
A Puzzle-Based Products Sorting Strategy for
Logistics Warehouses

著者 Alahmad Raji
year 2022-03
その他のタイトル 物流倉庫のためのパズルベースソーティングシステ

ムに関する研究
学位授与年度 令和3年度
学位授与番号 17104甲生工第436号
URL http://doi.org/10.18997/00008919

Doctoral Thesis

A Puzzle-Based Products Sorting Strategy

for Logistics Warehouses

物流倉庫のためのパズルベースソーティング

システムに関する研究

RAJI ALAHMAD

March, 2022

Department of Life Science and Systems Engineering

Graduate School of Life Science and Systems Engineering

Kyushu Institute of Technology

II

A Doctoral Thesis

submitted to Graduate School of Life Science and Systems Engineering

Kyushu Institute of Technology

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Engineering

RAJI ALAHMAD

Thesis committee:

Professor Kazuo Ishii (Supervisor)

Professor Hiroaki Wagatsuma (Co-Supervisor)
Professor Hiroyuki Miyamoto (Co-Supervisor)

Professor WATANABE Keisuke (Co-Supervisor)

III

ACKNOWLEDGMENTS

In the Name of Allah, the Most Gracious, and the Most Merciful

Foremost, I would like to thank and praise the almighty Allah who gave me

so much blessed, strength, and composure all the time especially during my

Ph.D.

I would like to express my deep gratitude to my supervisor Prof. Kazuo Ishii

for giving me the opportunity to pursue my study in his beloved laboratory.

His great support and invaluable assistance were always motivated me to

move forward without any worries. His deep knowledge allowed me to gain

significant experience through frequent and fruitful discussions. He was a

great example of a professional researcher whom I would like to follow in the

future.

I would like to thank the committee members Prof. Hiroaki Wagatsuma, Prof.

Hiroyuki Miyamoto, and Prof. Keisuke Watanabe for the invaluable

comments which enriched my work. I express my thanks to Prof. Yuya

Nishida and Prof. Shinsuke Yasukawa for the precious feedback and advice

they provided during the meetings.

I would like to express my gratitude to Prof. Doobsub James Jahng who played

an important role in my life. The inestimable knowledge he gave me is

positively influenced my way of thinking and acting.

A very great thanks to my friend Enrico, he was more than a companion, he

was a brother. He was always beside me. Grazie di Cuore.

I would like to thank my dear friend Sung min Nam for the enjoyable

conversations on many topics.

A great thanks to all my friends and colleagues in the Ishii laboratory for the

great times we spent during trips as well as research.

IV

A great thanks to my dear friends Belal, Obada, Ahmed, Khaled, Farid, and all

the Arab community. They were very great supports during my journey in

Japan.

I would like to thank the chairman of the Japanese Syria Friendship association

(JSFA), Dr. Mohammed Shihab for the priceless support and motivation.

I take the chance to express my thanks to the Rotary Yoneyama Memorial

Scholarship for their significant financial support. Great thanks to Mr. Takashi

Koga and his wife for the joyful times we spent.

This work was supported partly by the collaborative research project between

the Center for Socio-Robotic Synthesis, Kyushu Institute of Technology and

Beyond Co., Ltd.

last but not least, I would like to express my deepest gratitude to my family.

All my achievements are wholeheartedly dedicated to them. Without their

priceless support, I would not be able to stand up. My parents, my brothers,

and my sisters.

All praise to Almighty Allah firstly and lastly

V

ABSTRACT

The new challenging demands of the current market including space should

be satisfied by designing modern material flow systems, with higher levels of

flexibility and reliability. Designing warehouses using effective material

handling equipment such as multi-directional conveyors significantly reduces

the cost towards efficient space utilization and time-saving. Several storage

strategies can be applied depending on service concerns and products storage

conditions, for instance, for storing frozen items that need specific temperature

conditions, the zoning strategy is applied. On the other hand, different order

picking policies might be used such as Batch picking where the orders would

be batched together and the picking process carried out for whole required

orders in a single picking round. Under batch and/or zoning picking policy,

which is applied in most online retailers’ warehouses, products necessitate

further processes such as consolidation, sorting, and sequencing. Sequencing

of items is one of the important processes that lead to enhancing logistic

operations. However, current approaches are not capable of fully fulfilling the

dynamic changes, and therefore puzzle-based sequencing system with very

high density and highly efficient floor space utilization has been successfully

developed.

Accordingly, two puzzle-solving methods are investigated; the game tree and

the pathfinding algorithms. A-star is chosen based on pathfinding algorithms

in order to find the shortest solution of the puzzle in which the sequencing

time is decreased. Furthermore, the pre-sorting process is proposed to

overcome the unsolvable configuration issue. The shape of the puzzle is

discussed with several factors that affect the sorting steps, and numerically we

found that the square shape is better than the rectangular one in terms of

VI

solution steps. Three introduced technical solutions strategies are proposed to

increase the limitation of the puzzle; increasing the puzzle size, using multi-

boards with the same puzzle boards sizes, and adding buffer conveyor. These

strategies are explained and discussed in terms of the area used by the system

and the total solution steps. Using multi-boards with the 8-puzzle board size

was superior to other strategies. An arbitrary number of blanks in the puzzle

was discussed with their effect on the puzzle capacity and maximum solution

steps. Moreover, by carrying out double switching in one step with applying

the block movement concept, the solution steps are minimized by a minimum

of 1 step, an average of 4 steps, and a maximum of 10 steps in an 8-puzzle with

2 blanks placed in the corner of the puzzle, and the average reduction

percentage of solution steps was 25%. The best strategy to sequence more than

8 boxes in one sequencing time is using multi-boards along with the main

feeding conveyor with the shape and size of 8-puzzle with 2 blanks.

The findings suggest that a puzzle-based sequencing system would be

preferred for highly efficient floor space utilization as well as lower

sequencing time compared to other systems.

Keywords: Warehouse; Sequencing; 8-puzzle; A-star algorithm.

VII

TABLE OF CONTENTS

ACKNOWLEDGMENTS ..III

ABSTRACT .. V

TABLE OF CONTENTS .. VII

LIST OF FIGURES ...X

LIST IF TABLES .. XIII

1 CHAPTER 1 ... 1

INTRODUCTION .. 1

 BACKGROUND .. 1
 PROBLEM STATEMENT ... 5
 LITERATURE REVIEW ... 6
1.3.1 Material Handling Technologies ... 7
1.3.2 High-density Systems .. 8
 RESEARCH OBJECTIVES .. 15
 CONCEPT OF PUZZLE-BASED SEQUENCING SYSTEM 15
 LAYOUT OF THE THESIS ... 17
 SUMMARY .. 18

2 CHAPTER 2 ... 19

RESEARCH METHODOLOGY .. 19

 SLIDING PUZZLE .. 19
 SEQUENCING ALGORITHM .. 20
2.2.1 Game Tree .. 21
2.2.2 Pathfinding Algorithms ... 25
 A-STAR ALGORITHM .. 26
2.3.1 Hamming Distance .. 26
2.3.2 Manhattan Distance .. 27
 SOLVABILITY CONDITION .. 32
2.4.1 Proposal for the Solvability Problem .. 33
 SEQUENCING SYSTEM DESIGN ... 35
2.5.1 Board Shape .. 36

2.5.1.1 Branching Factor ... 38
2.5.1.2 Maximum Rectilinear Distance of One Tile .. 39

VIII

2.5.1.3 Pre-sorting Steps ... 40
2.5.1.4 Aspect Ratio ... 41

2.5.2 Board Size and Number ... 42
2.5.2.1 Increase the Size of the Sequencing Board .. 43

I. Area for the Strategy of Different Sizes of Board 44
II. Time for the Strategy of Different Sizes of Board 44

2.5.2.2 Using Multi-Boards .. 45
I. Area for the Strategy of using Multi-Boards ... 46
II. Time for the Strategy of using Multi-Boards .. 47

2.5.2.3 Adding a Buffer Line .. 48
I. Area for the Strategy of Adding Buffer Line ... 49
II. Time for the Strategy of Adding Buffer Line .. 49

2.5.3 Number of Blanks... 50
2.5.4 Double Switching ... 52

2.5.4.1 Improvements with Block Movement ... 56
 SUMMARY .. 59

3 CHAPTER 3 ... 60

RESULTS AND DISCUSSION ... 60

 PUZZLE SHAPE ... 60
3.1.1 16-boxes Size .. 61
3.1.2 36-boxes Size .. 63
 BOARD SIZE AND NUMBER .. 64
3.2.1 Using Multi-Boards ... 64

3.2.1.1 Area for the Strategy of Using Multi-Boards .. 64
3.2.1.2 Time for the Strategy of Using Multi-Boards .. 65
3.2.1.3 Selection Index Theory ... 66

3.2.2 Adding a Buffer Line .. 68
3.2.2.1 Area for the Strategy of Adding Buffer Line ... 68
3.2.2.2 Time for the Strategy of Adding Buffer Line .. 69
3.2.2.3 Index for the Strategy of Adding Buffer Line 70

 NUMBER OF BLANKS .. 72
 DOUBLE SWITCHING .. 76
3.4.1 General Case .. 77
3.4.2 Blanks Placed in the Corner of the Puzzle ... 79
 MANAGERIAL IMPACT ... 86
 SUMMARY .. 91

4 CHAPTER 4 ... 93

IX

CONCLUSION AND FUTURE WORK ... 93

 CONCLUSION ... 93
 LIMITATIONS AND FUTURE WORK .. 95
4.2.1 Limitations ... 95
4.2.1 Future Work ... 95

REFERENCES ... 97

X

LIST OF FIGURES

Figure 1.1. The capital and operating cost of warehouses. .. 1

Figure 1.2. The common warehouses’ activities. ... 2

Figure 1.3. Mixed model assembly line. ... 4

Figure 1.4. 5 lanes mixed bank. ... 5

Figure 1.5. Sortation conveyor [14]. ... 6

Figure 1.6. (a) CogniLog system [17], (b) Celluveyor modules [18], (c) Flexconveyor
System [19] . .. 8

Figure 1.7. a) GridStore system, b) GridPick system [23]. 10

Figure 1.8. GridHub system, b) NU GridHub system [23] 10

Figure 1.9. GridSequence system [11] .. 14

Figure 1.10. The proposed sequencing system concept. .. 16

Figure 2.1. 3x3 puzzle (8-puzzle), random configuration (Left), goal state (Right).. 20

Figure 2.2. 8-puzzle branching factor b. .. 22

Figure 2.3. Histogram of solution steps for 8-puzzle. .. 23

Figure 2.4. Concept of searching in the current tree. ... 24

Figure 2.5. An example of hamming distance calculation. .. 26

Figure 2.6. An example of Manhattan distance calculation. 27

Figure 2.7. A-star algorithm for n-puzzle. ... 28

Figure 2.8 A-star algorithm for n-puzzle with solvability condition. 29

Figure 2.9. The implementation of the A-star algorithm for the 8-puzzle. 30

Figure 2.10. Flowchart of pre-sorting process. ... 34

Figure 2.11. Pre-sorting process. ... 34

Figure 2.12. Modified A-star algorithm for n-puzzle. ... 35

Figure 2.13. An example of examination same state configurations with different board
sizes and shapes.. 36

XI

Figure 2.14. Comparison between different board sizes and shapes for the same
number of boxes. .. 37

Figure 2.15. The effect of the branching factor on the number of generated states in
the same level. .. 38

Figure 2.16. The average branching factor for different sizes and shape boards. 39

Figure 2.17. Maximum rectilinear distance of one tile of different board shapes and
sizes. ... 39

Figure 2.18. Effect of 𝑟𝑑 on pre-sorting steps. .. 41

Figure 2.19. The strategy of using 15-puzzle for practical implementation. 43

Figure 2.20. Several boards along with the input line for the sorting process. 46

Figure 2.21. Adding buffer line along with the input conveyor for the sorting process.
 .. 48

Figure 2.22. The concept of step in sliding puzzle. ... 52

Figure 2.23. An example of one step concept to solve 8-puzzle with 2 blanks. 53

Figure 2.24. An example of the double switching concept to solve 8-puzzle with 2
blanks. .. 54

Figure 2.25. An example of the double switching process in MATLAB. 55

Figure 2.26. the procedure algorithm to apply the double switching process............ 56

Figure 2.27. the procedure algorithm to apply the double switching process with block
movement. .. 57

Figure 2.28. An example of applying block movement for an 8-puzzle with 2 blanks.
 .. 58

Figure 2.29. The concept of double switching with applying block movement. 58

Figure 3.1. Comparison between the 4 × 4 and 2 × 8 board sizes with non-random
states regarding the solution steps. ... 61

Figure 3.2. Comparison between the 6 × 6, 4 × 9, 3 × 12, and 2 × 18 board sizes for
non-random states. ... 63

Figure 3.3. Comparison between 8-puzzle, 15-puzzle, and 24-puzzle used for multi-
boards strategy regarding the area.. 64

Figure 3.4. Comparison between 8-puzzle, 15-puzzle, and 24-puzzle used for multi-
boards strategy regarding the total solution steps. ... 66

XII

Figure 3.5. Selection index for normalized time and area of multi 8,15 and 24 boards
for 48 input ... 68

Figure 3.6. Comparison between muti-8-puzzle boards and adding buffer line
regarding the system area. .. 69

Figure 3.7. Comparison between muti-8-puzzle boards and adding buffer line
regarding the total solution steps.. 70

Figure 3.8. Selection index for normalized time and area of multi 8-puzzle boards and
buffer line for 48 input ... 71

Figure 3.9. Curve fitting for multi-boards and adding buffer line strategies with three
different board sizes. .. 72

Figure 3.10. The area of multi 8-puzzle boards for different numbers of blanks. 73

Figure 3.11. The total solution steps of multi 8-puzzle boards for different numbers of
blanks. .. 74

Figure 3.12. The parameter of Equation 5.5 for 30 boxes regarding different numbers
of blanks. .. 75

Figure 3.13. The index for multi-8-puzzle boards with different numbers of blanks. 76

Figure 3.14. The number of simultaneous double switching for 8-puzzle with 2 blanks.
 .. 77

Figure 3.15. Reduction percentage of solution steps for 8-puzzle with 2 blanks. 78

Figure 3.16. The number of simultaneous double switching for 8-puzzle with 2 blanks
placed in the corner of the puzzle. ... 80

Figure 3.17. Reduction percentage of solution steps for an 8-puzzle with 2 blanks for
practical implementation requirement.. 81

Figure 3.18. The number of simultaneous double switching with block

movement for 8-puzzle with 2 blanks. ... 82

Figure 3.19. The number of simultaneous double switching with block movement for
8-puzzle with 2 blanks placed in the corner of the puzzle. .. 83

Figure 3.20. Reduction percentage of solution steps after applying block movement
for 8-puzzle with 2 blanks. ... 84

Figure 3.21. Reduction percentage of solution steps after applying block movement
for 8-puzzle with 2 blanks placed in the corner of the puzzle. 84

Figure 3.22. Concept of Dual-Pivot Quicksort algorithm. ... 88

XIII

Figure 3.23. Principle of swap & step in Quicksort algorithm with multi-directional
conveyors system and puzzle sorting concept. .. 89

