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2previously been shown that the unweighted version of the problem is solvablein polynomial time while the weighted version is (weakly) NP-hard. In thispaper, we strengthen these results as follows: (1) We prove that the weightedversion is strongly NP-hard even if all edge weights belong to the set f1; kg,where k is any �xed integer greater than or equal to 2, and that there existsno pseudo-polynomial time approximation algorithm for this problem whoseapproximation ratio is smaller than (1 + 1=k) unless P=NP; (2) we presenta new polynomial-time algorithm that approximates the general version ofthe problem within a ratio of (2 � 1=k), where k is the maximum weight ofan edge in G; (3) we show how to approximate the spe
ial 
ase in whi
h alledge weights belong to f1; kg within a ratio of 3=2 for k = 2 (note that thismat
hes the inapproximability bound above), and (2�2=(k+1)) for any k � 3,respe
tively, in polynomial time.Keywords Graph orientation � Degree � Approximation algorithm �Inapproximability � Maximum 
ow � S
heduling1 Introdu
tionLet G = (V;E;w) be a simple, undire
ted, edge-weighted graph, where V , Eand w denote the set of verti
es of G, the set of edges of G, and a positiveintegral weight fun
tion w : E ! Z+, respe
tively. An orientation � of G is anassignment of a dire
tion to ea
h edge fu; vg 2 E, i.e., �(fu; vg) is either (u; v)or (v; u). Given an orientation � of G, the weighted outdegree of a vertex u isd+�(u) =P fu;vg2E:�(fu;vg)=(u;v) w(fu; vg).In this paper, we 
onsider the problem of �nding an orientation of an inputgraph G su
h that the maximum weighted outdegree among all verti
es isminimum, taken over all possible orientations of G. To spe
ify di�erent 
lassesof edge weight fun
tions, we formally de�ne the problem as follows.Problem: S-Minimum Maximum Outdegree (S-MMO)Input: A simple, undire
ted, edge-weighted graph G = (V;E;w),where w is a positive integral weight fun
tion of the formw : E ! S and where S is a set of allowed weights.Output: An orientation � of G that minimizes maxu2V fd+�(u)g.The most general 
ase of S-MMO with no restri
tions on the weight fun
-tion, ex
ept that it must be a positive integral fun
tion, is denoted by Z+-MMO. In this paper, we assume that S is of the form S = f1; 2; : : : ; kg, wherek is a positive integer. (The running times of our algorithms will depend on k.)We also study a spe
ial 
ase in whi
h the range of w is restri
ted to a positiveinteger set S = f1; kg with k � 2.Throughout this paper, given an instan
e of S-MMO, we set n = jV jand m = jEj. The weighted outdegree d+� (u) of a vertex u is also 
alled the



3outdegree of u for short. For any orientation � of G, the value of � is de�ned tobe maxu2V fd+�(u)g. We use OPT (G) or �� to denote the optimal value for G,i.e., the minimum of maxu2V fd+�(u)g taken over all possible orientations �ofG. A graph orientation algorithmALG is 
alled a �-approximation algorithmand ALG's approximation ratio is � if ALG(G)=OPT (G) � � holds for everygraph G, where ALG(G) is the value of the solution obtained by running ALGon input G.1.1 MotivationGraph orientations whi
h minimize the maximum outdegree 
an be used to
onstru
t eÆ
ient dynami
 data stru
tures for graphs that support fast vertexadja
en
y queries under a series of edge insertions and edge deletions [3℄. Also,S-MMO 
an be viewed as a variation of the art gallery problem (see, e.g., [5,15℄), load balan
ing problems, or unrelated parallel ma
hine s
heduling (see,e.g., [14,16℄). In parti
ular, the polynomial time (in)approximability of thelatter problem has been intensively studied. Refer to Se
tion 6.1 for a furtherdis
ussion on the relation between S-MMO and s
heduling.Graph orientation itself is a quite basi
, natural, and important problemin graph theory and 
ombinatorial optimization; see, e.g., Chapter 61 of [17℄and the short survey in [1℄. As an example, it is known that any planar graphhas an orientation with value at most 3 and an a
y
li
 orientation with valueat most 5, and su
h orientations 
an be found in linear time [4℄. However,most previous studies fo
us on problems related to orientations satisfying somespe
ial graph properties su
h as high 
onne
tivity, small diameter, no 
y
les,small di�eren
e between the indegree and outdegree of ea
h vertex, et
. [2,7,11℄, and very few studies 
onsider orientations whi
h minimize the maximumoutdegree (or equivalently, indegree) [1,13,19℄.1.2 Previous Results and Summary of New ResultsPrevious work has shown that S-MMO 
an be solved in polynomial time if alledge weights are identi
al [1,13,19℄. More pre
isely, the fastest known algo-rithm for fkg-MMO runs in O(m3=2 � log(��1)) time, where ��1 denotes the op-timal value of f1g-MMO [1℄. On the other hand, S-MMO is (weakly) NP-hardin the general 
ase [1℄. For any subgraph H of G, let V (H) and E(H) denotethe vertex set of H and the edge set of H , respe
tively. A (2 � 1=dL(G)e)-approximation algorithm for Z+-MMO with O(m2) running time was pre-sented in [1℄, where L(G) is the maximum density among all subgraphs of G,that is, L(G) = maxH�GfPfu;vg2E(H) w(fu; vg)=jV (H)jg. No inapproxima-bility results for S-MMO were previously known.In this paper, we study S-MMO from the viewpoint of polynomial-timeapproximability and inapproximability. First, Se
tion 2 introdu
es some addi-tional notation and terminology needed to des
ribe our results. Then, in Se
-tions 3.1 { 3.4, we present four new polynomial-time approximation algorithms



