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ABSTRACT 

The new challenging demands of the current market including space should 

be satisfied by designing modern material flow systems, with higher levels of 

flexibility and reliability. Designing warehouses using effective material 

handling equipment such as multi-directional conveyors significantly reduces 

the cost towards efficient space utilization and time-saving. Several storage 

strategies can be applied depending on service concerns and products storage 

conditions, for instance, for storing frozen items that need specific temperature 

conditions, the zoning strategy is applied. On the other hand, different order 

picking policies might be used such as Batch picking where the orders would 

be batched together and the picking process carried out for whole required 

orders in a single picking round. Under batch and/or zoning picking policy, 

which is applied in most online retailers’ warehouses, products necessitate 

further processes such as consolidation, sorting, and sequencing. Sequencing 

of items is one of the important processes that lead to enhancing logistic 

operations. However, current approaches are not capable of fully fulfilling the 

dynamic changes, and therefore puzzle-based sequencing system with very 

high density and highly efficient floor space utilization has been successfully 

developed. 

Accordingly, two puzzle-solving methods are investigated; the game tree and 

the pathfinding algorithms. A-star is chosen based on pathfinding algorithms 

in order to find the shortest solution of the puzzle in which the sequencing 

time is decreased. Furthermore, the pre-sorting process is proposed to 

overcome the unsolvable configuration issue. The shape of the puzzle is 

discussed with several factors that affect the sorting steps, and numerically we 

found that the square shape is better than the rectangular one in terms of 
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solution steps. Three introduced technical solutions strategies are proposed to 

increase the limitation of the puzzle; increasing the puzzle size, using multi-

boards with the same puzzle boards sizes, and adding buffer conveyor. These 

strategies are explained and discussed in terms of the area used by the system 

and the total solution steps. Using multi-boards with the 8-puzzle board size 

was superior to other strategies. An arbitrary number of blanks in the puzzle 

was discussed with their effect on the puzzle capacity and maximum solution 

steps. Moreover, by carrying out double switching in one step with applying 

the block movement concept, the solution steps are minimized by a minimum 

of 1 step, an average of 4 steps, and a maximum of 10 steps in an 8-puzzle with 

2 blanks placed in the corner of the puzzle, and the average reduction 

percentage of solution steps was 25%. The best strategy to sequence more than 

8 boxes in one sequencing time is using multi-boards along with the main 

feeding conveyor with the shape and size of 8-puzzle with 2 blanks. 

The findings suggest that a puzzle-based sequencing system would be 

preferred for highly efficient floor space utilization as well as lower 

sequencing time compared to other systems.  

Keywords:  Warehouse; Sequencing; 8-puzzle; A-star algorithm. 
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1 CHAPTER 1 

INTRODUCTION 

 Background 

Logistics operations can be elucidated by several fixed assets: warehouses, 

depots, transport, and material handling. The number and size of these assets 

are important factors in effective logistics planning [1].  

The warehouses take second place in the logistics functions after transport, 

and its capital and operating cost embody 23% of logistics costs in the US, and 

39% in Europe [2].  

 

Figure 1.1. The capital and operating cost of warehouses. 

Warehouses are often one of the most costly elements of the supply chain [1]. 

Two types of warehouses can be categorized; distribution warehouses, where 

the products are collected from the point of origin for delivery to consumers, 

and production warehouses, where the raw materials and semi-finished 
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products of production facilities are stored [3]. The proper design of 

warehouses is one of the most important factors affecting space utilization, 

efficiency, and cost [4][5]. Figure 1.2 illustrates the common activities of 

warehouses, which can be summarized in four main parts: receiving, storage, 

order picking, and dispatching. 

 

Figure 1.2. The common warehouses’ activities. 

1. Receiving: This typically includes the physical unloading of incoming 

transport, and recording the incoming goods into the computer system. 

As well as the quality control checks which may be undertaken as part 

of this activity. 

2. Storage: Goods are normally taken to the reserve storage area, which is 

the largest space user in many warehouses. Different storage strategies 

can be applied depending on service concerns, and goods storage 

conditions, for instance, for storing some foods and frozen materials 

which need specific temperature conditions, the zoning strategy is 

applied. Another strategy might concern customer service, in such a 

strategy the main concern is to fulfill the delivery time. To do so, the 

items which are usually ordered by the same customer are stored in the 

same area in the storage, or store the items that have a higher ordering 

ranking are stored in the nearest part to the storage output. 

3. Order picking: when an order is received from a customer, goods 

need to be retrieved from the storage area in the correct quantity and 
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in time to meet the required service level. Depending on the order 

lists, an order can be retrieved as a full pallet or a sequence of 

individual items. The warehouse management system gives the order 

list as well as the location of the items to the picker. Several picking 

concepts can be applied in the warehouses, for example: 

• Pick-to-order: basically, when the picker takes one order and travels 

through the warehouse until picking all order items. The main 

disadvantage of a pick-to-order policy is that pickers have to travel for 

every single order, this policy would be very inefficient, especially in 

situations where the range of the products is very large. 

• Batch picking: in this regime, the orders would be batched together 

and the picking would be conducted for whole required orders in a 

single picking round. This is very common, particularly for small 

orders. 

4. Dispatch: Goods that accumulated together are loaded onto outbound 

vehicles for onward dispatch to the next ‘node’ in the supply chain, 

for example to another distribution center or customer delivery 

vehicles. 

The effective use of space is a goal for almost every company located near 

population centers, where high space charges and limited availability of real 

estate are the main concern [6]. Smaller warehouse systems decrease the 

overall costs since they are less expensive to build [7].  

Material handling is the movement of raw materials and semi-finished and 

finished products to and from productive processes, in warehouses and 

receiving and dispatching zones [3], and its activities consume 20% to 50% of 

the total operating costs. Effective material transport equipment, such as 

rollers, wheels, and sorting conveyors, lead to significant cost reductions and 

efficient space utilization [8, 9].  
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For efficient warehousing (i.e. put-away, storage, and order picking), an 

Automatic Store and Retrieval System (ASRS) is typically used [10]. 

AS/RS is operated by computer control, the controlled cranes run up and down 

to put away and extract pallets which are in face occupy about half of the 

stored goods [1]. These cranes are electrically powered and run on rails, 

positioned on the floor, and are guided by a further rail above the top rack. 

In an ASRS, cranes operate in parallel and feed the pallet building workstation; 

therefore, the robotic palletizer receives a random sequence of items that 

should be re-sequenced [11].  

In the warehouses where zoning strategy is applied, the orders are picked in 

different zones at the same time, therefore, the outcoming items may need to 

be consolidated. In addition, applying the batch picking policy leads to the 

necessity of unpacking, sorting, and resequencing the items of each batch. 

Referring to the systems that are applied in real-world warehouses, the items 

are mostly released from ASRS in random sequence [12, 13]. Thus they need 

either optimized release (which is still under research and development [13]) 

or items re-sequencing after retrieval for better performance. Especially during 

peak hours, where a lack of workforce and other new technologies are highly 

required at the packing stations to timely release the lanes. 

Furthermore, mixed-model assembly lines (figure 1.3) have become common 

in the automotive industry, and the efficiency of the final assembly depends 

on the sequence of vehicles being built [10]. 

 

Figure 1.3. Mixed model assembly line. 
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 Problem Statement 

Several systems are used to re-sequence the outcoming random items, for 

instance: 

a) A temporary storage system that uses parallel lanes called mix bank 

[10]. Here, items inter the system in random sequence, and they are 

sorted in different lanes to be retrieved in the desired sequence as figure 

1.4 illustrates.  

 

Figure 1.4. 5 lanes mixed bank. 

b) A sortation conveyor, where the items keep looping until they are in the 

desired sequence [14]. Usually, this system is used for sorting items into 

different gateways for different output destinations, however, this 

system is also sued for re-sequence random items. Figure 1.5 shows the 

sortation conveyor system. 
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Figure 1.5. Sortation conveyor  [14]. 

Since such systems need a large area, the poor floor space utilization is one of 

the disadvantages of these systems [11]; therefore, a material handling device 

with a high-density system is required as well as the sequencing time should 

be minimized to provide higher throughput, these two main points are 

important concerns for designing the warehouses.   

Generally, the term density in logistics is used for storage density which is the 

ratio of storage area to the total warehouse space[15]. However, in this study, 

the density is defined as the areal density which is the ratio of items to the total 

material handling device space. 

 

 Literature Review 

In this section, we will investigate the literature from two different points of 

view: considering the material handling technologies that are applied in the 

warehouse which could carry out the sequencing process. And the high-

density systems in warehouses which can provide a high space utilization.  
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1.3.1 Material Handling Technologies 

The material handling activities consume 20% to 50% of the total operating 

costs as mentioned in Chapter 1. Effective material handling equipment plays 

a key issue in enhancing the warehousing activities. In the warehouses, there 

are two main material handling technologies that can carry out the sequencing 

process: conveyors and small-scaled multi-directional conveyor systems. 

• Conveyors 

the conveyor system considers as the most common material handling 

equipment in the warehouses. Both gravity and powered conveyors can 

be used for moving the goods between two fixed points. Typically, the 

gravity conveyor systems include chutes, skate-wheel conveyors used 

to move the goods for short distances, and the powered conveyor 

systems include Roller and belt conveyors used for long distances. 

In principle, the conveyor system is characterized in a way to fulfill 

simple intralogistics tasks, for instance, moving the goods on a straight 

line. However, for more complex tasks such as rotation and sorting, the 

conveyor system must be extended with additional mechanical 

components or modules [16]. This makes the conveyor technology 

rigid, less maintenance-friendly, and cost-intensive. For these reasons, 

we sought the possibility of redesigning the conveyor system. 

• Small-Scaled Multi-directional Conveyor Systems 

To fulfill the demands of intralogistics in terms of material flow, small-

scale modules might be applied where the conveyed products are 

bigger than one module in the system. 

Figure 1.6 illustrates CogniLog, Flexconveyor, and Celluveyor modules 

which are some small-scale systems. 
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Figure 1.6.  (a) CogniLog system [17], (b) Celluveyor modules [18], (c) Flexconveyor 

System [19] . 

As shown in the figure, Celluveyor is a unique modular made of several small 

hexagonal modules, each consisting of three omnidirectional wheels 

independently driven. Multi-Functionalities can be controlled only via 

software without the need for mechanical modifications. 

Based on such high flexible technologies, many systems have been 

developed for high density and space utilization.  

1.3.2 High-density Systems 

Many studies have considered high-density systems in order to enhance the 

efficiency of logistics processes. The sliding puzzle was invented by Sam Loyd 

in the 1870s [7], and is also known as the 15-puzzle, and later, the general 

version ( n2  – 1) became a popular and interesting subject for logistics 

researchers, especially in developing storage systems. 

 In fact, the puzzle concept was the inspirit of many researchers to invent and 

develop systems with high-density to enhance the warehousing functions.   
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Gue [6] developed a new concept based on a puzzle game: a very high-density 

storage system (HDSS) for physical goods with an efficient algorithm for 

filling densely rectangular storage areas. Later, Gue and Kim [7] developed an 

algorithm for the retrieval of items in a puzzle-based storage system (PBSS). 

They experimentally compared puzzle-based with traditional aisle-based 

storage. The results showed that the puzzle-based system was superior, with 

multiple escorts regarding the retrieval time, if the storage density was less 

than 90%. In [20], Kota et al. extended the analytical results of retrieval time in 

PBSS to determine the retrieval time performance when multiple escorts are 

randomly located within the system. The GridStore system was developed by 

Gue et al. [21] to overcome the inflexibility of automated material handling 

systems for HDSS by implementing decentralized control. In GridStore, an 

arbitrary number of requests could be retrieved by allowing simultaneous 

item moving. The major drawback of this system is the capability of delivering 

items to only a single side. However, Uludag [22] solved this limitation by 

developing a puzzle-based order picking system called GridPick. In the 

GridPick system, the orders can be picked from two sides of the grid, allowing 

for higher throughput and efficient use of space compared to single-sided 

systems. Figure 1.7 shows GridStore and GridPick systems. 
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Figure 1.7.  a) GridStore system, b) GridPick system [23]. 

A further improvement was achieved by Gue and Hao [24]. They developed a 

new system called GridHub, which was able to transfer orders in four 

directions simultaneously within the grid. Subsequently, Hao [23] developed 

the NU GridHub system to handle bigger boxes in which one box can occupy 

more than one conveyor module. Further modification of GridHub was 

conducted by Ashgzari and Gue [25]. Figure 1.8 shows the GridHub and NU 

GridHub systems. 

