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ABSTRACT

The new challenging demands of the current market including space should
be satisfied by designing modern material flow systems, with higher levels of
flexibility and reliability. Designing warehouses using effective material
handling equipment such as multi-directional conveyors significantly reduces
the cost towards efficient space utilization and time-saving. Several storage
strategies can be applied depending on service concerns and products storage
conditions, for instance, for storing frozen items that need specific temperature
conditions, the zoning strategy is applied. On the other hand, different order
picking policies might be used such as Batch picking where the orders would
be batched together and the picking process carried out for whole required
orders in a single picking round. Under batch and/or zoning picking policy,
which is applied in most online retailers” warehouses, products necessitate
further processes such as consolidation, sorting, and sequencing. Sequencing
of items is one of the important processes that lead to enhancing logistic
operations. However, current approaches are not capable of fully fulfilling the
dynamic changes, and therefore puzzle-based sequencing system with very
high density and highly efficient floor space utilization has been successfully

developed.

Accordingly, two puzzle-solving methods are investigated; the game tree and
the pathfinding algorithms. A-star is chosen based on pathfinding algorithms
in order to find the shortest solution of the puzzle in which the sequencing
time is decreased. Furthermore, the pre-sorting process is proposed to
overcome the unsolvable configuration issue. The shape of the puzzle is
discussed with several factors that affect the sorting steps, and numerically we

found that the square shape is better than the rectangular one in terms of

\Y%



solution steps. Three introduced technical solutions strategies are proposed to
increase the limitation of the puzzle; increasing the puzzle size, using multi-
boards with the same puzzle boards sizes, and adding buffer conveyor. These
strategies are explained and discussed in terms of the area used by the system
and the total solution steps. Using multi-boards with the 8-puzzle board size
was superior to other strategies. An arbitrary number of blanks in the puzzle
was discussed with their effect on the puzzle capacity and maximum solution
steps. Moreover, by carrying out double switching in one step with applying
the block movement concept, the solution steps are minimized by a minimum
of 1 step, an average of 4 steps, and a maximum of 10 steps in an 8-puzzle with
2 blanks placed in the corner of the puzzle, and the average reduction
percentage of solution steps was 25%. The best strategy to sequence more than
8 boxes in one sequencing time is using multi-boards along with the main

feeding conveyor with the shape and size of 8-puzzle with 2 blanks.

The findings suggest that a puzzle-based sequencing system would be
preferred for highly efficient floor space utilization as well as lower

sequencing time compared to other systems.

Keywords: Warehouse; Sequencing; 8-puzzle; A-star algorithm.
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CHAPTER 1

INTRODUCTION

1.1 Background

Logistics operations can be elucidated by several fixed assets: warehouses,
depots, transport, and material handling. The number and size of these assets
are important factors in effective logistics planning [1].

The warehouses take second place in the logistics functions after transport,
and its capital and operating cost embody 23% of logistics costs in the US, and
39% in Europe [2].

60

“:’ Warehouse cost

Ln
=

[V]

P

39%

J
=

20 23%

Total logistic cost

10

USA Europe

Figure 1.1. The capital and operating cost of warehouses.

Warehouses are often one of the most costly elements of the supply chain [1].
Two types of warehouses can be categorized; distribution warehouses, where
the products are collected from the point of origin for delivery to consumers,

and production warehouses, where the raw materials and semi-finished
1



products of production facilities are stored [3]. The proper design of

warehouses is one of the most important factors affecting space utilization,

efficiency, and cost [4][5]. Figure 1.2 illustrates the common activities of

warehouses, which can be summarized in four main parts: receiving, storage,

order picking, and dispatching.

A

a
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Figure 1.2. The common warehouses’ activities.
Receiving: This typically includes the physical unloading of incoming
transport, and recording the incoming goods into the computer system.
As well as the quality control checks which may be undertaken as part
of this activity.
Storage: Goods are normally taken to the reserve storage area, which is
the largest space user in many warehouses. Different storage strategies
can be applied depending on service concerns, and goods storage
conditions, for instance, for storing some foods and frozen materials
which need specific temperature conditions, the zoning strategy is
applied. Another strategy might concern customer service, in such a
strategy the main concern is to fulfill the delivery time. To do so, the
items which are usually ordered by the same customer are stored in the
same area in the storage, or store the items that have a higher ordering
ranking are stored in the nearest part to the storage output.
Order picking: when an order is received from a customer, goods

need to be retrieved from the storage area in the correct quantity and
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in time to meet the required service level. Depending on the order
lists, an order can be retrieved as a full pallet or a sequence of
individual items. The warehouse management system gives the order
list as well as the location of the items to the picker. Several picking
concepts can be applied in the warehouses, for example:

e Pick-to-order: basically, when the picker takes one order and travels
through the warehouse until picking all order items. The main
disadvantage of a pick-to-order policy is that pickers have to travel for
every single order, this policy would be very inefficient, especially in
situations where the range of the products is very large.

e Batch picking: in this regime, the orders would be batched together
and the picking would be conducted for whole required orders in a
single picking round. This is very common, particularly for small
orders.

4. Dispatch: Goods that accumulated together are loaded onto outbound
vehicles for onward dispatch to the next ‘node” in the supply chain,
for example to another distribution center or customer delivery

vehicles.

The effective use of space is a goal for almost every company located near
population centers, where high space charges and limited availability of real
estate are the main concern [6]. Smaller warehouse systems decrease the
overall costs since they are less expensive to build [7].

Material handling is the movement of raw materials and semi-finished and
tinished products to and from productive processes, in warehouses and
receiving and dispatching zones [3], and its activities consume 20% to 50% of
the total operating costs. Effective material transport equipment, such as
rollers, wheels, and sorting conveyors, lead to significant cost reductions and

efficient space utilization [8, 9].



For efficient warehousing (i.e. put-away, storage, and order picking), an
Automatic Store and Retrieval System (ASRS) is typically used [10].

AS/RS is operated by computer control, the controlled cranes run up and down
to put away and extract pallets which are in face occupy about half of the
stored goods [1]. These cranes are electrically powered and run on rails,
positioned on the floor, and are guided by a further rail above the top rack.
In an ASRS, cranes operate in parallel and feed the pallet building workstation;
therefore, the robotic palletizer receives a random sequence of items that
should be re-sequenced [11].

In the warehouses where zoning strategy is applied, the orders are picked in
different zones at the same time, therefore, the outcoming items may need to
be consolidated. In addition, applying the batch picking policy leads to the
necessity of unpacking, sorting, and resequencing the items of each batch.
Referring to the systems that are applied in real-world warehouses, the items
are mostly released from ASRS in random sequence [12, 13]. Thus they need
either optimized release (which is still under research and development [13])
or items re-sequencing after retrieval for better performance. Especially during
peak hours, where a lack of workforce and other new technologies are highly
required at the packing stations to timely release the lanes.

Furthermore, mixed-model assembly lines (figure 1.3) have become common
in the automotive industry, and the efficiency of the final assembly depends

on the sequence of vehicles being built [10].

Body Post-Paint
Sequence | Body Paint | Sequence / Mix Bank Final
Shop Shop and/or Assembly

ASRS

Figure 1.3. Mixed model assembly line.
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1.2 Problem Statement

Several systems are used to re-sequence the outcoming random items, for

instance:

a) A temporary storage system that uses parallel lanes called mix bank
[10]. Here, items inter the system in random sequence, and they are
sorted in different lanes to be retrieved in the desired sequence as figure

1.4 illustrates.

Random sequence of items

T
—
—
L

)

N L N §

v

The desired sequence of items

Figure 1.4. 5 lanes mixed bank.

b) A sortation conveyor, where the items keep looping until they are in the
desired sequence [14]. Usually, this system is used for sorting items into
different gateways for different output destinations, however, this
system is also sued for re-sequence random items. Figure 1.5 shows the

sortation conveyor system.
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Since such systems need a large area, the poor floor space utilization is one of
the disadvantages of these systems [11]; therefore, a material handling device
with a high-density system is required as well as the sequencing time should
be minimized to provide higher throughput, these two main points are

important concerns for designing the warehouses.

Generally, the term density in logistics is used for storage density which is the
ratio of storage area to the total warehouse space[15]. However, in this study,
the density is defined as the areal density which is the ratio of items to the total

material handling device space.

1.3 Literature Review

In this section, we will investigate the literature from two different points of
view: considering the material handling technologies that are applied in the
warehouse which could carry out the sequencing process. And the high-

density systems in warehouses which can provide a high space utilization.



1.3.1 Material Handling Technologies

The material handling activities consume 20% to 50% of the total operating

costs as mentioned in Chapter 1. Effective material handling equipment plays

a key issue in enhancing the warehousing activities. In the warehouses, there

are two main material handling technologies that can carry out the sequencing

process: conveyors and small-scaled multi-directional conveyor systems.

Conveyors

the conveyor system considers as the most common material handling
equipment in the warehouses. Both gravity and powered conveyors can
be used for moving the goods between two fixed points. Typically, the
gravity conveyor systems include chutes, skate-wheel conveyors used
to move the goods for short distances, and the powered conveyor
systems include Roller and belt conveyors used for long distances.

In principle, the conveyor system is characterized in a way to fulfill
simple intralogistics tasks, for instance, moving the goods on a straight
line. However, for more complex tasks such as rotation and sorting, the
conveyor system must be extended with additional mechanical
components or modules [16]. This makes the conveyor technology
rigid, less maintenance-friendly, and cost-intensive. For these reasons,
we sought the possibility of redesigning the conveyor system.
Small-Scaled Multi-directional Conveyor Systems

To fulfill the demands of intralogistics in terms of material flow, small-
scale modules might be applied where the conveyed products are
bigger than one module in the system.

Figure 1.6 illustrates CogniLog, Flexconveyor, and Celluveyor modules

which are some small-scale systems.



(c) Flexconveyor

Figure 1.6. (a) CogniLog system [17], (b) Celluveyor modules [18], (c) Flexconveyor
System [19] .

As shown in the figure, Celluveyor is a unique modular made of several small

hexagonal modules, each consisting of three omnidirectional wheels

independently driven. Multi-Functionalities can be controlled only via

software without the need for mechanical modifications.

Based on such high flexible technologies, many systems have been

developed for high density and space utilization.
1.3.2 High-density Systems

Many studies have considered high-density systems in order to enhance the
efficiency of logistics processes. The sliding puzzle was invented by Sam Loyd
in the 1870s [7], and is also known as the 15-puzzle, and later, the general
version (n?® - 1) became a popular and interesting subject for logistics
researchers, especially in developing storage systems.

In fact, the puzzle concept was the inspirit of many researchers to invent and

develop systems with high-density to enhance the warehousing functions.



Gue [6] developed a new concept based on a puzzle game: a very high-density
storage system (HDSS) for physical goods with an efficient algorithm for
tilling densely rectangular storage areas. Later, Gue and Kim [7] developed an
algorithm for the retrieval of items in a puzzle-based storage system (PPBSS).
They experimentally compared puzzle-based with traditional aisle-based
storage. The results showed that the puzzle-based system was superior, with
multiple escorts regarding the retrieval time, if the storage density was less
than 90%. In [20], Kota et al. extended the analytical results of retrieval time in
PBSS to determine the retrieval time performance when multiple escorts are
randomly located within the system. The GridStore system was developed by
Gue et al. [21] to overcome the inflexibility of automated material handling
systems for HDSS by implementing decentralized control. In GridStore, an
arbitrary number of requests could be retrieved by allowing simultaneous
item moving. The major drawback of this system is the capability of delivering
items to only a single side. However, Uludag [22] solved this limitation by
developing a puzzle-based order picking system called GridPick. In the
GridPick system, the orders can be picked from two sides of the grid, allowing
for higher throughput and efficient use of space compared to single-sided

systems. Figure 1.7 shows GridStore and GridPick systems.



Figure 1.7. a) GridStore system, b) GridPick system [23].

A further improvement was achieved by Gue and Hao [24]. They developed a
new system called GridHub, which was able to transfer orders in four
directions simultaneously within the grid. Subsequently, Hao [23] developed
the NU GridHub system to handle bigger boxes in which one box can occupy
more than one conveyor module. Further modification of GridHub was
conducted by Ashgzari and Gue [25]. Figure 1.8 shows the GridHub and NU

GridHub systems.

Figure 1.8. GridHub system, b) NU GridHub system [23]

In the new method, GridPick+, several limitations of GridPik were addressed.

