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2previously been shown that the unweighted version of the problem is solvablein polynomial time while the weighted version is (weakly) NP-hard. In thispaper, we strengthen these results as follows: (1) We prove that the weightedversion is strongly NP-hard even if all edge weights belong to the set f1; kg,where k is any �xed integer greater than or equal to 2, and that there existsno pseudo-polynomial time approximation algorithm for this problem whoseapproximation ratio is smaller than (1 + 1=k) unless P=NP; (2) we presenta new polynomial-time algorithm that approximates the general version ofthe problem within a ratio of (2 � 1=k), where k is the maximum weight ofan edge in G; (3) we show how to approximate the speial ase in whih alledge weights belong to f1; kg within a ratio of 3=2 for k = 2 (note that thismathes the inapproximability bound above), and (2�2=(k+1)) for any k � 3,respetively, in polynomial time.Keywords Graph orientation � Degree � Approximation algorithm �Inapproximability � Maximum ow � Sheduling1 IntrodutionLet G = (V;E;w) be a simple, undireted, edge-weighted graph, where V , Eand w denote the set of verties of G, the set of edges of G, and a positiveintegral weight funtion w : E ! Z+, respetively. An orientation � of G is anassignment of a diretion to eah edge fu; vg 2 E, i.e., �(fu; vg) is either (u; v)or (v; u). Given an orientation � of G, the weighted outdegree of a vertex u isd+�(u) =P fu;vg2E:�(fu;vg)=(u;v) w(fu; vg).In this paper, we onsider the problem of �nding an orientation of an inputgraph G suh that the maximum weighted outdegree among all verties isminimum, taken over all possible orientations of G. To speify di�erent lassesof edge weight funtions, we formally de�ne the problem as follows.Problem: S-Minimum Maximum Outdegree (S-MMO)Input: A simple, undireted, edge-weighted graph G = (V;E;w),where w is a positive integral weight funtion of the formw : E ! S and where S is a set of allowed weights.Output: An orientation � of G that minimizes maxu2V fd+�(u)g.The most general ase of S-MMO with no restritions on the weight fun-tion, exept that it must be a positive integral funtion, is denoted by Z+-MMO. In this paper, we assume that S is of the form S = f1; 2; : : : ; kg, wherek is a positive integer. (The running times of our algorithms will depend on k.)We also study a speial ase in whih the range of w is restrited to a positiveinteger set S = f1; kg with k � 2.Throughout this paper, given an instane of S-MMO, we set n = jV jand m = jEj. The weighted outdegree d+� (u) of a vertex u is also alled the



3outdegree of u for short. For any orientation � of G, the value of � is de�ned tobe maxu2V fd+�(u)g. We use OPT (G) or �� to denote the optimal value for G,i.e., the minimum of maxu2V fd+�(u)g taken over all possible orientations �ofG. A graph orientation algorithmALG is alled a �-approximation algorithmand ALG's approximation ratio is � if ALG(G)=OPT (G) � � holds for everygraph G, where ALG(G) is the value of the solution obtained by running ALGon input G.1.1 MotivationGraph orientations whih minimize the maximum outdegree an be used toonstrut eÆient dynami data strutures for graphs that support fast vertexadjaeny queries under a series of edge insertions and edge deletions [3℄. Also,S-MMO an be viewed as a variation of the art gallery problem (see, e.g., [5,15℄), load balaning problems, or unrelated parallel mahine sheduling (see,e.g., [14,16℄). In partiular, the polynomial time (in)approximability of thelatter problem has been intensively studied. Refer to Setion 6.1 for a furtherdisussion on the relation between S-MMO and sheduling.Graph orientation itself is a quite basi, natural, and important problemin graph theory and ombinatorial optimization; see, e.g., Chapter 61 of [17℄and the short survey in [1℄. As an example, it is known that any planar graphhas an orientation with value at most 3 and an ayli orientation with valueat most 5, and suh orientations an be found in linear time [4℄. However,most previous studies fous on problems related to orientations satisfying somespeial graph properties suh as high onnetivity, small diameter, no yles,small di�erene between the indegree and outdegree of eah vertex, et. [2,7,11℄, and very few studies onsider orientations whih minimize the maximumoutdegree (or equivalently, indegree) [1,13,19℄.1.2 Previous Results and Summary of New ResultsPrevious work has shown that S-MMO an be solved in polynomial time if alledge weights are idential [1,13,19℄. More preisely, the fastest known algo-rithm for fkg-MMO runs in O(m3=2 � log(��1)) time, where ��1 denotes the op-timal value of f1g-MMO [1℄. On the other hand, S-MMO is (weakly) NP-hardin the general ase [1℄. For any subgraph H of G, let V (H) and E(H) denotethe vertex set of H and the edge set of H , respetively. A (2 � 1=dL(G)e)-approximation algorithm for Z+-MMO with O(m2) running time was pre-sented in [1℄, where L(G) is the maximum density among all subgraphs of G,that is, L(G) = maxH�GfPfu;vg2E(H) w(fu; vg)=jV (H)jg. No inapproxima-bility results for S-MMO were previously known.In this paper, we study S-MMO from the viewpoint of polynomial-timeapproximability and inapproximability. First, Setion 2 introdues some addi-tional notation and terminology needed to desribe our results. Then, in Se-tions 3.1 { 3.4, we present four new polynomial-time approximation algorithms