 

Figure 1.8.  GridHub system, b) NU GridHub system [23] 

In the new method, GridPick+, several limitations of GridPik were addressed. 

For instance, GridPick+ allowed the requested items to be delivered into 
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specific picking positions on the edge of the grid. Moreover, the use of the 

sequencing function allowed multiple orders to be processed simultaneously. 

An algorithm for moving several items at the same time in grid-based storage 

was designed by Yalcin et al. [15] by avoiding the items’ conflict. Their 

experimental results demonstrated that for storage, the pushback strategy 

achieved the shortest time and distance, and the puzzle-based retrieval 

strategy was most efficient. Yalcin et al. [26] also addressed the problem of 

item retrieval from puzzle-based storage with a minimum number of item 

moves. In this work, they proposed an exact search algorithm with several 

search-guiding estimate functions. Additionally, they discussed the 

configurations with multiple empty cells located in the grid with different grid 

sizes. 

In recent research, Shirazi and Zolghadr [27] developed an algorithm for item 

retrieval for HDSS. This method guaranteed the deadlock freeness in the 

algorithm and discussed different puzzle sizes with a dissimilar number of 

empty cells. It was observed that increasing empty cells up to three cells will 

increase the average retrieval movement, while increasing the empty cells 

above three will decrease the average retrieval movement sharply. Further 

research was carried out to formalize arranging smart boxes into an 

autonomous delivery vehicle [28]. The authors proposed the snake-line 

concept utilizing the puzzle arrangement to find the tradeoff between space 

and access rapidity and were able to guarantee the boxes moving continuously 

with minimum movement. 

The system we proposed in this paper was compared with the high-density 

systems described in the literature, as illustrated in Table 1.1. The used system, 

function, contribution, and system areal-density are listed in the table to 

distinguish these works. 
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Table 1.1. Comparison among the proposed system and other high-density systems 

from the literature. 

System System Function Contribution 

System Areal-

Density for 35 

Boxes 

Gue and 

Kim [7] 

NAVSTORS 

system 
Storing, retrieval 

Describe the relationship 

between storage density 

and expected retrieval 

time 

94.4% with 

two escort 

Gue et al. 

[11] 
GridSequence Sequencing 

High density, a 

decentralized control 

algorithm 

72.9% 

Kota et al. 

[20] 

Puzzle-Based 

system 
Storing, retrieval 

Determine the retrieval 

time performance for 

multi-escorts randomly 

located in the grid. 

94.4% with 

two escorts 1  

Gue et al. 

[21] 

GridStore 

system 
Storing, retrieval 

Retrieve several items by 

allowing simultaneous 

moving 

≤94.4% 1 

Uludag [22] GridPick Storing, retrieval 

Higher throughput, 

retrieve items to two 

sides of the grid 

≤94.4% 1 

Gue and 

Hao [24] 
GridHub Storing, retrieval 

Transfer orders in four 

directions 

simultaneously within a 

grid 

≤95.45% 2 

≤94.44 for 36 

boxes 

Hao [23] NU GridHub 
Sorting, 

sequencing 

Delivers requested items 

in the desired sequence 

to any location 

56.25% for 36 

boxes 

Ashgzari et 

al. [25] 
GridPick+ Storing, retrieval 

Increasing in throughput 

by 77% 
- 

Yalcin et al. 

[15] 

Grid-based 

system 
Storing, retrieval 

Framework for the 

efficient storage and 

retrieval of items based 

Up to 100% 
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on a multi-agent routing 

algorithm 

Yalcin et al. 

[26] 
PBS system Items retrieval 

Retrieve items with a 

minimum number of 

items moves 

≤94.4% 1 

Shirazi et al. 

[27] 
PBS system Items retrieval 

Deadlock prevention 

algorithm 
Up to 97.2% 

Tetouani et 

al. [28] 

Puzzle-based 

system 

Rearrangement 

while Routing” 

strategy 

Formalize arranging 

smart boxes in an 

autonomous delivery 

vehicle 

97.2% 

Proposed 

method 

Puzzle-based 

sequencing 

system 

Sequencing 

High-density sequencing 

system, address 

unsolvable puzzle 

configuration 

97.2% 

1 Since these systems involve the puzzle-based concept, the areal-density is 

calculated as (𝑛𝑐 – e)/ 𝑛𝑐, where 𝑛𝑐 is the number of grid cells and e is the number 

of empty spaces in the grid. 

 2 One rule of GridHub is that at least one empty module has to be in each column 

or row, and their experiment was set as a grid with 22 columns and 11 rows. 

Although several studies have considered high-density and puzzle-based 

systems with their applications, most of them have focused on storage and 

item retrieval. In these systems, the items are retrieved in the desired sequence. 

However, under batch and/or zoning picking policy, which is applied in most 

online retailers’ warehouses, items necessitate further processes such as 

consolidation and sequencing [13]. To the authors’ best knowledge, very few 

contributions have been published in the literatures that have addressed the 

issue of item sequencing, for instance, GridSequence, which was developed by 

Gue et al. [11]. The proposed system could re-sequence incoming items to feed 

a palletizing robot with the required sequence. The GridSequence system 

consists of a puzzle grid with (n × m) dimensions, plus one additional row and 
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one additional column; thus, the whole system dimensions are (n + 1) × (m + 

1) as illustrated in figure 1.9. 

 

Figure 1.9.  GridSequence system [11] 

The authors showed the effect of the aspect ratio on the sequencing time in the 

experimental results and suggested that the aspect ratio should be at least 10. 

Furthermore, adding one more additional column to the center of the grid can 

positively affect the system. The major drawback of this system is low space 

utilization, since adding rows and columns will occupy more spaces out of the 

grid, and decrease the density. A lower density means higher empty spaces in 

the grid and an increase in floor space usage. Thus, the density plays a key role 

in evaluating the utilization of floor space of warehouses (storage and other 

functions) in urban areas where the limited space should be utilized efficiently. 
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 Research Objectives 

We can summarize the objectives of this thesis in the following points: 

1. To realize a high-density sequencing system based on the puzzle 

movement concept, with highly efficient floor space utilization 

concerning the minimum item movements. These points are directly 

related to better energy efficiency and, consequently, to lower 

operational costs. The analysis here carried out represents a tool for 

improving the warehouse activities in terms of both space utilization 

and time consumption, in addition to minimizing the workforce. 

2.  To propose the puzzle-solving algorithm to fulfill the sequencing 

process. 

3.  To set up an optimal design of sequencing board in shape, size and 

the number for the practical implementation of a real-world 

warehouse. 

 

 Concept of Puzzle-based Sequencing System 

Using ASRS in the storage can increase the efficiency of warehousing functions 

because this system approaches seven-day-week, 24-hour operations. The 

cranes of this system work in parallel in both in-feed and out-feed. therefore, 

the outcoming boxes come in a random sequence. These boxes are moved on 

the conveyor and inter the proposed sequencing system which is the puzzle, 

afterward, the puzzle starts the sequencing process to reach the goal 

configuration. Finally, the boxes come out as a series of boxes with the desired 

sequence. Figure 1.10 illustrates the proposed sequencing system concept. 
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Figure 1.10. The proposed sequencing system concept. 

According to the figure, the series of boxes come from the storage out of 

sequence, and inter the puzzle board. Then, the sequencing process starts until 

we get the goal configuration. Finally, the boxes outcome from the board inter 

the main conveyor as a series of sequenced boxes and move into the next 

process in the warehouse. 
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the following assumptions are made for this system: 

1. One set of the sequencing system is 2 dimensions, so the process doesn't 

consider the 3D cubic accumulation problem. 

2. The system is used under the zoning storing strategy where the boxes 

come separately, and/or under batching picking policy where the order 

comes as a batch and the boxes of each batch are separated into a series 

of boxes. 

3. All boxes are square-shaped and have the same base area. 

4. The sequencing process in the puzzle starts after filling in the puzzle 

board with all boxes. 

5. Incoming boxes to the board inter one by one, while in the output, the 

boxes are out as row by row as shown in figure 1.10. (3). 

6. We allow simultaneous moving so the boxes are moved into the board 

simultaneously. the same during the output process. 

 

 Layout of the Thesis 

The thesis includes four chapters that are structured as follows:  

Chapter 1. background, the literature review, and the research objectives are 

presented.  

Chapter 2.  this chapter presents the methodology of the research starting with 

an investigation of the puzzle-solving methods. Two solving methods were 

investigated: game tree and pathfinding algorithms. A-star was chosen based 

on pathfinding algorithms in order to find the shortest solution of the puzzle 

in which the sequencing time. In this chapter A-star algorithm was explained 

in detail with a proposal of a pre-sorting strategy to overcome the unsolvable 

configuration issue that cannot be solved by the aforementioned methods. 
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Different shapes of the puzzle can carry out the sequencing process, thus, two 

different shapes, in particular, square and rectangular shapes, were discussed. 

In addition, the factors that affect the number of solution steps. Furthermore, 

three proposed strategies to fulfill the practical implementation in the 

warehouse are presented in this chapter. In this Chapter also, the effect of 

increasing the number of blanks in the puzzle on the system is presented. 

Furthermore, more blanks in the puzzle allowed a double-switching process 

which reduced the maximum number of the solution steps. 

Chapter 3. the results and discussion of the points presented in the 

methodology are presented in this Chapter. 

Chapter 4. finally, the conclusions of the thesis are summarized, and the 

possible future work is discussed. 

 

 Summary 

A comprehensive introduction to develop a high-density sequencing system 

concerning the minimum sequence g time is outlined in this chapter. The 

previous research in the field of logistics that considered the high-density 

system was investigated with a comparison between our proposed method 

with the previous works in terms of the density and floor space. This study 

presents a high-density puzzle-based system for products sequencing 

considering the sequencing time. To complete the proposed method, a large 

number of investigations with lots of analysis are implemented to provide the 

sequencing time consuming and compare it with conventional sequencing 

systems and algorithms. 
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2 CHAPTER 2 

RESEARCH METHODOLOGY 

This chapter presents the puzzle-based system with investigating puzzle-

solving methods to choose the best sorting algorithm. Afterward, we set up 

the sequencing system design with the optimum board shape, size, and 

number. The optimum parameter of the design was evaluated based on the 

time which is the movement steps of the boxes on the sequencing board, and 

the floor area occupied by the sequencing system.   

 

 Sliding Puzzle 

As mentioned in Chapter 1, The sliding puzzle was invented by Sam Loyd in 

the 1870s [7], and is also known as the 15-puzzle, and later, the general version 

( n2  – 1) became a popular and interesting subject for many researchers. 

Generally, the sliding puzzle is a single-agent sliding game consisting of (n × 

m) − 1 square tile and one blank, distributed in an (n × m) grid. The process for 

solving this is to rearrange a random configuration of numbers in the initial 

state by sliding the blank tile in one of four allowable moves (Up, Down, Right, 

and Left) to reach the goal state, which is the proper sequence of numbers [29], 

as shown in Figure 2.1. 
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Figure 2.1. 3x3 puzzle (8-puzzle), random configuration (Left), goal state (Right). 

There are different shapes and sizes of such a puzzle. The ( n2 − 1) puzzle is a 

specific type, where the board is square (n × n) with ( n2 − 1) numbered tiles 

and one blank [30]. 

8-puzzle is one of the most famous ( n2 -1) puzzles. Since 15-puzzle and 24-

puzzle are extension versions of 8-puzzle. Our study was conducted utilizing 

an 8-puzzle to simplify the analyses.  

 

 

 Sequencing Algorithm 

There are 9! different configurations of this puzzle, and every second 

permutation are solvable, Hence, there is a total of 9!=2 =362,880 solvable 

configurations [31]. Many researchers have an interest in solving such puzzles 

with the fewest moves (the shortest path to the solution) and they consider 

finding the optimal solution in two levels, the space and time consuming by 

the used algorithm, and the number of moves. In this research, we take into 

consideration the number of moves to reach the goal configuration.  

There are two typical methods for finding the shortest path to the solution 

which achieve the minimum number of tiles moves, game tree, and 

pathfinding algorithms. In this section, we will discuss both methods in terms 

of using the puzzle for items sequencing. 
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2.2.1 Game Tree 

This method creates a tree of all configurations (states) that can be generated 

for the puzzle and finds the target configuration in this tree. In the game tree, 

all states are represented by nodes, and the depth of the tree denotes the 

number of solution steps. The procedure is as follows: 

1. Start tree creation from the target state configuration; 

2. Find the input node (the initial configuration) in this tree; and 

3. Trackback the path which leads to the initial node. 

The game tree method could guarantee to find the shortest path to the solution. 

