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Abstract Given a simple, undirected graph G = (V, E) and a weight func-
tion w : E — Z7T, we consider the problem of orienting all edges in E so
that the maximum weighted outdegree among all vertices is minimized. It has
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previously been shown that the unweighted version of the problem is solvable
in polynomial time while the weighted version is (weakly) NP-hard. In this
paper, we strengthen these results as follows: (1) We prove that the weighted
version is strongly NP-hard even if all edge weights belong to the set {1, k},
where k is any fixed integer greater than or equal to 2, and that there exists
no pseudo-polynomial time approximation algorithm for this problem whose
approximation ratio is smaller than (1 4+ 1/k) unless P=NP; (2) we present
a new polynomial-time algorithm that approximates the general version of
the problem within a ratio of (2 — 1/k), where k is the maximum weight of
an edge in Gj; (3) we show how to approximate the special case in which all
edge weights belong to {1,k} within a ratio of 3/2 for k = 2 (note that this
matches the inapproximability bound above), and (2—2/(k+1)) for any k& > 3,
respectively, in polynomial time.

Keywords Graph orientation - Degree - Approximation algorithm -
Inapproximability - Maximum flow - Scheduling

1 Introduction

Let G = (V, E,w) be a simple, undirected, edge-weighted graph, where V', E
and w denote the set of vertices of GG, the set of edges of GG, and a positive
integral weight function w : E — Z7, respectively. An orientation A of G is an
assignment of a direction to each edge {u,v} € E, i.e., A({u,v}) is either (u,v)
or (v,u). Given an orientation A of G, the weighted outdegree of a vertex u is

di(w) =3 e w({u,v}).

A({uw,v}P)=(u,v
In this paper, we consider the problem of finding an orientation of an input

graph G such that the maximum weighted outdegree among all vertices is
minimum, taken over all possible orientations of G. To specify different classes
of edge weight functions, we formally define the problem as follows.

Problem: S-MINIMUM MAXIMUM OUTDEGREE (S-MMO)

Input: A simple, undirected, edge-weighted graph G = (V, E, w),
where w is a positive integral weight function of the form
w: E — S and where S is a set of allowed weights.

Output:  An orientation A of G' that minimizes max,cv {d} (u)}.

The most general case of S-MMO with no restrictions on the weight func-
tion, except that it must be a positive integral function, is denoted by Z*-
MMO. In this paper, we assume that S is of the form S = {1,2,...,k}, where
k is a positive integer. (The running times of our algorithms will depend on k.)
We also study a special case in which the range of w is restricted to a positive
integer set S = {1, k} with k& > 2.

Throughout this paper, given an instance of S-MMO, we set n = |V]|
and m = |E|. The weighted outdegree d (u) of a vertex u is also called the



outdegree of u for short. For any orientation A of G, the value of A is defined to
be max,cy {d}(u)}. We use OPT(G) or A* to denote the optimal value for G,
i.e., the minimum of max,ecy{d}(u)} taken over all possible orientations A
of G. A graph orientation algorithm ALG is called a o-approzimation algorithm
and ALG’s approzimation ratio is o if ALG(G)/OPT(G) < o holds for every
graph G, where ALG(Q) is the value of the solution obtained by running ALG
on input G.

1.1 Motivation

Graph orientations which minimize the maximum outdegree can be used to
construct efficient dynamic data structures for graphs that support fast vertex
adjacency queries under a series of edge insertions and edge deletions [3]. Also,
S-MMO can be viewed as a variation of the art gallery problem (see, e.g., [5,
15]), load balancing problems, or unrelated parallel machine scheduling (see,
e.g., [14,16]). In particular, the polynomial time (in)approximability of the
latter problem has been intensively studied. Refer to Section 6.1 for a further
discussion on the relation between S-MMO and scheduling.

Graph orientation itself is a quite basic, natural, and important problem
in graph theory and combinatorial optimization; see, e.g., Chapter 61 of [17]
and the short survey in [1]. As an example, it is known that any planar graph
has an orientation with value at most 3 and an acyclic orientation with value
at most 5, and such orientations can be found in linear time [4]. However,
most previous studies focus on problems related to orientations satisfying some
special graph properties such as high connectivity, small diameter, no cycles,
small difference between the indegree and outdegree of each vertex, etc. [2,7,
11], and very few studies consider orientations which minimize the maximum
outdegree (or equivalently, indegree) [1,13,19].

1.2 Previous Results and Summary of New Results

Previous work has shown that S-MMO can be solved in polynomial time if all
edge weights are identical [1,13,19]. More precisely, the fastest known algo-
rithm for {k}-MMO runs in O(m?/?-log(A¥)) time, where A¥ denotes the op-
timal value of {1}-MMO [1]. On the other hand, S-MMO is (weakly) NP-hard
in the general case [1]. For any subgraph H of G, let V(H) and E(H) denote
the vertex set of H and the edge set of H, respectively. A (2 — 1/[L(G)])-
approximation algorithm for Z*-MMO with O(m?) running time was pre-
sented in [1], where L(G) is the maximum density among all subgraphs of G,
that is, L(G) = maxmnca{d (y,vyepcm w{u,v})/|V(H)[}. No inapproxima-
bility results for S-MMO were previously known.