Figure 3.24. Implementation of Dual-Pivot Quicksort algorithm with 2 pivots utilizing
sliding puzzle concept. ... 90

Figure 3.25 Performance comparison between the proposed method and other
sequencing systems regarding the used area and the sequencing time. 91

Figure 4.1 Current pre-sorting strategy .. 96

Figure 4.2. The concept of the new pre-sorting strategy. .. 96

LIST OF TABLES

Table 1.1. Comparison among the proposed system and other high-density systems
from the literature. .. 12

Table 2.1. Comparison of the performances of a 3 × 3 puzzle with different board sizes
and shapes regarding the solution steps. .. 37

Table 2.2. Comparison of different board shapes and sizes of puzzles, and the max.
capacity in the case of the same 𝐫𝐝. ... 40

Table 2.3. Aspect Ratio and rectilinear distance of one tile for different puzzle sizes.
 .. 42

Table 2.4. Maximum solution steps for 15, 24, 35, 48 puzzles, and the board area [39].
 .. 45

Table 2.5. The effect of one and two blanks on different puzzle sizes. 51

Table 2.6. The effect of an arbitrary number of blanks on the solution steps for 8-
puzzle ... 51

Table 3.1. Our generated tree for the 8-puzzle vs. other works. 60

Table 3.2. Our generated tree for the 8-puzzle vs. other works. 61

Table 3.3. The reduction percentage of solution steps for 8-puzzle with 2 blanks. .. 79

XIV

Table 3.4. The effect of an arbitrary number of blanks on the solution steps for an 8-
puzzle with 2 blanks placed in the corner of the puzzle. ... 80

Table 3.5. The reduction percentage of solution steps for 8-puzzle with 2 blanks placed
in the corner of the puzzle. ... 81

Table 3.6. The reduction percentage of solution after applying block movement steps
for 8-puzzle with 2 blanks. ... 85

Table 3.7. The reduction percentage of solution steps after applying block movement
for 8-puzzle with 2 blanks placed in the corner of the puzzle. 85

Table 3.8. The used area in a puzzle-based system vs. a GridSequence system. 87

Table 3.9. The sequencing time in a puzzle-based system vs. a GridSequence system
for 96 boxes. ... 87

Table 3.10. Comparison between the puzzle concept and Dual-Pivot Quicksort
algorithm. ... 89

Table 3.11. Comparison between the puzzle concept and Dual-Pivot Quicksort
algorithm used puzzle-based board. ... 90

 1

1 CHAPTER 1

INTRODUCTION

 Background

Logistics operations can be elucidated by several fixed assets: warehouses,

depots, transport, and material handling. The number and size of these assets

are important factors in effective logistics planning [1].

The warehouses take second place in the logistics functions after transport,

and its capital and operating cost embody 23% of logistics costs in the US, and

39% in Europe [2].

Figure 1.1. The capital and operating cost of warehouses.

Warehouses are often one of the most costly elements of the supply chain [1].

Two types of warehouses can be categorized; distribution warehouses, where

the products are collected from the point of origin for delivery to consumers,

and production warehouses, where the raw materials and semi-finished

 2

products of production facilities are stored [3]. The proper design of

warehouses is one of the most important factors affecting space utilization,

efficiency, and cost [4][5]. Figure 1.2 illustrates the common activities of

warehouses, which can be summarized in four main parts: receiving, storage,

order picking, and dispatching.

Figure 1.2. The common warehouses’ activities.

1. Receiving: This typically includes the physical unloading of incoming

transport, and recording the incoming goods into the computer system.

As well as the quality control checks which may be undertaken as part

of this activity.

2. Storage: Goods are normally taken to the reserve storage area, which is

the largest space user in many warehouses. Different storage strategies

can be applied depending on service concerns, and goods storage

conditions, for instance, for storing some foods and frozen materials

which need specific temperature conditions, the zoning strategy is

applied. Another strategy might concern customer service, in such a

strategy the main concern is to fulfill the delivery time. To do so, the

items which are usually ordered by the same customer are stored in the

same area in the storage, or store the items that have a higher ordering

ranking are stored in the nearest part to the storage output.

3. Order picking: when an order is received from a customer, goods

need to be retrieved from the storage area in the correct quantity and

 3

in time to meet the required service level. Depending on the order

lists, an order can be retrieved as a full pallet or a sequence of

individual items. The warehouse management system gives the order

list as well as the location of the items to the picker. Several picking

concepts can be applied in the warehouses, for example:

• Pick-to-order: basically, when the picker takes one order and travels

through the warehouse until picking all order items. The main

disadvantage of a pick-to-order policy is that pickers have to travel for

every single order, this policy would be very inefficient, especially in

situations where the range of the products is very large.

• Batch picking: in this regime, the orders would be batched together

and the picking would be conducted for whole required orders in a

single picking round. This is very common, particularly for small

orders.

4. Dispatch: Goods that accumulated together are loaded onto outbound

vehicles for onward dispatch to the next ‘node’ in the supply chain,

for example to another distribution center or customer delivery

vehicles.

The effective use of space is a goal for almost every company located near

population centers, where high space charges and limited availability of real

estate are the main concern [6]. Smaller warehouse systems decrease the

overall costs since they are less expensive to build [7].

Material handling is the movement of raw materials and semi-finished and

finished products to and from productive processes, in warehouses and

receiving and dispatching zones [3], and its activities consume 20% to 50% of

the total operating costs. Effective material transport equipment, such as

rollers, wheels, and sorting conveyors, lead to significant cost reductions and

efficient space utilization [8, 9].

 4

For efficient warehousing (i.e. put-away, storage, and order picking), an

Automatic Store and Retrieval System (ASRS) is typically used [10].

AS/RS is operated by computer control, the controlled cranes run up and down

to put away and extract pallets which are in face occupy about half of the

stored goods [1]. These cranes are electrically powered and run on rails,

positioned on the floor, and are guided by a further rail above the top rack.

In an ASRS, cranes operate in parallel and feed the pallet building workstation;

therefore, the robotic palletizer receives a random sequence of items that

should be re-sequenced [11].

In the warehouses where zoning strategy is applied, the orders are picked in

different zones at the same time, therefore, the outcoming items may need to

be consolidated. In addition, applying the batch picking policy leads to the

necessity of unpacking, sorting, and resequencing the items of each batch.

Referring to the systems that are applied in real-world warehouses, the items

are mostly released from ASRS in random sequence [12, 13]. Thus they need

either optimized release (which is still under research and development [13])

or items re-sequencing after retrieval for better performance. Especially during

peak hours, where a lack of workforce and other new technologies are highly

required at the packing stations to timely release the lanes.

Furthermore, mixed-model assembly lines (figure 1.3) have become common

in the automotive industry, and the efficiency of the final assembly depends

on the sequence of vehicles being built [10].

Figure 1.3. Mixed model assembly line.

 5

 Problem Statement

Several systems are used to re-sequence the outcoming random items, for

instance:

a) A temporary storage system that uses parallel lanes called mix bank

[10]. Here, items inter the system in random sequence, and they are

sorted in different lanes to be retrieved in the desired sequence as figure

1.4 illustrates.

Figure 1.4. 5 lanes mixed bank.

b) A sortation conveyor, where the items keep looping until they are in the

desired sequence [14]. Usually, this system is used for sorting items into

different gateways for different output destinations, however, this

system is also sued for re-sequence random items. Figure 1.5 shows the

sortation conveyor system.

 6

Figure 1.5. Sortation conveyor [14].

Since such systems need a large area, the poor floor space utilization is one of

the disadvantages of these systems [11]; therefore, a material handling device

with a high-density system is required as well as the sequencing time should

be minimized to provide higher throughput, these two main points are

important concerns for designing the warehouses.

Generally, the term density in logistics is used for storage density which is the

ratio of storage area to the total warehouse space[15]. However, in this study,

the density is defined as the areal density which is the ratio of items to the total

material handling device space.

 Literature Review

In this section, we will investigate the literature from two different points of

view: considering the material handling technologies that are applied in the

warehouse which could carry out the sequencing process. And the high-

density systems in warehouses which can provide a high space utilization.

 7

1.3.1 Material Handling Technologies

The material handling activities consume 20% to 50% of the total operating

costs as mentioned in Chapter 1. Effective material handling equipment plays

a key issue in enhancing the warehousing activities. In the warehouses, there

are two main material handling technologies that can carry out the sequencing

process: conveyors and small-scaled multi-directional conveyor systems.

• Conveyors

the conveyor system considers as the most common material handling

equipment in the warehouses. Both gravity and powered conveyors can

be used for moving the goods between two fixed points. Typically, the

gravity conveyor systems include chutes, skate-wheel conveyors used

to move the goods for short distances, and the powered conveyor

systems include Roller and belt conveyors used for long distances.

In principle, the conveyor system is characterized in a way to fulfill

simple intralogistics tasks, for instance, moving the goods on a straight

line. However, for more complex tasks such as rotation and sorting, the

conveyor system must be extended with additional mechanical

components or modules [16]. This makes the conveyor technology

rigid, less maintenance-friendly, and cost-intensive. For these reasons,

we sought the possibility of redesigning the conveyor system.

• Small-Scaled Multi-directional Conveyor Systems

To fulfill the demands of intralogistics in terms of material flow, small-

scale modules might be applied where the conveyed products are

bigger than one module in the system.

Figure 1.6 illustrates CogniLog, Flexconveyor, and Celluveyor modules

which are some small-scale systems.

 8

Figure 1.6. (a) CogniLog system [17], (b) Celluveyor modules [18], (c) Flexconveyor

System [19] .

As shown in the figure, Celluveyor is a unique modular made of several small

hexagonal modules, each consisting of three omnidirectional wheels

independently driven. Multi-Functionalities can be controlled only via

software without the need for mechanical modifications.

Based on such high flexible technologies, many systems have been

developed for high density and space utilization.

1.3.2 High-density Systems

Many studies have considered high-density systems in order to enhance the

efficiency of logistics processes. The sliding puzzle was invented by Sam Loyd

in the 1870s [7], and is also known as the 15-puzzle, and later, the general

version (n2 – 1) became a popular and interesting subject for logistics

researchers, especially in developing storage systems.

 In fact, the puzzle concept was the inspirit of many researchers to invent and

develop systems with high-density to enhance the warehousing functions.

 9

Gue [6] developed a new concept based on a puzzle game: a very high-density

storage system (HDSS) for physical goods with an efficient algorithm for

filling densely rectangular storage areas. Later, Gue and Kim [7] developed an

algorithm for the retrieval of items in a puzzle-based storage system (PBSS).

They experimentally compared puzzle-based with traditional aisle-based

storage. The results showed that the puzzle-based system was superior, with

multiple escorts regarding the retrieval time, if the storage density was less

than 90%. In [20], Kota et al. extended the analytical results of retrieval time in

PBSS to determine the retrieval time performance when multiple escorts are

randomly located within the system. The GridStore system was developed by

Gue et al. [21] to overcome the inflexibility of automated material handling

systems for HDSS by implementing decentralized control. In GridStore, an

arbitrary number of requests could be retrieved by allowing simultaneous

item moving. The major drawback of this system is the capability of delivering

items to only a single side. However, Uludag [22] solved this limitation by

developing a puzzle-based order picking system called GridPick. In the

GridPick system, the orders can be picked from two sides of the grid, allowing

for higher throughput and efficient use of space compared to single-sided

systems. Figure 1.7 shows GridStore and GridPick systems.

 10

Figure 1.7. a) GridStore system, b) GridPick system [23].

A further improvement was achieved by Gue and Hao [24]. They developed a

new system called GridHub, which was able to transfer orders in four

directions simultaneously within the grid. Subsequently, Hao [23] developed

the NU GridHub system to handle bigger boxes in which one box can occupy

more than one conveyor module. Further modification of GridHub was

conducted by Ashgzari and Gue [25]. Figure 1.8 shows the GridHub and NU

GridHub systems.

Figure 1.8. GridHub system, b) NU GridHub system [23]

In the new method, GridPick+, several limitations of GridPik were addressed.

For instance, GridPick+ allowed the requested items to be delivered into

 11

specific picking positions on the edge of the grid. Moreover, the use of the

sequencing function allowed multiple orders to be processed simultaneously.

An algorithm for moving several items at the same time in grid-based storage

was designed by Yalcin et al. [15] by avoiding the items’ conflict. Their

experimental results demonstrated that for storage, the pushback strategy

achieved the shortest time and distance, and the puzzle-based retrieval

strategy was most efficient. Yalcin et al. [26] also addressed the problem of

item retrieval from puzzle-based storage with a minimum number of item

moves. In this work, they proposed an exact search algorithm with several

search-guiding estimate functions. Additionally, they discussed the

configurations with multiple empty cells located in the grid with different grid

sizes.

In recent research, Shirazi and Zolghadr [27] developed an algorithm for item

retrieval for HDSS. This method guaranteed the deadlock freeness in the

algorithm and discussed different puzzle sizes with a dissimilar number of

empty cells. It was observed that increasing empty cells up to three cells will

increase the average retrieval movement, while increasing the empty cells

above three will decrease the average retrieval movement sharply. Further

research was carried out to formalize arranging smart boxes into an

autonomous delivery vehicle [28]. The authors proposed the snake-line

concept utilizing the puzzle arrangement to find the tradeoff between space

and access rapidity and were able to guarantee the boxes moving continuously

with minimum movement.

The system we proposed in this paper was compared with the high-density

systems described in the literature, as illustrated in Table 1.1. The used system,

function, contribution, and system areal-density are listed in the table to

distinguish these works.

 12

Table 1.1. Comparison among the proposed system and other high-density systems

from the literature.

System System Function Contribution

System Areal-

Density for 35

Boxes

Gue and

Kim [7]

NAVSTORS

system
Storing, retrieval

Describe the relationship

between storage density

and expected retrieval

time

94.4% with

two escort

Gue et al.

[11]
GridSequence Sequencing

High density, a

decentralized control

algorithm

72.9%

Kota et al.

[20]

Puzzle-Based

system
Storing, retrieval

Determine the retrieval

time performance for

multi-escorts randomly

located in the grid.

94.4% with

two escorts 1

Gue et al.

[21]

GridStore

system
Storing, retrieval

Retrieve several items by

allowing simultaneous

moving

≤94.4% 1

Uludag [22] GridPick Storing, retrieval

Higher throughput,

retrieve items to two

sides of the grid

≤94.4% 1

Gue and

Hao [24]
GridHub Storing, retrieval

Transfer orders in four

directions

simultaneously within a

grid

≤95.45% 2

≤94.44 for 36

boxes

Hao [23] NU GridHub
Sorting,

sequencing

Delivers requested items

in the desired sequence

to any location

56.25% for 36

boxes

Ashgzari et

al. [25]
GridPick+ Storing, retrieval

Increasing in throughput

by 77%
-

Yalcin et al.

[15]

Grid-based

system
Storing, retrieval

Framework for the

efficient storage and

retrieval of items based

Up to 100%

 13

on a multi-agent routing

algorithm

Yalcin et al.

