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Complexity of the Minimum Single Dominating Cycle Problem for
Graph Classes

Hiroshi ETO†a), Hiroyuki KAWAHARA††b), Nonmembers, Eiji MIYANO††c), Member,
and Natsuki NONOUE††d), Nonmember

SUMMARY In this paper, we study a variant of the Minimum Domi-
nating Set problem. Given an unweighted undirected graph G = (V, E) of
n = |V | vertices, the goal of the Minimum Single Dominating Cycle prob-
lem (MinSDC) is to find a single shortest cycle which dominates all ver-
tices, i.e., a cycle C such that for the set V(C) of vertices in C and the set
N(V(C)) of neighbor vertices of C, V(G) = V(C) ∪ N(V(C)) and |V(C)| is
minimum over all dominating cycles in G [6], [17], [24]. In this paper we
consider the (in)approximability of MinSDC if input graphs are restricted
to some special classes of graphs. We first show that MinSDC is still NP-
hard to approximate even when restricted to planar, bipartite, chordal, or
r-regular (r ≥ 3). Then, we show the (ln n + 1)-approximability and the
(1 − ε) ln n-inapproximability of MinSDC on split graphs under P � NP.
Furthermore, we explicitly design a linear-time algorithm to solve MinSDC
for graphs with bounded treewidth and estimate the hidden constant factor
of its running time-bound.
key words: minimum single dominating problem, graph classes,
(in)tractability, (in)approximability

1. Introduction

Let G = (V(G), E(G)) be a simple, undirected, unweighted
and connected graph, where V(G) and E(G) denote the set
of vertices and the set of edges, respectively. For a vertex v,
let N(v) be the neighbors of v in G which does not include
v itself. Also, for a set S ⊆ V(G), let N(S) be the neigh-
bors of S which does not include S itself. Given a graph
G = (V(G), E(G)), a set D ⊆ V(G) of vertices is called a
dominating set in the graph G if V(G) = D∪N(D), i.e., every
vertex v ∈ V(G) − D must be adjacent at least to one vertex
in D. The problem of finding the minimum cardinality dom-
inating set in the input graph is known as the Minimum Dom-
inating Set problem (MinDS), which is one of the central
problems in graph theory, operations research, and compu-
tational geometry; many different problems in diverse fields
have been modeled using dominating sets. For example, the
Art Gallery or Museum problem, which is a well-studied
visibility problem in computational geometry, is naturally
formulated as MinDS on the visibility graph of the polygon,
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i.e., several (static) watchmen must be placed on vertices
and all the vertices must be guarded by the watchmen who
look out for their vertices and neighbor vertices (e.g., see
[4], [22]). Furthermore, many different variants of the dom-
inating set problem have been introduced such as the Mini-
mum Dominating Independent Set and Minimum Dominating
Connected Set problems (e.g., see [13]).

In this paper, we study another variant of MinDS, mo-
tivated by the Watchman Route problem [3], which is one of
the famous path planning problems in computational geom-
etry and robotics. The goal of the Watchman Route problem
is to find a shortest route R such that a moving watchman
follows R from a point s back to itself with property that
each point in a given space is visible from at least one point
along the route R. Our problem is named Minimum Single
Dominating Cycle problem (MinSDC for short): Given a
graph G = (V, E), the goal of MinSDC is to find a single
shortest cycle which dominates all vertices, i.e., the con-
nected simple cycle C such that for the set V(C) of ver-
tices in C and the set N(V(C)) of neighbor vertices of C,
V(G) = V(C) ∪ N(V(C)) and |V(C)| is minimum over all
dominating cycles in G [6], [17], [24]. It is easy to see
that MinSDC is NP-hard in general since it can be seen
a “merged” problem of MinDS and the Hamiltonian Cycle
problem (HC), which is also one of the well known NP-
hard ones [13]. Furthermore, unfortunately, Proskurowski
and Sysło [24], and Colbourn and Stewart [6] prove that
MinSDC remains NP-hard even if the input graph is either
planar, bipartite or split. On the other hand, fortunately, it is
known that MinSDC becomes tractable if the input graphs
are restricted to 2-tree [23], two-connected outerplanar [24],
series-parallel [6], circular-arc graphs [17], and so on.

In this paper, we focus on the approximabil-
ity/inapproximability and/or the tractability/intractability of
MinSDC on subclasses of graphs, including planar, chordal,
split, bipartite, regular graphs, and graphs with bounded
treewidth. As far as the authors know, this is the first pa-
per which explicitly investigates the (in)approximability of
MinSDC. The following is a list of our main results shown
in this paper, the tractability and the (in)approximability for
the graph classes: (i) MinSDC is NP-hard to approximate
even if the input graph is either planar, bipartite, chordal,
chordal bipartite, or r-regular (r ≥ 3). (ii) MinSDC can be
approximated within a factor of (ln n+1) if the input is a split
graph with n vertices. (iii) The (ln n+1)-approximability for
MinSDC on split graphs is the best possible; it is NP-hard
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to approximate MinSDC to within a factor of (1− ε) ln n for
every ε > 0 for split graphs of n vertices. (iv) We explic-
itly design a dynamic-programming algorithm which solves
MinSDC in linear time for graphs with bounded treewidth.