For instance, GridPick+ allowed the requested items to be delivered into

10



specific picking positions on the edge of the grid. Moreover, the use of the
sequencing function allowed multiple orders to be processed simultaneously.
An algorithm for moving several items at the same time in grid-based storage
was designed by Yalcin et al. [15] by avoiding the items’ conflict. Their
experimental results demonstrated that for storage, the pushback strategy
achieved the shortest time and distance, and the puzzle-based retrieval
strategy was most efficient. Yalcin et al. [26] also addressed the problem of
item retrieval from puzzle-based storage with a minimum number of item
moves. In this work, they proposed an exact search algorithm with several
search-guiding estimate functions. Additionally, they discussed the
configurations with multiple empty cells located in the grid with different grid

sizes.

In recent research, Shirazi and Zolghadr [27] developed an algorithm for item
retrieval for HDSS. This method guaranteed the deadlock freeness in the
algorithm and discussed different puzzle sizes with a dissimilar number of
empty cells. It was observed that increasing empty cells up to three cells will
increase the average retrieval movement, while increasing the empty cells
above three will decrease the average retrieval movement sharply. Further
research was carried out to formalize arranging smart boxes into an
autonomous delivery vehicle [28]. The authors proposed the snake-line
concept utilizing the puzzle arrangement to find the tradeoff between space
and access rapidity and were able to guarantee the boxes moving continuously
with minimum movement.

The system we proposed in this paper was compared with the high-density
systems described in the literature, as illustrated in Table 1.1. The used system,
function, contribution, and system areal-density are listed in the table to

distinguish these works.
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Table 1.1. Comparison among the proposed system and other high-density systems

from the literature.

System Areal-
System System Function Contribution Density for 35
Boxes
Describe the relationship
Gueand  NAVSTORS between storage density 94.4% with
Storing, retrieval
Kim [7] system and expected retrieval two escort
time
High density, a
Gue et al. 8 Y
(1] GridSequence Sequencing decentralized control 72.9%
algorithm
Determine the retrieval
Kotaetal. DPuzzle-Based time performance for 94.4% with
Storing, retrieval
[20] system multi-escorts randomly two escorts !
located in the grid.
Retrieve several items by
Gueetal.  GridStore
Storing, retrieval allowing simultaneous <94.4%!
[21] system )
moving
Higher throughput,
Uludag [22] GridPick Storing, retrieval retrieve items to two <94.4% 1
sides of the grid
Transfer orders in four <95.459% 2
Gue and directions
GridHub Storing, retrieval =94.44 for 36
Hao [24] simultaneously within a boxes
grid
Delivers requested items
Sorting, 56.25% for 36
Hao [23]  NU GridHub ] in the desired sequence
sequencing ) boxes
to any location
Ashgzari et Increasing in throughput
GridPick+ Storing, retrieval -
al. [25] by 77%
Framework for the
Yalcinetal. Grid-based
Storing, retrieval efficient storage and Up to 100%

[15] system
retrieval of items based
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on a multi-agent routing

algorithm

Yalcin et al.

Retrieve items with a

26] PBS system Items retrieval ~ minimum number of <94.4% !
items moves
Shirazi et al. Deadlock prevention
PBS system Items retrieval Up t0 97.2%
[27] algorithm
Formalize arranging
Rearrangement
Tetouani et Puzzle-based smart boxes in an
while Routing” 97.2%
al. [28] system autonomous delivery
strategy
vehicle
High-density sequencin
Puzzle-based & yeed &
Proposed system, address
sequencing  Sequencing 97.2%
method unsolvable puzzle
system

configuration

I Since these systems involve the puzzle-based concept, the areal-density is
calculated as (n, —e)/ n., where n. is the number of grid cells and e is the number
of empty spaces in the grid.

20ne rule of GridHub is that at least one empty module has to be in each column

or row, and their experiment was set as a grid with 22 columns and 11 rows.

Although several studies have considered high-density and puzzle-based
systems with their applications, most of them have focused on storage and
item retrieval. In these systems, the items are retrieved in the desired sequence.
However, under batch and/or zoning picking policy, which is applied in most
online retailers’” warehouses, items necessitate further processes such as
consolidation and sequencing [13]. To the authors” best knowledge, very few
contributions have been published in the literatures that have addressed the
issue of item sequencing, for instance, GridSequence, which was developed by
Gue et al. [11]. The proposed system could re-sequence incoming items to feed
a palletizing robot with the required sequence. The GridSequence system

consists of a puzzle grid with (n x m) dimensions, plus one additional row and
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one additional column; thus, the whole system dimensions are (n + 1) x (m +

1) as illustrated in figure 1.9.

Figure 1.9. GridSequence system [11]

The authors showed the effect of the aspect ratio on the sequencing time in the
experimental results and suggested that the aspect ratio should be at least 10.
Furthermore, adding one more additional column to the center of the grid can
positively affect the system. The major drawback of this system is low space
utilization, since adding rows and columns will occupy more spaces out of the
grid, and decrease the density. A lower density means higher empty spaces in
the grid and an increase in floor space usage. Thus, the density plays a key role
in evaluating the utilization of floor space of warehouses (storage and other

functions) in urban areas where the limited space should be utilized efficiently.

14



1.4 Research Objectives

We can summarize the objectives of this thesis in the following points:

1. To realize a high-density sequencing system based on the puzzle
movement concept, with highly efficient floor space utilization
concerning the minimum item movements. These points are directly
related to better energy efficiency and, consequently, to lower
operational costs. The analysis here carried out represents a tool for
improving the warehouse activities in terms of both space utilization
and time consumption, in addition to minimizing the workforce.

2. To propose the puzzle-solving algorithm to fulfill the sequencing
process.

3. To set up an optimal design of sequencing board in shape, size and
the number for the practical implementation of a real-world

warehouse.

1.5 Concept of Puzzle-based Sequencing System

Using ASRS in the storage can increase the efficiency of warehousing functions
because this system approaches seven-day-week, 24-hour operations. The
cranes of this system work in parallel in both in-feed and out-feed. therefore,
the outcoming boxes come in a random sequence. These boxes are moved on
the conveyor and inter the proposed sequencing system which is the puzzle,
afterward, the puzzle starts the sequencing process to reach the goal
configuration. Finally, the boxes come out as a series of boxes with the desired

sequence. Figure 1.10 illustrates the proposed sequencing system concept.
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3. Output: the desired sequence

Figure 1.10. The proposed sequencing system concept.

According to the figure, the series of boxes come from the storage out of
sequence, and inter the puzzle board. Then, the sequencing process starts until
we get the goal configuration. Finally, the boxes outcome from the board inter

the main conveyor as a series of sequenced boxes and move into the next

process in the warehouse.
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the following assumptions are made for this system:

1. One set of the sequencing system is 2 dimensions, so the process doesn't
consider the 3D cubic accumulation problem.

2. The system is used under the zoning storing strategy where the boxes
come separately, and/or under batching picking policy where the order
comes as a batch and the boxes of each batch are separated into a series
of boxes.

3. All boxes are square-shaped and have the same base area.

4. The sequencing process in the puzzle starts after filling in the puzzle
board with all boxes.

5. Incoming boxes to the board inter one by one, while in the output, the
boxes are out as row by row as shown in figure 1.10. (3).

6. We allow simultaneous moving so the boxes are moved into the board

simultaneously. the same during the output process.

1.6 Layout of the Thesis

The thesis includes four chapters that are structured as follows:

Chapter 1. background, the literature review, and the research objectives are

presented.

Chapter 2. this chapter presents the methodology of the research starting with
an investigation of the puzzle-solving methods. Two solving methods were
investigated: game tree and pathfinding algorithms. A-star was chosen based
on pathfinding algorithms in order to find the shortest solution of the puzzle
in which the sequencing time. In this chapter A-star algorithm was explained
in detail with a proposal of a pre-sorting strategy to overcome the unsolvable

configuration issue that cannot be solved by the aforementioned methods.
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Different shapes of the puzzle can carry out the sequencing process, thus, two
different shapes, in particular, square and rectangular shapes, were discussed.
In addition, the factors that affect the number of solution steps. Furthermore,
three proposed strategies to fulfill the practical implementation in the
warehouse are presented in this chapter. In this Chapter also, the effect of
increasing the number of blanks in the puzzle on the system is presented.
Furthermore, more blanks in the puzzle allowed a double-switching process

which reduced the maximum number of the solution steps.

Chapter 3. the results and discussion of the points presented in the

methodology are presented in this Chapter.

Chapter 4. finally, the conclusions of the thesis are summarized, and the

possible future work is discussed.

1.7 Summary

A comprehensive introduction to develop a high-density sequencing system
concerning the minimum sequence g time is outlined in this chapter. The
previous research in the field of logistics that considered the high-density
system was investigated with a comparison between our proposed method
with the previous works in terms of the density and floor space. This study
presents a high-density puzzle-based system for products sequencing
considering the sequencing time. To complete the proposed method, a large
number of investigations with lots of analysis are implemented to provide the
sequencing time consuming and compare it with conventional sequencing

systems and algorithms.
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CHAPTER 2

RESEARCH METHODOLOGY

This chapter presents the puzzle-based system with investigating puzzle-
solving methods to choose the best sorting algorithm. Afterward, we set up
the sequencing system design with the optimum board shape, size, and
number. The optimum parameter of the design was evaluated based on the
time which is the movement steps of the boxes on the sequencing board, and

the floor area occupied by the sequencing system.

2.1 Sliding Puzzle

As mentioned in Chapter 1, The sliding puzzle was invented by Sam Loyd in
the 1870s [7], and is also known as the 15-puzzle, and later, the general version
(n? —1) became a popular and interesting subject for many researchers.

Generally, the sliding puzzle is a single-agent sliding game consisting of (n x
m) — 1 square tile and one blank, distributed in an (n x m) grid. The process for
solving this is to rearrange a random configuration of numbers in the initial
state by sliding the blank tile in one of four allowable moves (Up, Down, Right,
and Left) to reach the goal state, which is the proper sequence of numbers [29],

as shown in Figure 2.1.
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42 |3 i1|Z&]13 The sequence of the tiles:

6 8| mp |4 6 Initial state: (4,2,3;6,blank,8;5,7,1)
51711 718 Goal state: (1,2,3;4,5,6;7,8,blank)
Initial state Goal state

Figure 2.1. 3x3 puzzle (8-puzzle), random configuration (Left), goal state (Right).

There are different shapes and sizes of such a puzzle. The ( n®- 1) puzzle is a
specific type, where the board is square (n x n) with (n*- 1) numbered tiles
and one blank [30].

8-puzzle is one of the most famous ( n?-1) puzzles. Since 15-puzzle and 24-
puzzle are extension versions of 8-puzzle. Our study was conducted utilizing

an 8-puzzle to simplify the analyses.

2.2 Sequencing Algorithm

There are 9! different configurations of this puzzle, and every second
permutation are solvable, Hence, there is a total of 9!=2 =362,880 solvable
configurations [31]. Many researchers have an interest in solving such puzzles
with the fewest moves (the shortest path to the solution) and they consider
finding the optimal solution in two levels, the space and time consuming by
the used algorithm, and the number of moves. In this research, we take into
consideration the number of moves to reach the goal configuration.

There are two typical methods for finding the shortest path to the solution
which achieve the minimum number of tiles moves, game tree, and
pathfinding algorithms. In this section, we will discuss both methods in terms

of using the puzzle for items sequencing.
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2.2.1 Game Tree

This method creates a tree of all configurations (states) that can be generated
for the puzzle and finds the target configuration in this tree. In the game tree,
all states are represented by nodes, and the depth of the tree denotes the
number of solution steps. The procedure is as follows:

1. Start tree creation from the target state configuration;

2. Find the input node (the initial configuration) in this tree; and

3. Trackback the path which leads to the initial node.
The game tree method could guarantee to find the shortest path to the solution.
However, we might face two problems: the huge number of states that could
be generated, and the scenario of searching for different targets (specific

configurations).
I.  The Huge Number of States

We start generating the tree by switching the blank with the neighbor tiles. All
available switches of one configuration are carried out in one level of the tree
(tree depth). Equation (2.1) provides the total number of nodes that could be

generated in the tree for the 8-puzzle:
d v
Nstates = 1+ Xj=1 b', (2.1)

where Ng,tes s the total number of states in the tree; b is the branching factor;
and d is the depth of the tree. The branching factor is the number of nodes that
could be expanded from the previous node in the tree. For example, if the
blank is placed in the corner, the branching factor is 2 since we can switch two
tiles, and we get two different states out of the current one as shown in Figure

2.2 which shows the concept of branching numbers for 8-puzzle.
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Figure 2.2. 8-puzzle branching factor b.

