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Fusion of Geometry and Color Information for
Scene Segmentation

Carlo Dal Mutto, Student Member, IEEE, Pietro Zanuttigh, Member, IEEE, and Guido M.
Cortelazzo, Member, IEEE

Abstract—Scene segmentation is a well-known problem in
computer vision traditionally tackled by exploiting only the color
information from a single scene view. Recent hardware and soft-
ware developments allow to estimate in real-time scene geometry
and open the way for new scene segmentation approaches based
on the fusion of both color and depth data. This paper follows
this rationale and proposes a novel segmentation scheme where
multi-dimensional vectors are used to jointly represent color and
depth data and normalized cuts spectral clustering is applied
to them in order to segment the scene. The critical issue of
how to balance the two sources of information is solved by an
automatic procedure based on an unsupervised metric for the
segmentation quality. An extension of the proposed approach
based on the exploitation of both images in stereo vision systems
is also proposed. Different acquisition setups, like Time-of-Flight
cameras, the Microsoft Kinect device and stereo vision systems
have been used for the experimental validation. A comparison
of the effectiveness of the different depth imaging systems for
segmentation purposes is also presented. Experimental results
show how the proposed algorithm outperforms scene segmenta-
tion algorithms based on geometry or color data alone and also
other approaches that exploit both clues.

Index Terms—Segmentation, Clustering, Sensor Fusion, Un-
supervised Metric, Depth Map, Stereo Vision, Time-of-Flight,
Kinect

I. INTRODUCTION

Scene segmentation is the well-known problem of iden-
tifying the different elements of a scene. Images are the
most common way of representing scenes, therefore it is not
surprising that scene segmentation by way of images has at-
tracted a lot of attention. Unfortunately scene segmentation by
images is an ill-posed problem, and, despite a huge amount of
research, it is still a very challenging task. Many segmentation
techniques based on different insights have been developed,
such as methods based on graph theory [1], methods based on
clustering algorithms, (e.g. [2] and [3]), and also other methods
based on region merging, level sets, watershed transforms
and many other techniques [4]. The main drawback of image
segmentation, independently from the deployed technique,
is that the information carried by a single image may not
suffice to completely understand the scene structure (consider
for instance the simple case of an object and a background
of the same color). Current technology allows to acquire
scene descriptions beyond simple images: indeed geometrical
scenes representations can be simply obtained in various ways.
Binocular and multi-view stereo vision systems have been
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extensively studied and their capabilities have been proved (an
extensive review can be found in [5]). The market currently
offers also more expensive and accurate active methods such
as structured light systems and laser scanners. Lately matricial
Time-of-Flight range cameras (e.g., Mesa Imaging SR4K [6])
and structured-light cameras (e.g., Microsoft Kinect [7]) have
reached the market and are gaining popularity. Finally unstruc-
tured scene reconstruction tools like Microsoft Photosynth [8]
can also provide the geometrical representation of a scene
from a collection of pictures taken from random positions.
The fusion of depth information acquired by any of these tools
together with the color information coming from a standard
color camera allows to obtain scene descriptions accounting
for both geometry and color, i.e., representations where each
sample has both geometry and color information associated
to it. In this context, scene segmentation can be approached
within a sensor fusion framework by algorithms exploiting
both clues together and not just color as in standard segmen-
tation algorithms. Within this perspective the segmentation
problem can be formulated as the search for effective ways
of meaningfully partitioning a set of samples featuring color
and geometry information. Note how the proposed approach
is close to what happens inside the human brain where the
disparity between the images seen by the two eyes is one
of the clues used to separate the different objects inside a
scene together with prior knowledge and many other features
extracted from the data acquired by the human visual system.

While the literature about scene segmentation based on
color information is extremely vast, the number of works
addressing scene segmentation by way of color and geometry
information is still rather limited. A first possible solution is
to perform two independent segmentations, one on the color
image and one on the depth data, and then join the two results,
as proposed in [9]. Many approaches, like [10] and [11],
consider the special case of the recognition of the foreground
from the background rather than the general scene segmenta-
tion case. In [12] two likelihood functions, one built on the
basis of depth information and the other on the basis of color
data, are combined together in order to assign samples to the
background or to the foreground. Two different approaches for
the segmentation of binocular stereo video sequences are pre-
sented in [13]: one, based on Layered Dynamic Programming,
explicitly extracts depth information while the other one, based
on Layered Graph Cuts, uses stereo correspondences without
explicitly computing depth. Some other recent works try to
jointly solve the segmentation and stereo disparity estimation
problems. Ladicky et al. [14] exploit a probabilistic framework
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based on Conditional Random Fields. This approach uses some
heuristics about the scene structure that limit it to a particular
scene setting (i.e., urban streets). A more general approach,
also based on a probabilistic framework has been presented
in [15]. Clustering techniques has been widely used in image
segmentation and are well-suited to be extended in order to
include different spatial and color features as shown in [16].
They can be exploited for joint depth and color segmentation
by adding also the depth component to the vectors that are then
clustered. Bleiweiss et Werman [17] follow this approach and
apply mean shift clustering to vectors containing both the color
and depth information. In [18] superparamagnetic clustering
and channel representations are instead exploited to segment
plant scenes from the color and depth data acquired by a
Microsoft Kinect camera. In [19] we proposed a segmentation
scheme for stereoscopic data that exploits different stereo
vision algorithms in order to extract depth information which
is then used to assist image segmentation based on clustering
techniques. The approach of [19] was limited to stereo vision
setups and required a supervised adjustment of a parameter
weighting the relevance of geometry against color, an issue
common also to other joint depth and color segmentation
schemes such as [17] and [18].

This paper instead proposes a novel general scene seg-
mentation scheme, based on the normalized cuts spectral
clustering algorithm [3], that exploits the fusion of geometry
and color information in a parameterless framework. This
paper, differently from [19], introduces a completely general
approach that can be applied in a completely automated way
(i.e. it does not require any supervision for the choice of the
balancing parameter between depth and color) regardless of
the acquisition device and data type. Furthermore this work
introduces an interesting improvement w.r.t. to [19] also for
the stereoscopic image case that allows to exploit both color
images of the stereo setup (see Section V) and it explicitly
handles samples without a valid depth value due to occlusions
or to the depth estimation algorithm.

The paper is organized as follows: Section II formalizes the
adopted scene representation fusing both color and geome-
try. Section III introduces the proposed scene segmentation
algorithm based on the normalized cuts spectral clustering
algorithm. In Section IV an algorithm for the automatic
balancing of the weight between geometry and color is
proposed. It is based on a novel unsupervised metric for
scene segmentation quality assessment. Section V proposes
an extension of the segmentation algorithm tailored to the
important case of stereoscopic data that besides geometry
exploits the color of both images of a stereo pair. Section
VI reports the experimental results and demonstrates how the
fusion of geometry and color within the proposed method
outperforms segmentation algorithms based on either geometry
or color information only, or on the fusion of the two clues. In
Section VII the results of the segmentation of the same scene
acquired with different depth imaging techniques are presented
and the performance of the different acquisition systems for
segmentation purposes are discussed. Finally, Section VIII
draws the conclusions.