4named Majority, Cyle-Caneling, Refined Cyle-Caneling, andLarge-k. (Although Majority has the same running time and a worse ap-proximation ratio than Cyle-Caneling, we have inluded the desriptionof Majority beause it provides a simple way to illustrate some key ideasused in the design and analysis of Cyle-Caneling and Refined Cyle-Caneling.) Setion 4 shows how to improve the running times of our �rstthree approximation algorithms. Next, we give a redution from At-most-3-SAT(2L) in Setion 5 whih proves the strong NP-hardness of f1; kg-MMO fork � 2 and also yields the �rst non-trivial lower bound on the approximationratio, under the assumption P 6= NP. Finally, in Setion 6, we disuss therelation between S-MMO and sheduling and state some open problems. Ournew results are summarized below.{ f1; : : : ; kg-MMO has a (2 � 1=k)-approximation algorithm with runningtime O(m3=2 � logn � log k � log��+m2) [Algorithm Cyle-Caneling inSetion 3.2 together with Corollary 1 in Setion 4℄.{ The speial ase f1; kg-MMO where k � 3 has a (slightly better) (2 �2=(k+1))-approximation algorithm, also with running time O(m3=2 � logn �log k � log��+m2) [Algorithm Refined Cyle-Caneling in Setion 3.3together with Corollary 1 in Setion 4℄.{ f1; kg-MMO admits a 1 + n=(2k)-approximation algorithm whih runs inO(m3=2 � logn) time [Algorithm Large-k in Setion 3.4℄. This is useful forinstanes with k � n.{ f1; kg-MMO for any �xed k � 2 is strongly NP-hard [Theorem 6 in Se-tion 5℄.{ For any �xed integer k � 2, no pseudo-polynomial time algorithm forf1; kg-MMO ahieves an approximation ratio smaller than 1 + 1=k, unlessP=NP [Theorem 7 in Setion 5℄. This implies that there is no polynomialtime approximation algorithm for Z+-MMO with approximation ratio lessthan 3=2, unless P=NP. This also means that, for k = 2, AlgorithmCyle-Caneling is optimal with respet to the approximation ratio.Note that the 2 � 1=dL(G)e-approximation ratio from [1℄ and the new2� 1=k one are inomparable; sometimes the former is better than the latter,and vie versa. For example, there exist instanes where the former algorithmoutputs a 5=3-ratio solution while the latter ahieves the ratio 3=2 (see Fig. 6in [1℄).2 PreliminariesFrom here on, we assume that the verties in G are lexiographially ordered.We denote an undireted edge with endpoints u and v, where u < v in lexio-graphi order, by eu;v or simply fu; vg. A direted edge (or ar) from a vertex uto a vertex v is written as (u; v). The direted graph de�ned by an orientation�



5of G is denoted by �(G) = (V;�(E); w). A direted path of length l from a ver-tex v0 to a vertex vl in �(G) is a set of ars f(vi�1; vi) 2 �(E) j i = 1; 2; : : : ; lg,also represented by the sequene hv0; v1; : : : ; vli for simpliity. In partiular, adireted path satisfying vl = v0 is alled a direted l-yle. For any diretedpath P = hv0; v1; : : : ; vli, the direted path obtained by traversing P in itsreverse order is denoted by P , i.e., P = hvl; vl�1; : : : ; v0i.Next, for any u 2 V , let � (u) = fv j fu; vg 2 Eg denote the set of neighborsof u. For any orientation � of G, de�ne the set of neighbors of u under � as��(u) = fv j fu; vg 2 E and �(fu; vg) = (u; v)g. We all any vertex u� whoseweighted outdegree is maximum in � ritial, and also say that u� is a ritialvertex with respet to �. Let wmax be the maximum weight among all edgesin E and let W be the total weight of all edges in E. Every orientation hasthe following trivial lower bound aused by the maximum weight edges:Proposition 1 ([1℄) For any undireted weighted graph G and any orienta-tion � of G, the value of � is at least wmax. utFinally, we introdue three basi operations named Reverse, Up-To-Roots, and Solve-1-MMO whih will be used later in this paper.{ Reverse does the following: Given an orientation � of G and a diretedpath P = hu0; u1; : : : ; uli in �(G), update � by replaing P with P , i.e.,let �(eui;ui+1) = (ui+1; ui) for i = 0; : : : ; l � 1. We all this operationReverse-Cyle if u0 = ul. Note that if P is a direted yle and allw(eui;ui+1)'s are equal, then the outdegree of every vertex remains un-hanged.{ Up-To-Roots determines an orientation � for a given simple, undiretedforestG as follows: First �x an arbitrary root node for eah tree in G. Then,for every edge e, orient �(e) towards the root node of the tree ontaining e. 1{ Solve-1-MMO outputs an optimal orientation of a given graph withidential edge weights. Solve-1-MMO an be implemented to run inO(m3=2 � log(��1)) for fkg-MMO time [1℄. (Here, the log fator omes froma binary searh.)3 Approximation AlgorithmsWe now present the details of our four new approximation algorithms for S-MMO. The �rst two, Majority and Cyle-Caneling, work for any S =f1; : : : ; kg, whereas the last two, Refined Cyle-Caneling and Large-k,are designed for the speial ase where S is of the form S = f1; kg.1 Observe that OPT (G) = wmax if G is a forest, i.e., a graph that does not ontain anyyles. (It is easy to see that the Up-To-Roots operation �nds an optimal solution forforests [1℄.) Thus, the bound in Proposition 1 is optimal for this ase.