According to figure 2.2, In 8-puzzle we have three different branching factors.
On the top of the tree, we start with a branching factor of 2, since the blank
position is in the corner in the goal configuration. Therefore, the first level in
the tree has two states, each of which has a branching factor of 3 yielding 6
states in the second level of the tree, for a total of 9 states.

From Figure 2, the branching factor was about 3 (when the blank tile is in the
corner, there are two possible moves; when it is along edges, there are three;
and when it is in the middle, there are four).

Regarding the depth, Figure 2.3 illustrates the histogram of the solution steps
for all solvable configurations of the 8-puzzle as well as the Probability Density
Function (PDF) for a normal distribution. We obtained an average solution

depth of 22. The same result was confirmed with the work by Reinefeld [32].
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Figure 2.3. Histogram of solution steps for 8-puzzle.
Referring to Equation (2.1), the number of nodes that could be generated for
depth 22 and branching factor 3 is 3.13 x 10° nodes. This huge number of
nodes not only requires time to be generated but is also inefficient in terms of
memory [33]. By tracking the repeated states, we cut the tree down drastically

into 9! / 2 = 181,440 nodes.
II.  Searching for Different Targets

In the case of different targets, where the goal configuration isnot (1,2, 3; 4,5,
6; 7, 8, blank), but can be any configuration of 9! States, we need to generate a
tree of nodes for each goal. Thus, we had to generate 9! = 362,880 trees and
about 13.16 x 10'° nodes in total.

One proposal to overcome the problem associated with generating such a huge
number is to search for the input state in the current tree. The following steps

describe the concept of searching for a different target in the current tree:
23



1. Change the desired target to the target in the current tree;
2. Apply the same changes to the input; and
3. Find the new input in the current tree.

Figure 2.4 shows the proposal of searching in the current tree.

1023 |, 1|2 3
step
4| 6«r5 | mmmmm) 4|56
78 78
Desired target Iarget in current free 3rd step
1(2 |3 1,23
2nd gtep
6« | mmmmm) |4 6
7,8]|5 7,85
Input New input

Figure 2.4. Concept of searching in the current tree.

In the example shown in figure 2.4, we first, switch the tiles 5 (numbered 6)
and tile 6 (numbered 5) to get the target configuration in the current tree (1, 2,
3;4, 5, 6;7, 8, blank). Then we apply the same changes for the input state (1, 2,
3; 4, 6, blank; 7, 8, 5) by switching tile 5 (numbered 6) and tile 6 which is blank.
we get the new input (which we are searching for) is (1, 2, 3; 4, blank, 6; 7, §,
5). Finally, we search for the new input in the current tree.

In this example, the new input configuration is unsolvable, therefore, we
cannot find it in the current tree.

Since tiles changing might give unsolvable configurations, this method will
not work for all the cases in our system. The solvability of the puzzle is an
important concept; therefore, the solvability condition will be discussed in

Section 2.5.
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2.2.2 Pathfinding Algorithms

To reach the puzzle solution, pathfinding algorithms can be applied by
creating a tree of puzzle configurations (nodes), starting from the initial state
until the goal state is matched, and then tracking back to the path, which leads
to the goal. When reaching the goal state (node), the process of node creation
will stop; therefore, generating a huge number of nodes can be avoided. There

are two different types of pathfinding algorithms:
I.  Uninformed Algorithms (Blind Algorithms)

Such algorithms work without using any external information to guide the
agent to reach the goal state. Following are some of such algorithms[33, 34]:

e Breadth-First Search (BFS);

e Depth-First Search (DFS);

e [terative Deepening Depth-First (IDS).
II.  Informed Algorithms

In these algorithms, some information can be used to lead the algorithm and
direct it to achieve better performance. This information could be the status
and values of the neighbors.
Following are the most common pathfinding algorithms[33, 34]:

e Greedy algorithm;

e A-star (A¥) algorithm;

e [terative Deeping A-star (IDA¥) algorithm.
Among the algorithms that extend search paths from the root, A-star is

optimally efficient [34, 35]. Hence, A-star was the core algorithm in this study.
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2.3 A-star Algorithm

In the A-star algorithm (A*), the nodes can be evaluated using the cost function
(Equation (2.2)), which is the sum of two factors: the heuristic function, which
estimates how close the current node is to the goal, and the cost from the initial

node to the current one [36].
f(n) = g(n) + h(n), (2.2)

where f(n) is the evaluation function for the A* algorithm; g(n) is the cost from
the initial node to the current node n; and h(n) is the estimated cost from the
node n to the target.

Many estimation functions can be used with the A-star algorithm such as

Hamming distance and Manhattan distance.

2.3.1 Hamming Distance

This is the count of the number of tiles in the current configuration which are
not at the same position as in the goal configuration[33]. Figure 2.5 shows an

example of hamming distance.
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Figure 2.5. An example of hamming distance calculation.
In the example shown in figure 2.5, we note that (4,6,8,5,7,1) tiles are not at the

same position as in the goal state. Hamming distance is 6 in this example.
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2.3.2 Manhattan Distance

Manhattan distance or city block distance is the absolute vertical and
horizontal distance between the tile in the current configuration and its

appearance in the goal configuration [33].

Initial state

Initial state Goal state

1/8 2 1(2 3 182 43765
4 3|m 4|5 6 021311022

716 5‘ 718 Goal state

Manh.:IZ ‘1‘2‘3‘4 5‘6‘7’8‘ }

Figure 2.6. An example of Manhattan distance calculation.
The estimation function used in this research was the Manhattan distance,
since it showed better performance for the informed search techniques [33, 35].
The Manhattan distance or city block distance is the absolute vertical and
horizontal distance between the tile in the current configuration and its
appearance in the goal configuration. Figure 2.7 shows the layout of the A-star

algorithm for solving the n-puzzle with the fewest solution steps.
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Figure 2.7. A-star algorithm for n-puzzle.

[y

Queue. Get next

The A-star algorithm allows us to avoid many nodes that should not be
selected, avoiding the waste of time caused by searching a large number of
useless nodes. The whole search process has strong directionality [37].

Even though the A-star algorithm is optimal for solving the n-puzzle, it was
not sufficient for our application, thus we needed to modify it to fulfill the
sequencing process.

The reason for the insufficiency of the basic A-star algorithm is the solvability
problem. All researchers who are interested in puzzle-solving algorithms have
investigated only the solvable configuration of the puzzle, However, in our
application, we have a 50% possibility of unsolvable initial configurations of
the boxes.

The first modification in the algorithm is checking the solvability condition. as

shown in figure 2.8
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Figure 2.8 A-star algorithm for n-puzzle with solvability condition.
Figure 2.9 illustrates the implementation of This A-star algorithm for the 8-

puzzle.
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Figure 2.9. The implementation of the A-star algorithm for the 8-puzzle.

The conditional sentences in Algorithm 1 describe the implementation of the
30

A* algorithm.



Algorithm: A* Implementation for 8-puzzle

1: if solvable then

2:  Check Manhattan distance
3: else

4: End Algorithm

5: Repeat until finding the target
6:  if Manhattan # 0 then

7 Find a blank

8 Perform Procedure switching blank
9 Search for minimum cost

10: else

11:  Inputis the target

12: end if

13: end repeat

The procedure of switching the blank with neighbors to generate branch nodes

is described as follows:

Procedure: Switching blank

: if blank in a corner then
Repeat 2 times: switch blank!
: else

: if blank in along edges then

: else
: if blank in the middle then
Repeat 4 times: switch blank!

1

2

3

4

5:  Repeat 3 times: switch blank!
6

7

8

9: end if

Switch blank contains 3 steps:
e Switch blank with a neighbor;
¢ Increase the depth (level in the tree which denotes the solution steps) by
1; and

e Recalculate Manhattan distance.
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2.4 Solvability Condition

The solvability can be checked by the inversion, which indicates that a pair of
tiles in the current state is in reverse order of their places in the goal state.
Moving tiles in the puzzle horizontally doesn’t affect the inversion, but,
moving tiles vertically either increases the inversion by 2, decreases the
inversion by 2, or doesn’t change the inversion. Therefore, when the number
of inversions is even, the puzzle is solvable; otherwise, it is unsolvable [38].
For example, if we have an 8-puzzle with the following configuration state (2,

1, 5; 4, blank, 3; 8, 6, 7), regardless of the blank, the inversion is calculated as

follows:
The Investigated Tiles Follow the
Number of Inversions
Tile Investigated Tile
2 1 1
1 - 0
5 4 and 3 2
4 3 1
3 - 0
8 6 and 7 2
6 - 0
7 - 0
Total inversions 6

The total inversions are six, which is an even number. Thus, the example

configuration is solvable.

The solvability condition came up with a second problem in the algorithm
which should be considered for the sequencing application, the unsolvable
states. For unsolvable states, the sequencing system will be stuck and we

would not be able to proceed in the sequencing process.
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2.4.1 Proposal for the Solvability Problem

As mentioned before, the 8-puzzle has 9! different configurations, and only
half of them are solvable. Since the state configurations in practical
implementation in the warehouse are random, we will not be able to carry out
sorting for unsolvable states (9! / 2 states in the case of the 8-puzzle). Therefore,
we need a scenario in which all states of the puzzle are solvable. In order to
build such a scenario, we provided a pre-sorting strategy.
The products moving to the sorting area enter in a random configuration,
which might be an unsolvable configuration. Therefore, we have to pre-sort
the products on the sequencing board so that the pre-sorted configuration is a
solvable one. The pre-sorting process is as follows:

e Check the solvability by calculating the inversion number;

e In case of an odd number of inversions, move the first six tiles to their

specific positions on the sequencing board; and

e Switch the last two tiles on the board.
Figure 2.10 shows a flowchart of the pre-sorting process, and Figure 2.11
shows an example of the pre-sorting process for an unsolvable input

configuration.

33



/ Input state /
¥

Calculate the inversion

Solvability

A J

Move on first
(n-2) tiles
L 4
Switch last 2
tiles

Yes

End

Figure 2.10. Flowchart of pre-sorting process.
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Figure 2.11. Pre-sorting process.
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Applying the pre-sorting strategy, we could be able to solve all configurations
of the puzzle.
Figure 2.12 illustrates the modified A-star algorithm used for our sequencing

system.

/ Input state /
3

y Calculate the inversion

e

Save the states

1

1| Moveon i
i [first n-2 tiles| !
i v '
1 1
1

1 1
1 1
1

Switch last
2 tiles

A

The current is Switch the blank
the Target with neighbor
values
v
Search for
minimum cost
in all levels

End

Figure 2.12. Modified A-star algorithm for n-puzzle.
The A-star algorithm is ready now to be implemented for the sequencing

system.

2.5 Sequencing System Design

In the practical implementation in the warehouses, different parameters

should be considered to choose the optimum sequencing board shape, size,
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and number. Furthermore, the sequencing strategy for a different number of

boxes.

2.5.1 Board Shape

Different shaped boards can carry out the sequencing task. Therefore, four
different sizes with two shapes were discussed with the same number of tiles.
A 2 x 3 puzzle has 6! = 720 states, and half of them are unsolvable. By keeping
the blanks in the corner of the puzzle to satisfy the reality of practical
implementation in the warehouse, we reduced this to only 60 solvable states.
For the same configuration in both initial and goal states as shown in the

example in Figure 2.13.

2x3 |3|1|4 12 3
Board|5 |2 4 5
2x4 |13/1 4 1(2|3
q
Board | 5 | 2 4|5
w5 13114 1(2|3
Board | 5 | 2 ~l4ls
33 31 4 1|2 3
X
e
Board i B
Initial states Goal states

Figure 2.13. An example of examination same state configurations with different

board sizes and shapes.
Figure 2.13 illustrates the effect of different board shapes and sizes of the
puzzle on the solution steps for all 60 states. The results of Figure 2.14 are

summarized in Table 2.1.
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Figure 2.14. Comparison between different board sizes and shapes for the same

number of boxes.

Table 2.1. Comparison of the performances of a 3 x 3 puzzle with different board

sizes and shapes regarding the solution steps.

3x3 Better [%] Same [%l] Worse [%]
vs. 2 x 3 61.6 38.4 0
vs. 2 x4 58.3 41.7 0
vs.2 x5 58.3 41.7 0

From the table, the 3 x 3 board showed a better performance than the 2 x 3, 2 x

4, and 2 x 5 boards by 61.6%, 58.3%, and 58.3%, respectively. One of the reasons

for these results is the difference in the number of blanks in the different

shapes and sizes of the puzzle.