It is known [7] that any optimization problem definable
in monadic second order logic can be solved in linear time
for graphs with bounded treewidth. Indeed (the decision ver-
sion of) MinSDC can be expressed in monadic second order
logic as shown in Sect. 5 later. However, the algorithm ob-
tained by this method is hard to implement and to estimate
its running time; it is generally very slow since the depen-
dence on treewidth in the hidden constant factor of the run-
ning time is a tower of exponentials. On the other hand, our
algorithm is simple and thus the hidden constant factor of its
running time can be obtained.

In Sect. 2, we first give the formal definitions and the
relationships of graph classes, some previous results, and
then the inapproximability of the problem for planar, bipar-
tite, chordal, chordal bipartite graphs. Sections 3 and 4 show
the (in)approximability for regular and split graphs, respec-
tively. The results for graphs with bounded treewidth are
presented in Sect. 5.

2. Preliminaries

Problems and previous results. Let G = (V, E) be an un-
weighted graph and let n = |V |. A graph S is a subgraph
of G if V(S) ⊆ V and E(S) ⊆ E. For a subset of ver-
tices U ⊆ V , let G[U] be the subgraph of G induced by
U. For a subgraph S of G, if E(S) = V(S) × V(S), then
S (or G[V(S)]) and V(S) are called a clique and a clique
set, respectively. A path of length �, from a vertex v0 to a
vertex v�, is represented as a sequence of vertices Pv0,v� =
〈v0, v1, · · · , v�〉, or equivalently, it is often represented as a
sequence of edges Pv0,v� = 〈{v0, v1}, {v1, v2}, · · · , {v�−1, v�}〉.
A cycle C is similarly written as C = 〈v0, v1, · · · , v�, v0〉, or
C = 〈{v0, v1}, {v1, v2}, · · · , {v�, v0}〉. In this paper we deal with
simple paths and simple cycles only. For a graph G and its
vertex v, let N(G, v) = {u ∈ V(G) | (v, u) ∈ E(G)}, that is, the
neighbors of v in G which does not include v itself. We de-
note by deg(G, v) = |N(G, v)| the degree of v in G. If u � G,
then we define deg(G, u) ≡ 0.

The definitions of graph classes are from [2]: A chord
of a cycle is an edge between two vertices of the cycle that
is not an edge of the cycle. A graph G is a chordal graph if
each cycle in G of length at least four has at least one chord.
A graph G = (V, E) is a split graph if there is a partition of
V into a clique set V1 and an independent set V2 such that
V1 ∩ V2 = ∅ and V1 ∪ V2 = V . Note that the class of split
graphs is a subclass of chordal graphs. A bipartite graph is
chordal bipartite if it has no induced cycle of length at least
six. The definition of treewidth will be given in Sect. 5.

Our problem, Minimum Single Dominating Cycle
(MinSDC), is formulated as the following minimization
problem: Given a graph G = (V, E), the objective of
MinSDC is to find a single shortest cycle C which domi-
nates all vertices. For MinSDC, an algorithm ALG is called

σ-approximation algorithm and ALG’s approximation ratio
is σ if ALG(G)/OPT (G) ≤ σ holds for every input graph
G, where ALG(G) and OPT (G) are the numbers of vertices
of obtained dominating cycles by ALG and an optimal al-
gorithm OPT, respectively. If G has no dominating cycle,
OPT (G) is defined to be zero.

The following decision version of MinSDC, we call
SDC(�), is previously considered in the literature [6], [24]:
Given a graph G = (V, E) and an integer �, SDC(�) deter-
mines whether the graph contains a single cycle of length �
or less which dominates all vertices. Actually, Colbourn and
Stewart claim the NP-completeness of SDC(�) for several
graph subclasses in [6] by providing a polynomial-time re-
duction from the Hamiltonian Cycle problem (HC), which
determines whether a given undirected graph G contains at
least one Hamiltonian cycle or not. Here we give a brief
sketch of their proof: Consider the reduction such that given
a graph G in a graph class G, we adds a single vertex of de-
gree one to every vertex v ∈ V(G). We denote this reduction
by α, and thus let α(G) be the resulting graph from G. Then,
the following lemma is shown in [6].

Lemma 1 ([6]). Let G be a graph class for which HC is
NP-complete. If, for every G ∈ G, α(G) ∈ G holds, then
SDC(�) is NP-complete for the graph class G.

One can see that if a graph G is planar (bipartite,
chordal, and chordal bipartite, resp.), then the graph α(G)
reduced by α remains planar (bipartite, chordal, and chordal
bipartite, resp.). Also, it is known [11], [14], [18], [20], [21]
that HC on those graph classes remains NP-complete.

Proposition 1 ([11], [14], [18], [20], [21]). SDC(�) (and
thus MinSDC) on planar, bipartite, chordal, and chordal bi-
partite graphs is NP-hard.

On the other hand, MinSDC admits polynomial-time
algorithms for the following graph classes:

Proposition 2 ([6], [17], [23], [24]). SDC(�) (and thus
MinSDC) is solvable in polynomial time for 2-tree, two-
connected outerplanar, series-parallel, interval, and circular-
arc graphs.

