
Exact algorithms for the repetition-bounded
longest common subsequence problem

著者 Asahiro Yuichi, Jansson Jesper, Lin Guohui,
Miyano Eiji, Ono Hirotaka, Utashima
Tadatoshi

journal or
publication title

Theoretical Computer Science

volume 838
page range 238-249
year 2020-08-04
URL http://hdl.handle.net/10228/00008953

doi: https://doi.org/10.1016/j.tcs.2020.07.042

Exact Algorithms for the Repetition-Bounded Longest
Common Subsequence Problem⋆

Yuichi Asahiroa, Jesper Janssonb, Guohui Linc, Eiji Miyanod,∗, Hirotaka Onoe,
Tadatoshi Utashimad

aKyushu Sangyo University, Fukuoka, Japan
bThe Hong Kong Polytechnic University, Kowloon, Hong Kong

cUniversity of Alberta, Edmonton, Canada
dKyushu Institute of Technology, Iizuka, Japan

eNagoya University, Nagoya, Japan

Abstract

In this paper, we study exact, exponential-time algorithms for a variant of

the classic Longest Common Subsequence problem called the Repetition-

Bounded Longest Common Subsequence problem (or RBLCS, for short):

Let an alphabet S be a finite set of symbols and an occurrence constraint Cocc be

a function Cocc : S → N, assigning an upper bound on the number of occurrences

of each symbol in S. Given two sequences X and Y over the alphabet S and

an occurrence constraint Cocc, the goal of RBLCS is to find a longest common

subsequence of X and Y such that each symbol s ∈ S appears at most Cocc(s)

times in the obtained subsequence. The special case where Cocc(s) = 1 for

every symbol s ∈ S is known as the Repetition-Free Longest Common

Subsequence problem (RFLCS) and has been studied previously; e.g., in [1],

Adi et al. presented a simple (exponential-time) exact algorithm for RFLCS.

However, they did not analyze its time complexity in detail, and to the best of

our knowledge, there are no previous results on the running times of any exact

⋆A preliminary version of the paper appeared in Proceedings of the 13th Annual In-
ternational Conference on Combinatorial Optimization and Applications (COCOA 2019),
Vol. 11949 of Lecture Notes in Computer Science, Springer, pp. 1–12 (2019).

∗Corresponding author
Email addresses: asahiro@is.kyusan-u.ac.jp (Yuichi Asahiro),

jesper.jansson@polyu.edu.hk (Jesper Jansson), guohui@ualberta.ca (Guohui Lin),
miyano@ces.kyutech.ac.jp (Eiji Miyano), ono@nagoya-u.jp (Hirotaka Ono),
utashima.tadatoshi965@mail.kyutech.jp (Tadatoshi Utashima)

Preprint submitted to Theoretical Computer Science June 19, 2020

©2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

algorithms for this problem. Without loss of generality, we will assume that

|X| ≤ |Y | and |X| = n. In this paper, we first propose a simpler algorithm for

RFLCS based on the strategy used in [1] and show explicitly that its running

time is O(1.44225n). Next, we provide a dynamic programming (DP) based

algorithm for RBLCS and prove that its running time is O(1.44225n) for any

occurrence constraint Cocc, and even less in certain special cases. In particular,

for RFLCS, our DP-based algorithm runs in O(1.41422n) time, which is faster

than the previous one. Furthermore, we prove NP-hardness and APX-hardness

results for RBLCS on restricted instances.

Keywords: Repetition-bounded longest common subsequence problem,

repetition-free, exponential-time exact algorithms, dynamic programming,

NP-hardness, APX-hardness

1. Introduction

1.1. Longest Common Subsequence problems

An alphabet S is a finite set of symbols. Let X be a sequence over the

alphabet S and |X| be the length of the sequence X. For example, X =

⟨x1, x2, · · · , xn⟩ is a sequence of length n, where xi ∈ S for 1 ≤ i ≤ n, i.e., |X| =5

n. For a sequence X = ⟨x1, x2, · · · , xn⟩, another sequence Z = ⟨z1, z2, · · · , zc⟩

is a subsequence of X if there exists a strictly increasing sequence ⟨i1, i2, · · · , ic⟩

of indices of X such that for all j = 1, 2, · · · , c, we have xij = zj . Then, we say

that a sequence Z is a common subsequence of X and Y if Z is a subsequence

of both X and Y . Given two sequences X and Y as input, the goal of the10

Longest Common Subsequence problem (LCS) is to find a longest common

subsequence of X and Y .

LCS is a fundamental problem and has a long history [5, 12, 16, 27]. The

comparison of sequences via a longest common subsequence has been applied in

several contexts where we want to find the maximum number of symbols that15

appear in the same order in two sequences. LCS is considered to be an important

computational primitive in a variety of applications such as bioinformatics [3, 4,

2

20, 22], data compression [26], spelling correction [21, 27], and file comparison [2]

since LCS plays a key role in measuring various types of sequence similarity.

LCS has been deeply investigated, and polynomial-time algorithms are well-20

known [16, 17, 22, 23, 27]. It is possible to generalize LCS to a set of three or more

sequences; the goal is to compute a longest common subsequence of all input

sequences. If the number of sequences is part of the input, then LCS of multiple

sequences is NP-hard even on binary alphabet [19] and it is not approximable

within factor O(n1−ε) on arbitrary alphabet for sequences of length n and any25

constant ε > 0 [20]. Furthermore, some researchers introduced a constraint on

the number of symbol occurrences in the solution. Bonizzoni et al. considered

the Exemplar Longest Common Subsequence problem (ELCS) [10, 24].

In ELCS, the alphabet S of symbols is divided into the mandatory alphabet

Sm and the optional alphabet So, and ELCS restricts the numbers of symbol30

occurrences in Sm and So in the obtained solution. ELCS is APX-hard even for

instances of two sequences [10]. In [11], Bonizzoni et al. proposed the following

Doubly-Constrained Longest Common Subsequence problem (DCLCS):

Let a sequence constraint C be a set of sequences over an alphabet S and let

an occurrence constraint Cocc be a function Cocc : S → N, assigning an upper35

bound on the number of occurrences of each symbol in S. Given two sequences

X and Y over the alphabet S, a sequence constraint C, and an occurrence

constraint Cocc, the goal of DCLCS is to find a longest common subsequence Z

of X and Y such that each sequence in C is a subsequence of Z and Z contains

at most Cocc(s) occurrences of each symbol s ∈ S. Bonizzoni et al. showed that40

DCLCS is NP-hard over an alphabet of three symbols [11].

Adi et al. introduced the Repetition-Free Longest Common Subse-

quence problem (RFLCS) [1]: Given two sequences X and Y over an alphabet

S, the goal of RFLCS is to find a “repetition-free” longest common subsequence

of X and Y , where each symbol appears at most once in the obtained subse-45

quence. In [1], Adi et al. proved that RFLCS is APX-hard even if each symbol

appears at most twice in each of the given sequences.

