
Music Encoding Conference Proceedings 2020	 59

MusicDiff – A Diff Tool for MEI
Kristin Herold					 Dr. Johannes Kepper
Beethovens Werkstatt				 Beethovens Werkstatt
herold@beethovens-werkstatt.de		 kepper@edirom.de

Ran Mo						 Agnes Seipelt
Beethovens Werkstatt				 Beethovens Werkstatt
mo@beethovens-werkstatt.de			 seipelt@beethovens-werkstatt.de

Introduction
For musicologists, the collation of multiple sources of the same work is a frequent task. By comparing different
witnesses, they seek to identify variation, describe dependencies, and ultimately understand the genesis and
transmission of (musical) works. Obviously, the need for such comparison is independent from the medium in
which a musical work is manifested.

In computing, comparing files for difference is a common task, and the well-known Unix utility diff is almost
46 years old [1]. However, diff, like many other such tools, operates on plain text. While many music encoding
formats based on plain text exist, formats used in the field of Digital Humanities are typically based on XML.
There are dedicated algorithms for comparing XML as well,1 but they only focus on the syntax of XML, but not
the semantic structures modelled into such standards as MEI. MEI seeks to describe musical structures, and
the XML syntax is just a means to express those structures. A diff tool for music should focus on comparing
musical structures, but not the specifics of their serialization into a file format.

In Beethovens Werkstatt, a 16-year project focussed on exploring the concepts and requirements of digital
genetic editions of music, based on and arguing with examples from Ludwig van Beethoven, a case-bound diff
tool for music was developed. The following paper discusses how that specific tool can be generalized, and
which use cases such a tool may support.

VideAppArr

Beethovens Werkstatt seeks to explore compositional processes from different perspectives. In its recently com-
pleted second module, the project dealt with a number of Beethoven’s works that the composer re-arranged
for other performing forces. For these works, printed editions of both the original works and their respective
arrangements were fully encoded in MEI, following a rather plain style, i.e. no typographical or genetical details
about the sources were preserved. Instead, an additional file per comparison with merely more than pointers
to both source encodings was provided. With this data model, it is possible to automatically align both files and
present them from multiple perspectives with an application called VideAppArr – the component dealing with
arrangements within the (modular) VideApp.2

1 	 https://pypi.org/project/xmldiff/, http://diffxml.sourceforge.net/, https://www.oxygenxml.com/files_compare_img.html
2 	 https://videapp-arr.beethovens-werkstatt.de

https://pypi.org/project/xmldiff/
http://diffxml.sourceforge.net/
https://www.oxygenxml.com/files_compare_img.html
https://videapp-arr.beethovens-werkstatt.de

60

Figure 1: VideAppArr showing the “Single Note Comparison” of Beethoven’s op. 20 (top) and op. 38 (bottom).

Most of these perspectives are based on the comparison of individual notes in three different “dimensions”:
metrical position, pitch, and rhythm. Metrical position means that only notes sounding simultaneously will be
compared. For pitch, octave and pitch class are evaluated independently, while rhythm is taken into account
directly. Variation of these three parameters is organized into different combinations, such as notes in a dif-
ferent octave, notes with different duration or other types of variation, but also notes which have an exact
match. No attention is paid to beams and similar features, as they are mostly visual artifacts, which typically
do not affect the musical structure. By intention, accidental aspects of the score such as dynamic markings are
not taken into account for comparison either, as their high incidence may easily conceal the more significant
substantial differences. Voice leading is also ignored by this comparison, as it would be misleading in the con-
text of a comparison of rearranged works. Especially in a piano reduction, “voices” from multiple instruments
are condensed in a way that frequently fails to show the same “melodic lines” for middle voices and others, so
that the aspect of preceding and / or succeeding notes can hardly be made a default criterion for comparing
two arrangements.

Generalising VideAppArr to MusicDiff
The data model underlying VideAppArr is a rather strict version of MEI, disallowing variation, editorial interven-
tion, and other more complex concepts of MEI. While it took significant effort to ensure correctness of the
encodings used in Beethovens Werkstatt, the generation of these encodings was straightforward in principle, as
they were just transcribed from the original prints using scorewriting applications, and then transformed into
MEI via MusicXML conversion. This workflow is all but unique, and we anticipate that numerous other projects
create MEI files with about the same information value, though perhaps expressed in slightly different models
of MEI.