Inapproximability of MinSDC on planar, bipartite,
chordal, and chordal bipartite graphs. Now we prove
the inapproximability of MinSDC on graph subclasses. To
do so, we consider another decision variant of MinSDC,
called One Single Dominating Cycle (OneSDC): Given a
graph G = (V, E), OneSDC determines whether the graph
contains a single cycle which dominates all vertices. Note
that OneSDC simply asks for the existence of a single dom-
inating cycle in G, and hence OneSDC is another decision
version of MinSDC in the sense that the problem determines
whether OPT (G) > 0 holds or not for a given graph G. We
can show the following lemma by considering the reduction
α provided in [6] from HC to OneSDC:

Lemma 2. Let G be a graph class for which HC is NP-
complete. If, for every G ∈ G, α(G) ∈ G holds, then
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Fig. 1 (a) Input graph G of HC, (b) the corresponding graph H of OneSDC.

OneSDC is NP-complete for the graph class G.

Thus, we have:

Theorem 1. OneSDC on planar, bipartite, chordal, and
chordal bipartite graphs is NP-complete.

Theorem 1 implies the following inapproximability:

Corollary 1. Let ρ(n) ≥ 1 be any polynomial-time com-
putable function. For planar, bipartite, chordal, and chordal
bipartite graphs, MinSDC admits no polynomial-time ap-
proximation algorithm with a factor of ρ(n) unless P = NP.

Proof. Suppose for a contradiction that there exists a
polynomial-time ρ(n)-approximation algorithm ALG for
some polynomial-time computable function ρ(n) > 1 for
MinSDC. Then, ALG can find a single dominating cycle in
a given graph G in polynomial time such that the objective
value ALG(G) (i.e., length of the dominating cycle) satis-
fies OPT (G) ≤ ALG(G) ≤ ρ · OPT (G). Therefore, one can
distinguish either OPT (G) > 0 or OPT (G) = 0 in polyno-
mial time using ALGwhich admits the approximation ratio of
ρ(n). This is a contradiction unless P = NP, because Theo-
rem 1 implies that it is NP-complete to determine whether
OPT (G) > 0 or not, for planar, bipartite, chordal or chordal
bipartite graphs.

3. Regular Graphs

In this section, we show the inapproximability of MinSDC
on regular graphs, again via the NP-completeness proof of
OneSDC. It is important to note that if the reduction α in
Sect. 2 reduces a regular graph GR to α(GR), then α(GR) is
not regular since the degree of the new vertices is one, but
the degree of the original vertices is more than two. There-
fore, we give the different reduction for regular graphs, and
hence we have:

Theorem 2. OneSDC on r-regular graphs isNP-complete
for r ≥ 3.

Proof. It is obvious that OneSDC belongs to NP. Then,
we show that OneSDC is NP-hard for r-regular graphs by

giving a polynomial-time reduction from HC on 3-regular
graphs which is known to be NP-complete [12]. Our basic
idea of the reduction is as follows: Let G be a 3-regular
graph as an instance of HC, and let H be the r-regular graph
which corresponds to G as the instance of OneSDC. That
is, H is constructed so that G contains a Hamiltonian cycle
if and only if H contains a single dominating cycle.

We first give the reduction for 3-regular graphs, and
then modify it to one for general r ≥ 4: Let G be a 3-regular
graph, V(G) = {v1, v2, . . . , vn} of n vertices, and E(G) =
{e1, e2, . . . , em} of m edges. The corresponding graph H
consists of (i) n subgraphs V1,V2, . . . ,Vn, called vertex-
gadgets, which are associated with n vertices v1, v2, . . . , vn
in V(G), respectively; and (ii) m subgraphs E1, E2, . . . , Em,
called edge-gadgets, which are associated with m edges
e1, e2, . . . , em in E(G), respectively.

Below we construct each gadget and the corresponding
H. See Fig. 1, (a) for G and (b) for H.

(i) For each i, 1 ≤ i ≤ n, the i-th vertex-gadget Vi (middle
gray disk in Fig. 1 (b)) contains three black vertices
labeled by vi,a, vi,b, and vi,c, and six white vertices.

(ii) For each j, 1 ≤ j ≤ m, the j-th edge-gadget E j contains
only one edge {va,b, vb,a} between two vertex-gadgets Va

and Vb if a pair of vertices va and vb are connected by
the edge e j = {va, vb} in G.

This completes the construction of the corresponding graph
H. Clearly, this reduction can be done in polynomial time.
Furthermore, H is 3-regular as shown in Fig. 1.

For a while, we make an observation on a subpath of
the single dominating cycle going through the i-th vertex-
gadget Vi. Let CH[Vi] be a path in a solution CH (i.e.,
single dominating cycle) of OneSDC in Vi for 1 ≤ i ≤
n. If any vertex in Vi is not included in the solution
CH , then only three vertices vi,a, vi,b, and vi,c in Vi can
be dominated by CH from the outside of Vi, which is
a contradiction. Thus, CH[Vi] � ∅ holds for every Vi

and furthermore, CH[Vi] must dominate all the vertices in
Vi. Since CH[Vi] connects to exactly two of the three
edge-gadgets {vi,a, va,i}, {vi,b, vb,i}, and {vi,c, vc,i}, the “dom-
inating” path CH[Vi] in Vi should be classified into one
of the following three sets of paths: Px,y from vertex x
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Fig. 2 (a) Graph G, (b) 4-regular graphs H4, and (c) r-regular graph Hr (r ≥ 5).

to vertex y where (x, y) = {(vi,a, vi,b), (vi,a, vi,c), (vi,b, vi,c)}.
Namely, for example, Pvi,a,vi,b is a set of dominating paths
in Vi, 〈vi,a, u1, u2, u4, u6, vi,b〉, 〈vi,a, u1, vi,c, u6, u4, u3, u5, vi,b〉,
〈vi,a, u1, u2, u4, u3, u5, vi,b〉, and so on.