In this paper, we study S-MMO from the viewpoint of polynomial-time
approximability and inapproximability. First, Section 2 introduces some addi-
tional notation and terminology needed to describe our results. Then, in Sec-
tions 3.1 — 3.4, we present four new polynomial-time approximation algorithms



named MAJORITY, CYCLE-CANCELING, REFINED CYCLE-CANCELING, and
LARGE-k. (Although MAJORITY has the same running time and a worse ap-
proximation ratio than CYCLE-CANCELING, we have included the description
of MAJORITY because it provides a simple way to illustrate some key ideas
used in the design and analysis of CYCLE-CANCELING and REFINED CYCLE-
CANCELING.) Section 4 shows how to improve the running times of our first
three approximation algorithms. Next, we give a reduction from At-most-3-
SAT(2L) in Section 5 which proves the strong NP-hardness of {1, £}-MMO for
k > 2 and also yields the first non-trivial lower bound on the approximation
ratio, under the assumption P # NP. Finally, in Section 6, we discuss the
relation between S-MMO and scheduling and state some open problems. Our
new results are summarized below.

— {1,...,k}-MMO has a (2 — 1/k)-approximation algorithm with running
time O(m3/? -logn - log k - log A* + m?) [Algorithm CycLE-CANCELING in
Section 3.2 together with Corollary 1 in Section 4].

— The special case {1,k}-MMO where k& > 3 has a (slightly better) (2 —
2/(k +1))-approximation algorithm, also with running time O(m?3/2 -logn -
log k-log A* +m?) [Algorithm REFINED CYCLE-CANCELING in Section 3.3
together with Corollary 1 in Section 4].

— {1,k}-MMO admits a 1 4+ n/(2k)-approximation algorithm which runs in
O(m?/? -logn) time [Algorithm LARGE- in Section 3.4]. This is useful for
instances with k > n.

— {1,k}-MMO for any fixed k& > 2 is strongly NP-hard [Theorem 6 in Sec-
tion 5].

— For any fixed integer k£ > 2, no pseudo-polynomial time algorithm for
{1, k}-MMO achieves an approximation ratio smaller than 1 + 1/k, unless
P=NP [Theorem 7 in Section 5]. This implies that there is no polynomial
time approximation algorithm for Z*-MMO with approximation ratio less
than 3/2, unless P=NP. This also means that, for £ = 2, Algorithm CYCLE-
CANCELING is optimal with respect to the approximation ratio.

Note that the 2 — 1/[L(G)]-approximation ratio from [1] and the new
2 — 1/k one are incomparable; sometimes the former is better than the latter,
and vice versa. For example, there exist instances where the former algorithm
outputs a 5/3-ratio solution while the latter achieves the ratio 3/2 (see Fig. 6
in [1]).

2 Preliminaries

From here on, we assume that the vertices in G are lexicographically ordered.
We denote an undirected edge with endpoints v and v, where u < v in lexico-
graphic order, by e, , or simply {u,v}. A directed edge (or arc) from a vertex u
to a vertex v is written as (u, v). The directed graph defined by an orientation A



of G is denoted by A(G) = (V, A(E),w). A directed path of length | from a ver-
tex vp to a vertex vy in A(G) is a set of arcs {(v;—1,v;) € A(E) |i=1,2,...,1},
also represented by the sequence (vg, v1,...,v;) for simplicity. In particular, a
directed path satisfying v; = vg is called a directed l-cycle. For any directed
path P = (vg,v1,...,v), the directed path obtained by traversing P in its
reverse order is denoted by P, i.e., P = (v;,v_1,...,vp).

Next, for any u € V', let I'(u) = {v | {u,v} € E} denote the set of neighbors
of u. For any orientation A of G, define the set of neighbors of u under A as
I'y(u) ={v | {u,v} € E and A({u,v}) = (u,v)}. We call any vertex u* whose
weighted outdegree is maximum in A critical, and also say that u* is a critical
vertex with respect to A. Let wmax be the maximum weight among all edges
in E and let W be the total weight of all edges in E. Every orientation has
the following trivial lower bound caused by the maximum weight edges:

Proposition 1 ([1]) For any undirected weighted graph G and any orienta-
tion A of GG, the value of A is at least wmax- m|

Finally, we introduce three basic operations named REVERSE, UpP-To-
RooTs, and SOLVE-1-MMO which will be used later in this paper.

— REVERSE does the following: Given an orientation A of G and a directed
path P = (ug,uy,...,w) in A(G), update A by replacing P with P, i.e.,
let Alew; uiy,) = (Wir1,u;) for i = 0,...,1 — 1. We call this operation
REVERSE-CYCLE if up = wu;. Note that if P is a directed cycle and all
w(ey;,u;4,)’s are equal, then the outdegree of every vertex remains un-
changed.

— UP-T0-R0OOTS determines an orientation A for a given simple, undirected
forest G as follows: First fix an arbitrary root node for each tree in G. Then,
for every edge e, orient A(e) towards the root node of the tree containing e. !

— SOLVE-1-MMO outputs an optimal orientation of a given graph with
identical edge weights. SOLVE-1-MMO can be implemented to run in
O(m?/? -log(A})) for {k}-MMO time [1]. (Here, the log factor comes from
a binary search.)

3 Approximation Algorithms

We now present the details of our four new approximation algorithms for S-
MMO. The first two, MAJORITY and CYCLE-CANCELING, work for any S =
{1,...,k}, whereas the last two, REFINED CYCLE-CANCELING and LARGE-k,
are designed for the special case where S is of the form S = {1, k}.

L Observe that OPT(G) = wmax if G is a forest, i.e., a graph that does not contain any
cycles. (It is easy to see that the UP-To-RooOTs operation finds an optimal solution for
forests [1].) Thus, the bound in Proposition 1 is optimal for this case.