4named Majority, Cy
le-Can
eling, Refined Cy
le-Can
eling, andLarge-k. (Although Majority has the same running time and a worse ap-proximation ratio than Cy
le-Can
eling, we have in
luded the des
riptionof Majority be
ause it provides a simple way to illustrate some key ideasused in the design and analysis of Cy
le-Can
eling and Refined Cy
le-Can
eling.) Se
tion 4 shows how to improve the running times of our �rstthree approximation algorithms. Next, we give a redu
tion from At-most-3-SAT(2L) in Se
tion 5 whi
h proves the strong NP-hardness of f1; kg-MMO fork � 2 and also yields the �rst non-trivial lower bound on the approximationratio, under the assumption P 6= NP. Finally, in Se
tion 6, we dis
uss therelation between S-MMO and s
heduling and state some open problems. Ournew results are summarized below.{ f1; : : : ; kg-MMO has a (2 � 1=k)-approximation algorithm with runningtime O(m3=2 � logn � log k � log��+m2) [Algorithm Cy
le-Can
eling inSe
tion 3.2 together with Corollary 1 in Se
tion 4℄.{ The spe
ial 
ase f1; kg-MMO where k � 3 has a (slightly better) (2 �2=(k+1))-approximation algorithm, also with running time O(m3=2 � logn �log k � log��+m2) [Algorithm Refined Cy
le-Can
eling in Se
tion 3.3together with Corollary 1 in Se
tion 4℄.{ f1; kg-MMO admits a 1 + n=(2k)-approximation algorithm whi
h runs inO(m3=2 � logn) time [Algorithm Large-k in Se
tion 3.4℄. This is useful forinstan
es with k � n.{ f1; kg-MMO for any �xed k � 2 is strongly NP-hard [Theorem 6 in Se
-tion 5℄.{ For any �xed integer k � 2, no pseudo-polynomial time algorithm forf1; kg-MMO a
hieves an approximation ratio smaller than 1 + 1=k, unlessP=NP [Theorem 7 in Se
tion 5℄. This implies that there is no polynomialtime approximation algorithm for Z+-MMO with approximation ratio lessthan 3=2, unless P=NP. This also means that, for k = 2, AlgorithmCy
le-Can
eling is optimal with respe
t to the approximation ratio.Note that the 2 � 1=dL(G)e-approximation ratio from [1℄ and the new2� 1=k one are in
omparable; sometimes the former is better than the latter,and vi
e versa. For example, there exist instan
es where the former algorithmoutputs a 5=3-ratio solution while the latter a
hieves the ratio 3=2 (see Fig. 6in [1℄).2 PreliminariesFrom here on, we assume that the verti
es in G are lexi
ographi
ally ordered.We denote an undire
ted edge with endpoints u and v, where u < v in lexi
o-graphi
 order, by eu;v or simply fu; vg. A dire
ted edge (or ar
) from a vertex uto a vertex v is written as (u; v). The dire
ted graph de�ned by an orientation�



5of G is denoted by �(G) = (V;�(E); w). A dire
ted path of length l from a ver-tex v0 to a vertex vl in �(G) is a set of ar
s f(vi�1; vi) 2 �(E) j i = 1; 2; : : : ; lg,also represented by the sequen
e hv0; v1; : : : ; vli for simpli
ity. In parti
ular, adire
ted path satisfying vl = v0 is 
alled a dire
ted l-
y
le. For any dire
tedpath P = hv0; v1; : : : ; vli, the dire
ted path obtained by traversing P in itsreverse order is denoted by P , i.e., P = hvl; vl�1; : : : ; v0i.Next, for any u 2 V , let � (u) = fv j fu; vg 2 Eg denote the set of neighborsof u. For any orientation � of G, de�ne the set of neighbors of u under � as��(u) = fv j fu; vg 2 E and �(fu; vg) = (u; v)g. We 
all any vertex u� whoseweighted outdegree is maximum in � 
riti
al, and also say that u� is a 
riti
alvertex with respe
t to �. Let wmax be the maximum weight among all edgesin E and let W be the total weight of all edges in E. Every orientation hasthe following trivial lower bound 
aused by the maximum weight edges:Proposition 1 ([1℄) For any undire
ted weighted graph G and any orienta-tion � of G, the value of � is at least wmax. utFinally, we introdu
e three basi
 operations named Reverse, Up-To-Roots, and Solve-1-MMO whi
h will be used later in this paper.{ Reverse does the following: Given an orientation � of G and a dire
tedpath P = hu0; u1; : : : ; uli in �(G), update � by repla
ing P with P , i.e.,let �(eui;ui+1) = (ui+1; ui) for i = 0; : : : ; l � 1. We 
all this operationReverse-Cy
le if u0 = ul. Note that if P is a dire
ted 
y
le and allw(eui;ui+1)'s are equal, then the outdegree of every vertex remains un-
hanged.{ Up-To-Roots determines an orientation � for a given simple, undire
tedforestG as follows: First �x an arbitrary root node for ea
h tree in G. Then,for every edge e, orient �(e) towards the root node of the tree 
ontaining e. 1{ Solve-1-MMO outputs an optimal orientation of a given graph withidenti
al edge weights. Solve-1-MMO 
an be implemented to run inO(m3=2 � log(��1)) for fkg-MMO time [1℄. (Here, the log fa
tor 
omes froma binary sear
h.)3 Approximation AlgorithmsWe now present the details of our four new approximation algorithms for S-MMO. The �rst two, Majority and Cy
le-Can
eling, work for any S =f1; : : : ; kg, whereas the last two, Refined Cy
le-Can
eling and Large-k,are designed for the spe
ial 
ase where S is of the form S = f1; kg.1 Observe that OPT (G) = wmax if G is a forest, i.e., a graph that does not 
ontain any
y
les. (It is easy to see that the Up-To-Roots operation �nds an optimal solution forforests [1℄.) Thus, the bound in Proposition 1 is optimal for this 
ase.