63.1 Majority Voting AlgorithmIn this subsetion, we give a simple 2-approximation algorithm named Ma-jority. Although Majority an be onsidered a variation of the Lenstra-Shmoys-Tardos algorithm [14℄, whih is based on LP-rounding and has anapproximation ratio of 2, Majority is ombinatorial and provides some ba-si intuition for the algorithms presented in later subsetions. Furthermore,aording to Corollary 1 in Setion 4, Majority is muh faster than theLenstra-Shmoys-Tardos algorithm.Algorithm Majority is presented in Fig. 1. It works as follows. First,replae eah edge e = fu; vg in G with w(e) edges of weight 1 between u and v,so that an undireted multigraph G0 with W =Pe2E w(e) edges is obtained.Next, �nd an optimal orientation �0 of G0. (In �0, for eah fu; vg 2 E, somerepliated edges of fu; vgmay be oriented from u to v while others are orientedfrom v to u.) Then, deide an orientation � of G by majority voting. Morepreisely, let fu!v and fv!u denote the number of edges oriented from uto v and from v to u, respetively, in �0. Sine G is simple, fu!v + fv!u =w(eu;v) holds. The orientation� of the originalG is determined in the followingmanner: For eah eu;v 2 E, assign�(eu;v) := ((u; v); if fu!v � fv!u;(v; u); otherwise: (1)(By the de�nitions above, the diretion is determined aording to the lexio-graphi order in ase of a tie.)Algorithm Majority1. For graph G, onstrut G0 by replaing eah edge e with w(e) edges of weight 1.2. Find an optimal orientation �0 of G0 by using Solve-1-MMO.3. Deide the orientation � of G aording to (1) for eah edge in G.4. Return �.Fig. 1 Algorithm Majority.Theorem 1 For any S = f1; : : : ; kg, Algorithm Majority approximates S-MMO within a ratio of 2 and runs in O(W 3=2 � log��) time.Proof. First, onsider the running time. Steps 1, 2 and 3 take O(W ), O(W 3=2 �log��) and O(W ) time, respetively, the total running time of Majority isO(W 3=2 � log��).Next, onsider the approximation ratio. The outdegree of any vertex uunder � is Pv2��(u) w(eu;v) = Pv2��(u)(fu!v + fv!u). Let u� be a ritialvertex with respet to �. Then ALG(G) = Pv2��(u�)(fu�!v + fv!u�), and



7OPT (G) � OPT (G0) � Pv2� (u�) fu�!v; sine �0 is a relaxed orientation ofG, the optimal value of G0 is a lower bound on the optimal solution of G.Hene, ALG(G)OPT (G) � ALG(G)OPT (G0) � Pv2��(u�)(fu�!v+fv!u�)Pv2� (u�) fu�!v� Pv2��(u�) 2 � fu�!vPv2��(u�) fu�!v = 2:The last inequality holds sine � is deided by majority voting. The approxi-mation ratio is 2. utThe analysis is tight, as the example in Fig. 2 demonstrates: The valueof the optimal solution for the instane G is k, while a possible output ofMajority is 2k, as shown in Fig. 2(d).
Instance  G

weight 1
weight k(even)

OPT(G) = k

k/2 edges
1 edge

OPT(G’)  =  k ALG(G) = 2k

weight 1
weight k(even)

weight 1
weight k (even)

(a) (b) (c) (d)Fig. 2 A worst-ase example for Majority: (a) an instane G, (b) an optimal orientationof G, () an optimal orientation �0 of G0, and (d) a possible output of Majority basedon ().
3.2 Cyle Caneling AlgorithmHere, we desribe an algorithm named Cyle-Caneling whih improvesMajority; its approximation ratio is 2 � 1=k. In fat, Cyle-Canelingalso uses the same basi idea of replaing eah weighted edge by a numberof unweighted edges and omputing an optimal solution for the resulting un-weighted multigraph. However, it then deides the orientation of eah edge ina di�erent manner.Cyle-Caneling is listed in Fig. 3. In the �rst and seond steps ofthe algorithm, do as Majority; onstrut G0 (repliate eah edge) and then�nd an optimal orientation �0. After that, deide a partial orientation of the



8 Algorithm Cyle-Caneling1. For graph G, onstrut G0 by replaing eah edge e with w(e) edges of weight 1.2. Find an optimal orientation �0 of G0 by using Solve-1-MMO.3. Deide the (partial) orientation � of G aording to (2), and obtain G�0 = (V; F�0).4. If there exists a direted l-yle in G�0 where l � 3, apply Reverse-Cyle and goto Step 3.5. For undeided edges of �, apply Up-To-Roots to G�0 .6. Return �.Fig. 3 Algorithm Cyle-Caneling.original problem by �(eu;v) := 8><>:(u; v); if fv!u = 0;(v; u); if fu!v = 0;�; otherwise; (2)where � means \not deided yet". Note that the diretion of the edges deidedby this operation is essentially the same as the one of �0; the value of theorientation does not hange.Next, we introdue a new operation, yle anelation, whih updates theorientation to a more desirable one without hanging the outdegree of anyvertex. To this end, we onstrut another undireted graph G�0 = (V; F�0 ),where F�0 = feu;v 2 E j fu!v 6= 0 and fv!u 6= 0 in �0g. From G�0 , we �nd anl-yle with l � 3, say C = hv1; v2; : : : ; vl; v1(� vl+1)i, if one exists. (From hereon, when we mention l-yles with l � 3, we just say \yles" for simpliity,beause we do not onsider 2-yles in this paper.) Let  = minffvi!vi+1 ji = 1; : : : ; lg, whih is a positive integer, by the de�nition of F�0 . Then, we gobak to G0 and �0 and apply Reverse-Cyle with size  to C; sine thereexist  yles of hv1; v2; : : : ; vl; v1(� vl+1)i on G0 under �0, we an reverse thediretion of the edges along the  yles. It should be noted that the outdegree(or the indegree) of eah vertex in the resulting direted graph is equal to theone under �0; it is still an optimal orientation in G0 and an be updated as�0. For this new �0, we apply the equation (2), then go bak to the beginningof this paragraph. Sine at least one edge fvi; vi�1g on the yle C satis�esfvi!vi+1 = 0 by the Reverse-Cyle, the new F�0 is stritly smaller than theold F�0 ; this step ends in at most m� 2 iterations.After a number of (or possibly zero) iterations of the above proedure, G�0beomes a forest, and we set F := G�0 . Note that all the edges of F are notdeided yet by (2). The yle anelation itself implies that there always existsan optimal solution �0 for the relaxed problem suh that �0 has no yles in F .Then, we have the simple disjoint tree struture, for whih we an apply theUp-To-Roots operation to deide the orientation of all the remaining edges.