II. JOINT REPRESENTATION OF GEOMETRY AND COLOR
INFORMATION

Fig. 1 shows an overview of the proposed scene segmenta-
tion algorithm. The procedure can be subdivided into two main
stages. In the first stage, a unified 6-dimensional representation
of the scene points is built in order to fuse geometry and
color information in a fully automatic way. In the second
stage the obtained point set is segmented by means of spectral
clustering.

Refinement
stage

Color
data 6D point

vector

RGB → CIELab
conversion

Normalised cuts
spectral clustering

(x,y,z)
point set

Geometry
data

Segmented
data

1/σc

λ1/σg

Εstimation of 
the optimal λ

Fig. 1. Architecture of the proposed segmentation scheme

This section addresses the construction of the unified rep-
resentation for the fusion of geometry and color information.
The description assumes the availability of a generic scene
S described by a set of N points pi, i = 1, ..., N featuring
both geometry and color information. Let us stress that for
our purposes, the specific characteristics of the used 3D
acquisition system are irrelevant and the acquired scene can
be represented both by an image with the corresponding depth
map or by a colored sparse point-cloud independently of the
acquisition system. Such independence from the acquisition
equipment is of major practical relevance since it allows to
apply the proposed segmentation method with total generality
to any type of color and geometry data describing a scene. In
Appendix A it is also shown how to handle samples without
a valid depth value due to the limitations of the employed
acquisition system.

Color data require a 3D vector, in order to account for
the R, G and B color components and another 3D vector is
required for geometry information in order to describe the
x, y and z coordinates of a point with respect to a given
reference system (such a reference system can be obtained
from the calibration data and the depth-maps produced by
many acquisition systems). First of all geometry and color
information need to be unified in a meaningful way. We choose
to represent the color values in a perceptually uniform space
in order to give a perceptual significance to the Euclidean
distance between colors. This helps keeping consistent with the
perceived color difference the distances used in the clustering
process of Section III. Note also that a uniform color space
ensures that the distances in each of the 3 color components
are comparable, thus simplifying the clustering of the 3D
vector associated to color information. The CIELab space was
selected for color representation, i.e., the color information of
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each scene point pi, i = 1, ..., N ∈ S, is the 3D vector:

pc
i =

 L(pi)
a(pi)
b(pi)

 , i = 1, ..., N (1)

Geometry can be simply represented by the 3D coordinates
x(pi), y(pi), and z(pi) of each point pi ∈ S, i.e. as:

pg
i =

 x(pi)
y(pi)
z(pi)

 , i = 1, ..., N (2)

The ideal scene segmentation algorithm should be insensi-
tive to the relative scaling of the point-cloud geometry since
not all the scene acquisition systems are able to provide
geometrical descriptions with respect to an absolute scale
system (e.g. meters). For instance, tools like Photosynth [8]
are only able to reconstruct the scene geometry up to an
arbitrary scale factor. Therefore, in order to be independent
with respect to scaling, all the components of pg

i , i = 1, ..., N
are normalized w.r.t. the average σg of the standard deviations
of the point coordinates. To be more precise, let σx, σy and σz
be the standard deviations of sets x(pi), y(pi) and z(pi), i =
1, ..., N respectively. The average standard deviation is then
defined as σg = (σx + σy + σz)/3 and the adopted geometry
representation is vector:

 x̄(pi)
ȳ(pi)
z̄(pi)

 =
3

σx + σy + σz

 x(pi)
y(pi)
z(pi)

 =
1

σg

 x(pi)
y(pi)
z(pi)


(3)

It is worth noting that since the proposed segmentation al-
gorithm is based on relative points distances and the overall
distances are normalized, segmentation based on (3) besides
scaling will also be insensitive to the choice of the reference
frame. Furthermore by using the coordinates of the point in
the 3D space it is ensured that all the 3 spatial dimensions
refer to the same space and that they are consistent, differently
from other approaches like [17] where the 2D coordinates in
image space are used together with depth data, which lies in
a different space.

In order to balance the relevance of the two kinds of
information (color and geometry) in the merging process, the
color information vectors pc

i , i = 1, ..., N are normalized as
well by the average σc of the standard deviations σL, σa and
σb of their L, the a and the b components respectively. The
final color representation therefore is:

 L̄(pi)
ā(pi)
b̄(pi)

 =
3

σL + σa + σb

 L(pi)
a(pi)
b(pi)

 =
1

σc

 L(pi)
a(pi)
b(pi)


(4)

From the above normalized geometry and color information

vectors, each scene point pfi , i = 1, ..., N is represented as:

pf
i =


L̄(pi)
ā(pi)
b̄(pi)
λx̄(pi)
λȳ(pi)
λz̄(pi)

 , i = 1, ..., N (5)

where λ is a parameter balancing the contribution of color
and geometry. High values of λ increase the relevance of
geometry, while low values of λ increase the relevance of color
information. Fig. 2 shows an example of the relevance of λ
in the segmentation of the plant scene, which is a 3D model
obtained by Microsoft Photosynth. For low values of λ (e.g.,
λ = 0.001) the segmentation is dominated by the color clue,
thus leading to some artifacts due to the noise on the color
data. For higher value of λ (e.g., λ = 5), the segmentation
is dominated by the geometry clue, and the entire plant is
segmented into three parts that do not take in account color,
denying as well a meaningful segmentation. For intermediate
values of λ (e.g., in this case λ = 1), geometry and color
information in this case are well balanced providing correct
segmentation results by the proposed method. Note that the
value of λ leading to the best segmentation results depends
on the specific scene data. While in [19] λ was selected in a
supervised way, this paper shows how to automatically select
it by the method that will be introduced in Section IV.