Now we show that the graph G of HC contains a Hamil-
tonian cycle CG if and only if the corresponding graph H
of OneSDC contains a dominating cycle CH . Basically,
if an edge {va, vi} is included in CG, then we choose the
edge {va,i, vi,a} in CH , and vice versa. Suppose that G con-
tains a Hamiltonian cycle CG. Then, we simply choose all
edges in the edge-gadgets in H corresponding the edges
in E(CG), and hence all vertex-gadgets are connected by
chosen exactly two edge-gadgets in CH . If the two edge-
gadgets are {va,i, vi,a} and {vb,i, vi,b} ({{va,i, vi,a}, {vc,i, vi,c}} and
{{vb,i, vi,b}, {vc,i, vi,c}}, resp.), then a path in Pvi,a,vi,b (Pvi,a,vi,c and
Pvi,b,vi,c , resp.) which dominates all the vertices in Vi are cho-
sen as CH[Vi]. One can see that we can obtain a dominating
cycle CH in H by concatenating all CH[Vi]’s for 1 ≤ i ≤ n
and all edges in the edge-gadgets corresponding the edges
in E(CG).

Suppose that H contains a dominating cycle CH . As
observed above, CH[Vi] � ∅ holds for every Vi and CH[Vi]
connects to exactly two of the three edge-gadgets {vi,a, va,i},
{vi,b, vb,i}, and {vi,c, vc,i}. If CH[Vi] connects to {vi,a, va,i}
and {vi,b, vb,i} ({{vi,a, va,i}, {vi,c, vc,i}} and {{vi,b, vb,i}, {vi,c, vc,i}},
resp.), then two edges {va, vi} and {vb, vi} ({va, vi}, {vc, vi}} and
{vb, vi}, {vc, vi}}, resp.) incident to vi are selected from the
graph G of HC. Then, by concatenating such two edges in-
cident to every vertex vi for 1 ≤ i ≤ n, we can construct
a Hamiltonian cycle in G. This completes the proof for 3-
regular graphs.

In the following, we show that the reduction for 3-
regular graphs can be modified for r-regular graphs (r ≥ 4).

(a) For each i, 1 ≤ i ≤ n, if r ≥ 4, the vertex-gadget Vi

forms a triangle of three black vertices, as illustrated in
Fig. 2 (b).

(b) For each edge ek = {vi, v j}, 1 ≤ k ≤ m,

– For r = 4, the k-th edge-gadget E4
k consists of

four vertices vi,1, vi,2, v j,1, and v j,2, as illustrated
in Fig. 2 (b). The graph G[{vi,1, vi,2, v j,1, v j,2}] in-
duced by those four vertices is a complete graph,
K4. Furthermore, vi,1 and vi,2 connect to vi, j in the
i-th vertex-gadget Vi, and also v j,1 and v j,2 connect
to v j,i in the j-th vertex-gadget Vj.

– For r ≥ 5, the k-th edge-gadget Er
k is a clique

K2(r−1) of 2 × (r − 2) vertices, {vi,1, · · · , vi,r−2}
and {v j,1, · · · , v j,r−2}, as shown in Fig. 2 (c).
{vi,1, · · · , vi,r−2} and {v j,1, · · · , v j,r−2} are connected
to vi, j in the i-th vertex-gadget Vi and v j,i in
the j-th vertex-gadget Vj, respectively. That is,
the graphs induced by {vi,1, · · · , vi,r−2} ∪ {vi, j} and
{v j,1, · · · , v j,r−2} ∪ {v j,i} are both cliques, Kr−1.

For r = 4, if edge ek is included in a Hamiltonian cycle
CG in G, then we choose a path from vi, j to v j,i (or from v j,i

to vi, j), and the path dominates any other vertices in E4
k . If

edge ek is not included in any Hamiltonian cycle in G, then
vertices in E4

k cannot be dominated. The arguments for r ≥ 5
are almost the same as above.

Theorem 2 implies the following inapproximability:

Corollary 2. Let ρ(n) ≥ 1 be any polynomial-time com-
putable function. For r-regular graphs (r ≥ 3), MinSDC
admits no polynomial-time approximation algorithm with a
factor of ρ(n) unless P = NP. (The proof is very similar to
one of Corollary 1 and thus omitted.)

4. Split Graphs

In this section, we consider the complexity of MinSDC on
split graphs. Recall that a class of split graphs is a well-
known subclass of chordal graphs. As mentioned before,
MinSDC on split graphs is known to be NP-hard [6], and
moreover, MinSDC is NP-hard even to approximate for
chordal graphs as shown in the previous section. Fortu-
nately, however, we first show that OneSDC on split graphs
is tractable in the following.

Tractability of OneSDC. A split graph G is a graph for
which the vertex set can be split into two portions, one in-
cluding a clique set Q ⊆ V(G), the other an independent
set I ⊆ V(G), i.e., Q ∩ I = ∅ and Q ∪ I = V(G). It is
known [15] that there is a linear-algorithm which can deter-
mine whether a given graph is split or not. Without loss of
generality, assume that the clique graph G[Q] has at least
three vertices, v0, v1, · · ·, v|Q|−1. Then, an (arbitrary) ordered
sequence 〈v0, v1, · · · , v|Q|−1, v0〉 of |Q| vertices forms a cycle,
say, C, i.e., C must be a Hamiltonian cycle in G[Q]. Since
the Hamiltonian cycle C in the clique graph G[Q] can dom-
inate all vertices in the independent set I, it can be regarded
as a single dominating cycle in G. Therefore, we can obtain
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the following theorem:

Theorem 3. There exists a linear-time algorithm to solve
OneSDC on split graphs.