In the process of proofreading the files relevant for the second module of the project, it became apparent
that the VideAppArr is actually very supportive in this task, as it consequently highlights differences of all kinds,
even when some of which are not visible in a rendered score. This is particularly true for the correct encoding
of gestural information in MEI, which in this context means sounding pitch affected by the general key signa-
ture at the beginning of the piece, but not local accidentals.

This observation led to the idea of broadening the scope of this tool beyond the original context of Beethovens
Werkstatt, and to modify it so that users can actually upload and diff their own MEI files. While several of the

Music Encoding Conference Proceedings 2020	 61

perspectives offered by the VideAppArr may be useful for this purpose, we intentionally focussed on the most
simple diff view to begin with. This view has been condensed into a separate web application called MusicDiff.3
The following examples illustrate the use of this app for musicological purposes beyond the original scope of
Beethovens Werkstatt.

Example use cases
In opera, the music was usually adjusted to local requirements, settings, and expectations. Pieces from differ-
ent works were frequently integrated (in)to performances, which led to the need to create smooth transitions
between those pieces. The research project “Pasticcio. Ways of arranging attractive Operas”4 explores such
pasticcii. This includes the recitative “Ah Per te solo” from the pasticcio “Catone” by G. F. Handel, which was
first performed in London in 1732. In Handel’s manuscript, two versions of this recitative are transmitted, one
ending on G# major, leading to the aria “Care faci del ben mio” (E major), and one leading to the replacement
aria “Sento in riva all’altre sponde” (A major). Obviously, the different key of the substituted succeeding aria
required some adjustments to the music.

Figure 2: Recitative “Ah Per te solo” from the Pasticcio “Catone” by G. F. Handel. Staats- und Universitätsbibliothek Hamburg Carl von Os-
sietzky, D-Hs M A/1012, p. 187.5

Figure 3: Substituted recitative “Ah Per te solo” from the Pasticcio “Catone” by G. F. Handel. Staats- und Universitätsbibliothek Hamburg
Carl von Ossietzky, D-Hs M A/1012, p. 184.6

Obviously, it is possible to manually compare the score images, and there are also tools supporting such an
approach at least with musical prints,7 this approach doesn’t scale well and may take significant time when
comparing works larger than these four measures. However, when looking at the rendition provided by Mu-
sicDiff, the difference between both versions becomes immediately imminent:

3 	 Available from https://music-diff.edirom.de
4 	 https://www.pasticcio-project.eu/
5 	 https://digitalisate.sub.uni-hamburg.de/de/nc/detail.html?id=1901&tx_dlf%5Bid%5D=22734&tx_dlf%5Bpage%5D=187
6 	 https://digitalisate.sub.uni-hamburg.de/de/nc/detail.html?id=1901&tx_dlf%5Bid%5D=22734&tx_dlf%5Bpage%5D=184
7 	 https://ehinman.edirom.de/

https://music-diff.edirom.de
https://www.pasticcio-project.eu/
https://digitalisate.sub.uni-hamburg.de/de/nc/detail.html?id=1901&tx_dlf%5Bid%5D=22734&tx_dlf%5Bpage%5D=187
https://digitalisate.sub.uni-hamburg.de/de/nc/detail.html?id=1901&tx_dlf%5Bid%5D=22734&tx_dlf%5Bpage%5D=184
https://ehinman.edirom.de/

62

Figure 4: Comparing encodings from both versions of “Ah Per te solo” with MusicDiff.

A second example helps to illustrate the flexibility of MusicDiff, and why a regular diff tool would necessarily
fail to recognize musical differences at the level of abstraction considered here. This example deals with two
independent encodings of Grieg’s “Erotikon” op. 43, Nr. 5. One of these encodings has been made available
as Humdrum file by KernScores,8 while the other comes as MusicXML file, derived from an original Capella
transcription.9 Even though the origins of both encodings do not suggest this interpretation, one may wonder
if these files share a history, i.e. if one has been converted from the other, or both have been derived from an
(unknown) original encoding. If that would be the case, their content would probably be almost identical, with
differences being caused by transformation loss (and thus highly systematic differences). In order to answer
these questions, both encodings have been transformed to MEI, and processed by MusicDiff.