However, we might face two problems: the huge number of states that could 

be generated, and the scenario of searching for different targets (specific 

configurations). 

I. The  Huge Number of States 

We start generating the tree by switching the blank with the neighbor tiles. All 

available switches of one configuration are carried out in one level of the tree 

(tree depth). Equation (2.1) provides the total number of nodes that could be 

generated in the tree for the 8-puzzle: 

𝐍𝐒𝐭𝐚𝐭𝐞𝐬 = 𝟏 +  ∑ 𝐛𝐢  𝐝
𝐢=𝟏 , (2.1) 

where NStates is the total number of states in the tree; b is the branching factor; 

and d is the depth of the tree. The branching factor is the number of nodes that 

could be expanded from the previous node in the tree. For example, if the 

blank is placed in the corner, the branching factor is 2 since we can switch two 

tiles, and we get two different states out of the current one as shown in Figure 

2.2 which shows the concept of branching numbers for 8-puzzle. 
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Figure 2.2. 8-puzzle branching factor b. 

According to figure 2.2, In 8-puzzle we have three different branching factors. 

On the top of the tree, we start with a branching factor of 2, since the blank 

position is in the corner in the goal configuration. Therefore, the first level in 

the tree has two states, each of which has a branching factor of 3 yielding 6 

states in the second level of the tree, for a total of 9 states. 

From Figure 2, the branching factor was about 3 (when the blank tile is in the 

corner, there are two possible moves; when it is along edges, there are three; 

and when it is in the middle, there are four). 

Regarding the depth, Figure 2.3 illustrates the histogram of the solution steps 

for all solvable configurations of the 8-puzzle as well as the Probability Density 

Function (PDF) for a normal distribution. We obtained an average solution 

depth of 22. The same result was confirmed with the work by Reinefeld [32]. 
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Figure 2.3. Histogram of solution steps for 8-puzzle. 

Referring to Equation (2.1), the number of nodes that could be generated for 

depth 22 and branching factor 3 is 3.13 ×  1010 nodes. This huge number of 

nodes not only requires time to be generated but is also inefficient in terms of 

memory [33]. By tracking the repeated states, we cut the tree down drastically 

into 9! / 2 = 181,440 nodes. 

II. Searching for Different Targets 

In the case of different targets, where the goal configuration is not (1 ,2, 3; 4 ,5, 

6; 7, 8, blank), but can be any configuration of 9! States, we need to generate a 

tree of nodes for each goal. Thus, we had to generate 9! = 362,880 trees and 

about 13.16 ×  1010 nodes in total. 

One proposal to overcome the problem associated with generating such a huge 

number is to search for the input state in the current tree. The following steps 

describe the concept of searching for a different target in the current tree: 
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1. Change the desired target to the target in the current tree; 

2. Apply the same changes to the input; and 

3. Find the new input in the current tree. 

Figure 2.4 shows the proposal of searching in the current tree. 

 

Figure 2.4. Concept of searching in the current tree. 

In the example shown in figure 2.4, we first, switch the tiles 5 (numbered 6) 

and tile 6 (numbered 5) to get the target configuration in the current tree (1, 2, 

3; 4, 5, 6; 7, 8, blank). Then we apply the same changes for the input state (1, 2, 

3; 4, 6, blank; 7, 8, 5) by switching tile 5 (numbered 6) and tile 6 which is blank. 

we get the new input (which we are searching for) is (1, 2, 3; 4, blank, 6; 7, 8, 

5). Finally, we search for the new input in the current tree. 

In this example, the new input configuration is unsolvable, therefore, we 

cannot find it in the current tree.  

Since tiles changing might give unsolvable configurations, this method will 

not work for all the cases in our system. The solvability of the puzzle is an 

important concept; therefore, the solvability condition will be discussed in 

Section 2.5. 
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2.2.2 Pathfinding Algorithms 

To reach the puzzle solution, pathfinding algorithms can be applied by 

creating a tree of puzzle configurations (nodes), starting from the initial state 

until the goal state is matched, and then tracking back to the path, which leads 

to the goal. When reaching the goal state (node), the process of node creation 

will stop; therefore, generating a huge number of nodes can be avoided. There 

are two different types of pathfinding algorithms: 

I. Uninformed Algorithms (Blind Algorithms) 

Such algorithms work without using any external information to guide the 

agent to reach the goal state. Following are some of such algorithms[33, 34]: 

• Breadth-First Search (BFS);  

• Depth-First Search (DFS); 

• Iterative Deepening Depth-First (IDS). 

II. Informed Algorithms 

In these algorithms, some information can be used to lead the algorithm and 

direct it to achieve better performance. This information could be the status 

and values of the neighbors. 

 Following are the most common pathfinding algorithms[33, 34]: 

• Greedy algorithm; 

• A-star (A*) algorithm; 

• Iterative Deeping A-star (IDA*) algorithm. 

Among the algorithms that extend search paths from the root, A-star is 

optimally efficient [34, 35]. Hence, A-star was the core algorithm in this study. 
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 A-star Algorithm 

In the A-star algorithm (A*), the nodes can be evaluated using the cost function 

(Equation (2.2)), which is the sum of two factors: the heuristic function, which 

estimates how close the current node is to the goal, and the cost from the initial 

node to the current one [36]. 

f(n) = g(n) + h(n), (2.2) 

where f(n) is the evaluation function for the A* algorithm; g(n) is the cost from 

the initial node to the current node n; and h(n) is the estimated cost from the 

node n to the target. 

Many estimation functions can be used with the A-star algorithm such as 

Hamming distance and Manhattan distance. 

2.3.1 Hamming Distance 

This is the count of the number of tiles in the current configuration which are 

not at the same position as in the goal configuration[33]. Figure 2.5 shows an 

example of hamming distance. 

 

Figure 2.5. An example of hamming distance calculation. 

In the example shown in figure 2.5, we note that (4,6,8,5,7,1) tiles are not at the 

same position as in the goal state. Hamming distance is 6 in this example. 
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2.3.2 Manhattan Distance 

Manhattan distance or city block distance is the absolute vertical and 

horizontal distance between the tile in the current configuration and its 

appearance in the goal configuration [33]. 

 

Figure 2.6. An example of Manhattan distance calculation. 

The estimation function used in this research was the Manhattan distance, 

since it showed better performance for the informed search techniques [33, 35]. 

The Manhattan distance or city block distance is the absolute vertical and 

horizontal distance between the tile in the current configuration and its 

appearance in the goal configuration. Figure 2.7 shows the layout of the A-star 

algorithm for solving the n-puzzle with the fewest solution steps. 
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Figure 2.7. A-star algorithm for n-puzzle. 

The A-star algorithm allows us to avoid many nodes that should not be 

selected, avoiding the waste of time caused by searching a large number of 

useless nodes. The whole search process has strong directionality [37].  

Even though the A-star algorithm is optimal for solving the n-puzzle, it was 

not sufficient for our application, thus we needed to modify it to fulfill the 

sequencing process. 

The reason for the insufficiency of the basic A-star algorithm is the solvability 

problem. All researchers who are interested in puzzle-solving algorithms have 

investigated only the solvable configuration of the puzzle, However, in our 

application, we have a 50% possibility of unsolvable initial configurations of 

the boxes. 

The first modification in the algorithm is checking the solvability condition. as 

shown in figure 2.8  
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Figure 2.8 A-star algorithm for n-puzzle with solvability condition. 

Figure 2.9 illustrates the implementation of This A-star algorithm for the 8-

puzzle. 
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Figure 2.9. The implementation of the A-star algorithm for the 8-puzzle. 

The conditional sentences in Algorithm 1 describe the implementation of the 

A* algorithm. 
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Algorithm: A* Implementation for 8-puzzle  

1:  if solvable then 

2:     Check Manhattan distance  

3:  else 

4:   End Algorithm 

5:  Repeat until finding the target 

6:      if Manhattan ≠ 0 then 

7:         Find a blank 

8:         Perform Procedure switching blank 

9:        Search for minimum cost 

10:    else 

11:       Input is the target 

12:    end if  

13:  end repeat 

The procedure of switching the blank with neighbors to generate branch nodes 

is described as follows: 

Procedure: Switching blank 

1:   if blank in a corner then 

2:     Repeat 2 times: switch blank1  

3:   else 

4:   if blank in along edges then 

5:     Repeat 3 times: switch blank1 

6:   else 

7:   if blank in the middle then 

8:     Repeat 4 times: switch blank1  

9:   end if 

Switch blank contains 3 steps: 

• Switch blank with a neighbor; 

• Increase the depth (level in the tree which denotes the solution steps) by 

1; and 

• Recalculate Manhattan distance. 
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 Solvability Condition 

The solvability can be checked by the inversion, which indicates that a pair of 

tiles in the current state is in reverse order of their places in the goal state. 

Moving tiles in the puzzle horizontally doesn’t affect the inversion, but, 

moving tiles vertically either increases the inversion by 2, decreases the 

inversion by 2, or doesn’t change the inversion. Therefore, when the number 

of inversions is even, the puzzle is solvable; otherwise, it is unsolvable [38]. 

For example, if we have an 8-puzzle with the following configuration state (2, 

1, 5; 4, blank, 3; 8, 6, 7), regardless of the blank, the inversion is calculated as 

follows: 

The Investigated 

Tile 

Tiles Follow the 

Investigated Tile 
Number of Inversions 

2 1 1 

1 - 0 

5 4 and 3 2 

4 3 1 

3 - 0 

8 6 and 7 2 

6 - 0 

7 - 0 

 Total inversions 6 

The total inversions are six, which is an even number. Thus, the example 

configuration is solvable. 

The solvability condition came up with a second problem in the algorithm 

which should be considered for the sequencing application, the unsolvable 

states. For unsolvable states, the sequencing system will be stuck and we 

would not be able to proceed in the sequencing process. 
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2.4.1 Proposal for the Solvability Problem 

As mentioned before, the 8-puzzle has 9! different configurations, and only 

half of them are solvable. Since the state configurations in practical 

implementation in the warehouse are random, we will not be able to carry out 

sorting for unsolvable states (9! / 2 states in the case of the 8-puzzle). Therefore, 

we need a scenario in which all states of the puzzle are solvable. In order to 

build such a scenario, we provided a pre-sorting strategy. 

The products moving to the sorting area enter in a random configuration, 

which might be an unsolvable configuration. Therefore, we have to pre-sort 

the products on the sequencing board so that the pre-sorted configuration is a 

solvable one. The pre-sorting process is as follows: 

• Check the solvability by calculating the inversion number; 

• In case of an odd number of inversions, move the first six tiles to their 

specific positions on the sequencing board; and 

• Switch the last two tiles on the board. 

Figure 2.10 shows a flowchart of the pre-sorting process, and Figure 2.11 

shows an example of the pre-sorting process for an unsolvable input 

configuration. 
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Figure 2.10.  Flowchart of pre-sorting process. 

 

Figure 2.11. Pre-sorting process. 
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Applying the pre-sorting strategy, we could be able to solve all configurations 

of the puzzle. 

Figure 2.12 illustrates the modified A-star algorithm used for our sequencing 

system. 

 

Figure 2.12. Modified A-star algorithm for n-puzzle. 

The A-star algorithm is ready now to be implemented for the sequencing 

system. 

 

 Sequencing System Design 

In the practical implementation in the warehouses, different parameters 

should be considered to choose the optimum sequencing board shape, size, 
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and number. Furthermore, the sequencing strategy for a different number of 

boxes.   

2.5.1 Board Shape 

Different shaped boards can carry out the sequencing task. Therefore, four 

different sizes with two shapes were discussed with the same number of tiles. 

A 2 × 3 puzzle has 6! = 720 states, and half of them are unsolvable. By keeping 

the blanks in the corner of the puzzle to satisfy the reality of practical 

implementation in the warehouse, we reduced this to only 60 solvable states. 

For the same configuration in both initial and goal states as shown in the 

example in Figure 2.13.  

 

Figure 2.13. An example of examination same state configurations with different 

board sizes and shapes. 

Figure 2.13 illustrates the effect of different board shapes and sizes of the 

puzzle on the solution steps for all 60 states. The results of Figure 2.14 are 

summarized in Table 2.1. 
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Figure 2.14. Comparison between different board sizes and shapes for the same 

number of boxes. 

Table 2.1. Comparison of the performances of a 3 × 3 puzzle with different board 

sizes and shapes regarding the solution steps. 

