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1. INTRODUCTION 
 
A power device is a semiconductor for power control 

used for power conversion such as converting direct 

current to alternating current and alternating current to 
direct current. It is used in electric vehicles, trains, and is 
an electronic component closely related to our daily lives. 

In recent years, awareness of energy saving and power 
saving has increased. Furthermore, the power devices can 

accurately rotate motors from low speeds to high speeds, 
and the electricity generated by solar cells can be sent to 
the power grid without waste. It is an indispensable 

electronic component in our daily lives and is used in 
various environments, so high reliability is required. 

Power cycle tests are being conducted to evaluate its 

reliability. It is a  test in which power is applied to a power 
device and the ON-OFF operation is repeated to confirm 

the life of thermal fatigue due to local heat generation of 
the chip. In conventional tests, it is difficult to identify 
the cause of destruction due to sparks generated at the 

time of destruction, severe damage to chips, substrates, 
solder, after destruction, and analysis of the process 
leading up to destruction. Therefore, a  technology has 

been developed that makes it possible to solve the 
problem by recording the internal structure in real time 

by adding ultrasonic observation. At present, the 
problems of the new technology are that a method for 
analyzing a huge amount of image data and a method for 

extracting changes that are difficult for humans to 
discriminate have not been established [1, 2]. 
J.K. Chowa et al. [3,4] proposes a method for detecting 

anomalies in concrete using deep learning. This shows 
that deep learning is also effective in the field of anomaly 

detection. We proposed an identification of normal and 
abnormal devices from ultrasound images using VGG16 

[5]. However, high accuracy is still remained. Therefore, 
in this paper, we propose an analysis method using deep 

learning. In addition, since the number of images for 
power device ultrasonic images is insufficient due to 
experiments, we also propose a data expansion method 

based on Cycle-GAN [6]. 
 

2. METHOD 
 
 In this study new CNN model proposed for the detection 

of abnormalities from the ultrasound images. The 
structure of the power device is shown in Fig. 1, and the 

image obtained in the power cycle test is shown in Fig. 2. 
The overall processing flow is shown in Fig. 3. In this 
method, Interface3 and Interface4, which change 

significantly during the test, are used as training data, and 
the region of interest is specified around the DBC diode 
 

 
Fig.1 The structure of the power device 
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(a)Normal (b)Abnormal 
Fig.2 Ultrasound image (Interface 3) 

 

 
Fig.3 Flowchart 

 

and cut out. As a preprocessing step, noise is removed 
from the cropped image based on non-local-mean-filter 
[7] which is described in 2.1. After that, the data is 

expanded and classified by CNN. 
 
2.1 Non-Local Mean Filter (NLMF) 

NLMF is a smoothing filter to remove the image noise 
without excluding edges information [7]. The formula of 

the filter is described below. Here, 𝑣(𝑝) is the data after 

filtering, 𝑢(𝑞) is the data before filtering, and 𝑑 is the 
Euclidean distance between the peripheral pixels and the 
pixel of interest, respectively. 

𝑣(𝑝) =∑𝜔(𝑝, 𝑞)𝑢(𝑞)

𝑞∈𝐼

 (1) 
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1
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(3) 

 
2.2 Data Augmentation 

In this paper, Cycle-GAN, which is a kind of GAN, is 
used for data expansion. This network can learn without 
the need for paired images like pix2pix [8]. The function 

of Cycle-GAN is to convert an image to another image 
with the characteristics of the original image. In addition, 

the loss function is calculated using the L1 norm for the 
image obtained by restoring the input data from the 
converted image called cycle-loss and the original input 

data. With this loss calculation method, it is possible to 
give a cycle property that returns to the original when 
converted again, and even if learning with an ampere 

  
  

(a)Original image (b)Created new image 
Fig.4 Cycle-GAN results 

 

image, the shape after conversion is hardly changed as 
when learning a pair image [6]. In this paper, identity loss 

is also added to the loss function in cycle-GAN. Owing 
to add this loss function, the invariance / universality of 
the self-identity common to the image groups can be 

made robust. By utilizing the above properties, it 
becomes possible to learn different types of power 
devices as a pair image and to reproduce a new power 

device in a pseudo manner. Fig. 4 shows an example of 
an image converted using Cycle-GAN. From this figure, 

it can be seen that new image generated without 
destroying the shape of the original image. 
 

2.3 Convolutional Neural Network (CNN) 
In this paper, we use a model of VGG16 with batch 

normalization (BN) and global average pooling (GAP) 

[9-11]. This model adds batch normalization after all 
convolution layers that can reduce data bias, and changes 

one of the fully coupled layers to GAP to reduce 
computational complexity. In this paper, we perform 
binary classification of normal data and abnormal data. 

The architecture of the model is shown in Fig. 5. The 
details of the model are shown in Table 1[9]. 
 

3. EXPERIMENT RESULTS AND 
DISCUSSION 

 

The number of images used in the experiment was 47 
abnormal images and 154 normal images. Among them, 
the number of abnormal images was increased to 94 by 

data augmentation, and the experiment was conducted. 
 