9Theorem 2 For any S = f1; : : : ; kg, Algorithm Cyle-Caneling approx-imates S-MMO within a ratio of (2� 1k ) and runs in O(W 3=2 � log�� +m2)time.Proof. We �rst onsider the running time of Cyle-Caneling. Steps 1and 2 have the same time omplexity as Majority, i.e., O(W 3=2 � log��)time. Eah iteration of Step 3 takes O(m) time, and eah iteration of Step 4takes O(m) time by the depth �rst searh, and these steps an be iteratedat most m � 2 times. Step 5 takes O(m) time. In total, the running time isO(W 3=2 � log�� +m2).Next, we analyze the approximation ratio. Let u� be any ritial vertex in Gwith respet to �, i.e., a vertex with maximum weighted outdegree in �. Weshall prove that d+� (u�) � (2� 1k )�OPT (G). First of all, note that OPT (G) � kby Proposition 1 and also that OPT (G) � OPT (G0) = d+�0(x�) � d+�0(u�),where x� is any ritial vertex with respet to �0. Let F� be the forest ofrooted trees produed by Up-To-Roots in Step 5. There are two possibleases to onsider after the iterations of Steps 3 and 4:1. u� is a root in F�: 2 In this ase, we immediately have d+�(u�) � d+�0(u�)beause zero or more of u�'s outgoing edges in �0 are reversed to obtain �,but none of its inoming edges in �0 is reversed in Step 5. Then, reall thatd+�0(u�) � OPT (G) by the above.2. u� is not a root in F�: In this ase, let p denote the parent of u� and Cthe set of hildren of u� in F�, respetively. Clearly, we have d+�(u�) =d+�0(u�) + fp!u� �Pv2C fu�!v � d+�0(u�) + fp!u� ; whih yieldsd+� (u�)OPT (G) � d+�0(u�) + fp!u�OPT (G) � d+�0(u�)d+�0(u�) + fp!u�k � 1+ k � 1k = 2� 1k ;where the last inequality holds sine fp!u� + fu�!p � k and fu�!p � 1.In both ases, d+� (u�) is within the desired bound. utFigure 4 shows a worst-ase example of Cyle-Caneling for an instaneof f1; 3g-MMO whose approximation ratio is 5=3 = 2� 1=3. This onstrutionan be modi�ed in a straightforward way to produe worst-ase examples forgeneral k, whih means that the analysis of Theorem 2 is tight.Remark: By Theorem 2, the approximation ratio of Cyle-Caneling fork = 2 is 3=2. This is atually the best possible in polynomial time for k = 2(unless P=NP), as we shall prove in Setion 5.2 This ase also handles the possibility that u� is an isolated vertex in G�0 .



10
Instance  G

weight 1
weight 3

OPT(G) = 3

2 edges
1 edge

OPT(G’)  =  3 ALG(G) = 5

weight 1
weight 3

(a) (b)

(c) (d)

weight 1
weight 3

3 edgesFig. 4 A worst-ase example for Cyle-Caneling: (a) an instane G, (b) an optimalorientation of G, () an optimal orientation �0 of G0, and (d) a possible output of Cyle-Caneling based on ().3.3 Re�ned Cyle Caneling AlgorithmWe now onsider the speial ase of S-MMO in whih S = f1; kg for k � 3,and show that it an be approximated even more eÆiently than by Algo-rithm Cyle-Caneling. The new algorithm is alled Refined Cyle-Caneling and is outlined in Fig. 5. The main idea is to show that if all edgeweights in G are either 1 or k, a slight modi�ation to Cyle-Canelingallows us to ompute a stronger lower bound on an optimal solution whihthen yields an improved approximation ratio.As mentioned in the previous setion, the yle anelation itself providesan optimal solution for the relaxed problem with a tree property. Here, we fouson Step 5 of Cyle-Caneling, in whih the naive appliation of Up-To-Roots with arbitrary roots gives a worst-ase example (as shown in Fig. 4);this auses the approximation ratio to be 2 � 1=k. The reason is that someverties having large outdegrees under the orientation �0 are not suitable forbeing roots; if suh a vertex is set to be a root, its outdegree will distribute toits neighbors so that the neighbors have large outdegrees under � omparedto under �0. To avoid this situation, Algorithm Refined Cyle-Canelingproeeds as follows.First exeute Steps 1 to 4 of Cyle-Caneling, and obtain a forest F . Ifthere exists a leaf node u in F suh that fu!v � fv!u holds for its neighbor v,we �x the orientation of eu;v as (u; v) and remove eu;v from F (i.e., �(eu;v) :=(u; v) and F = (V; F ) with F := F n feu;vg). Repeat this operation until no



