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Chapter 1

Introduction

1.1 A motivation for human cooperation with machines

Intelligent machines are on the rise. Ever since the first computers were invented, humans
have endeavoured to make algorithms more intelligent. Artificial intelligence has been a
central goal of computer science for many decades and today we are closer to this goal
than ever before. We are already using artificial narrow intelligence (ANI) constantly when
browsing the web or talking to intelligent home assistants such as Amazon’s Alexa. The way
humans interact with intelligent machines has therefore never been as important as today.1

Rahwan et al. (2019) have argued recently for the creation of the new scientific field of
machine behaviour as studying machine behaviour seems critical to maximizing the potential
benefits of artificial intelligence (AI) in our society. In order to do so, an interdisciplinary
approach is necessary. The cooperation of humans and intelligent machines is a form of
hybrid human-machine behaviour that plays a big role within the field of machine behaviour.

In this work we will attempt to provide a philosophical perspective on human-machine coop-
eration by looking at how human behaviour is shaped by machines and how humans can be
nudged towards cooperating with machines in a better way.
Already today and especially in the future, we can only harness the benefits of AI if we care
about what the cooperation between humans and machines will look like. The challenges
humanity is facing (e.g. Lenton et al., 2019) are so pressing that we, both individually and as
a society, need to address how we imagine human-machine cooperation in the 21st century.
In this sense, we adopt a consequentialist perspective on the use of modern AI technology.

1Whenever we will refer to machines, we mean intelligent machines that possess at least artificial narrow
intelligence. If not clear otherwise from the context, a robot here is an intelligent machine which has some
degree of autonomy, and a computer program or algorithm is understood to usually involve state-of-the-art ANI
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1.2 The argument for anthropomorphizing machines

We will use an inductive approach and start from general issues involved in artificial intel-
ligence today. We are convinced that this approach is well-suited to provide the necessary
amount of background information and then discuss the use of anthropomorphization of
machines to improve human-machine cooperation. We briefly present the main points of the
following chapters here:

• We start with the history of artificial intelligence to show how rapid the development
of intelligent machines is. We discuss the ubiquitous and opaque nature of intelligent
machines. Finally, we argue why human-machine cooperation is crucial and that we
need to address this cooperation from the perspective of the human agent (premise 1).

• After narrowing down our focus to human-machine cooperation, we discuss issues
around it. Cooperation with machines in many cases is less efficient than it could
be. We discuss empirical evidence for algorithm aversion and also show that efficient
cooperation is possible (premise 2). We raise the point that humans cooperate more
eagerly when dealing with a machine which they anthropomorphize.

• We therefore turn towards the field of anthropomorphization and discuss the strong hu-
man tendency to humanize machines (premise 3). We present a selection of anecdotal
and empirical evidence regarding personification and perceived agency of machines as
well as empathy and abuse towards them.

• We synergize above points and discuss positive and negative examples of the anthro-
pomorphization of machines. We conclude that for ethical reasons, the use of hu-
manoid features in machines needs to be decided on a use-case basis (conclusion).
Understanding anthropomorphization as a form of nudging, we build an argument that
for the use-case differentiation to be successful, humans need to be able to selectively
anthropomorphize only humanoid machines (question concerning the conclusion).

• We finally present a study proposal to test this ability of humans to distinguish machines
into different categories depending on whether they are endowed with humanoid fea-
tures (suggestion regarding above question).

This philosophical work touches upon many fields, among these computer science, neuro-
science and psychology. We hope to have chosen the right balance and depth to make our
argument as clear as possible without wandering off too much into the fascinating subfields.
We also wish that this work can contribute to making individuals and society benefit from the
advances in intelligent machines in the best possible way.



Chapter 2

The rise of intelligent machines

"Machines take me by surprise with great frequency"

Alan Turing, 1950

In this chapter, we are going to argue why human-machine cooperation is important and why
it will continue to be so in the foreseeable future. We will outline in brief the development
of intelligent machines to show the pace at which the field advances. We also discuss the
ubiquity of intelligent machines in our society today.
Another important point will be the opaque nature of intelligent machines as it is much harder
or even impossible to understand the inner workings of modern machine learning algorithms.

2.1 A brief history of intelligent machines

2.1.1 GOFAI and the quest for artificial intelligence

While the dream of building an artificially intelligent machine has been around for much
longer1, if one was to put a beginning to artificial intelligence, Alan Turing’s famous 1950
paper seems to be a sensible choice (Turing, 1950). In his manifesto for AI, he not only
proposed the The Imitation Game which is also referred to as the Turing test2, but also
identified the main questions regarding intelligent information processing (Boden, 2018, p.
7f.).
The term artificial intelligence was first used at the Dartmouth Conference in the summer
of 1956. In Dartmouth, John McCarthy, Marvin Minsky and other researchers defined the
birth of AI and went on to become influential thinkers in the field. It emerged what is now
referred to as good old-fashioned artificial intelligence (GOFAI). The approaches in these

1See for example of the mechanical turk. This 18th century machine had in fact a human inside but was able
to fool many into believing that it was an intelligent machine (The Editors of Encyclopaedia Britannica, n.d.).

2The Turing test is a concept to assess the intelligent behaviour of a machine. Very briefly put, if a human after
a short natural language conversation with a machine is not able to tell whether he was chatting with a machine
or a human, then the machine passes this intelligence test.
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early AI programmes were based on common sense and reasoning and the programs achieved
impressive feats at complex geometry and algebra tasks (Levesque, 2018, p. 4f.). Linguistics
played a huge role as computers were supposed to communicate in natural language. A
famous milestone was the ELIZA chatbot which was able to fool people into communicating
with a computer psychotherapist even though the chatbot was not yet very sophisticated. This
virtual Rogerian3 psychotherapist would ask simple questions and people engaged eagerly in
conversations with the chatbot, telling it intimate secrets (Weizenbaum, 1966; Weizenbaum,
1976, p. 3f.).

Without going into the details of the early years of AI research, it is important to note that
- and this is something we still see today - the first successes of computers were perceived
as something astonishing, extraordinary and also seemingly intelligent (Russell & Norvig,
2016, p. 18). While it is easy to merely consider the achievements of GOFAI from a modern
perspective as still being very unintelligent, this is misleading. It is true that GOFAI did
not create powerful machine intelligence and there were a number of setbacks as the great
optimism of the first years did not lead to general artificial intelligence as soon as had been
hoped. However, we would argue that this follows a pattern. A task might initially seem
to require some sort of intelligence to be performed. Once an algorithm is capable of the
same achievement, the general view held of this task changes and the task is merely seen as
something mechanical where in fact no real intelligence was needed in the first place.
This might be interpreted as an ongoing underestimation how hard it is to create artificial
intelligence. While this is without doubt true, it also implies that we constantly reevaluate
our self-image as humans. This view is also held by Kaplan (2004) who agrees that "progress
in artificial intelligence may significantly change what we thought were features unique to
humans." (p. 478) The less unique human intelligent features are, the more likely it becomes
that it is feasible to create an artificial intelligence that rivals the intelligence of humans. The
remainder of this chapter and the rapid progress in building intelligent machines, should be
seen from this perspective.

2.1.2 Artificial neural networks and the second AI revolution

An important technical development in the field of AI are artificial neural networks (ANN).
The advances of the last 25 years in artificial intelligence research are strongly connected
with ANN which work very differently from algorithms in the GOFAI era (cf. Boden, 2018, p.
69).
The idea of ANN goes back to the first description of a computational neuron model, the
McCulloch-Pitts-neuron (McCulloch & Pitts, 1943) where Bertrand Russel’s propositional
logic and Charles Sherrington’s theory of neural synapses were united with Alan Turing’s
work. Logical values of true or false were mapped onto the on/off activity of brain cells
as well as the zero/one state in Turing machines. Together with Sherrington’s belief that
neurons have fixed thresholds, the many connected computational neurons manifest a neural

3Person-centered approach in psychotherapy named after Carl Rogers.
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net which offers computational use (Boden, 2018, p. 8f.).
Neural networks are able to learn through adaptive changes in the weights of the individual
neural connections and rarely even in the connections themselves. This learning process
usually works in a way that goes back to the neuropsychologist Donald Hebb who developed
the concept that neural connections that are used more often are being strengthened.
The recent impressive advances in machine learning are attributed to a big part to deep

Input layer Hidden layer Output layerInputs Outputs

I O

Figure 2.1 – Diagram representing a neural network with an input layer, one hidden layer and an output layer. The
nodes of the network are connected by computational neurons. Deep learning uses neural networks with many
hidden layers.

learning which was initiated by Jürgen Schmidhuber in the 1980s. The term deep learning
refers to the fact that these networks use a multi-layered approach. Between the input and
the output layers lie a number of hidden layers. When the number of hidden middle layers in
a learning network is large, it is called deep learning. Such a network when trained on data
exhibits a very complex inner structure (cf. Boden, 2018, p. 74ff.).