63.1 Majority Voting AlgorithmIn this subse
tion, we give a simple 2-approximation algorithm named Ma-jority. Although Majority 
an be 
onsidered a variation of the Lenstra-Shmoys-Tardos algorithm [14℄, whi
h is based on LP-rounding and has anapproximation ratio of 2, Majority is 
ombinatorial and provides some ba-si
 intuition for the algorithms presented in later subse
tions. Furthermore,a

ording to Corollary 1 in Se
tion 4, Majority is mu
h faster than theLenstra-Shmoys-Tardos algorithm.Algorithm Majority is presented in Fig. 1. It works as follows. First,repla
e ea
h edge e = fu; vg in G with w(e) edges of weight 1 between u and v,so that an undire
ted multigraph G0 with W =Pe2E w(e) edges is obtained.Next, �nd an optimal orientation �0 of G0. (In �0, for ea
h fu; vg 2 E, somerepli
ated edges of fu; vgmay be oriented from u to v while others are orientedfrom v to u.) Then, de
ide an orientation � of G by majority voting. Morepre
isely, let fu!v and fv!u denote the number of edges oriented from uto v and from v to u, respe
tively, in �0. Sin
e G is simple, fu!v + fv!u =w(eu;v) holds. The orientation� of the originalG is determined in the followingmanner: For ea
h eu;v 2 E, assign�(eu;v) := ((u; v); if fu!v � fv!u;(v; u); otherwise: (1)(By the de�nitions above, the dire
tion is determined a

ording to the lexi
o-graphi
 order in 
ase of a tie.)Algorithm Majority1. For graph G, 
onstru
t G0 by repla
ing ea
h edge e with w(e) edges of weight 1.2. Find an optimal orientation �0 of G0 by using Solve-1-MMO.3. De
ide the orientation � of G a

ording to (1) for ea
h edge in G.4. Return �.Fig. 1 Algorithm Majority.Theorem 1 For any S = f1; : : : ; kg, Algorithm Majority approximates S-MMO within a ratio of 2 and runs in O(W 3=2 � log��) time.Proof. First, 
onsider the running time. Steps 1, 2 and 3 take O(W ), O(W 3=2 �log��) and O(W ) time, respe
tively, the total running time of Majority isO(W 3=2 � log��).Next, 
onsider the approximation ratio. The outdegree of any vertex uunder � is Pv2��(u) w(eu;v) = Pv2��(u)(fu!v + fv!u). Let u� be a 
riti
alvertex with respe
t to �. Then ALG(G) = Pv2��(u�)(fu�!v + fv!u�), and



7OPT (G) � OPT (G0) � Pv2� (u�) fu�!v; sin
e �0 is a relaxed orientation ofG, the optimal value of G0 is a lower bound on the optimal solution of G.Hen
e, ALG(G)OPT (G) � ALG(G)OPT (G0) � Pv2��(u�)(fu�!v+fv!u�)Pv2� (u�) fu�!v� Pv2��(u�) 2 � fu�!vPv2��(u�) fu�!v = 2:The last inequality holds sin
e � is de
ided by majority voting. The approxi-mation ratio is 2. utThe analysis is tight, as the example in Fig. 2 demonstrates: The valueof the optimal solution for the instan
e G is k, while a possible output ofMajority is 2k, as shown in Fig. 2(d).
Instance  G

weight 1
weight k(even)

OPT(G) = k

k/2 edges
1 edge

OPT(G’)  =  k ALG(G) = 2k

weight 1
weight k(even)

weight 1
weight k (even)

(a) (b) (c) (d)Fig. 2 A worst-
ase example for Majority: (a) an instan
e G, (b) an optimal orientationof G, (
) an optimal orientation �0 of G0, and (d) a possible output of Majority basedon (
).
3.2 Cy
le Can
eling AlgorithmHere, we des
ribe an algorithm named Cy
le-Can
eling whi
h improvesMajority; its approximation ratio is 2 � 1=k. In fa
t, Cy
le-Can
elingalso uses the same basi
 idea of repla
ing ea
h weighted edge by a numberof unweighted edges and 
omputing an optimal solution for the resulting un-weighted multigraph. However, it then de
ides the orientation of ea
h edge ina di�erent manner.Cy
le-Can
eling is listed in Fig. 3. In the �rst and se
ond steps ofthe algorithm, do as Majority; 
onstru
t G0 (repli
ate ea
h edge) and then�nd an optimal orientation �0. After that, de
ide a partial orientation of the



8 Algorithm Cy
le-Can
eling1. For graph G, 
onstru
t G0 by repla
ing ea
h edge e with w(e) edges of weight 1.2. Find an optimal orientation �0 of G0 by using Solve-1-MMO.3. De
ide the (partial) orientation � of G a

ording to (2), and obtain G�0 = (V; F�0).4. If there exists a dire
ted l-
y
le in G�0 where l � 3, apply Reverse-Cy
le and goto Step 3.5. For unde
ided edges of �, apply Up-To-Roots to G�0 .6. Return �.Fig. 3 Algorithm Cy
le-Can
eling.original problem by �(eu;v) := 8><>:(u; v); if fv!u = 0;(v; u); if fu!v = 0;�; otherwise; (2)where � means \not de
ided yet". Note that the dire
tion of the edges de
idedby this operation is essentially the same as the one of �0; the value of theorientation does not 
hange.Next, we introdu
e a new operation, 
y
le 
an
elation, whi
h updates theorientation to a more desirable one without 
hanging the outdegree of anyvertex. To this end, we 
onstru
t another undire
ted graph G�0 = (V; F�0 ),where F�0 = feu;v 2 E j fu!v 6= 0 and fv!u 6= 0 in �0g. From G�0 , we �nd anl-
y
le with l � 3, say C = hv1; v2; : : : ; vl; v1(� vl+1)i, if one exists. (From hereon, when we mention l-
y
les with l � 3, we just say \
y
les" for simpli
ity,be
ause we do not 
onsider 2-
y
les in this paper.) Let 
 = minffvi!vi+1 ji = 1; : : : ; lg, whi
h is a positive integer, by the de�nition of F�0 . Then, we goba
k to G0 and �0 and apply Reverse-Cy
le with size 
 to C; sin
e thereexist 
 