8 	 https://kern.humdrum.org/cgi-bin/ksdata?location=users/craig/classical/grieg/op43&file=erotic-poem.krn&format=info
9 	 http://www.hausmusik.ch/notenregal/g/grieg/klavierstuecke/lyrische_stuecke/erotik_edvard_grieg_/

https://kern.humdrum.org/cgi-bin/ksdata?location=users/craig/classical/grieg/op43&file=erotic-poem.krn&format=info
http://www.hausmusik.ch/notenregal/g/grieg/klavierstuecke/lyrische_stuecke/erotik_edvard_grieg_/

Music Encoding Conference Proceedings 2020	 63

Figure 5: The last 5 measures of the lyrical piano piece “Erotikon” op. 43, Nr. 5 of Grieg (top: Humdrum file converted to MEI, bottom: Mu-
sicXML file converted to MEI.

Apparently, there is a small level of variation between both encodings, with only a small number of regular
and grace notes being highlighted by MusicDiff. This seems to indicate that the original encodings have been
generated independent of each other. However, this example perfectly illustrates how MusicDiff is able to
overlook structural differences: The fact that the second version of Grieg’s piece is laid out on three staves
does not affect the comparison. In the same way, MusicDiff is able to go over music written in chords vs. music
written in voices, or, more generic, layers. Admittedly, other interpretations of what qualifies as variation are
possible and equally valid.10

Keeping an overview
While the collation provided by MusicDiff offers a very striking emphasis of the variation in the current view-
port, this perspective does not provide a wider overview of the work in total – the user has to flip through all
pages to get an impression of the distribution of differences between the compared encodings. In order to
facilitate getting such an impression, Beethovens Werkstatt has integrated the concept of Sunburst diagrams11
into VideAppArr, and this feature has been carried over to MusicDiff as well. Sunburst diagrams visualize hier-
archical data by concentric circles. On the outer ring, all measures of a piece are given, while the second ring
denotes musical sections, and the inner ring reflects movements. The user may click on any measure, and
the page holding this measure will be displayed. However, as seen in Figure 6, the measures may be used to
provide additional information as well.

10 	 It would be certainly possible to include those different interpretations into the stylesheets underlying MusicDiff and let the user pick
the “strictness” of the comparison according to her specific needs, but this would require significant work clearly out of scope for Bee-
thovens Werkstatt.

11 	 https://en.wikipedia.org/wiki/Sunburst_chart

https://en.wikipedia.org/wiki/Sunburst_chart

64

Figure 6: A Sunburst diagram for the comparison of Beethoven’s op. 20 and the rearrangement into op. 38 based on it. White color indi-
cates identity between both versions, blue indicates variance, and red indicates difference.

In this example from Beethovens Werkstatt, measures are colored depending on the comparison results. First,
the saturation of a measure indicates the level of identity between original version and rearrangement – a
measure displayed in white is unchanged, while a colorful measure has a high degree of variation. In Bee-
thovens Werkstatt, however, a distinction is made between variant notes (which still share the pitch class or
duration with their counterpart) and different notes (which have no counterpart at their respective metrical
position at all). While variant notes typically indicate local adjustments of some sort, differences in this sense
indicate major compositional processes. While the first are indicated by blue color, the latter make use of red
tones. Both colors may blend according to the ratio of their respective notes within each measure. With this
mechanism, it becomes possible to get a very quick overview over the distribution of variation across all 288
measures of this example, and to navigate within the piece for closer inspection very easily.

Technical setup, limitations, and potentials
As mentioned earlier, the MusicDiff app is a stripped-down version of VideAppArr. It allows the user to upload
her own MEI encodings. At this point, no validation happens while processing the data – it is upon the user to
ensure that the input conforms to the schema12 expected by the tool.