III. SEGMENTATION BY MEANS OF SPECTRAL CLUSTERING
AND NYSTRÖM METHOD

The scene representation introduced in the previous section
produces a set Pc formed by the 6D vectors pf

i , i = 1, ..., N
which represents in a intuitive and consistent way the geometry
and color information of the scene points pi, i = 1, ..., N .
Vectors pf

i are well suited to be clustered by one of the various
clustering techniques. Central grouping algorithms, such as k-
means and mean-shift clustering, are fast and effective, but
have the main drawback of assuming Gaussian the distribu-
tions of the points in Pc. Since this assumption is not generally
verified in the considered application, this family of methods
applied to the set Pc gives poor results. Fig. 3 shows an
example of the results of k-means clustering and of mean-
shift clustering on set Pc of points relative to the baby scene.
The methods based on pairwise affinity measures computed
between all the possible couples of points in Pc operate
somehow within a philosophy opposite to that of central
grouping. They are more flexible, because they do not assume
a Gaussian model for the distribution of the points, and con-
sequently their results in practical segmentation situations are
more accurate and robust. The main drawback of the pairwise
affinity methods is that they need to compare all the possible
pairs of points in Pc. Computing and storing all the possible
affinities forces a tremendous amount of processing, very
expensive in terms of both CPU and memory resources. The
normalized cuts spectral clustering method presented in [3] is
an effective example of this family. In this method a graph
is firstly built from all the points (vertices) and their pairs
(edges), and then partitioned according to spectral graph theory
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Acquired
Scene λ = 0.001 λ = 0.1 λ = 0.5 λ = 0.6 λ = 0.7 λ = 0.8 λ = 0.9

λ = 1 λ = 1.1 λ = 1.2 λ = 1.3 λ = 1.4 λ = 2.0 λ = 5.0

Fig. 2. Different segmentation results on the plant scene for different values of λ. (Best viewed in colors)

a) b)

Fig. 3. Segmentation of the baby scene applying a) k-means clustering and
b) mean-shift clustering

criteria. Normalized cuts is the minimization criterion adopted
for the graph cut in this case in order to account both for
the similarity between the pixels inside the same segment and
the dissimilarity between the pixels in different segments. The
minimization by the normalized cut criterion can be regarded
and solved as a generalized eigenvalue problem. A variety of
methods have been proposed for the efficient approximation of
the graph associated to the set of points in order to overcome
the computational and memory burden. A possible solution is
imposing that not all the points are connected, but that the
non negligible connections only concern small sets of points.
This assumption practically leads to oversegmentation, and
implicitly imposes some models to the point distributions. In
the method based on the integral eigenvalue problem proposed
in [20] the set of points is firstly randomly subsampled (a
set of n points is randomly extracted from the whole set of
N points); this subset of n points is then partitioned by the
method proposed in [3], and the solution is propagated to the
whole N points set by a specific technique called Nyström
method. As shown in [20], the results of this method are
comparable to the ones of the normalized spectral clustering
algorithm, but at computation and memory costs comparable
with those of the central grouping algorithm. For this reason
the Nyström method approach to the normalized cut spectral
clustering (briefly denoted with NNCSC) was selected for our

scene segmentation application. The fact that NNCSC does
not assume any model for the distribution of the points in
Pc is a rather important feature. Indeed color distribution,
as already pointed out, is usually not Gaussian and it is
even more unlikely that the geometry distribution is Gaussian
(just consider, for instance, that a Gaussian distribution cannot
represent well the surface of a human body in 3D). Moreover,
since the two components of the point-cloud feature vectors
are usually not Gaussian, it is far more unlikely that their joint
distribution is Gaussian. In some way, NNCSC provides a nice
framework to incorporate the fact that Pc is partitioned into
subsets where color and geometry are homogeneous, without
imposing an overall model, which for the distributions of the
points in Pc would be very hard to derive and in any case it
would be quite unlikely Gaussian. For a detailed explanation
of normalized cuts spectral clustering, the interested reader is
referred to [3], and for Nyström method to [20]. A drawback of
normalized cuts, shared with other clustering algorithms like
k-means, is that the number of clusters K in which the point-
cloud is partitioned needs to be known a priori. This issue can
be overcome by the use of an automatic selector of the number
of clusters K, such as the one proposed in [21]. The Nyström
method approximation leads to a very fast algorithm, hence
suitable for real time applications. It will be shown that the
clusters found by NNSC applied to Pc represent rather well
the different scene regions.
In order to avoid small regions due to noise we also included
an optional refinement stage for samples arranged on regular
grids (i.e., when the input data are images and depth maps)
where regions with extension smaller than a threshold are
removed and their points are assigned to the cluster corre-
sponding to the mode of the points closer to the region. Such
a refinement was instead not used in the results of Fig. 15, 16
and 17 where the data are not aligned on regular grids.

IV. AUTOMATIC WEIGHTING OF COLOR AND DEPTH
INFORMATION

The optimal value of the λ parameter, i.e. the relative weight
between depth and color information, depends on the color
and geometry properties of the scene and it turns out to be a
key issue in the proposed segmentation scheme. Given that a
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single optimal value of λ does not exist, this section proposes
an effective method for the automatic setting of λ, based on
an unsupervised metric for segmentation quality assessment.
This approach allows to obtain a parameterless segmentation
method that does not rely on manual tuning of the weighting
coefficient λ.

A number of unsupervised metrics for the evaluation of
image segmentation quality have been proposed in the last
decades (a comprehensive taxonomy of them is given in [22]).
Among the various metrics of the literature, the FRC metric
of [23] has proven to be at the same time very reliable and
computationally fast. This method, as proposed by the authors,
takes as input a color image and a segmentation map and
returns as output a measure of the segmentation quality. Our
context is slightly different, because our input is threefold,
namely a color image I , a depth-map D (with the geometry
information) and a segmentation map S (where the image has
been divided in a set of K segmented regions Si, i = 1, ..,K)
and we are forced to introduce a novel segmentation metric
that considers together both color and geometry. In the case of
unstructured data representations (i.e. point clouds), each point
has an associated 3-dimensional color vector and I is simply
the set of all the color vectors associated to the 3D points. The
depth map D is instead replaced by a set of 3-dimensional
vectors with the (x, y, z) coordinates. The segmentation map
simply associates each point to one of the clusters. Both color
and geometry data are firstly normalized as follows:
• The three color channels (red, green and blue) of I , i.e.,
IR, IG and IB are normalized in order to obtain a color
representation Ĩ with values in the range [0, 1].

• Depth map D is also normalized to depth map D̃ with
values in [0, 1]. In the case of unstructured data D is also
shifted and normalized in order to have all the coordinates
in the range [0, 1]. More precisely, for unstructured data,
the chosen normalization factor is the maximum of the
sides of the bounding box including the point cloud. The
same normalization factor is used for all the 3 dimensions
in order to avoid “stretching” the point cloud.

Following the approach presented in [23], a “good” segmen-
tation should have two fundamental properties, namely:
• inside a single segmented region the image should have

uniform properties (i.e., a constant color or some repeat-
ing pattern or texture).

• each couple of different segments should have different
properties (this ensures that there is no over-segmentation
of the image).