While the explanations given above are more theoretical, we shall offer a more intuitive
explanation of how deep learning works. So, let us imagine that we are trying to build a
computer program that is very good at recognizing cats in a given collection of pictures. The
classical (non-machine learning) approach would be to tell the program what to look for
when searching for a cat. We might achieve this by thinking of two characteristic angles of
the cat, the face and the body shape from the side. Now in order to recognize the face, we
will further assume that a cat face features greenish eyes, vertical pupils, a triangular shaped
nose, and so on. Whenever it recognizes the right spatial combination of those features, the
program should deduce that it is seeing a cat. Similarly, we could come up with a recognition
algorithm for the body shape and then when combining these two characteristic angles of a
cat, we would hope to detect the cats in the pictures with very high probability (Levesque,
2018, p. 2f.).
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In machine learning, however, the approach is quite different. Instead of manually defining
what a cat looks like, a deep neural network is supposed to deduce these features on its own
after being trained on a huge data set. This does not imply logical reasoning but merely
a statistical process using a vast number of connection computational neurons. With each
iteration of the learning algorithm, the neural network sees another picture of the training
data set and takes a guess based on what it has learned so far (i.e. its connections and
weights). Then after comparing the guess with the true result, whether this was a cat or
not, the weights of the neural network are updated. In practice this learning process might
not always work as smoothly as described here, but in theory the algorithm converges to
minimal loss. The loss describes the gap between perfect detection and actual detection. This
approach of feeding a suitable neural network with large amounts of well-sorted data has
turned out to work surprisingly well (cf. Spiegelhalter, 2019, Ch. 6).
Interestingly, the layered pattern detection seems also to be similar to the mechanism of how
the brain works. Especially human vision is fairly well understood and, very broadly speaking,
the process of human vision is as follows:
When we see an object, say the word "APPLE", it is analysed by human vision in a multi-
layered approach. Individual small patterns are interpreted first, this could be the 45◦ stroke
within the letter "A". Then, after also having interpreted the other two lines which together
compose the letter "A", these strokes are being combined in order to recognize the pattern of
each individual letter. Finally, all the letters combined will form the whole word APPLE which
is then recognized by the brain (Kurzweil, 2012, p. 41f.).
This close relation between advances in artificial intelligence and neurophysiology is another
clue that AI might working in the right direction and that the exchange between AI and brain
researchers seems promising for the quest for AI (see also Savage, 2019).

The modern revolution in machine learning was made possible also due to the increased
availability of massive data collections, new techniques to handle big data and raw computing
power. In the same way the successes of GOFAI were impressive and seemingly intelligent,
the advances of modern AI underline how we shifted our view in what is intelligent behaviour
and what computers can achieve.
There have been a number of milestones in the last few years where deep learning played
a big role. IBM’s product Watson is used in call centres and as an assistant in medical
applications. It gained a lot of popular attention when it was able to beat the best human
players at Jeopardy!4 in 2011.
Deep Learning is also used by many Google services, especially at Google DeepMind. Their
program AlphaGo beat the world champion in the strategic board game Go in 2016 (Boden,
2018, p. 57f., 79f.). Especially one move that AlphaGo made, move 37, was widely debated.
It was the crucial move for AlphaGo to win and to most human commentators this move
seemed highly unconventional if not an error. It turned out that the artificial intelligence

4Jeopardy! is an American TV quiz show where the players are given an answer and have to guess the relevant
question. This scenario is opposite to usual quizzes and much harder for computers to solve.
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had in fact made a very smart decision and was able to win the game. The originality of
the move was often referred to as something inhuman, out-of-this-world or transcendental
(Metz, 2017).
A recent example of AI is the success at the card game poker, where a program called Pluribus
significantly outperformed human players in a six player poker game (Brown & Sandholm,
2019).

2.2 The ubiquity and the opacity of intelligent machines

2.2.1 Intelligent machines are everywhere

Besides these outstanding AI milestones and even more importantly, algorithms are constantly
present in our daily lives. We are exposed to them in many online applications, e.g. dynamic
pricing in web shops and personalised news rankings. We see how social media bots alter the
way information is perceived and AI determines which profiles are shown to you in online
dating. Car manufacturers around the world are in an arm’s race to build level 4 and 5
self-driving cars5 which rely heavily on modern AI technology (cf. Rahwan et al., 2019).
Meanwhile, intelligent assistants conquer our private spaces with Amazon having sold over
100 million Alexa devices already. If we include the assistants installed on Android phones
and iPhones, it is estimated that the total number of intelligent assistants will surpass the
world population before 2023 (Perez, 2019).
Another important fact regarding the ubiquity of intelligent machines is that the entry level
barrier for individuals to get started with deep learning or modern AI technology in general
could not be lower. It takes only 30 minutes and a computer connected to the internet to
install a developing environment for the very popular programming language Python and
to download a machine learning framework. There is a vast number of helpful frameworks
available with the most well-known being Tensorflow and Pytorch. Tensorflow was presented
by Google Brain, the deep learning team at Google (Abadi et al., 2016) and is used a lot in
Google products, while Pytorch is a framework developed by Facebook (Paszke et al., 2019).
In recent years, it has become very easy for anybody around the world to run their first deep
learning algorithm, e.g., an algorithm for the classification of images of clothing, in virtually
no time (see Google, n.d.).
This should not at all imply that deep learning is easy, and building robust and useful deep
learning algorithms can be a big challenge. However, the creators of the machine learning
frameworks have paved the way for an increased usage of deep learning in a large number of
applications.6

5The Society of Automobile Engineers (SAE) defines five levels of driving automation. Level 4 and 5 correspond
to high and full automation, respectively, and are the highest automation levels. (SAE International, n.d.)

6It might seem like a valid objection that the number of people who are able to write a deep learning algorithm
is still relatively small. But then this does not change the fact that due to the easiness of implementing such an
algorithm, already modern AI technology affects virtually all human beings in most regions worldwide on a
regular basis.
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A third point why AI technology will continue to be everywhere is that algorithms diffuse
and scale very easily. New AI algorithms are usually reproduced within days or weeks after
being published and there is a very open culture within the field of AI research so that many
papers publish their source codes. Besides, an AI system is typically efficient and scalable.
That means that, e.g., a typical facial recognition system can be applied to many different
camera feeds for much less than the cost of hiring a human analysist once the algorithm has
been developed and trained (Brundage et al., 2018).

2.2.2 The opaque nature of intelligent machines

Now we will turn towards the different nature of intelligent machines due to their deep
learning features. In such an unsupervised learning setup, we would not know what led the
machine to detect the cat in a picture. This is because it is not possible to just match parts of
a neural network with specific properties of the cat, such as the tail. Instead, deep learning
algorithms are used as a black box where we have little to no clue of what is happening
inside.
Using algorithms as a black box is nothing new. In his 1976 book "Computer Power and
Human Reason" Weizenbaum warns against the use of algorithms especially in the military
context. He mentions the case of the U.S. military using a computer program in the Vietnam
war to "declare free-fire zones, that is, large geographical areas in which pilots had the ’right’
to kill every living thing." The operators of these computer programs did not understand what
went on within the computers and used them as a black box. Yet, they entrusted this black
box with life-or-death decisions (Weizenbaum, 1976, p. 238).
This is an example of the unethical use of technology because the accountability for military
actions that follow such computers advice is unclear. Theoretically, however, it was very well
possible to have an expert, say the creator of the program, analysing the inner workings of
this U.S. military algorithm. It became a black box only by the specific set-up it was used in,
it became a black box by the ignorance of the operators.
Today’s deep learning algorithms generally no longer allow this possibility. Instead, the very
nature of deep learning leads to it being a black box. There are advances in the field of
explainable AI (XAI) (cf. Samek, Wiegand, and Müller, 2017) which seek to address this
issue and make the statistical reasoning of AI understandable for humans. Yet, the opacity
of the inner workings of deep learning algorithms is, at least for the time being, inherently
connected to these intelligent machines.