3

X = TGACTCTGTGCA

Y = TGCTCAGTGCAC

Z = TGCTCGTA

Z ′ = TGAC

Figure 1: If two sequences X and Y , and an occurrence constraint Cocc(A) = 1, Cocc(C) =

Cocc(G) = 2 and Cocc(T) = 3 are given as input, then Z is a repetition-bounded longest

common subsequence satisfying the occurrence constraint Cocc. As another example, if

Cocc(A) = Cocc(C) = Cocc(G) = Cocc(T) = 1, then Z′ is a solution (i.e., Z′ is repetition-free).

1.2. Our new results

In this paper we study exact, exponential-time algorithms for RFLCS and

its general form, called the Repetition-Bounded Longest Common Subse-50

quence problem (RBLCS for short): Let S = {s1, s2, · · · , sk} be an alphabet of

k symbols. Recall that Cocc is an occurrence constraint Cocc : S → N, assigning

an upper bound on the number of occurrences of each symbol in S. Given two

sequences X and Y over the alphabet S and an occurrence constraint Cocc, the

goal of RBLCS is to find a “repetition-bounded” longest common subsequence of55

X and Y , where each symbol si appears at most Cocc(si) times in the obtained

subsequence for i = 1, 2, · · · , k. See Figure 1 for examples. The special case

where Cocc(si) = r for every i = 1, 2, · · · , k is referred to as the r-Repetition-

Bounded Longest Common Subsequence problem (r-RBLCS for short).

Note that the special case 1-RBLCS is identical to RFLCS. Also, it is easy to60

see that RBLCS is a special case of DCLCS where the sequence constraint C

satisfies C = ∅. In [1], Adi et al. presented a simple (exponential-time) exact

algorithm for 1-RBLCS, whose basic strategy is to enumerate all the subse-

quences consisting of representative symbols. However, they did not analyze

its time complexity in detail as their focus was on establishing polynomial-time65

solvability and polynomial-time approximability. To the best of our knowledge,

there are no previous results on the running times of any exact algorithms for

4

this problem.

Without loss of generality, we will assume that |X| ≤ |Y | and |X| = n. The

contributions of this paper are summarized as follows:70

1. We propose a simple algorithm for RFLCS based on the strategy used in [1]

and show explicitly that its running time is O(1.44225n).

2. We provide a dynamic programming (DP) based algorithm for RBLCS and

prove that its running time is O(1.44225n) for any occurrence constraint

Cocc, and even less in certain special cases. In particular, for RFLCS, our75

DP-based algorithm runs in O(1.41422n) time, which is faster than the

previous one.

3. The NP-hardness of RFLCS implies that RBLCS is NP-hard in general. In

this paper we prove that for any integer r ≥ 2, r-RBLCS remains NP-hard

even if each symbol appears exactly r or r + 1 times in each of the given80

two sequences. Furthermore, we prove that r-RBLCS is APX-hard if every

symbol appears exactly r or 2r times in each of the given two sequences.

1.3. Related work

Although this paper focuses on the exact exponential algorithms, we here

make a brief survey on previous results for RFLCS, from the viewpoints of heuris-85

tic, approximation and parameterized algorithms. In [1], Adi et al. introduced

first heuristic algorithms for RFLCS. After that, several (meta)heuristic algo-

rithms for RFLCS were proposed in [7, 8, 13, 25]. A detailed comparison of

those metaheuristic algorithms was given in [9]. As for the approximability of

RFLCS, Adi et al. showed [1] that RFLCS admits an occmax-approximation al-90

gorithm, where occmax is the maximum number of occurrences of each symbol

in one of the two input sequences. In [6], Blin et al. presented a randomized

fixed-parameter algorithm for RFLCS parameterized by the size of the solution.

In [15], Fernandes and Kiwi studied the asymptotic behavior of the length of a

repetition-free longest common subsequence of two random sequences such that95

each symbol appears randomly, uniformly and independently.

5

1.4. Organization

The rest of the paper is organized as follows: Section 2 introduces notation

which will be used throughout the paper, and then gives the formal definition of

RBLCS. In Section 3, we present simple exact algorithms based on the strategy100

used in [1] for RFLCS and r-RBLCS and analyze their running times in detail.

Then, we design the O(1.44225n)-time DP-based algorithm for RBLCS in Sec-

tion 4. Section 5 shows the NP-hardness and the APX-hardness of r-RBLCS on

restricted instances. Finally, we conclude the paper in Section 6. The notation

used throughout the paper is summarized in the appendix.105

2. Preliminaries

Let S = {s1, s2, · · · , sk} be an alphabet, i.e., a finite set of k symbols. Let

X = ⟨x1, x2, · · · , xn⟩ and Y = ⟨y1, y2, · · · , yn⟩ be the given two sequences as

input of RBLCS and Z be a common subsequence of X and Y . For the sequence

X, the subsequence ⟨xi, · · · , xj⟩ is denoted by Xi..j . Then, we define the ith110

prefix of X, for i = 1, · · · , n, as X1..i = ⟨x1, x2, · · · , xi⟩. Also, we define the

ith suffix of X, for i = 1, · · · , n, as Xi..n = ⟨xi, xi+1, · · · , xn⟩. X1..n is X.

Similarly, we define the jth prefix and the jth suffix of Y , for j = 1, · · · ,m, as

Y1..j = ⟨y1, y2, · · · , yj⟩ and Yj..n = ⟨yj , yj+1, · · · , ym⟩, respectively.

Without loss of generality, we assume that both X and Y have all k symbols115

in S. Let occ(X, si), occ(Y, si) and occ(Z, si) be the numbers of occurrences of si

inX, Y , and Z, respectively, and thus occ(X, si) ≥ 1 and occ(Y, si) ≥ 1 for every

symbol si. Let Cocc be an occurrence constraint. The Repetition-Bounded

Longest Common Subsequence problem (RBLCS) can be formally defined

as follows:120

Repetition-Bounded Longest Common Subsequence prob-

lem (RBLCS)

Input: A pair of sequences X and Y , and an occurrence constraint

Cocc.

6

Goal: Find a longest common subsequence Z of X and Y such that125

occ(Z, s) ≤ Cocc(s) is satisfied for every s ∈ S.

We call such a sequence Z a repetition-bounded longest common subsequence.

The special case where Cocc(si) = r for every i = 1, 2, · · · , k is referred to as

the r-Repetition-Bounded Longest Common Subsequence problem (r-

RBLCS). Also, 1-RBLCS is often called the Repetition-Free Longest Com-130

mon Subsequence problem (RFLCS).

When presenting the time complexity of algorithms, we often round the

base of exponential functions up to the fifth digit after the decimal point. That

is, for example, the running time O((
√
2)n) is written as O(1.41422n) since

√
2 = 1.414213562... and thus

√
2 < 1.41422. Furthermore, since (

√
2)npoly(n)135

is sandwiched between 1.41421n and 1.41422n for every polynomial poly(n) of

n and sufficiently large n, we write O((
√
2)npoly(n)) as O(1.41422n).

3. Warm-up Algorithms

In this section, we first focus on RFLCS, i.e., 1-RBLCS. The following brute-

force exact algorithm for RFLCS obviously runs in O(2n · n · m) time for two140

sequences X and Y where |X| = n, |Y | = m, and |X| ≤ |Y |: (i) First create

all the subsequences of X, denoted by X1 through X2n . Then, (ii) obtain a

longest common subsequence of Xi and Y for each i (1 ≤ i ≤ 2n) by using an

O(|Xi| ·m)-time algorithm for LCS [22, 23, 27]. Finally, (iii) find a repetition-

free longest subsequence among those 2n common subsequences obtained in (ii)145

and output it.