In the considered situation the above criteria should be sat-
isfied with respect both to the color image and to the depth
map. Firstly we consider the segmentation map S and the
normalized color image Ĩ: the evaluation of the first property
is quite simple for regions of constant color, where it is usually
associated to the standard deviation of the data inside the
segmented region, but it is quite difficult for heavily textured
regions. This issue in [23] and other works on segmentation
evaluation is approached by computing various texture or color
distribution descriptors. Unfortunately such descriptors are not
always reliable. Indeed heavily textured regions with complex

color patterns are where both state-of-the-art segmentation
techniques and evaluation metrics usually either have major
problems or completely fail. Since in our application also
depth information is available, we decided to give more im-
portance to the color component of the metric in regions with
limited texture and less importance in heavily textured regions
where depth data can be more reliable. The idea adopted to
obtain this result is to subtract from the standard deviation of
the data of a segmented region the standard deviation due to
the amount of texture inside the region. More precisely it is
assumed that the amount of texture of a segmented region Si,
denoted as σt(Si), is proportional to the average local standard
deviation of the samples internal to segment Si, namely:

σt(Si) =

∑
j∈S∗

i
σw(j)

|S∗i |
(6)

where σw(j) is the local standard deviation computed on a
small window (for the experimental results a 3 × 3 window
has been used) centered on pixel j. S∗i is the set of the internal
pixels of segment Si, i.e., the ones for which window w(j) lies
completely inside the segment. |S∗i | is instead the cardinality
of S∗i . Note that this reasoning assumes that the scene color
information is represented by way of an image. If the scene is
represented by a sparse colored point cloud the window can
be replaced by the set of the points with distance from j lower
than a threshold t. In the case of point clouds this approach
is however computationally expensive. It can be made faster
by avoiding the subtraction of the texture standard deviation
at the price of a loss in the metric performances. A measure
of the internal disparity Di

intra of the ith segment Si can be
computed as follows:

Dintra
i = max(σ(Si)− σt(Si), 0)

|Si|
N

(7)

where σ(Si) is the global standard deviation of the color
data inside the segmented region, |Si| is the cardinality of
the points in the ith region Si and N is the total number
of points in Pc. As previously said the idea is to consider the
standard deviation due to the clustering accuracy and not to the
complexity of the texture pattern inside the segmented region.
The average local standard deviation is therefore subtracted
to the global standard deviation of the color inside the region
(in the case that the local standard deviation is greater than
σ(Si), Dintra

i will be set to 0). Expression (7) reduces the
weight of highly texturized regions, which is quite reasonable
in light of the fact that for these regions depth data offer
more reliable indications. This is particularly true if depth
information is computed by stereo vision techniques since
their performance, as well known, is more reliable in textured
regions. In any case it seems rather reasonable to use depth
in heavily texturized regions and color information in regions
with uniform or limited texture which are easy to segment by
color information and usually correspond to areas where depth
is poorly estimated due to the lack of features to be matched.
Finally the segments are also weighted on the basis of their
size.

The Dintra measure for the whole image is computed as
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the sum of the Dintra
i values of each segmented region:

Dintra =
∑
i

Dintra
i (8)

The disparity between the different segmented regions is
instead computed as the distances between the centroids of
pairs of clusters (note that here a cluster corresponds to a
segmented region) as in the FRC metric introduced in [23]:

Dinter
i,j = |E(Si)− E(Sj)| (9)

These disparities are then averaged on all the segment pairs:

Dinter =

∑
i,j(i 6=j)D

inter
i,j

K(K − 1)
(10)

and the final metric for color data is computed as the differ-
ence between the disparity between different regions and the
internal disparity divided by 2, i.e., as:

Qcolor(Ĩ , S) =
Dinter −Dintra

2
(11)

The metric for geometry information is computed in the
same way but without considering the local standard devia-
tions, namely:

DDintra
i = σD(Si)

|Si|
N

(12)

DDintra =
∑
i

Dintra
i (13)

DDinter
i,j = |ED(Si)− ED(Sj)| (14)

DDinter =

∑
i,j(i 6=j)D

Dinter
i,j

K(K − 1)
(15)

Qdepth(D̃, S) =
DDinter −DDintra

2
(16)

where σD(Si) is the standard deviation of the geometry values
in region Si and DDinter is also computed with respect to
geometry data. Note how D is a set of scalar values in the
case of depth maps and a set of 3-dimensional vectors in the
case of point clouds, i.e. in the unstructured data case D has
the same structure of color data with x, y and z in place of
the three color channels. Finally the combined segmentation
quality metric is computed as follows:

Q(Ĩ , D̃, S) = Qcolor(Ĩ , S) + nf ∗Qdepth(D̃, S) (17)

with nf =

{
1 for unstructured data
3 for depth maps

In the case of depth maps depth relevance is multiplied by 3
in order to assign the same total weight to the 3 color channels
together and to the depth data. In the unstructured data case
both representations have 3 components and the multiplication
by 3 is not needed.

The optimal λ can be automatically selected as the value
that maximizes the Q(Ĩ , D̃, S) value in (17). Different values
of λ correspond to different segmentation maps S that in turn
correspond to different values of Q(Ĩ , D̃, S). The value of
λ that maximizes (17) is the value that provides the best

segmentation with respect to the Q metric. This approach
was experimentally found to be very effective, indeed in all
the experimental examples it always gave the value of λ
providing the best segmentation. An example of this fact is
reported in Fig. 4 where the maximum of Q (obtained for
λ = 4) corresponds to the best segmentation. Indeed only
for λ = 4 even the part of the box between the legs of the
baby is correctly associated to the box segment. The plot of Q
versus λ clearly shows how the correspondence between the
values of λ and the changes in segmentation quality are well
reflected by changes of the Q(Ĩ , D̃, S) value. Fig. 5 shows the
behaviour of metric Q versus λ on a different scene, while
Fig. 6 refers to the computation of the metric on a point cloud
representation instead of a color image and a depth map as
in the other two cases. It is worth noting that, although the
plots are quite different, in all the 3 cases the maximum of Q
corresponds to the value of λ delivering the best segmentation
result. It is finally worth noting that in spite this method
requires to compute several segmentations, it can be easily
managed within reasonable computation times by coarse to
fine approaches. For instance a set of segmentations can be
firstly performed on a subsampled dataset and then, once the
optimal λ value is selected, the full resolution segmentation
can be computed only for that value of λ. Furthermore in the
case of video segmentation, since the optimal λ depends on
the general scene properties, it could be computed on the first
frame and then propagated to a set of subsequent frames.

V. SEGMENTATION OF STEREO IMAGE PAIRS

Stereo vision algorithms are rather attractive for various
reasons: there is a copious literature about them [5], they
require an inexpensive setup and they use only a pair of images
as input data, hence representing the next step in terms of
acquisition complexity with respect to segmentation based on
single images. Stereo vision data therefore represent a situation
of special interest for the proposed segmentation approach.
In this section an ad-hoc extension of the proposed method
for this kind of data is proposed. It is worth noting though
that the segmentation scheme introduced so far can already
provide very good performance without the further extension
of this section. This optional refinement allows to improve
performance in the cases where two images and a depth map
are available.

As it is well known, a stereo vision system is constituted by
two standard cameras that acquire two slightly different views
of the same scene. If the stereo vision is calibrated, depth
information can be estimated from the two views by one of
the many stereo vision algorithms (see [24] for a comparison
of state-of-the-art algorithms in this field). The segmentation
method introduced so far can already be applied to the depth
map obtained from stereo vision and to one of the two images.
However since in this case a second image of the same scene
is also available, this section introduces a way to exploit it in
order to further improve the segmentation results.