2.2.3 Algorithmic bias as a risk for cooperation

We do know that machines have become very intelligent, yet, there is one massive caveat.
Machine learning algorithms have repeatedly been shown to reproduce biases that are in-
troduced mostly by the data they are trained on.7 Due to the discussed opaqueness of deep

7For a discussion of different existing biases and approaches at how to overcome them, see Danks and London
(2017).



2.3 The need for human-machine cooperation 13

learning tools, there is the risk of a dangerous feedback loop where biased algorithmic advice
reinforces unacceptable discrimination in society.
Regarding gender bias and discrimination, we see, for example, how voice assistants such as
Siri or Alexa have female voices by default while IBM’s Watson had a male voice. Generally
speaking, the over-representation of men in the design of technology could present great
harm for the advances in gender equality. This is because the developers of these algorithms
are mostly unaware of research in how gender ideology is embedded in language as Leavy
(2018) argues. In section 2.2 we discussed how easily AI systems diffuse, which can lead
to discriminating algorithms being distributed around the world very quickly. To prevent di-
minishing trust in AI systems, these algorithms need to consistently produce bias-free advice.
Fair representation of women and minorities in the development of technology is therefore
crucial.
To overcome the black box that deep learning usually is, a growing number of researchers are
trying to build explainable AI (XAI). The idea here is that when we are told specific reasons
for the decision that a machine makes, we should be able to reconstruct the reasoning. In
the example of the cat image detection algorithm, this would imply, that if we knew that the
algorithm had falsely deduced that cats were always grey, due to bias in the training data
set, we might be able to correct this. Hopefully, this would make it much easier to combat
discriminating algorithms.8

Algorithmic bias is a risk for human-machine cooperation for two reasons. First, the perfor-
mance of intelligent machines is not as good as it could be and, and second, human trust in
machines will be damaged due to the biases present in the intelligent machines. Algorithmic
bias will not be a focus of this work but these considerations are important if we want to use
AI as a useful and smart tool.

2.3 The need for human-machine cooperation

We have investigated the past and current state of intelligent machines and found that there
is an impressive dynamic towards ever more intelligent systems. Already today intelligent
machines are ubiquitous in our everyday private and business lives. With a technology so
powerful, it is necessary to ask how we intend to use it. We will argue here that a crucial
aspect which we will focus on is human-machine cooperation.
Machines have already been able to produce forecasts superior to human ones for a while
by using standard statistical methods (Grove, Zald, Lebow, Snitz, & Nelson, 2000). We
discussed that today AI players are able to outperform humans in the complex games of

8We would like to point towards two interesting points. There is recent work on inferred causality in machine
learning. As our societal norms and laws are not based on stochastic reasoning but on causal considerations, this
seems to be a promising direction for advancing fair algorithms (Kilbertus et al., 2017).
Another reason why XAI might become more relevant is the EU General Data Protection Regulation (GDPR) of
2018. The GDPR gives all residents of the EU the right to receive an explanation of how an automated decision
was made. What this means exactly for opaque deep learning algorithms has not been decided in court yet.
However, the GDPR definitely helps the push for XAI (Wagner, n.d.).
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Go and Poker and also, generally, machines have been closing the gap to human skills in
recent years. The fields of image recognition, speech recognition, abstract strategy games,
a large number of real-time video games (such as Atari games) are further examples where
algorithm performance now exceeds human performance.
At the same time, there are a number of fields where the direct comparison human vs. ma-
chine is difficult, where there is only slow progress in AI or where no systematic comparison
and trend analysis has been made yet. For instance in the fields of visual question answering
and translations, humans still come out top (Peter Eckersley et al., 2017).
This indicates that, at least for the near future, humans and machine have expert skills in dif-
ferent fields. Hybrid human-machine teams can combine the different strengths. Therefore,
the strong performance of intelligent machines is an argument for an increased cooperation
between machines and humans.

An insightful example regarding the roles of machines in our future society comes from chess.
In 1997, chess programs had advanced so much that IBM’s chess computer DeepBlue was able
to defeat the then chess world champion Garry Kasparov. Following the advancement of chess
machines to superhuman chess skills, machines where increasingly used as sparring partner
for humans. Through training with very smart algorithms, humans were able to deepen their
knowledge and become better in chess than they would have been without chess machines
(cf. Levesque, 2018, p. 131f.).
This could be a strong analogy to human-machine cooperation in general. While the human
goal in chess is simply excelling at this strategic board game, in general we strive for individ-
ual and collective happiness, safety and prosperity. We want to reliably rule out safety-critical
defects in manufacturing processes, detect early-phase cancer as soon as possible, eliminate
road toll through automated driving and accelerate technological advances in renewable
energies to help make the planet sustainable as quickly as possible. Then, just like in chess, it
is reasonable and from a consequentalist perspective even required to combine the different
strengths of machines and human as the cooperation between humans and machines is able
to lead to better results than human-human cooperation alone. It is our aim to help providing
the right framework for human-machine cooperation so that the outcome of this cooperation
will be as favourable as possible.

We will address one possible counter argument against human-machine cooperation here. We
argued that the current different expert skills of machines and humans differ and therefore
cooperation is needed. If artificial intelligence might very soon have superhuman skills in
all areas and evolve into artificial general intelligence (AGI), the goal of cooperating with
humans might no longer be necessary. Humans would be made superfluous for many tasks
as they would be too inefficient.
There are a number of technological visionaries that warn against such a technological sin-
gularity when machine intelligence surpasses human intelligence. From this point onwards,
AI would be able continue to develop itself at ever increasing rates. Such artificial super-
intelligence (ASI) would then be extremely powerful which might constitute a significant
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threat to humanity.9 We will not focus on AGI or even ASI here because of two reasons. First,
it is not certain that such scenarios will actually arise, and if they do, this will very likely
occur only in a few decades from now.10 We know from the history of artificial intelligence
that creating AI always turned out to be more difficult than expected. Therefore, it seems
reasonable to treat the above estimates with great care. Secondly, already today we see many
examples of ANI leading to real challenges which need be addressed. Hence, we should focus
on human-machine cooperation now instead of hypothetical scenarios.

9Nick Bostrom uses the example of a super-intelligent machine with the task of producing an exact number
of paperclips. To make sure that it did not miscount the already produced paperclips, the machine will produce
spare ones. However, as the probability to miscount never drops to zero, the machine will need to produce an
infinite number of paperclips thereby using up all resources of the earth. While this likely would not match the
layman’s definition of super-intelligent behaviour, these kinds of threats might actually become relevant in the
(far) future (Bostrom, 2016, p. 150ff.).

10Expert opinions on the possible timescale of such events vary greatly. Across different studies around 10% of
the experts in AI predict human-level machine intelligence around the years 2020-2024, 50% around 2040-2050
and 90% around 2065-2093 (Müller & Bostrom, 2016).



Chapter 3

Human acceptance of or reluctance
against algorithms

"Never trust anything that can think for itself if you can’t see where it keeps its
brain"

Arthur Weasley in J.K. Rowling: Harry Potter and the Prisoner of Azkaban, 1999

We have already argued in the previous chapter why it is so important that humans and
machine cooperate with each other. However, there are several problems regarding the
cooperation with intelligent machines. For example, the issue of opaqueness of AI, which
refers to the black box nature of deep learning algorithms, already came up. Besides these
issues that lie more on the technical side, a very fundamental aspect of human-machine
cooperation is the inclination of the human agent for cooperation.
As we will see in this chapter, in fact humans show unwillingness to cooperate with machines
in some scenarios. We have already discussed that machines are superior to humans at certain
tasks. Then, such reluctance can be costly if cooperation would have led to better outcomes
and is accordingly a manifestation of irrational human behaviour.
Here, we are going to investigate the possible obstacles on the human side for human-machine
cooperation with the goal to overcome them.