[26]
PBS system Items retrieval

Retrieve items with a

minimum number of

items moves

≤94.4% 1

Shirazi et al.

[27]
PBS system Items retrieval

Deadlock prevention

algorithm
Up to 97.2%

Tetouani et

al. [28]

Puzzle-based

system

Rearrangement

while Routing”

strategy

Formalize arranging

smart boxes in an

autonomous delivery

vehicle

97.2%

Proposed

method

Puzzle-based

sequencing

system

Sequencing

High-density sequencing

system, address

unsolvable puzzle

configuration

97.2%

1 Since these systems involve the puzzle-based concept, the areal-density is

calculated as (𝑛𝑐 – e)/ 𝑛𝑐, where 𝑛𝑐 is the number of grid cells and e is the number

of empty spaces in the grid.

 2 One rule of GridHub is that at least one empty module has to be in each column

or row, and their experiment was set as a grid with 22 columns and 11 rows.

Although several studies have considered high-density and puzzle-based

systems with their applications, most of them have focused on storage and

item retrieval. In these systems, the items are retrieved in the desired sequence.

However, under batch and/or zoning picking policy, which is applied in most

online retailers’ warehouses, items necessitate further processes such as

consolidation and sequencing [13]. To the authors’ best knowledge, very few

contributions have been published in the literatures that have addressed the

issue of item sequencing, for instance, GridSequence, which was developed by

Gue et al. [11]. The proposed system could re-sequence incoming items to feed

a palletizing robot with the required sequence. The GridSequence system

consists of a puzzle grid with (n × m) dimensions, plus one additional row and

 14

one additional column; thus, the whole system dimensions are (n + 1) × (m +

1) as illustrated in figure 1.9.

Figure 1.9. GridSequence system [11]

The authors showed the effect of the aspect ratio on the sequencing time in the

experimental results and suggested that the aspect ratio should be at least 10.

Furthermore, adding one more additional column to the center of the grid can

positively affect the system. The major drawback of this system is low space

utilization, since adding rows and columns will occupy more spaces out of the

grid, and decrease the density. A lower density means higher empty spaces in

the grid and an increase in floor space usage. Thus, the density plays a key role

in evaluating the utilization of floor space of warehouses (storage and other

functions) in urban areas where the limited space should be utilized efficiently.

 15

 Research Objectives

We can summarize the objectives of this thesis in the following points:

1. To realize a high-density sequencing system based on the puzzle

movement concept, with highly efficient floor space utilization

concerning the minimum item movements. These points are directly

related to better energy efficiency and, consequently, to lower

operational costs. The analysis here carried out represents a tool for

improving the warehouse activities in terms of both space utilization

and time consumption, in addition to minimizing the workforce.

2. To propose the puzzle-solving algorithm to fulfill the sequencing

process.

3. To set up an optimal design of sequencing board in shape, size and

the number for the practical implementation of a real-world

warehouse.

 Concept of Puzzle-based Sequencing System

Using ASRS in the storage can increase the efficiency of warehousing functions

because this system approaches seven-day-week, 24-hour operations. The

cranes of this system work in parallel in both in-feed and out-feed. therefore,

the outcoming boxes come in a random sequence. These boxes are moved on

the conveyor and inter the proposed sequencing system which is the puzzle,

afterward, the puzzle starts the sequencing process to reach the goal

configuration. Finally, the boxes come out as a series of boxes with the desired

sequence. Figure 1.10 illustrates the proposed sequencing system concept.

 16

Figure 1.10. The proposed sequencing system concept.

According to the figure, the series of boxes come from the storage out of

sequence, and inter the puzzle board. Then, the sequencing process starts until

we get the goal configuration. Finally, the boxes outcome from the board inter

the main conveyor as a series of sequenced boxes and move into the next

process in the warehouse.

 17

the following assumptions are made for this system:

1. One set of the sequencing system is 2 dimensions, so the process doesn't

consider the 3D cubic accumulation problem.

2. The system is used under the zoning storing strategy where the boxes

come separately, and/or under batching picking policy where the order

comes as a batch and the boxes of each batch are separated into a series

of boxes.

3. All boxes are square-shaped and have the same base area.

4. The sequencing process in the puzzle starts after filling in the puzzle

board with all boxes.

5. Incoming boxes to the board inter one by one, while in the output, the

boxes are out as row by row as shown in figure 1.10. (3).

6. We allow simultaneous moving so the boxes are moved into the board

simultaneously. the same during the output process.

 Layout of the Thesis

The thesis includes four chapters that are structured as follows:

Chapter 1. background, the literature review, and the research objectives are

presented.

Chapter 2. this chapter presents the methodology of the research starting with

an investigation of the puzzle-solving methods. Two solving methods were

investigated: game tree and pathfinding algorithms. A-star was chosen based

on pathfinding algorithms in order to find the shortest solution of the puzzle

in which the sequencing time. In this chapter A-star algorithm was explained

in detail with a proposal of a pre-sorting strategy to overcome the unsolvable

configuration issue that cannot be solved by the aforementioned methods.

 18

Different shapes of the puzzle can carry out the sequencing process, thus, two

different shapes, in particular, square and rectangular shapes, were discussed.

In addition, the factors that affect the number of solution steps. Furthermore,

three proposed strategies to fulfill the practical implementation in the

warehouse are presented in this chapter. In this Chapter also, the effect of

increasing the number of blanks in the puzzle on the system is presented.

Furthermore, more blanks in the puzzle allowed a double-switching process

which reduced the maximum number of the solution steps.

Chapter 3. the results and discussion of the points presented in the

methodology are presented in this Chapter.

Chapter 4. finally, the conclusions of the thesis are summarized, and the

possible future work is discussed.

 Summary

A comprehensive introduction to develop a high-density sequencing system

concerning the minimum sequence g time is outlined in this chapter. The

previous research in the field of logistics that considered the high-density

system was investigated with a comparison between our proposed method

with the previous works in terms of the density and floor space. This study

presents a high-density puzzle-based system for products sequencing

considering the sequencing time. To complete the proposed method, a large

number of investigations with lots of analysis are implemented to provide the

sequencing time consuming and compare it with conventional sequencing

systems and algorithms.

 19

2 CHAPTER 2

RESEARCH METHODOLOGY

This chapter presents the puzzle-based system with investigating puzzle-

solving methods to choose the best sorting algorithm. Afterward, we set up

the sequencing system design with the optimum board shape, size, and

number. The optimum parameter of the design was evaluated based on the

time which is the movement steps of the boxes on the sequencing board, and

the floor area occupied by the sequencing system.

 Sliding Puzzle

As mentioned in Chapter 1, The sliding puzzle was invented by Sam Loyd in

the 1870s [7], and is also known as the 15-puzzle, and later, the general version

(n2 – 1) became a popular and interesting subject for many researchers.

Generally, the sliding puzzle is a single-agent sliding game consisting of (n ×

m) − 1 square tile and one blank, distributed in an (n × m) grid. The process for

solving this is to rearrange a random configuration of numbers in the initial

state by sliding the blank tile in one of four allowable moves (Up, Down, Right,

and Left) to reach the goal state, which is the proper sequence of numbers [29],

as shown in Figure 2.1.

 20

Figure 2.1. 3x3 puzzle (8-puzzle), random configuration (Left), goal state (Right).

There are different shapes and sizes of such a puzzle. The (n2 − 1) puzzle is a

specific type, where the board is square (n × n) with (n2 − 1) numbered tiles

and one blank [30].

8-puzzle is one of the most famous (n2 -1) puzzles. Since 15-puzzle and 24-

puzzle are extension versions of 8-puzzle. Our study was conducted utilizing

an 8-puzzle to simplify the analyses.

 Sequencing Algorithm

There are 9! different configurations of this puzzle, and every second

permutation are solvable, Hence, there is a total of 9!=2 =362,880 solvable

configurations [31]. Many researchers have an interest in solving such puzzles

with the fewest moves (the shortest path to the solution) and they consider

finding the optimal solution in two levels, the space and time consuming by

the used algorithm, and the number of moves. In this research, we take into

consideration the number of moves to reach the goal configuration.

There are two typical methods for finding the shortest path to the solution

which achieve the minimum number of tiles moves, game tree, and

pathfinding algorithms. In this section, we will discuss both methods in terms

of using the puzzle for items sequencing.

 21

2.2.1 Game Tree

This method creates a tree of all configurations (states) that can be generated

for the puzzle and finds the target configuration in this tree. In the game tree,

all states are represented by nodes, and the depth of the tree denotes the

number of solution steps. The procedure is as follows:

1. Start tree creation from the target state configuration;

2. Find the input node (the initial configuration) in this tree; and

3. Trackback the path which leads to the initial node.

The game tree method could guarantee to find the shortest path to the solution.

However, we might face two problems: the huge number of states that could

be generated, and the scenario of searching for different targets (specific

configurations).

I. The Huge Number of States

We start generating the tree by switching the blank with the neighbor tiles. All

available switches of one configuration are carried out in one level of the tree

(tree depth). Equation (2.1) provides the total number of nodes that could be

generated in the tree for the 8-puzzle:

𝐍𝐒𝐭𝐚𝐭𝐞𝐬 = 𝟏 + ∑ 𝐛𝐢 𝐝
𝐢=𝟏 , (2.1)

where NStates is the total number of states in the tree; b is the branching factor;

and d is the depth of the tree. The branching factor is the number of nodes that

could be expanded from the previous node in the tree. For example, if the

blank is placed in the corner, the branching factor is 2 since we can switch two

tiles, and we get two different states out of the current one as shown in Figure

2.2 which shows the concept of branching numbers for 8-puzzle.

 22

Figure 2.2. 8-puzzle branching factor b.

According to figure 2.2, In 8-puzzle we have three different branching factors.

On the top of the tree, we start with a branching factor of 2, since the blank

position is in the corner in the goal configuration. Therefore, the first level in

the tree has two states, each of which has a branching factor of 3 yielding 6

states in the second level of the tree, for a total of 9 states.

From Figure 2, the branching factor was about 3 (when the blank tile is in the

corner, there are two possible moves; when it is along edges, there are three;

and when it is in the middle, there are four).

Regarding the depth, Figure 2.3 illustrates the histogram of the solution steps

for all solvable configurations of the 8-puzzle as well as the Probability Density

Function (PDF) for a normal distribution. We obtained an average solution

depth of 22. The same result was confirmed with the work by Reinefeld [32].

 23

Figure 2.3. Histogram of solution steps for 8-puzzle.

Referring to Equation (2.1), the number of nodes that could be generated for

depth 22 and branching factor 3 is 3.13 × 1010 nodes. This huge number of

nodes not only requires time to be generated but is also inefficient in terms of

memory [33]. By tracking the repeated states, we cut the tree down drastically

into 9! / 2 = 181,440 nodes.

II. Searching for Different Targets

In the case of different targets, where the goal configuration is not (1 ,2, 3; 4 ,5,

6; 7, 8, blank), but can be any configuration of 9! States, we need to generate a

tree of nodes for each goal. Thus, we had to generate 9! = 362,880 trees and

about 13.16 × 1010 nodes in total.

One proposal to overcome the problem associated with generating such a huge

number is to search for the input state in the current tree. The following steps

describe the concept of searching for a different target in the current tree:

 24

1. Change the desired target to the target in the current tree;

2. Apply the same changes to the input; and

3. Find the new input in the current tree.

Figure 2.4 shows the proposal of searching in the current tree.

Figure 2.4. Concept of searching in the current tree.

In the example shown in figure 2.4, we first, switch the tiles 5 (numbered 6)

and tile 6 (numbered 5) to get the target configuration in the current tree (1, 2,

3; 4, 5, 6; 7, 8, blank). Then we apply the same changes for the input state (1, 2,

3; 4, 6, blank; 7, 8, 5) by switching tile 5 (numbered 6) and tile 6 which is blank.

we get the new input (which we are searching for) is (1, 2, 3; 4, blank, 6; 7, 8,

5). Finally, we search for the new input in the current tree.

In this example, the new input configuration is unsolvable, therefore, we

cannot find it in the current tree.

Since tiles changing might give unsolvable configurations, this method will

not work for all the cases in our system. The solvability of the puzzle is an

important concept; therefore, the solvability condition will be discussed in

Section 2.5.

 25

2.2.2 Pathfinding Algorithms

To reach the puzzle solution, pathfinding algorithms can be applied by

creating a tree of puzzle configurations (nodes), starting from the initial state

until the goal state is matched, and then tracking back to the path, which leads

to the goal. When reaching the goal state (node), the process of node creation

will stop; therefore, generating a huge number of nodes can be avoided. There

are two different types of pathfinding algorithms:

I. Uninformed Algorithms (Blind Algorithms)

Such algorithms work without using any external information to guide the

agent to reach the goal state. Following are some of such algorithms[33, 34]:

• Breadth-First Search (BFS);

• Depth-First Search (DFS);

• Iterative Deepening Depth-First (IDS).

II. Informed Algorithms

In these algorithms, some information can be used to lead the algorithm and

direct it to achieve better performance. This information could be the status

and values of the neighbors.

 Following are the most common pathfinding algorithms[33, 34]:

• Greedy algorithm;

• A-star (A*) algorithm;

• Iterative Deeping A-star (IDA*) algorithm.

Among the algorithms that extend search paths from the root, A-star is

optimally efficient [34, 35]. Hence, A-star was the core algorithm in this study.

 26

 A-star Algorithm

In the A-star algorithm (A*), the nodes can be evaluated using the cost function

(Equation (2.2)), which is the sum of two factors: the heuristic function, which

estimates how close the current node is to the goal, and the cost from the initial

node to the current one [36].

f(n) = g(n) + h(n), (2.2)

where f(n) is the evaluation function for the A* algorithm; g(n) is the cost from

the initial node to the current node n; and h(n) is the estimated cost from the

node n to the target.

Many estimation functions can be used with the A-star algorithm such as

Hamming distance and Manhattan distance.

2.3.1 Hamming Distance

This is the count of the number of tiles in the current configuration which are

not at the same position as in the goal configuration[33]. Figure 2.5 shows an

example of hamming distance.

Figure 2.5. An example of hamming distance calculation.

In the example shown in figure 2.5, we note that (4,6,8,5,7,1) tiles are not at the

same position as in the goal state. Hamming distance is 6 in this example.

 27

2.3.2 Manhattan Distance

Manhattan distance or city block distance is the absolute vertical and

horizontal distance between the tile in the current configuration and its

appearance in the goal configuration [33].

Figure 2.6. An example of Manhattan distance calculation.

The estimation function used in this research was the Manhattan distance,

since it showed better performance for the informed search techniques [33, 35].

The Manhattan distance or city block distance is the absolute vertical and

horizontal distance between the tile in the current configuration and its

appearance in the goal configuration. Figure 2.7 shows the layout of the A-star

algorithm for solving the n-puzzle with the fewest solution steps.

 28

Figure 2.7. A-star algorithm for n-puzzle.

The A-star algorithm allows us to avoid many nodes that should not be

selected, avoiding the waste of time caused by searching a large number of

useless nodes. The whole search process has strong directionality [37].