Lets denote with L(pi) and R(pi) the pair of rectified
images and with D(pi) the disparity map estimated from them
(relative to the left view). Without loss of generality assume
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that the target is the segmentation of the scene as seen from
the left image L(pi). The disparity map can be used to locate
for each pixel of the left image the corresponding one in the
right image, except for the pixels that are visible only in the
left view (because of occlusions or because they are out of the
right frame) or the pixels without a disparity value because of
the limitations of the adopted stereo vision algorithm. Hence
it is worth defining image Rw as follows:

Rw(pi) =

{
R(pi −D(pi)) if D(pi) exists
L(pi) if D(pi) does not exist

(18)
Image Rw(pi) represents the right image warped to the
viewpoint of the left one except for the points of the left image
not visible in the right one. For these points the corresponding
value in the left image is simply copied onto Rw(pi). Fig.
7d shows an example of such an image. The disparity map
is related to the depth map Z(pi) through the well-known
equation Z(pi) = (bf)/D(pi) where b is the baseline of the
stereo vision setup and f focal length of the two cameras.
The depth map can then be used together with calibration
information in order to compute the positions of the scene
points in the 3D space. Therefore in the stereo case for each
scene point p there is available:

• its color value in the left view L(pi) =
[Ll(pi), al(pi), bl(pi)]

• its color value in the right view Rw(pi) =
[Lr(pi), ar(pi), br(pi)] (as previously said replaced by a
copy of L(pi) for the points not visible in the right view)

• its position in the 3D space (x(pi), y(pi), z(pi))

As in Section II all the various components can be normalized
by the corresponding standard deviations obtaining the three
normalized vectors: L̄l(pi)

āl(pi)
b̄l(pi)

 =
1

σcl

 Ll(pi)
al(pi)
bl(pi)


 L̄r(pi)
ār(pi)
b̄r(pi)

 =
1

σcr

 Lr(pi)
ar(pi)
br(pi)


 x̄(pi)
ȳ(pi)
z̄(pi)

 =
1

σg

 x(pi)
y(pi)
z(pi)


where the standard deviations σLl, σal and σbl refer to the left
view and σLr, σar and σbr to the right one. Let σcl = (σLl +
σal + σbl)/3 and σcr = (σLr + σar + σbr)/3 be the average
standard deviations of color data for the left and right image
respectively. The standard deviation of the geometry data is
defined as in Section II. From the above normalized geometry
and color information vectors each scene point pi, i = 1, ..., N
can be represented by a 9-dimensional vector representing its
3D position and its color in the two views naturally extending

the representation of Section II:

pf
i =



L̄l(pi)
āl(pi)
b̄l(pi)
L̄r(pi)
ār(pi)
b̄r(pi)
λx̄(pi)
λȳ(pi)
λz̄(pi)


, i = 1, ..., N (19)

This 9-dimensional vector can be used as input to the spec-
tral clustering algorithm of Section III and used to segment
the scene seen from the left image. In case the segmentation
of both views was needed the same approach can be clearly
adopted with the disparity map relative to the right view and by
swapping the left and right images in the previous discussion.
The advantage of the 9-dimensional representation will be
clear from the experimental results in Section VI-B.

a) b)

c ) d)
Fig. 7. Input data for the segmentation of stereoscopic pairs: a) left view;
b) right view; c) disparity relative to the left view (disparity values have
been stretched in order to improve the readability of the printed paper); d)
detail of the right view warped to the left viewpoint. Note how occlusions
in the warped view were filled by copying data from the left view. Some
small artifacts noticeable in the figure are due to the errors in the disparity
estimation (in this case estimated by the method of [25]).

VI. EXPERIMENTAL RESULTS

The performances of the proposed scene segmentation al-
gorithm is verified on datasets representing different scenes,
acquired with different technologies. This is purposely done in
order to assess the effectiveness of the joint usage of color and
geometry for scene segmentation, independently of the specific
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3D data types and of the used acquisition tools. In particular
the considered scenes are acquired by: a trinocular system
made by one matricial Time-of-Flight range camera and two
standard cameras; a standard 2-views stereo vision system; a
Microsoft Kinect sensor [7] and by Microsoft Phothosynth [8],
i.e., an unstructured scene reconstruction system.

A. Results on the trinocular system data
A matricial Time-of-Flight range camera and two standard

RGB cameras can be used as a single system for acquiring
both geometry and color information [26]. The input data
is obtained by taking all the 3D points acquired by the
matricial Time-of-Flight and by appending to them the color
information of the corresponding pixels obtained from the
images of the two cameras. It is preferable to deploy two RGB
cameras rather than only one in order to alleviate the occlusion
problems. The used system features a Mesa Imaging SR4000
matricial Time-of-Flight range camera and 2 high resolution
RGB cameras. It is calibrated by the procedure described
in [26]. The proposed segmentation algorithm is tested on
several scenes and compared with scene segmentation based
on geometry or color information only obtained both by using
our method and two state-of-the-art segmentation algorithms
(i.e., the graph-based method of Felzenszwalb et al. [1] and
the mean-shift algorithm of [27]). The results of Fig. 8 clearly
show the effectiveness of the proposed method. The scenes
shown in the figure contain good examples of common issues
making non-trivial scene segmentation, namely issues due to
the background color articulation and to the complexity of
the scene geometry (as in the case of the plant of the second
and third rows of the figure). The first two columns of Fig.
8 show the color and geometry information relative to three
different scenes (one for each row). These data have been
used as input for three different segmentation methods (namely
NNCSC, [1] and [27]) using either color information only or
geometry information only and the corresponding results are
shown in rows from 3 to 8. Finally the rightmost column
shows the results of the proposed segmentation technique
based on the fusion of color and geometry information. Color
based segmentation exhibits various problems, e.g., the space
between the arms is not so clearly recognizable in the color
segmentation results of the first row of Fig. 8. In the scene
of the first row of Fig. 8 segmentation based on geometry
information only gives better results, although not completely
satisfactory (e.g. [27] provides the best results, indeed it is the
only method that recognizes the two regions but the separation
is not as accurate as for the proposed method). The proposed
technique fusing color and geometry clearly performs better
than the compared state-of-the-art algorithms. For instance in
the case of the scene of the first row of Fig. 8 it is the only
method that accurately separates the baby from the white box
behind it. The second and third rows of Fig. 8 confirm that
the proposed scene segmentation method allows for a very
good segmentation of both the plant and the vase which are
very difficult subjects to segment on the basis of either color
or geometry only (e.g., the proposed method is the only one
capable to correctly extract the complete baby shape in the
third row experiment).