More analyses are necessary to verify the effectiveness of other factors on the

overall solution steps for different shapes. For different shapes of the puzzle,

there are many factors affect the overall solution steps such as branching

factor, rectilinear distance, and the Aspect Ratio (AR) of the puzzle.
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2.5.1.1 Branching Factor

The branching factor is the number of states that can be generated from each
state in the tree. Usually, the branching factor measures the space complexity
of the searching algorithm. The higher the branching factor, the lower the
overhead of the repeatedly expanded states [35]. In our case, the analyzed data
were generated from the target state, where we used the opposite concept of
the branching factor. If the branching factor is higher, more states would be
generated for a specific level in the tree (the level denotes the solution steps).
Figure 2.15 illustrates an example of the effect of the branching factor on the

number of generated states at the same level in the tree.

Level 1

Level 2 —

1‘ 3‘4
5 78
9 10] 12 12|/3 4/5/6 7|8

13141115 910111213 1415
Branching factor = 4 Branching factor = 3

Level 3 4 4
1 4

234 1)z 3|82z 3 ]A] 1]2/3]a[s] [7]8] [1[2]3]a[5]6]7]8]|[1]2]3]a]5}6T7 8
5678 8|/s|e|7]8] S;J('/s 9101112136 1415 9101112 [1314/15| 9 10#1121314] |15
9 |[10/12 9107 12| 9 [1012] |9 181112
13141115/ [1314)11)15 13141115 %4|_15 States =2

Duplicate state
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[
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w
(2]
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w

Duplicate state

States =3
Level 4

Figure 2.15. The effect of the branching factor on the number of generated states in

the same level.
In Figure 2.15, two different shapes are illustrated, and we note that in level 3
(three steps to the solution), the square shape had more generated states than
the rectangular one due to the difference in the branching factor. Figure 2.16
shows the average branching factor for both shapes discussed in the previous

example.
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Figure 2.16. The average branching factor for different sizes and shape boards.
2.5.1.2 Maximum Rectilinear Distance of One Tile

We suggest Equation (2.3) for calculating the maximum steps of a tile:

rg= (L + W) — 2, (2.3)

where ry is the maximum rectilinear distance of the tile; L is the length of the
board; and W is the width of the board.

A smaller distance for one tile results in a better board since it decreases the
number of initial steps of the pre-sorting process. Figure 2.17 illustrates the

maximum distance that the tile can move.

TTJ TT—JT‘
1 1 1

2x4: rg=4 2X5:rg=5  |3X3:rq=4

Figure 2.17. Maximum rectilinear distance of one tile of different board shapes and

sizes.
From Figure 2.17, we noted that different board shapes could have the same
rq. With this in mind, we compared the performance depending on the

maximum board capacity, as illustrated in Table 2.2.
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Table 2.2. Comparison of different board shapes and sizes of puzzles, and the max.
capacity in the case of the same ry.

Max. Rectilinear Distance of

Max. Capacity Board Size
One Tile

2x4

4
3x3
2x5

5
11 3x4
14 3x5

6
15 4x4
17 3x6

7
19 4x5
20 3x7
8 23 4x6
24 5x5
9 23 3x8
27 4x7
26 3x9
10 19 4x5
35 6x6

From Table 2.2, we concluded that in the case of rg, being the same for different
board sizes and shapes, square puzzles provide more capacity than

rectangular ones.

2.5.1.3 Pre-sorting Steps

The pre-sorting process plays a key role in the whole sorting system in
practical implementations.

As mentioned in Section 2.6.2, the puzzle shape affects the rectilinear distance
of one tile, rq as well as the number of initial steps in pre-sorting. Figure 2.18
illustrates the initial steps to fill in the sequencing board with different sizes

and shapes concerning ry.

40



35

3x3-puzzle: 1y = 4 .
30 2G-puzzlerrg =5 [ «
4xd-puzzle:ty = 6 e
@ 3x6-puzzle:ry =7 s
8_ 25 2x8-puzzle: 1, = 8 :
a -
+~ =
ap 20 -
Qo <Y |
c e T
ju
o 15
i
Lo e .
aw e .

0 2 4 6 8 10 12 14 16 18
Input

Figure 2.18. Effect of 4 on pre-sorting steps.

As is clear from Figure 2.18, increasing the rectilinear distance of one tile will
also increase the pre-sorting steps. However, a reasonable question arises
when dealing with different shapes: how does the Aspect Ratio (AR) of the
puzzle affect the performance in terms of solution steps? To answer this
question, we investigated the relationship between the aspect ratio and

rectilinear distance.

2.5.1.4 Aspect Ratio

The Aspect Ratio is the number of columns divided by the number of rows of
the puzzle, and this has a direct effect on the rectilinear distance of one tile, ry,
and further on the pre-sorting steps. Table 2.3 illustrates the corresponding rq
of the aspect ratio for the different puzzle shapes and sizes outlined

previously.
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Table 2.3. Aspect Ratio and rectilinear distance of one tile for different puzzle sizes.

Puzzle size Aspect Ratio Rectilinear distance
4 x4 1 6
2x8 4 8
6x6 1 10
4x9 2.25 11
3x12 4 13
2x18 9 18

According to Table 2.3, we confirmed the direct relationship between the
aspect ratio and rectilinear distance. Thus, a smaller AR reduces the ry, which
also reduces the pre-sorting steps.

If we considered preliminary that a square puzzle is better than a rectangular

one, we have to investigate the puzzle size.

2.5.2 Board Size and Number

In real-world warehouses, under the batched/or zoning picking policy, the
retrieved items from the storage area necessitate being either consolidated or
sequenced in the way of satisfying the order sequence by customers. The
number of these items is very varied depending on the order lists. In [12], the
picking method was to accumulate the orders in separated bins under
batched/or zoning picking policy. In this case, the orders would be released
from the bins, then re-sequenced in the desired sequence. Boysen et al.
generated two differently sized datasets for their computational study, a small
instance that involves 12 orders in 24 bins, while the large instance involves 20
orders in 40 bins which are of a real-world size. These values are chosen based

on practitioners' information. The number of the boxes needed to be
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sequencing at the same time is difficult to be determined because it is
depending on several factors such as the boxes sizes, boxes weights, and
pallets capacities and sizes. Therefore, in practical implementation, an 8-
puzzle board would face a limitation by restrictions of the maximum capacity
of the puzzle (8 boxes). In such a case, we propose and discuss three strategies

for sequencing more than 8 items.

2.5.2.1 Increase the Size of the Sequencing Board

To carry out the sequencing process for more than 8 boxes, bigger board sizes
can be used. Since it was concluded preliminary that the square shape
provided better performance than the rectangular one, we used in this strategy
an extension version of the 8-puzzle which is the (n? - 1) puzzle.

Figure 2.19 illustrates the strategy of using 15-puzzle as an example for

practical implementation.

,,"

Input -

%

Figure 2.19. The strategy of using 15-puzzle for practical implementation.
As in figure 2.19, the main input conveyor feeds the sequencing board. After

tilling all the incoming boxes on the board, the sequencing process will start.
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In this study we considered the sequencing time as a function of steps,
therefore we calculated the pre-sorting steps and the puzzle solution steps.

Two main factors were considered, the area occupied by the system regardless
of the main input conveyor, and the sequencing time which is the solution

steps until we get the final goal of the desired sequence of boxes.

L. Area for the Strategy of Different Sizes of Board

The area occupied by the system can be calculated as follow:

A=(Cp+1) X Appy (2.4)

where A is the total area occupied by the system regardless of the main input
conveyor; Cp, is the maximum capacity of the board (15 boxes for 15-puzzle);
and A,y is the box” area.

As we can see in Equation (2.4), the number of boxes does not affect the area

as long as N< Cjp. where N is the input (number of boxes).

II. Time for the Strategy of Different Sizes of Board

We considered the time as a function of solution steps. we have considered the
pre-sorting steps and the sequencing steps on the board, ignoring the moving
boxes on the main feeding conveyor.

The total sequencing steps are calculated as Equation (2.5):

S,+S if N<(,
Stotal = { . P (2.5)

Smax T Sp.max if N=Cy
where S;o¢q; is the total number of steps; S, is the Solution steps for n boxes;
Smax is the Maximum steps to solve the puzzle; S, ,, is the Pre-sorting steps
(the initial steps to fill in the board with n boxes); $;, max is the Pre-sorting steps
(the initial steps to fill in the board with full capacity); N is the input (number

of boxes); C}, is the maximum capacity of the board.
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Table 2.4 illustrates the maximum number of solution steps for 15-puzzle, 24-
puzzle, 35-puzzle, and 48-puzzle, and the board area as a function of the box

size.

Table 2.4. Maximum solution steps for 15, 24, 35, 48 puzzles, and the board area

[39].
Puzzle capacity 15 24 35 48
Maximum capacity 80 205 405 716
Area [box size] 16 25 36 49

As shown in the table, the maximum solution steps are drastically increased
by increasing the board size. Furthermore, the system is still restricted by the

limitation of the puzzle capacity.

2.5.2.2 Using Multi-Boards

Asmentioned in 2.7.1, increasing the board size could carry out the sequencing
system for more than 8 boxes. However, such a strategy is still restricted by
the maximum capacity of the puzzle.

In this strategy, we used the same size of the puzzle with an increase in the

number of boards as shown in figure 2.20.

45



Figure 2.20. Several boards along with the input line for the sorting process.
As shown in figure 2.20, we placed the boards along with the input conveyor.
The boxes coming in random sequence are separated into these boards based
on their identification numbers (IDs) (ex. The boxes from 1 to 8 enter the first
board, the boxes from 9 to 16 enter the second board, and so on).
We assumed that when the boxes are entering the boards, they can move
simultaneously, and the sequencing process will start after filling in the boards
with their assigned boxes.
Keeping these assumptions in mind, the sequencing process will be carried
out in parallel in all boards, doing so allowing to reduce the waiting time if the
sequencing will be carried out in series.
We investigated the same two factors as 2.5.2.1, which are the area and the

time.

Area for the Strategy of using Multi-Boards

The area used by the system in this strategy is calculated as Equation (2.6):

A=[Cy,+1)Ny] X Apox (2.6)

where A is the total area occupied by the system regardless of the main input

conveyor; Cp, is the maximum capacity of the board (8 boxes for 8-puzzle as the
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example in figure 5.2); A, is the box” area; and N}, is the number of boards

which can be calculated as follow:

N, = [c%l 2.7)

where N is the input (number of boxes).
We verified from Equation 2.6 and Equation 2.7 the direct relationship

between the number boxes and the area of the system.

IL. Time for the Strategy of using Multi-Boards

As in the strategy of different sizes of board, we considered the time as a
function of solution steps.

In this strategy, the boxes are moving on the boards simultaneously and the
sequencing process starts after filling all the boards. We calculated the time in

the worst case as in Equation 2.8.

Stotat = Smax + (Np — 1) Sp.max + Sp_r (2.8)

where S;o¢q; is the total number of steps; Syqy is the Maximum steps to solve
the puzzle; N} is the number of boards; §j, max is the Pre-sorting steps (the
initial steps to fill in the board with full capacity); §, , is the Pre-sorting steps
(the initial steps to fill in the board for remaining boxes).

The remaining boxes can be calculated as follows: p_r= N — (N, — 1) C,,.

In Equation 2.8, we considered the S,,,, only one time for all boards, the reason
is that all boards work in parallel, and in the worst case, at least one of them

needs the maximum solution steps.
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2.5.2.3 Adding a Buffer Line

In this strategy, fixed board size is used and the system has been extended
with a buffer conveyor used to store temporarily the boxes. The buffer line is

fixed along with the main input conveyor as shown in figure 2.21.

Figure 2.21. Adding buffer line along with the input conveyor for the sorting

process.

As shown in figure 2.21, the buffer line is placed along with the main input
conveyor in a way the boxes can be buffered and reenter again to the main
conveyor.

For 8-puzzle board size, when the boxes arrived at the board, if the box is from
1 to 8 it will enter the board, otherwise, it will move left to store temporally in
the buffer line. After filling in the board with 8 boxes, the first sequencing
process starts. Afterward, the remaining boxes will be released from the
output point of the buffer line to the main conveyor. Again, the boxes from 9
to 16 will enter the board (after releasing the sequenced boxes in the first
sequencing process), and the remaining boxes will store in the buffer line.

In this strategy, the sequencing processes are carried out in series, board after
board. As for other strategies, we investigated both area and time for this

strategy.
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L. Area for the Strategy of Adding Buffer Line

The area for this strategy is calculated as Equation 2.9.

A=((N+1) X Apox (2.9)

where A is the total area occupied by the system regardless of the main input
conveyor; and A,y is the box” area.
As it is clear from Equation 2.9, unlike the strategy of using multi-boards, the

area here is depending only on the number of boxes.