Even though the A-star algorithm is optimal for solving the n-puzzle, it was

not sufficient for our application, thus we needed to modify it to fulfill the

sequencing process.

The reason for the insufficiency of the basic A-star algorithm is the solvability

problem. All researchers who are interested in puzzle-solving algorithms have

investigated only the solvable configuration of the puzzle, However, in our

application, we have a 50% possibility of unsolvable initial configurations of

the boxes.

The first modification in the algorithm is checking the solvability condition. as

shown in figure 2.8

 29

Figure 2.8 A-star algorithm for n-puzzle with solvability condition.

Figure 2.9 illustrates the implementation of This A-star algorithm for the 8-

puzzle.

 30

Figure 2.9. The implementation of the A-star algorithm for the 8-puzzle.

The conditional sentences in Algorithm 1 describe the implementation of the

A* algorithm.

 31

Algorithm: A* Implementation for 8-puzzle

1: if solvable then

2: Check Manhattan distance

3: else

4: End Algorithm

5: Repeat until finding the target

6: if Manhattan ≠ 0 then

7: Find a blank

8: Perform Procedure switching blank

9: Search for minimum cost

10: else

11: Input is the target

12: end if

13: end repeat

The procedure of switching the blank with neighbors to generate branch nodes

is described as follows:

Procedure: Switching blank

1: if blank in a corner then

2: Repeat 2 times: switch blank1

3: else

4: if blank in along edges then

5: Repeat 3 times: switch blank1

6: else

7: if blank in the middle then

8: Repeat 4 times: switch blank1

9: end if

Switch blank contains 3 steps:

• Switch blank with a neighbor;

• Increase the depth (level in the tree which denotes the solution steps) by

1; and

• Recalculate Manhattan distance.

 32

 Solvability Condition

The solvability can be checked by the inversion, which indicates that a pair of

tiles in the current state is in reverse order of their places in the goal state.

Moving tiles in the puzzle horizontally doesn’t affect the inversion, but,

moving tiles vertically either increases the inversion by 2, decreases the

inversion by 2, or doesn’t change the inversion. Therefore, when the number

of inversions is even, the puzzle is solvable; otherwise, it is unsolvable [38].

For example, if we have an 8-puzzle with the following configuration state (2,

1, 5; 4, blank, 3; 8, 6, 7), regardless of the blank, the inversion is calculated as

follows:

The Investigated

Tile

Tiles Follow the

Investigated Tile
Number of Inversions

2 1 1

1 - 0

5 4 and 3 2

4 3 1

3 - 0

8 6 and 7 2

6 - 0

7 - 0

 Total inversions 6

The total inversions are six, which is an even number. Thus, the example

configuration is solvable.

The solvability condition came up with a second problem in the algorithm

which should be considered for the sequencing application, the unsolvable

states. For unsolvable states, the sequencing system will be stuck and we

would not be able to proceed in the sequencing process.

 33

2.4.1 Proposal for the Solvability Problem

As mentioned before, the 8-puzzle has 9! different configurations, and only

half of them are solvable. Since the state configurations in practical

implementation in the warehouse are random, we will not be able to carry out

sorting for unsolvable states (9! / 2 states in the case of the 8-puzzle). Therefore,

we need a scenario in which all states of the puzzle are solvable. In order to

build such a scenario, we provided a pre-sorting strategy.

The products moving to the sorting area enter in a random configuration,

which might be an unsolvable configuration. Therefore, we have to pre-sort

the products on the sequencing board so that the pre-sorted configuration is a

solvable one. The pre-sorting process is as follows:

• Check the solvability by calculating the inversion number;

• In case of an odd number of inversions, move the first six tiles to their

specific positions on the sequencing board; and

• Switch the last two tiles on the board.

Figure 2.10 shows a flowchart of the pre-sorting process, and Figure 2.11

shows an example of the pre-sorting process for an unsolvable input

configuration.

 34

Figure 2.10. Flowchart of pre-sorting process.

Figure 2.11. Pre-sorting process.

 35

Applying the pre-sorting strategy, we could be able to solve all configurations

of the puzzle.

Figure 2.12 illustrates the modified A-star algorithm used for our sequencing

system.

Figure 2.12. Modified A-star algorithm for n-puzzle.

The A-star algorithm is ready now to be implemented for the sequencing

system.

 Sequencing System Design

In the practical implementation in the warehouses, different parameters

should be considered to choose the optimum sequencing board shape, size,

 36

and number. Furthermore, the sequencing strategy for a different number of

boxes.

2.5.1 Board Shape

Different shaped boards can carry out the sequencing task. Therefore, four

different sizes with two shapes were discussed with the same number of tiles.

A 2 × 3 puzzle has 6! = 720 states, and half of them are unsolvable. By keeping

the blanks in the corner of the puzzle to satisfy the reality of practical

implementation in the warehouse, we reduced this to only 60 solvable states.

For the same configuration in both initial and goal states as shown in the

example in Figure 2.13.

Figure 2.13. An example of examination same state configurations with different

board sizes and shapes.

Figure 2.13 illustrates the effect of different board shapes and sizes of the

puzzle on the solution steps for all 60 states. The results of Figure 2.14 are

summarized in Table 2.1.

 37

Figure 2.14. Comparison between different board sizes and shapes for the same

number of boxes.

Table 2.1. Comparison of the performances of a 3 × 3 puzzle with different board

sizes and shapes regarding the solution steps.

3 × 3 Better [%] Same [%] Worse [%]

vs. 2 × 3 61.6 38.4 0

vs. 2 × 4 58.3 41.7 0

vs. 2 × 5 58.3 41.7 0

From the table, the 3 × 3 board showed a better performance than the 2 × 3, 2 ×

4, and 2 × 5 boards by 61.6%, 58.3%, and 58.3%, respectively. One of the reasons

for these results is the difference in the number of blanks in the different

shapes and sizes of the puzzle.

More analyses are necessary to verify the effectiveness of other factors on the

overall solution steps for different shapes. For different shapes of the puzzle,

there are many factors affect the overall solution steps such as branching

factor, rectilinear distance, and the Aspect Ratio (AR) of the puzzle.

 38

2.5.1.1 Branching Factor

The branching factor is the number of states that can be generated from each

state in the tree. Usually, the branching factor measures the space complexity

of the searching algorithm. The higher the branching factor, the lower the

overhead of the repeatedly expanded states [35]. In our case, the analyzed data

were generated from the target state, where we used the opposite concept of

the branching factor. If the branching factor is higher, more states would be

generated for a specific level in the tree (the level denotes the solution steps).

Figure 2.15 illustrates an example of the effect of the branching factor on the

number of generated states at the same level in the tree.

Figure 2.15. The effect of the branching factor on the number of generated states in

the same level.

In Figure 2.15, two different shapes are illustrated, and we note that in level 3

(three steps to the solution), the square shape had more generated states than

the rectangular one due to the difference in the branching factor. Figure 2.16

shows the average branching factor for both shapes discussed in the previous

example.

 39

Figure 2.16. The average branching factor for different sizes and shape boards.

2.5.1.2 Maximum Rectilinear Distance of One Tile

We suggest Equation (2.3) for calculating the maximum steps of a tile:

𝐫𝐝 = (𝐋 + 𝐖) − 𝟐, (2.3)

where rd is the maximum rectilinear distance of the tile; L is the length of the

board; and W is the width of the board.

A smaller distance for one tile results in a better board since it decreases the

number of initial steps of the pre-sorting process. Figure 2.17 illustrates the

maximum distance that the tile can move.

Figure 2.17. Maximum rectilinear distance of one tile of different board shapes and

sizes.

From Figure 2.17, we noted that different board shapes could have the same

rd. With this in mind, we compared the performance depending on the

maximum board capacity, as illustrated in Table 2.2.

 40

Table 2.2. Comparison of different board shapes and sizes of puzzles, and the max.

capacity in the case of the same 𝐫𝐝.

Max. Rectilinear Distance of

One Tile
Max. Capacity Board Size

4
7 2 × 4

8 3 × 3

5
9 2 × 5

11 3 × 4

6
14 3 × 5

15 4 × 4

7
17 3 × 6

19 4 × 5

8

20 3 × 7

23 4 × 6

24 5 × 5

9
23 3 × 8

27 4 × 7

 26 3 × 9

10 19 4 × 5

 35 6 × 6

From Table 2.2, we concluded that in the case of rd, being the same for different

board sizes and shapes, square puzzles provide more capacity than

rectangular ones.

2.5.1.3 Pre-sorting Steps

The pre-sorting process plays a key role in the whole sorting system in

practical implementations.

As mentioned in Section 2.6.2, the puzzle shape affects the rectilinear distance

of one tile, rd as well as the number of initial steps in pre-sorting. Figure 2.18

illustrates the initial steps to fill in the sequencing board with different sizes

and shapes concerning rd.

 41

Figure 2.18. Effect of 𝑟𝑑 on pre-sorting steps.

As is clear from Figure 2.18, increasing the rectilinear distance of one tile will

also increase the pre-sorting steps. However, a reasonable question arises

when dealing with different shapes: how does the Aspect Ratio (AR) of the

puzzle affect the performance in terms of solution steps? To answer this

question, we investigated the relationship between the aspect ratio and

rectilinear distance.

2.5.1.4 Aspect Ratio

The Aspect Ratio is the number of columns divided by the number of rows of

the puzzle, and this has a direct effect on the rectilinear distance of one tile, rd,

and further on the pre-sorting steps. Table 2.3 illustrates the corresponding rd

of the aspect ratio for the different puzzle shapes and sizes outlined

previously.

 42

Table 2.3. Aspect Ratio and rectilinear distance of one tile for different puzzle sizes.

Puzzle size Aspect Ratio Rectilinear distance

4 × 4 1 6

2 × 8 4 8

6 × 6 1 10

4 × 9 2.25 11

3 × 12 4 13

2 × 18 9 18

According to Table 2.3, we confirmed the direct relationship between the

aspect ratio and rectilinear distance. Thus, a smaller AR reduces the rd, which

also reduces the pre-sorting steps.

If we considered preliminary that a square puzzle is better than a rectangular

one, we have to investigate the puzzle size.

2.5.2 Board Size and Number

In real-world warehouses, under the batched/or zoning picking policy, the

retrieved items from the storage area necessitate being either consolidated or

sequenced in the way of satisfying the order sequence by customers. The

number of these items is very varied depending on the order lists. In [12], the

picking method was to accumulate the orders in separated bins under

batched/or zoning picking policy. In this case, the orders would be released

from the bins, then re-sequenced in the desired sequence. Boysen et al.

generated two differently sized datasets for their computational study, a small

instance that involves 12 orders in 24 bins, while the large instance involves 20

orders in 40 bins which are of a real-world size. These values are chosen based

on practitioners' information. The number of the boxes needed to be

 43

sequencing at the same time is difficult to be determined because it is

depending on several factors such as the boxes sizes, boxes weights, and

pallets capacities and sizes. Therefore, in practical implementation, an 8-

puzzle board would face a limitation by restrictions of the maximum capacity

of the puzzle (8 boxes). In such a case, we propose and discuss three strategies

for sequencing more than 8 items.

2.5.2.1 Increase the Size of the Sequencing Board

To carry out the sequencing process for more than 8 boxes, bigger board sizes

can be used. Since it was concluded preliminary that the square shape

provided better performance than the rectangular one, we used in this strategy

an extension version of the 8-puzzle which is the (n2 – 1) puzzle.

Figure 2.19 illustrates the strategy of using 15-puzzle as an example for

practical implementation.

Figure 2.19. The strategy of using 15-puzzle for practical implementation.

As in figure 2.19, the main input conveyor feeds the sequencing board. After

filling all the incoming boxes on the board, the sequencing process will start.

 44

In this study we considered the sequencing time as a function of steps,

therefore we calculated the pre-sorting steps and the puzzle solution steps.

Two main factors were considered, the area occupied by the system regardless

of the main input conveyor, and the sequencing time which is the solution

steps until we get the final goal of the desired sequence of boxes.

I. Area for the Strategy of Different Sizes of Board

The area occupied by the system can be calculated as follow:

𝑨 = (𝑪𝒃 + 𝟏) × 𝑨𝒃𝒐𝒙

(2.4)

where A is the total area occupied by the system regardless of the main input

conveyor; 𝐶𝑏 is the maximum capacity of the board (15 boxes for 15-puzzle);

and 𝐴𝑏𝑜𝑥 is the box’ area.

As we can see in Equation (2.4), the number of boxes does not affect the area

as long as 𝑵≤ 𝑪𝒃. where N is the input (number of boxes).

II. Time for the Strategy of Different Sizes of Board

We considered the time as a function of solution steps. we have considered the

pre-sorting steps and the sequencing steps on the board, ignoring the moving

boxes on the main feeding conveyor.

The total sequencing steps are calculated as Equation (2.5):

 𝑺𝒕𝒐𝒕𝒂𝒍 = {
𝑺𝒏 + 𝑺𝒑_𝒏 𝒊𝒇 𝑵 < 𝑪𝒃

𝑺𝒎𝒂𝒙 + 𝑺𝒑.𝒎𝒂𝒙 𝒊𝒇 𝑵 = 𝑪𝒃

(2.5)

where 𝑺𝒕𝒐𝒕𝒂𝒍 is the total number of steps; 𝑺𝒏 is the Solution steps for n boxes;

𝑺𝒎𝒂𝒙 is the Maximum steps to solve the puzzle; 𝑺𝒑_𝒏 is the Pre-sorting steps

(the initial steps to fill in the board with n boxes); 𝑺𝒑.𝒎𝒂𝒙 is the Pre-sorting steps

(the initial steps to fill in the board with full capacity); N is the input (number

of boxes); 𝐶𝑏 is the maximum capacity of the board.

 45

Table 2.4 illustrates the maximum number of solution steps for 15-puzzle, 24-

puzzle, 35-puzzle, and 48-puzzle, and the board area as a function of the box

size.

Table 2.4. Maximum solution steps for 15, 24, 35, 48 puzzles, and the board area

[39].

Puzzle capacity 15 24 35 48

Maximum capacity 80 205 405 716

Area [box size] 16 25 36 49

As shown in the table, the maximum solution steps are drastically increased

by increasing the board size. Furthermore, the system is still restricted by the

limitation of the puzzle capacity.

2.5.2.2 Using Multi-Boards

As mentioned in 2.7.1, increasing the board size could carry out the sequencing

system for more than 8 boxes. However, such a strategy is still restricted by

the maximum capacity of the puzzle.

In this strategy, we used the same size of the puzzle with an increase in the

number of boards as shown in figure 2.20.

 46

Figure 2.20. Several boards along with the input line for the sorting process.

As shown in figure 2.20, we placed the boards along with the input conveyor.

The boxes coming in random sequence are separated into these boards based

on their identification numbers (IDs) (ex. The boxes from 1 to 8 enter the first

board, the boxes from 9 to 16 enter the second board, and so on).

We assumed that when the boxes are entering the boards, they can move

simultaneously, and the sequencing process will start after filling in the boards

with their assigned boxes.