3.1 Majority Voting Algorithm

In this subsection, we give a simple 2-approximation algorithm named MA-
JORITY. Although MAJORITY can be considered a variation of the Lenstra-
Shmoys-Tardos algorithm [14], which is based on LP-rounding and has an
approximation ratio of 2, MAJORITY is combinatorial and provides some ba-
sic intuition for the algorithms presented in later subsections. Furthermore,
according to Corollary 1 in Section 4, MAJORITY is much faster than the
Lenstra-Shmoys-Tardos algorithm.

Algorithm MAJORITY is presented in Fig. 1. It works as follows. First,
replace each edge e = {u, v} in G with w(e) edges of weight 1 between u and v,
so that an undirected multigraph G’ with W = 3" _ . w(e) edges is obtained.
Next, find an optimal orientation A’ of G'. (In A', for each {u,v} € E, some
replicated edges of {u, v} may be oriented from u to v while others are oriented
from v to u.) Then, decide an orientation A of G by majority voting. More
precisely, let f,—, and f,_, denote the number of edges oriented from u
to v and from v to u, respectively, in A’. Since G is simple, fy sy + fosu =
w(ey,y) holds. The orientation A of the original G is determined in the following
manner: For each e, , € E, assign

A(eu,v) - {(U,’U), lf fu—M) Z f’U—Mu (1)

(v,u), otherwise.

(By the definitions above, the direction is determined according to the lexico-
graphic order in case of a tie.)

Algorithm MAJORITY

For graph G, construct G’ by replacing each edge e with w(e) edges of weight 1.
Find an optimal orientation A’ of G’ by using SOLVE-1-MMO.

Decide the orientation A of G according to (1) for each edge in G.

Return A.

W=

Fig. 1 Algorithm MAJORITY.

Theorem 1 For any S = {1,...,k}, Algorithm MAJORITY approximates S-
MMO within a ratio of 2 and runs in O(W3/2 - log A*) time.

Proof. First, consider the running time. Steps 1, 2 and 3 take O(W), O(W?3/2.
log A*) and O(W) time, respectively, the total running time of MAJORITY is
O(W?3/? -log A*).

Next, consider the approximation ratio. The outdegree of any vertex u
under A is ZUGFA(U) w(eyy) = Zver,,(u) (fusv + fosw)- Let u* be a critical
vertex with respect to A. Then ALG(G) = ZUGFA(U*)(fU*—W + foosu+), and



OPT(G) > OPT(G") > Zvef(u*) fur—v; since A’ is a relaxed orientation of

G, the optimal value of G' is a lower bound on the optimal solution of G.
Hence,

ALG(G) _ ALG(G) _ Yvers ) (fur—ot foosus)

OPT(G) — OPT(G") — Y ver(us) fur—v
Z’UGFA(U*) 2 fursu — 9
o Zvep/‘(u*) Jur v

The last inequality holds since A is decided by majority voting. The approxi-
mation ratio is 2. O

The analysis is tight, as the example in Fig. 2 demonstrates: The value
of the optimal solution for the instance G is k, while a possible output of
MAJORITY is 2k, as shown in Fig. 2(d).

Instance G OPT(G) =k OPT(G") = k ALG(G) = 2k
o
------ O -0 i OO -O
o
—— weight k(even) — weight k(even) — - k/2 edges — weight k (even)
---------- weight 1 e Weight 1 = 1 edge e Weight 1

@) (b) () (d)

Fig. 2 A worst-case example for MAJORITY: (a) an instance G, (b) an optimal orientation
of G, (c) an optimal orientation A’ of G', and (d) a possible output of MAJORITY based
on (c).

3.2 Cycle Canceling Algorithm

Here, we describe an algorithm named CYCLE-CANCELING which improves
MAJORITY; its approximation ratio is 2 — 1/k. In fact, CYCLE-CANCELING
also uses the same basic idea of replacing each weighted edge by a number
of unweighted edges and computing an optimal solution for the resulting un-
weighted multigraph. However, it then decides the orientation of each edge in
a different manner.

CycLE-CANCELING is listed in Fig. 3. In the first and second steps of
the algorithm, do as MAJORITY; construct G’ (replicate each edge) and then
find an optimal orientation A’. After that, decide a partial orientation of the



Algorithm CYCLE-CANCELING

For graph G, construct G’ by replacing each edge e with w(e) edges of weight 1.
Find an optimal orientation A’ of G’ by using SOLVE-1-MMO.

Decide the (partial) orientation A of G according to (2), and obtain G 4» = (V, Fu/).
If there exists a directed [-cycle in G4 where [ > 3, apply REVERSE-CYCLE and go
to Step 3.

For undecided edges of A, apply Up-T0-R0OTS to G 4.

6. Return A.

R s

ot

Fig. 3 Algorithm CyCLE-CANCELING.

original problem by

(ua U), if fv%u =0,
A(eu,v) =< (v,u), if fusy =0, (2)
-, otherwise,

where — means “not decided yet”. Note that the direction of the edges decided
by this operation is essentially the same as the one of A’; the value of the
orientation does not change.