Approximability of MinSDC. We provide a polynomial-
time (ln n+1)-approximation algorithm for MinSDC on split
graphs with n vertices. The following lemma is quite triv-
ial, but plays an important role to design the approximation
algorithm:

Lemma 3. Suppose that a split graph G is split into two
portions, the clique set Q and the independent set I. Then,
if G has a single dominating cycle C of length � such that
V(C) ∩ I � ∅, then we can find a shorter dominating cycle
of length at most � − 1 in the split graph G.

Proof. Suppose that a dominating cycle of length �, say,
C = 〈v0, v1, · · ·, vi−1, vi, vi+1, · · · , v�−1, v0〉, has at least one
vertex vi in I. Then, for the subsequence 〈vi−1, vi, vi+1〉 of
C, two vertices vi−1 and vi+1 must be in Q since vi is the
vertex in the independent set I. Furthermore, there ex-
ists an edge {vi−1, vi+1} since vi−1 and vi+1 are in the clique
graph G[Q]. Since both vi−1 and vi+1 dominates vi and also
V(C) \ {vi} must dominate V(G) \ (V(C) \ {vi}), the cycle
C′ = 〈v0, v1, · · · , vi−1, vi+1, · · · , v0〉 of length � − 1 must be a
shorter dominating cycle.

By using Lemma 3 repeatedly, we can show that every
vertex in an optimal dominating cycle is in the clique graph
of the given split graph. If so, we can regard MinSDC on
split graphs as the Minimum Unweighted Set Cover prob-
lem (MinSC for short) [13]: Given a set of n elements,
U = {u1, u2, · · · , un}, and a collection of m subsets of U,
S = {S1, S2, · · · , Sm}, the goal of MinSC is to find a mini-
mum cardinality collection S′ of subsets from S such that
S′ covers all elements in U. A vertex v ∈ Q and a vertex
u ∈ I in MinSDC correspond to a set Sv and an element eu in
MinSC, respectively. If there is an edge {u, v}, then eu ∈ Sv.
Then, if S′ = {Sv0 , Sv1 , . . . , Sv0 } is a set cover, then the cor-
responding cycle C = 〈v0, v1, · · · , v0〉 is a dominating cycle,
and vice versa.

Theorem 4. There is a polynomial-time (ln n + 1)-
approximation algorithm for MinSDC on split graphs with n
vertices.

Proof. Suppose that a split graph G is split into two por-
tions, the clique set Q and the independent set I. At each
step, the approximation algorithm greedily chooses a vertex,
say, v of maximum degree in Q, then deletes v and its neigh-
bor vertices N(v) ∩ I, and repeats this process until all the
vertices in I are deleted. It can be shown [5], [16], [19], [25]
that the approximation ratio of the greedy algorithm is
(ln n + 1).

Inapproximability of MinSDC. Note that the NP-
hardness of MinSDC is previously proved by the
polynomial-time reduction from the MinimumVertexCover

problem [6]. In this section, for every ε > 0, we show the
(1 − ε) ln n-approximation hardness by the approximation-
gap preserving reduction from the MinSC. Note that, very
recently, Dinur and Steurer [9] show that it is NP-hard to
approximate MinSC to within a factor of (1 − ε) ln n, by re-
laxing the previous assumption in [10].

Theorem 5. For split graphs, MinSDC admits no (1−ε) ln n-
approximation algorithm for every ε > 0 unless P = NP.

Proof. We give a gap-preserving reduction from MinSC to
MinSDC on split graphs. Let U = {u1, u2, · · · , un} and
S = {S1, S2, · · · , Sm} be an instance of MinSC. Without
loss of generality, assume that n ≥ m. The corresponding
graph H of n vertices {u1, u2, . . . , un} in the independent set
I, which are associated with n elements of U, respectively,
and m vertices {s1, s2, . . . , sm} in the clique graph, which are
associated with m subsets {S1, S2, · · · , Sm} of set S, respec-
tively. If S j has an element ui in the instance MinSC, then s j

is connected to ui in H. This completes the reduction.
Let OPTSC (and OPTSDC , resp.) denote the number of

the subsets of an optimal solution of MinSC (and the length
of the dominating cycle of an optimal solution of MinSDC,
resp.). Let g(n) be a parameter function of the instance of
MinSC. Then, we can show that the above reduction satisfies
the following: (1) if OPTSC ≤ g(n), then OPTSDC ≤ g(n),
and (2) if OPTSC > g(n) × (1 − ε) ln n, then OPTSDC >
g(n)× (1−ε) ln n for a positive constant ε. Since the number
of vertices in H is at most 2n, the approximation gap is still
(1 − ε1) ln n for a small positive ε1.

5. Bounded Treewidth

In this section we show that there exists a linear-time al-
gorithm for MinSDC if the input is restricted to a class of
graphs with bounded treewidth, which includes, for exam-
ple, classes of series-parallel, outerplanar, and p-outerplanar
(for a fixed constant p) graphs.