3.1 Do humans show algorithm aversion?

There are many different forms of cooperation imaginable. A very simple form of cooperation
between two agents is the action of giving and receiving advice. This is a rather unidirectional
way of cooperation, yet, it is very frequent and especially important when considering coop-
eration between a human and a machine. This form of cooperation is between two agents
where one agent possesses knowledge and the other agent needs to assess and tailor this
knowledge and output to a real-world problem. Because of superior machine computing
skills, some machine advice such as forecasts have been superior to human forecasts already
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for decades. With machine forecasts becoming better every year, intelligent machines will
exceed human skills in ever more areas. This will make the question of how humans deal
with machine advice even more important in the future.
The earliest discussion of human distrust in algorithmic advice most likely goes back to the
psychologist Paul Meehl. In 1954, he published a study on what he referred to as the conflict
between clinical and statistical prediction (Meehl, 1954). He "had analyzed whether clinical
predictions based on the subjective impressions of trained professionals were more accurate
than statistical predictions made by combining a few scores or ratings according to a rule"
as Daniel Kahneman explains (Kahneman, 2011, p. 222). Meehl found that even merely
a linear statistical model was able to outperform human judgement. Clinical psychologists
reacted with shock, hostility and disbelief to Meehl’s findings.
It took many decades until mistrust in algorithms was investigated empirically.1 We present
an overview of the most relevant recent findings here.
It has been shown that most people do not choose a statistical model for making a forecast
unless they have more confidence in the model’s forecast than in the human forecast (Di-
etvorst, Simmons, & Massey, 2015). Participants that were less convinced of the algorithm
grew more reluctant after they witnessed the model perform than participants that had great
confidence in the model from the outset. This reluctance was coined by Dietvorst et al. (2015)
as algorithm aversion.
However, algorithm aversion does not imply a general aversion to using algorithms at all.
In a study, Logg et al. (2019) found that in fact people were inclined to use algorithmic
advice. Interestingly however, participants who were experts in their field showed different
behaviour. They were reluctant to use algorithms which resulted in the expert’s predictions
being worse than the predictions of laypeople who had made use of algorithmic advice.
In another experiment Prahl and Van Swol (2017) confirmed that people do accept algo-
rithmic advice, but they found evidence that automation trust is, in fact, heavily discounted
after seeing a machine err. This is remarkable due to its irrationality. Prahl and Van Swol
(2017) used advice response theory (ART) as a framework to think about human-machine
cooperation. ART was originally designed as a framework to investigate inter-human trust.
They argue that automation trust is an important factor in the question of algorithm aver-
sion. To explain the discounting of automation trust, they refer to the "perfections schema"
by Madhavan and Wiegmann (2007). This pattern suggests that human forecasters have
very high expectations regarding algorithmic advice and assume it to be perfect. Humans,
however, are known to be fallible and therefore met with to lower expectations. Then, for the
human forecasters, an error generated by the algorithm is an unexpected error which was not
foreseen as would have a human error. As a result, trust in the algorithm is shattered and the
human forecasters become reluctant to use algorithmic advice even though it is still superior
to human advice.
It should be added here that Dietvorst, Simmons, and Massey (2016) made an interesting

1For a more complete overview of relevant studies conducted over the last 20 years see Logg, Minson, and
Moore (2019).



18 Chapter 3. Human acceptance of or reluctance against algorithms

finding when looking at how human acceptance of algorithmic advice might be fostered.
They found that people are more eager to use even imperfect algorithms as long as they have
the option to slightly modify these algorithms. Interestingly, the extent by which they are able
to modify does not change how frequently the algorithm is used. It seems to be the feeling of
behaving in an active instead of a passive way which is important to humans. Besides, when
humans were able to modify the workings of the algorithms in the Dietvorst et al. (2016)
study, they reported higher satisfaction with the cooperation.

The presented research in the field of algorithm aversion gives useful insights on human-
machine cooperation. Algorithm aversion points to the fact that humans consistently behave
irrationally by not always accepting superior machine advice. It also includes the finding how
humans discount automation trust after seeing a machine err. In this context it is troublesome
that especially experts express algorithm aversion and overestimate their own skills. They are
the ones who should be trained to know better as their behaviour might have the most severe
consequences, e.g. in the screening of tumor cells in radiology.

3.2 Human-machine cooperation in strategic games

We have looked at the act of receiving advice as a form human-machine cooperation already
and found evidence for algorithm aversion. However, advice is not the only way humans co-
operate with machines and we will need to look at different settings as well. We are interested
in more strategic forms of cooperation between two agents. Testing human-machine coop-
eration empirically always requires a certain abstraction from a real-life scenario. Strategic
games mimic strategic cooperation and make it rather easy to measure performance. Here,
we will look at evidence that modern algorithms are able to achieve superhuman performance
in these strategic games.
In the previous chapter we mentioned AI milestones that include the defeat of a human con-
testant in strategic games such as Chess, Go or Poker. These games are zero-sum encounters
(cf. Crandall et al., 2018). For many other games, however, cooperation between the players
is needed to perform well. Such games can provide a laboratory setting for the investigation
of human-machine cooperation.

Indeed, Crandall et al. (2018) found that their intelligent algorithm (called S#) was able
to form a cooperative relationship with a human player. The machine was able to interact
with the human via non-binding costless signals, also referred to as cheap talk.
Crandall et al. (2018) used a simple stochastic game called Block Game in their study. The
goal of this game was for each player to achieve the highest possible point value for their set
of blocks. Similary to the more simple well-known prisoner’s dilemma, in Block Game many
cooperation scenarios are possible. These scenarios vary in the fairness of the players and in
the efficiency of the outcome. Especially, unfair game-play is possible to prevent the other
player from getting more points, and beneficial outcomes for both players are also possible.
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The game was played over several rounds and the development of the average payoff was
compared between the two set-ups human vs. human and S#-2 vs. the human. Notably, S#-
successfully uses cheap talk to consistently build cooperative relationships with the human
player. The average payoff of the set-up S#- vs. human was higher than in the inter-human
gameplay.
The authors looked into the reasons for S#’s remarkable performance. They found that
S# mostly stuck to cooperative gameplay after cooperation had been established in several
rounds in contrast to human players who tended to defect more often from cooperation.
Also, S# was committed to what it communicated via cheap talk while a sizable portion of
the human participants did not.
This research indicates that beneficial cooperation between humans and intelligent machines
is possible. Similar to the case of giving advice, the human agent seems to be mainly
responsible for inefficient cooperation.

We saw that algorithms outperform humans even at the task of cooperating with a hu-
man being in strategic games. This is a valuable insight as it underlines our argument for
human-machine cooperation. Merging the concept of algorithm aversion with performance
in strategic games, we should be wondering about human reluctance towards algorithms in
such a cooperation game.
Ishowo-Oloko et al. (2019) showed that people tend to cooperate better when they were
left in the dark regarding the true identity of their cooperation partner. They conducted
a canonically iterated prisoner’s dilemma where participants played against a machine3 or
a human. The true nature of their interaction partner was disclosed to one half of the
participants only while the other half was given inaccurate information.
They found that a machine passing as a human was more efficient than a real human (for
similar reasons as in the experiment by Crandall et al. (2018)), however, only as long as
the participant was misinformed about the machine’s true nature. With transparency on the
actual machine nature, the efficiency drops markedly leading to worse cooperation rates than
for a human. The magnitude of the effect was about 10 percentage points.
As a matter of fact, we see that human algorithm aversion prevents the best outcome of
human-machine cooperation. This raises the ethical question of a transparency-efficiency
trade-off.

3.3 Overcoming algorithm aversion

We have seen how humans are repeatedly responsible for inefficient human-machine coopera-
tion and that the human reluctance to engage with algorithms is irrational. We are unaware of
empirical studies investigating whether algorithm aversion fades when humans are exposed

2S#- was an earlier version of their S# algorithm which was only able to generate cheap talk but was not able
to respond to it.