IL. Time for the Strategy of Adding Buffer Line

The same analyses of previous strategies to calculate the sequencing time was
carried out in this strategy. In this strategy, the boxes are sequenced on the
board based on the used puzzle capacity. Therefore, for boxes more than the
puzzle capacity, the remaining boxes would wait for the next sequencing
process. In this waiting time, the first sequencing process is carried out.

We calculated the time in the worst case as in Equation 2.10.

Stotal = (Nb - 1) Smax + Sr + (Nb - 1)Sp.max + Sp_r + Sbuffer (2.10)

where S;o¢q is the total number of steps; Syqy is the Maximum steps to solve
the puzzle; S, is the steps to solve the puzzle for remaining boxes; Ny, is the
number of boards which refer to the number of sequencing processing
times; $;, max is the Pre-sorting steps (the initial steps to fill in the board with
tull capacity); S, , is the Pre-sorting steps (the initial steps to fill in the board
for remaining boxes); and Spysser is the steps or buffered boxes for the next
sequencing process. The remaining boxes can be calculated as follows: p_r =
N — (N, — 1) Cp.

We assumed that one step is for entering the buffer line, and one step for
outgoing to the main conveyor, Thus, each buffered box needs 2 steps. we

assumed also that moving boxes on the main conveyor and the buffer-
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conveyor are not calculated. Keep these assumptions in mind, Spyffer can be

calculated in the worst case as follow:

Np-1
Sbuffer = 2N — (i X ZCb ) (2.11)

i=1
where N is the input (number of boxes); and N is the number of boards which

can be calculated as follow: N} = [cﬁb] where (), is the maximum capacity of

the used board.

The results of these strategies will be given in Chapter 3.

According to the literature illustrated in Chapter 1, the systems designed for
storing and retrieval items that depended on the puzzle movement concept
investigated the item retrieval time with multiple escorts (escort refers to the
empty space in the puzzle system).

by increasing the number of escorts, the retrieval moves are decreased and the
retrieval time is decreased as well [7, 27]. The analyses in these researches were
conducted to retrieve an item to a specific point in the puzzle.

However, in Sam Loyd's puzzle which consists of (n x m) — 1 square tile and
one blank, the concept is to keep sliding the blank in one of four cardinal
directions until we reach the goal state, in such a puzzle system, all items
should move to their position as in goal configuration. In this study, we
investigate the increase of blanks on the solution steps for Sam Loyd’s puzzle

which is used in our sequencing system.

2.5.3 Number of Blanks

There are lots of researchers who worked on the sliding puzzles [29, 30, 32, 33,
40-42]. However, To the author's best knowledge, none of these literatures has

addressed the case of a different number of blanks. Unlike other researches,
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we first investigated the effect of one and two blanks on the solution steps for
different sizes of the puzzle. Table 2.5 illustrates the effect of one and two
blanks on different puzzle sizes regarding the maximum puzzle capacity, the
total number of states, the number of solvable states, and the maximum

number of solution steps.

Table 2.5. The effect of one and two blanks on different puzzle sizes.

2x2 puzzle 2x3 puzzle 2x4 puzzle 3x3 puzzle
No. of blanks 1 2 1 2 1 2 1 2
Max. capacity 3 2 5 4 7 6 8 7
No. of states 24 12 720 360 40,320 20,160 362,880 181,440
solvable states 12 12 360 360 20,160 20,160 181,440 181,440
Max. solution steps 6 4 21 12 36 26 31 24

According to the table, by increasing the number of blanks in the puzzle, the
maximum solution steps is decreasing.
The second analysis is to show the effect of an arbitrary number of blanks on

the solution steps for the 8-puzzle as illustrated in table 2.6.

Table 2.6. The effect of an arbitrary number of blanks on the solution steps for 8-

puzzle
Number of = Maximum Maximum Maximum Average
blanks capacity states solution steps  solution steps
1 8 362,880 31 21.97
2 7 181,440 24 16.03
3 6 60,480 21 12.7
4 5 15,120 17 9.99
5 4 3,024 13 7.88
6 3 504 10 5.93
7 2 72 7 3.8

As shown in Table 2.6, increasing the number of blanks will always decrease

the solution steps. However, the increasing of blanks has the opposite effect
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on the system which is decreasing the puzzle capacity. We noticed that the
maximum number of blanks is 7, the puzzle, in this case, can sequence only
two boxes.

Since we are dealing with multiple blanks in the puzzle, that allows us to carry

out multiple steps simultaneously as double switching.

2.5.4 Double Switching

In the sliding puzzle, the step term denotes sliding the blank from its current
position to the next position by switching it with the neighbor tile as shown in

figure 2.22.

One Step

—-

Figure 2.22. The concept of step in sliding puzzle.
If we assume that one step takes one time unit, means one switching carried
out by one step and consumed one time unit. Keeping that in mind, we solve

the puzzle with 2 blanks as in the example illustrated in figure 2.23.
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1«2 12 1124 123
4|35 «4(3| 5 (4] (3|5 (44
7/ 6|5 7/6|5 7/6|5 7/6|5
15t Step: nd Step: 31 Step: 4% Step
2 |Left 4 | Left 3 Up 6 Up

123 123 1,23 1123

46| (=) |al6e»| o [4a]4]|6|2 4|56

7 %5 7|5 7|5 7

5t Step: 6™ Step: 7t Step: 7 Steps to
5 |Left 6 |Right 5 |Up solution

Figure 2.23. An example of one step concept to solve 8-puzzle with 2 blanks.

As shown in figure 2.23, this configuration takes 7 steps to reach the solution.
We carried out 7 switchings and that consumed 7 times units. However, we
noticed that the first step and the second step are independent steps. In such a
case, we carried out switching the tiles (2 and 4) simultaneously. This double
switching consumed one time unit, therefore, we considered it as one step. So,
we can achieve double switching in one step.

By applying the new concept of double switching in one step to solve the
previous example, we reduced the solution steps from 7 steps to 4 steps as

shown in figure 2.24.
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1 €2 1124 1123 123 123
«4/3|6) |4|4[3| 5 |a]6> | ) |4|4]|6]/2 [4]|5]6
76|5 716|5 7| <5 7|5 7

1 Step: 214 Step: 31 Step: 4™ Step: 4 Steps to
2 |Left 3 Up 5 |Left 5|Up solution
4 |Left 6 Up 6 |Right

Figure 2.24. An example of the double switching concept to solve 8-puzzle with 2
blanks.

According to figures 2.23 and 2.24, double switching in one step concept can
be applied only when the tiles are switched independently. We confirmed that
each double switching can reduce the steps by 1 step, in the example we
carried out the double switching 3 times, reducing the solution steps by 3 steps
in total.
The analysis was carried out using "MATLAB 2020b"software as follows:

1. Searched the solution steps as one switching is carried out in one step.

2. Tracked the positions of the first and second blanks.

3. Assumed that each switching is assigned to one blank, and we can’t

carry out double switching for the same blank.

4. Checked independence of double switching.

Figure 2.25 shows an example of the double switching process in MATLAB.
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Firstblank  gecond blank

Initial -
state | 1x19 struct WhQS fields / [E] 1x16 struct with 5 fields
. data H?}jfil @:e [Frs s, w {7 data i (Hse [BFs s,
1 05371206400 U 331 23] 1 5371206400 U 133 (23]
2 1(5,3,0,1,2,7:64.0] "' L 331 [1.3] 2 [53.0,2,7:64,0] ' L 331 [1.3]
3 (5031276401 D 331 [12] 3 503127640 [L D |33 1.2
Solution 4 (5231076401 L' [33]1 [22] 4 [52,3;1,0,7,604] 'L t [32] [2.2]
steps 5 05231076041 'L ' B2 (22 5 15231070641 ° D 131 (22
6 15231070641 D 31 [22 6 15231670041 ° 'R 131 3.2
\7 (5.2,3,1,6,7:0,0,4] R [311  [3.2] 7 [5231.67:.040] ' v [31]1 [3.3]
3 1(5,2,3;1,6,7:0,4,0] U 31 133] ' 8 (5231600471 fU L' 311 (23]
9 1[5.2,3;1,6,0:0,4,7] L [31]1 23] 9 [523,0061471 0 [211 [22]
1005231060471 0 0 B[22 100023506147 'L (11 (22
105230061470 1 21 [22) 1023056147 D[] [21]
120023506147 U L] [22 120023156047 "* 'R (1] 3]
1300230561471 F D' 1] [21] 13[0,2,3;1,5,6;4,0,7][1,1] 2.2
1400231560471 R (] [37] 141,23:056470 'D "' 121 |[3.3]
150023156407 R L] 132 1,2,3;4,5,5;0,7,0] RO B33
Goal |efe23iseazo s 01 [33] U:Up 1601.2345670010 0 132 [3.3]
e [iosme w16 D Down
S~fa2345670000 0 132 133 R: Right 19
L: Left
One Switching: 18 steps Double Switching: 15 steps

Figure 2.25. An example of the double switching process in MATLAB.
In the example, the initial state is [5, 3, 7; 1, 2, blank; 6, 4, blank]. At the

programming level, we represent the blanks by zeros.
The analysis steps carried out by MATLAB are as follows:

1. Get the solution steps by applying the one switching in one step concept,
in the example, the solution steps are 18 steps;

2. Confirm that each switching is assigned to a different blank by
comparing the current state’s blanks with the next state’s blanks;

3. Check the independency of the blanks, which can be done by the concept
of Hamming distance as follow:
e Give the current state a Hamming = 0;
e Check the Hamming of the current state with the state (current + 2);
e If the Hamming = 2, the blanks are independent, else they are

dependent.
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In the example, the solution steps are 18 and 15 steps before applying the
double switching and after, respectively. Thus, we reduced the solution steps
by 3 steps.

Figure 2.26 illustrates the procedure algorithm to apply double switching.

| Search the shortest solution steps ‘

_____________ T ———===-
| . ) o
For loop for solution steps i=1~ ‘ 1 Give the state i, Hamming=0

1 1 v

Use Hamming distance 1 Calculate the P?ammlng of
. state i+2

for independence | T

Give label for each moved
blank

Steps i+1 and i+2 are
independent

bl Label # b1l_Label
Hamming =2

_____________ f_______

Show the solution steps ‘ Steps i+1 and i+2 Steps i+1 and i+2 are
are independent Not independent

Double-switching
End

Figure 2.26. the procedure algorithm to apply the double switching process.
2.5.4.1 Improvements with Block Movement

In the example described in 2.5.4, we assumed that one switching should be
applied for one blank and we can’t carry out the second switching for the same
blank. However, we noticed some cases where the same steps are applied for
the same blank in the current state and the next state. For instance, in steps 3
and 4 in the example shown in figure 2.25 (right) after applying double
switching, the first zero is moved left in both steps, in this case, we can apply
the block movement concept.

In this concept we move the two tiles together as one block to the right, the
blank would be moved to the left as well. To apply the block movement, we

follow the following steps:
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1. After applying the simple double switching, we check the cases of
moving the same blank twice in the same column or the same row.

2. Confirm the independency of another blank with the blank we are
applying block movement on. The blanks independency can be done
by tracking the blanks locations as follows:

e If the blank moves up or down in both current and next states,
another blank in the next state and the state (current +2) should not
be in the same column of the blank we are working on.

o If the blank moves left or right in both current and (current +1) states,
another blank in the (current +1) and (current +2) states should not

be placed in the same row of the blank we are working on.

Figure 2.27 illustrates the procedure algorithm to apply double switching with

block movement.

Block movement
_____________________ |

| Search the shortest solution steps ‘ : l

_____________ F-———-—-= 11— Track the blanks positions of states k+1,k+2
For loop for solution stepsi=1~ | ||
1 1 l l
Use Hamming distance I Case: Steps Case: Steps
for independence 1 Up or Down Left or Right

o)
1%
| |

No Steps i+1 and i+2 are 1l
independent 1
11
Yes : : No
| Combine these 2 steps in 1 step I‘I }
11
------------- el
Show the solution steps L—I Yes _~Find the~\ No
I target

Double-switching ~ ——= = e e e e oYL oo |
End

Figure 2.27. the procedure algorithm to apply the double switching process with

block movement.
Figure 2.28 shows the steps of solving the same example in figure 2.25 after

applying block movement.
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steps 50523107064] " 'D" 3] [22] 5 [5231,67:004] " 'R [31] [32
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9152300814710 1" [21] [22] . 9 0230561471 D[] |[21]
10023506147 " U 1] 122 1000231564070 2R 111 132
11§[0,2,3;0,5,6:1,47 " ‘D' 1] [21] 111,2,3:0,56470 'D* ' 211 [38.3]
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Goal [1302315640710° R[] B2 1311,2,3:4,5,6;7,0,0] 0 0 321 [33]

state (40230584700 [' 21 [33] 14

151234560701 R " 1311 [33] U-U 15
\*‘“1«3:4-5-5?1@01 0 o |32 |33 P 16 Second blank position

17 D: Down =

18 R: nght 18

19 L:Left |0
Double SWitChing: 15 steps Block movement: 12 steps

Figure 2.28. An example of applying block movement for an 8-puzzle with 2 blanks.
According to figure 2.28, the first blank had 3 cases where the same steps are
applied in both current and next states, and one case for the second blank
However, based on the condition described for the allowability of applying
block movement, only 3 cases can allow the block movement.