It is fair to recall that the proposed technique incorporates
NNCSC as clustering method. The usage of either k-means
or of mean-shift as clustering method would give poorer
results as shows the comparison of the results of the first
row of Fig. 8 with the ones of Fig. 3. Fig. 9 refers to
the baby and plant scene (the one in the last row of Fig.
8) and offers an extensive comparison between the results
of different clustering techniques, namely it compares the
proposed method based either on NNCSC, k-means or mean-
shift and the techniques of [1] and [27]. Each row corresponds
to a different method, while the different columns show the
results on color only, on geometry only, and on the fusion of
color and geometry. The results of row 4 and 5, obtained by the
state-of-the-art image segmentation methods of [1] and [27] on
either color only or geometry only information, demonstrate
the effectiveness of the fusion of color and geometry by the
proposed method. It is also worth noting how the proposed
approach implemented with simpler clustering schemes would
have a performance inferior to the one obtained by using
NNCSC even if applied to color and geometry together.

Fig. 10 refers instead to the segmentation of a person. It
can be seen that the human shape is perfectly identified by the
proposed method (Fig. 10e), in contrast to the very bad result
obtained by color information only, and to the one obtained by
geometry only, that presents artefacts in the lower part of the
body (e.g., feet). This is a good example of a typical issue of
segmentation based on geometry only. Geometry information
turns out well suited to separate objects and people from the
background, but not to separate different objects in touch with
each other. At the same time color segmentation is prone to
be mislead by complex texture patterns, such as the texture
on the person’s shirt. By suitably fusing the two clues it is
possible to solve both issues at the same time.

The execution time of the current MATLAB implementation
of the proposed segmentation algorithm was less than 0.5
seconds on all the analysed scenes.

B. Results on stereo vision data

The proposed scene segmentation method was also tested
on data obtained from a stereo vision system (for these results
geometry was recovered using the method of [25]). Our seg-
mentation algorithm was tested on data from the Middlebury
[24] stereo vision repository which is a very commonly used
benchmark for stereo vision. Fig. 11a and Fig. 11b show
the input data of the aloe scene of [24]. This is a quite
challenging scene due to the heavily texturized background
and to the complex shape of the plant. Fig. 11c shows the
result of the segmentation by the proposed method applied to
one of the two views together with depth data. The results
are already quite good: most of the leaves are recognized and
the vase is correctly separated from the plant. However some
artifacts are still present, e.g., the artifacts on the right side
of the vase due to the dark background or the ones on the
upper right leaf. Fig. 11d shows the benefits of the approach
described in Section V that exploits also the second color view.
Segmentation accuracy is improved (e.g., the upper right leaf
is correctly detected and the artefact on the right of the vase
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Color Depth Color Segmentation Geometry segmentation Fusion
NNCSC [1] [27] NNCSC [1] [27] Proposed

Fig. 8. Segmentation of datasets acquired by the trinocular setup: (first row) baby scene, (second row) plant scene, (third row) baby and plant scene. The
figure shows the results of the proposed method (rightmost column) using only color, only depth and by fusing the two clues. The figure also reports the
results of two state-of-the-art methods (i.e. [1] and [27]) applied to color or geometry only.

disappears). However some artifacts due to missing values in
the depth data computed by [25] are still visible (e.g. on the
side of some leafs). Fig. 11e shows the results obtained by
also applying the occlusion handling scheme of Appendix A,
note how the artifacts due to missing depth data disappear.
Fig. 11f shows the results of [17], that also jointly exploits
depth and color, while the Figures from 11g to 11l show the
results of state-of-the-art segmentation algorithms working on
either color only or geometry only. The proposed method (the
results of the complete scheme are the ones of Fig. 11e) clearly
outperforms the other approaches.

Fig. 12 refers instead to the baby2 scene of the Middlebury
repository. Again the proposed approach (Fig. 12e) outper-
forms the other approaches shown in the Figures from 12f
to 12l. In this case the results of the proposed approach
are already very good with a single color view, however the
exploitation of the second color view allows to get rid of a
couple of minor remaining artefacts.

The performances of the proposed approach are also com-
pared with other recent segmentation schemes jointly exploit-
ing color and depth information. Fig. 13 shows a comparison1

between the proposed scheme and the methods of [9] and [17]
on two scenes from the Middlebury dataset. The proposed
method is the only one that in both situations correctly recog-
nizes all the three main regions of the scene (i.e. vase, plant
and background in the first and baby, box and background
in the second). The method of [9] can correctly recognize
the foreground region shape but it cannot divide the objects
on the basis of color information (it appears a bit biased
towards depth data), while the method of [17] produces some
artifacts (e.g. on the left side of the baby or close to the plant
leaves), even if it is able to distinguish the baby from the
box. Furthermore note how the proposed method allows to
automatically balance the two clues, while the method of [17]

1The figures with the results of [9] have been taken from their paper while
the method of [17] has been implemented following the description on the
paper.

requires a manual parameter tuning in order to obtain a good
segmentation.

C. Results on Kinect data

Nowadays, scene descriptions accounting for both geometry
and color can be readily and inexpensively obtained also by
cheap mass market devices such as the Microsoft Kinect [7].
In fact, the Kinect sensor includes both an active system that
captures a real time description of the scene geometry and
a color camera. The wide availability and low cost of such
sensors open a wide application scenario to the proposed seg-
mentation framework since it eliminates the need of expensive
3D acquisition devices or of computationally complex state-
of-the-art stereo algorithms.

In order to take advantage of both the geometry and the
color acquired by the Kinect in a unique framework, it is
firstly necessary to calibrate its depth sensor with the color
camera. A first possibility is to perform a standard stereo
camera calibration with OpenCV [28] on the color images
acquired by the color camera and on the amplitude image
acquired by the depth camera (with the IR projector obscured).
The proposed segmentation algorithm can then be applied to
the Kinect data as shown by the results of Fig. 14. It is worth
noting that the overall scene segmentation is correct, but there
are some errors near depth discontinuities. Such errors are
due to the artefacts present in the depth data acquired by the
Kinect sensor (i.e., the acquired depth and color edges are not
precisely aligned as clearly visible in Fig. 14a and Fig. 14b).

A second possibility offered by the freely available OpenNI
[29] framework is to directly acquire a colored point cloud.
Fig. 15 and Fig. 16 show a couple of point clouds acquired
in this way and the corresponding segmentations. Again the
results are very good and the objects are correctly separated
from the background (even the part of the teddy bear that
touches the table is correctly separated from the table itself).
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Proposed
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(Spectral
Clust.)