In [1], Adi et al. presented the following algorithm for RFLCS, which is

more sophisticated than the naive algorithm above: Let S be an alphabet of

symbols. Suppose that each symbol in SX ⊆ S appears in X fewer times

than Y , and SX = {s1, s2, · · · , s|SX |}. Also, let SY = S \ SX and SY =150

{s|SX |+1, s|SX |+2, · · · , s|S|}. (i) The algorithm creates all the subsequences X1

through XNX
of the input sequence X such that all the symbols in SX occur

exactly once, but all the occurrences of symbols in SY are kept in Xi for every

7

1 ≤ i ≤ NX . Also, the algorithm creates all the subsequences Y1 through YNY

of the input sequence Y such that all the symbols in SY occur exactly once,155

but all the occurrences of symbols in SX are kept in Yj for every 1 ≤ j ≤ NY .

Then, (ii) obtain a longest common subsequence of Xi and Yj for every pair

of i and j (1 ≤ i ≤ NX and 1 ≤ j ≤ NY) by using an O(|Xi| · |Yj |)-time

algorithm for the original LCS. Finally, (iii) find the longest subsequence among

NX ·NY common subsequences obtained in (ii), which must be repetition-free,160

and output it. Clearly, the running time of this method is O(NX ·NY · n ·m).

In [1], Adi et al. only claimed that if the number of symbols which appear twice

or more in X and Y is bounded above by some constant, say, c, then the running

time is O(mc · n ·m), i.e., RFLCS is solvable in polynomial time. However, no

upper bound on NX ·NY was given in [1].165

3.1. Repetition-Free LCS

In this subsection we consider an algorithm called ALG, based on the same

strategy as the one in [1] for RFLCS: (i) First create all the subsequences X1

through XN of the input sequence X such that every symbol appears exactly

once in Xi for 1 ≤ i ≤ N in O(N · n) time. Then, (ii) obtain a longest common170

subsequence of Xi and Y in O(n · m) time for each i (1 ≤ i ≤ N). Finally,

(iii) find a repetition-free longest subsequence among N common subsequences

obtained in (ii) and output it. Therefore, the running time of ALG is O(N ·n·m).

It is important to note that ALG is identical to Adi et al.’s algorithm in [1] if

SX = S and thus SY = ∅.175

A very simple argument gives us the first upper bound on N and the running

time of ALG:

Theorem 1. The running time of ALG is O(1.44467n) for RFLCS on two se-

quences X and Y where |X| = n, |Y | = m, and |X| ≤ |Y |.

Proof. Recall that X has k symbols, s1 through sk, and si occurs occ(X, si)

times in X for each integer i, 1 ≤ i ≤ k. Since the number N of subsequences in

X created in (i) of ALG is bounded by the number of combinations of k symbols,

8

the following is satisfied:

N ≤
k∏

i=1

occ(X, si).

From the inequality of arithmetic and geometric means, we have:

N ≤

(
(

k∑
i=1

occ(X, si))/k

)k

≤ (n/k)k.

Here, by setting p
def
= n/k ∈ R+, we have:

N ≤ (p)n/p = (p1/p)n.

Note that the value of p1/p becomes the maximum when p = e, where e denotes180

Euler’s number. That is, N is bounded above by en/e < 1.444668n. Therefore,

the running time of ALG is O(1.444668n · n ·m) = O(1.44467n).

A more refined estimate yields a smaller upper bound on N , which gives us

the improved running time of ALG:

Theorem 2. The running time of ALG is O(1.44225n) for RFLCS on two se-185

quences X and Y where |X| = n, |Y | = m, and |X| ≤ |Y |.

Proof. Let max1≤i≤k {occ(X, si)} = occmax. Also, let Si = {sj | occ(X, sj) =

i} for 1 ≤ i ≤ occmax. That is, Si is a set of symbols which appear exactly i

times in X. Let ni = i × |Si|. Since each symbol in Si appears i times in X,

the following equality holds:

occmax∑
i=1

ni = n. (1)

In the following, we show a smaller upper bound on N than that in the

proof of Theorem 1. From the fact that ni = i×|Si|, one sees that the following

equality holds:

N ≤
k∏

i=1

occ(X, si) =

occmax∏
i=1

ini/i. (2)

9

Here, from the inequality of arithmetic and geometric means, the following is

obtained: (
occmax∏
i=1

(
i1/i
)ni

)1/
∑occmax

i=1 ni

≤
∑occmax

i=1

(
i1/i
)
· ni∑occmax

i=1 ni
. (3)

From the equations (1), (2), and (3), we get:

N ≤

(∑occmax

i=1

(
i1/i
)
· ni

n

)n

. (4)

Now, it is important to note that i ∈ N, i.e., i is a positive integer while p = n/k

is a positive real in the proof of the previous theorem. Therefore, by a simple

calculation, one can verify that the following is true:

max
i∈N

{
i1/i
}
= 31/3. (5)

Hence, we can bound the number N of all the possible repetition-free common

subsequences as follows:

N ≤
(∑occmax

i=1 31/3 · ni

n

)n

=

(
31/3 ·

∑occmax

i=1 ni

n

)n

=
(
31/3

)n
< 1.4422496n.

As a result, the running time of our algorithm is O(1.4422496n · n · m) =

O(1.44225n). This completes the proof.

Corollary 1. There is an O(occn/occ · n · m)-time algorithm to solve RFLCS

for two sequences X and Y where |X| = n, |Y | = m, and |X| ≤ |Y | when every190

symbol occurs in X exactly occ times.

Proof. By the assumption, occ×|Socc| = n and thus |S(occ)′ | = 0 for occ ̸= occ′.

From the inequality (4), one can easily obtain the following:

N ≤
(
occ1/occ

)n
.

Table 1 shows the running time T for each occ = 2, 3, · · · , 8:

10

Table 1: Occurrence occ and running time T

occ 2 3 4 5 6 7 8

T 1.41422n 1.44225n 1.41422n 1.37973n 1.34801n 1.32047n 1.29684n

3.2. r-Repetition-Bounded LCS, r ≥ 2

In this subsection we consider exact exponential algorithms for r-RBLCS.195

First, by a straightforward extension of the algorithm for RFLCS, we can design

the following algorithm for r-RBLCS, named ALGr: First, (i) create all the

subsequences X1 through XN of the input sequence X such that each symbol s

appears exactly r times in Xi for 1 ≤ i ≤ N if X has more than r s’s; otherwise,

all the occurrences of s in X are included in Xi. Each subsequence Xi can be200

created in O(n) time and thus the total running time of (i) is O(N · n). Then,

(ii) obtain a longest common subsequence of Xi and Y in O(n · m) time for

each i (1 ≤ i ≤ N). Finally, (iii) find a longest subsequence among N common

subsequences obtained in (ii), which has at most r occurrences of every symbol,

and output it. Therefore, the running time is O(N · n ·m).205

Again, suppose thatX has k symbols, s1, s2, · · · , sk, and si occurs occ(X, si)

times in X for each integer i, 1 ≤ i ≤ k, and max1≤i≤k {occ(X, si)} = occmax.

