakers. Inference of the Proto-Rgyalrongic life could well be made
based on historical linguistic analyses (of course, we need more cognates!).
The table below shows the cognates found in the field work this year.

Plant terms are a key to synchronic analyses of nominal constructions in the
modern languages. They cover nearly all kinds of nominal morphology, com-
monly or rarely found in other nominals. From unanalysable terms, to various
types of compounding. Shuya and I gave a talk on this subject in Tianjin this
year (Lai and Zhang 2019). I am also looking forward to use the method of word
formation handling, when I have enough material, developed by Nathanael,
with his excellent paper accepted, Schweikhard and List (forthcoming). The
table below shows the cases of Tatpuruṣa in Siyuewu Khroskyabs.
The fruits produced from this project are not only to feed us, the researchers,
but also to be given back to the native speakers and the entire society. We plan
to publish an encyclopedia of local plants with names, descriptions and sound
files in Rgyalrongic languages (Hopefully three languages, including Guillaume
Jacques’ Japhug).

142

Computer-Assisted Language Comparison in Practice

References

Lounsbury, Floyd G. 1956. A Semantic Analysis of the Pawnee Kinship Usage. Language 32
(1): 158-194.

Hoijer, Harry. 1956. “Athapaskan kinship systems”. American Anthropologist. 58 (2): 309–
333.

Jacques, Guillaume. 2012d. The Tangut kinship system in Qiangic per-spective. In Nathan
W. Hill (ed.), Medieval Tibeto-Burman Languages IV, 211–258. Leiden: Brill.

Hsieh, Feng-fan. 1999. Theoretical Aspects of Zhuokeji rGyalrong Phonology. National Tsing
Hua University, Taiwan MA thesis.

Lai, Yunfan and Zhang Shuya. 2019. Plant terms as key to nominal morphology in Rgyalrongic
languages. Paper presented at the he Fourth Workshop on Sino-Tibetan Languages of
Southwest China. August 2019.

Schweikhard, Nathanael and Johann-Mattis List. under review. Handling word formation in
comparative linguistics.

Zhang, Shuya. forthcoming. Brag-bar kinship system in synchronic and diachronic perspec-
tives. Bulletin of the School of Oriental and African Studies.

143

Computer-Assisted Language Comparison in Practice

Cite this article as: Lai Yunfan, “Linguists love plants, too!”, in
Computer-Assisted Language Comparison in Practice, 11/12/2019, https:
//calc.hypotheses.org/2119.

144

https://calc.hypotheses.org/2119
https://calc.hypotheses.org/2119

	Introduction (Johann-Mattis List)
	From Fieldwork to Trees III: CLDF recipes (Gereon A. Kaiping)
	A Primer on Automatic Inference of Sound Correspondence Patterns I: Introduction (Johann-Mattis List)
	A Primer on Automatic Inference of Sound Correspondence Patterns II: Initial Experiments with Alignments from the Tableaux Phonétiques des Patois Suisses Romands (Johann-Mattis List)
	A Primer on Automatic Inference of Sound Correspondence Patterns III: Extended Experiments with Alignments from the Tableaux Phonétiques des Patois Suisses Romands (Johann-Mattis List)
	Using pyconcepticon to map concept lists I (Tiago Tresoldi)
	Using pyconcepticon to map concept lists II (Tiago Tresoldi)
	Behind the Sino-Tibetan Database of Lexical Cognates: Introductory remarks (Johann-Mattis List)
	Biological metaphors and methods in historical linguistics I: Introduction (Nathanael E. Schweikhard)
	Rooting MADness (Gerhard Jäger)
	Behind the Sino-Tibetan Database of Lexical Cognates: Concept selection (Johann-Mattis List)
	Using the Waterman-Eggert algorithm for sentence alignment (Johann-Mattis List)
	Feature-Based Alignment Analyses with LingPy and CLTS I (Johann-Mattis List)
	Feature-Based Alignment Analyses with LingPy and CLTS II (Johann-Mattis List)
	Biological metaphors and methods in historical linguistics II: Words and genes (Nathanael E. Schweikhard)
	Illustrating linguistic data reuse: a modest database for semantic distance (Tiago Tresoldi)
	Biological metaphors and methods in historical linguistics III: Homology and homoplasy (Nathanael E. Schweikhard)
	Linguists love plants, too! (Yunfan Lai)