K-means
clustering

Mean-shift
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Felzenszwalb
et Al.[1]

Edison [27]

Fig. 9. Segmentation of the baby and plant scene using different segmentation algorithms on color, geometry and the fusion of color and geometry by the
proposed approach.

a) b) c ) d) e) f) g) h) i)
Fig. 10. Segmentation of the datasets acquired by the trinocular setup on a person scene. The figure shows: a) color image; b) corresponding depth-map; c)
segmentation on the basis of color information only; d) segmentation on the basis of geometry only; e) segmentation based on the proposed method, fusing
geometry and color; f) segmentation obtained by applying [1] to color information; g) segmentation obtained by applying [1] to geometry information; h)
segmentation obtained by applying [27] to color information; i) segmentation obtained by applying [27] to geometry information;
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a) b)

c) d)

e) f)

g) h)

i) l)

Fig. 11. Segmentation of the aloe scene from the Middlebury dataset: a) color
image; b) corresponding disparity map (disparity values have been stretched in
order to improve the readability of the printed picture); c) segmentation based
on the proposed method exploiting geometry and one of the color views; d)
segmentation based on the proposed method exploiting both color views and
geometry as described in Section V; e) segmentation based on the proposed
method exploiting both color views and geometry and also the occlusion
handling scheme of Appendix A; f) segmentation performed by [17] that
jointly exploits color and depth data; g) segmentation performed by [1] on
the basis of color information only; h) segmentation performed by [1] on the
basis of depth information only; i) segmentation performed by [27] on the
basis of color information only; l) segmentation performed by [27] on the
basis of depth information only.

a) b)

c) d)

e) f)

g) h)

i) l)

Fig. 12. Segmentation of the baby2 scene from the Middlebury dataset:
a) color image; b) corresponding disparity map (disparity values have been
stretched in order to improve the readability of the printed picture); c)
segmentation based on the proposed method exploiting geometry and only one
of the color views; d) segmentation based on the proposed method exploiting
both color views and geometry as described in Section V; e) segmentation
based on the proposed method exploiting both color views and geometry and
also the occlusion handling scheme of Appendix A; f) segmentation performed
by [17] that jointly exploits color and depth data; g) segmentation performed
by [1] on the basis of color information only; h) segmentation performed by
[1] on the basis of depth information only; i) segmentation performed by [27]
on the basis of color information only; l) segmentation performed by [27] on
the basis of depth information only.
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a) b) c)
Fig. 13. Comparison of different segmentation methods based on the joint
use of depth and color information on the aloe scene (first row) and on the
baby1 scene (second row): a) Proposed method; b) Calderero and Marques
[9]; c) Bleiweiss and Werman [17].

a) b) c)

Fig. 14. Segmentation of the baby scene acquired with a Kinect sensor: a)
color image, b) depth image, c) segmented image.

a) b)
Fig. 15. Segmentation of a person scene acquired with a Kinect sensor: a)
point cloud acquired by the Kinect sensor, b) segmentation of the point cloud.

a) b)
Fig. 16. Segmentation of a teddy bear acquired with a Kinect sensor: a) point
cloud acquired by the Kinect sensor, b) segmentation of the point cloud.

D. Results from Photosynth data

The acquisition systems of sections VI-A and VI-B are
classical tools capable to acquire dense representations of
both geometry and color of a scene in terms of an image
and the corresponding depth-map. An unstructured 3D scene
reconstruction tool like Microsoft Photosynth [8] is rather
attractive not only because it is a free tool but also because
it just requires to shoot a number of uncalibrated standard
pictures of the scene. Photosynth can now be used even on
mobile phones and is probably the only way today available
for obtaining 3D data by mobile phones. The major limitation
of Photosynth is that it is only able to provide a sparse repre-
sentation of the scene geometry and color since the geometry is
estimated only for salient features-point. Color information can
be associated to such salient points. The main characteristic
of a salient region is that it is markedly different from the
rest of the scene. Therefore, grouping a set of salient points
means grouping points that by construction and assumption are
significantly different from each other. This characteristic of
the acquisition system is by itself rather problematic. Another
challenge for the segmentation is given by the sparsity of the
obtained point cloud. Another important characteristic of the
data is that the estimated scene geometry is defined up to an
arbitrary scale factor. We tested our algorithm on the scene of
Fig. 17, obtained by Photosynth. Fig. 17b shows the resulting
segmentation (each color in the image corresponds to a scene
segment). In light of the complexity of the point-cloud, and of
the difficulties inherent to this type of data as observed above
the results can be considered remarkably good.

a) b)

Fig. 17. Segmentation of the scene plant acquired with Photosynth [8]: a)
acquired scene, b) scene segmented by the proposed method jointly exploiting
geometry and color. (Best viewed in colors)

VII. COMPARISON OF THE DIFFERENT CONSIDERED
IMAGING SYSTEMS FOR SCENE SEGMENTATION PURPOSES

As shown in the experimental results the proposed segmen-
tation scheme can be applied to the data coming from different
3D acquisition systems. Two interesting questions that may
arise at this point concern how the segmentation accuracy
depends on the employed acquisition system and which is the
best imaging system for segmentation purposes. In order to
give a first answer to these questions a set of different scenes
is acquired with 3 different imaging systems, i.e. the trinocular
system described in Section VI-A, a Kinect camera and a
stereo vision system exploiting the algorithm of [25]. The
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acquired data are segmented exploiting the method proposed
in this paper and Fig. 18 shows the obtained segmentations.
Each of the five rows of the Fig. 18 corresponds to a different
scene (shown in the first column), while each of the last three
columns corresponds to a different acquisition system. It is
clear that the trinocular setup (column b) gives the best results.
This is mostly due to two reasons: firstly there are not occluded
areas due to the fact that the ToF camera does not suffer from
this issue, secondly the depth data are more accurate than
the data produced by the other acquisition devices. Note in
particular that edge localization is more precise than the ones
of the other devices. Unfortunately it is also the most expensive
of the three systems. In spite the Kinect is a much cheaper
solution, it can be effectively exploited for joint color and
depth segmentation. Even from the data of this cheap device
it is possible to recognize all the main objects in the framed
scenes (as shown by the images in column c). Probably the
biggest limit of the Kinect data is the edge localization. It
suffers both from the edge artifacts typical of the depth data
acquired by the Kinect and from the limited accuracy of the
calibration between the color and the depth camera. Note how
we used the internal calibration provided by the Kinect that is
not as precise as the one we performed for the trinocular setup.
The higher spatial resolution of the Kinect with respect to
that of ToF cameras is of little use for segmentation purposes
because of its poor edge localization. Stereo vision (column
d) gives the worse results mostly because of the artifacts in
the provided depth data and of the missing depth samples
due to occlusions. Even though the filling algorithm presented
in Appendix A allows to assign the samples without a depth
value to one of the segmented regions, the segmentation per-
formances in these areas are reduced. This is an issue also in
the case of Kinect, but the number of samples without a depth
value is much smaller in this case than in the case of stereo
vision systems. Artifacts in the computed depth maps due to
uniformly textured regions also affects the segmentation, in
particular on the background of the considered scenes. The
results of stereo systems shown in column d are also not so
good as the ones of Section VI-B. This is due to the fact that
the used stereo vision algorithm (but it is a problem common
to many stereo techniques) performs very well on heavily
textured scenes built ad-hoc for stereo vision testing, e.g. the
ones of the Middlebury dataset, but not as well with real
scenes. However stereo setups are also very inexpensive and
do not require active lighting. They can also be used for the
acquisition of large-scale and outdoor scenes while both the
Kinect and the ToF camera can only measure distances up to a
few meters and essentially cannot work outdoor since they are
heavily affected by sunlight. As summarized by Table I, each
of the considered acquisition systems has its own advantages
and disadvantages and the choice of the proper setup should
be done on the basis of the target application.