11leaf node u satis�es fu!v � fv!u where v is the neighbor node of u. Then,the algorithm applies Up-To-Roots.Algorithm Refined Cyle-Caneling1.{4. Exeute Steps 1 to 4 of Cyle-Caneling.5. While there exists a leaf node u onneting to v suh that fu!v � fv!u in F =(V; F ), let �(eu;v) := (u; v) and remove eu;v from F .6. For undeided edges of �, apply Up-To-Roots to F .7. Return �.Fig. 5 Algorithm Refined Cyle-Caneling.While Algorithm Cyle-Caneling simply applies Up-To-Roots op-erations to the obtained forests, Refined Cyle-Caneling deides theorientation of edges onneted to leaves aording to the values of f 's forthe leaves and their parents, and then applies Up-To-Roots. Note that thismodi�ation does not depend on S and does not make the solution worse,though it might be diÆult to show that it has an improved approximationratio. We an, however, show a better approximation ratio for the speial aseS = f1; kg.Theorem 3 For any S = f1; kg where k � 3, Algorithm Refined Cyle-Caneling approximates S-MMO within a ratio of (2 � 2k+1 ) and runs inO(W 3=2 � log�� +m2) time.Proof. It is easy to see that adding Steps 5 and 6 to Algorithm Cyle-Caneling in Setion 3.2 does not inrease the asymptoti running time.Therefore, the running time is O(W 3=2 � log�� +m2).To analyze the approximation ratio of Refined Cyle-Caneling, weproeed similarly as in the proof of Theorem 2. Let u� be any ritial vertexinG with respet to �, and let F� be the forest of rooted trees produed byUp-To-Roots in Step 6. Reall that OPT (G) � k and OPT (G) � OPT (G0) �d+�0(u�). There are two main ases:1. u� is a node whih satis�es the ondition in Step 5: Then, sine fp!u� � k2for the parent p of u�,d+� (u�)OPT (G) � d+�0(u�) + fp!u�OPT (G) � d+�0 (u�)d+�0 (u�) + fp!u�k � 1 + k=2k = 32 :2. u� is a node whih did not satisfy the ondition in Step 5:(a) If u� is a root in F�, then d+�(u�) � d+�0(u�) � OPT (G) as before, andwe are done.



12 (b) If not, onsider the tree T in F� that ontains u�. Let p be the parentof u� in T and let hu1; u2; : : : ; u`i be the path between any two leaves u1and u` in the undireted version of T . Sine u1 and u` satisfy fu1!u2 <fu2!u1 and fu`!u`�1 < fu`�1!u` , there must exist an intermediatenode ui suh that fui�1!ui < fui!ui�1 and fui!ui+1 � fui+1!ui . Next,beause all edges in T have weight k, we know that fv!w + fw!v = kfor every edge fv; wg in T , whih means that fui!ui�1 > k=2 andfui!ui+1 � k=2. Thus, the outdegree of ui is at least fui!ui�1 +fui!ui+1 > k, i.e., OPT (G0) � k + 1. Plugging in this stronger lowerbound gives usd+� (u�)OPT (G) � d+�0(u�) + fp!u�OPT (G) � d+�0(u�)d+�0(u�) + fp!u�k + 1� 1 + k � 1k + 1 = 2� 2k + 1 :Sine 2 � 2k+1 � 3=2 for k � 3, the approximation ratio is 2 � 2k+1 fork � 3. It should be noted that the approximation ratio of Refined Cyle-Caneling for k = 2 is 3=2 (same asCyle-Caneling) beause then Step 6is not exeuted. utFigure 6 shows a worst-ase example of Refined Cyle-Caneling forf1; 3g-MMO. Sine this example is also extendable to general f1; kg-MMO,the analysis of Theorem 3 is tight.3.4 Approximation Algorithm for Large kThis subsetion presents a simple approximation algorithm named Large-kfor f1; kg-MMO whih is suitable when k � n. Its approximation ratio is1 + n2k and its running time does not depend on k or W . The algorithm isdesribed in Fig. 7.The next theorem states the approximation ratio of Algorithm Large-k.Theorem 4 For any S = f1; kg, Algorithm Large-k approximates S-MMOwithin a ratio of (1 + n2k ) and runs in O(m3=2 � logn) time.Proof. The running time is O(m3=2 � logn) beause Solve-1-MMO is alledtwie in Algorithm Large-k, and both log(��1(G1)) and log(��1(Gk)) areO(log n). Next,ALG(G)OPT (G) = maxv2V fd+�01(v) + d+�0k (v)gOPT (G) � maxv2V fd+�01(v)g+maxv2V fd+�0k (v)gOPT (Gk)= OPT (G1) +OPT (Gk)OPT (Gk) � n=2k + 1;sine OPT (G) � OPT (Gk) � k and sine n=2 is a trivial upper bound forOPT (G1) derived from the omplete graph with n verties. ut
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Instance  G

weight 1
weight 3

OPT(G) = 4

2 edges
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OPT(G’)  =  4

(a) (b)

weight 1
weight 3

3 edges

(c)