3The actions of the machine were calculated by an algorithms called S++ algorithm which was also the basis
for the discussed S# algorithm which was capable of cheap talk.
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more to technology. Because the amount of interaction between humans and technology
has intensified rapidly over the last decades, it seems reasonable to predict that this regular
exposure will make humans more used to machines and more eager to cooperate.4

Also, we might suspect that in order to prevent bias towards algorithms, there is a need for
more in-depth knowledge of the general public of how algorithms and intelligent machines
work. If humans are to interact and cooperate ever more with intelligent machines, they need
to be aware of the benefits and shortcomings of cooperating with machines. This is especially
valid for experts such as medical practitioners who showed a very weak tendency towards
accepting algorithmic advice.

If imperfect cooperation mostly arises due to the fact that the human is reluctant to interact
with a machine in the same way he or she would interact with a human agent, a possible
solution to algorithm aversion could be to make the human falsely believe that he or she is
interacting with a human agent. Because this involves lying or at least misguiding the human,
there are obviously ethical concerns to take into account. This ethical dilemma was called the
transparency-efficiency trade-off.
It raises the question of when and how the true nature of a machine needs to be revealed. For
instance, in written online communication, it is very hard for the human to know whether his
or her interaction partner is a machine or human. Even in voice communication, language
production by machines has become so natural that humans can be misled into wrongly
assuming to be talking to a human being while talking to an algorithm. Google presented
its product Duplex which can serve as a personal assistant and make a restaurant reservation
over the phone. These real-world conversations were remarkably humanlike and Google
received heavy criticism as people were afraid of not being able to tell the difference (cf.
newspaper arcticles such as Bergen and News (2018). While Google announced that the
Duplex assistant will disclose its machine nature, it becomes clear that the question of trans-
parency is becoming important. Should humans always have the right to know the nature of
their interaction partner? How does the lack of transparency change human behaviour? We
might suspect that people will use impolite behaviour more often when they assume a hotline
voice to be a machine as they cannot tell whether it is human or not.
However, because of these ethical questions, we should be reluctant to try and overcome
algorithm aversion with a lack of transparency. There seems to be a more efficient solution as
even without lying or misguiding the human, we might nudge a human into cooperation by
simply making the machine appear more human.
In fact, it was observed that when machines affectively modulate the voice in a way that is
intuitive for humans, this significantly improves team performance, and appropriate affect

4This exposure effect seems to be very different than the discussed trust discounting in the context of the
perfectionist scheme. In both cases, it is the interaction with a machine that leads to a change in the human
attitude towards cooperation with machines. However, the two scenarios happen on very different timescales.
Exposure is a long-term process whereas the discounting we saw was towards an algorithm is in specific situation.
Therefore, the discounting of automation after seeing machines err is not an argument against our suggestion
that exposure helps against algorithm aversion.
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expressions by the robot help humans to accept robot autonomy (Scheutz, 2011).
We shall therefore now turn out attention towards the human anthropomorphization of
machines to be able to assess if and how algorithm aversion might be overcome by anthropo-
morphization.



Chapter 4

Humanizing machines

"Don’t call me a mindless philosopher"

The humanoid robot C-3PO in the movie Star Wars, 1977

In this chapter we investigate the human tendency towards humanizing machines and we
refer to both anecdotal and empirical evidence of aspects of anthropomorphization. This is
relevant as we would like to understand if and how anthropomorphization might help solve
problems of algorithm aversion in human-machine cooperation.

4.1 A working definition of anthropomorphization

In order to discuss the humanization of machines, we start by giving a brief discussion of the
term anthropomorphization. Epley, Waytz, and Cacioppo (2007) have proposed a psycho-
logical framework to understand anthropomorphization which they define as "the tendency
to imbue the real or imagined behavior of nonhuman agents with humanlike characteristics,
motivations, intentions, or emotions" (Epley et al., 2007, p. 864). Here, we focus on the
anthropomorphization of intelligent machines as nonhuman agents.
A similar idea is the concept of the intentional stance by Daniel Dennett (Dennett, 1971).
Adopting the intentional stance means planning and predicting the behaviour of other agents
with reference to their mental states. Regarding an intelligent machine, Dennett claims that
"we find it convenient, explanatory, pragmatically necessary for prediction, to treat it as if
it had beliefs and desires" (p. 91f.) Then, the intentional stance would allow more efficient
interaction.1

In this work we will use the term anthropomorphization2 and adopt a working definition
similar to (Epley et al., 2007) which naturally includes the concept of the intentional stance.

1A study conducted with regard to whether the intentional stance might apply to machines suggests that
it is indeed possible to induce adoption of the intentional stance toward artificial agents in some contexts.
Many participants were somewhat biased towards the mechanistic stance, however (Marchesi, Ghiglino, Ciardo,
Baykara, & Wykowska, 2019).

2The act of humanizing machines will be used synonymously to anthropomorphization.
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It suffices for the scope of this work to understand anthropomorphization as the attribution
of humanlike features to nonhuman entities, i.e. machines.

4.2 Unidirectional relationships and perceived agency

While it is without doubt interesting to investigate how the process of anthropomorphization
works and what the key determinants of this process are, we will leave this for later (cf. Epley
et al. (2007) as well as chapter 6). Here, we will look at different cases of anthropomorphiza-
tion to argue that the human tendency to anthropomorphize is strong.

The first examples of humans humanizing machines appear in the case of chat bots. We
already introduced the bot ELIZA where a virtual Rogerian psychotherapist asked simple
questions. ELIZA was not yet a very sophisticated program, yet, her creator reported that
he was startled by how emotionally involved the tester became with the machine and "how
unequivocally they anthropomorphized it". He goes on: "Once my secretary, who had watched
me work on the program for many months and therefore surely knew it to be merely a
computer program, started conversing with it. After only a few interchanges with it, she asked
me to leave the room. Another time, I suggested I might rig the system so that I could examine
all conversations anyone had had with it, say, overnight. I was promptly bombarded with
accusations that what I proposed amounted to spying on people’s most intimate thoughts."
(Weizenbaum, 1976, p. 6)
Over the last decades bots learned to master much more complex conversations. In the case
of XiaoIce, a modern Chinese chat bot, there was a reported maximum conversation session
of over 29 hours (Shum, He, & Li, 2018). When analysing the content of the conversations,
we still see how humans tend to tell bots their inner secrets.
It seems unlikely that a person would have long and intimate chat session with a bot if the
person perceived it as a technical tool only. This is because the combination of a statistical
learning algorithms with a phrase database do not seem to be a great reference for a good
conversation partner. The intensity with which human conversation with bots are reported
can only be explained with the strong human tendency to anthropomorphize the chat bots.3

Not only bots but also machines are suspect of being humanized. This personification of
machines is often unidirectional and it is noteworthy how little machines have to contribute
on their end to any relationship as (Scheutz, 2011) points out. He refers to some examples
where this can be well observed.
A first example are robots whose task it is to defuse improvised explosive devices (IEDs).
There is anecdotal evidence of soldiers forming intense unidirectional relationships with these
machines. Garreau (2007) tells of a situation where a heavily crippled robot was struggling

3One extreme example of a non-human conversation partner could be a tree. Clearly, a human would not
talk to a tree because of its vascular system for water distribution or the texture of the tree bark. Instead, people
might seek friendliness, resilience and loyalty in a tree. It is the attribution of these humanlike personality features
which makes the tree become a possible conversation partner.
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to move forwards after losing some of its limbs while defusing bombs. The test was aborted
by the commanding officer as he found the situation of the robot too inhumane to continue.
In another situation, a soldier was quoted as saying about his unit’s robot that it "was part of
the team, one of us. He did feel like family".
With regard to robot companions, Kahn Jr, Friedman, and Hagman (2002) describe how own-
ers of AIBO robo-dogs refer to their machine pet when posting online about their experiences.
Frequently, the owners made affirmative references to the perceived agency of the machine
(in 60 % of the participants) or to the machine’s social standing (59 %). The category agency
includes when owners referred to, e.g., the presence of feelings, intelligence or a unique
personality in the robot. An example of an affirmative statement regarding the social standing
is given by the authors as "I care about him as a pal, not as a cool piece of technology" (p.
632).
However, the most striking case for unidirectionality is probably the humanization of vacuum-
cleaning robots. These robots have been sold for almost the last twenty years and are
able to autonomously navigate an apartment and clean the floor. Sung, Guo, Grinter, and
Christensen (2007) report the intense unidirectional bonds that some people form even with
these very unemotional machines lacking humanoid features except for the occasional beep
sound. People ascribed name, gender and personality to their Roomba robot, shared their
experiences with others and were even willing to take up extra cleaning work in order to
make the vacuum-cleaning robot function effectively.