3 × 3 Better [%] Same [%] Worse [%] 

vs. 2 × 3 61.6 38.4 0 

vs. 2 × 4 58.3 41.7 0 

vs. 2 × 5 58.3 41.7 0 

From the table, the 3 × 3 board showed a better performance than the 2 × 3, 2 × 

4, and 2 × 5 boards by 61.6%, 58.3%, and 58.3%, respectively. One of the reasons 

for these results is the difference in the number of blanks in the different 

shapes and sizes of the puzzle.  

More analyses are necessary to verify the effectiveness of other factors on the 

overall solution steps for different shapes. For different shapes of the puzzle, 

there are many factors affect the overall solution steps such as branching 

factor, rectilinear distance, and the Aspect Ratio (AR) of the puzzle. 
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2.5.1.1 Branching Factor 

The branching factor is the number of states that can be generated from each 

state in the tree. Usually, the branching factor measures the space complexity 

of the searching algorithm. The higher the branching factor, the lower the 

overhead of the repeatedly expanded states [35]. In our case, the analyzed data 

were generated from the target state, where we used the opposite concept of 

the branching factor. If the branching factor is higher, more states would be 

generated for a specific level in the tree (the level denotes the solution steps). 

Figure 2.15 illustrates an example of the effect of the branching factor on the 

number of generated states at the same level in the tree. 

 

Figure 2.15. The effect of the branching factor on the number of generated states in 

the same level. 

In Figure 2.15, two different shapes are illustrated, and we note that in level 3 

(three steps to the solution), the square shape had more generated states than 

the rectangular one due to the difference in the branching factor. Figure 2.16 

shows the average branching factor for both shapes discussed in the previous 

example. 
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Figure 2.16. The average branching factor for different sizes and shape boards. 

2.5.1.2 Maximum Rectilinear Distance of One Tile 

We suggest Equation (2.3) for calculating the maximum steps of a tile: 

𝐫𝐝 =  (𝐋 +  𝐖) −  𝟐, (2.3) 

 

where rd is the maximum rectilinear distance of the tile; L is the length of the 

board; and W is the width of the board. 

A smaller distance for one tile results in a better board since it decreases the 

number of initial steps of the pre-sorting process. Figure 2.17 illustrates the 

maximum distance that the tile can move. 

 

Figure 2.17. Maximum rectilinear distance of one tile of different board shapes and 

sizes. 

From Figure 2.17, we noted that different board shapes could have the same 

rd. With this in mind, we compared the performance depending on the 

maximum board capacity, as illustrated in Table 2.2. 
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Table 2.2. Comparison of different board shapes and sizes of puzzles, and the max. 

capacity in the case of the same 𝐫𝐝. 

Max. Rectilinear Distance of 

One Tile 
Max. Capacity Board Size 

4 
7 2 × 4 

8 3 × 3 

5 
9 2 × 5 

11 3 × 4 

6 
14 3 × 5 

15 4 × 4 

7 
17 3 × 6 

19 4 × 5 

8 

20 3 × 7 

23 4 × 6 

24 5 × 5 

9 
23 3 × 8 

27 4 × 7 

 26 3 × 9 

10 19 4 × 5 

 35 6 × 6 

From Table 2.2, we concluded that in the case of rd, being the same for different 

board sizes and shapes, square puzzles provide more capacity than 

rectangular ones. 

2.5.1.3 Pre-sorting Steps 

The pre-sorting process plays a key role in the whole sorting system in 

practical implementations. 

As mentioned in Section 2.6.2, the puzzle shape affects the rectilinear distance 

of one tile, rd as well as the number of initial steps in pre-sorting. Figure 2.18 

illustrates the initial steps to fill in the sequencing board with different sizes 

and shapes concerning rd. 
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Figure 2.18. Effect of 𝑟𝑑  on pre-sorting steps. 

As is clear from Figure 2.18, increasing the rectilinear distance of one tile will 

also increase the pre-sorting steps. However, a reasonable question arises 

when dealing with different shapes: how does the Aspect Ratio (AR) of the 

puzzle affect the performance in terms of solution steps? To answer this 

question, we investigated the relationship between the aspect ratio and 

rectilinear distance. 

2.5.1.4 Aspect Ratio 

The Aspect Ratio is the number of columns divided by the number of rows of 

the puzzle, and this has a direct effect on the rectilinear distance of one tile, rd, 

and further on the pre-sorting steps. Table 2.3 illustrates the corresponding rd 

of the aspect ratio for the different puzzle shapes and sizes outlined 

previously. 
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Table 2.3. Aspect Ratio and rectilinear distance of one tile for different puzzle sizes. 

Puzzle size Aspect Ratio Rectilinear distance 

4 × 4 1 6 

2 × 8 4 8 

6 × 6 1 10 

4 × 9 2.25 11 

3 × 12 4 13 

2 × 18 9 18 

According to Table 2.3, we confirmed the direct relationship between the 

aspect ratio and rectilinear distance. Thus, a smaller AR reduces the rd, which 

also reduces the pre-sorting steps. 

If we considered preliminary that a square puzzle is better than a rectangular 

one, we have to investigate the puzzle size. 

 

2.5.2 Board Size and Number 

In real-world warehouses, under the batched/or zoning picking policy, the 

retrieved items from the storage area necessitate being either consolidated or 

sequenced in the way of satisfying the order sequence by customers. The 

number of these items is very varied depending on the order lists. In [12], the 

picking method was to accumulate the orders in separated bins under 

batched/or zoning picking policy. In this case, the orders would be released 

from the bins, then re-sequenced in the desired sequence. Boysen et al. 

generated two differently sized datasets for their computational study, a small 

instance that involves 12 orders in 24 bins, while the large instance involves 20 

orders in 40 bins which are of a real-world size. These values are chosen based 

on practitioners' information. The number of the boxes needed to be 
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sequencing at the same time is difficult to be determined because it is 

depending on several factors such as the boxes sizes, boxes weights, and 

pallets capacities and sizes. Therefore, in practical implementation, an 8-

puzzle board would face a limitation by restrictions of the maximum capacity 

of the puzzle (8 boxes). In such a case, we propose and discuss three strategies 

for sequencing more than 8 items. 

2.5.2.1 Increase the Size of the Sequencing Board 

To carry out the sequencing process for more than 8 boxes, bigger board sizes 

can be used. Since it was concluded preliminary that the square shape 

provided better performance than the rectangular one, we used in this strategy 

an extension version of the 8-puzzle which is the ( n2  – 1) puzzle. 

Figure 2.19 illustrates the strategy of using 15-puzzle as an example for 

practical implementation. 

 

Figure 2.19. The strategy of using 15-puzzle for practical implementation. 

As in figure 2.19, the main input conveyor feeds the sequencing board. After 

filling all the incoming boxes on the board, the sequencing process will start. 
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In this study we considered the sequencing time as a function of steps, 

therefore we calculated the pre-sorting steps and the puzzle solution steps.  

Two main factors were considered, the area occupied by the system regardless 

of the main input conveyor, and the sequencing time which is the solution 

steps until we get the final goal of the desired sequence of boxes. 

I. Area for the Strategy of Different Sizes of Board 

The area occupied by the system can be calculated as follow: 

𝑨 = (𝑪𝒃 + 𝟏) ×  𝑨𝒃𝒐𝒙  
 

(2.4) 

where A is the total area occupied by the system regardless of the main input 

conveyor; 𝐶𝑏 is the maximum capacity of the board (15 boxes for 15-puzzle); 

and 𝐴𝑏𝑜𝑥 is the box’ area. 

As we can see in Equation (2.4), the number of boxes does not affect the area 

as long as 𝑵≤  𝑪𝒃. where N is the input (number of boxes). 

II. Time for the Strategy of Different Sizes of Board 

We considered the time as a function of solution steps. we have considered the 

pre-sorting steps and the sequencing steps on the board, ignoring the moving 

boxes on the main feeding conveyor.  

The total sequencing steps are calculated as Equation (2.5): 

  𝑺𝒕𝒐𝒕𝒂𝒍 = {
𝑺𝒏 + 𝑺𝒑_𝒏                   𝒊𝒇 𝑵 < 𝑪𝒃  

𝑺𝒎𝒂𝒙 + 𝑺𝒑.𝒎𝒂𝒙        𝒊𝒇  𝑵 = 𝑪𝒃
  

 

(2.5) 

where 𝑺𝒕𝒐𝒕𝒂𝒍 is the total number of steps; 𝑺𝒏 is the Solution steps for n boxes; 

𝑺𝒎𝒂𝒙 is the Maximum steps to solve the puzzle; 𝑺𝒑_𝒏 is the Pre-sorting steps 

(the initial steps to fill in the board with n boxes); 𝑺𝒑.𝒎𝒂𝒙 is the Pre-sorting steps 

(the initial steps to fill in the board with full capacity); N is the input (number 

of boxes); 𝐶𝑏 is the maximum capacity of the board. 
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Table 2.4 illustrates the maximum number of solution steps for 15-puzzle, 24-

puzzle, 35-puzzle, and 48-puzzle, and the board area as a function of the box 

size. 

Table 2.4. Maximum solution steps for 15, 24, 35, 48 puzzles, and the board area 

[39]. 

Puzzle capacity 15 24 35 48 

Maximum capacity 80 205 405 716 

Area [box size] 16 25 36 49 

As shown in the table, the maximum solution steps are drastically increased 

by increasing the board size. Furthermore, the system is still restricted by the 

limitation of the puzzle capacity. 

2.5.2.2 Using Multi-Boards 

As mentioned in 2.7.1, increasing the board size could carry out the sequencing 

system for more than 8 boxes. However, such a strategy is still restricted by 

the maximum capacity of the puzzle. 

In this strategy, we used the same size of the puzzle with an increase in the 

number of boards as shown in figure 2.20.   
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Figure 2.20. Several boards along with the input line for the sorting process. 

As shown in figure 2.20, we placed the boards along with the input conveyor. 

The boxes coming in random sequence are separated into these boards based 

on their identification numbers (IDs) (ex. The boxes from 1 to 8 enter the first 

board, the boxes from 9 to 16 enter the second board, and so on). 

We assumed that when the boxes are entering the boards, they can move 

simultaneously, and the sequencing process will start after filling in the boards 

with their assigned boxes. 

Keeping these assumptions in mind, the sequencing process will be carried 

out in parallel in all boards, doing so allowing to reduce the waiting time if the 

sequencing will be carried out in series. 

We investigated the same two factors as 2.5.2.1, which are the area and the 

time. 

I. Area for the Strategy of using Multi-Boards 

The area used by the system in this strategy is calculated as Equation (2.6): 

𝑨 = [𝑪𝒃 + 𝟏)𝑵𝒃]  ×  𝑨𝒃𝒐𝒙 
 

(2.6) 

where A is the total area occupied by the system regardless of the main input 

conveyor; 𝐶𝑏 is the maximum capacity of the board (8 boxes for 8-puzzle as the 
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example in figure 5.2); 𝐴𝑏𝑜𝑥 is the box’ area; and 𝑵𝒃 is the number of boards 

which can be calculated as follow: 

𝑵𝑏 = ⌈
𝑵

𝑪𝑏
⌉ 

 

(2.7) 

where N is the input (number of boxes). 

We verified from Equation 2.6 and Equation 2.7 the direct relationship 

between the number boxes and the area of the system.  

II. Time for the Strategy of using Multi-Boards 

As in the strategy of different sizes of board, we considered the time as a 

function of solution steps. 

In this strategy, the boxes are moving on the boards simultaneously and the 

sequencing process starts after filling all the boards. We calculated the time in 

the worst case as in Equation 2.8. 

𝑺𝒕𝒐𝒕𝒂𝒍 = 𝑺𝒎𝒂𝒙 + (𝑵𝒃 − 𝟏) 𝑺𝒑.𝒎𝒂𝒙 + 𝑺𝒑_𝒓 

 

(2.8) 

 

where 𝑺𝒕𝒐𝒕𝒂𝒍 is the total number of steps; 𝑺𝒎𝒂𝒙 is the Maximum steps to solve 

the puzzle; 𝑵𝒃 is the number of boards; 𝑺𝒑.𝒎𝒂𝒙 is the Pre-sorting steps (the 

initial steps to fill in the board with full capacity); 𝑺𝒑_𝒓 is the Pre-sorting steps 

(the initial steps to fill in the board for remaining boxes).  

The remaining boxes can be calculated as follows: p_r = 𝑵 − (𝑵𝒃 − 𝟏) 𝑪𝒃. 