ALG(G)  =  6

(d)

weight 1
weight 3Fig. 6 A worst-ase example for Refined Cyle-Caneling: (a) an instane G, (b) anoptimal orientation of G, () an optimal orientation �0 of G0, and (d) a possible output ofRefined Cyle-Caneling based on ().Algorithm Large-k1. For the given graph G, onstrut two graphs G1 = (V;E1) and Gk = (V;Ek),where E1 and Ek are the sets of edges with weight 1 and k, respetively.2. Apply operation Solve-1-MMO to G1 and Gk independently, and let �01 and �0kbe the returned optimal solutions.3. Let � be the omposite orientation of �01 and �0k for the whole graph G.4. Return �.Fig. 7 Algorithm Large-k.4 Polynomial-Time Computation of f1g-MMO for G0In this setion, we develop a tehnique for making Algorithms Majority,Cyle-Caneling, and Refined Cyle-Caneling polynomial-time algo-rithms. Reall from the previous setion that in these algorithms, we solvef1g-MMO for the graph G0, whih is generated from G by replaing eahedge e with w(e) edges of weight 1, as a sub-proedure. Although f1g-MMOfor G = (V;E) an be solved in O(jEj3=2 log jV j) time by the algorithm of [1℄,f1g-MMO(G0) requiresO(W 3=2 �log��) time, whih is pseudo-polynomial time(that is, it is not neessarily polynomial in the length of the input). However,the information atually needed by Majority, Cyle-Caneling, and Re-fined Cyle-Caneling is not the orientation itself but the values fu!v



14and fv!u. This setion explains how to ompute these values in polynomialtime. The modi�ed algorithm is presented in Fig. 10.To �nd the values fu!v and fv!u eÆiently, instead of expliitly on-struting G0 and applying Solve-1-MMO, we �rst solve a relaxed versionof S-MMO where the orientation of any edge may be frational, meaning thatits weight may be distributed among both diretions as (positive) non-integers.For example, an edge fu; vg in G with weight 6 might be oriented as (u; v)with weight 3:6 and (v; u) with weight 2:4. The optimal solution to relaxedS-MMO an be obtained by solving a series of maximum direted ow prob-lems as follows. Given the graph G = (V;E;w) and a positive integer �tmp,onstrut a ow network NG = (VN ; AN ; ap), where VN = V [ E [ fs; tg,AN = f(s; e) j e 2 Eg [ f(e; vi); (e; vj) j e = fvi; vjg 2 Eg [ f(v; t) j v 2 V g,and ap(a) = 8><>:w(e); if a = (s; e);w(e); if a = (e; v);�tmp; if a = (v; t):Figures 8 and 9 show an example of a graph G and its orresponding net-workNG. SineNG has only integral apaities, the ow integrality theorem [6℄ensures that the maximum ow value in NG is an integer. It is straightforwardto transform a maximum ow solution of NG into a solution for relaxed S-MMO with value at most �tmp. By applying a binary searh on �tmp, we anthus obtain an optimal solution for the relaxed version of the problem.PSfrag replaements
v1v2 v3v4 v5e1 e2e3e4 e5 e6e7Fig. 8 A graph G.

vertex setedge setPSfrag replaements v1v2v3v4v5
e1e2e3e4e5e6e7

s tap = w(ei) ap = �tmp
Fig. 9 The network NG onstruted from G in Fig. 8.Next, we need to ensure that the obtained optimal orientation for relaxedS-MMO is always integral. (In general, an optimal orientation for relaxed S-



15MMO may not be integral even though the maximum ow value �opt itself isan integer.) Therefore, in the desription of Algorithm Modified Solve-1-MMO(G0) in Fig. 10, Steps 2, 3 and 4 have been added to ensure the integralow property; the next paragraph explains in detail how this works. Notethat we an skip Steps 2 to 4 if we employ a maximum ow algorithm inStep 1 whih always outputs an integral optimal solution (suh as the one byGoldberg and Rao [9℄); however, we inlude these steps in the desription ofthe algorithm for ompleteness so that it works for any seleted maximum owalgorithm in Step 1.The idea is simple. If we obtain a non-integral ow after Step 1, we adjust itto a solution of 1-MMO(G0), in whih both fu!v and fv!u should be integralfor any fu; vg 2 E. For this purpose, we use Reverse-Cyle and Up-To-Roots again. From the obtained solution �� of relaxed S-MMO(G), we on-strut a direted graph G� = (V;E�), where E� = f(u; v) j fu!v � bfu!v >0g. Note that if G� ontains no edge, �� is an integral optimal solutionfor relaxed S-MMO(G), that is, an optimal solution for 1-MMO(G0). SineG� is a bidiretional graph, G� ontains a direted l-yle with l � 3, isa (bidiretional) forest, or empty. If G� ontains a direted l-yle C, wean update �� so as to delete C by applying Reverse-Cyle to C withsize  = min(u;v)2Cffu!v � bfu!vg as in Setion 3.2. By a similar argu-ment, we obtain a forest after at most m appliations of Reverse-Cyle.Then we apply Up-To-Roots that makes �� integral; that is, from u on theforest to its parent p, update fu!p := dfu!pe and fp!u := bfp!u. Thisdoes not inrease the value of �� by the following reason: For node u on theforest, let f(u) = Pv2� (u)bfu!v, and p be the parent of u on the forest.Then the weighted outdegree of u under �� before applying Up-To-Roots isf(u) +Pv2� (u)(fu!v � bfu!v) � �opt. Due to the integrality of f(u) and�opt, we have f(u) � �opt � 1. After the Up-To-Roots, the weighted out-degree of u beomes at most f(u) + (fu!p � bfu!p) + (fp!u � bfp!u) =f(u)+1 � �opt. By these, we an obtain an optimal orientation of 1-MMO(G0)from any optimal orientation of relaxed S-MMO(G).Finally, we onsider the time omplexity of Algorithm Modified Solve-1-MMO(G0). Step 1 an be done in O(m3=2 � logn � log k � log��) time by amaximum ow algorithm [9℄ while doing a binary searh for ��. Steps 2, 3and 4 are not needed in this ase (if exeuted, they would take O(m2) time)beause the adopted maximum ow algorithm always returns an integral ow.Thus, the omputations take O(m3=2 � logn � log k � log��) time in total.Theorem 5 Algorithm Modified Solve-1-MMO(G0) omputes the fu!vand fv!u values of all the edges for f1g-MMO of G0 in O(m3=2 � logn � log k �log��) time. utCorollary 1 The running time of algorithm Majority an be improved toO(m3=2 � logn � log k � log��). Also, the running times of algorithms Cyle-Caneling and Refined Cyle-Caneling an be improved to O(m3=2 �logn � log k � log�� +m2). ut