Next, we introduce a new operation, cycle cancelation, which updates the
orientation to a more desirable one without changing the outdegree of any
vertex. To this end, we construct another undirected graph G4 = (V, Fa),
where Fir = {eyy € E | fuso # 0 and fy—y # 0in A'}. From G4/, we find an
I-cycle with [ > 3, say C = (v1,v2,...,v,v1(= vi41)), if one exists. (From here
on, when we mention [-cycles with [ > 3, we just say “cycles” for simplicity,
because we do not consider 2-cycles in this paper.) Let ¢ = min{fy,, 5uv,,, |
i =1,...,1}, which is a positive integer, by the definition of F4,. Then, we go
back to G’ and A’ and apply REVERSE-CYCLE with size ¢ to C'; since there
exist ¢ cycles of (v, va,...,v,v1(= vir1)) on G' under A', we can reverse the
direction of the edges along the c¢ cycles. It should be noted that the outdegree
(or the indegree) of each vertex in the resulting directed graph is equal to the
one under A'; it is still an optimal orientation in G’ and can be updated as
A'. For this new A’, we apply the equation (2), then go back to the beginning
of this paragraph. Since at least one edge {v;,v;—1} on the cycle C satisfies
fvizsviyr = 0 by the REVERSE-CYCLE, the new Fy is strictly smaller than the
old F4:; this step ends in at most m — 2 iterations.

After a number of (or possibly zero) iterations of the above procedure, G s
becomes a forest, and we set F := G 4. Note that all the edges of F are not
decided yet by (2). The cycle cancelation itself implies that there always exists
an optimal solution A’ for the relaxed problem such that A’ has no cycles in F.
Then, we have the simple disjoint tree structure, for which we can apply the
UP-To0-R0O0OTS operation to decide the orientation of all the remaining edges.



Theorem 2 For any S = {1,...,k}, Algorithm CyCLE-CANCELING approx-
imates S-MMO within a ratio of (2 — +) and runs in O(W?/2 - log A* + m?)
time.

Proof. We first consider the running time of CYCLE-CANCELING. Steps 1
and 2 have the same time complexity as MAJORITY, i.e., O(W3/2 . log A*)
time. Each iteration of Step 3 takes O(m) time, and each iteration of Step 4
takes O(m) time by the depth first search, and these steps can be iterated
at most m — 2 times. Step 5 takes O(m) time. In total, the running time is
O(W?3/2 -log A* +m?).

Next, we analyze the approximation ratio. Let u* be any critical vertex in G
with respect to 4, i.e., a vertex with maximum weighted outdegree in A. We
shall prove that d (u*) < (2—%)-OPT(G). First of all, note that OPT(G) > k
by Proposition 1 and also that OPT(G) > OPT(G') = d}, (z*) > df, (u*),
where z* is any critical vertex with respect to A’. Let F* be the forest of
rooted trees produced by UP-T0-RoOTS in Step 5. There are two possible
cases to consider after the iterations of Steps 3 and 4:

1. u* is a root in F*: 2 In this case, we immediately have d(u*) < d}, (u*)

because zero or more of u*’s outgoing edges in A’ are reversed to obtain A,
but none of its incoming edges in A’ is reversed in Step 5. Then, recall that
dt, (u*) < OPT(G) by the above.

2. u* is not a root in F*: In this case, let p denote the parent of u* and C
the set of children of u* in F*, respectively. Clearly, we have d(u*) =
dj;, (W) + fosur = 2 pee fursv < dj, (u*) + fp—u=, which yields

ai) a5 )+ fpowe W) | oo g k1 1
OPT(G) = OPT(G) ~— dyLw) k = k K

where the last inequality holds since f,_y* + fur—p < kand fy«p > 1.

In both cases, d; (u*) is within the desired bound. 0

Figure 4 shows a worst-case example of CYCLE-CANCELING for an instance
of {1,3}-MMO whose approximation ratio is 5/3 = 2 —1/3. This construction
can be modified in a straightforward way to produce worst-case examples for
general k, which means that the analysis of Theorem 2 is tight.

Remark: By Theorem 2, the approximation ratio of CYCLE-CANCELING for
k = 2 is 3/2. This is actually the best possible in polynomial time for k = 2
(unless P=NP), as we shall prove in Section 5.

2 This case also handles the possibility that u* is an isolated vertex in G 4.
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Instance G OPT(G) =3

weight 3 —> weight 3
.......... weight 1 e weight 1
(a) (b)
OPT(G) = 3 ALG(G) =5

e

o‘»b

> 3edges —> weight 3
— 2edges = L. > weight 1
----- » 1edge

() (d)

Fig. 4 A worst-case example for CYCLE-CANCELING: (a) an instance G, (b) an optimal
orientation of G, (¢) an optimal orientation A’ of G’, and (d) a possible output of CYCLE-
CANCELING based on (c).

3.3 Refined Cycle Canceling Algorithm

We now consider the special case of S-MMO in which S = {1,k} for k > 3,
and show that it can be approximated even more efficiently than by Algo-
rithm CYCLE-CANCELING. The new algorithm is called REFINED CYCLE-
CANCELING and is outlined in Fig. 5. The main idea is to show that if all edge
weights in G are either 1 or k, a slight modification to CYCLE-CANCELING
allows us to compute a stronger lower bound on an optimal solution which
then yields an improved approximation ratio.

As mentioned in the previous section, the cycle cancelation itself provides
an optimal solution for the relaxed problem with a tree property. Here, we focus
on Step 5 of CYCLE-CANCELING, in which the naive application of UP-To-
RooTs with arbitrary roots gives a worst-case example (as shown in Fig. 4);
this causes the approximation ratio to be 2 — 1/k. The reason is that some
vertices having large outdegrees under the orientation A’ are not suitable for
being roots; if such a vertex is set to be a root, its outdegree will distribute to
its neighbors so that the neighbors have large outdegrees under A compared
to under A’. To avoid this situation, Algorithm REFINED CYCLE-CANCELING
proceeds as follows.