y
les of hv1; v2; : : : ; vl; v1(� vl+1)i on G0 under �0, we 
an reverse thedire
tion of the edges along the 
 
y
les. It should be noted that the outdegree(or the indegree) of ea
h vertex in the resulting dire
ted graph is equal to theone under �0; it is still an optimal orientation in G0 and 
an be updated as�0. For this new �0, we apply the equation (2), then go ba
k to the beginningof this paragraph. Sin
e at least one edge fvi; vi�1g on the 
y
le C satis�esfvi!vi+1 = 0 by the Reverse-Cy
le, the new F�0 is stri
tly smaller than theold F�0 ; this step ends in at most m� 2 iterations.After a number of (or possibly zero) iterations of the above pro
edure, G�0be
omes a forest, and we set F := G�0 . Note that all the edges of F are notde
ided yet by (2). The 
y
le 
an
elation itself implies that there always existsan optimal solution �0 for the relaxed problem su
h that �0 has no 
y
les in F .Then, we have the simple disjoint tree stru
ture, for whi
h we 
an apply theUp-To-Roots operation to de
ide the orientation of all the remaining edges.



9Theorem 2 For any S = f1; : : : ; kg, Algorithm Cy
le-Can
eling approx-imates S-MMO within a ratio of (2� 1k ) and runs in O(W 3=2 � log�� +m2)time.Proof. We �rst 
onsider the running time of Cy
le-Can
eling. Steps 1and 2 have the same time 
omplexity as Majority, i.e., O(W 3=2 � log��)time. Ea
h iteration of Step 3 takes O(m) time, and ea
h iteration of Step 4takes O(m) time by the depth �rst sear
h, and these steps 
an be iteratedat most m � 2 times. Step 5 takes O(m) time. In total, the running time isO(W 3=2 � log�� +m2).Next, we analyze the approximation ratio. Let u� be any 
riti
al vertex in Gwith respe
t to �, i.e., a vertex with maximum weighted outdegree in �. Weshall prove that d+� (u�) � (2� 1k )�OPT (G). First of all, note that OPT (G) � kby Proposition 1 and also that OPT (G) � OPT (G0) = d+�0(x�) � d+�0(u�),where x� is any 
riti
al vertex with respe
t to �0. Let F� be the forest ofrooted trees produ
ed by Up-To-Roots in Step 5. There are two possible
ases to 
onsider after the iterations of Steps 3 and 4:1. u� is a root in F�: 2 In this 
ase, we immediately have d+�(u�) � d+�0(u�)be
ause zero or more of u�'s outgoing edges in �0 are reversed to obtain �,but none of its in
oming edges in �0 is reversed in Step 5. Then, re
all thatd+�0(u�) � OPT (G) by the above.2. u� is not a root in F�: In this 
ase, let p denote the parent of u� and Cthe set of 
hildren of u� in F�, respe
tively. Clearly, we have d+�(u�) =d+�0(u�) + fp!u� �Pv2C fu�!v � d+�0(u�) + fp!u� ; whi
h yieldsd+� (u�)OPT (G) � d+�0(u�) + fp!u�OPT (G) � d+�0(u�)d+�0(u�) + fp!u�k � 1+ k � 1k = 2� 1k ;where the last inequality holds sin
e fp!u� + fu�!p � k and fu�!p � 1.In both 
ases, d+� (u�) is within the desired bound. utFigure 4 shows a worst-
ase example of Cy
le-Can
eling for an instan
eof f1; 3g-MMO whose approximation ratio is 5=3 = 2� 1=3. This 
onstru
tion
an be modi�ed in a straightforward way to produ
e worst-
ase examples forgeneral k, whi
h means that the analysis of Theorem 2 is tight.Remark: By Theorem 2, the approximation ratio of Cy
le-Can
eling fork = 2 is 3=2. This is a
tually the best possible in polynomial time for k = 2(unless P=NP), as we shall prove in Se
tion 5.2 This 
ase also handles the possibility that u� is an isolated vertex in G�0 .



10
Instance  G

weight 1
weight 3

OPT(G) = 3

2 edges
1 edge

OPT(G’)  =  3 ALG(G) = 5

weight 1
weight 3

(a) (b)

(c) (d)

weight 1
weight 3

3 edgesFig. 4 A worst-
ase example for Cy
le-Can
eling: (a) an instan
e G, (b) an optimalorientation of G, (
) an optimal orientation �0 of G0, and (d) a possible output of Cy
le-Can
eling based on (
).3.3 Re�ned Cy
le Can
eling AlgorithmWe now 
onsider the spe
ial 
ase of S-MMO in whi
h S = f1; kg for k � 3,and show that it 
an be approximated even more eÆ
iently than by Algo-rithm Cy
le-Can
eling. The new algorithm is 
alled Refined Cy
le-Can
eling and is outlined in Fig. 5. The main idea is to show that if all edgeweights in G are either 1 or k, a slight modi�
ation to Cy
le-Can
elingallows us to 
ompute a stronger lower bound on an optimal solution whi
hthen yields an improved approximation ratio.As mentioned in the previous se
tion, the 
y
le 
an
elation itself providesan optimal solution for the relaxed problem with a tree property. Here, we fo
uson Step 5 of Cy
le-Can
eling, in whi
h the naive appli
ation of Up-To-Roots with arbitrary roots gives a worst-
ase example (as shown in Fig. 4);this 
auses the approximation ratio to be 2 � 1=k. The reason is that someverti
es having large outdegrees under the orientation �0 are not suitable forbeing roots; if su
h a vertex is set to be a root, its outdegree will distribute toits neighbors so that the neighbors have large outdegrees under � 
omparedto under �0. To avoid this situation, Algorithm Refined Cy
le-Can
elingpro
eeds as follows.First exe
ute Steps 1 to 4 of Cy
le-Can
eling, and obtain a forest F . Ifthere exists a leaf node u in F su
h that fu!v � fv!u holds for its neighbor v,we �x the orientation of eu;v as (u; v) and remove eu;v from F (i.e., �(eu;v) :=(u; v) and F = (V; F ) with F := F n feu;vg). Repeat this operation until no