Let G = (V, E) be an n-vertex graph. A tree decompo-
sition of a graph G = (V, E) is a tree T in which each node
i ∈ T has an assigned set of vertices Xi ⊆ V , called a bag,
such that

⋃
i∈T Xi = V with the following properties: (1) For

all {u, v} ∈ E, there exists an i ∈ T such that {u, v} ⊆ Xi; and
(2) if v ∈ Xi and v ∈ Xj, then v ∈ Xk for all Xk on the path
from Xi to Xj in T . The width of a tree decomposition is the
size of the largest bag of T minus one, maxi∈T |Xi| − 1. The
treewidth k of a graph G is the minimum width over all pos-
sible tree decompositions of G. To distinguish between the
vertices of the decomposition tree T and the vertices of the
graph G, we refer to the vertices of T as nodes. Each node
t of T corresponds to a subgraph Gt = G[Vt] of G which
is induced by the set Vt of vertices that are contained in the
bag Xt and all bags of descendants of t in T . A nice tree de-
composition is a rooted binary tree with five different types
of nodes [1]: (Root node) the root r of T such that Xr = ∅;
(Leaf node) a leaf � of T with no children such that X� = ∅;
(Introduce node) a node t with exactly one child t′ such that
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Xt = Xt′ ∪ {v} for some vertex v � Xt′ . We say that the vertex
v is introduced at t; (Forget node) a node t with exactly one
child t′ such that Xt = Xt′ \ {w} for some vertex w ∈ Xt′ . We
say that the vertex w is forgotten at t; (Join node) a node t
with two children t1, t2 such that Xt = Xt1 = Xt2 .

Monadic second order logic on MinSDC. As a semi-
nal result of Courcelle [7], it is known that every optimiza-
tion problem that can be expressed in monadic second-order
logic, so-called MSO2 formulas, can be solved for graphs
with bounded treewidth in time linear in the number of ver-
tices of the graph. Indeed, we can write a formula that is
true in a graph G if and only if G admits a cycle C of length
� which can dominate all vertices in V(G): First we con-
sider a formula inc(v, e), which checks whether an edge e
is incident with a vertex v. Then, we need to verify that
(i) a subset C of edges induces a connected graph, (ii) every
vertex in V(C) is adjacent to exactly two different edges of
C, and (iii) every vertex in V(G) is in V(C) or in N(V(C)).
Consider the following three formulas:

ConnEdge(C)

= ∀S⊆V(C)
[
(∃u∈V(C)u ∈ S ∧ ∃v∈V(C)v � S)

⇒ (∃e∈C∃u∈S∃v�Sinc(u, e) ∧ inc(v, e))
]

Deg2(v,C)

= ∃e1,e2∈C [(e1 � e2) ∧ inc(v, e1) ∧ inc(v, e2)

∧(∀e3∈Cinc(v, e3)⇒ (e1 = e3 ∨ e2 = e3))
]

Dominated(v,C)

= ∃u∈V(C) [(u = v)∨
((u � v) ∧ (∃e∈Einc(u, e) ∧ inc(v, e)))]

Here, ConnEdge(C) is a formula which checks whether the
graph (V(C),C) is connected, Deg2(v,C) verifies that a ver-
tex v has exactly two adjacent edges belonging to C, and
Dominated(v,C) verifies that a vertex v is in V(C) or it has
an edge {v, u} for a vertex u ∈ V(C). Therefore, the sentence
“C is a single cycle of length � which dominates all vertices
in V(G)” is expressed by a formula, say, φ(C):

φ(C) = ∃e1⊆E(C) · · · ∃e�⊆E(C)ConnEdge(C)

∧∀v∈V(C)Deg2(v,C)

∧∀v∈V(G)Dominated(v,C)

From Courcelle’s theorem, the shortest cycle C which
dominates all vertices in graphs with bounded treewidth can
be found in linear time. Unfortunately, however, the algo-
rithm is very slow since the dependence on treewidth in
the hidden constant factor of the running time is a tower
of exponentials. From this reason, it is suggested [8] that
Courcelle’s theorem and its variants should be regarded pri-
marily as classification tools and thus designing efficient
dynamic-programming routines on tree decompositions re-
quires “getting our hands dirty” and constructing the algo-
rithm explicitly (see Sect. 7.4.2 in [8] for details). In the fol-
lowing, we design such a dynamic-programming algorithm
explicitly.

Dynamic-programming algorithm. It is known that any

Fig. 3 Bag Xt for node t of T, and partial solution C[Vt] in dominating
cycle C.

graph of treewidth k has a nice tree-decomposition of width
k [1]. Since a nice tree-decomposition of a graph G with
bounded treewidth can be found in linear time [1], we may
assume without loss of generality that both G and its nice
tree-decomposition are given. Let G be a graph whose
treewidth is bounded by a fixed constant k. Also, let a nice
tree decomposition of G be represented by (T, {Xt}t∈V(T )) or
simply T .

Now consider an arbitrary dominating cycle C in G and
the subgraph C[Vt] in C, which is induced by the vertices in
V(C) ∩ Vt for a node t of T . Then, C[Vt] is a set of paths
with endpoints in Xt. See Fig. 3 as an example. The ver-
tex v0 is dominated by C and thus deg(C[Vt], v0) = 0. The
vertices v1 and v3 are two endpoints of a subpath Pv1,v3 =
〈v1, · · · , v2, · · · , v3〉, and v2 is a middle vertex in Pv1,v3 . The
vertices v4 and v5 are two endpoints of another subpath
Pv4,v5 = 〈v4, · · · , v5〉. Thus, deg(C[Vt], v1) = deg(C[Vt], v3) =
deg(C[Vt], v4) = deg(C[Vt], v5) = 1 and deg(C[Vt], v2) = 2.