In Equation 2.8, we considered the 𝑺𝒎𝒂𝒙 only one time for all boards, the reason 

is that all boards work in parallel, and in the worst case, at least one of them 

needs the maximum solution steps. 
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2.5.2.3 Adding a Buffer Line 

In this strategy, fixed board size is used and the system has been extended 

with a buffer conveyor used to store temporarily the boxes. The buffer line is 

fixed along with the main input conveyor as shown in figure 2.21. 

 

Figure 2.21. Adding buffer line along with the input conveyor for the sorting 

process. 

As shown in figure 2.21, the buffer line is placed along with the main input 

conveyor in a way the boxes can be buffered and reenter again to the main 

conveyor. 

For 8-puzzle board size, when the boxes arrived at the board, if the box is from 

1 to 8 it will enter the board, otherwise, it will move left to store temporally in 

the buffer line. After filling in the board with 8 boxes, the first sequencing 

process starts. Afterward, the remaining boxes will be released from the 

output point of the buffer line to the main conveyor. Again, the boxes from 9 

to 16 will enter the board (after releasing the sequenced boxes in the first 

sequencing process), and the remaining boxes will store in the buffer line. 

In this strategy, the sequencing processes are carried out in series, board after 

board. As for other strategies, we investigated both area and time for this 

strategy. 
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I. Area for the Strategy of Adding Buffer Line 

The area for this strategy is calculated as Equation 2.9. 

𝑨 = (𝑵 + 𝟏) ×  𝑨𝒃𝒐𝒙 (2.9) 

where A is the total area occupied by the system regardless of the main input 

conveyor; and 𝐴𝑏𝑜𝑥 is the box’ area. 

As it is clear from Equation 2.9, unlike the strategy of using multi-boards, the 

area here is depending only on the number of boxes.  

II. Time for the Strategy of Adding Buffer Line 

The same analyses of previous strategies to calculate the sequencing time was 

carried out in this strategy. In this strategy, the boxes are sequenced on the 

board based on the used puzzle capacity. Therefore, for boxes more than the 

puzzle capacity, the remaining boxes would wait for the next sequencing 

process. In this waiting time, the first sequencing process is carried out. 

We calculated the time in the worst case as in Equation 2.10. 

𝑺𝒕𝒐𝒕𝒂𝒍 = (𝑵𝒃 − 𝟏) 𝑺𝒎𝒂𝒙 + 𝑺𝒓 + (𝑵𝒃 − 𝟏)𝑺𝒑.𝒎𝒂𝒙 + 𝑺𝒑_𝒓 + 𝑺𝒃𝒖𝒇𝒇𝒆𝒓  

 

(2.10) 

where 𝑺𝒕𝒐𝒕𝒂𝒍 is the total number of steps; 𝑺𝒎𝒂𝒙 is the Maximum steps to solve 

the puzzle; 𝑺𝒓 is the steps to solve the puzzle for remaining boxes; 𝑵𝒃 is the 

number of boards which refer to the number of sequencing processing 

times; 𝑺𝒑.𝒎𝒂𝒙 is the Pre-sorting steps (the initial steps to fill in the board with 

full capacity); 𝑺𝒑_𝒓 is the Pre-sorting steps (the initial steps to fill in the board 

for remaining boxes); and 𝑺𝒃𝒖𝒇𝒇𝒆𝒓 is the steps or buffered boxes for the next 

sequencing process. The remaining boxes can be calculated as follows: p_r =

𝑵 − (𝑵𝒃 − 𝟏) 𝑪𝒃. 

We assumed that one step is for entering the buffer line, and one step for 

outgoing to the main conveyor, Thus, each buffered box needs 2 steps. we 

assumed also that moving boxes on the main conveyor and the buffer-



    

 50   

 

conveyor are not calculated. Keep these assumptions in mind, 𝑺𝒃𝒖𝒇𝒇𝒆𝒓 can be 

calculated in the worst case as follow: 

𝑺𝒃𝒖𝒇𝒇𝒆𝒓 = ∑ 𝟐𝑵 − (𝒊 × 𝟐𝑪𝒃 )

𝑵𝒃−𝟏

𝒊=𝟏

 (2.11) 

where N is the input (number of boxes); and 𝑵𝒔 is the number of boards which 

can be calculated as follow: 𝑵𝒃 = ⌈
𝑵

𝑪𝑏
⌉. where 𝐶𝑏 is the maximum capacity of 

the used board. 

The results of these strategies will be given in Chapter 3. 

According to the literature illustrated in Chapter 1, the systems designed for 

storing and retrieval items that depended on the puzzle movement concept 

investigated the item retrieval time with multiple escorts (escort refers to the 

empty space in the puzzle system). 

by increasing the number of escorts, the retrieval moves are decreased and the 

retrieval time is decreased as well [7, 27]. The analyses in these researches were 

conducted to retrieve an item to a specific point in the puzzle.  

However, in Sam Loyd's puzzle which consists of (n × m) − 1 square tile and 

one blank, the concept is to keep sliding the blank in one of four cardinal 

directions until we reach the goal state, in such a puzzle system, all items 

should move to their position as in goal configuration. In this study, we 

investigate the increase of blanks on the solution steps for Sam Loyd’s puzzle 

which is used in our sequencing system. 

 

2.5.3 Number of Blanks 

There are lots of researchers who worked on the sliding puzzles [29, 30, 32, 33, 

40–42]. However, To the author's best knowledge, none of these literatures has 

addressed the case of a different number of blanks. Unlike other researches, 
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we first investigated the effect of one and two blanks on the solution steps for 

different sizes of the puzzle. Table 2.5 illustrates the effect of one and two 

blanks on different puzzle sizes regarding the maximum puzzle capacity, the 

total number of states, the number of solvable states, and the maximum 

number of solution steps. 

Table 2.5. The effect of one and two blanks on different puzzle sizes. 

 2×2 puzzle 2×3 puzzle 2×4 puzzle 3×3 puzzle 

No. of blanks 1 2 1 2 1 2 1 2 

Max. capacity 3 2 5 4 7 6 8 7 

No. of states 24 12 720 360 40,320 20,160 362,880 181,440 

solvable states 12 12 360 360 20,160 20,160 181,440 181,440 

Max. solution steps 6 4 21 12 36 26 31 24 

According to the table, by increasing the number of blanks in the puzzle, the 

maximum solution steps is decreasing.  

The second analysis is to show the effect of an arbitrary number of blanks on 

the solution steps for the 8-puzzle as illustrated in table 2.6. 

Table 2.6. The effect of an arbitrary number of blanks on the solution steps for 8-

puzzle 

Number of 

blanks 

Maximum 

capacity 

Maximum 

states 

Maximum 

solution steps 

Average 

solution steps 

1 8 362,880 31 21.97 

2 7 181,440 24 16.03 

3 6 60,480 21 12.7 

4 5 15,120 17 9.99 

5 4 3,024 13 7.88 

6 3 504 10 5.93 

7 2 72 7 3.8 

As shown in Table 2.6, increasing the number of blanks will always decrease 

the solution steps. However, the increasing of blanks has the opposite effect 
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on the system which is decreasing the puzzle capacity. We noticed that the 

maximum number of blanks is 7, the puzzle, in this case, can sequence only 

two boxes.  

Since we are dealing with multiple blanks in the puzzle, that allows us to carry 

out multiple steps simultaneously as double switching. 

 

2.5.4 Double Switching 

In the sliding puzzle, the step term denotes sliding the blank from its current 

position to the next position by switching it with the neighbor tile as shown in 

figure 2.22. 

 

Figure 2.22. The concept of step in sliding puzzle. 

If we assume that one step takes one time unit, means one switching carried 

out by one step and consumed one time unit. Keeping that in mind, we solve 

the puzzle with 2 blanks as in the example illustrated in figure 2.23. 
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Figure 2.23. An example of one step concept to solve 8-puzzle with 2 blanks. 

As shown in figure 2.23, this configuration takes 7 steps to reach the solution. 

We carried out 7 switchings and that consumed 7 times units. However, we 

noticed that the first step and the second step are independent steps. In such a 

case, we carried out switching the tiles (2 and 4) simultaneously. This double 

switching consumed one time unit, therefore, we considered it as one step. So, 

we can achieve double switching in one step.  

By applying the new concept of double switching in one step to solve the 

previous example, we reduced the solution steps from 7 steps to 4 steps as 

shown in figure 2.24. 
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Figure 2.24. An example of the double switching concept to solve 8-puzzle with 2 

blanks. 

According to figures 2.23 and 2.24, double switching in one step concept can 

be applied only when the tiles are switched independently. We confirmed that 

each double switching can reduce the steps by 1 step, in the example we 

carried out the double switching 3 times, reducing the solution steps by 3 steps 

in total.  

The analysis was carried out using "MATLAB 2020b"software as follows: 

1. Searched the solution steps as one switching is carried out in one step.  

2. Tracked the positions of the first and second blanks. 

3. Assumed that each switching is assigned to one blank, and we can’t 

carry out double switching for the same blank. 

4. Checked independence of double switching. 

Figure 2.25 shows an example of the double switching process in MATLAB. 
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Figure 2.25. An example of the double switching process in MATLAB. 

In the example, the initial state is [5, 3, 7; 1, 2, blank; 6, 4, blank]. At the 

programming level, we represent the blanks by zeros.  

The analysis steps carried out by MATLAB are as follows: 

1. Get the solution steps by applying the one switching in one step concept, 

in the example, the solution steps are 18 steps; 

2. Confirm that each switching is assigned to a different blank by 

comparing the current state’s blanks with the next state’s blanks; 

3. Check the independency of the blanks, which can be done by the concept 

of Hamming distance as follow: 

• Give the current state a Hamming = 0; 

• Check the Hamming of the current state with the state (current + 2); 

• If the Hamming = 2, the blanks are independent, else they are 

dependent.  
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In the example, the solution steps are 18 and 15 steps before applying the 

double switching and after, respectively. Thus, we reduced the solution steps 

by 3 steps. 

Figure 2.26 illustrates the procedure algorithm to apply double switching. 

 

Figure 2.26. the procedure algorithm to apply the double switching process. 

2.5.4.1 Improvements with Block Movement 

In the example described in 2.5.4, we assumed that one switching should be 

applied for one blank and we can’t carry out the second switching for the same 

blank. However, we noticed some cases where the same steps are applied for 

the same blank in the current state and the next state. For instance, in steps 3 

and 4 in the example shown in figure 2.25 (right) after applying double 

switching, the first zero is moved left in both steps, in this case, we can apply 

the block movement concept. 

In this concept we move the two tiles together as one block to the right, the 

blank would be moved to the left as well. To apply the block movement, we 

follow the following steps: 
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1. After applying the simple double switching, we check the cases of 

moving the same blank twice in the same column or the same row. 

2. Confirm the independency of another blank with the blank we are 

applying block movement on. The blanks independency can be done 

by tracking the blanks locations as follows: 

• If the blank moves up or down in both current and next states, 

another blank in the next state and the state (current +2) should not 

be in the same column of the blank we are working on. 

• If the blank moves left or right in both current and (current +1) states, 

another blank in the (current +1) and (current +2) states should not 

be placed in the same row of the blank we are working on. 

Figure 2.27 illustrates the procedure algorithm to apply double switching with 

block movement. 

 

Figure 2.27. the procedure algorithm to apply the double switching process with 

block movement. 

Figure 2.28 shows the steps of solving the same example in figure 2.25 after 

applying block movement. 
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Figure 2.28. An example of applying block movement for an 8-puzzle with 2 blanks. 

According to figure 2.28, the first blank had 3 cases where the same steps are 

applied in both current and next states, and one case for the second blank 

However, based on the condition described for the allowability of applying 

block movement, only 3 cases can allow the block movement. 

In this example, we reduced the solution steps by 3 steps. By applying the 

double switching with block movement, we can carry out 3 steps 

simultaneously in one step as shown in figure 2.29.  

 

Figure 2.29. The concept of double switching with applying block movement. 
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 Summary 

In this chapter, we presented the puzzle-based system. We discussed two 

solving methods: the game tree and the path-finding algorithms. We chose the 

A-star algorithm which was optimally efficient among the algorithms that 

extend search paths from the root. We modified the A-star algorithm to fulfill 

the sequencing process by adding the solvability condition and pre-sorting 

strategy by switching the last (n-2) tiles in the puzzle in the case of unsolvable 

configuration which are 50% of puzzle permutations. 