11leaf node u satis�es fu!v � fv!u where v is the neighbor node of u. Then,the algorithm applies Up-To-Roots.Algorithm Refined Cy
le-Can
eling1.{4. Exe
ute Steps 1 to 4 of Cy
le-Can
eling.5. While there exists a leaf node u 
onne
ting to v su
h that fu!v � fv!u in F =(V; F ), let �(eu;v) := (u; v) and remove eu;v from F .6. For unde
ided edges of �, apply Up-To-Roots to F .7. Return �.Fig. 5 Algorithm Refined Cy
le-Can
eling.While Algorithm Cy
le-Can
eling simply applies Up-To-Roots op-erations to the obtained forests, Refined Cy
le-Can
eling de
ides theorientation of edges 
onne
ted to leaves a

ording to the values of f 's forthe leaves and their parents, and then applies Up-To-Roots. Note that thismodi�
ation does not depend on S and does not make the solution worse,though it might be diÆ
ult to show that it has an improved approximationratio. We 
an, however, show a better approximation ratio for the spe
ial 
aseS = f1; kg.Theorem 3 For any S = f1; kg where k � 3, Algorithm Refined Cy
le-Can
eling approximates S-MMO within a ratio of (2 � 2k+1 ) and runs inO(W 3=2 � log�� +m2) time.Proof. It is easy to see that adding Steps 5 and 6 to Algorithm Cy
le-Can
eling in Se
tion 3.2 does not in
rease the asymptoti
 running time.Therefore, the running time is O(W 3=2 � log�� +m2).To analyze the approximation ratio of Refined Cy
le-Can
eling, wepro
eed similarly as in the proof of Theorem 2. Let u� be any 
riti
al vertexinG with respe
t to �, and let F� be the forest of rooted trees produ
ed byUp-To-Roots in Step 6. Re
all that OPT (G) � k and OPT (G) � OPT (G0) �d+�0(u�). There are two main 
ases:1. u� is a node whi
h satis�es the 
ondition in Step 5: Then, sin
e fp!u� � k2for the parent p of u�,d+� (u�)OPT (G) � d+�0(u�) + fp!u�OPT (G) � d+�0 (u�)d+�0 (u�) + fp!u�k � 1 + k=2k = 32 :2. u� is a node whi
h did not satisfy the 
ondition in Step 5:(a) If u� is a root in F�, then d+�(u�) � d+�0(u�) � OPT (G) as before, andwe are done.



12 (b) If not, 
onsider the tree T in F� that 
ontains u�. Let p be the parentof u� in T and let hu1; u2; : : : ; u`i be the path between any two leaves u1and u` in the undire
ted version of T . Sin
e u1 and u` satisfy fu1!u2 <fu2!u1 and fu`!u`�1 < fu`�1!u` , there must exist an intermediatenode ui su
h that fui�1!ui < fui!ui�1 and fui!ui+1 � fui+1!ui . Next,be
ause all edges in T have weight k, we know that fv!w + fw!v = kfor every edge fv; wg in T , whi
h means that fui!ui�1 > k=2 andfui!ui+1 � k=2. Thus, the outdegree of ui is at least fui!ui�1 +fui!ui+1 > k, i.e., OPT (G0) � k + 1. Plugging in this stronger lowerbound gives usd+� (u�)OPT (G) � d+�0(u�) + fp!u�OPT (G) � d+�0(u�)d+�0(u�) + fp!u�k + 1� 1 + k � 1k + 1 = 2� 2k + 1 :Sin
e 2 � 2k+1 � 3=2 for k � 3, the approximation ratio is 2 � 2k+1 fork � 3. It should be noted that the approximation ratio of Refined Cy
le-Can
eling for k = 2 is 3=2 (same asCy
le-Can
eling) be
ause then Step 6is not exe
uted. utFigure 6 shows a worst-
ase example of Refined Cy
le-Can
eling forf1; 3g-MMO. Sin
e this example is also extendable to general f1; kg-MMO,the analysis of Theorem 3 is tight.3.4 Approximation Algorithm for Large kThis subse
tion presents a simple approximation algorithm named Large-kfor f1; kg-MMO whi
h is suitable when k � n. Its approximation ratio is1 + n2k and its running time does not depend on k or W . The algorithm isdes
ribed in Fig. 7.The next theorem states the approximation ratio of Algorithm Large-k.Theorem 4 For any S = f1; kg, Algorithm Large-k approximates S-MMOwithin a ratio of (1 + n2k ) and runs in O(m3=2 � logn) time.Proof. The running time is O(m3=2 � logn) be
ause Solve-1-MMO is 
alledtwi
e in Algorithm Large-k, and both log(��1(G1)) and log(��1(Gk)) areO(log n). Next,ALG(G)OPT (G) = maxv2V fd+�01(v) + d+�0k (v)gOPT (G) � maxv2V fd+�01(v)g+maxv2V fd+�0k (v)gOPT (Gk)= OPT (G1) +OPT (Gk)OPT (Gk) � n=2k + 1;sin
e OPT (G) � OPT (Gk) � k and sin
e n=2 is a trivial upper bound forOPT (G1) derived from the 
omplete graph with n verti
es. ut
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Instance  G

weight 1
weight 3

OPT(G) = 4

2 edges
1 edge

OPT(G’)  =  4

(a) (b)

weight 1
weight 3

3 edges

(c)