First execute Steps 1 to 4 of CYCLE-CANCELING, and obtain a forest F. If
there exists a leaf node u in F such that f,_, > f,— holds for its neighbor v,
we fix the orientation of e, , as (u,v) and remove e, , from F (i.e., A(ey,y) :=
(u,v) and F = (V, F) with F := F \ {ey})- Repeat this operation until no
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leaf node u satisfies f,_, > fy—u Where v is the neighbor node of u. Then,
the algorithm applies UP-T0-R0OOTS.

Algorithm REFINED CYCLE-CANCELING

1-4. Execute Steps 1 to 4 of CYCLE-CANCELING.

5. While there exists a leaf node u connecting to v such that fiy—, > fome in F =
(V,F), let A(ew,v) := (u,v) and remove ey, from F.

6. For undecided edges of A, apply Up-To-RooTS to F.

7. Return A.

Fig. 5 Algorithm REFINED CYCLE-CANCELING.

While Algorithm CYCLE-CANCELING simply applies UP-T0-ROOTS op-
erations to the obtained forests, REFINED CYCLE-CANCELING decides the
orientation of edges connected to leaves according to the values of f’s for
the leaves and their parents, and then applies UP-T0-R00TSs. Note that this
modification does not depend on S and does not make the solution worse,
though it might be difficult to show that it has an improved approximation
ratio. We can, however, show a better approximation ratio for the special case
S ={1,k}.

Theorem 3 For any S = {1,k} where k > 3, Algorithm REFINED CYCLE-
CANCELING approximates S-MMO within a ratio of (2 — kL_H) and runs in

O(W?3/2 -log A* + m?) time.

Proof. It is easy to see that adding Steps 5 and 6 to Algorithm CYCLE-
CANCELING in Section 3.2 does not increase the asymptotic running time.
Therefore, the running time is O(W?3/2 - log A* + m?).

To analyze the approximation ratio of REFINED CYCLE-CANCELING, we
proceed similarly as in the proof of Theorem 2. Let u* be any critical vertex
in G with respect to A, and let 7* be the forest of rooted trees produced by Up-
To-RooTs in Step 6. Recall that OPT(G) > k and OPT(G) > OPT(G') >
d’, (u*). There are two main cases:

1. u* is a node which satisfies the condition in Step 5: Then, since f,_y+ < g
for the parent p of u*,

dj;(u*) < dr, (u*) + foour < dt, (u*) L fp—ur

k2 3
OPT(G) = OPT(G) ~— dh(u*) & -

< 14— —.
_+k 2

2. u* is a node which did not satisfy the condition in Step 5:
(a) If u* is a root in F*, then d} (u*) < d}, (u*) < OPT(Q) as before, and
we are done.
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(b) If not, consider the tree T in F* that contains u*. Let p be the parent
of u* in T and let (u1,us, ..., us) be the path between any two leaves uq
and uy in the undirected version of T'. Since uy and wy satisfy fi, 4, <
fus—u, and fu, 5w,y < fu,_i—u,, there must exist an intermediate
node u; such that fu,  u; < fuimwi_y a0d fu;suipy > fuips—u - Next,
because all edges in T have weight k, we know that f, ., + fu—w =k
for every edge {v,w} in T, which means that f,, su,_, > k/2 and
fuisuiyr > k/2. Thus, the outdegree of w; is at least fu,—u;_, +
fuisuip, > k,ie, OPT(G') > k + 1. Plugging in this stronger lower
bound gives us

dl (u*) < dl (u*) + foour < dl, (u*) N frpour
OPT(G) =~ OPT(G) = d(uw)  k+1
k—1 2
<l+— =2——.
= T )
Since 2 — &5 > 3/2 for k > 3, the approximation ratio is 2 — 27 for

k > 3. It should be noted that the approximation ratio of REFINED CYCLE-
CANCELING for k = 2is 3/2 (same as CYCLE-CANCELING) because then Step 6
is not executed. O

Figure 6 shows a worst-case example of REFINED CYCLE-CANCELING for
{1,3}-MMO. Since this example is also extendable to general {1, k}-MMO,
the analysis of Theorem 3 is tight.

3.4 Approximation Algorithm for Large k

This subsection presents a simple approximation algorithm named LARGE-k
for {1,k}-MMO which is suitable when k& > n. Its approximation ratio is
1 + 5% and its running time does not depend on k or W. The algorithm is
described in Fig. 7.

The next theorem states the approximation ratio of Algorithm LARGE-k.

Theorem 4 For any S = {1, k}, Algorithm LARGE-k approximates S-MMO
within a ratio of (1 + ) and runs in O(m?®/? -logn) time.

Proof. The running time is O(m3/? -logn) because SOLVE-1-MMO is called
twice in Algorithm LARGE-k, and both log(Ai(G1)) and log(Ai(Gg)) are
O(logn). Next,

ArG(e) el ©) +df ()} max{d}, )} + max{d], ()}

OPT(G) OPT(C) s OPT(Gr)
_ OPT(Gy) + OPT(Gy) _ n/2
= OPT(Gr) S b

since OPT(G) > OPT(Gy) > k and since n/2 is a trivial upper bound for
OPT(G,) derived from the complete graph with n vertices. O
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Instance G OPT(G)=4

K

— weight 3
------- » weight 1

—— weight 3
---------- weight 1
(a) (b)

ALG(G) = 6

—>» 3edges — weight 3
— 2edges e » weight 1
----- > 1edge

(© (d)

Fig. 6 A worst-case example for REFINED CYCLE-CANCELING: (a) an instance G, (b) an
optimal orientation of G, (¢) an optimal orientation A’ of G’, and (d) a possible output of
REFINED CYCLE-CANCELING based on (c).