Scheutz (2011) reports on experiments with regard to perceived machine agency and gives
evidence that the degree of autonomy that a robot exhibits is an important factor in deter-
mining the extent to which it will be viewed as humanlike. Autonomous robots are machines
that possess an autonomous skill such as free movement, object recognition, human-speech
interaction or decision-making. Interestingly, even lack of effort in such robots makes robots
appear to have agency (van der Woerdt & Haselager, 2019). The autonomy seems to be a
critical factor in shaping human perception of the autonomous machines as having perceived
agency. Scheutz (2011) concludes that this is experimental evidence that humans prefer
autonomous robots over non-autonomous robots for collaboration.4

Generally, there seem to be two main drivers of anthropomorphization which are often both
present at the same time. First, the nonhuman agent might have a humanlike appearance
such as facial features which makes it easier for the human to socially connect to the machine.
The second driver comes from the unpredictability of machine behaviour which makes the
machine appear more autonomous (cf. van der Woerdt and Haselager, 2019).

4They also observed that robots can lead to social inhibition and facilitation effects merely by their presence.
In one of their studies male participants showed a social inhibition effect during a math task. At the same time,
the male participants viewed the robot as more humanlike than the female participants (Scheutz, 2011).
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4.3 Complex and paradoxical aspects of anthropomorphization

4.3.1 Humanizing robots in the context of empathy and abuse

There is early evidence that humans react similarly to violence or torture towards humans
or robots. In an fMRI study, Rosenthal-von der Pütten et al. (2013) used videos showing
both positive and negative human interaction with the small dinosaur robot Pleo. Video
clips with positive interaction included a person tickling, hugging or caressing the robot. For
negative interaction, however, the dinosaur robot was, e.g., strangled, hit or captivated. These
videos were shown to the participants while an fMRI scan of their brains was performed. The
authors observed similar neural activation patterns for interaction with humans and robots
indicating that human interactions with humans and robots are equally emotionally relevant
for humans. They did measure a different neural activity in the right limbic lobe when
comparing negative human-human-interaction with negative human-robot-interaction which
indicated that human empathy is still larger with a human in a violent situation.
In a different study, Darling, Nandy, and Breazeal (2015) asked participants to observe a
small robot toy Hexbug and then strike it with a mallet. They observed increased hesitancy
when the robot was introduced using anthropomorphic framing that included name, personal
features and a backstory.5

However, a clear picture of emphatic behaviour towards robots seems to be still lacking. For
example, Cross et al. (2019) did not find evidence that a one-week socialization intervention
with an engaging social robot led to a more humanlike empathic response to seeing this robot
in pain.

Abusive behaviour towards robots is reported repeatedly and is the subject of empirical
research. To protect robots from abuse, Brscić, Kidokoro, Suehiro, and Kanda (2015), for
instance, developed a framework to prevent robots in a Japanese shopping mall to be kicked
by children.
It is paradoxical to observe how the humanization of machines is accompanied by dehuman-
izing behaviour. We can only speculate about the causes but it seems that fears connected
to emerging robot technology are turned against the machines. In most cases, the function
of a robot is not fully understood by the humans interacting with it, and due to its passivity,
the machine is a perfect victim. It was suggested that transparency and humanoid framing
are effective in the promotion of human acceptance of robots and help to decrease abusive
behaviour (cf. Bromwich, 2019).

5Darling et al., 2015 used two different backstorys. One backstory focussed on the personification of the robot:
"This is Frank. Frank is really friendly but he gets distracted easily. He’s lived at the Lab for a few months now.
He likes to play and run around. [...]" The other backstory highlighted personal experience: "This object has been
around the Lab for a few months now. If you had come by before, you would have seen it moving around on the
floor. It gets around but doesn’t go too far from the lab. [...]". The participants hesitated significantly longer to
strike the Hexbug for both backstory conditions. There was no significant difference in hesitancy between the two
backstory conditions.
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4.3.2 The uncanny valley hypothesis

In the context of humanoid appearance, we include a brief glance at the perceived effect of
anthropomorphic machines on humans.
It has been suspected for quite some time already that the relationship between human
familiarity towards a robot and the human likeness of the machine is not straightforward.
Instead, it is observed that if the robot only looks slightly like a human, but not quite so, then
humans become quite sceptical of the robot. This was first described by the Tokyo robotics
professor Masahiro Mori as the uncanny valley hypothesis where the uncanny valley describes
the dip in the curve where close resemblance to a human is perceived negatively by many
people Mori (1970).
This effect resonates well with personal experience. It seems much easier to attribute personal
features to distorted characters with unnatural facial and body proportions in animated
movies than to pseudo-realistic graphics found in some movies such as The Polar Express
(2004), for instance. The uncanny valley hypothesis (UVH), however, is lacking consistent
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Figure 4.1 – Relationship between familarity and human likeness of a robot. The uncanny valley describes the
dip in the curve for high human likeness. In the UVH, the effect is larger for moving robots than for still machines
(adapted from Wikipedia contributor Smurrayinchester, 2007; based on Mori, 1970).

empirical support and cannot be generalised across different individuals, stimuli, situations,
tasks, and time (Cheetham, 2017). Even though findings towards the UVH are inconsistent,
it is referred to in many research papers. We should conclude that even subtle humanoid
features can already have a strong impact on how humanoid a machine is perceived.
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4.4 Conclusions on anthropomorphic framing

We investigated the most important aspects of anthropomorphization and confirm the human
tendency to humanize nonhuman agents. When humans ascribe humanoid features to ma-
chines, they become more inclined to interact with machines. We saw, however, in the
examples of robot abuse and the uncanny valley hypothesis that might lead to surprising and
conflictual results in some cases. The fact that the process of anthropomorphizing machines
is complex should make us careful in the application of humanoid framing. More research
is needed into the circumstances and mechanism of humanoid framing. For that reason, we
propose an empirical study in the last chapter of this work.
Still, the strong tendency for anthropomorphization is evidence that humanoid features in
robots can help greatly promote the acceptance and the integration of intelligent machines in
society.



Chapter 5

The anthropomorphization nudge for
human-machine cooperation

We have seen that human features are helpful for human-machine cooperation and that
there is a natural tendency for humans to humanize machines. A nudge is supposed to
alter "people’s behavior in a predictable way without forbidding any options or significantly
changing their economic incentives." (Richard H. Thaler, 2008, p. 6) When a certain design
of an intelligent machine is used intentionally to induce a certain human behaviour, then this
is a form of nudging.
We are interested in this anthropomorphization nudge to improve the efficiency of human-
machine cooperation. In this chapter we investigate the effects and consequences of anthro-
pomorphic framing.

5.1 Observations on anthropomorphization of robots in various
contexts

We will argue that anthropomorphization is useful and desired in some instances, however,
in others it is not. In order to do so, we will investigate situations where the anthropomor-
phization nudge plays a beneficial role and also situations where anthropomorphization can
pose a risk.

5.1.1 Humanoid features fostering acceptance of and interaction with machines

We saw in the previous chapter that humans prefer to cooperate with a machine partner that
features autonomous and humanoid features. These features included humanlike speech or
autonomous decision-making and lead the human to perceive the machine as having some
degree of agency.
Our main reason why we evaluate anthropomorphization is to improve the efficiency of
human-machine cooperation. However, benefits of anthropomorphizing machines go beyond
overcoming algorithm aversion. Indeed, there are many cases where machines can be a
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catalyst for inter-human interaction. Humanoid robots have successfully been used with
children who have autistic spectrum disorder, as a facilitator for doctor-child communication
in hospitals, as a motivator for regular fitness exercise and as a valuable tool to engage
children in learning (Darling, 2017).
A successful social robot is the baby seal Paro. There are a number of applications where Paro
has been used to calm down distressed people and as a replacement for therapeutic animals.
Paro is able to give humans a sense of empowerment and it has been used in nursing homes
since 2004. There, it inspired more conversations and interaction among the residents (Kidd,
Taggart, & Turkle, 2006). While the baby seal robot does have the appearance of seal instead
of humanoid body, it still has humanoid features such as positive emotional reactions to being
stroked. Paro is not perceived as a mechanical tool but as an animal with a personality.
These are examples of how social robots can facilitate communication between humans and
be a welcome supplement to human interaction. We note that machines are able to and
should always support the empowerment of humans (cf. Bracy, 2015; Darling, 2017, p. 177).