ALG(G)  =  6

(d)

weight 1
weight 3Fig. 6 A worst-
ase example for Refined Cy
le-Can
eling: (a) an instan
e G, (b) anoptimal orientation of G, (
) an optimal orientation �0 of G0, and (d) a possible output ofRefined Cy
le-Can
eling based on (
).Algorithm Large-k1. For the given graph G, 
onstru
t two graphs G1 = (V;E1) and Gk = (V;Ek),where E1 and Ek are the sets of edges with weight 1 and k, respe
tively.2. Apply operation Solve-1-MMO to G1 and Gk independently, and let �01 and �0kbe the returned optimal solutions.3. Let � be the 
omposite orientation of �01 and �0k for the whole graph G.4. Return �.Fig. 7 Algorithm Large-k.4 Polynomial-Time Computation of f1g-MMO for G0In this se
tion, we develop a te
hnique for making Algorithms Majority,Cy
le-Can
eling, and Refined Cy
le-Can
eling polynomial-time algo-rithms. Re
all from the previous se
tion that in these algorithms, we solvef1g-MMO for the graph G0, whi
h is generated from G by repla
ing ea
hedge e with w(e) edges of weight 1, as a sub-pro
edure. Although f1g-MMOfor G = (V;E) 
an be solved in O(jEj3=2 log jV j) time by the algorithm of [1℄,f1g-MMO(G0) requiresO(W 3=2 �log��) time, whi
h is pseudo-polynomial time(that is, it is not ne
essarily polynomial in the length of the input). However,the information a
tually needed by Majority, Cy
le-Can
eling, and Re-fined Cy
le-Can
eling is not the orientation itself but the values fu!v



14and fv!u. This se
tion explains how to 
ompute these values in polynomialtime. The modi�ed algorithm is presented in Fig. 10.To �nd the values fu!v and fv!u eÆ
iently, instead of expli
itly 
on-stru
ting G0 and applying Solve-1-MMO, we �rst solve a relaxed versionof S-MMO where the orientation of any edge may be fra
tional, meaning thatits weight may be distributed among both dire
tions as (positive) non-integers.For example, an edge fu; vg in G with weight 6 might be oriented as (u; v)with weight 3:6 and (v; u) with weight 2:4. The optimal solution to relaxedS-MMO 
an be obtained by solving a series of maximum dire
ted 
ow prob-lems as follows. Given the graph G = (V;E;w) and a positive integer �tmp,
onstru
t a 
ow network NG = (VN ; AN ; 
ap), where VN = V [ E [ fs; tg,AN = f(s; e) j e 2 Eg [ f(e; vi); (e; vj) j e = fvi; vjg 2 Eg [ f(v; t) j v 2 V g,and 
ap(a) = 8><>:w(e); if a = (s; e);w(e); if a = (e; v);�tmp; if a = (v; t):Figures 8 and 9 show an example of a graph G and its 
orresponding net-workNG. Sin
eNG has only integral 
apa
ities, the 
ow integrality theorem [6℄ensures that the maximum 
ow value in NG is an integer. It is straightforwardto transform a maximum 
ow solution of NG into a solution for relaxed S-MMO with value at most �tmp. By applying a binary sear
h on �tmp, we 
anthus obtain an optimal solution for the relaxed version of the problem.PSfrag repla
ements
v1v2 v3v4 v5e1 e2e3e4 e5 e6e7Fig. 8 A graph G.

vertex setedge setPSfrag repla
ements v1v2v3v4v5
e1e2e3e4e5e6e7

s t
ap = w(ei) 
ap = �tmp
Fig. 9 The network NG 
onstru
ted from G in Fig. 8.Next, we need to ensure that the obtained optimal orientation for relaxedS-MMO is always integral. (In general, an optimal orientation for relaxed S-



15MMO may not be integral even though the maximum 
ow value �opt itself isan integer.) Therefore, in the des
ription of Algorithm Modified Solve-1-MMO(G0) in Fig. 10, Steps 2, 3 and 4 have been added to ensure the integral
ow property; the next paragraph explains in detail how this works. Notethat we 
an skip Steps 2 to 4 if we employ a maximum 
ow algorithm inStep 1 whi
h always outputs an integral optimal solution (su
h as the one byGoldberg and Rao [9℄); however, we in
lude these steps in the des
ription ofthe algorithm for 
ompleteness so that it works for any sele
ted maximum 
owalgorithm in Step 1.The idea is simple. If we obtain a non-integral 
ow after Step 1, we adjust itto a solution of 1-MMO(G0), in whi
h both fu!v and fv!u should be integralfor any fu; vg 2 E. For this purpose, we use Reverse-Cy
le and Up-To-Roots again. From the obtained solution �� of relaxed S-MMO(G), we 
on-stru
t a dire
ted graph G� = (V;E�), where E� = f(u; v) j fu!v � bfu!v
 >0g. Note that if G� 
ontains no edge, �� is an integral optimal solutionfor relaxed S-MMO(G), that is, an optimal solution for 1-MMO(G0). Sin
eG� is a bidire
tional graph, G� 
ontains a dire
ted l-
y
le with l � 3, isa (bidire
tional) forest, or empty. If G� 
ontains a dire
ted l-
y
le C, we
an update �� so as to delete C by applying Reverse-Cy
le to C withsize 
 = min(u;v)2Cffu!v � bfu!v
g as in Se
tion 3.2. By a similar argu-ment, we obtain a forest after at most m appli
ations of Reverse-Cy
le.Then we apply Up-To-Roots that makes �� integral; that is, from u on theforest to its parent p, update fu!p := dfu!pe and fp!u := bfp!u
. Thisdoes not in
rease the value of �� by the following reason: For node u on theforest, let f(u) = Pv2� (u)bfu!v
, and p be the parent of u on the forest.Then the weighted outdegree of u under �� before applying Up-To-Roots isf(u) +Pv2� (u)(fu!v � bfu!v
) � �opt. Due to the integrality of f(u) and�opt, we have f(u) � �opt � 1. After the Up-To-Roots, the weighted out-degree of u be
omes at most f(u) + (fu!p � bfu!p
) + (fp!u � bfp!u
) =f(u)+1 � �opt. By these, we 
an obtain an optimal orientation of 1-MMO(G0)from any optimal orientation of relaxed S-MMO(G).Finally, we 
onsider the time 
omplexity of Algorithm Modified Solve-1-MMO(G0). Step 1 
an be done in O(m3=2 � logn � log k � log��) time by amaximum 
ow algorithm [9℄ while doing a binary sear
h for ��. Steps 2, 3and 4 are not needed in this 
ase (if exe
uted, they would take O(m2) time)be
ause the adopted maximum 
ow algorithm always returns an integral 
ow.Thus, the 
omputations take O(m3=2 � logn � log k � log��) time in total.Theorem 5 Algorithm Modified Solve-1-MMO(G0) 
omputes the fu!vand fv!u values of all the edges for f1g-MMO of G0 in O(m3=2 � logn � log k �log��) time. utCorollary 1 The running time of algorithm Majority 
an be improved toO(m3=2 � logn � log k � log��). Also, the running times of algorithms Cy
le-Can
eling and Refined Cy
le-Can
eling 
an be improved to O(m3=2 �logn � log k � log�� +m2). ut