Let a labeling function ft of a bag Xt be ft : Xt →
{0, 1, 2, ∗}. Then, according to the labeling ft, we partition
a bag Xt into four subsets, B0

t = {v | ft(v) = 0, v ∈ Xt},
B1

t = {v | ft(v) = 1, v ∈ Xt}, B2
t = {v | ft(v) = 2, v ∈ Xt} and

B∗t = {v | ft(v) = ∗, v ∈ Xt}:
• Dominated vertices, labeled 0. The meaning is that

all dominated vertices are not contained in the partial
solution (i.e., a part of the final dominating cycle) in
Gt, and must be dominated by it.
• Unsaturated vertices, labeled 1. The meaning is that

all unsaturated vertices have to be contained in the par-
tial solution and their degrees in it must be exactly one.
• Saturated vertices, labeled 2. The meaning is that all

saturated vertices have to be contained in the partial
solution and their degrees in it must be two.
• Undefined vertices, labeled ∗. The meaning is that all

undefined vertices are not contained in the partial so-
lution, but currently do not have to be dominated by
the partial solution, i.e., the vertices currently labeled
∗ would be eventually put into the solution, or domi-
nated by the solution. For example, a (current) labeling
function ft(v6) = ft(v7) = ∗ possibly implies the partial
solution in Gt, illustrated in Fig. 3.

Let Mt be a matching of unsaturated vertices in Xt such that

Mt = {{u, v} | the partial solution includes a path

from u to v for u, v ∈ Xt}.
Take a look at Fig. 3 again. Since the subgraph C[Vt] in-
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cludes a subpath Pv1,v3 , the matching {v1, v3} is in Mt.
For the labeling ft, i.e., the partition (B0

t , B
1
t , B

2
t , B

∗
t ),

and matching Mt of Xt, we denote by c[t; (B0
t , B

1
t , B

2
t , B

∗
t ),

Mt], or simply c[t; ft,Mt], the minimum number of vertices
in a subgraph C[Vt] such that

• C[Xt] = B1
t ∪ B2

t , which is the set of saturated and un-
saturated vertices of Xt, i.e., the set of vertices in the
partial solution.
• Each vertex of Vt \ B∗t either is in C[Vt] or is adjacent

in Gt to a vertex of C[Vt]. That is, C[Vt] dominates all
vertices of Vt\V(C) in the subgraph Gt, except possibly
some undefined vertices in Xt.

We say such a subgraph C[Vt] a compatible subgraph
for t, ft and Mt. If no compatible subgraph for t, ft and
Mt exists, we let c[t; ft,Mt] = +∞. Our algorithm com-
putes c[t; ft,Mt] for each node t of T and all pairs ( ft,Mt)
for Xt, from leaves of T to the root r of T , by means of
dynamic-programming. Then, since Gr = G for the root r
of T , one can compute the minimum dominating cycle in G
as the value of c[r; ∅, ∅] ≡ c[r; (∅, ∅, ∅, ∅),Mt]. This is be-
cause we have Xr = ∅, which means that for Xr we have
only the empty function and the empty matching.

Now we explain how to compute c[t; ft,Mt] for each
node t of T from the leaves to the root of T .
(1) Leaf node of T : For a leaf node t we have that Xt = ∅.
Therefore, there is only one possibility, empty function and
then empty matching. We have c[t; ∅, ∅] = 0.
(2) Introduce node of T : Let t be an introduce node with
a child t′ such that Xt = Xt′ ∪ {v} for some v � Xt′ . Note
that since v is introduced by Xt, every edge in Gt incident to
v is contained in G[Xt], that is, N(Gt, v) ⊆ Xt. We have to
consider the following labelings on v:

(i) ft(v) = 0, i.e., B0
t = B0

t′ ∪ {v}, and the labeling ft is
the same as ft′ for Xt′ . Then, we set c[t; ft,Mt] =
c[t′; ft′ ,Mt′ ].

(ii) ft(v) = ∗, i.e., B∗t = B∗t′ ∪ {v}, and the labeling ft is
the same as ft′ for Xt′ . Then, we set c[t; ft,Mt] =
c[t′; ft′ ,Mt′ ].

(iii) ft(v) = 1, and the labeling ft is almost the same as
ft′ for Xt′ , but it is changed for a neighbor vertex u in
N(G(Xt), v):

• If v is connected to a vertex u in B∗t′ , then B1
t = B1

t′ ∪{v, u}, B∗t = B∗t′ \ {u} and Mt = Mt′ ∪ {{u, v}}. We set
c[t; ft,Mt] = c[t′; ft′ ,Mt′ ] + 1.
• If v is connected to a vertex u in B1

t′ , then B1
t = (B1

t′ \{u}) ∪ {v}, B2
t = B2

t′ ∪ {u} and Mt = (Mt′ \ {{u, u′}}) ∪
{{v, u′}}, assuming the partial solution at t′ includes a
path from u to u′. We set c[t; ft,Mt] = c[t′; ft′ ,Mt′ ]+1.