Algorithm LARGE-k

1. For the given graph G, construct two graphs G1 = (V,E:1) and G = (V, E}),
where E1 and E}, are the sets of edges with weight 1 and k, respectively.

2. Apply operation SOLVE-1-MMO to G1 and G} independently, and let A} and A},
be the returned optimal solutions.

3. Let A be the composite orientation of A} and A) for the whole graph G.

4. Return A.

Fig. 7 Algorithm LARGE-k.

4 Polynomial-Time Computation of {1}-MMO for G’

In this section, we develop a technique for making Algorithms MAJORITY,
CYCLE-CANCELING, and REFINED CYCLE-CANCELING polynomial-time algo-
rithms. Recall from the previous section that in these algorithms, we solve
{1}-MMO for the graph G', which is generated from G by replacing each
edge e with w(e) edges of weight 1, as a sub-procedure. Although {1}-MMO
for G = (V, E) can be solved in O(|E|*/?log|V|) time by the algorithm of [1],
{1}-MMO(G") requires O(W?3/2 log A*) time, which is pseudo-polynomial time
(that is, it is not necessarily polynomial in the length of the input). However,
the information actually needed by MAJORITY, CYCLE-CANCELING, and RE-
FINED CYCLE-CANCELING is not the orientation itself but the values f,_,
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and f,_,. This section explains how to compute these values in polynomial
time. The modified algorithm is presented in Fig. 10.

To find the values f,_, and f,_, efficiently, instead of explicitly con-
structing G’ and applying SOLVE-1-MMO, we first solve a relaxed version
of S-MMO where the orientation of any edge may be fractional, meaning that
its weight may be distributed among both directions as (positive) non-integers.
For example, an edge {u,v} in G with weight 6 might be oriented as (u,v)
with weight 3.6 and (v,u) with weight 2.4. The optimal solution to relaxed
S-MMO can be obtained by solving a series of maximum directed flow prob-
lems as follows. Given the graph G = (V, E,w) and a positive integer Ay,
construct a flow network Ng = (Var, A, cap), where Viy = V U E U {s,t},
Ay =A{(s,e) | e € E}U{(e,v;),(e,vj) | e = {vi,v;} € E}U{(v,t) |v €V},
and

w(e)7 ifa= (8,6),
cap(a) = S w(e), ifa=(e,v),
Apmp, if a = (v,1).

Figures 8 and 9 show an example of a graph G and its corresponding net-
work Ng. Since Ng has only integral capacities, the flow integrality theorem [6]
ensures that the maximum flow value in Ng is an integer. It is straightforward
to transform a maximum flow solution of Mg into a solution for relaxed S-
MMO with value at most Ay,,,,. By applying a binary search on Ay,,,, we can
thus obtain an optimal solution for the relaxed version of the problem.

edge set vertex set

Fig. 8 A graph G.

Fig. 9 The network N constructed from G in Fig. 8.

Next, we need to ensure that the obtained optimal orientation for relaxed
S-MMO is always integral. (In general, an optimal orientation for relaxed S-
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MMO may not be integral even though the maximum flow value A,,; itself is
an integer.) Therefore, in the description of Algorithm MODIFIED SOLVE-1-
MMO(G") in Fig. 10, Steps 2, 3 and 4 have been added to ensure the integral
flow property; the next paragraph explains in detail how this works. Note
that we can skip Steps 2 to 4 if we employ a maximum flow algorithm in
Step 1 which always outputs an integral optimal solution (such as the one by
Goldberg and Rao [9]); however, we include these steps in the description of
the algorithm for completeness so that it works for any selected maximum flow
algorithm in Step 1.

The idea is simple. If we obtain a non-integral flow after Step 1, we adjust it
to a solution of 1-MMO(G"), in which both f,—, and f,_, should be integral
for any {u,v} € E. For this purpose, we use REVERSE-CYCLE and Up-To-
RooOTs again. From the obtained solution A* of relaxed S-MMO(G), we con-
struct a directed graph G* = (V, E*), where E* = {(u,v) | fusv — [fusv] >
0}. Note that if G* contains no edge, A* is an integral optimal solution
for relaxed S-MMO(G), that is, an optimal solution for 1-MMO(G"). Since
G* is a bidirectional graph, G* contains a directed [-cycle with [ > 3, is
a (bidirectional) forest, or empty. If G* contains a directed I-cycle C, we
can update A* so as to delete C by applying REVERSE-CYCLE to C with
size ¢ = min(y yyec{fusv — [fuse]} as in Section 3.2. By a similar argu-
ment, we obtain a forest after at most m applications of REVERSE-CYCLE.
Then we apply UP-T0-R0o0OTs that makes A* integral; that is, from « on the
forest to its parent p, update fy—p := [fumsp| and fpy := |fp—u]. This
does not increase the value of A* by the following reason: For node u on the
forest, let f(u) = Zver(u) | fu—sv], and p be the parent of u on the forest.
Then the weighted outdegree of u under A* before applying Up-T0-R0OOTS is
) + 3 per)(fumsv = [fusv]) < Aopt. Due to the integrality of f(u) and
Agpt, we have f(u) < A,y — 1. After the Up-To-Ro0TS, the weighted out-
degree of u becomes at most f(u) + (fusp — [fuspl) + (fomu — Lfpoul) =
f(u)+1 < A,p. By these, we can obtain an optimal orientation of 1-MMO(G")
from any optimal orientation of relaxed S-MMO(G).