16Algorithm Modified Solve-1-MMO(G0)1. Find an optimal orientation for relaxed S-MMO on G by solving maximum dire
ted
ow problems in NG while doing a binary sear
h to �nd ��. Set fu!v and fv!ufor every fu; vg 2 E.2. Constru
t G� = (V;E�), where E� = f(u; v) j fu!v � bfu!v
 > 0gg. If E� = ;,goto Step 5.3. For a dire
ted l-
y
le C in G� where l � 3, apply Reverse-Cy
le to C with sizemin(u;v)2Cffu!v�bfu!v
g to update fu!v for every (u; v) 2 C, and goto Step 2.If no 
y
le in G�, goto Step 4.4. For G�, apply Up-To-Roots as des
ribed above.5. Return �0 as fu!v and fv!u for all fu; vg 2 E.Fig. 10 Algorithm Modified Solve-1-MMO(G0).Remark: We 
an obtain a strongly polynomial-time algorithm by adoptinganother maximum 
ow algorithm su
h as [12℄ instead of [9℄ in AlgorithmMod-ified Solve-1-MMO(G0). Then the running times of Majority, Cy
le-Can
eling, and Refined Cy
le-Can
eling be
ome O(m3 � log2+1= logn n).5 Inapproximability ResultsIt was shown in [1℄ that S-MMO is NP-hard by a redu
tion from the PARTI-TION problem, whi
h has a pseudo-polynomial time algorithm. This impliesthat S-MMO was only known to be weakly NP-hard. Also, no previous resultsabout the inapproximability of S-MMO exist. In this se
tion, we provide aproof of the strong NP-hardness of S-MMO whi
h also yields inapproximabil-ity results. More pre
isely, we give a redu
tion from a variation of the 3-SATproblem, At-most-3-SAT(2L), to f1; kg-MMO for any �xed integer k � 2.At-most-3-SAT(2L) is a restri
tion of 3-SAT where ea
h 
lause in
ludes atmost three literals and ea
h literal (not variable) appears at most twi
e in aformula. It 
an easily be proved that At-most-3-SAT(2L) is NP-hard by usingproblem [LO1℄ on p. 259 of [8℄.The redu
tion from At-most-3-SAT(2L) to f1; kg-MMO is as follows. Givena formula � of At-most-3-SAT(2L) with g variables fv1; : : : ; vgg and h 
lausesf
1; : : : ; 
hg, we 
onstru
t a graphG� in
luding gadgets that mimi
 (a) literals,(b) 
lauses, and (
) a spe
ial gadget:(a) Ea
h literal gadget 
onsists of two verti
es labeled by vi and vi and oneedge fvi; vig between them, 
orresponding to variable vi of �. The weightof fvi; vig is k.(b) Ea
h 
lause gadget is one vertex (
alled a 
lause vertex ) labeled by 
j ,
orresponding to 
lause 
j of �. The 
lause vertex 
j is 
onne
ted by edgesof weight 1 to at most three verti
es in the literal gadgets that have thesame labels as the literals in the 
lause 
j . For example, if 
1 = x _ yappears in �, then vertex 
1 is 
onne
ted to verti
es x and y. See Fig. 11.



17(
) The spe
ial gadget is a 
y
le of k verti
es and k edges where ea
h edge ofthe 
y
le has weight k.3 For ea
h 
lause, if it 
onsists of one (two or three,respe
tively) variable(s), then its 
lause vertex is 
onne
ted to k (k � 1or k � 2, respe
tively) arbitrary verti
es in the spe
ial gadget by edges ofweight 1. Hen
e, the degree of every 
lause vertex is exa
tly k + 1.

special gadget

clause
gadget

literal
gadgetPSfrag repla
ements x �x y �y z �z


1 = x _ �y 
2 = �x _ y _ zk + 1 edges
Fig. 11 Redu
tion from At-Most-3-SAT(2L) to f1; kg-MMO.Lemma 1 For the above 
onstru
tion of G�, the following holds:(i) If � is satis�able, then OPT (G�) � k.(ii) If � is not satis�able, then OPT (G�) � k + 1.Proof. To prove (i), suppose there exists a satisfying truth assignmentfor �. From the assignment, we 
onstru
t an orientation of G� with valueOPT (G�) � k. If vi = true in the assignment, the edge fvi; vig is orientedfrom vi to vi; otherwise, from vi to vi. So far, the outdegree of every vertex as-so
iated with the literals of true and false assignments is 0 and k, respe
tively.We 
all the verti
es asso
iated with literals of true (resp., false) assignmentstrue (resp., false) verti
es. (For example, in Fig. 11, if the variable x = false inthe truth assignment then the upper leftmost vertex x is a false vertex and these
ond leftmost vertex x is 
alled a true vertex.) For every 
lause vertex 
j ,we sele
t one edge 
onne
ted to a true vertex and orient it towards 
j , andorient the remaining k edges away from 
j . This orientation of the edges doesnot in
rease the outdegree of false verti
es or any extra true vertex; it is stillat most k. Sin
e every literal appears at most twi
e in �, the outdegree of trueverti
es in the literal gadgets is at most two. Finally, edges belonging to the3 In 
ase k = 2, we prepare a 
y
le of 3 verti
es as an ex
eption to keep the simpleproperty of the graph.