VIII. CONCLUSIONS

Recent technology advancements make possible the acqui-
sition of geometry and color data in many ways ranging from
active sensors of various kind and price to free software tools

Trinocular Setup Microsoft Stereo
(ToF + cameras) Kinect vision

Edge localization Good Poor Poor
Resolution Low Medium High

Missing depth values Very few A few Yes
Outdoor scenes No No Yes

Cost High Low Low

TABLE I
COMPARISON OF THE DIFFERENT ACQUISITION SETUPS.

like Microsoft’s Photosynth (available also on mobile devices).
These current practical possibilities motivate casting scene
segmentation as a sensor fusion problem that combines color
and geometry. The application scenario opened by the rationale
of this paper features several points of interest worth explicit
mention.

A significant contribution of this paper is the introduction
of a novel scene segmentation technique fusing both geometry
and color information that outperforms scene segmentation
based on color only or geometry only. The proposed segmen-
tation method adopts an original 6-dimensional representation
of the scene fusing geometry and color in a way meaningful
for clustering.

The clustering algorithm is an essential ingredient of the
proposed segmentation technique and the normalized cuts
spectral clustering algorithm was selected for its outstanding
performance in this application. Indeed experimental results
prove that for the considered scene segmentation problem
normalized cut spectral clustering outperforms other clustering
methods such as k-means and mean-shift. Furthermore the
Nyström method has been applied in order to reduce memory
and CPU requirements.

An interesting contribution of this paper is a novel unsuper-
vised metric for the assessment of scene segmentation quality
used for the automatic selection of a weight balancing the
mutual relevance of geometry versus color.

Another intriguing point made by this paper concerns the
segmentation results obtained from stereo data. This may be
regarded as the advantage brought to segmentation in going to
the next level of complexity with respect the the single image
case, i.e., the usage of two images. Segmentation brings a
new perspective to the evaluation of stereo algorithms, i.e.,
their effectiveness for scene segmentation rather than their 3D
reconstruction accuracy.

The capability to handle different 3D data representations
from different acquisition sensors represents a major concep-
tual and practical advantage. Indeed it is shown that the fusion
of geometry and color within the proposed technique is always
effective no matter what the data types are and how they were
acquired. This is practically rather relevant in front of the
many 3D acquisition tools currently available. In particular
data produced by very low cost tools like Microsoft Kinect or
unstructured scene reconstruction algorithms freely available
on the web such as Photosynth have a special interest. Both
Kinect data and unstructured scene reconstruction algorithms
are of great interest for the computer vision community. The
availability of such data is a rather recent event and their
segmentation is a new topic rich of possible developments and
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Color Segmentation from Segmentation from Segmentation from
image ToF and cameras data Kinect data stereo vision data

a) b) c) d)
Fig. 18. Segmentation of some samples scenes exploiting depth data coming from different acquisition systems: a) color image of the scene; b) segmentation
from the ToF camera data and the color images provided by the trinocular setup; c) segmentation from the Kinect data; d) Segmentation from the stereo
vision data.

in Section VII a discussion of the performance and issues of
the various acquisition devices for segmentation purposes has
been presented. The experimental results of this paper, avail-
able at http://lttm.dei.unipd.it/downloads/segmentation, offer
a performance benchmark for other algorithms considering
scene segmentation on the basis of the fusion of geometry
and color information.

Once proven the usefulness of fusing of geometry and color
for scene segmentation it is fair to say that in this connection
there are several issues worth further investigation. Among
them an intriguing research direction concerns the relationship
between stereo algorithms and segmentation, with special
focus on the joint solution of the segmentation and disparity

estimation. The critical role of clustering within the considered
approach makes sensible to monitor the improvement oppor-
tunities offered by alternate new clustering approaches. It is
finally important to note that the proposed method is very
efficient and its real-time implementation will be carefully
considered in the near future.

APPENDIX
HANDLING MISSING DEPTH VALUES

The proposed segmentation technique assumes that both
geometry and color information are simultaneously available
for all the scene points. In practice this may not always be the
case because of:
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a) b) c)

Fig. 19. Color image (a), disparity map (b) and segmentation (c) of a scene
in which for some points only color information is present.

1) Occlusions, especially in either the case of stereo vision
or in the Kinect case;

2) ToF camera or Kinect range camera missing measure-
ments due to low scene reflectivity of to saturation

3) Stereo correspondences discarded by left-right check or
confidence-based rejection approaches.

In particular it may happen that, for scenes represented by
a depth map and a color image, some points may only be
associated to color and not to depth information. Let us
consider the case of a scene with a set of points for which
both geometry and color information are available. These
points can be segmented by the proposed method together
with a set of points that have not been segmented (for which
only color information is available). It is desirable to have
the possibility to propagate the segmentation to the points
characterized by the presence of color information only (which
have not been segmented). An example of this situation is
the scene reported in Figure A, that shows a color image,
a depth map characterized by missing depth values (black
point) and a segmented image (also with missing values).
Let us denote with PS the set of pixels characterized by a
segmentation value, and with P̄S the set of pixels without
a segmentation value. The following procedure allows to
propagate the segmentation information to the pixels of P̄S :

1) Identify all the pixels pi ∈ P̄S which have at least one
of the 4-neighbors pni , n = 1, ..., 4 in PS . The set of
such points is denoted with BS . Each pixel pi ∈ BS has
at least one neighbor and no more than four neighbors
for which segmentation information is available. The
segments of the neighbors pn of pi are denoted as Sn

i .
2) For each pi ∈ BS compute the cost of assigning it to

each neighboring segments Sn
i as

C(pi, Sn
i ) = ΓL(pi, pn) + Γa(pi, pn) + Γb(pi, pn)

in which

ΓL = L(pi)−median {L(pj), pj ∈ Sn
i ∩Wn}

Γa = a(pi)−median {a(pj), pj ∈ Sn
i ∩Wn}

Γb = b(pi)−median {b(pj), pj ∈ Sn
i ∩Wn}

being Wn a segmented window centered around pn and
L, a, b the CIELab channels of the color image.

3) Compute the association [p∗, S∗] which minimizes the
assignment cost

[p∗, S∗] = arg min
[pi,Sn

i ]
C(pi, Sn

i )

4) Propagate the segmentation value of S∗ to p∗

5) If BS is not empty, restart from 1).
This procedure allows to iteratively propagate the segmen-
tation of the pixels in P̄S characterized by the minimum
color difference with respect to the local color median of
the neighboring segments, for which a segmentation value is
available. Figure 20 shows some examples of the results of
this method.
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