Keeping these assumptions in mind, the sequencing process will be carried

out in parallel in all boards, doing so allowing to reduce the waiting time if the

sequencing will be carried out in series.

We investigated the same two factors as 2.5.2.1, which are the area and the

time.

I. Area for the Strategy of using Multi-Boards

The area used by the system in this strategy is calculated as Equation (2.6):

𝑨 = [𝑪𝒃 + 𝟏)𝑵𝒃] × 𝑨𝒃𝒐𝒙

(2.6)

where A is the total area occupied by the system regardless of the main input

conveyor; 𝐶𝑏 is the maximum capacity of the board (8 boxes for 8-puzzle as the

 47

example in figure 5.2); 𝐴𝑏𝑜𝑥 is the box’ area; and 𝑵𝒃 is the number of boards

which can be calculated as follow:

𝑵𝑏 = ⌈
𝑵

𝑪𝑏
⌉

(2.7)

where N is the input (number of boxes).

We verified from Equation 2.6 and Equation 2.7 the direct relationship

between the number boxes and the area of the system.

II. Time for the Strategy of using Multi-Boards

As in the strategy of different sizes of board, we considered the time as a

function of solution steps.

In this strategy, the boxes are moving on the boards simultaneously and the

sequencing process starts after filling all the boards. We calculated the time in

the worst case as in Equation 2.8.

𝑺𝒕𝒐𝒕𝒂𝒍 = 𝑺𝒎𝒂𝒙 + (𝑵𝒃 − 𝟏) 𝑺𝒑.𝒎𝒂𝒙 + 𝑺𝒑_𝒓

(2.8)

where 𝑺𝒕𝒐𝒕𝒂𝒍 is the total number of steps; 𝑺𝒎𝒂𝒙 is the Maximum steps to solve

the puzzle; 𝑵𝒃 is the number of boards; 𝑺𝒑.𝒎𝒂𝒙 is the Pre-sorting steps (the

initial steps to fill in the board with full capacity); 𝑺𝒑_𝒓 is the Pre-sorting steps

(the initial steps to fill in the board for remaining boxes).

The remaining boxes can be calculated as follows: p_r = 𝑵 − (𝑵𝒃 − 𝟏) 𝑪𝒃.

In Equation 2.8, we considered the 𝑺𝒎𝒂𝒙 only one time for all boards, the reason

is that all boards work in parallel, and in the worst case, at least one of them

needs the maximum solution steps.

 48

2.5.2.3 Adding a Buffer Line

In this strategy, fixed board size is used and the system has been extended

with a buffer conveyor used to store temporarily the boxes. The buffer line is

fixed along with the main input conveyor as shown in figure 2.21.

Figure 2.21. Adding buffer line along with the input conveyor for the sorting

process.

As shown in figure 2.21, the buffer line is placed along with the main input

conveyor in a way the boxes can be buffered and reenter again to the main

conveyor.

For 8-puzzle board size, when the boxes arrived at the board, if the box is from

1 to 8 it will enter the board, otherwise, it will move left to store temporally in

the buffer line. After filling in the board with 8 boxes, the first sequencing

process starts. Afterward, the remaining boxes will be released from the

output point of the buffer line to the main conveyor. Again, the boxes from 9

to 16 will enter the board (after releasing the sequenced boxes in the first

sequencing process), and the remaining boxes will store in the buffer line.

In this strategy, the sequencing processes are carried out in series, board after

board. As for other strategies, we investigated both area and time for this

strategy.

 49

I. Area for the Strategy of Adding Buffer Line

The area for this strategy is calculated as Equation 2.9.

𝑨 = (𝑵 + 𝟏) × 𝑨𝒃𝒐𝒙 (2.9)

where A is the total area occupied by the system regardless of the main input

conveyor; and 𝐴𝑏𝑜𝑥 is the box’ area.

As it is clear from Equation 2.9, unlike the strategy of using multi-boards, the

area here is depending only on the number of boxes.

II. Time for the Strategy of Adding Buffer Line

The same analyses of previous strategies to calculate the sequencing time was

carried out in this strategy. In this strategy, the boxes are sequenced on the

board based on the used puzzle capacity. Therefore, for boxes more than the

puzzle capacity, the remaining boxes would wait for the next sequencing

process. In this waiting time, the first sequencing process is carried out.

We calculated the time in the worst case as in Equation 2.10.

𝑺𝒕𝒐𝒕𝒂𝒍 = (𝑵𝒃 − 𝟏) 𝑺𝒎𝒂𝒙 + 𝑺𝒓 + (𝑵𝒃 − 𝟏)𝑺𝒑.𝒎𝒂𝒙 + 𝑺𝒑_𝒓 + 𝑺𝒃𝒖𝒇𝒇𝒆𝒓

(2.10)

where 𝑺𝒕𝒐𝒕𝒂𝒍 is the total number of steps; 𝑺𝒎𝒂𝒙 is the Maximum steps to solve

the puzzle; 𝑺𝒓 is the steps to solve the puzzle for remaining boxes; 𝑵𝒃 is the

number of boards which refer to the number of sequencing processing

times; 𝑺𝒑.𝒎𝒂𝒙 is the Pre-sorting steps (the initial steps to fill in the board with

full capacity); 𝑺𝒑_𝒓 is the Pre-sorting steps (the initial steps to fill in the board

for remaining boxes); and 𝑺𝒃𝒖𝒇𝒇𝒆𝒓 is the steps or buffered boxes for the next

sequencing process. The remaining boxes can be calculated as follows: p_r =

𝑵 − (𝑵𝒃 − 𝟏) 𝑪𝒃.

We assumed that one step is for entering the buffer line, and one step for

outgoing to the main conveyor, Thus, each buffered box needs 2 steps. we

assumed also that moving boxes on the main conveyor and the buffer-

 50

conveyor are not calculated. Keep these assumptions in mind, 𝑺𝒃𝒖𝒇𝒇𝒆𝒓 can be

calculated in the worst case as follow:

𝑺𝒃𝒖𝒇𝒇𝒆𝒓 = ∑ 𝟐𝑵 − (𝒊 × 𝟐𝑪𝒃)

𝑵𝒃−𝟏

𝒊=𝟏

 (2.11)

where N is the input (number of boxes); and 𝑵𝒔 is the number of boards which

can be calculated as follow: 𝑵𝒃 = ⌈
𝑵

𝑪𝑏
⌉. where 𝐶𝑏 is the maximum capacity of

the used board.

The results of these strategies will be given in Chapter 3.

According to the literature illustrated in Chapter 1, the systems designed for

storing and retrieval items that depended on the puzzle movement concept

investigated the item retrieval time with multiple escorts (escort refers to the

empty space in the puzzle system).

by increasing the number of escorts, the retrieval moves are decreased and the

retrieval time is decreased as well [7, 27]. The analyses in these researches were

conducted to retrieve an item to a specific point in the puzzle.

However, in Sam Loyd's puzzle which consists of (n × m) − 1 square tile and

one blank, the concept is to keep sliding the blank in one of four cardinal

directions until we reach the goal state, in such a puzzle system, all items

should move to their position as in goal configuration. In this study, we

investigate the increase of blanks on the solution steps for Sam Loyd’s puzzle

which is used in our sequencing system.

2.5.3 Number of Blanks

There are lots of researchers who worked on the sliding puzzles [29, 30, 32, 33,

40–42]. However, To the author's best knowledge, none of these literatures has

addressed the case of a different number of blanks. Unlike other researches,

 51

we first investigated the effect of one and two blanks on the solution steps for

different sizes of the puzzle. Table 2.5 illustrates the effect of one and two

blanks on different puzzle sizes regarding the maximum puzzle capacity, the

total number of states, the number of solvable states, and the maximum

number of solution steps.

Table 2.5. The effect of one and two blanks on different puzzle sizes.

 2×2 puzzle 2×3 puzzle 2×4 puzzle 3×3 puzzle

No. of blanks 1 2 1 2 1 2 1 2

Max. capacity 3 2 5 4 7 6 8 7

No. of states 24 12 720 360 40,320 20,160 362,880 181,440

solvable states 12 12 360 360 20,160 20,160 181,440 181,440

Max. solution steps 6 4 21 12 36 26 31 24

According to the table, by increasing the number of blanks in the puzzle, the

maximum solution steps is decreasing.

The second analysis is to show the effect of an arbitrary number of blanks on

the solution steps for the 8-puzzle as illustrated in table 2.6.

Table 2.6. The effect of an arbitrary number of blanks on the solution steps for 8-

puzzle

Number of

blanks

Maximum

capacity

Maximum

states

Maximum

solution steps

Average

solution steps

1 8 362,880 31 21.97

2 7 181,440 24 16.03

3 6 60,480 21 12.7

4 5 15,120 17 9.99

5 4 3,024 13 7.88

6 3 504 10 5.93

7 2 72 7 3.8

As shown in Table 2.6, increasing the number of blanks will always decrease

the solution steps. However, the increasing of blanks has the opposite effect

 52

on the system which is decreasing the puzzle capacity. We noticed that the

maximum number of blanks is 7, the puzzle, in this case, can sequence only

two boxes.

Since we are dealing with multiple blanks in the puzzle, that allows us to carry

out multiple steps simultaneously as double switching.

2.5.4 Double Switching

In the sliding puzzle, the step term denotes sliding the blank from its current

position to the next position by switching it with the neighbor tile as shown in

figure 2.22.

Figure 2.22. The concept of step in sliding puzzle.

If we assume that one step takes one time unit, means one switching carried

out by one step and consumed one time unit. Keeping that in mind, we solve

the puzzle with 2 blanks as in the example illustrated in figure 2.23.

 53

Figure 2.23. An example of one step concept to solve 8-puzzle with 2 blanks.

As shown in figure 2.23, this configuration takes 7 steps to reach the solution.

We carried out 7 switchings and that consumed 7 times units. However, we

noticed that the first step and the second step are independent steps. In such a

case, we carried out switching the tiles (2 and 4) simultaneously. This double

switching consumed one time unit, therefore, we considered it as one step. So,

we can achieve double switching in one step.

By applying the new concept of double switching in one step to solve the

previous example, we reduced the solution steps from 7 steps to 4 steps as

shown in figure 2.24.

 54

Figure 2.24. An example of the double switching concept to solve 8-puzzle with 2

blanks.

According to figures 2.23 and 2.24, double switching in one step concept can

be applied only when the tiles are switched independently. We confirmed that

each double switching can reduce the steps by 1 step, in the example we

carried out the double switching 3 times, reducing the solution steps by 3 steps

in total.

The analysis was carried out using "MATLAB 2020b"software as follows:

1. Searched the solution steps as one switching is carried out in one step.

2. Tracked the positions of the first and second blanks.

3. Assumed that each switching is assigned to one blank, and we can’t

carry out double switching for the same blank.

4. Checked independence of double switching.

Figure 2.25 shows an example of the double switching process in MATLAB.

 55

Figure 2.25. An example of the double switching process in MATLAB.

In the example, the initial state is [5, 3, 7; 1, 2, blank; 6, 4, blank]. At the

programming level, we represent the blanks by zeros.

The analysis steps carried out by MATLAB are as follows:

1. Get the solution steps by applying the one switching in one step concept,

in the example, the solution steps are 18 steps;

2. Confirm that each switching is assigned to a different blank by

comparing the current state’s blanks with the next state’s blanks;

3. Check the independency of the blanks, which can be done by the concept

of Hamming distance as follow:

• Give the current state a Hamming = 0;

• Check the Hamming of the current state with the state (current + 2);

• If the Hamming = 2, the blanks are independent, else they are

dependent.

 56

In the example, the solution steps are 18 and 15 steps before applying the

double switching and after, respectively. Thus, we reduced the solution steps

by 3 steps.

Figure 2.26 illustrates the procedure algorithm to apply double switching.

Figure 2.26. the procedure algorithm to apply the double switching process.

2.5.4.1 Improvements with Block Movement

In the example described in 2.5.4, we assumed that one switching should be

applied for one blank and we can’t carry out the second switching for the same

blank. However, we noticed some cases where the same steps are applied for

the same blank in the current state and the next state. For instance, in steps 3

and 4 in the example shown in figure 2.25 (right) after applying double

switching, the first zero is moved left in both steps, in this case, we can apply

the block movement concept.

In this concept we move the two tiles together as one block to the right, the

blank would be moved to the left as well. To apply the block movement, we

follow the following steps:

 57

1. After applying the simple double switching, we check the cases of

moving the same blank twice in the same column or the same row.

2. Confirm the independency of another blank with the blank we are

applying block movement on. The blanks independency can be done

by tracking the blanks locations as follows:

• If the blank moves up or down in both current and next states,

another blank in the next state and the state (current +2) should not

be in the same column of the blank we are working on.

• If the blank moves left or right in both current and (current +1) states,

another blank in the (current +1) and (current +2) states should not

be placed in the same row of the blank we are working on.

Figure 2.27 illustrates the procedure algorithm to apply double switching with

block movement.

Figure 2.27. the procedure algorithm to apply the double switching process with

block movement.

Figure 2.28 shows the steps of solving the same example in figure 2.25 after

applying block movement.

 58

Figure 2.28. An example of applying block movement for an 8-puzzle with 2 blanks.

According to figure 2.28, the first blank had 3 cases where the same steps are

applied in both current and next states, and one case for the second blank

However, based on the condition described for the allowability of applying

block movement, only 3 cases can allow the block movement.

In this example, we reduced the solution steps by 3 steps. By applying the

double switching with block movement, we can carry out 3 steps

simultaneously in one step as shown in figure 2.29.

Figure 2.29. The concept of double switching with applying block movement.

 59

 Summary

In this chapter, we presented the puzzle-based system. We discussed two

solving methods: the game tree and the path-finding algorithms. We chose the

A-star algorithm which was optimally efficient among the algorithms that

extend search paths from the root. We modified the A-star algorithm to fulfill

the sequencing process by adding the solvability condition and pre-sorting

strategy by switching the last (n-2) tiles in the puzzle in the case of unsolvable

configuration which are 50% of puzzle permutations.

In this chapter, we investigated also the effect of several factors on the overall

solution steps. For instance, branching factor the Aspect Ratio and the

rectilinear distance.

To meet the practical implementation in real-world warehouses, we proposed

three strategies, increasing the board size using different puzzle board sizes,

using multi-boards, and adding buffer line. In addition, we dealt with the

puzzle with an arbitrary number of blanks. Firstly, we investigated the effect

of increasing the number of blanks in the puzzle on the maximum solution

steps. Then, we investigated the effect of simultaneous double switching in

one step on the system regarding maximum solution steps. By carrying out

simultaneous double switching in 8-puzzle with 2 blanks, we would be able

to reduce the maximum solution steps considering that one double switching

can reduce the steps by 1 step.

60

3 CHAPTER 3

RESULTS AND DISCUSSION

After the overall explanation in the methodology chapter, here, we present the

results of the numerical equations and we discuss these results regarding

reducing the total number of steps keeping in the mind the usage area by the

system.

The results and discussion will be presented in different suction following the

same order in Chapter 2.