5.1.2 Anthropomorphization can promote undesirable behaviour

While anthropomorphization can support human-machine cooperation, there are also exam-
ples where undesirable behaviour is promoted. The example of the Anti-IDE1 robot shows
how anthropomorphization can prevent the machine from its intended use.
"Just as a human team would ’leave no man behind,’ for instance, the same sometimes goes
for their robot buddies. When one robot was knocked out of action in Iraq, an EOD2 soldier
ran fifty meters, all the while being shot at by an enemy machine gun, to ’rescue it.’ " (Singer,
2009, p. 339)
Anti-IDE robots are being designed with the goal to protect soldiers and make their work safer.
This is because human life is irreplaceable and worth protecting while the memory chip of an
unconscious machine can be cloned easily to a new machine. The anthropomorphization of
such a robot makes it harder for the soldiers who work with it to see it merely as a replaceable
machine. This led to the situation of a soldier risking his or her own life to rescue a machine.

However, undesirable behaviour with intelligent machines does not only arise unintentionally
as in the case of the Anti-IDE robots. When the aim of the creators of an intelligent machine
was to exploit the human, then increased cooperation due to anthropomorphization can be
harmful. An example for this are humanoid slot machines. In a study Riva, Sacchi, and Bram-
billa (2015) showed that more humanoid gambling machines were anthropomorphized more
by the gamblers. The participants were more inclined to play with these anthropomorphized
machines which would cause them to lose more money.
Intelligent machines where anthropomorphization is central are the emerging sex robots. Due
to the intimacy of sexual relations, these machines are especially noteworthy also when con-
sidering the risks involved. The psychological depencence of a humans being on an intelligent

1IDE: improvised explosive device
2EOD: Explosive Ordnance Disposal
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sex robot might make the human partner very exploitable. Creators of sex robots could use
this dependency in unethical ways, e.g. for political campaigns or financial exploitation.3

An increased exploitation of humans by anthropomorphic machines seems indeed possible
as empirical evidence shows how humans are reliably more truthful with robots (Scheutz,
2011). This aligns well with the anecdotal evidence for chatbots. For example, we saw how
people would tell Weizenbaum’s ELIZA bot intimate secrets very eagerly.

We have observed that the risks of anthropomorphization fall mainly into two categories.
First, anthropomorphization may prevent the intelligent machine from fulfilling its design
purpose. Secondly, if a machine is designed to exploit humans, this will be facilitated by the
use of humanoid features.

5.2 Ethical considerations of anthropomorphization as a nudge

We have seen that there are many scenarios where the anthropomorphic nudge plays an im-
portant role in human-machine cooperation. However, in several cases humanoid appearance
promotes undesirable human behaviour. This is highly troublesome as intelligent machines
are ubiquitous and opaque and can have a profound impact on our lives.
Especially, we believe that the arguments provided so far are a clear case against any natural
tendency for ever more humanoid robots. When business interests might promote anthropo-
morphic framing in more and more settings, the potential risks of humanoid machines could
be ignored. It might even be necessary to impose legal regulations of humanoid features in
robots.
On the other hand, we witnessed that anthropomorphization can improve the acceptance of
intelligent machines and promote human-machine cooperation. These benefits of humanoid
features can significantly improve the performance of hybrid human-machine teams which
will save human lives by better medical care, fewer road accidents, etc. Waving these pos-
sible benefits entirely by abstaining from the use of humanoid features would be clearly too
restrictive.

We therefore argue for the encouragement of anthropomorphization on a use-case basis,
similary to Darling (2017). The design of an intelligent machine must always also take into
account the possible consequences of anthropomorphic design. Humanoid features should
only be used when they are useful for the function of the machine. They should not be
employed in cases where their effect is at best unclear or runs counter to the purpose of the
machine. Also, sensitive applications such as gambling should not make use of the anthro-
pomorphization nudge due to the discussed exploitation issue. We argue for an appropriate
use of humanoid features in intelligent machines. Powerful technology needs to be designed

3Besides, sex robots likely will not care when they are being mistreated and we could speculate whether
this could promote unconsented behaviour and misogynistic beliefs in society (Gutiu, 2016). This would be an
example of the dehumanization of robots which can accompany their anthropomorphization (cf. section 4.3.1)
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responsibly and this includes the responsible use of intended anthropomorphization.

However, there is the question of whether there could be spill-over effects from the anthro-
pomorphization of some machines to those machines that should be perceived as tools only.
In our use-case-based scenario, we want to clearly distinguish two types of situations. Because
humanoid features increase cooperation with machines, we want to use the anthropomor-
phization nudge in suitable applications only (context A), but we do not want humanoid
features in applications (context B) where, for example, they might make humans exploitable.
Hence, we want to promote anthropomorphization in context A and absence of anthropomor-
phization in context B.
Accordingly, what we do not want is anthropomorphization in context B and absence of
anthropomorphization in context A. The first case is harmful in the sense discussed above
while the latter case is the algorithm aversion inefficiency. We need to address a possible
caveat that spill-over effects from anthropomorphization in context A might also lead to
anthropomorphization in context B. These spill-over effects are imaginable if humans perceive
non-humanoid robots as more anthropomorphic after being exposed to humanoid robots
in their daily routine. Then, this spill-over effect could undermine the described use-case
scenario.

5.3 Can humans distinguish between anthropomorphized machines
and machine tools?

We would like to investigate how well individuals are in fact able to distinguish between
machines that they humanize and those that they do not. We are concerned about a possible
spill-over effect which could lead to an increased cooperation with non-humanoid machines
after being subject to the anthropomorphization nudge with humanoid machines on other
occasions. As we are unaware of any empirical studies that have tried to answer this question,
we will look for analogies both in society and with regard to animals. In these examples,
humans exhibit strikingly different behaviour towards individual human beings or individual
animals, respectively, depending on the framing that was given to these individuals.
In history there are a number of distressing cases where humans were regarded differently
with respect to their intrinsic value of being human. Severe marginalization, discrimination
and persecution have occurred in many cases by constructing an in-group-out-group setting,
constructed usually on the basis of national, religious or racial differences.
In the Roman Empire, slaves were not endowed with the same rights that the Roman people
had, instead they were considered mere property. Similarly, racial segregation as in the
well-known cases of the U.S. or South Africa show how a big part of the population was
able to accept and internalize the artificial othering of people of colour.
Even though single individuals understood the cruelty of this power relationship, many others
were able to internalize the arbitrary differences constructed between humans and humans
stripped of their rights.
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Another example for irrational compartmentalisation is found in the speciesism humans ex-
hibit on a daily basis (cf. Norcross, 2004). The choices consumers make when buying meat
products do not reflect rational behaviour about which species of animals they consume.
Most people care deeply about domesticated animals such as dogs, cats or horses, but are
very capable of ignoring the conditions which animals for meat production have to endure.
It might have been reasonable from an evolutionary perspective to not eat a domesticated
dog that is guarding you, but today a meaningful argument why people eat the animals they
eat is usually lacking. The distinction in what animals are being used for food production
is artificial as it does not follow a consistent rational, such as animal intelligence or health
effects for the consumer.
The challenge of distinguishing humanoid intelligent machines from non-humanoid machines
seems to be much smaller than the arbitrary and often cruel distinctions mentioned above.
Therefore, we arrive at the conclusion that these examples seem to suggest the feasibility of
an anthropomorphization nudge on a use-case basis.



Chapter 6

A study proposal on anthropomorphic
nudging in the real world

In this chapter we will present the outline of an empirical study which is supposed to test
our argument for anthropormorphization on a use-case basis. We have argued that human
anthropormorphization of machines can promote human-machine cooperation. We saw,
however, that a precondition for this is the human capability to distinguish the intelligent
machines we humanize and those we do not.
We are unaware of any empirical studies that may have already investigated this question.
We will therefore suggest to test whether a human participant will cooperate differently with
a non-humanoid machine partner after he or she has cooperated with a humanoid machine
partner before.