MusicDiff itself does not come with a backend. Instead, it utilizes a varied toolbox13 for converting between
different music encoding formats, manipulating MEI instances, and other related workflows. It is based on
TEI’s OxGarage and actually uses the same backend, gently adjusted to music needs. The user’s uploaded files
are wrapped in a new file, and sent to MEIGarage, which runs a fairly complex series of XSLT transformations14
on the files, enriching them with various information needed to perform the actual comparison. The output
is ultimately sent back to the user of MusicDiff and displayed there. This setup allows MusicDiff to be a rather
lightweight application, which could be integrated into other tools quite easily.

MusicDiff relies on the MEI profile developed for VideAppArr. This profile strictly requires a very simple use
of MEI. While it wasn’t available at the time when work on VideAppArr was begun, the recent MEI Basic profile
seeks to serve the same purpose: the definition of a strongly simplified and strictly controlled version of MEI
which may serve as a common ground for interchange both within MEI (i.e., between projects relying on dif-
ferent richer flavors of MEI) and outside of MEI (i.e., to simplify conversion with other, less expressive formats).
As we expect significant uptake of MEI Basic, it seems sensible to modify MusicDiff to operate on this profile

12 	 https://github.com/BeethovensWerkstatt/module2/blob/dev/data/odd/bw_module2_works.odd
13 	 https://meigarage.edirom.de
14 	 https://github.com/Edirom/data-configuration/blob/dev/scripts/compare.files.xsl

https://github.com/BeethovensWerkstatt/module2/blob/dev/data/odd/bw_module2_works.odd
https://meigarage.edirom.de
https://github.com/Edirom/data-configuration/blob/dev/scripts/compare.files.xsl

Music Encoding Conference Proceedings 2020	 65

instead of the current one. As both have an almost identical coverage of MEI features, and merely differ in how
they are expressed, this seems like a reasonable goal which will significantly help to improve the applicability
of MusicDiff.

Some more interesting features are available in VideAppArr, which haven’t been ported to MusicDiff yet. This
includes the possibility to transpose the encodings to be compared to a common key, should they be written
in different keys – the actual comparison is already capable of comparing encodings independent of the key
they use, but it sometimes helps the user to bring everything to C Major / A minor for better legibility. Another
feature already available in the underlying transformations is the possibility to omit one or more staves from
the versions to be compared. That way, it becomes possible to answer questions like how the clarinet of ver-
sion A relates with the clarinet of version B. Both of these features are fully functional in the underlying code,
but don’t have a user interface in MusicDiff yet. We hope to add support for both these features in the near
future.

A significantly more challenging issue is a general limitation of the comparison scripts, which, at this point,
require that both versions use the same number (and distribution) of measures, i.e. measures are compared
according to their position in the piece. For the examples covered in the second module of Beethovens Werk-
statt, this was a safe assumption to make, but obviously, this isn’t generally true. However, it is fairly complex
to recognize whether two measures differ because of some variation between them, or because an additional
measure has been inserted in one of the compared versions. While this is clearly an interesting and challeng-
ing issue, we don’t expect to support this use case anytime soon, but may instead ask the user to submit a
concordance of measures.

Conclusion
MusicDiff is a compelling tool for various use cases, musicological and beyond. It allows comparison of two
files with encoded music scores, and will clearly highlight the differences between these encodings. In larger
scores, it directs the user to variant spots using a Sunburst diagram. That way, comparing two music en-
codings becomes significantly easier. This is especially true, because MusicDiff correctly handles differences
between written and sounding pitches – it resolves transposition and correctly considers key signatures. It
also puts aside visual structures and artifacts to some degree, and thus helps to focus on “real” differences.
This requires MusicDiff to be a tool guided by certain concepts – it implements Beethovens Werkstatt’s model
of identity and variation, which may or may not apply equally well to other contexts. Being released under an
open license, however, it can be adjusted to other concepts. Even as it stands, MusicDiff is the authoritative
tool for a semantic comparison of encoded music scores.

Work Cited
[1]	 Hunt, James W., and M. Douglas McIlroy. “An Algorithm for Differential File Comparison”. Computing Science Technical Report, Bell

Laboratories (June 1976).

66