 Puzzle Shape

We investigated in Chapter 2 different factors that affect the solution steps in

both a square board and a rectangular one, the summary of these factors’ effect

is illustrated in table 3.1.

Table 3.1. Our generated tree for the 8-puzzle vs. other works.

Factor Square puzzle board Rectangular puzzle Board

Branching factor ✓ ✗

Rectilinear distance ✓ ✗

Presorting steps ✓ ✗

Aspect ratio ✓ ✗

61

In order to generalize the comparison of different shapes of the puzzle, the

same size and number of blanks were used. First, we investigated the 16-boxes

size of the puzzle.

3.1.1 16-boxes Size

This size can sort 15 boxes with two different shapes (4 × 4 and 2 × 8). As Figure

14 shows, we generated 2 × 105 non-random states for both shapes, starting

from the target state. Figure 3.1 illustrates the performance of the generated

states regarding the solution steps.

Figure 3.1. Comparison between the 4 × 4 and 2 × 8 board sizes with non-random

states regarding the solution steps.

To verify the validity of our method to generate the state tree, we compared

our 8-puzzle tree with other works regarding the following factors: maximum

number of states, maximum solution steps, and average solution steps. Table

3.2 illustrates the comparison between our results for the 8-puzzle with others.

Table 3.2. Our generated tree for the 8-puzzle vs. other works.

Comparison Factor Our Generated Tree Other Works [29, 32, 43]

Maximum number of states 181,440 181,440

Maximum solution steps 31 31

Average solution steps 21.97 ≈ 22

62

According to Table 3.2, we were able to validate our method, and the same

program was used to generate the 2 × 105 states for different shapes in this

section.

In the generated tree of the 16-boxes size of the puzzle, we noticed clearly a

significant difference in the state numbers of the two puzzles in the same tree

depth (solution steps). In other words, states in one shape of the puzzle need

more solution steps than the second shape. The equation that describes the

number of states that need more solution steps is as follows:

𝑵 = ∑ 𝐍𝐢

𝐒𝐦𝐚𝐱.𝟐

𝐢=𝐒𝐦𝐚𝐱.𝟏+𝟏

, (3.1)

where N is the number of states that need more solution steps; Smax.1 is the

maximum solution steps of the first shape; Smax.2 is the maximum solution

steps of the second shape; and Ni is the number of states in the depth i.

According to Equation (3.1), for all generated states, 88.35% of states could

provide fewer solution steps in the 4 × 4 board than in the 2 × 8 for the 2 × 105

states. Furthermore, Equation (3.2) provides an increasing percentage of

solution steps for different shapes.

𝐒𝐩𝐥𝐮𝐬 =
|𝐒𝐦𝐚𝐱.𝟏 − 𝐒𝐦𝐚𝐱.𝟐|

𝐒𝐦𝐚𝐱
× 𝟏𝟎𝟎%, (3.2)

where Splu𝑠 is the increasing percentage of solution steps; Smax.1, Smax.2 are the

same as in Equation (3.1); and Smax is the total solution steps. Based on

Equation (3.2), the results prove that the 4 × 4 board achieved 23.8% of steps

better than the 2 × 8 board at 2 × 105 states. Overall, when increasing the

number of states in both given boards, the 4 × 4 board performed better than

the 2 × 8 board in terms of the number of steps. Next, we considered a 36-boxes

size of the puzzle.

63

3.1.2 36-boxes Size

This size can sort 35 boxes. In this case, there are four different shapes (6 × 6, 4

× 9, 3 × 12, and 2 × 18). The same analysis as in the previous case with the size

of 16-boxes was carried out. Figure 3.2 shows the solution steps of all states

with the same number of boxes for different shapes.

Figure 3.2. Comparison between the 6 × 6, 4 × 9, 3 × 12, and 2 × 18 board sizes for

non-random states.

We observed the same trend in Figure 3.1 for our 16-boxes size of the puzzle

in Figure 3.2. For all generated states, and referring to Equation (3.1), we

confirmed that 44.63%, 76.60%, and 96.92% of states provided fewer solution

steps in the 6 × 6 board than in the 4 × 9, 3 × 12, and 2 × 18 boards, respectively.

Moreover, from Equation (3.2), the 6 × 6 board provided 7.14%, 13.33%, and

31.57% steps fewer than the 4 × 9, 3 × 12, and 2 × 18 boards, respectively. From

these results, we deduced that the square shape of the puzzle had a better

performance than the rectangular shape.

64

 Board Size and Number

We discussed in Chapter 2, three strategies to carry out the sequencing process

for more than 8 boxes. Since the first strategy which is increasing the size of

the board had a limitation restricted by the puzzle capacity, we present and

discuss in this chapter only the two other strategies.

3.2.1 Using Multi-Boards

In this section, we illustrate the results of two parameters, the time as a total

number of steps, and the area used by the system.

3.2.1.1 Area for the Strategy of Using Multi-Boards

Based on Equation 2.6, we calculated the area used by the boards ignoring the

main conveyor. Figure 3.3 illustrates the comparison between 8-puzzle, 15-

puzzle, and 24-puzzle used for this strategy regarding the area.

Figure 3.3. Comparison between 8-puzzle, 15-puzzle, and 24-puzzle used for multi-boards

strategy regarding the area.

65

According to figure 3.3, we notice the variety in the area occupied by the

system for different puzzle sizes, that is directly related to the deference

number of used boards for the same input.

For example, for 32 boxes as an input, the number of boards used 8-puzzle

board is 4 boards, using the 15-puzzle board is 3 boards, and using the 24-

puzzle board is 2 boards. The areas of these three puzzles are 36 𝐴𝑏 , 48 𝐴𝑏, and

50 𝐴𝑏. In this example, it is clear that the 24-puzzle board is superior to the

other boards.

In another example, for 48 boxes as an input, the areas are 54 𝐴𝑏 , 64 𝐴𝑏, and

50 𝐴𝑏 using 8-puzzle, 15-puzzle, and 24-puzzle respectively.

3.2.1.2 Time for the Strategy of Using Multi-Boards

Based on Equation 2.8, Figure 3.4 illustrates the comparison between 8-puzzle,

15-puzzle, 24-puzzle used for this strategy regarding the total solution steps

in the worst case which is considered the maximum solution steps of the

puzzle.

66

Figure 3.4. Comparison between 8-puzzle, 15-puzzle, and 24-puzzle used for multi-

boards strategy regarding the total solution steps.

According to figure 3.4, we verified the superior of 8-puzzle board size to other

boards sizes. The reason for that is the significant increase in the maximum

solution steps for these puzzles as is illustrated in table 2.4.

Since the results vary regarding the area and time between different boards

sizes, we need to find a compromise between the area and the time to evaluate

the best board size for this strategy. Using the Selection Index theory may

make us able to compromise between the area and the time for this strategy.

3.2.1.3 Selection Index Theory

As we needed to compromise between the area used by the system and the

time of sequencing for this strategy, we used the Selection Index theory.

In animal and plants breeding, the breeding value is used by the definition of

Estimation of Breeding Value (EBV), this estimation is calculated based on

67

individual observed phenotypes information, in addition to the information

from relatives and correlated traits.

To combine information from different sources, the researchers used the

Selection index and they expressed the EBV as an index, weighing different

types of information. Equation 3.3 illustrates the classical Selection Index for a

combination of different sourced information [44].

𝑬𝑩𝑽 = 𝑰𝒏𝒅𝒆𝒙 = 𝒃𝟏𝑿𝟏 + 𝒃𝟐𝑿𝟐+ . . . +𝒃𝒏𝑿𝒏

(3.3)

where EBV is the estimation of breeding value and 𝑏1, 𝑏1, …, 𝑏𝑛 are the weights

and 𝑋1, 𝑋2, …, 𝑋𝑛 are phenotypic information sources.

In this study, we used the same theory to compromise between the area and

time. Firstly, we normalized the results of the area and time to unify the range

of the y axis. we rescaled the y axes of both time and area from 0 to 1. Then,

we weighed equally the area and the time, and we keep to the logistical

managers to evaluate the importance of these parameters. Equation 3.4

illustrates the use of the classical selection index for area and time.

𝑰 = +𝟎. 𝟓 𝑨 + 𝟎. 𝟓 𝑺𝒕𝒐𝒕𝒂𝒍

(3.4)

where 𝑺𝒕𝒐𝒕𝒂𝒍 is the total solution steps which refer to the solution time; and A

is the area used by the system.

Since we aimed to reduce the used area and minimize the solution time, the

smaller the Index is the better strategy we get. Figure 3.5 illustrates the index

of both area and time after normalizing (rescale) their results.

68

Figure 3.5. Selection index for normalized time and area of multi 8,15 and 24 boards

for 48 input

According to figure 3.5, we observe the superior of using multi 8-puzzle size

boards to other boards in this strategy.

3.2.2 Adding a Buffer Line

The same two parameters discussed to evaluate the strategy will be

considered.

3.2.2.1 Area for the Strategy of Adding Buffer Line

We compared the area for this strategy with the area of using multi-8-puzzle

boards illustrated in Section 3.2.1.1. Based on Equations 2.6, and 2.9, we get

Figure 3.6 which illustrates the comparison between muti-8-puzzle boards and

adding buffer line regarding the system area for 48 boxes as an input.

69

Figure 3.6. Comparison between muti-8-puzzle boards and adding buffer line

regarding the system area.

In figure 3.6, we noticed that using a buffer line reduced the used area. The

reason is the linearity of the area in this strategy, while in a multi-board

strategy the area depended on the capacity of the puzzle which affects also the

number of used boards.

3.2.2.2 Time for the Strategy of Adding Buffer Line

According to Equations 2.8, and 2.10, Figure 3.7 illustrates the comparison

between muti-8-puzzle boards and adding buffer line regarding the total

solution steps.

70

Figure 3.7. Comparison between muti-8-puzzle boards and adding buffer line

regarding the total solution steps.

We noticed that adding a buffer line increases the total number of steps

compared to the strategy of multi-boards with an 8-puzzle board size.

3.2.2.3 Index for the Strategy of Adding Buffer Line

As same as the strategy of using multi-boards, we used the selection index

theory to compromise between the area and time for the strategy of adding

buffer line.

For comparison and selection index, we compared the strategy of adding

buffer line with the strategy of using multi-board with the size of 8-puzzle

board.

Based on Equation 3.4 we calculated the index for these strategies. Figure 3.8

illustrates the index of both area and time in this strategy and multi-8-puzzle

boards after normalization.

71

Figure 3.8. Selection index for normalized time and area of multi 8-puzzle boards

and buffer line for 48 input

Based on figure 3.8, the strategy of using multi-boards with the 8-puzzle board

size was better than the strategy of adding a buffer line to the system.

Figure 3.9 illustrates the curve fitting of the multi-boards strategy with three

different board sizes and adding buffer line strategy. The curve fitting gives

an estimation of the trend of indices for different input numbers.

72

Figure 3.9. Curve fitting for multi-boards and adding buffer line strategies with

three different board sizes.

From the figure, we can conclude the superiority of the strategy of using multi-

boards with the 8-puzzle board size to other strategies and sizes.

 Number of Blanks

To compromise between the number of blanks and the puzzle capacity, the

same analyses of the strategy of using multi-boards with the size of 8-puzzle

regarding the area and total solution steps were carried out. In this analysis,

we considered the 8-puzzle with a different number of blanks. Figure 3.10

illustrates the area of the system for a different number of blanks in the

strategy of using multi—puzzle boards.

73

Figure 3.10. The area of multi 8-puzzle boards for different numbers of blanks.

As shown in the figure, increasing the number of blanks will always increase

the system area. The reason is that increasing the blanks will decrease the

puzzle capacity, and increase the number of boards as Equation 2.7. Figure

3.11 illustrates the total solution steps in the strategy of multi-8-puzzle boards

for different numbers of blanks.

74

Figure 3.11. The total solution steps of multi 8-puzzle boards for different numbers

of blanks.

According to Figure 3.11, 4 blanks provided the shortest solution steps.

The reason behind these results is the big difference in the number of boards

which is the coefficient of the presorting steps as in Equation 2.8.

For example, for 30 boxes as an input of the system. 1 blank puzzle needed 4

boards while 4 blanks needed 6 boards. Even though the maximum solution

steps is decreasing by increasing slightly the blank, the coefficient of this

parameter is always 1.

Figure 3.12 illustrates the parameter of Equation 2.8 for 30 boxes regarding

different numbers of blanks. As the total number of steps, 4 blanks provide the

shortest solution steps compared to other puzzles with different numbers of

blanks.

75

Figure 3.12. The parameter of Equation 5.5 for 30 boxes regarding different numbers

of blanks.

Same analysis as for the strategies described before in this Chapter to evaluate

the system regarding different numbers on blanks. We used the selection

index theory to compromise between the area and time.

Figure 3.13 illustrates the index for multi-8-puzzle boards with different

numbers of blanks.

76

Figure 3.13. The index for multi-8-puzzle boards with different numbers of blanks.

According to figure 3.13, up to 25 boxes, the behavior of less than or equal to

4 blanks has almost the same index with very slight changes, while more than

4 blanks the puzzles have a bigger index.

For greater than 25 boxes, we noticed that 1 and 2 boxes have the almost same

index, while 3 and 4 blanks started to give a bigger index than 2 and 1 blank.

Until now, even though, these puzzles have more than one blank, we slide

only one blank each step. Next, we investigated the double switching effect on

the solution steps.

 Double Switching

As described in Chapter 2, we carried out double switching in one step. We

have two different cases: the general case where the blanks are placed

randomly in the puzzle and the case where the blanks are placed in the corner

77

of the puzzle. We present the effect of double switching on the solution steps

for both cases.

3.4.1 General Case

We investigated the new concept to solve 8-puzzle with 2 blanks for all

configurations in the general case where the blanks are randomly placed in the

puzzle.

Figure 3.14 illustrates the number of possible simultaneous double switching

for an 8-puzzle with 2 blanks.

Figure 3.14. The number of simultaneous double switching for 8-puzzle with 2

blanks.

In figure 3.14, we noticed that the maximum states are 181436 states, because,

the first 4 states in the tree take less than 2 steps to reach the goal state.

According to the figure and the analysis steps described, we reduced the

number of solution steps for 177225 states out of 181436 states by a minimum

of 1 step, an average of 2 steps, and a maximum of 7 steps.

78

 To evaluate the reduction percentage by carrying out double switching in one

step, we considered the average solution steps of the puzzle with 2 blanks as

illustrated in Table 2.6. In addition, we considered the average reduction steps

which are 2 steps.

Figure 3.15 illustrates the reduction percentage of solution steps for 8-puzzle

with 2 blanks.

Figure 3.15. Reduction percentage of solution steps for 8-puzzle with 2 blanks.

According to the figure, by considering the average solution steps and average

reduction steps, we got a 12.5% reduction percentage of the solution steps.

The results shown in figure 3.15 are summarized in table 3.3.

79

Table 3.3. The reduction percentage of solution steps for 8-puzzle with 2 blanks.