In this chapter, we investigated also the effect of several factors on the overall 

solution steps. For instance, branching factor the Aspect Ratio and the 

rectilinear distance. 

To meet the practical implementation in real-world warehouses, we proposed 

three strategies, increasing the board size using different puzzle board sizes, 

using multi-boards, and adding buffer line. In addition, we dealt with the 

puzzle with an arbitrary number of blanks. Firstly, we investigated the effect 

of increasing the number of blanks in the puzzle on the maximum solution 

steps. Then, we investigated the effect of simultaneous double switching in 

one step on the system regarding maximum solution steps. By carrying out 

simultaneous double switching in 8-puzzle with 2 blanks, we would be able 

to reduce the maximum solution steps considering that one double switching 

can reduce the steps by 1 step. 
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3 CHAPTER 3 

RESULTS AND DISCUSSION 

After the overall explanation in the methodology chapter, here, we present the 

results of the numerical equations and we discuss these results regarding 

reducing the total number of steps keeping in the mind the usage area by the 

system.  

The results and discussion will be presented in different suction following the 

same order in Chapter 2.  

 

 Puzzle Shape 

We investigated in Chapter 2 different factors that affect the solution steps in 

both a square board and a rectangular one, the summary of these factors’ effect 

is illustrated in table 3.1. 

Table 3.1. Our generated tree for the 8-puzzle vs. other works. 

Factor Square puzzle board Rectangular puzzle Board 

Branching factor ✓ ✗ 

Rectilinear distance  ✓ ✗ 

Presorting steps ✓ ✗ 

Aspect ratio ✓ ✗ 
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In order to generalize the comparison of different shapes of the puzzle, the 

same size and number of blanks were used. First, we investigated the 16-boxes 

size of the puzzle.  

3.1.1 16-boxes Size 

This size can sort 15 boxes with two different shapes (4 × 4 and 2 × 8). As Figure 

14 shows, we generated 2 × 105 non-random states for both shapes, starting 

from the target state.  Figure 3.1 illustrates the performance of the generated 

states regarding the solution steps. 

 

Figure 3.1. Comparison between the 4 × 4 and 2 × 8 board sizes with non-random 

states regarding the solution steps. 

To verify the validity of our method to generate the state tree, we compared 

our 8-puzzle tree with other works regarding the following factors: maximum 

number of states, maximum solution steps, and average solution steps. Table 

3.2 illustrates the comparison between our results for the 8-puzzle with others. 

Table 3.2. Our generated tree for the 8-puzzle vs. other works. 

Comparison Factor Our Generated Tree Other Works [29, 32, 43] 

Maximum number of states 181,440 181,440 

Maximum solution steps 31 31 

Average solution steps 21.97 ≈ 22 
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According to Table 3.2, we were able to validate our method, and the same 

program was used to generate the 2 × 105 states for different shapes in this 

section. 

In the generated tree of the 16-boxes size of the puzzle, we noticed clearly a 

significant difference in the state numbers of the two puzzles in the same tree 

depth (solution steps). In other words, states in one shape of the puzzle need 

more solution steps than the second shape. The equation that describes the 

number of states that need more solution steps is as follows: 

𝑵 =  ∑ 𝐍𝐢

𝐒𝐦𝐚𝐱.𝟐

𝐢=𝐒𝐦𝐚𝐱.𝟏+𝟏

, (3.1) 

where N is the number of states that need more solution steps; Smax.1 is the 

maximum solution steps of the first shape; Smax.2 is the maximum solution 

steps of the second shape; and Ni is the number of states in the depth i. 

According to Equation (3.1), for all generated states, 88.35% of states could 

provide fewer solution steps in the 4 × 4 board than in the 2 × 8 for the 2 × 105 

states. Furthermore, Equation (3.2) provides an increasing percentage of 

solution steps for different shapes. 

𝐒𝐩𝐥𝐮𝐬 =
|𝐒𝐦𝐚𝐱.𝟏 − 𝐒𝐦𝐚𝐱.𝟐|

𝐒𝐦𝐚𝐱
× 𝟏𝟎𝟎%, (3.2) 

where Splu𝑠 is the increasing percentage of solution steps; Smax.1, Smax.2 are the 

same as in Equation (3.1); and Smax is the total solution steps. Based on 

Equation (3.2), the results prove that the 4 × 4 board achieved 23.8% of steps 

better than the 2 × 8 board at 2 × 105 states. Overall, when increasing the 

number of states in both given boards, the 4 × 4 board performed better than 

the 2 × 8 board in terms of the number of steps. Next, we considered a 36-boxes 

size of the puzzle. 
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3.1.2 36-boxes Size 

This size can sort 35 boxes. In this case, there are four different shapes (6 × 6, 4 

× 9, 3 × 12, and 2 × 18). The same analysis as in the previous case with the size 

of 16-boxes was carried out. Figure 3.2 shows the solution steps of all states 

with the same number of boxes for different shapes. 

 

Figure 3.2. Comparison between the 6 × 6, 4 × 9, 3 × 12, and 2 × 18 board sizes for 

non-random states. 

We observed the same trend in Figure 3.1 for our 16-boxes size of the puzzle 

in Figure 3.2. For all generated states, and referring to Equation (3.1), we 

confirmed that 44.63%, 76.60%, and 96.92% of states provided fewer solution 

steps in the 6 × 6 board than in the 4 × 9, 3 × 12, and 2 × 18 boards, respectively. 

Moreover, from Equation (3.2), the 6 × 6 board provided 7.14%, 13.33%, and 

31.57% steps fewer than the 4 × 9, 3 × 12, and 2 × 18 boards, respectively. From 

these results, we deduced that the square shape of the puzzle had a better 

performance than the rectangular shape.  
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 Board Size and Number 

We discussed in Chapter 2, three strategies to carry out the sequencing process 

for more than 8 boxes. Since the first strategy which is increasing the size of 

the board had a limitation restricted by the puzzle capacity, we present and 

discuss in this chapter only the two other strategies. 

3.2.1 Using Multi-Boards 

In this section, we illustrate the results of two parameters, the time as a total 

number of steps, and the area used by the system. 

3.2.1.1 Area for the Strategy of Using Multi-Boards 

Based on Equation 2.6, we calculated the area used by the boards ignoring the 

main conveyor. Figure 3.3 illustrates the comparison between 8-puzzle, 15-

puzzle, and 24-puzzle used for this strategy regarding the area. 

 

Figure 3.3. Comparison between 8-puzzle, 15-puzzle, and 24-puzzle used for multi-boards 

strategy regarding the area. 
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According to figure 3.3, we notice the variety in the area occupied by the 

system for different puzzle sizes, that is directly related to the deference 

number of used boards for the same input. 

For example, for 32 boxes as an input, the number of boards used 8-puzzle 

board is 4 boards, using the 15-puzzle board is 3 boards, and using the 24-

puzzle board is 2 boards. The areas of these three puzzles are 36 𝐴𝑏 , 48 𝐴𝑏, and 

50 𝐴𝑏. In this example, it is clear that the 24-puzzle board is superior to the 

other boards. 

In another example, for 48 boxes as an input, the areas are 54 𝐴𝑏 , 64 𝐴𝑏, and 

50 𝐴𝑏 using 8-puzzle, 15-puzzle, and 24-puzzle respectively. 

3.2.1.2 Time for the Strategy of Using Multi-Boards 

Based on Equation 2.8, Figure 3.4 illustrates the comparison between 8-puzzle, 

15-puzzle, 24-puzzle used for this strategy regarding the total solution steps 

in the worst case which is considered the maximum solution steps of the 

puzzle. 
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Figure 3.4. Comparison between 8-puzzle, 15-puzzle, and 24-puzzle used for multi-

boards strategy regarding the total solution steps. 

 

According to figure 3.4, we verified the superior of 8-puzzle board size to other 

boards sizes. The reason for that is the significant increase in the maximum 

solution steps for these puzzles as is illustrated in table 2.4. 

Since the results vary regarding the area and time between different boards 

sizes, we need to find a compromise between the area and the time to evaluate 

the best board size for this strategy. Using the Selection Index theory may 

make us able to compromise between the area and the time for this strategy. 

3.2.1.3 Selection Index Theory 

As we needed to compromise between the area used by the system and the 

time of sequencing for this strategy, we used the Selection Index theory.  

In animal and plants breeding, the breeding value is used by the definition of 

Estimation of Breeding Value (EBV), this estimation is calculated based on 
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individual observed phenotypes information, in addition to the information 

from relatives and correlated traits. 

To combine information from different sources, the researchers used the 

Selection index and they expressed the EBV as an index, weighing different 

types of information. Equation 3.3 illustrates the classical Selection Index for a 

combination of different sourced information [44]. 

𝑬𝑩𝑽 = 𝑰𝒏𝒅𝒆𝒙 = 𝒃𝟏𝑿𝟏 + 𝒃𝟐𝑿𝟐+ . . . +𝒃𝒏𝑿𝒏 
 

(3.3) 

where EBV is the estimation of breeding value and 𝑏1, 𝑏1, …, 𝑏𝑛 are the weights 

and 𝑋1, 𝑋2, …, 𝑋𝑛 are phenotypic information sources. 

In this study, we used the same theory to compromise between the area and 

time. Firstly, we normalized the results of the area and time to unify the range 

of the y axis. we rescaled the y axes of both time and area from 0 to 1. Then, 

we weighed equally the area and the time, and we keep to the logistical 

managers to evaluate the importance of these parameters. Equation 3.4 

illustrates the use of the classical selection index for area and time. 

𝑰 = +𝟎. 𝟓 𝑨 +  𝟎. 𝟓 𝑺𝒕𝒐𝒕𝒂𝒍 
 

(3.4) 

where 𝑺𝒕𝒐𝒕𝒂𝒍 is the total solution steps which refer to the solution time; and A 

is the area used by the system. 

Since we aimed to reduce the used area and minimize the solution time, the 

smaller the Index is the better strategy we get. Figure 3.5 illustrates the index 

of both area and time after normalizing (rescale) their results. 
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Figure 3.5. Selection index for normalized time and area of multi 8,15 and 24 boards 

for 48 input 

According to figure 3.5, we observe the superior of using multi 8-puzzle size 

boards to other boards in this strategy. 

3.2.2 Adding a Buffer Line 

The same two parameters discussed to evaluate the strategy will be 

considered. 

3.2.2.1 Area for the Strategy of Adding Buffer Line 

We compared the area for this strategy with the area of using multi-8-puzzle 

boards illustrated in Section 3.2.1.1. Based on Equations 2.6, and 2.9, we get 

Figure 3.6 which illustrates the comparison between muti-8-puzzle boards and 

adding buffer line regarding the system area for 48 boxes as an input. 
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Figure 3.6. Comparison between muti-8-puzzle boards and adding buffer line 

regarding the system area. 

In figure 3.6, we noticed that using a buffer line reduced the used area. The 

reason is the linearity of the area in this strategy, while in a multi-board 

strategy the area depended on the capacity of the puzzle which affects also the 

number of used boards. 

3.2.2.2 Time for the Strategy of Adding Buffer Line 

According to Equations 2.8, and 2.10, Figure 3.7 illustrates the comparison 

between muti-8-puzzle boards and adding buffer line regarding the total 

solution steps. 
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Figure 3.7. Comparison between muti-8-puzzle boards and adding buffer line 

regarding the total solution steps. 

We noticed that adding a buffer line increases the total number of steps 

compared to the strategy of multi-boards with an 8-puzzle board size. 

3.2.2.3 Index for the Strategy of Adding Buffer Line 

As same as the strategy of using multi-boards, we used the selection index 

theory to compromise between the area and time for the strategy of adding 

buffer line. 

For comparison and selection index, we compared the strategy of adding 

buffer line with the strategy of using multi-board with the size of 8-puzzle 

board. 

Based on Equation 3.4 we calculated the index for these strategies. Figure 3.8 

illustrates the index of both area and time in this strategy and multi-8-puzzle 

boards after normalization. 
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Figure 3.8. Selection index for normalized time and area of multi 8-puzzle boards 

and buffer line for 48 input 

Based on figure 3.8, the strategy of using multi-boards with the 8-puzzle board 

size was better than the strategy of adding a buffer line to the system. 

Figure 3.9 illustrates the curve fitting of the multi-boards strategy with three 

different board sizes and adding buffer line strategy. The curve fitting gives 

an estimation of the trend of indices for different input numbers. 
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Figure 3.9. Curve fitting for multi-boards and adding buffer line strategies with 

three different board sizes. 