Finally, we consider the time complexity of Algorithm MODIFIED SOLVE-
1-MMO(G"). Step 1 can be done in O(m?/2 -logn - logk - log A*) time by a
maximum flow algorithm [9] while doing a binary search for A*. Steps 2, 3
and 4 are not needed in this case (if executed, they would take O(m?) time)
because the adopted maximum flow algorithm always returns an integral flow.
Thus, the computations take O(m3/2 -logn - log k - log A*) time in total.

Theorem 5 Algorithm MODIFIED SOLVE-1-MMO(G') computes the fi,—,
and fy,_,, values of all the edges for {1}-MMO of G’ in O(m?/? -logn - logk -
log A*) time. O

Corollary 1 The running time of algorithm MAJORITY can be improved to
O(m?/? -logn - logk - log A*). Also, the running times of algorithms CYCLE-
CANCELING and REFINED CYCLE-CANCELING can be improved to O(m3/2 -
logn -logk - log A* +m?). |
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Algorithm MODIFIED SOLVE-1-MMO(G")

1. Find an optimal orientation for relaxed S-MMO on G by solving maximum directed
flow problems in N while doing a binary search to find A*. Set fu—» and fy—u
for every {u,v} € E.

2. Construct G* = (V, E*), where E* = {(u,v) | fumsv — [fu—sov] > 0}}. If E* =0,
goto Step 5.

3. For a directed Il-cycle C in G* where [ > 3, apply REVERSE-CYCLE to C' with size
ming, ,yec{fu—sv — [fu—v]} to update fy—, for every (u,v) € C, and goto Step 2.
If no cycle in G*, goto Step 4.

4. For G*, apply Up-T0-Roo0Ts as described above.

5. Return A’ as fy—, and fy—, for all {u,v} € E.

Fig. 10 Algorithm MODIFIED SOLVE-1-MMO(G’).

Remark: We can obtain a strongly polynomial-time algorithm by adopting
another maximum flow algorithm such as [12] instead of [9] in Algorithm MoD-
IFIED SOLVE-1-MMO(G’). Then the running times of MAJORITY, CYCLE-
CANCELING, and REFINED CYCLE-CANCELING become O(m? 108211/ 10gn 1)

5 Inapproximability Results

It was shown in [1] that S-MMO is NP-hard by a reduction from the PARTI-
TION problem, which has a pseudo-polynomial time algorithm. This implies
that S-MMO was only known to be weakly NP-hard. Also, no previous results
about the inapproximability of S-MMO exist. In this section, we provide a
proof of the strong NP-hardness of S-MMO which also yields inapproximabil-
ity results. More precisely, we give a reduction from a variation of the 3-SAT
problem, At-most-3-SAT(2L), to {1, k}-MMO for any fixed integer k > 2.

At-most-3-SAT(2L) is a restriction of 3-SAT where each clause includes at
most three literals and each literal (not variable) appears at most twice in a
formula. It can easily be proved that At-most-3-SAT(2L) is NP-hard by using
problem [LO1] on p. 259 of [8].

The reduction from At-most-3-SAT(2L) to {1, k}-MMO is as follows. Given
a formula ¢ of At-most-3-SAT(2L) with g variables {v1,...,v,} and h clauses
{c1,...,cn}, we construct a graph G4 including gadgets that mimic (a) literals,
(b) clauses, and (c) a special gadget:

(a) Each literal gadget consists of two vertices labeled by v; and 7; and one
edge {v;,7;} between them, corresponding to variable v; of ¢. The weight
of {v;,v;} is k.

(b) Each clause gadget is one vertex (called a clause vertex) labeled by c;,
corresponding to clause ¢; of ¢. The clause vertex ¢; is connected by edges
of weight 1 to at most three vertices in the literal gadgets that have the
same labels as the literals in the clause c;. For example, if c; = 2V 7y
appears in ¢, then vertex ¢; is connected to vertices  and 7. See Fig. 11.
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(¢) The special gadget is a cycle of k vertices and k edges where each edge of
the cycle has weight k.? For each clause, if it consists of one (two or three,
respectively) variable(s), then its clause vertex is connected to k (k — 1
or k — 2, respectively) arbitrary vertices in the special gadget by edges of
weight 1. Hence, the degree of every clause vertex is exactly k + 1.

[iteral

Y Y Z
O_O Q_O gadget

""_““6/speci al gadget

Fig. 11 Reduction from At-Most-3-SAT(2L) to {1,k}-MMO.

Lemma 1 For the above construction of G, the following holds:

(i) If ¢ is satisfiable, then OPT(Gy) < k.
(ii) If ¢ is not satisfiable, then OPT(Gy) > k + 1.

Proof. To prove (i), suppose there exists a satisfying truth assignment
for ¢. From the assignment, we construct an orientation of Gy with value
OPT(Gy) < k. If v; = true in the assignment, the edge {v;,7;} is oriented
from 7; to v;; otherwise, from v; to ;. So far, the outdegree of every vertex as-
sociated with the literals of true and false assignments is 0 and k, respectively.
We call the vertices associated with literals of ¢rue (resp., false) assignments
true (resp., false) vertices. (For example, in Fig. 11, if the variable z = false in
the truth assignment then the upper leftmost vertex x is a false vertex and the
second leftmost vertex 7 is called a true vertex.) For every clause vertex c;,
we select one edge connected to a true vertex and orient it towards c;, and
orient the remaining k edges away from c;. This orientation of the edges does
not increase the outdegree of false vertices or any extra true vertex; it is still
at most k. Since every literal appears at most twice in ¢, the outdegree of true
vertices in the literal gadgets is at most two. Finally, edges belonging to the

3 In case k = 2, we prepare a cycle of 3 vertices as an exception to keep the simple
property of the graph.
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special gadget can be oriented cyclically. Thus, the maximum outdegree of G4
is at most k.