Double-switching Minimum Maximum Average

(16 solution steps)

1 time (Reduce 1 step) 4.16% 50% 6.25%

2 times (Reduce 2 steps) 8.33% 40% 12.5%

3 times (Reduce 3 steps) 12.5% 42.85% 16.66%

4 times (Reduce 4 steps) 16.66% 44.44% 22.22%

5 times (Reduce 5 steps) 20.83% 45.45% 26.31%

6 times (Reduce 6 steps) 25% 42.85% 31.57%

7 times (Reduce 7 steps) 30.43% 41.17% 33.33%

According to table 3.3, the minimum percentage of steps reduction is 4.16%

and the maximum is 50%.

3.4.2 Blanks Placed in the Corner of the Puzzle

We assumed that practical implementation in a real-world warehouse requires

placing the blanks in the corner of the puzzle.

The same analyses for double switching in the general case were conducted

considering our assumption for practical implementation requirement.

Figure 3.16 illustrates the number of possible simultaneous double switching

for an 8-puzzle with 2 blanks placed in the corner of the puzzle.

80

Figure 3.16. The number of simultaneous double switching for 8-puzzle with 2

blanks placed in the corner of the puzzle.

As shown in the figure, the total states, in this case, are 5040 states. We reduced

the number of solution steps for 4766 states out of 5040 states by a minimum

of 1 step, an average of 2 steps, and a maximum of 5 steps.

Considering the case of placing the planks in the puzzle corner, we generated

all the states and calculate the maximum and average solution steps for an

arbitrary number of blanks for 8-puzzle as illustrated in table 3.4.

Table 3.4. The effect of an arbitrary number of blanks on the solution steps for an 8-

puzzle with 2 blanks placed in the corner of the puzzle.

Number of

blanks

Maximum

capacity

Maximum

states

Maximum

solution steps

Average

solution steps

1 8 20160 30 22.14

2 7 5040 24 16.27

3 6 720 20 13.17

4 5 120 14 10

5 4 24 12 7.39

6 3 6 8 5.6

7 2 2 4 4

81

According to table 3.4, the average solution steps are 16 steps. And as shown

in figure 3.16, the average reduction steps are 2 steps. Keep this in mind, we

analyzed the reduction percentage of solution steps when carrying out double

switching in one step.

Figure 3.17 illustrates the reduction percentage of solution steps for an 8-

puzzle with 2 blanks placed in the corner of the puzzle.

Figure 3.17. Reduction percentage of solution steps for an 8-puzzle with 2 blanks for

practical implementation requirement.

The summary of the results shown in the figure is illustrated in table 3.5.

Table 3.5. The reduction percentage of solution steps for 8-puzzle with 2 blanks

placed in the corner of the puzzle.

Double-switching Minimum Maximum Average

(16 solution steps)

1 time (Reduce 1 step) 4.54% 25% 6.25%

2 times (Reduce 2 steps) 8.33% 25% 12.5%

3 times (Reduce 3 steps) 13.63% 30% 16.66%

4 times (Reduce 4 steps) 18.18% 28.57% 22.22%

5 times (Reduce 5 steps) 22.72% 31.25% 27.77%

82

According to table 3.5, the minimum percentage of steps reduction is 4.54%,

the maximum is 31.25%, and the average is 12.5%.

To evaluate the improvement of applying the block movement on the total

solution steps in the system, the same analyses as in 3.4.1 and 3.4.2 are carried

out here.

Figures 3.18 and 3.19 illustrate the number of simultaneous double switching

for 8-puzzle with 2 blanks after applying the block movement in both general

case and the case of placing the blanks in the corner of the puzzle, respectively.

Figure 3.18. The number of simultaneous double switching with block movement

for 8-puzzle with 2 blanks.

83

Figure 3.19. The number of simultaneous double switching with block movement

for 8-puzzle with 2 blanks placed in the corner of the puzzle.

According to figure 3.18, We reduced the number of solution steps for 180,986

states out of 181,436 states by a minimum of 1 step, an average of 4 steps, and

a maximum of 12 steps.

In figure 3.19, We reduced the number of solution steps for 5025 states out of

5040 states by a minimum of 1 step, an average of 4 steps, and a maximum of

10 steps.

For getting the reduction percentage of steps after applying the block

movement, we concede the average solution steps of the 8-puzzle with 2

blanks (16 steps) and the average reduction steps (4 steps). Figures 3.20 and

3.21 illustrate the reduction percentage in the general case and the practical

implementation requirement, respectively.

84

Figure 3.20. Reduction percentage of solution steps after applying block movement

for 8-puzzle with 2 blanks.

Figure 3.21. Reduction percentage of solution steps after applying block movement

for 8-puzzle with 2 blanks placed in the corner of the puzzle.

The summary of the results shown in figures 3.20 and 3.21 are illustrated in

tables 3.6 and 3.7, respectively.

85

Table 3.6. The reduction percentage of solution after applying block movement

steps for 8-puzzle with 2 blanks.

Double-switching Minimum Maximum Average

(16 solution steps)

1 time (Reduce 1 step) 4.54% 50% 6.25%

2 times (Reduce 2 steps) 8.69% 66.66% 12.5%

3 times (Reduce 3 steps) 13.4% 75% 18.75%

4 times (Reduce 4 steps) 16.66% 66.66% 25%

5 times (Reduce 5 steps) 20.83% 62.5% 31.25%

6 time (Reduce 6 steps) 25% 60% 37.5%

7 times (Reduce 7 steps) 29.16% 58.33% 43.75%

8 times (Reduce 8 steps) 33.33% 57.14% 50%

9 times (Reduce 9 steps) 37.5% 56.25% 56.25%

10 times (Reduce 10 steps) 41.66% 55.55% -

11 times (Reduce 11 steps) 47.82% 52.38% -

12 times (Reduce 12 steps) 52.17% 54.54% -

Table 3.7. The reduction percentage of solution steps after applying block

movement for 8-puzzle with 2 blanks placed in the corner of the puzzle.

Double-switching Minimum Maximum Average

(16 solution steps)

1 time (Reduce 1 step) 5% 25% 6.25%

2 times (Reduce 2 steps) 10% 33.33% 12.5%

3 times (Reduce 3 steps) 13.63%% 37.5% 21.42%

4 times (Reduce 4 steps) 18.18 50% 25%

5 times (Reduce 5 steps) 22.72% 41.66% 31.25%

6 time (Reduce 6 steps) 27.27% 50% 37.5%

7 times (Reduce 7 steps) 31.81% 50% 43.75%

8 times (Reduce 8 steps) 33.33% 50% 50%

9 times (Reduce 9 steps) 40.9% 50% -

10 times (Reduce 10 steps) - 45.45% -

86

According to table 3.6, the minimum percentage of steps reduction is 5%, the

maximum is 50%, and the average is 25%.

According to table 3.7, the minimum percentage of steps reduction is 4.54%,

the maximum is 75%, and the average is 25%.

From tables 3.6 and 3.7, we confirmed the improvement in the system

regarding the solution steps after applying the block movement.

 Managerial Impact

To evaluate the proposed system and explore the impact of implementing the

puzzle-based concept in products sequencing, we compared the proposed

system with the other used systems. In addition, we compared the puzzle

system with the traditional sorting algorithm (Dual-Pivot Quicksort

algorithm).

Firstly, the puzzle-based sequencing system was compared with the

GridSequence system developed by Gue et al. [11] with respect to the floor

used area and sequencing time. In order to evaluate the utilization of floor

space in the sequencing system, we calculated the area used by the puzzle-

based system based on Equation 2.6 (we considered the strategy of using

multi-boards with the size of 8-puzzle). For the GridSequence system, we

considering 1 additional column and one additional row to the grid. Thus, the

area is calculated as (n + 1) × (m + 1), where (i = n * m), where i is the number

of boxes that need to be sequenced.

Table 3.8 illustrates the used area in the puzzle-based system versus the

GridSequence system for sequencing different numbers of boxes.

87

Table 3.8. The used area in a puzzle-based system vs. a GridSequence system.

Number of

boxes (i)

Puzzle-Based System

Area = [𝑪𝒔 + 𝟏)𝑵𝒔] × 𝑨𝒃

GridSequence System
Area = (n + 1) × (m + 1) × 𝑨𝒃

8 𝐶𝑠 = 8, 𝑁𝑠 = 1 9 n = 2, m = 4 15

32 𝐶𝑠 = 8, 𝑁𝑠 = 4 36 n = 5, m = 7 42

48 𝐶𝑠 = 8, 𝑁𝑠 = 6 54 n = 6, m = 8 63

96 𝐶𝑠 = 8, 𝑁𝑠 = 12 108 n = 8, m = 12 117

As shown in Table 3.8, the puzzle-based system can provide a less used area

than the GridSequence system. Better space utilization is quantified, with a

practical example; to sequence 32 boxes with sizes of 35 cm × 35 cm = 0.1225

m2, GridSequence would occupy 5.14 m2, while the proposed puzzle-based

would occupy 4.41 m2. Therefore, a puzzle-based sequencing system is

recommended to reduce the space as well as reduce the cost.

Second, we compared the proposed system with the GridSequence system

regarding the sequencing time. In the puzzle-based system, we considered the

multi-boards with the size of 8-puzzle, and we assumed that one step is carried

out in 1 second. In addition, we add 3 steps to empty each board (assuming

that every 3 boxes will be out of the puzzle simultaneously as on block). In the

GridSequence we took into consideration 1 and 2 columns, and we considered

the case of aspect ratio equals to 1 to match our board aspect ratio. Table 3.9

illustrates the sequencing time in the puzzle-based system versus the

GridSequence system for sequencing 96 boxes.

 Table 3.9. The sequencing time in a puzzle-based system vs. a GridSequence

system for 96 boxes.

Number of

boxes (i)

Puzzle-Based System

Equation 2.8

GridSequence System

Gue et al. [11]

96 𝑁𝑠 = 12 234 Sec. No. of Column=1 ≈320 Sec.

96 𝑁𝑠 = 12 234 Sec. No. of Column=2 ≈313 Sec.

88

As shown in the table, the puzzle-based system can sequence 96 boxes in 234

seconds (Recall that 1 step is carried out in 1 second, which is realistic time in

real-word). As a result, the proposed system significantly reduces the

sequencing time compared with the GridSequence system.

Further comparison is carried out with traditional sorting algorithms such as

the Dual-Pivot Quicksort algorithm. In the Dual-Pivot Quicksort algorithm,

we chose two pivots and the algorithm can be described as follows:

1. Define the first and the last elements in the series as pivot 1 (P1) and

pivot 2 (P2) respectively, and the remaining elements are divided into

three parts: in part I, the elements that are smaller than P1, in part III,

the elements that are bigger than P2. the rest of elements are placed in

part II as illustrated in figure 3.22.

Figure 3.22. Concept of Dual-Pivot Quicksort algorithm.

2. Swap P1 with the last element of part I, and swap P2 with the first

element of part III.

3. Repeat steps 1 and 2 for Parts I, II, III.

The average number of swaps of the Quicksort algorithm with 2

pivots is (0.8*n* ln(n)) [45].

 Since the Dual-Pivot Quicksort algorithm has a smaller number of swaps than

classical Quicksort, we compared a concept of implementing this algorithm to

sort 8 items using flexible multi-directional conveyors with puzzle sorting

concept as illustrated in figure 3.23.

89

Figure 3.23. Principle of swap & step in Quicksort algorithm with multi-directional

conveyors system and puzzle sorting concept.

Table 3.10 illustrates the comparison between the puzzle concept and Dual-

Pivot Quicksort algorithm regarding the area, and number of steps

Table 3.10. Comparison between the puzzle concept and Dual-Pivot Quicksort

algorithm.

 Dual-Pivot Quicksort n=8 Puzzle-based system n=8

Area [box size] 3n 24 n+1 9

No. of steps [45] Avg.= 0.8 × n × ln(n) × 3* 39.9 Max.= 31 (for n=8) 31

* Swapping two boxes needs at least 3 steps

According to the table, the puzzle provided fewer steps than the Quicksort

algorithm, also the area used by the puzzle is less than that used by the flexible

multi-directional conveyors.

We investigated the implementation of Quicksort algorithm utilizing puzzle

movement concept for an example of 8 elements by applying the following

steps:

1. Arrange the list on a 3×3 grid (3×3 puzzle grid).

2. Do partitioning considering the pivots (sub-targets), with putting in

consideration that swapping two tiles should not change others

sequence configuration.

3. Put the pivots in their proper positions (sub-target).

90

4. Repeat the algorithm for the unsorted partitions.

Figure 3.24 illustrates an example of implementing the Dual-Pivot Quicksort

algorithm utilizing the sliding puzzle movement concept for 8 elements

(assuming we can do multiple swapping simultaneously).

Figure 3.24. Implementation of Dual-Pivot Quicksort algorithm with 2 pivots

utilizing sliding puzzle concept.

According to figure 3.24, swapping two elements needs several steps to move

from one state to the next sub-target, and each sub-target is considered as a

puzzle. Based on the previous example; in order to sort the list of 8 numbers,

we had to solve the puzzle four times.

Table 3.11 illustrates the comparison between the puzzle concept and Dual-

Pivot Quicksort algorithm used puzzle-based board regarding the area, and

number of steps

Table 3.11. Comparison between the puzzle concept and Dual-Pivot Quicksort

algorithm used puzzle-based board.

 Dual-Pivot Quicksort n=8 Puzzle-based system n=8

Area [box size] 3+1 9 n+1 9

No. of steps [45] Avg.= 0.8 × n × ln(n) × 16* 212.9 Max.= 31 (for n=8) 31

* Average solution steps for 8-puzzle is 16

91

According to the table, the puzzle provided much less sequencing time than

Dual-Pivot Quicksort.

Figure 3.25 illustrates the performance of the proposed method compared

with other sequencing systems regarding the used area and the sequencing

time.

Figure 3.25 Performance comparison between the proposed method and other

sequencing systems regarding the used area and the sequencing time.

According to the figure, the proposed puzzle-based sequence system provided

better performance as a counterbalance between used floor space and the

sequencing time.

 Summary

In this chapter, we investigated the effect of the board shapes on the system

regarding solution steps. We compared the same size of the puzzle with

different shapes. The results showed that a square shape provided better

performance than a rectangular one.

92

The results of the practical implementation strategies were presented. we

concluded that the strategy of using multi-board with the 8-puzzle board size

was the most suitable strategy regarding both the used system area and total

solution steps.

We dealt in this Chapter with the puzzle with an arbitrary number of blanks.

In the strategy of using multi-boards with an 8-puzzle board size, we carried

out the sorting for different numbers of blanks for 8 to 48 boxes as an input of

the system. As a result, if the number of input boxes is up to 25 boxes,

increasing the blanks up to 4 blanks has a very slight effect, however, if the

number of inputs grows above 25 boxes, 1 or 2 blanks shows almost the same

behaviour regarding the area used by the system and the total solution steps.

while increasing the blanks more than 2 gave an opposite effect on the system.

We investigated the effect of simultaneous double switching in one step on the

system regarding maximum solution steps. Simultaneous double switching

allows reducing the maximum solution steps by an average of 2 steps and as

of 12.5% steps reduction percentage. Afterward, we improve the reduction

percentage by applying the block movement concept. As a result, we reduced

the solution steps by an average of 4 steps and an average of 25% steps as a

reduction percentage.