From the figure, we can conclude the superiority of the strategy of using multi-

boards with the 8-puzzle board size to other strategies and sizes.  

 

 Number of Blanks 

To compromise between the number of blanks and the puzzle capacity, the 

same analyses of the strategy of using multi-boards with the size of 8-puzzle 

regarding the area and total solution steps were carried out. In this analysis, 

we considered the 8-puzzle with a different number of blanks. Figure 3.10 

illustrates the area of the system for a different number of blanks in the 

strategy of using multi—puzzle boards. 
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Figure 3.10. The area of multi 8-puzzle boards for different numbers of blanks. 

As shown in the figure, increasing the number of blanks will always increase 

the system area. The reason is that increasing the blanks will decrease the 

puzzle capacity, and increase the number of boards as Equation 2.7. Figure 

3.11 illustrates the total solution steps in the strategy of multi-8-puzzle boards 

for different numbers of blanks. 
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Figure 3.11. The total solution steps of multi 8-puzzle boards for different numbers 

of blanks. 

According to Figure 3.11, 4 blanks provided the shortest solution steps.  

The reason behind these results is the big difference in the number of boards 

which is the coefficient of the presorting steps as in Equation 2.8. 

For example, for 30 boxes as an input of the system. 1 blank puzzle needed 4 

boards while 4 blanks needed 6 boards. Even though the maximum solution 

steps is decreasing by increasing slightly the blank, the coefficient of this 

parameter is always 1. 

Figure 3.12 illustrates the parameter of Equation 2.8 for 30 boxes regarding 

different numbers of blanks. As the total number of steps, 4 blanks provide the 

shortest solution steps compared to other puzzles with different numbers of 

blanks. 
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Figure 3.12. The parameter of Equation 5.5 for 30 boxes regarding different numbers 

of blanks. 

Same analysis as for the strategies described before in this Chapter to evaluate 

the system regarding different numbers on blanks. We used the selection 

index theory to compromise between the area and time. 

Figure 3.13 illustrates the index for multi-8-puzzle boards with different 

numbers of blanks. 
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Figure 3.13. The index for multi-8-puzzle boards with different numbers of blanks. 

According to figure 3.13, up to 25 boxes, the behavior of less than or equal to 

4 blanks has almost the same index with very slight changes, while more than 

4 blanks the puzzles have a bigger index. 

For greater than 25 boxes, we noticed that 1 and 2 boxes have the almost same 

index, while 3 and 4 blanks started to give a bigger index than 2 and 1 blank. 

Until now, even though, these puzzles have more than one blank, we slide 

only one blank each step. Next, we investigated the double switching effect on 

the solution steps. 

 

 Double Switching 

As described in Chapter 2, we carried out double switching in one step. We 

have two different cases: the general case where the blanks are placed 

randomly in the puzzle and the case where the blanks are placed in the corner 
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of the puzzle. We present the effect of double switching on the solution steps 

for both cases. 

3.4.1  General Case 

We investigated the new concept to solve 8-puzzle with 2 blanks for all 

configurations in the general case where the blanks are randomly placed in the 

puzzle. 

Figure 3.14 illustrates the number of possible simultaneous double switching 

for an 8-puzzle with 2 blanks. 

 

Figure 3.14. The number of simultaneous double switching for 8-puzzle with 2 

blanks. 

In figure 3.14, we noticed that the maximum states are 181436 states, because, 

the first 4 states in the tree take less than 2 steps to reach the goal state. 

According to the figure and the analysis steps described, we reduced the 

number of solution steps for 177225 states out of 181436 states by a minimum 

of 1 step, an average of 2 steps, and a maximum of 7 steps. 
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 To evaluate the reduction percentage by carrying out double switching in one 

step, we considered the average solution steps of the puzzle with 2 blanks as 

illustrated in Table 2.6. In addition, we considered the average reduction steps 

which are 2 steps. 

Figure 3.15 illustrates the reduction percentage of solution steps for 8-puzzle 

with 2 blanks. 

 

Figure 3.15. Reduction percentage of solution steps for 8-puzzle with 2 blanks. 

According to the figure, by considering the average solution steps and average 

reduction steps, we got a 12.5% reduction percentage of the solution steps. 

The results shown in figure 3.15 are summarized in table 3.3. 
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Table 3.3. The reduction percentage of solution steps for 8-puzzle with 2 blanks. 

Double-switching  Minimum Maximum Average  

(16 solution steps) 

1 time (Reduce 1 step) 4.16% 50% 6.25% 

2 times (Reduce 2 steps) 8.33% 40% 12.5% 

3 times (Reduce 3 steps) 12.5% 42.85% 16.66% 

4 times (Reduce 4 steps) 16.66% 44.44% 22.22% 

5 times (Reduce 5 steps) 20.83% 45.45% 26.31% 

6 times (Reduce 6 steps) 25% 42.85% 31.57% 

7 times (Reduce 7 steps) 30.43% 41.17% 33.33% 

According to table 3.3, the minimum percentage of steps reduction is 4.16% 

and the maximum is 50%.  

3.4.2 Blanks Placed in the Corner of the Puzzle 

We assumed that practical implementation in a real-world warehouse requires 

placing the blanks in the corner of the puzzle. 

The same analyses for double switching in the general case were conducted 

considering our assumption for practical implementation requirement. 

Figure 3.16 illustrates the number of possible simultaneous double switching 

for an 8-puzzle with 2 blanks placed in the corner of the puzzle.  
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Figure 3.16. The number of simultaneous double switching for 8-puzzle with 2 

blanks placed in the corner of the puzzle. 

As shown in the figure, the total states, in this case, are 5040 states. We reduced 

the number of solution steps for 4766 states out of 5040 states by a minimum 

of 1 step, an average of 2 steps, and a maximum of 5 steps. 

Considering the case of placing the planks in the puzzle corner, we generated 

all the states and calculate the maximum and average solution steps for an 

arbitrary number of blanks for 8-puzzle as illustrated in table 3.4. 

Table 3.4. The effect of an arbitrary number of blanks on the solution steps for an 8-

puzzle with 2 blanks placed in the corner of the puzzle. 

Number of 

blanks 

Maximum 

capacity 

Maximum 

states 

Maximum 

solution steps 

Average 

solution steps 

1 8 20160 30 22.14 

2 7 5040 24 16.27 

3 6 720 20 13.17 

4 5 120 14 10 

5 4 24 12 7.39 

6 3 6 8 5.6 

7 2 2 4 4 
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According to table 3.4, the average solution steps are 16 steps. And as shown 

in figure 3.16, the average reduction steps are 2 steps. Keep this in mind, we 

analyzed the reduction percentage of solution steps when carrying out double 

switching in one step. 

Figure 3.17 illustrates the reduction percentage of solution steps for an 8-

puzzle with 2 blanks placed in the corner of the puzzle. 

 

Figure 3.17. Reduction percentage of solution steps for an 8-puzzle with 2 blanks for 

practical implementation requirement. 

The summary of the results shown in the figure is illustrated in table 3.5. 

Table 3.5. The reduction percentage of solution steps for 8-puzzle with 2 blanks 

placed in the corner of the puzzle.  

Double-switching  Minimum Maximum Average  

(16 solution steps) 

1 time (Reduce 1 step) 4.54% 25% 6.25% 

2 times (Reduce 2 steps) 8.33% 25% 12.5% 

3 times (Reduce 3 steps) 13.63% 30% 16.66% 

4 times (Reduce 4 steps) 18.18% 28.57% 22.22% 

5 times (Reduce 5 steps) 22.72% 31.25% 27.77% 
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According to table 3.5, the minimum percentage of steps reduction is 4.54%, 

the maximum is 31.25%, and the average is 12.5%. 

To evaluate the improvement of applying the block movement on the total 

solution steps in the system, the same analyses as in 3.4.1 and 3.4.2 are carried 

out here. 

Figures 3.18 and 3.19 illustrate the number of simultaneous double switching 

for 8-puzzle with 2 blanks after applying the block movement in both general 

case and the case of placing the blanks in the corner of the puzzle, respectively. 

 

Figure 3.18. The number of simultaneous double switching with block movement 

for 8-puzzle with 2 blanks. 
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Figure 3.19. The number of simultaneous double switching with block movement 

for 8-puzzle with 2 blanks placed in the corner of the puzzle. 

According to figure 3.18, We reduced the number of solution steps for 180,986 

states out of 181,436 states by a minimum of 1 step, an average of 4 steps, and 

a maximum of 12 steps. 

In figure 3.19, We reduced the number of solution steps for 5025 states out of 

5040 states by a minimum of 1 step, an average of 4 steps, and a maximum of 

10 steps. 

For getting the reduction percentage of steps after applying the block 

movement, we concede the average solution steps of the 8-puzzle with 2 

blanks (16 steps) and the average reduction steps (4 steps). Figures 3.20 and 

3.21 illustrate the reduction percentage in the general case and the practical 

implementation requirement, respectively. 
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Figure 3.20. Reduction percentage of solution steps after applying block movement 

for 8-puzzle with 2 blanks.  

 

Figure 3.21. Reduction percentage of solution steps after applying block movement 

for 8-puzzle with 2 blanks placed in the corner of the puzzle. 

The summary of the results shown in figures 3.20 and 3.21 are illustrated in 

tables 3.6 and 3.7, respectively. 
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Table 3.6. The reduction percentage of solution after applying block movement 

steps for 8-puzzle with 2 blanks.  

Double-switching  Minimum Maximum Average  

(16 solution steps) 

1 time (Reduce 1 step) 4.54% 50% 6.25% 

2 times (Reduce 2 steps) 8.69% 66.66% 12.5% 

3 times (Reduce 3 steps) 13.4% 75% 18.75% 

4 times (Reduce 4 steps) 16.66% 66.66% 25% 

5 times (Reduce 5 steps) 20.83% 62.5% 31.25% 

6 time (Reduce 6 steps) 25% 60% 37.5% 

7 times (Reduce 7 steps) 29.16% 58.33% 43.75% 

8 times (Reduce 8 steps) 33.33% 57.14% 50% 

9 times (Reduce 9 steps) 37.5% 56.25% 56.25% 

10 times (Reduce 10 steps) 41.66% 55.55% - 

11 times (Reduce 11 steps) 47.82% 52.38% - 

12 times (Reduce 12 steps) 52.17% 54.54% - 

Table 3.7. The reduction percentage of solution steps after applying block 

movement for 8-puzzle with 2 blanks placed in the corner of the puzzle.  

Double-switching  Minimum Maximum Average  

(16 solution steps) 

1 time (Reduce 1 step) 5% 25% 6.25% 

2 times (Reduce 2 steps) 10% 33.33% 12.5% 

3 times (Reduce 3 steps) 13.63%% 37.5% 21.42% 

4 times (Reduce 4 steps) 18.18 50% 25% 

5 times (Reduce 5 steps) 22.72% 41.66% 31.25% 

6 time (Reduce 6 steps) 27.27% 50% 37.5% 

7 times (Reduce 7 steps) 31.81% 50% 43.75% 

8 times (Reduce 8 steps) 33.33% 50% 50% 

9 times (Reduce 9 steps) 40.9% 50% - 

10 times (Reduce 10 steps) - 45.45% - 
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According to table 3.6, the minimum percentage of steps reduction is 5%, the 

maximum is 50%, and the average is 25%. 

According to table 3.7, the minimum percentage of steps reduction is 4.54%, 

the maximum is 75%, and the average is 25%. 

From tables 3.6 and 3.7, we confirmed the improvement in the system 

regarding the solution steps after applying the block movement. 

 

 Managerial Impact 

To evaluate the proposed system and explore the impact of implementing the 

puzzle-based concept in products sequencing, we compared the proposed 

system with the other used systems. In addition, we compared the puzzle 

system with the traditional sorting algorithm (Dual-Pivot Quicksort 

algorithm).  

Firstly, the puzzle-based sequencing system was compared with the 

GridSequence system developed by Gue et al. [11] with respect to the floor 

used area and sequencing time. In order to evaluate the utilization of floor 

space in the sequencing system, we calculated the area used by the puzzle-

based system based on Equation 2.6 (we considered the strategy of using 

multi-boards with the size of 8-puzzle). For the GridSequence system, we 

considering 1 additional column and one additional row to the grid. Thus, the 

area is calculated as (n + 1) × (m + 1), where (i = n * m), where i is the number 

of boxes that need to be sequenced. 

Table 3.8 illustrates the used area in the puzzle-based system versus the 

GridSequence system for sequencing different numbers of boxes.  
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Table 3.8. The used area in a puzzle-based system vs. a GridSequence system.  