3.1 Evaluation Method 
Three cross-validations were used to evaluate the 

experiment. The details of the dataset are shown in Table 

3. Precision, Recall, and F-measure are used to evaluate 
the classification accuracy. 
 

 
Fig.5 Architecture of CNN 



 
Table.1 Details of the model 
(BN: Batch Normalizaiton,  

GAP: Global Average Pooling, FC: Fully Connected) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (4) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (5) 

𝐹 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2 ∙ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑅𝑒𝑐𝑎𝑙𝑙
 (6) 

 
3.2 Experimental Result 
 Table 4 shows the results without data expansion. Table 

5 shows the results of data expansion. In each experiment, 
the classification accuracy of the model used this time is 
compared with VGG16 and ResNet34 [12]. 

 
3.3 Discussion 

 Comparing Table 4 and Table 5, it can be seen that the 
classification accuracy is improved by conducting 
experiments with data augmentation. This is considered 

to be significant for data augmentation using Cycle-GAN. 
As mentioned above, Cycle-GAN is a GAN that does not 
require paired images. Therefore, it is possible to 

generate an image having the characteristics of the two 

 
Table.2 Evaluation criteria 

 
CNN's prediction. 

normal abnormal 

Actual 

Class 

normal 𝑇𝑃 𝐹𝑁 

abnormal 𝐹𝑃 𝑇𝑁 

 
Table.3 Summary of dataset 

 1 2 3 

Normal 51 51 51 

Abnormal 32 31 31 

 
images. It is considered that by newly adding the image 

of the power device generated by utilizing this property 
to the data set, the characteristics of each image could be 
sufficiently learned while reducing the influence of the 

bias of the data set. 
Although the accuracy could be improved by data 

expansion, correct identification could not be performed 
when the original data was small data set. The image that 
could not be identified is shown in Fig. 6. In the treatise 

in which the experiment was conducted using only this 
data, the identification was possible with relatively good 
accuracy, so it is considered that there is a possibility of 

overfitting in the treatise. In this paper as well, not only 
the non-uniformity of the data of the normal image and 

the abnormal image, but also the bias was observed in the 
abnormal image. Therefore, it is considered necessary to 
further expand the data in order to build a model that is 

versatile for any device. 
 

4. CONCLUSION 
 

 In this paper, we expanded the data on the ultrasonic 
images output by the power cycle test, enhanced the data 
set, and constructed a classifier by CNN. As a result, we 

were able to obtain accuracy of 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⁡of⁡97.06%, 

𝑅𝑒𝑐𝑎𝑙𝑙⁡of⁡93.58% , and 𝐹 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒⁡of⁡95.17% . In 
the future, we plan to try new data expansion methods 
and secure new experimental data to build a new model 

that incorporates the ResNet [12] skip connection 
structure used for comparison this time. 

 
 

Table.4 Experimental results without data augmentation 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅𝑒𝑐𝑎𝑙𝑙 

𝐹
−𝑚𝑒𝑎𝑠𝑢𝑟𝑒 

VGG+BN 0.9053 0.8028 0.829 

VGG16 0.9188 0.7458 0.8021 

ResNet34 1.0 0.8292 0.9046 

 
 

 
 
 

 

Layer Kernel Stride Remarks 

Input 200 ×200 × 3 - - 

Conv. 3 × 3 ×64 1 ReLU, BN 

Conv. 3 × 3 ×64 1 ReLU, BN 

Pooling 2 × 2 ×64 2 - 

Conv. 3 ×3 × 128 1 ReLU, BN 

Conv. 3 ×3 × 128 1 ReLU, BN 

Pooling 2 ×2 × 128 2 - 

Conv. 3 ×3 × 256 1 ReLU, BN 

Conv. 3 ×3 × 256 1 ReLU, BN 

Conv. 3 ×3 × 256 1 ReLU, BN 

Pooling 2 ×2 × 256 2 - 

Conv. 3 ×3 × 512 1 ReLU, BN 

Conv. 3 ×3 × 512 1 ReLU, BN 

Conv. 3 ×3 × 512 1 ReLU, BN 

Pooling 2 ×2 × 512 2 - 

Conv. 3 ×3 × 512 1 ReLU, BN 

Conv. 3 ×3 × 512 1 ReLU, BN 

Conv. 3 ×3 × 512 1 ReLU, BN 

Pooling 2 ×2 × 512 2 - 

GAP 512 - - 

FC 2 - Softmax 



  
 

Table.5 Experimental results with data augmentation 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅𝑒𝑐𝑎𝑙𝑙 

𝐹
−𝑚𝑒𝑎𝑠𝑢𝑟𝑒 

VGG+BN 0.9706 0.9358 0.9517 

VGG16 0.8986 0.9139 0.8933 

ResNet34 0.9792 0.8626 0.914 

 

  
  

(a) (b) 
Fig.6 Misclassified image 
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