Let Si = {sj | occ(X, sj) = i} for 1 ≤ i ≤ occmax and ni = i × |Si|. Then, we

estimate an upper bound on N for each r:

Theorem 3. For r-RBLCS on two sequences X and Y where |X| = n, |Y | = m,

and |X| ≤ |Y |, the running time of ALGr is as follows:

O

((
max
i∈N

{(
i− r−1

2

(r!)1/r

)r/i
})n

× n ·m

)
.

Proof. First, the total number N of sequences created in (i) of ALGr can be

expressed as follows:

N =

k∏
i=1

(
occi

r

)
=

occmax∏
i=r+1

(
i

r

)ni/i

.

11

From the inequality of arithmetic and geometric means, we can obtain the fol-

lowing inequality:

(i(i− 1)(i− 2) · · · (i− r + 1))
1/r ≤ (2i− r + 1)r/2

r
= i− r − 1

2
.

Therefore, N is bounded:

occmax∏
i=r+1

(
i

r

)ni/i

≤
occmax∏
i=r+1

(
(i− r−1

2)r

r!

)ni/i

=

occmax∏
i=r+1

((
i− r−1

2

(r!)1/r

)r/i
)ni

≤

(
max
i∈N

{(
i− r−1

2

(r!)1/r

)r/i
})n

.

This completes the proof.210

We have obtained the specific values of maxi∈N

{(
i− r−1

2

(r!)1/r

)r/i}
, denoted by

N(r), and i for r-RBLCS by its empirical implementation. Table 2 shows N(r)

and i for each r = 2, 3, · · · , 10.

Table 2: N(r) and i for each r

r 2 3 4 5 6 7 8 9 10

N(r) 1.58884 1.66852 1.72013 1.75684 1.78453 1.80630 1.82394 1.83856 1.85091

i 5 7 9 11 13 15 17 19 21

4. Dynamic Programming Algorithms for RBLCS

In this section we design a DP-based algorithm named DP for RBLCS.215

4.1. Original LCS

In this subsection, we briefly review the dynamic programming paradigm for

the original LCS. For more details, e.g., see [14]. Let Z1..h = ⟨z1, z2, · · · , zh⟩ be

any longest common subsequence of the ith prefix X1..i of X and the jth prefix

Y1..j of Y . It is well known that LCS has the following optimal-substructure220

12

property: (1) If xi = yj , then zh = xi = yj and Z1..h−1 is a longest common

subsequence of X1..i−1 and Y1..j−1. (2) If xi ̸= yj , then (a) zh ̸= xi implies that

Z1..h is a longest common subsequence of X1..i−1 and Y1..j ; (b) zh ̸= yj , then

Z1..h is a longest common subsequence of X1..i and Y1..j−1.

We define L(i, j) to be the length of a longest common subsequence of X1..i225

and Y1..j . Then, the above optimal substructure of LCS gives the following

recursive formula:

L(i, j) =


0 if i = 0 or j = 0,

L(i− 1, j − 1) + 1 if i, j > 0 and xi = yj ,

max {L(i, j − 1), L(i− 1, j)} if i, j > 0 and xi ̸= yj .

The DP algorithm for the original LCS computes each value of L(i, j) and stores

it into a two-dimensional table L of size (n+ 1)× (m+ 1) in row-major order.

In the case of RBLCS, we have to count the number of occurrences of every230

symbol in the prefix of Z. In the following we show a modified recursive formula

and a DP-based algorithm for RBLCS.

4.2. Repetition-Bounded LCS

A trivial implementation of a dynamic programming approach might be to

use the DP-based algorithm for LCS for multiple sequences: For RFLCS, we first235

generate all the permutations of k symbols, i.e., k! repetition-free sequences of

k symbols, say, X1 through Xk! and then obtain a longest common subsequence

of Xi, X, and Y for each i (1 ≤ i ≤ k!) by using an O(|Xi| ·n ·m)-time DP-based

algorithm solving LCS for multiple (three) sequences proposed in [18]. Therefore,

the total running time is O(k! · k · n · m). For RBLCS, we first generate all240

the permutation of
∑k

i=1 Cocc(si) multiple symbols and then obtain a longest

common subsequence Z such that occ(Z, si) ≤ Cocc(si) is satisfied for every

si ∈ S. Let N =
∑k

i=1 Cocc(si). Then, the running time is O(N ! · N · n · m),

which is polynomial if N is constant.

In the following we design a faster DP-based algorithm DP. Let S>Cocc
=245

{si | occ(X, si) > Cocc(si)}. Now suppose that |S>Cocc
| = ℓ and, without loss

13

of generality, S>Cocc = {s1, s2, · · · , sℓ}. Then, we prepare an “occurrence” vec-

tor of length ℓ, denoted by v = (v1, v2, · · · , vℓ), where the pth component vp

corresponds to the pth symbol sp for 1 ≤ p ≤ ℓ and vp ∈ {0, 1, · · · , Cocc(sp)}.

Roughly speaking, DP uses the occurrence vector v as an upper bound of oc-250

currences of every symbol in an intermediate solution, in order not to break

the occurrence constraint; it can therefore compute a subproblem of finding a

repetition-bounded longest common subsequence of X1..i and Y1..j . Note that

the number of possibilities in the occurrence vector is
∏ℓ

i=1(Cocc(si) + 1).

For the occurrence vector v = (v1, v2, · · · , vp−1, vp, vp+1 · · · , vℓ), we define a255

new vector v|p=q = (v1, v2, · · · , vp−1, q, vp+1, · · · , vℓ). Note that if vp = q in v,

then v|p=q = v. Let 0 be an ℓ-dimensional 0-vector, i.e., the length of 0 is ℓ

and all ℓ components are 0. Also, let Cocc be an ℓ-dimensional vector such that

the length of Cocc is ℓ and the pth component is Cocc(sp) for 1 ≤ p ≤ ℓ.

Similarly to the previous subsection, we define L(i, j,v) to be the length of a260

repetition-bounded longest common subsequence of X1..i and Y1..j satisfying the

occurrence vector v, i.e., the length of the subsequence which does not break

the occurrence constraint. Our algorithm for RBLCS computes each value of

L(i, j,v) and stores it into a three-dimensional table L of size (n + 1) × (m +

1)×
∏ℓ

i=1(Cocc(si) + 1).265

Theorem 4 (Optimal substructure of RBLCS). Consider the ith prefix X1..i

of X and the jth prefix Y1..j of Y . Suppose that S>Cocc = {s1, s2, · · · , sℓ} be a

set of ℓ symbols such that each si occurs at least Cocc(si) + 1 times in X. Let

Z1..h = ⟨z1, z2, · · · , zh⟩ be any repetition-bounded longest common subsequence

of X1..i and Y1..j satisfying an occurrence vector v. Then, the followings are270

satisfied:

(1) If xi = yj = sp and sp ̸∈ S>Cocc
, then zh = sp and Z1..h−1 is a repetition-

bounded longest common subsequence of X1..i−1 and Y1..j−1 satisfying v.