(iv) ft(v) = 2, and the labeling ft is almost the same as ft′
for Xt′ , but it is changed for two neighbor vertices u and
w in N(G(Xt), v):

• If v is connected to two vertices u and w in B∗t′ , then
B2

t = B2
t′ ∪ {v}, B∗t = B∗t′ \ {u, w}, B1

t = B1
t′ ∪ {u, w}, and

Mt = Mt′ ∪ {{u, w}}. We set c[t; ft,Mt] = c[t′; ft′ ,Mt′ ]+
3.

• If v is connected to a vertex u in B∗t′ and a vertex w
in B1

t′ , then B2
t = B2

t′ ∪ {v, w}, B∗t = B∗t′ \ {u}, B1
t =

(B1
t′ \ {w}) ∪ {u}, and Mt = (Mt′ \ {{w, w′}}) ∪ {{u, w′}},

assuming the partial solution at t′ includes a path from
w to w′. We set c[t; ft,Mt] = c[t′; ft′ ,Mt′ ] + 2.
• If v is connected to two vertices u and w in B1

t′ from
different paths Pu,u′ and Pw,w′ , then B2

t = B2
t′ ∪ {v, u, w},

B1
t = B1

t′ \ {u, w}, and Mt = (Mt′ \ {{u, u′}, {w, w′}}) ∪
{{u′, w′}}. We set c[t; ft,Mt] = c[t′; ft′ ,Mt′ ] + 1.
• If v is connected to two vertices u and w in B1

t′ from the
same path Pu,w, then B2

t = B2
t′ ∪ {v, u, w}, B1

t = B1
t′ \{u, w}, and Mt = Mt′ \ {{u, w}}. We set c[t; ft,Mt] =

c[t′; ft′ ,Mt′ ] + 1. Note that in this case we get a single
dominating cycle for Gt (and for G).

(3) Forget node of T : Let t be a forget node with a child
t′ such that Xt = Xt′ \ {v} for some v ∈ Xt′ . Let f 0

t′ (v) be a
labeling which is almost the same as ft(v) but v is labeled by
0. Also, f 2

t′ (v) be a labeling which is almost the same as ft(v)
but v is labeled by 2. Note that the definition of compatible
subgraphs for t, ft, and Mt requires that the forgotten vertex
v is dominated or saturated. That is, every compatible sub-
graph C[Vt] for t, ft and Mt is also compatible for t′, f 0

t′ , and
Mt′ (in the case where v is in C[Vt]) or t′, f 2

t′ , and Mt′ (in the
case where v is not in C[Vt]), and vice versa. Therefore, we
set

c[t; ft,Mt] = min
{
c[t′; f 0

t′ ,Mt′ ], c[t′; f 2
t′ ,Mt′ ]

}
.

(4) Join node of T : Let t be a join node with children t1 and
t2. Note that Xt = Xt1 = Xt2 and there is no edge joining a
vertex in Gt1 \ Xt1 and one in Gt2 \ Xt2 . Let ft1 and Mt1 be
a labeling and a matching for Xt1 . Also, let ft2 and Mt2 be
a labeling and a matching for Xt2 . Roughly speaking, in the
computation for t, we merge two partial solutions, a set of
subpaths going through in Gt1 and the other set of subpaths
going through in Gt1 . We have to consider the following
labelings and matchings:

(i) We set ft(v) = 2 if a pair of two labelings ( ft1 (v), ft2 (v)) is
as follows: ( ft1 (v), ft2 (v)) ∈ {(2, 0), (2, ∗), (0, 2), (∗, 2)}.

(ii) We set ft(v) = 2, ft(u) = 1, ft(w) = 1 and {u, w} ∈ Mt

for v, u, w ∈ Xt if {v, u} ∈ Mt1 and {v, w} ∈ Mt2 , i.e.,
ft1 (v) = ft1 (u) = ft2 (v) = ft2 (w) = 1. That is, the partial
solution includes a path Pu,w from u to w.

(iii) We set ft(v) = ∗ if a pair of two labelings
( ft1 (v), ft2 (v)) = (∗, ∗).

(iv) We set ft(v) = 0 if a pair of two labelings
( ft1 (v), ft2 (v)) ∈ {(0, ∗), (∗, 0)}.

Then, we set

c[t; ft,Mt]

= min
ft1 , ft2

{
c[t1; ft1 ,Mt1 + c[t2; ft2 ,Mt2 ]− | Bt1

1 ∩ Bt2
2 |
}
.

Running time. Recall that a given graph G is of treewidth
bounded by a fixed constant k, and hence each bag Xt of T
contains at most k + 1 vertices. The labeling function ft has
four possibilities {0, 1, 2, ∗}, i.e., the number of possible la-
belings on ft is at most 4k+1. An upper bound for the number
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of possible matchings on Mt is at most (k+2)! = O(kk ·e
√

k).
(1) We spend a constant time at every leaf node of T . The
computation (2) for every introduced node of T requires
O(k2 · 4k · kk) time, and (3) for every forget node of T ,
O(4k · kk) time. (4) We spend the maximum time for the
computation on every joint node of T , which is at most
O(k2 · (4k ·kk)2) = O(1) time for a fixed constant k. Thus, the
above algorithm runs in linear time for graphs with bounded
treewidth:

Theorem 6. There exists an algorithm to solve MinSDC on
graphs of treewidth k in O(k2 · (4k · kk)2 · n) time.
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