Number of 

boxes (i) 

Puzzle-Based System 

Area = [𝑪𝒔 + 𝟏)𝑵𝒔]  ×  𝑨𝒃 

GridSequence System 
Area = (n + 1) × (m + 1) ×  𝑨𝒃 

8 𝐶𝑠 = 8, 𝑁𝑠 = 1 9 n = 2, m = 4 15 

32 𝐶𝑠 = 8, 𝑁𝑠 = 4 36 n = 5, m = 7 42 

48 𝐶𝑠 = 8, 𝑁𝑠 = 6 54 n = 6, m = 8 63 

96 𝐶𝑠 = 8, 𝑁𝑠 = 12 108 n = 8, m = 12 117 

As shown in Table 3.8, the puzzle-based system can provide a less used area 

than the GridSequence system. Better space utilization is quantified, with a 

practical example; to sequence 32 boxes with sizes of 35 cm × 35 cm = 0.1225 

m2, GridSequence would occupy 5.14 m2, while the proposed puzzle-based 

would occupy 4.41 m2. Therefore, a puzzle-based sequencing system is 

recommended to reduce the space as well as reduce the cost. 

Second, we compared the proposed system with the GridSequence system 

regarding the sequencing time. In the puzzle-based system, we considered the 

multi-boards with the size of 8-puzzle, and we assumed that one step is carried 

out in 1 second. In addition, we add 3 steps to empty each board (assuming 

that every 3 boxes will be out of the puzzle simultaneously as on block). In the 

GridSequence we took into consideration 1 and 2 columns, and we considered 

the case of aspect ratio equals to 1 to match our board aspect ratio. Table 3.9 

illustrates the sequencing time in the puzzle-based system versus the 

GridSequence system for sequencing 96 boxes. 

 Table 3.9. The sequencing time in a puzzle-based system vs. a GridSequence 

system for 96 boxes.  

Number of 

boxes (i) 

Puzzle-Based System 

Equation 2.8 

GridSequence System 

Gue et al. [11] 

96 𝑁𝑠 = 12 234 Sec. No. of Column=1 ≈320 Sec. 

96 𝑁𝑠 = 12 234 Sec. No. of Column=2 ≈313 Sec. 
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As shown in the table, the puzzle-based system can sequence 96 boxes in 234 

seconds (Recall that 1 step is carried out in 1 second, which is realistic time in 

real-word). As a result, the proposed system significantly reduces the 

sequencing time compared with the GridSequence system. 

Further comparison is carried out with traditional sorting algorithms such as 

the Dual-Pivot Quicksort algorithm. In the Dual-Pivot Quicksort algorithm, 

we chose two pivots and the algorithm can be described as follows: 

1. Define the first and the last elements in the series as pivot 1 (P1) and 

pivot 2 (P2) respectively, and the remaining elements are divided into 

three parts: in part I, the elements that are smaller than P1, in part III, 

the elements that are bigger than P2. the rest of elements are placed in 

part II as illustrated in figure 3.22. 

 

Figure 3.22. Concept of Dual-Pivot Quicksort algorithm. 

2. Swap P1 with the last element of part I, and swap P2 with the first 

element of part III. 

3. Repeat steps 1 and 2 for Parts I, II, III. 

The average number of swaps of the Quicksort algorithm with 2 

pivots is (0.8*n* ln(n)) [45]. 

 Since the Dual-Pivot Quicksort algorithm has a smaller number of swaps than 

classical Quicksort, we compared a concept of implementing this algorithm to 

sort 8 items using flexible multi-directional conveyors with puzzle sorting 

concept as illustrated in figure 3.23. 
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Figure 3.23. Principle of swap & step in Quicksort algorithm with multi-directional 

conveyors system and puzzle sorting concept. 

Table 3.10 illustrates the comparison between the puzzle concept and Dual-

Pivot Quicksort algorithm regarding the area, and number of steps 

Table 3.10. Comparison between the puzzle concept and Dual-Pivot Quicksort 

algorithm. 

 Dual-Pivot Quicksort n=8 Puzzle-based system n=8 

Area [box size] 3n 24 n+1 9 

No. of steps [45] Avg.= 0.8 × n × ln(n) × 3*  39.9 Max.= 31 (for n=8) 31 

* Swapping two boxes needs at least 3 steps 

According to the table, the puzzle provided fewer steps than the Quicksort 

algorithm, also the area used by the puzzle is less than that used by the flexible 

multi-directional conveyors. 

We investigated the implementation of Quicksort algorithm utilizing puzzle 

movement concept for an example of 8 elements by applying the following 

steps: 

1. Arrange the list on a 3×3 grid (3×3 puzzle grid). 

2. Do partitioning considering the pivots (sub-targets), with putting in 

consideration that swapping two tiles should not change others 

sequence configuration. 

3. Put the pivots in their proper positions (sub-target).  
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4. Repeat the algorithm for the unsorted partitions. 

Figure 3.24 illustrates an example of implementing the Dual-Pivot Quicksort 

algorithm utilizing the sliding puzzle movement concept for 8 elements 

(assuming we can do multiple swapping simultaneously). 

 

Figure 3.24. Implementation of Dual-Pivot Quicksort algorithm with 2 pivots 

utilizing sliding puzzle concept. 

According to figure 3.24, swapping two elements needs several steps to move 

from one state to the next sub-target, and each sub-target is considered as a 

puzzle. Based on the previous example; in order to sort the list of 8 numbers, 

we had to solve the puzzle four times. 

Table 3.11 illustrates the comparison between the puzzle concept and Dual-

Pivot Quicksort algorithm used puzzle-based board regarding the area, and 

number of steps  

Table 3.11. Comparison between the puzzle concept and Dual-Pivot Quicksort 

algorithm used puzzle-based board. 

 Dual-Pivot Quicksort n=8 Puzzle-based system n=8 

Area [box size] 3+1 9 n+1 9 

No. of steps [45] Avg.= 0.8 × n × ln(n) × 16*  212.9 Max.= 31 (for n=8) 31 

* Average solution steps for 8-puzzle is 16 
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According to the table, the puzzle provided much less sequencing time than 

Dual-Pivot Quicksort. 

Figure 3.25 illustrates the performance of the proposed method compared 

with other sequencing systems regarding the used area and the sequencing 

time. 

 

Figure 3.25 Performance comparison between the proposed method and other 

sequencing systems regarding the used area and the sequencing time. 

According to the figure, the proposed puzzle-based sequence system provided 

better performance as a counterbalance between used floor space and the 

sequencing time.  

 

 Summary 

In this chapter, we investigated the effect of the board shapes on the system 

regarding solution steps. We compared the same size of the puzzle with 

different shapes. The results showed that a square shape provided better 

performance than a rectangular one. 
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The results of the practical implementation strategies were presented. we 

concluded that the strategy of using multi-board with the 8-puzzle board size 

was the most suitable strategy regarding both the used system area and total 

solution steps.   

We dealt in this Chapter with the puzzle with an arbitrary number of blanks. 

In the strategy of using multi-boards with an 8-puzzle board size, we carried 

out the sorting for different numbers of blanks for 8 to 48 boxes as an input of 

the system. As a result, if the number of input boxes is up to 25 boxes, 

increasing the blanks up to 4 blanks has a very slight effect, however, if the 

number of inputs grows above 25 boxes, 1 or 2 blanks shows almost the same 

behaviour regarding the area used by the system and the total solution steps. 

while increasing the blanks more than 2 gave an opposite effect on the system. 

We investigated the effect of simultaneous double switching in one step on the 

system regarding maximum solution steps. Simultaneous double switching 

allows reducing the maximum solution steps by an average of 2 steps and as 

of 12.5% steps reduction percentage. Afterward, we improve the reduction 

percentage by applying the block movement concept. As a result, we reduced 

the solution steps by an average of 4 steps and an average of 25% steps as a 

reduction percentage. 

The proposed system provided a higher floor space utilization and lower 

sequencing time compared with some systems and sorting algorithms. 
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4 CHAPTER 4  

CONCLUSION AND FUTURE WORK 

  Conclusion 

Item sequencing has become necessary in order to increase the efficiency of 

logistics operations. In this Dissertation, we focused on the material handling 

devices that could carry out the sequencing task. We developed a puzzle-

based sequencing system with highly efficient floor space utilization as well 

as lower sequencing time. Different searching techniques were discussed, and 

the A-star algorithm was chosen to find the shortest solution for the puzzle. 

Furthermore, a pre-sorting process was proposed to overcome unsolvable 

configurations. In the pre-sorting process, we switched the last two items; 

therefore, different filling-in processes might affect the overall steps to reach 

the final goal of the puzzle. 

Two shapes of the puzzle with the same size were considered to achieve the 

minimum number of solution steps. The results clarified a different number of 

states in the same level of the generated tree for both shapes with different 

sizes. For different puzzles, if we give a random state, there is a high 

probability that it will be in the tree with the higher number of states at the 

same level. Several factors were discussed with their effects on the puzzle 

solution steps. Based on the results of the numerical calculations, it can be 

concluded that a square shape can provide a shorter solution than a 

rectangular shape. 
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Practically, the 8-puzzle sequencing system is restricted by the puzzle 

capacity. Therefore, we proposed and discussed three strategies to meet the 

practical implementation in real-world warehouses where the need of 

sequencing a list of more than 8 items. 

Our proposed strategies were: 

1. Increasing the board size using different puzzle board sizes: In this 

strategy, we were still limited to the used puzzle capacity. 

2. Using multi-boards:  in this strategy, we used several boards placed 

along with the main conveyor, on these boards the sequencing 

processes were carried out in parallel. we compared 8,16 and 24-

puzzle, and we observe that 8-puzzle board size performs better than 

other boards regarding the area used by the system and the total 

solution steps. 

3. Adding buffer line: in this strategy, we added a buffer conveyor along 

with the main input conveyor. For the input boxes ordered more than 

8, they will temporarily be buffered and resequencing in the next 

sequencing process. We compared the strategy of using multi-boards 

with 8-puzzle board size with the strategy of adding buffer line, we 

observe the superiority of using multi-8-puzzle boards. 

Finally, we investigated the effect of increasing the blanks in the puzzle which 

reduced the maximum solution steps. Carrying out simultaneous double 

switching allowed us to reduce the maximum solution steps by an average of 

2 steps which is a 12.5% steps reduction percentage. After the improvement 

by applying the concept of block movement, we were able to reduce the 

solution steps by an average of 4 steps which is a 25% steps reduction 

percentage. The best strategy for more than 8 boxes is using multi-boards 

along with the main feeding conveyor with the shape and size of 8-puzzle with 

2 blanks. 
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Compared with other sequencing systems the proposed puzzle-based system 

provided a lower used area and highly efficient floor space utilization. 

Furthermore, the puzzle system achieved better performance regarding the 

sequencing time. These points are important parameters when considering 

designing a material handling device for products sequencing to reduce the 

capital, operational and variable costs including minimizing the cost of 

workforces.  

 

  Limitations and Future Work 

4.2.1 Limitations 

The limitation of the presented system can be represented from the Mechanical 

point of view. In the case where a conveyor module has a problem, the cell of 

this module will be considered as a broken cell or idle cell. Here we have 3 

cases: 

- The idle cell is in the puzzle’s corner: we still be able to use the same 

algorithm, however, we can be able to sequence up to 7 boxes per board. 

- The idle cell is along the edge of the puzzle: the maximum number of boxes 

that can be sequenced is 6 boxes, and we use the same algorithm. 

- The idle cell is in the middle of the puzzle: here the sequencing process 

won’t proceed anymore, thus we need to maintain the board. 

This problem can be more considerable when more than one cell is broken in 

the board. 

4.2.1 Future Work 

As presented in this thesis, we used a pre-sorting process to overcome the 

unsolvable states of the puzzle. we assumed the filling in strategy in the way 

the first three boxes will be placed at the first row of the puzzle, then the boxes 

4 to 6 will be placed in the second row in the order shown in figure 4.1. 
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Figure 4.1 Current pre-sorting strategy 

However different filling-in strategies might be applied, for instance, choosing 

the best configuration toward the shortest solution steps. 

in this strategy, we chose the best permutation for the first three boxes which 

are placed in the first row, and then based on this permutation, we investigate 

the best permutation for the next three boxes. 

Eventually, we reach the best state configuration that provides the shortest 

solution steps. 

Figure 4.2. illustrate the concept of the new pre-sorting strategy. 

 

Figure 4.2. The concept of the new pre-sorting strategy. 
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