(2) If xi = yj = sp, sp ∈ S>Cocc
and vp > 0, then zh = sp implies that Z1..h−1

is a repetition-bounded longest common subsequence of X1..i−1 and Y1..j−1275

satisfying v|p=vp−1.

14

(3) If xi = yj = sp, sp ∈ S>Cocc and vp = 0, then zh ̸= sp and Z1..h is

a repetition-bounded longest common subsequence of X1..i−1 and Y1..j−1

satisfying v.

(4) If xi ̸= yj, then280

(a) zh ̸= xi implies that Z1..h is a repetition-bounded longest common

subsequence of X1..i−1 and Y1..j satisfying v;

(b) zh ̸= yj implies that Z1..h is a repetition-bounded longest common

subsequence of X1..i and Y1..j−1 satisfying v.

Proof. We will verify (1) through (4):285

(1) If zh ̸= xi, then by appending xi = yj = sp to Z1..h, we can obtain

a repetition-bounded common subsequence of X1..i and Y1..j of length h + 1

satisfying v since the number of sp’s in Z is at most Cocc(sp)− 1 from the con-

dition sp ̸∈ S>Cocc
. This contradicts the assumption that Z1..h is a repetition-

bounded longest common subsequence of X1..i and Y1..j satisfying v. Therefore,290

zh = xi = yj holds. What we have to do is to prove that the prefix Z1..h−1 is

a repetition-bounded longest common subsequence of X1..i−1 and Y1..j−1 with

length h− 1 satisfying v. For the purpose of obtaining a contradiction, suppose

that there exists a repetition-bounded common subsequence Z ′ of X1..i−1 and

Y1..j−1 with length greater h−1 satisfying v. Then, by appending xi = yj = sp,295

we obtain a repetition-bounded common subsequence of X1..i and Y1..j whose

length is greater than h satisfying v, which is a contradiction.

(2) If zh = xi = yj = sp, then Z1..h−1 is a repetition-bounded common

subsequence of X1..i−1 and Y1..j−1 such that sp appears at most vp − 1 times in

Z1..h−1. Suppose that there exists a repetition-bounded common subsequence300

Z ′ of X1..i−1 and Y1..j−1 with length greater than h − 1 satisfying v|p=vp−1.

Since the pth component of v|p=vp−1 is vp−1, by appending xi = yj = sp to Z ′,

we obtain a repetition-bounded common subsequence of X1..i and Y1..j whose

length is greater than h satisfying v, which contradicts the assumption that

Z1..h is a repetition-bounded longest common subsequence of X1..i and Y1..j305

satisfying v.

15

(3) Suppose that there exists a repetition-bounded common subsequence Z ′

of X1..i−1 and Y1..j−1 with length greater than h satisfying v. From zh ̸= sp, Z
′

is also a repetition-bounded common subsequence of X1..i and Y1..j satisfying

v, which again contradicts the assumption that Z1..h is a repetition-bounded310

longest common subsequence of X1..i and Y1..j satisfying v.

(4)(a) ((b), resp.) If there is a repetition-bounded common subsequence Z ′ of

X1..i−1 and Y1..j (X1..i and Y1..j−1, resp.) with length greater than h satisfying

v, then Z ′ would also be a repetition-bounded common subsequence of X1..i and

Y1..j satisfying v, contradicting the assumption that Z is a repetition-bounded315

longest common subsequence of X1..i and Y1..j satisfying v.

Then, we can obtain the following recursive formula:

L(i, j,v)

=



0 if i = 0 or j = 0,

L(i− 1, j − 1,v) + 1

if i, j > 0, xi = yj = sp, and sp ̸∈ S>Cocc
(Case (1)),

L(i− 1, j − 1,v|p=vp−1) + 1

if i, j > 0, xi = yj = sp, sp ∈ S>Cocc
, and vp > 0 (Case (2)),

L(i− 1, j − 1,v)

if i, j > 0, xi = yj = sp, sp ∈ S>Cocc
, and vp = 0 (Case (3)),

max {L(i− 1, j,v), L(i, j − 1,v)}

otherwise (Case (4)).

Here is an outline of our algorithm DP, which computes each value of L(i, j,v)

and stores it into a three-dimensional table L of size (n + 1) × (m + 1) ×∏ℓ
i=1(Cocc(si) + 1): Initially, we set L(i, j,v) = 0 and pre(i, j,v) = null

for every i, j, and v. Then, the algorithm DP fills entries from L(1, 1,0)320

to L(1, 1,Cocc), then from L(1, 2,0) to L(1, 2,Cocc), next from L(1, 3,0) to

L(1, 3,Cocc), etc. After filling all the entries in the first “two-dimensional plane”

L(1, j,v), the algorithm fills all the entries in the second two-dimensional plane

16

L(2, j,v), and so on. Finally, DP fills all the entries in the nth plane. The algo-

rithm DP also maintains a three dimensional table pre of size (n+1)× (m+1)×325 ∏ℓ
i=1(Cocc(si) + 1) to help us construct an optimal repetition-bounded longest

subsequence. The entry pre(i, j,v) points to the table entry corresponding to

the optimal subproblem solution chosen when computing L(i, j,v).

Algorithm DP:

Input: Two sequences X = ⟨x1, x2, · · · , xn⟩ and Y = ⟨y1, y2, · · · , ym⟩, and an330

occurrence constraint Cocc.

Output: Repetition-bounded longest common subsequence Z of X and Y .

Initialization: Find S>Cocc
= {s1, s2, · · · , sk} and then set L(i, j,v) = 0 and

pre(i, j,v) = null for each i, j, and v.

1. for i = 1 to n335

2. for j = 1 to m

3. for v = 0 to Cocc

4. /* Case (1) */

5. if xi == yj == sp and sp ̸∈ S>Cocc

6. L(i, j,v) = L(i− 1, j − 1,v) + 1340

7. pre(i, j,v) = “(i− 1, j − 1,v)”

8. /* Case (2) */

9. elseif xi == yj == sp, sp ∈ S>Cocc , and vp > 0

10. L(i, j,v) = L(i− 1, j − 1,v|p=vp−1) + 1

11. pre(i, j,v) = “(i− 1, j − 1,v|p=vp−1)”345

12. /* Case (3) */

13. elseif xi == yj == sp, sp ∈ S>Cocc
and vp = 0

14. L(i, j,v) = L(i− 1, j − 1,v)

15. pre(i, j,v) = “(i− 1, j − 1,v)”

16. /* Case (4)(a) */350

17. elseif L(i− 1, j,v) ≥ L(i, j − 1,v)

17

18. L(i, j,v) = L(i− 1, j,v)

19. pre(i, j,v) = “(i− 1, j,v)”

20. /* Case (4)(b) */

21. else L(i, j,v) = L(i, j − 1,v)355

22. pre(i, j,v) = “(i, j − 1,v)”

Termination: Construct a repetition-bounded longest common subsequence Z

based on two tables L and pre, and then output Z.

We bound the running time of DP:

Theorem 5. The running time of DP is O(
∏ℓ

i=1(Cocc(si)+1) ·n ·m) for RBLCS360

on two sequences X and Y where |X| = n, |Y | = m, and |X| ≤ |Y |.