18spe
ial gadget 
an be oriented 
y
li
ally. Thus, the maximum outdegree of G�is at most k.Next, we prove (ii) by showing that if G� has an orientation whose maxi-mum outdegree is at most k then � is satis�able by 
onstru
ting the satisfyingtruth assignment. If an edge in the ith literal gadget vi is oriented from vi to vithen we assign vi = false ; otherwise, vi = true. Sin
e every 
lause vertex is
onne
ted to the literal gadgets and spe
ial gadgets by k+1 edges, and everyedge between a 
lause gadget and the spe
ial gadget must be oriented towardsthe spe
ial gadget (if not, the maximum outdegree of the spe
ial gadget wouldbe at least k + 1), it follows that for ea
h 
lause vertex 
j , there must be atleast one edge dire
ted towards 
j from a vertex v in a literal gadget, and vmust therefore be a true vertex. This means that the above truth assignmentsatis�es all 
lauses in �. utFrom Lemma 1, we immediately obtain:Theorem 6 f1; kg-MMO for any �xed k � 2 is strongly NP-hard. utCorollary 2 Z+-MMO is strongly NP-hard. utIn addition, the (in)satis�ability gap of Lemma 1 dire
tly yields the nexttheorem and 
orollary.Theorem 7 f1; kg-MMO, where k � 2 is �xed, has no pseudo-polynomialtime algorithm with approximation ratio less than 1+ 1=k, unless P=NP. utCorollary 3 Z+-MMO has no pseudo-polynomial time algorithm with ap-proximation ratio less than 3=2, unless P=NP. ut6 Con
luding Remarks6.1 Relation to S
hedulingAs mentioned in Se
tion 1.1, one appli
ation of the minimization of the max-imum outdegree is s
heduling. For an undire
ted graph, let us 
onsider theverti
es as the ma
hines and the edges as the jobs. Then S-MMO 
an be re-garded as a spe
ial 
ase of the job assignment problem [16℄ in whi
h the min-imization of the maximum outdegree means to minimize the �nishing timeof all the jobs. From the viewpoint of s
heduling, our problem has some re-stri
tions: (1) ea
h job must be assigned to exa
tly one of two predeterminedma
hines, and (2) the pro
essing time of ea
h job does not depend on the ma-
hines. Therefore, S-MMO is a spe
ial 
ase of s
heduling on unrelated parallelma
hines, or RjjCmax in standard notation: given a set J of jobs, a set M ofma
hines, and the time pij 2 Z+ taken to pro
ess job j 2 J on ma
hine i 2M ,its goal is to �nd an assignment of all jobs to the ma
hines so as to minimizethe makespan, i.e., the maximum pro
essing time of any ma
hine. In [14℄,



19Lenstra, Shmoys, and Tardos gave a polynomial-time 2-approximation algo-rithm based on the LP-formulation for the general version of RjjCmax anda ratio 3=2 inapproximability result (see also [18℄). Alternatively, S-MMO
an be regarded as a variant of s
heduling on identi
al parallel ma
hines, inwhi
h ea
h job 
an be pro
essed by any of the ma
hines and the pro
essingtime pij of job j on ma
hine i is �xed to be pj , independent of i. This problemhas an FPTAS [10℄, whi
h 
ontrasts with our inapproximability results forS-MMO. Another interesting di�eren
e 
on
erns the set of pro
essing times,or the weight set: RjjCmax has a polynomial-time algorithm for the spe
ial
ase where the weight set is fp; qg with q = 2p, but S-MMO remains NP-hardeven if all edge weights belong to fp; qg with q = 2p (this is possible be
auseS-MMO 
orresponds to RjjCmax with weight set fp; q;1g).Observe that the 3/2-inapproximability result of Lenstra, Shmoys, andTardos [14℄ 
annot be applied dire
tly to the restri
ted assignment variantin whi
h every job 
an be pro
essed on a 
onstant number of ma
hines. InS-MMO, ea
h job asso
iated with an edge 
an be assigned only to one of thetwo ma
hines asso
iated with the two verti
es of that edge. Moreover, theirinapproximability proof requires the assumption that the pro
essing time ofea
h job may vary depending on whi
h ma
hine it is pro
essed on. Thus, theirinapproximability result does not apply to our 
ase, and in this sense, ourresult provides a stronger inapproximability bound.6.2 Open ProblemsSeveral open problems remain. One 
on
erns the gap between the polynomial-time approximability and inapproximability of f1; kg-MMO. For k = 2, they
oin
ide, but in the 
urrent result, the gap between 2� 2=(k+1) and 1+ 1=kin
reases for larger k. On the other hand, for very large k, it is easy to get abetter approximation ratio, as shown in Se
tion 3.4. To further investigate thatrelationship would be interesting. Another topi
 is to design faster stronglypolynomial-time approximation algorithms with a good approximation ratio.Also, what is the time 
omplexity of fkg-MMO? Solve-1-MMO wasshown in [1℄ to solve fkg-MMO in O(m3=2 � log(��1)) time, but we believe thatfaster methods may be possible, e.g., by avoiding the binary sear
h. A fasteralgorithm for fkg-MMO would immediately imply a faster implementation forAlgorithm Large-k in Se
tion 3.4, for example.Finally, are there any graph 
lasses besides forests whi
h admit polynomial-time exa
t solutions? On the negative side, it seems that the te
hniques inSe
tion 5 
an be extended to prove that f1; kg-MMO (and thus also Z+-MMO) remain hard to approximate even if restri
ted to planar graphs or ifrestri
ted to bipartite graphs. We are 
urrently working on resolving this issue.The problem also seems NP-hard for series-parallel graphs, whi
h would implythat Z+-MMO on bounded treewidth graphs is NP-hard sin
e series-parallelgraphs have treewidth at most 2.
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