In this example, we reduced the solution steps by 3 steps. By applying the
double switching with block movement, we can carry out 3 steps

simultaneously in one step as shown in figure 2.29.

5/2[3

1 7
64

2nd State

Figure 2.29. The concept of double switching with applying block movement.
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2.6 Summary

In this chapter, we presented the puzzle-based system. We discussed two
solving methods: the game tree and the path-finding algorithms. We chose the
A-star algorithm which was optimally efficient among the algorithms that
extend search paths from the root. We modified the A-star algorithm to fulfill
the sequencing process by adding the solvability condition and pre-sorting
strategy by switching the last (n-2) tiles in the puzzle in the case of unsolvable
configuration which are 50% of puzzle permutations.

In this chapter, we investigated also the effect of several factors on the overall
solution steps. For instance, branching factor the Aspect Ratio and the
rectilinear distance.

To meet the practical implementation in real-world warehouses, we proposed
three strategies, increasing the board size using different puzzle board sizes,
using multi-boards, and adding buffer line. In addition, we dealt with the
puzzle with an arbitrary number of blanks. Firstly, we investigated the effect
of increasing the number of blanks in the puzzle on the maximum solution
steps. Then, we investigated the effect of simultaneous double switching in
one step on the system regarding maximum solution steps. By carrying out
simultaneous double switching in 8-puzzle with 2 blanks, we would be able
to reduce the maximum solution steps considering that one double switching

can reduce the steps by 1 step.
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CHAPTER 3

RESULTS AND DISCUSSION

After the overall explanation in the methodology chapter, here, we present the
results of the numerical equations and we discuss these results regarding
reducing the total number of steps keeping in the mind the usage area by the
system.

The results and discussion will be presented in different suction following the

same order in Chapter 2.

3.1 Puzzle Shape

We investigated in Chapter 2 different factors that affect the solution steps in
both a square board and a rectangular one, the summary of these factors” effect

is illustrated in table 3.1.

Table 3.1. Our generated tree for the 8-puzzle vs. other works.

Factor Square puzzle board Rectangular puzzle Board

Branching factor v X
Rectilinear distance v X
Presorting steps v X

v X

Aspect ratio
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In order to generalize the comparison of different shapes of the puzzle, the
same size and number of blanks were used. First, we investigated the 16-boxes

size of the puzzle.

3.1.1 16-boxes Size

This size can sort 15 boxes with two different shapes (4 x 4 and 2 x 8). As Figure
14 shows, we generated 2 x 10°> non-random states for both shapes, starting
from the target state. Figure 3.1 illustrates the performance of the generated

states regarding the solution steps.

100,000
90,000 ® 4x4 board
80,000 2x8 board

70,000

60,000
50,000
40,000
30,000
20,000 I
10,000 I
0 —_ = wm_ W I

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21
Solution steps

States

Figure 3.1. Comparison between the 4 x 4 and 2 x 8 board sizes with non-random

states regarding the solution steps.
To verify the validity of our method to generate the state tree, we compared
our 8-puzzle tree with other works regarding the following factors: maximum
number of states, maximum solution steps, and average solution steps. Table

3.2 illustrates the comparison between our results for the 8-puzzle with others.

Table 3.2. Our generated tree for the 8-puzzle vs. other works.

Comparison Factor Our Generated Tree  Other Works [29, 32, 43]
Maximum number of states 181,440 181,440

Maximum solution steps 31 31

Average solution steps 21.97 =22

61



According to Table 3.2, we were able to validate our method, and the same
program was used to generate the 2 x 10° states for different shapes in this
section.

In the generated tree of the 16-boxes size of the puzzle, we noticed clearly a
significant difference in the state numbers of the two puzzles in the same tree
depth (solution steps). In other words, states in one shape of the puzzle need
more solution steps than the second shape. The equation that describes the

number of states that need more solution steps is as follows:

Smax2
N = z N;, (3.1)
i=Spmax1+1
where N is the number of states that need more solution steps; Syax1 is the
maximum solution steps of the first shape; Sy ax2 is the maximum solution
steps of the second shape; and N; is the number of states in the depth i.
According to Equation (3.1), for all generated states, 88.35% of states could
provide fewer solution steps in the 4 x 4 board than in the 2 x 8 for the 2 x 10°
states. Furthermore, Equation (3.2) provides an increasing percentage of

solution steps for different shapes.

S )
Splus — | max.1 max.2| X 100%’ (32)

Smax

where S, is the increasing percentage of solution steps; Spax 1, Smax.2 are the
same as in Equation (3.1); and S,y is the total solution steps. Based on
Equation (3.2), the results prove that the 4 x 4 board achieved 23.8% of steps
better than the 2 x 8 board at 2 x 10° states. Overall, when increasing the
number of states in both given boards, the 4 x 4 board performed better than
the 2 x 8 board in terms of the number of steps. Next, we considered a 36-boxes

size of the puzzle.
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3.1.2 36-boxes Size
This size can sort 35 boxes. In this case, there are four different shapes (6 x 6, 4
x 9,3 x 12, and 2 x 18). The same analysis as in the previous case with the size
of 16-boxes was carried out. Figure 3.2 shows the solution steps of all states

with the same number of boxes for different shapes.

100,000
90,000 @® 6x6 board
4x9 board
80,000
3x12 board
70,000 2x18 board
»w 60,000
Q
= 50,000
~—
@2 40,000
30,000
20,000
10,000 I
0 _ - | I
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Solution steps

Figure 3.2. Comparison between the 6 x 6,4 x 9, 3 x 12, and 2 x 18 board sizes for

non-random states.
We observed the same trend in Figure 3.1 for our 16-boxes size of the puzzle
in Figure 3.2. For all generated states, and referring to Equation (3.1), we
confirmed that 44.63%, 76.60%, and 96.92% of states provided fewer solution
steps in the 6 x 6 board than in the 4 x 9, 3 x 12, and 2 x 18 boards, respectively.
Moreover, from Equation (3.2), the 6 x 6 board provided 7.14%, 13.33%, and
31.57% steps fewer than the 4 x 9, 3 x 12, and 2 x 18 boards, respectively. From
these results, we deduced that the square shape of the puzzle had a better

performance than the rectangular shape.
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3.2 Board Size and Number

We discussed in Chapter 2, three strategies to carry out the sequencing process
for more than 8 boxes. Since the first strategy which is increasing the size of
the board had a limitation restricted by the puzzle capacity, we present and

discuss in this chapter only the two other strategies.

3.2.1 Using Multi-Boards

In this section, we illustrate the results of two parameters, the time as a total

number of steps, and the area used by the system.

3.2.1.1 Area for the Strategy of Using Multi-Boards

Based on Equation 2.6, we calculated the area used by the boards ignoring the
main conveyor. Figure 3.3 illustrates the comparison between 8-puzzle, 15-

puzzle, and 24-puzzle used for this strategy regarding the area.

Area [box size|

7[} T T T T T T T T
O 8-puzzle "
60 F| * 16-puzzle -
A 24-puzzle o o
TS[} - a-a 2 a2 -
N °
=
w40 r 7
é o O
30+t X ¥ -
L A
< 201 py 4
¥
10F o 4
[} 1 1 1 | 1 1 1 |
5 10 15 20 25 30 35 40 45 50

Input [n]
Figure 3.3. Comparison between 8-puzzle, 15-puzzle, and 24-puzzle used for multi-boards

strategy regarding the area.
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According to figure 3.3, we notice the variety in the area occupied by the
system for different puzzle sizes, that is directly related to the deference
number of used boards for the same input.

For example, for 32 boxes as an input, the number of boards used 8-puzzle
board is 4 boards, using the 15-puzzle board is 3 boards, and using the 24-
puzzle board is 2 boards. The areas of these three puzzles are 36 4, , 48 A;, and
50 Aj. In this example, it is clear that the 24-puzzle board is superior to the
other boards.

In another example, for 48 boxes as an input, the areas are 54 4, , 64 A,, and

50 A, using 8-puzzle, 15-puzzle, and 24-puzzle respectively.

3.2.1.2 Time for the Strategy of Using Multi-Boards

Based on Equation 2.8, Figure 3.4 illustrates the comparison between 8-puzzle,
15-puzzle, 24-puzzle used for this strategy regarding the total solution steps
in the worst case which is considered the maximum solution steps of the

puzzle.
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Figure 3.4. Comparison between 8-puzzle, 15-puzzle, and 24-puzzle used for multi-

boards strategy regarding the total solution steps.

According to figure 3.4, we verified the superior of 8-puzzle board size to other
boards sizes. The reason for that is the significant increase in the maximum
solution steps for these puzzles as is illustrated in table 2.4.

Since the results vary regarding the area and time between different boards
sizes, we need to find a compromise between the area and the time to evaluate
the best board size for this strategy. Using the Selection Index theory may

make us able to compromise between the area and the time for this strategy.

3.2.1.3 Selection Index Theory

As we needed to compromise between the area used by the system and the
time of sequencing for this strategy, we used the Selection Index theory.
In animal and plants breeding, the breeding value is used by the definition of

Estimation of Breeding Value (EBV), this estimation is calculated based on
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individual observed phenotypes information, in addition to the information
from relatives and correlated traits.

To combine information from different sources, the researchers used the
Selection index and they expressed the EBV as an index, weighing different
types of information. Equation 3.3 illustrates the classical Selection Index for a

combination of different sourced information [44].

EBV = Index = b1X1 + b2X2+ +ann (33)

where EBV is the estimation of breeding value and by, by, ..., b, are the weights
and X;, X, ..., X, are phenotypic information sources.

In this study, we used the same theory to compromise between the area and
time. Firstly, we normalized the results of the area and time to unify the range
of the y axis. we rescaled the y axes of both time and area from 0 to 1. Then,
we weighed equally the area and the time, and we keep to the logistical
managers to evaluate the importance of these parameters. Equation 3.4

illustrates the use of the classical selection index for area and time.

I=+4+0.54+ 0.5S:ta (3.4)

where S;o¢q1 15 the total solution steps which refer to the solution time; and A
is the area used by the system.

Since we aimed to reduce the used area and minimize the solution time, the
smaller the Index is the better strategy we get. Figure 3.5 illustrates the index

of both area and time after normalizing (rescale) their results.
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Figure 3.5. Selection index for normalized time and area of multi 8,15 and 24 boards

for 48 input
According to figure 3.5, we observe the superior of using multi 8-puzzle size

boards to other boards in this strategy.

3.2.2 Adding a Buffer Line

The same two parameters discussed to evaluate the strategy will be

considered.

3.2.2.1 Area for the Strategy of Adding Buffer Line

We compared the area for this strategy with the area of using multi-8-puzzle
boards illustrated in Section 3.2.1.1. Based on Equations 2.6, and 2.9, we get
Figure 3.6 which illustrates the comparison between muti-8-puzzle boards and

adding buffer line regarding the system area for 48 boxes as an input.
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Figure 3.6. Comparison between muti-8-puzzle boards and adding buffer line

regarding the system area.
In figure 3.6, we noticed that using a buffer line reduced the used area. The
reason is the linearity of the area in this strategy, while in a multi-board
strategy the area depended on the capacity of the puzzle which affects also the

number of used boards.

3.2.2.2 Time for the Strategy of Adding Buffer Line

According to Equations 2.8, and 2.10, Figure 3.7 illustrates the comparison
between muti-8-puzzle boards and adding buffer line regarding the total

solution steps.
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Figure 3.7. Comparison between muti-8-puzzle boards and adding buffer line

regarding the total solution steps.
We noticed that adding a buffer line increases the total number of steps

compared to the strategy of multi-boards with an 8-puzzle board size.

3.2.2.3 Index for the Strategy of Adding Buffer Line

As same as the strategy of using multi-boards, we used the selection index
theory to compromise between the area and time for the strategy of adding
buffer line.