The proposed system provided a higher floor space utilization and lower

sequencing time compared with some systems and sorting algorithms.

93

4 CHAPTER 4

CONCLUSION AND FUTURE WORK

 Conclusion

Item sequencing has become necessary in order to increase the efficiency of

logistics operations. In this Dissertation, we focused on the material handling

devices that could carry out the sequencing task. We developed a puzzle-

based sequencing system with highly efficient floor space utilization as well

as lower sequencing time. Different searching techniques were discussed, and

the A-star algorithm was chosen to find the shortest solution for the puzzle.

Furthermore, a pre-sorting process was proposed to overcome unsolvable

configurations. In the pre-sorting process, we switched the last two items;

therefore, different filling-in processes might affect the overall steps to reach

the final goal of the puzzle.

Two shapes of the puzzle with the same size were considered to achieve the

minimum number of solution steps. The results clarified a different number of

states in the same level of the generated tree for both shapes with different

sizes. For different puzzles, if we give a random state, there is a high

probability that it will be in the tree with the higher number of states at the

same level. Several factors were discussed with their effects on the puzzle

solution steps. Based on the results of the numerical calculations, it can be

concluded that a square shape can provide a shorter solution than a

rectangular shape.

94

Practically, the 8-puzzle sequencing system is restricted by the puzzle

capacity. Therefore, we proposed and discussed three strategies to meet the

practical implementation in real-world warehouses where the need of

sequencing a list of more than 8 items.

Our proposed strategies were:

1. Increasing the board size using different puzzle board sizes: In this

strategy, we were still limited to the used puzzle capacity.

2. Using multi-boards: in this strategy, we used several boards placed

along with the main conveyor, on these boards the sequencing

processes were carried out in parallel. we compared 8,16 and 24-

puzzle, and we observe that 8-puzzle board size performs better than

other boards regarding the area used by the system and the total

solution steps.

3. Adding buffer line: in this strategy, we added a buffer conveyor along

with the main input conveyor. For the input boxes ordered more than

8, they will temporarily be buffered and resequencing in the next

sequencing process. We compared the strategy of using multi-boards

with 8-puzzle board size with the strategy of adding buffer line, we

observe the superiority of using multi-8-puzzle boards.

Finally, we investigated the effect of increasing the blanks in the puzzle which

reduced the maximum solution steps. Carrying out simultaneous double

switching allowed us to reduce the maximum solution steps by an average of

2 steps which is a 12.5% steps reduction percentage. After the improvement

by applying the concept of block movement, we were able to reduce the

solution steps by an average of 4 steps which is a 25% steps reduction

percentage. The best strategy for more than 8 boxes is using multi-boards

along with the main feeding conveyor with the shape and size of 8-puzzle with

2 blanks.

95

Compared with other sequencing systems the proposed puzzle-based system

provided a lower used area and highly efficient floor space utilization.

Furthermore, the puzzle system achieved better performance regarding the

sequencing time. These points are important parameters when considering

designing a material handling device for products sequencing to reduce the

capital, operational and variable costs including minimizing the cost of

workforces.

 Limitations and Future Work

4.2.1 Limitations

The limitation of the presented system can be represented from the Mechanical

point of view. In the case where a conveyor module has a problem, the cell of

this module will be considered as a broken cell or idle cell. Here we have 3

cases:

- The idle cell is in the puzzle’s corner: we still be able to use the same

algorithm, however, we can be able to sequence up to 7 boxes per board.

- The idle cell is along the edge of the puzzle: the maximum number of boxes

that can be sequenced is 6 boxes, and we use the same algorithm.

- The idle cell is in the middle of the puzzle: here the sequencing process

won’t proceed anymore, thus we need to maintain the board.

This problem can be more considerable when more than one cell is broken in

the board.

4.2.1 Future Work

As presented in this thesis, we used a pre-sorting process to overcome the

unsolvable states of the puzzle. we assumed the filling in strategy in the way

the first three boxes will be placed at the first row of the puzzle, then the boxes

4 to 6 will be placed in the second row in the order shown in figure 4.1.

96

Figure 4.1 Current pre-sorting strategy

However different filling-in strategies might be applied, for instance, choosing

the best configuration toward the shortest solution steps.

in this strategy, we chose the best permutation for the first three boxes which

are placed in the first row, and then based on this permutation, we investigate

the best permutation for the next three boxes.

Eventually, we reach the best state configuration that provides the shortest

solution steps.

Figure 4.2. illustrate the concept of the new pre-sorting strategy.

Figure 4.2. The concept of the new pre-sorting strategy.

97

REFERENCES

[1] Rushton Alan, Croucher Phil, B. P. The Handbook of Logistics &

Distribution Management. 2010, 636.

[2] Fumi, A.; Scarabotti, L.; Schiraldi, M. M. Minimizing Warehouse Space

with a Dedicated Storage Policy. Int. J. Eng. Bus. Manag., 2013, 5 (1), 1–8.

https://doi.org/10.5772/56756.

[3] Berg, J. P. V. Den; Zijm, W. H. M. Models for Warehouse Management:

Classification and Examples. Int. J. Prod. Econ., 1999, 59 (1), 519–528.

https://doi.org/10.1016/S0925-5273(98)00114-5.

[4] Daraei, M. Warehouse Redesign Process : A Case Study at Enics Sweden

AB Master Thesis Work. Master thesis Work, 2014, 1–76.

[5] Hsieh, L. F.; Tsai, L. The Optimum Design of a Warehouse System on

Order Picking Efficiency. Int. J. Adv. Manuf. Technol., 2006, 28 (5–6), 626–

637. https://doi.org/10.1007/s00170-004-2404-0.

[6] Gue, K. R. Very High Density Storage Systems. IIE Trans. (Institute Ind.

Eng., 2006, 38 (1), 79–90. https://doi.org/10.1080/07408170500247352.

[7] Gue, K. R.; Kim, B. S. Puzzle-Based Storage Systems. 2007, No. March

2006. https://doi.org/10.1002/nav.

[8] Shah, B.; Khanzode, V. A Comprehensive Review and Proposed

Framework to Design Lean Storage and Handling Systems. Int. J. Adv.

Oper. Manag., 2015, 7 (4), 274–299.

https://doi.org/10.1504/IJAOM.2015.075025.

[9] Aleisa, E. E.; Lin, L. For Effective Facilities Planning: Layout

Optimization Then Simulation, or Vice Versa? Proc. - Winter Simul. Conf.,

2005, 2005, 1381–1385. https://doi.org/10.1109/WSC.2005.1574401.

[10] Inman, R. R. ASRS Sizing for Recreating Automotive Assembly

Sequences. Int. J. Prod. Res., 2003, 41 (5), 847–863.

https://doi.org/10.1080/0020754031000069599.

[11] Gue, K. R.; Uluda, O.; Furmans, K. A High-Density System for Carton

Sequencing. 6th Int. Sci. Symp. Logist., 2012, No. Hodgson.

[12] Boysen, N.; Stephan, K.; Weidinger, F. Manual Order Consolidation

with Put Walls: The Batched Order Bin Sequencing Problem. EURO J.

98

Transp. Logist., 2019, 8 (2), 169–193. https://doi.org/10.1007/s13676-018-

0116-0.

[13] Boysen, N.; Fedtke, S.; Weidinger, F. Optimizing Automated Sorting in

Warehouses: The Minimum Order Spread Sequencing Problem. Eur. J.

Oper. Res., 2018, 270 (1), 386–400.

https://doi.org/10.1016/j.ejor.2018.03.026.

[14] Rethmann, J.; Wanke, E. Storage Controlled Pile-up Systems, Theoretical

Foundations. Eur. J. Oper. Res., 1997, 103 (3), 515–530.

https://doi.org/10.1016/S0377-2217(96)00303-7.

[15] Yalcin, A.; Koberstein, A.; Schocke, K. O. Motion and Layout Planning

in a Grid-Based Early Baggage Storage System: Heuristic Algorithms

and a Simulation Study. OR Spectr., 2019, 41 (3), 683–725.

https://doi.org/10.1007/s00291-018-0545-z.

[16] Uriarte, C.; Asphandiar, A.; Thamer, H.; Benggolo, A.; Freitag, M.

Control Strategies for Small-Scaled Conveyor Modules Enabling Highly

Flexible Material Flow Systems. Procedia CIRP, 2019, 79, 433–438.

https://doi.org/10.1016/j.procir.2019.02.117.

[17] Krühn, T.; Falkenberg, S.; Overmeyer, L. Decentralized Control for

Small-Scaled Conveyor Modules with Cellular Automata. 2010 IEEE Int.

Conf. Autom. Logist. ICAL 2010, 2010, 237–242.

https://doi.org/10.1109/ICAL.2010.5585288.

[18] Claudio Uriarte, Hendrik Thamer, Michael Freitag, K.-D. T. Flexible

Automatisierung Logistischer Prozesse Durch Modulare Roboter- Und

Materialflusssysteme. 2016, 9–14.

https://doi.org/10.2195/lj_Proc_uriarte_de_201605_01.

[19] Mayer, S. H. Development of a Completely Decentralized Control System for

Modular Continuous Conveyors; 2009.

[20] Kota, V. R.; Taylor, D.; Gue, K. R. Retrieval Time Performance in Puzzle-

Based Storage Systems. J. Manuf. Technol. Manag., 2015, 26 (4), 582–602.

https://doi.org/10.1108/JMTM-08-2013-0109.

[21] Gue, K. R.; Furmans, K.; Seibold, Z.; Uludag, O. GridStore: A Puzzle-

Based Storage System with Decentralized Control. IEEE Trans. Autom.

Sci. Eng., 2014, 11 (2), 429–438.

https://doi.org/10.1109/TASE.2013.2278252.

99

[22] Uluda˘, O. GridPick: A High Density Puzzle Based Order Picking

System with Decentralized Control, 2014.

[23] Hao, G. ThinkIR : The University of Louisville ’ s Institutional

Repository GridHub : A Grid-Based , High-Density Material Handling

System . 2020.

[24] Gue, K. A High-Density , Puzzle-Based System for Rail-Rail Container

Transfers. 2016.

[25] Shekari Ashgzari, M.; Gue, K. R. A Puzzle-Based Material Handling

System for Order Picking. Int. Trans. Oper. Res., 2021, 28 (4), 1821–1846.

https://doi.org/10.1111/itor.12886.

[26] Yalcin, A.; Koberstein, A.; Schocke, K. O. An Optimal and a Heuristic

Algorithm for the Single-Item Retrieval Problem in Puzzle-Based

Storage Systems with Multiple Escorts. Int. J. Prod. Res., 2019, 57 (1), 143–

165. https://doi.org/10.1080/00207543.2018.1461952.

[27] Shirazi, E.; Zolghadr, M. An Item Retrieval Algorithm in Flexible High-

Density Puzzle Storage Systems. Appl. Syst. Innov., 2021, 4 (2).

https://doi.org/10.3390/asi4020038.

[28] Tetouani, S.; Chouar, A.; Lmariouh, J.; Soulhi, A.; Elalami, J. A “Push-

Pull” Rearrangement While Routing for a Driverless Delivery Vehicle.

Cogent Eng., 2019, 6 (1), 1–14.

https://doi.org/10.1080/23311916.2019.1567662.

[29] Iordan, A.-E. A Comparative Study of Three Heuristic Functions Used

to Solve the 8-Puzzle. Br. J. Math. Comput. Sci., 2016, 16 (1), 1–18.

https://doi.org/10.9734/bjmcs/2016/24467.

[30] Shaban, R.; Natheer Alkallak, I.; Mohamad Sulaiman, M. Genetic

Algorithm to Solve Sliding Tile 8-Puzzle Problem. J. Educ. Sci., 2010, 23

(3), 145–157. https://doi.org/10.33899/edusj.2010.58405.

[31] Piltaver, R.; Luštrek, M.; Gams, M. The Pathology of Heuristic Search in

the 8-Puzzle. J. Exp. Theor. Artif. Intell., 2012, 24 (1), 65–94.

https://doi.org/10.1080/0952813X.2010.545997.

[32] Reinefeld, A. Complete Solution of the Eight-Puzzle and the Benefit of

Node Ordering in IDA*. Int. Jt. Conf. Artif. Intell., 1993, 248–253.

[33] Mishra, A. K.; Siddalingaswamy, P. C. Analysis of Tree Based Search

Techniques for Solving 8-Puzzle Problem. 2017 Innov. Power Adv.

100

Comput. Technol. i-PACT 2017, 2017, 2017-Janua, 1–5.

https://doi.org/10.1109/IPACT.2017.8245012.

[34] J., M.; L., R.; P., S. Comparative Analysis of Search Algorithms. Int. J.

Comput. Appl., 2018, 179 (50), 40–43.

https://doi.org/10.5120/ijca2018917358.

[35] Nilsson, N. J. Artificial Intelligence: A Modern Approach; 1996; Vol. 82.

https://doi.org/10.1016/0004-3702(96)00007-0.

[36] Nosrati, M.; Karimi Hojat Allah Hasanvand, R.; original, including D.

Investigation of the * (Star) Search Algorithms: Characteristics, Methods

and Approaches. World Appl. Program., 2012, 2 (24), 251–256.

[37] Zhou, Y.; Cheng, X.; Lou, X.; Fang, Z.; Ren, J. Intelligent Travel Planning

System Based on A-Star Algorithm. Proc. 2020 IEEE 4th Inf. Technol.

Networking, Electron. Autom. Control Conf. ITNEC 2020, 2020, No. Itnec,

426–430. https://doi.org/10.1109/ITNEC48623.2020.9085072.

[38] Ando, R.; Takefuji, Y. A New Perspective of Paramodulation

Complexity by Solving Massive 8 Puzzles. 2020.

[39] 5x5 sliding puzzle can be solved in 205 moves

https://oeis.org/search?q=5x5+sliding+puzzle+can+be+solved+in+205+m

oves&sort=&language=&go=Search (accessed Nov 11, 2021).

[40] Osaghae, E. O. An Alternative Solution to N-Puzzle Problem. J. Appl. Sci.

Environ. Manag., 2018, 22 (8), 1199. https://doi.org/10.4314/jasem.v22i8.9.

[41] Hayes, R. The Sam Loyd 15-Puzzle. Citeseer, 2001, No. June, 1–28.

[42] Parberry, I. A Real-Time Algorithm for the (N2 - 1)-Puzzle. Inf. Process.

Lett., 1995, 56 (1), 23–28. https://doi.org/10.1016/0020-0190(95)00134-X.

[43] Korf, R. E.; Reid, M.; Edelkamp, S. Time Complexity of Iterative-

Deepening-A*. Artif. Intell., 2001, 129 (1–2), 199–218.

https://doi.org/10.1016/S0004-3702(01)00094-7.

[44] van der Werf, J. Simple Selection Theory and the Improvement of

Selection Accuracy. Anim. Breed. Use New Technol., 2000, 19–34.

[45] Yaroslavskiy, V. Dual-Pivot Quicksort. 2009, 2, 1–11.