Proof. The algorithm DP for RBLCS computes each value of L(i, j,v) and stores

it into the three-dimensional table L of size (n+1)×(m+1)×
∏ℓ

i=1(Cocc(si)+1).

Clearly, each table entry takes O(1) time to compute. As a result, the running

time of DP is O(
∏ℓ

i=1(Cocc(si) + 1) · n ·m).365

By showing that
∏ℓ

i=1(Cocc(si) + 1) ≤
(
31/3

)n
is satisfied, we obtain the

following corollary:

Corollary 2. The running time of DP is O(1.44225n) for RBLCS on two se-

quences X and Y where |X| = n, |Y | = m, and |X| ≤ |Y |.

Proof. Let |S>Cocc
| = ℓ again. Recall that for every si ∈ S>Cocc

, occ(X, si) >

Cocc(si). That is, occ(X, si) ≥ Cocc(si) + 1 since both occ(X, si) and Cocc(si)

are integers. Therefore, the following is satisfied:

ℓ∑
i=1

(Cocc(si) + 1) ≤
ℓ∑

i=1

occ(X, si) ≤ n. (6)

Let Cmax = maxsi∈S>Cocc
{Cocc(si)} be the maximum of the occurrence con-

straint. Also, let ui = |{sj | occ(X, sj) = i}| be the number of symbols

18

which appear exactly i times in X for 1 ≤ i ≤ Cmax. One sees that the

term
∏ℓ

i=1(Cocc(si) + 1) in the running time of DP can be rewritten as follows:

ℓ∏
i=1

(Cocc(si) + 1) =

Cmax+1∏
i=2

((i− 1) + 1)ui−1 =

Cmax+1∏
i=2

iui−1 =

Cmax+1∏
i=2

i
Vi
i , (7)

where the rightmost equality holds by setting Vi
def
= i × ui−1. Then, we can

show the following upper bound of the summation from V2 to VCmax+1 from the

above inequality (6):

Cmax+1∑
i=2

Vi =

ℓ∑
i=1

(Cocc(si) + 1) ≤ n. (8)

By combining the (in)equalities (5), (7), and (8), we can obtain the following

upper bound on
∏ℓ

i=1(Cocc(si) + 1):

ℓ∏
i=1

(Cocc(si) + 1) ≤
Cmax+1∏

i=2

3
Vi
3 =

(
31/3

)∑Cmax+1
i=2 Vi

≤
(
31/3

)n
.

Therefore, the running time of DP is O(1.44225n) for RBLCS.370

The algorithm DP works a little bit faster for RFLCS:

Corollary 3. The running time of DP is O(1.41422n) for RFLCS on two se-

quences X and Y where |X| = n, |Y | = m, and |X| ≤ |Y |.

Proof. It is enough to prepare the three-dimensional table L of size (n + 1) ×

(m+ 1)× 2ℓ for RFLCS. Clearly, each table entry takes O(1) time to compute.375

As a result, the running time of DP is O(2ℓ · n · m). Recall that the number

|S>Cocc | of symbols which appear at least twice in X is defined to be ℓ. This

implies that ℓ ≤ n
2 . Therefore, 2ℓ ≤ 2n/2 < 1.414214n is satisfied; the running

time is O(1.41422n) for RFLCS.

The running time for r-RBLCS is as follows:380

Corollary 4. The running time of DP is O((r + 1)n/(r+1) · n ·m) for r-RBLCS

on two sequences X and Y where |X| = n, |Y | = m, and |X| ≤ |Y |.

19

Proof. We prepare a three-dimensional table L of size (n+1)×(m+1)×(r+1)ℓ

and each table entry takes O(1) time to compute. Clearly ℓ ≤ n
r+1 , i.e., (r+1)ℓ ≤

(r + 1)n/(r+1) holds.385

Table 3 shows the running time T of DP for r-RBLCS, r = 2, 3, · · · , 8:

Table 3: Running time T of DP for r-RBLCS

r 2 3 4 5 6 7 8

T 1.44225n 1.41422n 1.37973n 1.34801n 1.32047n 1.29684n 1.27652n

5. Hardness of RBLCS

The NP-hardness (or the APX-hardness) of RFLCS implies that RBLCS on

general instances is also NP-hard. In this section, we investigate the computa-

tional complexity of RBLCS on restricted instances. First, we consider r-RBLCS390

where the instance is a pair of sequences X and Y such that each symbol ap-

pears exactly r or r+ 1 times for any integer r ≥ 2. We can show the following

hardness result:

Theorem 6. For any integer r ≥ 2, r-RBLCS is NP-hard even if occ(X, si) ∈

{r, r + 1} and occ(Y, si) ∈ {r, r + 1} hold for every symbol si ∈ S.395

Proof. We prove that the NP-hardness of r-RBLCS by providing the polynomial-

time reduction from RFLCS to r-RBLCS. Suppose that a pair of sequences X =

⟨x1, x2, · · · , xn⟩ and Y = ⟨y1, y2, · · · , ym⟩ is an instance of RFLCS such that

every symbol appears at most twice in each of two sequences. Recall that RFLCS

is NP-hard even if each symbol appears at most twice in each of the given two

sequences [1]. Let S = {s1, s2, · · · , sk}. Then, we construct the following pair

of sequences Xr and Y r as an instance of r-RBLCS:

Xr = ⟨x1, x2, · · · , xn,

r−1︷ ︸︸ ︷
s1, · · · , s1,

r−1︷ ︸︸ ︷
s2, · · · , s2, · · · ,

r−1︷ ︸︸ ︷
sk, · · · , sk⟩

Y r = ⟨y1, y2, · · · , ym,

r−1︷ ︸︸ ︷
s1, · · · , s1,

r−1︷ ︸︸ ︷
s2, · · · , s2, · · · ,

r−1︷ ︸︸ ︷
sl, · · · , sk⟩

20

That is, the nth prefix of Xr
1..n (mth prefix of Y r

1..m, resp.) is X (Y , resp.),

the next r−1 symbols of Xr (Y r, resp.) are r−1 duplicates of s1, the next r−1

symbols of Xr (Y r, resp.) are r − 1 duplicates of s2, etc. This completes the

reduction, which can be clearly done in polynomial time. One sees that every

symbol appears exactly r or r + 1 times in each of the two sequences Xr and400

Y r.

In the following, we show that there is a repetition-free common subsequence

Z of X and Y of length at least c if and only if there is a common subsequence

Zr of Xr and Y r such that the length |Zr| is at least c + k(r − 1) under the

constraint occ(Zr, si) ≤ r for every symbol si ∈ S.405

(Only-if part) Suppose that Z = ⟨z1, z2, · · · , zc⟩ is an optimal solution for

RFLCS when its instance is the pair of sequences X and Y . Clearly,

Zr = ⟨z1, z2, · · · , zc,
r−1︷ ︸︸ ︷

s1, · · · , s1,
r−1︷ ︸︸ ︷

s2, · · · , s2, · · · ,
r−1︷ ︸︸ ︷

sk, · · · , sk⟩

is a common subsequence of Xr and Y r such that occ(Zr, si) ≤ r since the cth

prefix of Zr is repetition-free. The length of Zr is (at least) c+ k(r − 1).