For comparison and selection index, we compared the strategy of adding
buffer line with the strategy of using multi-board with the size of 8-puzzle
board.

Based on Equation 3.4 we calculated the index for these strategies. Figure 3.8
illustrates the index of both area and time in this strategy and multi-8-puzzle

boards after normalization.
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Figure 3.8. Selection index for normalized time and area of multi 8-puzzle boards

and bulffer line for 48 input
Based on figure 3.8, the strategy of using multi-boards with the 8-puzzle board
size was better than the strategy of adding a buffer line to the system.
Figure 3.9 illustrates the curve fitting of the multi-boards strategy with three
different board sizes and adding buffer line strategy. The curve fitting gives

an estimation of the trend of indices for different input numbers.
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Figure 3.9. Curve fitting for multi-boards and adding buffer line strategies with

three different board sizes.

From the figure, we can conclude the superiority of the strategy of using multi-

boards with the 8-puzzle board size to other strategies and sizes.

3.3 Number of Blanks

To compromise between the number of blanks and the puzzle capacity, the
same analyses of the strategy of using multi-boards with the size of 8-puzzle
regarding the area and total solution steps were carried out. In this analysis,
we considered the 8-puzzle with a different number of blanks. Figure 3.10
illustrates the area of the system for a different number of blanks in the

strategy of using multi—puzzle boards.
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Figure 3.10. The area of multi 8-puzzle boards for different numbers of blanks.
As shown in the figure, increasing the number of blanks will always increase
the system area. The reason is that increasing the blanks will decrease the
puzzle capacity, and increase the number of boards as Equation 2.7. Figure
3.11 illustrates the total solution steps in the strategy of multi-8-puzzle boards

for different numbers of blanks.
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Figure 3.11. The total solution steps of multi 8-puzzle boards for different numbers
of blanks.

According to Figure 3.11, 4 blanks provided the shortest solution steps.

The reason behind these results is the big difference in the number of boards
which is the coefficient of the presorting steps as in Equation 2.8.

For example, for 30 boxes as an input of the system. 1 blank puzzle needed 4
boards while 4 blanks needed 6 boards. Even though the maximum solution
steps is decreasing by increasing slightly the blank, the coefficient of this
parameter is always 1.

Figure 3.12 illustrates the parameter of Equation 2.8 for 30 boxes regarding
different numbers of blanks. As the total number of steps, 4 blanks provide the
shortest solution steps compared to other puzzles with different numbers of

blanks.
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Figure 3.12. The parameter of Equation 5.5 for 30 boxes regarding different numbers
of blanks.

Same analysis as for the strategies described before in this Chapter to evaluate
the system regarding different numbers on blanks. We used the selection
index theory to compromise between the area and time.

Figure 3.13 illustrates the index for multi-8-puzzle boards with different

numbers of blanks.
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Figure 3.13. The index for multi-8-puzzle boards with different numbers of blanks.
According to figure 3.13, up to 25 boxes, the behavior of less than or equal to
4 blanks has almost the same index with very slight changes, while more than
4 blanks the puzzles have a bigger index.

For greater than 25 boxes, we noticed that 1 and 2 boxes have the almost same
index, while 3 and 4 blanks started to give a bigger index than 2 and 1 blank.

Until now, even though, these puzzles have more than one blank, we slide
only one blank each step. Next, we investigated the double switching effect on

the solution steps.

3.4 Double Switching

As described in Chapter 2, we carried out double switching in one step. We
have two different cases: the general case where the blanks are placed

randomly in the puzzle and the case where the blanks are placed in the corner
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of the puzzle. We present the effect of double switching on the solution steps

for both cases.

3.4.1 General Case

We investigated the new concept to solve 8-puzzle with 2 blanks for all
configurations in the general case where the blanks are randomly placed in the
puzzle.

Figure 3.14 illustrates the number of possible simultaneous double switching

for an 8-puzzle with 2 blanks.

" x10* | |
[ 181436 states

201 35,
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Simultaneous multi switching

Figure 3.14. The number of simultaneous double switching for 8-puzzle with 2
blanks.

In figure 3.14, we noticed that the maximum states are 181436 states, because,
the first 4 states in the tree take less than 2 steps to reach the goal state.

According to the figure and the analysis steps described, we reduced the
number of solution steps for 177225 states out of 181436 states by a minimum

of 1 step, an average of 2 steps, and a maximum of 7 steps.
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To evaluate the reduction percentage by carrying out double switching in one
step, we considered the average solution steps of the puzzle with 2 blanks as
illustrated in Table 2.6. In addition, we considered the average reduction steps
which are 2 steps.

Figure 3.15 illustrates the reduction percentage of solution steps for 8-puzzle

with 2 blanks.
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Figure 3.15. Reduction percentage of solution steps for 8-puzzle with 2 blanks.
According to the figure, by considering the average solution steps and average
reduction steps, we got a 12.5% reduction percentage of the solution steps.

The results shown in figure 3.15 are summarized in table 3.3.
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Table 3.3. The reduction percentage of solution steps for 8-puzzle with 2 blanks.

Double-switching Minimum Maximum Average

(16 solution steps)

1 time (Reduce 1 step) 4.16% 50% 6.25%

2 times (Reduce 2 steps) 8.33% 40% 12.5%

3 times (Reduce 3 steps) 12.5% 42.85% 16.66%
4 times (Reduce 4 steps) 16.66% 44.44% 22.22%
5 times (Reduce 5 steps) 20.83% 45.45% 26.31%
6 times (Reduce 6 steps) 25% 42.85% 31.57%
7 times (Reduce 7 steps) 30.43% 41.17% 33.33%

According to table 3.3, the minimum percentage of steps reduction is 4.16%

and the maximum is 50%.

3.4.2 Blanks Placed in the Corner of the Puzzle

We assumed that practical implementation in a real-world warehouse requires
placing the blanks in the corner of the puzzle.

The same analyses for double switching in the general case were conducted
considering our assumption for practical implementation requirement.
Figure 3.16 illustrates the number of possible simultaneous double switching

for an 8-puzzle with 2 blanks placed in the corner of the puzzle.
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Figure 3.16. The number of simultaneous double switching for 8-puzzle with 2
blanks placed in the corner of the puzzle.
As shown in the figure, the total states, in this case, are 5040 states. We reduced
the number of solution steps for 4766 states out of 5040 states by a minimum
of 1 step, an average of 2 steps, and a maximum of 5 steps.
Considering the case of placing the planks in the puzzle corner, we generated
all the states and calculate the maximum and average solution steps for an

arbitrary number of blanks for 8-puzzle as illustrated in table 3.4.

Table 3.4. The effect of an arbitrary number of blanks on the solution steps for an 8-
puzzle with 2 blanks placed in the corner of the puzzle.

Number of = Maximum Maximum Maximum Average
blanks capacity states solution steps  solution steps
1 8 20160 30 22.14
2 7 5040 24 16.27
3 6 720 20 13.17
4 5 120 14 10
5 4 24 12 7.39
6 3 6 8 5.6
7 2 4
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According to table 3.4, the average solution steps are 16 steps. And as shown
in figure 3.16, the average reduction steps are 2 steps. Keep this in mind, we
analyzed the reduction percentage of solution steps when carrying out double
switching in one step.

Figure 3.17 illustrates the reduction percentage of solution steps for an 8-

puzzle with 2 blanks placed in the corner of the puzzle.
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Figure 3.17. Reduction percentage of solution steps for an 8-puzzle with 2 blanks for

practical implementation requirement.
The summary of the results shown in the figure is illustrated in table 3.5.

Table 3.5. The reduction percentage of solution steps for 8-puzzle with 2 blanks
placed in the corner of the puzzle.

Double-switching Minimum Maximum Average

(16 solution steps)

1 time (Reduce 1 step) 4.54% 25% 6.25%
2 times (Reduce 2 steps) 8.33% 25% 12.5%
3 times (Reduce 3 steps) 13.63% 30% 16.66%
4 times (Reduce 4 steps) 18.18% 28.57% 22.22%
5 times (Reduce 5 steps) 22.72% 31.25% 27.77%
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According to table 3.5, the minimum percentage of steps reduction is 4.54%,
the maximum is 31.25%, and the average is 12.5%.

To evaluate the improvement of applying the block movement on the total
solution steps in the system, the same analyses as in 3.4.1 and 3.4.2 are carried
out here.

Figures 3.18 and 3.19 illustrate the number of simultaneous double switching
for 8-puzzle with 2 blanks after applying the block movement in both general

case and the case of placing the blanks in the corner of the puzzle, respectively.
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Figure 3.18. The number of simultaneous double switching with block movement

for 8-puzzle with 2 blanks.
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Figure 3.19. The number of simultaneous double switching with block movement

for 8-puzzle with 2 blanks placed in the corner of the puzzle.

According to figure 3.18, We reduced the number of solution steps for 180,986
states out of 181,436 states by a minimum of 1 step, an average of 4 steps, and
a maximum of 12 steps.

In figure 3.19, We reduced the number of solution steps for 5025 states out of
5040 states by a minimum of 1 step, an average of 4 steps, and a maximum of
10 steps.

For getting the reduction percentage of steps after applying the block
movement, we concede the average solution steps of the 8-puzzle with 2
blanks (16 steps) and the average reduction steps (4 steps). Figures 3.20 and
3.21 illustrate the reduction percentage in the general case and the practical

implementation requirement, respectively.
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Figure 3.20. Reduction percentage of solution steps after applying block movement

for 8-puzzle with 2 blanks.
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Figure 3.21. Reduction percentage of solution steps after applying block movement

for 8-puzzle with 2 blanks placed in the corner of the puzzle.

The summary of the results shown in figures 3.20 and 3.21 are illustrated in

tables 3.6 and 3.7, respectively.
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Table 3.6. The reduction percentage of solution after applying block movement

steps for 8-puzzle with 2 blanks.

Double-switching Minimum Maximum Average
(16 solution steps)

1 time (Reduce 1 step) 4.54% 50% 6.25%

2 times (Reduce 2 steps) 8.69% 66.66% 12.5%

3 times (Reduce 3 steps) 13.4% 75% 18.75%

4 times (Reduce 4 steps) 16.66% 66.66% 25%

5 times (Reduce 5 steps) 20.83% 62.5% 31.25%

6 time (Reduce 6 steps) 25% 60% 37.5%

7 times (Reduce 7 steps) 29.16% 58.33% 43.75%

8 times (Reduce 8 steps) 33.33% 57.14% 50%

9 times (Reduce 9 steps) 37.5% 56.25% 56.25%

10 times (Reduce 10 steps) 41.66% 55.55% -

11 times (Reduce 11 steps) 47.82% 52.38% -

12 times (Reduce 12 steps) 52.17% 54.54% -

Table 3.7. The reduction percentage of solution steps after applying block

movement for 8-puzzle with 2 blanks placed in the corner of the puzzle.

Double-switching Minimum Maximum Average
(16 solution steps)

1 time (Reduce 1 step) 5% 25% 6.25%

2 times (Reduce 2 steps) 10% 33.33% 12.5%

3 times (Reduce 3 steps) 13.63%% 37.5% 21.42%

4 times (Reduce 4 steps) 18.18 50% 25%

5 times (Reduce 5 steps) 22.72% 41.66% 31.25%

6 time (Reduce 6 steps) 27.27% 50% 37.5%

7 times (Reduce 7 steps) 31.81% 50% 43.75%

8 times (Reduce 8 steps) 33.33% 50% 50%

9 times (Reduce 9 steps) 40.9% 50% -

10 times (Reduce 10 steps) - 45.45% -
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According to table 3.6, the minimum percentage of steps reduction is 5%, the
maximum is 50%, and the average is 25%.

According to table 3.7, the minimum percentage of steps reduction is 4.54%,
the maximum is 75%, and the average is 25%.

From tables 3.6 and 3.7, we confirmed the improvement in the system

regarding the solution steps after applying the block movement.

3.5 Managerial Impact

To evaluate the proposed system and explore the impact of implementing the
puzzle-based concept in products sequencing, we compared the proposed
system with the other used systems. In addition, we compared the puzzle
system with the traditional sorting algorithm (Dual-Pivot Quicksort
algorithm).

Firstly, the puzzle-based sequencing system was compared with the
GridSequence system developed by Gue et al. [11] with respect to the floor
used area and sequencing time. In order to evaluate the utilization of floor
space in the sequencing system, we calculated the area used by the puzzle-
based system based on Equation 2.6 (we considered the strategy of using
multi-boards with the size of 8-puzzle). For the GridSequence system, we
considering 1 additional column and one additional row to the grid. Thus, the
area is calculated as (n + 1) x (m + 1), where (i =n * m), where i is the number
of boxes that need to be sequenced.