There are hypotheses which we have argued for above and that we would like to test in
the empirical study. First of all, we have been arguing that humans have a greater tendency
to cooperate with machines when they humanize the machines. This was an important point
which we used when we argued for anthropomorphization for human-machine cooperation.
We therefore want to confirm this in the experiment:

H1: Human cooperation with a machine partner is stronger when the machine is more
anthropomorphized.

In the previous chapter we also argued that human behaviour in other contexts (racial dis-
crimination and speciesism) seems to suggest that in fact it should be possible for humans
to artificially perceive intelligent machines in different categories. There will be the category
of machines which are supposed to being anthropomorphized by humans, here called hu-
manoid machines, and there will be the category of non-humanoid machines being treated
as mechanical tools. Then, we assume that it does not have any significant influence on
human cooperation with such non-humanoid machines whether the human agent has had
any exposure to a humanoid machine beforehand:
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H2: Anthropomorphizing certain machines has no effect on the human cooperation with a
non-humanoid machine.

In the study we seek to find evidence for these two hypotheses.

The aim of the proposed study is first to find evidence for H2. We suggest to use extreme
cases of a humanoid machine which combines many features known to promote anthropo-
morphization and another non-humanoid machine without any of these. It should be noted
that this implies that we will not be able to pinpoint findings to single characteristics such as
the name or shape of the machine. Through the contrasting framings of the two machines we
want to show that humans treat the two machines in very differently ways and only humanize
the humanoid machine partner.
The humanoid machine will have both direct humanoid features1 as well as features that
promote perceived agency (cf. section 4.2). Regarding direct humanoid features we propose
indicated joints such as arms and especially the outline of facial features. Also, communica-
tion is via voice communication similar to human natural voice in voice assistants of modern
phones. In the light of the discussion on perceived agency, the humanoid machine should
be able to move around and have some degree of autonomy in the decision-making process.
Moreover, the instructions of the study will enable us to provide the humanoid machine with
the right framing.
Humanoid framing gives a backstory to the machine. In our case, the story of the humanoid
machine might be the following. It is presented as Alex, who will do everything to help
you, the participant, in every possible way. Alex is extremely smart and very knowledgeable.
Besides, Alex knows some of the best jokes and will never let you down. No matter how hard
the problem seems, you can always trust Alex’ friendliness and great team-work. Alex has
already been living in our lab for more than four months and everybody in the team loves
him, therefore we are sure that the two of you will also be a great match.
In contrast, the non-humanoid machine lacks all of these features. It is a small metal box
which communicates using an unmodulated computer voice that lacks the naturalness of hu-
man voice. This non-humanoid machine is called Z2100 in contrast to a human name. While
it does not have a backstory that promotes anthropomorphic framing, it is also introduced as
being equipped with a state-of-the-art artificial intelligence and proved to be very reliable and
useful over the last four months. Besides, Z2100 features cooperation skills on the level of
human cooperation and its computational power will be a great asset to you, the participant.

We suggest to use human-human cooperation as control for the study. The control group will
serve two purposes. First, we might get additional evidence regarding H1. We expect humans
to be more inclined to cooperate with humanoid machines than non-humanoid machines,
but less than with other humans. Using the human-human control scenario, we will be able

1The robot does not need to resemble a human very closely to promote anthropomorphization. We have
discussed earlier that there is a natural tendency for humans to adapt and also because of the uncanny valley
hypothesis we should be careful not to make the robot appear very similar to an actual human being.
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to check whether this holds true. Additionally, we do not expect cooperation-interaction
with another human to have an effect on the inclination to cooperate with a non-humanoid
machine afterwards.
Therefore, we propose a study design where participants2 are split randomly into three
different groups. Group A will play a strategic game with the non-humanoid machine Z2100,
Group B will play the same game with the humanoid machine Alex, and Group C as control
will play the game with another human being. Afterwards, all participants will play a second
instance of the game with the non-humanoid machine Z2100.

Instructions

Play Game 1

Play Game 2

Non-humanoid
machine partner

Non-humanoid
machine partner

Humanoid
machine partner Human partner

Group A Group B Group C

Figure 6.1 – Proposed study design for testing whether humans are able to adapt their behaviour depending on
the amount of humanoid features present in their cooperation partner. Study participants are divided randomly into
the three groups A, B, C. Each group plays against a different interaction partner in a first game instance. Then all
participants play against a non-humanoid machine partner in the second game instance.

We will test the inclination for cooperation in the games. It is important to choose a game
where both players benefit when they cooperate, but selfish or mean game-play should also
be possible. A turn-taking, extensive game seems a reasonable choice. Therefore, we suggest
playing the Block Game which Ishowo-Oloko et al. (2019) used in their experiment or a
similar game.

2Using a power analysis, it is possible to estimate the optimal number of participants. This is because a too
low numbers of participants increases the risk of not being able to come up with significant results.
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A survey after the second round will provide retrospective insight into the question of how
the participants felt about the situation. We propose to include a questionnaire on anthropo-
morphization such as the "Godspeed" questionnaire (Bartneck, Kulić, Croft, & Zoghbi, 2009)
or the IDAQ (Waytz, Cacioppo, & Epley, 2010). The perceptions of the participants might
provide further information regarding the reasons why and if humans distinguish between
machines when anthropomorphizing them (H2).

In the study, we might want to control for different variables as they can influence the
possible confirmation of the hypotheses. In section 4.2, we mentioned differences in social
inhibition between male and female participants due to algorithms. Therefore, it is reasonable
to introduce gender as a first control variable.
Furthermore, we might suspect that exposure to technology changes the way we interact
with it. Younger people grew up with ubiquitous technology while older people have not. It
seems speculative whether this would make it harder or easier for young people to distinguish
between machines they humanize and machines they do not. However, as an effect on H2
seems likely, age is another reasonable control variable.
Additionally, it is unclear if the distinction (H2), which we want to confirm, requires ad-
ditional mental capacity from the participants. If this was true, intelligence or working
memory capacity of the participants can have an influence and might be considered as control
variables.
There are possible extensions of the study. Instead of two games with only one round, we
could alter the study design and play many rounds in both game instances. This might make
the findings more robust and also provide insights into the development of cooperation over
the rounds.
After confirming H2, we will be interested in the question as to which humanoid factors were
crucial in creating the distinction between the humanoid and the non-humanoid machine. We
might therefore repeat the experiment with many different versions of a humanoid machine.
One version might only have a human name, another one only human shape or only a human
backstory. It seems interesting which of the factors or which combination of them is most
important.

We are confident that the presented study proposal will help to build the argument for the
anthropomorphic nudge in human-machine cooperation. If humans are able to distinguish
between humanoid and non-humanoid machines, anthropomorphization could be used to
promote human-machine cooperation while minimizing negative side effects.
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Conclusion

Intelligent machines have a profound impact on individuals and society. We showed how
human-machine cooperation plays an important role in the transformation that is taking
place and should therefore be a key focus of machine behaviour. In this context, we discussed
algorithm aversion and the human reluctance to cooperate with (intelligent) machines.
There is a transparency-efficiency trade-off regarding human-machine cooperation as mis-
guiding humans into believing that their cooperation partner was human increases efficiency.
We argued that the human tendency to anthropomorphize machines can be used to avoid
the ethical difficulties that would arise from a lack of transparency. Anthropomorphizing
behaviour can be fostered through humanoid and autonomous features in machines. Influ-
encing human interaction with a machine through these humanoid features is the anthropo-
morphization nudge.

However, there is a downside connected to the anthropomorphization of machines. It might
promote undesirable behaviour in humans and make them more exploitable. We thus argue
that machines should bear humanoid features only if there is a legitimate reason for this. The
question when humanoid features are used should be made on a use-case basis.
A precondition for this use-case-basis scenario is the human ability to distinguish between
humanoid machines which are being anthropomorphized and non-humanoid ones which
shall not. We hypothesize that humans have this ability and suggest a study design which
is able to test this hypothesis.
With a confirmed hypothesis, we advocate the anthropomorphization of certain intelligent
machines to increase the efficiency of human-machine cooperation. We are that this frame-
work may enable humans and intelligent machines to cooperate in a way that is beneficial to
humans and to society.
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