(If part) Suppose that Z∗ is a repetition-bounded longest common subse-

quence such that occ(Z∗, si) ≤ r for every symbol si ∈ S and the length of Z∗ is

at least c+k(r−1). If the number of symbols whose r occurrences are included

in Z∗ is at most c − 1, then the length of Z∗ must be less than c + k(r − 1)

by the following calculation (since the remaining (k − c+ 1) symbols appear at

most r − 1 times):

r(c− 1) + (r − 1)(k − c+ 1) = c+ k(r − 1)− 1 < c+ k(r − 1).

That is, there are at least c symbols whose r occurrences are included in Z∗.

Suppose that s∗1 through s∗c appear r times in Z∗. Observe that each of the

(n + 1)st suffix Xr
n+1..n+k(r−1) of Xr and the (m + 1)st suffix Y r

m+1..m+k(r−1)

has exactly r − 1 occurrences of every symbol si ∈ S. This implies that the

nth prefix Xr
1..n of Xr and the mth prefix Y r

1..m of Y r has one or two s∗i ’s for

i = 1, 2, · · · , c. Suppose, for example, that c = 5, and Xr
1..n and Y r

1..m have the

21

following structure:

Xr
1..n = ⟨· · · , s∗1, · · · · · · , s∗2, · · · , s∗1, · · · , s∗3, s∗4, · · · , s∗2, · · · , s∗5⟩

Y r
1..m = ⟨· · · , s∗1, · · · , s∗2, s∗1, · · · · · · , s∗3, · · · · · · , s∗4, · · · · · · , s∗2, s∗5, · · · · · · ⟩

Then, the seventh prefix of Z∗ must be Z∗
1..7 = ⟨s∗1, s∗2, s∗1, s∗3, s∗4, s∗2, s∗5⟩. Here,

one sees that (at least) the leftmost occurrence of every s∗i for i = 1, 2, · · · , c

must be included in both the nth prefix Xr
1..n of Xr and the mth prefix Y r

1..m410

of Y r. As a result, we can obtain a repetition-free common subsequence of

Xr
1..n = X and Y r

1..m = Y of length at least c. For the above example, a

repetition-free subsequence ⟨s∗1, s∗2, s∗3, s∗4, s∗5⟩ of length c = 5 can be obtained

from X and Y by removing the second s∗1 and the second s∗2 from Z∗
1..7. This

completes the proof.415

If every symbol appears more times, then we can prove the APX-hardness

of r-RBLCS by providing a gap-preserving reduction from RFLCS to r-RBLCS:

Theorem 7. For a pair of sequences X and Y and any integer r ≥ 2, r-RBLCS

is APX-hard even if occ(X, si) ∈ {r, 2r} and occ(Y, si) ∈ {r, 2r} hold for every

symbol si ∈ S.420

Proof. Again, suppose that a pair of sequences X = ⟨x1, x2, · · · , xn⟩ and Y =

⟨y1, y2, · · · , ym⟩ is an instance of RFLCS such that every symbol appears either

once or twice in each of the two sequences. Then, we construct the following

pair of sequences Xr and Y r as an instance of r-RBLCS, which are different

from the previous Xr and Y r in the proof of Theorem 6:

Xr = ⟨
r︷ ︸︸ ︷

x1, x1, · · · , x1,

r︷ ︸︸ ︷
x2, x2, · · · , x2, · · · ,

r︷ ︸︸ ︷
xn, xn, · · · , xn⟩

Y r = ⟨
r︷ ︸︸ ︷

y1, y1, · · · , y1,
r︷ ︸︸ ︷

y2, y2, · · · , y2, · · · ,
r︷ ︸︸ ︷

yn, yn, · · · , ym⟩

That is, the first r symbols in Xr (Y r, resp.) are r duplicates of x1 (y1, resp.),

the next r symbols in Xr (Y r, resp.) are r duplicates of x2 (y2, resp.), etc.

This completes the reduction, which can be clearly done in polynomial time.

22

One sees that every symbol appears exactly r or 2r times in each of the two

sequences Xr and Y r.425

Let Z and Zr be optimal solutions of RFLCS and r-RBLCS for the pairs

(X,Y) and (Xr, Y r), respectively. Also, let Γ(n,m) be a parameter function

of the instance pair (X,Y) such that Γ : N × N → N. Next, we show that the

above reduction satisfies the two conditions of gap-preserving reductions: (i) If

|Z| ≥ Γ(n,m), then |Zr| ≥ r × Γ(n,m), and (ii) if |Z| < (1 − ε)Γ(n,m) for430

a fixed small positive constant ε > 0, then |Zr| < r × (1 − ε)Γ(n,m). In the

following let Z = ⟨z∗1 , z∗2 , · · · , z∗c ⟩ be an optimal solution for RFLCS when its

instance is the pair of sequences X and Y .

(i) Suppose that |Z| = c, i.e., c ≥ Γ(n,m) holds. Then, we consider the

following sequence Z ′ when its instance is the pair of sequences Xr and Y r:

Z ′ = ⟨
r︷ ︸︸ ︷

z∗1 , z
∗
1 , · · · , z∗1 ,

r︷ ︸︸ ︷
z∗2 , z

∗
2 , · · · , z∗2 , · · · ,

r︷ ︸︸ ︷
z∗c , z

∗
c , · · · , z∗c ⟩

From the above reduction, it is clear that Z ′ is a common subsequence of Xr

and Y r such that each symbol z∗i appears at most r times and thus the length435

of Z ′ is r × c. Hence, |Zr| ≥ r × c = r × Γ(n,m) holds.

(ii) Suppose that the length |Z| = c of the optimal solution Z of RFLCS is less

than (1− ε)Γ(n,m). Also, suppose for the purpose of obtaining a contradiction

that Zr consists of at least c + 1 different symbols, say, z∗1 through z∗c+1. For

example, suppose that c = 8 and Zr consists of nine symbols z∗1 through z∗9 as

follows:

Zr = ⟨z∗1 , z∗2 , z∗3 , z∗1 , z∗4 , z∗2 , z∗5 , z∗4 , z∗6 , z∗7 , z∗8 , z∗7 , z∗9⟩

We can assume that the leftmost occurrence of each z∗i appears in the sub-

script order in Zr, i.e., the first symbol is z∗1 , the second symbol is z∗2 , etc,

as shown above. Then, one can verify that the above sequence Zr includes

⟨z∗1 , z∗2 , z∗3 , z∗4 , z∗5 , z∗6 , z∗7 , z∗8 , z∗9⟩ as a repetition-free subsequence. More generally,440

the sequence Z ′′ = ⟨z∗1 , z∗2 , · · · , z∗c+1⟩ of length c + 1 must be a repetition-free

common subsequence of X and Y , which is a contradiction.