16Algorithm Modified Solve-1-MMO(G0)1. Find an optimal orientation for relaxed S-MMO on G by solving maximum diretedow problems in NG while doing a binary searh to �nd ��. Set fu!v and fv!ufor every fu; vg 2 E.2. Construt G� = (V;E�), where E� = f(u; v) j fu!v � bfu!v > 0gg. If E� = ;,goto Step 5.3. For a direted l-yle C in G� where l � 3, apply Reverse-Cyle to C with sizemin(u;v)2Cffu!v�bfu!vg to update fu!v for every (u; v) 2 C, and goto Step 2.If no yle in G�, goto Step 4.4. For G�, apply Up-To-Roots as desribed above.5. Return �0 as fu!v and fv!u for all fu; vg 2 E.Fig. 10 Algorithm Modified Solve-1-MMO(G0).Remark: We an obtain a strongly polynomial-time algorithm by adoptinganother maximum ow algorithm suh as [12℄ instead of [9℄ in AlgorithmMod-ified Solve-1-MMO(G0). Then the running times of Majority, Cyle-Caneling, and Refined Cyle-Caneling beome O(m3 � log2+1= logn n).5 Inapproximability ResultsIt was shown in [1℄ that S-MMO is NP-hard by a redution from the PARTI-TION problem, whih has a pseudo-polynomial time algorithm. This impliesthat S-MMO was only known to be weakly NP-hard. Also, no previous resultsabout the inapproximability of S-MMO exist. In this setion, we provide aproof of the strong NP-hardness of S-MMO whih also yields inapproximabil-ity results. More preisely, we give a redution from a variation of the 3-SATproblem, At-most-3-SAT(2L), to f1; kg-MMO for any �xed integer k � 2.At-most-3-SAT(2L) is a restrition of 3-SAT where eah lause inludes atmost three literals and eah literal (not variable) appears at most twie in aformula. It an easily be proved that At-most-3-SAT(2L) is NP-hard by usingproblem [LO1℄ on p. 259 of [8℄.The redution from At-most-3-SAT(2L) to f1; kg-MMO is as follows. Givena formula � of At-most-3-SAT(2L) with g variables fv1; : : : ; vgg and h lausesf1; : : : ; hg, we onstrut a graphG� inluding gadgets that mimi (a) literals,(b) lauses, and () a speial gadget:(a) Eah literal gadget onsists of two verties labeled by vi and vi and oneedge fvi; vig between them, orresponding to variable vi of �. The weightof fvi; vig is k.(b) Eah lause gadget is one vertex (alled a lause vertex ) labeled by j ,orresponding to lause j of �. The lause vertex j is onneted by edgesof weight 1 to at most three verties in the literal gadgets that have thesame labels as the literals in the lause j . For example, if 1 = x _ yappears in �, then vertex 1 is onneted to verties x and y. See Fig. 11.



17() The speial gadget is a yle of k verties and k edges where eah edge ofthe yle has weight k.3 For eah lause, if it onsists of one (two or three,respetively) variable(s), then its lause vertex is onneted to k (k � 1or k � 2, respetively) arbitrary verties in the speial gadget by edges ofweight 1. Hene, the degree of every lause vertex is exatly k + 1.

special gadget

clause
gadget

literal
gadgetPSfrag replaements x �x y �y z �z

1 = x _ �y 2 = �x _ y _ zk + 1 edges
Fig. 11 Redution from At-Most-3-SAT(2L) to f1; kg-MMO.Lemma 1 For the above onstrution of G�, the following holds:(i) If � is satis�able, then OPT (G�) � k.(ii) If � is not satis�able, then OPT (G�) � k + 1.Proof. To prove (i), suppose there exists a satisfying truth assignmentfor �. From the assignment, we onstrut an orientation of G� with valueOPT (G�) � k. If vi = true in the assignment, the edge fvi; vig is orientedfrom vi to vi; otherwise, from vi to vi. So far, the outdegree of every vertex as-soiated with the literals of true and false assignments is 0 and k, respetively.We all the verties assoiated with literals of true (resp., false) assignmentstrue (resp., false) verties. (For example, in Fig. 11, if the variable x = false inthe truth assignment then the upper leftmost vertex x is a false vertex and theseond leftmost vertex x is alled a true vertex.) For every lause vertex j ,we selet one edge onneted to a true vertex and orient it towards j , andorient the remaining k edges away from j . This orientation of the edges doesnot inrease the outdegree of false verties or any extra true vertex; it is stillat most k. Sine every literal appears at most twie in �, the outdegree of trueverties in the literal gadgets is at most two. Finally, edges belonging to the3 In ase k = 2, we prepare a yle of 3 verties as an exeption to keep the simpleproperty of the graph.