Table 3.8 illustrates the used area in the puzzle-based system versus the

GridSequence system for sequencing different numbers of boxes.
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Table 3.8. The used area in a puzzle-based system vs. a GridSequence system.

Number of  Puzzle-Based System GridSequence System
. Area=(n+1) x (m+1) X A,
boxes ()  Area=[C,+ 1)N,] x 4,

8 C,=8 N,=1 9 n=2m=4 15
32 C,=8 N,=4 36 n=5m=7 42
48 C,=8 N,=6 54 n=6m=38 63
96 C,=8 N,=12 108 n=8 m=12 117

As shown in Table 3.8, the puzzle-based system can provide a less used area
than the GridSequence system. Better space utilization is quantified, with a
practical example; to sequence 32 boxes with sizes of 35 cm x 35 cm = 0.1225
m2, GridSequence would occupy 5.14 m2, while the proposed puzzle-based
would occupy 4.41 m2. Therefore, a puzzle-based sequencing system is
recommended to reduce the space as well as reduce the cost.

Second, we compared the proposed system with the GridSequence system
regarding the sequencing time. In the puzzle-based system, we considered the
multi-boards with the size of 8-puzzle, and we assumed that one step is carried
out in 1 second. In addition, we add 3 steps to empty each board (assuming
that every 3 boxes will be out of the puzzle simultaneously as on block). In the
GridSequence we took into consideration 1 and 2 columns, and we considered
the case of aspect ratio equals to 1 to match our board aspect ratio. Table 3.9
illustrates the sequencing time in the puzzle-based system versus the

GridSequence system for sequencing 96 boxes.

Table 3.9. The sequencing time in a puzzle-based system vs. a GridSequence
system for 96 boxes.

Number of Puzzle-Based System GridSequence System
boxes (i) Equation 2.8 Gue et al. [11]
96 Ng=12 234 Sec. No. of Column=1 =320 Sec.
96 Ng=12 234 Sec. No. of Column=2 =313 Sec.
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As shown in the table, the puzzle-based system can sequence 96 boxes in 234
seconds (Recall that 1 step is carried out in 1 second, which is realistic time in
real-word). As a result, the proposed system significantly reduces the
sequencing time compared with the GridSequence system.
Further comparison is carried out with traditional sorting algorithms such as
the Dual-Pivot Quicksort algorithm. In the Dual-Pivot Quicksort algorithm,
we chose two pivots and the algorithm can be described as follows:
1. Define the first and the last elements in the series as pivot 1 (P1) and
pivot 2 (P2) respectively, and the remaining elements are divided into
three parts: in part I, the elements that are smaller than P1, in part III,
the elements that are bigger than P2. the rest of elements are placed in

part II as illustrated in figure 3.22.

P1 <P1 P1> & <P1 >PpP2 P2

Left L K Right
Part I Part II Part III

Figure 3.22. Concept of Dual-Pivot Quicksort algorithm.

2. Swap P1 with the last element of part I, and swap P2 with the first
element of part III.
3. Repeat steps 1 and 2 for Parts I, 1I, III.
The average number of swaps of the Quicksort algorithm with 2

pivots is (0.8*n* In(n)) [45].

Since the Dual-Pivot Quicksort algorithm has a smaller number of swaps than
classical Quicksort, we compared a concept of implementing this algorithm to
sort 8 items using flexible multi-directional conveyors with puzzle sorting

concept as illustrated in figure 3.23.
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Figure 3.23. Principle of swap & step in Quicksort algorithm with multi-directional

conveyors system and puzzle sorting concept.

Table 3.10 illustrates the comparison between the puzzle concept and Dual-

Pivot Quicksort algorithm regarding the area, and number of steps

Table 3.10. Comparison between the puzzle concept and Dual-Pivot Quicksort

algorithm.

Dual-Pivot Quicksort n=8  Puzzle-based system n=8

Area [box size] 3n 24 n+l 9

No. of steps [45] Avg=0.8xnxIn(n)x3* 39.9 Max.=31 (for n=8) 31

* Swapping two boxes needs at least 3 steps

According to the table, the puzzle provided fewer steps than the Quicksort
algorithm, also the area used by the puzzle is less than that used by the flexible
multi-directional conveyors.

We investigated the implementation of Quicksort algorithm utilizing puzzle
movement concept for an example of 8 elements by applying the following
steps:

1. Arrange the list on a 3x3 grid (3x3 puzzle grid).

2. Do partitioning considering the pivots (sub-targets), with putting in
consideration that swapping two tiles should not change others
sequence configuration.

3. Put the pivots in their proper positions (sub-target).
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4. Repeat the algorithm for the unsorted partitions.

Figure 3.24 illustrates an example of implementing the Dual-Pivot Quicksort
algorithm utilizing the sliding puzzle movement concept for 8 elements

(assuming we can do multiple swapping simultaneously).

Sub-trargets
Initial target
423 4 2 3 2/3|1 1/3|2 123
6|18 165 465 4/5/6— 4|5 6
5|7 8 7 78 7|8 7|8

15t swaps 2™ swaps 3" swaps 4™ swaps

v

A J

v

Figure 3.24. Implementation of Dual-Pivot Quicksort algorithm with 2 pivots

utilizing sliding puzzle concept.

According to figure 3.24, swapping two elements needs several steps to move
from one state to the next sub-target, and each sub-target is considered as a
puzzle. Based on the previous example; in order to sort the list of 8 numbers,
we had to solve the puzzle four times.

Table 3.11 illustrates the comparison between the puzzle concept and Dual-
Pivot Quicksort algorithm used puzzle-based board regarding the area, and

number of steps

Table 3.11. Comparison between the puzzle concept and Dual-Pivot Quicksort

algorithm used puzzle-based board.

Dual-Pivot Quicksort n=8  Puzzle-based system n=8

Area [box size]  3+1 9 n+l 9

No. of steps [45] Avg.=0.8 xn xIn(n) x 16* 212.9 Max.= 31 (for n=8) 31

* Average solution steps for 8-puzzle is 16
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According to the table, the puzzle provided much less sequencing time than
Dual-Pivot Quicksort.
Figure 3.25 illustrates the performance of the proposed method compared

with other sequencing systems regarding the used area and the sequencing

time.
Traditional sorting
algorithm
Q
£
= || AS/RS
ED Sortation conveyor
% GridSequence
=
L
o0 Proposed
system
Used floor space

Figure 3.25 Performance comparison between the proposed method and other
sequencing systems regarding the used area and the sequencing time.
According to the figure, the proposed puzzle-based sequence system provided
better performance as a counterbalance between used floor space and the

sequencing time.

3.6 Summary

In this chapter, we investigated the effect of the board shapes on the system
regarding solution steps. We compared the same size of the puzzle with
different shapes. The results showed that a square shape provided better

performance than a rectangular one.
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The results of the practical implementation strategies were presented. we
concluded that the strategy of using multi-board with the 8-puzzle board size
was the most suitable strategy regarding both the used system area and total
solution steps.

We dealt in this Chapter with the puzzle with an arbitrary number of blanks.
In the strategy of using multi-boards with an 8-puzzle board size, we carried
out the sorting for different numbers of blanks for 8 to 48 boxes as an input of
the system. As a result, if the number of input boxes is up to 25 boxes,
increasing the blanks up to 4 blanks has a very slight effect, however, if the
number of inputs grows above 25 boxes, 1 or 2 blanks shows almost the same
behaviour regarding the area used by the system and the total solution steps.
while increasing the blanks more than 2 gave an opposite effect on the system.
We investigated the effect of simultaneous double switching in one step on the
system regarding maximum solution steps. Simultaneous double switching
allows reducing the maximum solution steps by an average of 2 steps and as
of 12.5% steps reduction percentage. Afterward, we improve the reduction
percentage by applying the block movement concept. As a result, we reduced
the solution steps by an average of 4 steps and an average of 25% steps as a
reduction percentage.

The proposed system provided a higher floor space utilization and lower

sequencing time compared with some systems and sorting algorithms.
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CHAPTER 4

CONCLUSION AND FUTURE WORK

4.1 Conclusion

Item sequencing has become necessary in order to increase the efficiency of
logistics operations. In this Dissertation, we focused on the material handling
devices that could carry out the sequencing task. We developed a puzzle-
based sequencing system with highly efficient floor space utilization as well
as lower sequencing time. Different searching techniques were discussed, and
the A-star algorithm was chosen to find the shortest solution for the puzzle.
Furthermore, a pre-sorting process was proposed to overcome unsolvable
configurations. In the pre-sorting process, we switched the last two items;
therefore, different filling-in processes might affect the overall steps to reach
the final goal of the puzzle.

Two shapes of the puzzle with the same size were considered to achieve the
minimum number of solution steps. The results clarified a different number of
states in the same level of the generated tree for both shapes with different
sizes. For different puzzles, if we give a random state, there is a high
probability that it will be in the tree with the higher number of states at the
same level. Several factors were discussed with their effects on the puzzle
solution steps. Based on the results of the numerical calculations, it can be
concluded that a square shape can provide a shorter solution than a

rectangular shape.
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Practically, the 8-puzzle sequencing system is restricted by the puzzle
capacity. Therefore, we proposed and discussed three strategies to meet the
practical implementation in real-world warehouses where the need of
sequencing a list of more than 8 items.

Our proposed strategies were:

1. Increasing the board size using different puzzle board sizes: In this
strategy, we were still limited to the used puzzle capacity.

2. Using multi-boards: in this strategy, we used several boards placed
along with the main conveyor, on these boards the sequencing
processes were carried out in parallel. we compared 8,16 and 24-
puzzle, and we observe that 8-puzzle board size performs better than
other boards regarding the area used by the system and the total
solution steps.

3. Adding buffer line: in this strategy, we added a buffer conveyor along
with the main input conveyor. For the input boxes ordered more than
8, they will temporarily be buffered and resequencing in the next
sequencing process. We compared the strategy of using multi-boards
with 8-puzzle board size with the strategy of adding buffer line, we

observe the superiority of using multi-8-puzzle boards.

Finally, we investigated the effect of increasing the blanks in the puzzle which
reduced the maximum solution steps. Carrying out simultaneous double
switching allowed us to reduce the maximum solution steps by an average of
2 steps which is a 12.5% steps reduction percentage. After the improvement
by applying the concept of block movement, we were able to reduce the
solution steps by an average of 4 steps which is a 25% steps reduction
percentage. The best strategy for more than 8 boxes is using multi-boards
along with the main feeding conveyor with the shape and size of 8-puzzle with

2 blanks.
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Compared with other sequencing systems the proposed puzzle-based system
provided a lower used area and highly efficient floor space utilization.
Furthermore, the puzzle system achieved better performance regarding the
sequencing time. These points are important parameters when considering
designing a material handling device for products sequencing to reduce the
capital, operational and variable costs including minimizing the cost of

workforces.

4.2 Limitations and Future Work

4.2.1 Limitations

The limitation of the presented system can be represented from the Mechanical
point of view. In the case where a conveyor module has a problem, the cell of
this module will be considered as a broken cell or idle cell. Here we have 3
cases:
- The idle cell is in the puzzle’s corner: we still be able to use the same
algorithm, however, we can be able to sequence up to 7 boxes per board.
- The idle cell is along the edge of the puzzle: the maximum number of boxes
that can be sequenced is 6 boxes, and we use the same algorithm.
- The idle cell is in the middle of the puzzle: here the sequencing process
won'’t proceed anymore, thus we need to maintain the board.

This problem can be more considerable when more than one cell is broken in

the board.

4.2.1 Future Work

As presented in this thesis, we used a pre-sorting process to overcome the
unsolvable states of the puzzle. we assumed the filling in strategy in the way
the first three boxes will be placed at the first row of the puzzle, then the boxes

4 to 6 will be placed in the second row in the order shown in figure 4.1.
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Figure 4.1 Current pre-sorting strategy

However different filling-in strategies might be applied, for instance, choosing
the best configuration toward the shortest solution steps.

in this strategy, we chose the best permutation for the first three boxes which
are placed in the first row, and then based on this permutation, we investigate
the best permutation for the next three boxes.

Eventually, we reach the best state configuration that provides the shortest
solution steps.

Figure 4.2. illustrate the concept of the new pre-sorting strategy.

3 3

1 4

7]8lel2]s)[al1]3 : 1

Input se=p- Sequencing tll 1
board 3

Figure 4.2. The concept of the new pre-sorting strategy.
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