23

If the optimal solution Zr of r-RBLCS has at most c different symbols, then

the length of Zr is at most r × c, which is less than r × (1 − ε)Γ(n,m). This

completes the proof.445

6. Conclusion

We have studied a new variant of the Longest Common Subsequence

problem, called the Repetition-Bounded Longest Common Subsequence

problem (RBLCS), and its special problem, called the r-Repetition-Bounded

Longest Common Subsequence problem (r-RBLCS). For r = 1, 1-RBLCS450

is known as the Repetition-Free Longest Common Subsequence prob-

lem. We first showed that for 1-RBLCS there is a simple exact algorithm whose

running time is O(1.44225n). Then, for RBLCS, we designed a DP-based ex-

act algorithm whose running time is O(1.44225n). In particular, the DP-based

algorithm can solve 1-RBLCS in O(1.41422n) time. To see that reducing the455

time complexity from O(1.44225n) to O(1.41422n) can be of practical impor-

tance, consider for example the case of n = 100 and observe that 1.41422100 is

seven times smaller than 1.44225100. Hence, a promising direction for future re-

search is to design faster exact exponential-time algorithms for RBLCS. Another

challenge is to develop efficient approximation algorithms for RBLCS.460

Acknowledgments. This work was partially supported by PolyU Fund 1-

ZE8L, the Natural Sciences and Engineering Research Council of Canada, JST

CREST JPMJR1402, and Grants-in-Aid for Scientific Research of Japan (KAK-

ENHI) Grant Numbers JP17K00016, JP17K00024, JP17K19960 and JP17H01698.

References465

[1] Adi, S.S., Braga, M.D.V., Fernandes, C.G., Ferreira, C.E., Martinez,

F.V., Sagot, M.-F., Stefanes, M.A., Tjandraatmadja, C., Wakabayashi, Y.:

Repetition-free longest common subsequence. Disc. Appl. Math., 158, pp.

1315–1324 (2010)

24

[2] Aho, A., Hopcroft, J., Ullman, J.: Data Structures and Algorithms.470

Addison-Wesley (1983)

[3] Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic lo-

cal alignment search tool. J. Molecular Biology, 215(3), pp. 403–410 (1990)

[4] Beal, R., Afrin, T., Farheen, A., Adjeroh, D.: A new algorithm for “the

LCS problem” with application in compressing genome resequencing data.475

Proc. BIBM, pp. 69–74 (2015)

[5] Bergroth, L., Hakonen, H., Raita, T.: A survey of longest common subse-

quence algorithms. Proc. SPIRE, pp. 39–48 (2000)

[6] Blin, G., Bonizzoni, P., Dondi, R., Sikora, F.: On the parameterized com-

plexity of the repetition free longest common subsequence problem. Info.480

Proc. Lett., 112(7), pp. 272–276 (2012)

[7] Blum, C., Blesa, M.J., Calvo, B.: Beam-ACO for the repetition-free longest

common subsequence problem. Proc. EA 2013, pp. 79–90 (2014)

[8] Blum, C., Blesa, M.J.: Construct, merge, solve and adapt: application

to the repetition-free longest common subsequence problem. Proc. Evo-485

COP2016, pp. 46–57 (2016)

[9] Blum, C., Blesa, M.J.: A comprehensive comparison of metaheuristics for

the repetition-free longest common subsequence problem. J. Heuristics,

24(3), pp. 551–579 (2018)

[10] Bonizzoni, P., Della Vedova, G., Dondi, R., Fertin, G., Rizzi, R., Vialette,490

S.: Exemplar longest common subsequence. IEEE/ACM Trans. on Com-

putational Biology and Bioinformatics, 4(4), pp. 535–543 (2007)

[11] Bonizzoni, P., Della Vedova, G., Dondi, R., Pirola, Y.: Variants of con-

strained longest common subsequence. Info. Proc. Lett., 110(20), pp. 877–

881 (2010)495

25

[12] Bulteau, L., Hüffner, F., Komusiewicz, C., Niedermeier, R.: Multivariate

Algorithmics for NP-Hard String Problems: The Algorithmics Column by

Gerhard J Woeginger. Bulletin of EATCS, No.114 (2014)

[13] Castelli, M., Beretta, S., Vanneschi, L.: A hybrid genetic algorithm for

the repetition free longest common subsequence problem. Oper. Res. Lett.,500

41(6), pp. 644–649 (2013)

[14] Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to

Algorithms. 3rd Ed. The MIT Press (2009)

[15] Fernandes, C.G., Kiwi, M.: Repetition-free longest common subsequence

of random sequences. Disc. Appl. Math., 210, pp. 75–87 (2016)505

[16] Hirschberg, D.S.: Algorithms for the longest common subsequence problem,

J. ACM, 24(4), pp. 664–675 (1977)

[17] Hirschberg, D.S.: A linear space algorithm for computing maximal common

subsequences. Comm. ACM, 18(6), pp. 341–343 (1975)

[18] Itoga, S.Y.: The string merging problem. BIT, 21(1), pp. 20–30 (1981)510

[19] Maier, D.: The complexity of some problems on subsequences and super-

sequences. J. ACM, 25(2), pp. 322–336 (1978)

[20] Jiang, T., Li, M.: On the approximation of shortest common superse-

quences and longest common subsequences. SIAM J. Comput., 24(5), pp.

1122–1139 (1995)515

[21] Morgan, H.L.: Spelling correction in systems programs. Comm. ACM,

13(2), pp. 90–94 (1970)

[22] Needleman, S.B., Wunsch, C.D.: A general method applicable to the search

for similarities in the amino acid sequence of two proteins. J. Molecular

Biology, 48(3), pp. 443–453 (1970)520

26

[23] Sankoff, D.: Matching sequences under deletion/insertion constraints. Proc.

National Academy of Science USA, 69(1), pp. 4–6 (1972)

[24] Sankoff, D.: Genome rearrangement with gene families. Bioinformatics,

15(11), pp. 909–917 (1999)

[25] Mincu, R.S., Popa, A.: Better heuristic algorithms for the repetition free525

LCS and other variants. Proc. SPIRE, pp. 297–310 (2018)

[26] Storer, J.A.: Data compression: methods and theory. Computer Science

Press (1988)

[27] Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. J.

ACM, 21(1), pp. 168–173 (1974)530

27

Appendix: Summary of notation

Note: Some symbols that appear only in a restricted context are not listed.

S an alphabet, i.e., a finite set of symbols

X,Y two input sequences of symbols

Z a common subsequence of the given two sequences

n the length |X| of X

m the length |Y | of Y

X1..i the ith prefix of a sequence X

Xj..n the jth suffix of a sequence X

C a sequence constraint, i.e., a set of sequences over an

alphabet S

Cocc(s) an occurrence constraint, i.e., a function assigning an upper

bound on the number of occurrences of each symbol s ∈ S

occ(X, s) the number of occurrences of symbol s ∈ S in X

occmax the maximum number of occurrences of all the symbols

s ∈ S in X, i.e., occmax = maxs∈S {occ(X, s)}

Si a set of every symbol s which appears exactly i times in X,

i.e., Si = {s | occ(X, s) = i}

S>Cocc
a set of every symbol s which appears more than Cocc(s)

times in X, i.e., S>Cocc = {s | occ(X, s) > Cocc(s)}

e Euler’s number

R+ a set of positive reals

N a set of positive integers

28

	Introduction
	Longest Common Subsequence problems
	Our new results
	Related work
	Organization

	Preliminaries
	Warm-up Algorithms
	Repetition-Free LCS
	r-Repetition-Bounded LCS, r2

	Dynamic Programming Algorithms for RBLCS
	Original LCS
	Repetition-Bounded LCS

	Hardness of RBLCS
	Conclusion