Next, we prove (ii) by showing that if G4 has an orientation whose maxi-
mum outdegree is at most &k then ¢ is satisfiable by constructing the satisfying
truth assignment. If an edge in the ith literal gadget v; is oriented from v; to T;
then we assign v; = false; otherwise, v; = true. Since every clause vertex is
connected to the literal gadgets and special gadgets by k& + 1 edges, and every
edge between a clause gadget and the special gadget must be oriented towards
the special gadget (if not, the maximum outdegree of the special gadget would
be at least k + 1), it follows that for each clause vertex c;, there must be at
least one edge directed towards c; from a vertex v in a literal gadget, and v
must therefore be a true vertex. This means that the above truth assignment
satisfies all clauses in ¢. O

From Lemma 1, we immediately obtain:
Theorem 6 {1,%k}-MMO for any fixed k& > 2 is strongly NP-hard. O

Corollary 2 ZT-MMO is strongly NP-hard. |

In addition, the (in)satisfiability gap of Lemma 1 directly yields the next
theorem and corollary.

Theorem 7 {1,k}-MMO, where k¥ > 2 is fixed, has no pseudo-polynomial
time algorithm with approximation ratio less than 1+ 1/k, unless P=NP. O

Corollary 3 Z1T-MMO has no pseudo-polynomial time algorithm with ap-
proximation ratio less than 3/2, unless P=NP. O

6 Concluding Remarks
6.1 Relation to Scheduling

As mentioned in Section 1.1, one application of the minimization of the max-
imum outdegree is scheduling. For an undirected graph, let us consider the
vertices as the machines and the edges as the jobs. Then S-MMO can be re-
garded as a special case of the job assignment problem [16] in which the min-
imization of the maximum outdegree means to minimize the finishing time
of all the jobs. From the viewpoint of scheduling, our problem has some re-
strictions: (1) each job must be assigned to exactly one of two predetermined
machines, and (2) the processing time of each job does not depend on the ma-
chines. Therefore, S-MMO is a special case of scheduling on unrelated parallel
machines, or R||Cpq. in standard notation: given a set J of jobs, a set M of
machines, and the time p;; € Z™ taken to process job j € J on machine i € M,
its goal is to find an assignment of all jobs to the machines so as to minimize
the makespan, i.e., the maximum processing time of any machine. In [14],
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Lenstra, Shmoys, and Tardos gave a polynomial-time 2-approximation algo-
rithm based on the LP-formulation for the general version of R||Cya, and
a ratio 3/2 inapproximability result (see also [18]). Alternatively, S-MMO
can be regarded as a variant of scheduling on identical parallel machines, in
which each job can be processed by any of the machines and the processing
time p;; of job j on machine ¢ is fixed to be p;, independent of i. This problem
has an FPTAS [10], which contrasts with our inapproximability results for
S-MMO. Another interesting difference concerns the set of processing times,
or the weight set: R||Cy,q. has a polynomial-time algorithm for the special
case where the weight set is {p, ¢} with ¢ = 2p, but S-MMO remains NP-hard
even if all edge weights belong to {p,q} with ¢ = 2p (this is possible because
S-MMO corresponds to R||Cpqe. with weight set {p, g, oo}).

Observe that the 3/2-inapproximability result of Lenstra, Shmoys, and
Tardos [14] cannot be applied directly to the restricted assignment variant
in which every job can be processed on a constant number of machines. In
S-MMO, each job associated with an edge can be assigned only to one of the
two machines associated with the two vertices of that edge. Moreover, their
inapproximability proof requires the assumption that the processing time of
each job may vary depending on which machine it is processed on. Thus, their
inapproximability result does not apply to our case, and in this sense, our
result provides a stronger inapproximability bound.

6.2 Open Problems

Several open problems remain. One concerns the gap between the polynomial-
time approximability and inapproximability of {1, k}-MMO. For k = 2, they
coincide, but in the current result, the gap between 2 —2/(k+1) and 1+ 1/k
increases for larger k. On the other hand, for very large k, it is easy to get a
better approximation ratio, as shown in Section 3.4. To further investigate that
relationship would be interesting. Another topic is to design faster strongly
polynomial-time approximation algorithms with a good approximation ratio.

Also, what is the time complexity of {k}-MMO? SOLVE-1-MMO was
shown in [1] to solve {k}-MMO in O(m?/?-log(A%)) time, but we believe that
faster methods may be possible, e.g., by avoiding the binary search. A faster
algorithm for {k}-MMO would immediately imply a faster implementation for
Algorithm LARGE-k in Section 3.4, for example.

Finally, are there any graph classes besides forests which admit polynomial-
time exact solutions? On the negative side, it seems that the techniques in
Section 5 can be extended to prove that {1,k}-MMO (and thus also Z*-
MMO) remain hard to approximate even if restricted to planar graphs or if
restricted to bipartite graphs. We are currently working on resolving this issue.
The problem also seems NP-hard for series-parallel graphs, which would imply
that Z+t-MMO on bounded treewidth graphs is NP-hard since series-parallel
graphs have treewidth at most 2.
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