18speial gadget an be oriented ylially. Thus, the maximum outdegree of G�is at most k.Next, we prove (ii) by showing that if G� has an orientation whose maxi-mum outdegree is at most k then � is satis�able by onstruting the satisfyingtruth assignment. If an edge in the ith literal gadget vi is oriented from vi to vithen we assign vi = false ; otherwise, vi = true. Sine every lause vertex isonneted to the literal gadgets and speial gadgets by k+1 edges, and everyedge between a lause gadget and the speial gadget must be oriented towardsthe speial gadget (if not, the maximum outdegree of the speial gadget wouldbe at least k + 1), it follows that for eah lause vertex j , there must be atleast one edge direted towards j from a vertex v in a literal gadget, and vmust therefore be a true vertex. This means that the above truth assignmentsatis�es all lauses in �. utFrom Lemma 1, we immediately obtain:Theorem 6 f1; kg-MMO for any �xed k � 2 is strongly NP-hard. utCorollary 2 Z+-MMO is strongly NP-hard. utIn addition, the (in)satis�ability gap of Lemma 1 diretly yields the nexttheorem and orollary.Theorem 7 f1; kg-MMO, where k � 2 is �xed, has no pseudo-polynomialtime algorithm with approximation ratio less than 1+ 1=k, unless P=NP. utCorollary 3 Z+-MMO has no pseudo-polynomial time algorithm with ap-proximation ratio less than 3=2, unless P=NP. ut6 Conluding Remarks6.1 Relation to ShedulingAs mentioned in Setion 1.1, one appliation of the minimization of the max-imum outdegree is sheduling. For an undireted graph, let us onsider theverties as the mahines and the edges as the jobs. Then S-MMO an be re-garded as a speial ase of the job assignment problem [16℄ in whih the min-imization of the maximum outdegree means to minimize the �nishing timeof all the jobs. From the viewpoint of sheduling, our problem has some re-stritions: (1) eah job must be assigned to exatly one of two predeterminedmahines, and (2) the proessing time of eah job does not depend on the ma-hines. Therefore, S-MMO is a speial ase of sheduling on unrelated parallelmahines, or RjjCmax in standard notation: given a set J of jobs, a set M ofmahines, and the time pij 2 Z+ taken to proess job j 2 J on mahine i 2M ,its goal is to �nd an assignment of all jobs to the mahines so as to minimizethe makespan, i.e., the maximum proessing time of any mahine. In [14℄,



19Lenstra, Shmoys, and Tardos gave a polynomial-time 2-approximation algo-rithm based on the LP-formulation for the general version of RjjCmax anda ratio 3=2 inapproximability result (see also [18℄). Alternatively, S-MMOan be regarded as a variant of sheduling on idential parallel mahines, inwhih eah job an be proessed by any of the mahines and the proessingtime pij of job j on mahine i is �xed to be pj , independent of i. This problemhas an FPTAS [10℄, whih ontrasts with our inapproximability results forS-MMO. Another interesting di�erene onerns the set of proessing times,or the weight set: RjjCmax has a polynomial-time algorithm for the speialase where the weight set is fp; qg with q = 2p, but S-MMO remains NP-hardeven if all edge weights belong to fp; qg with q = 2p (this is possible beauseS-MMO orresponds to RjjCmax with weight set fp; q;1g).Observe that the 3/2-inapproximability result of Lenstra, Shmoys, andTardos [14℄ annot be applied diretly to the restrited assignment variantin whih every job an be proessed on a onstant number of mahines. InS-MMO, eah job assoiated with an edge an be assigned only to one of thetwo mahines assoiated with the two verties of that edge. Moreover, theirinapproximability proof requires the assumption that the proessing time ofeah job may vary depending on whih mahine it is proessed on. Thus, theirinapproximability result does not apply to our ase, and in this sense, ourresult provides a stronger inapproximability bound.6.2 Open ProblemsSeveral open problems remain. One onerns the gap between the polynomial-time approximability and inapproximability of f1; kg-MMO. For k = 2, theyoinide, but in the urrent result, the gap between 2� 2=(k+1) and 1+ 1=kinreases for larger k. On the other hand, for very large k, it is easy to get abetter approximation ratio, as shown in Setion 3.4. To further investigate thatrelationship would be interesting. Another topi is to design faster stronglypolynomial-time approximation algorithms with a good approximation ratio.Also, what is the time omplexity of fkg-MMO? Solve-1-MMO wasshown in [1℄ to solve fkg-MMO in O(m3=2 � log(��1)) time, but we believe thatfaster methods may be possible, e.g., by avoiding the binary searh. A fasteralgorithm for fkg-MMO would immediately imply a faster implementation forAlgorithm Large-k in Setion 3.4, for example.Finally, are there any graph lasses besides forests whih admit polynomial-time exat solutions? On the negative side, it seems that the tehniques inSetion 5 an be extended to prove that f1; kg-MMO (and thus also Z+-MMO) remain hard to approximate even if restrited to planar graphs or ifrestrited to bipartite graphs. We are urrently working on resolving this issue.The problem also seems NP-hard for series-parallel graphs, whih would implythat Z+-MMO on bounded treewidth graphs is NP-hard sine series-parallelgraphs have treewidth at most 2.
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