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Abstract

The existence of significant uncertainties in the models and systems required

for trajectory prediction represents a major challenge for the Air traffic Man-

agement (ATM) system. Weather can be considered as one of the most relevant

sources of uncertainty. Understanding and managing the impact of these uncer-

tainties is necessary to increase the predictability of the ATM system. State-of-

the-art probabilistic forecasts from Ensemble Prediction Systems are employed

to characterize uncertainty in the wind and potential convective areas. A robust

optimal control methodology to produce efficient and predictable aircraft tra-

jectories in the presence of these uncertainties is presented. Aircraft motion is

assumed to be at a constant altitude and variable speed, considering BADA4 as

the aircraft performance model. A set of Pareto-optimal trajectories is obtained

for different preferences among predictability, convective risk, and average cost

index running a thorough parametric study on a North Atlantic crossing use

case. Results show that the cost of reducing the arrival time window by 10 sec.

is between 100 to 200 kg or 3 to 6 min., depending on the cost-index. They also

show that reducing the exposure to convection by 50 km is on the order of 5 to

10 min. or 100 to 200 kg. of average fuel consumption.
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1. Introduction

The Air Traffic Management (ATM) system in the busiest airspaces in the

world is currently being overhauled to deal with multiple capacity, socioeco-

nomic, and environmental challenges. One major pillar of this process is the

shift towards a concept of operations centered on aircraft trajectories instead

of rigid airspace structures. However, its successful implementation rests on

appropriate understanding and management of uncertainty.

Due to its complex socio-technical structure, the operation of the ATM sys-

tem is heavily impacted by uncertainty, emerging from multiple sources and

propagating through the interconnections between its subsystems. Any analy-

sis of uncertainty in the ATM system should take into account different scales

with their respective sources. Refer to [? , Chapter 4] for a thorough descrip-

tion of uncertainties impacting the ATM system, with weather recognised as

one of its major contributors. Due to its nonlinear and chaotic nature, some

meteorological phenomena, especially those related to convection, cannot be

forecasted with complete accuracy at any arbitrary lead time with the required

accuracy. This then leads to a general uncertainty or disruption for individual

air and ground operations, which then propagates through all ATM processes.

It is, therefore, necessary to deal with meteorological uncertainty at multiple

scales, and its impact on the trajectory prediction and planning processes and

trajectory execution. The focus of the present paper is on flight uncertainty and

pre-departure temporal scale (flight dispatching planning level, from two/three

hours up to off-block time).

Ensemble Prediction Systems (EPS) provide probabilistic meteorological

forecasts. They seek to provide an estimation of the uncertainty that is in-

herent to the Numerical Weather Prediction (NWP) process [? ], and thus to

overcome the limitation of a single deterministic forecast. In an EPS, several
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runs of the NWP model are launched with slightly different characteristics to

produce a set of (typically) 10 to 50 different forecasts or “members” of the

ensemble. We refer to [? ] for a review of the status of NWP as well as the

relevance of EPS in a wider meteorological context.

Recent attention has been put into analyzing meteorological hazards and

their effects on flight planning. For instance, Kin et al. have considered com-

bined effects of both winds and clear air turbulence (note that clear air turbu-

lence is not considered in this paper) [? ? ]. Other works have recently focused

on winds and its associated uncertainty. For instance, in [? ], González-Arribas

et al. studied the flight planning problem under wind uncertainty using ro-

bust optimal control. The same problem has been solved with two additional

approaches: In [? ] Franco et al. presented a hierarchical, bi-level flight plan-

ning algorithm in which they combined the Dijkstra algorithm (high-level) with

a trajectory predictor (low-level) based on a probabilistic transformation; and

Legrand et al. in [? ], who solve the problem with an approach based on

dynamic programming.

If we focus on convective phenomena, there is substantial ongoing work on

short-term hazard avoidance close to the encounter, when the information on

the location and short-term evolution of the storm cell is available though still

with some uncertainty. Just to cite a few, in [? ? ? ] the focus is on en-route

problems, whereas in [? ? ] the focus is on terminal airspaces. Indeed, tools that

incorporate different path planning algorithms for tactical convective weather

avoidance are in use today, e g.. the so-term Dynamic Multi-Flight Common

Route Advisories system [? ? ] or the Convective Avoidance Weather Model

(CWAM) [? ]. On the contrary, the consideration of convective risk in flight

planning algorithms (at a larger time scale of 1 to 3 hours before departure) has

not received enough attention so far.

This is based on the fact that for the time scales of 1-3 hours we only know

the area within which individual convective storms may develop. This area of

potentially developing storms is referred to as convective area. The onset and the

location of individual storms within a convective area, however, is currently and
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for the near future not possible to forecast at the given time scale. Nevertheless,

some basic characteristics of those storms can be derived prior to any convective

development, which are necessary but not sufficient conditions for the formation

of storms (thermodynamic stability of the air mass). That information can be

employed to create an index that estimates the probability of convection, i.e., an

indicator of convection risk that can be used for trajectory planning. Convective

areas may have a persistence up to 60 hours for tropical latitudes, travelling with

their surrounding air mass. They shall not necessarily be avoided but require

a higher weather situation awareness by pilots and controllers. Trajectories,

however, leading through convective areas might experience significant changes

due to suddenly developing storms, which results in increased flight duration and

delays. The dimension of the latter depends, among other factors, on the type

of storms embedded in the convective area, density of cells, their orientation,

the size of gaps separating the storms and the time of onset.

Preliminary work on robust optimal control with application to flight plan-

ning in which we consider both uncertainties associated with winds and convec-

tive areas was presented in [? ]. Both the altitude and the true airspeed were

considered constant. The main contribution of the present paper is to extend

this work to the consideration of variable speed profiles, BADA4 aircraft per-

formance modelling (which, contrary to BADA 3, incorporates compressibility

effects to model drag forces) and the introduction of cost-index based opera-

tional cost. We applied this methodology to a case study assuming the altitude

to be constant.

The paper is structured as follows: we introduce convection and its associ-

ated indicators in Section 2. The robust optimal control methodology and its

application to flight planning is presented in Section 3 and Section ??. In Sec-

tion 4, we present a case study, including the simulation results and a discussion.

Finally, some conclusions are drawn in Section 5.
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2. Convection Modelling

2.1. Ensemble Prediction Systems (EPS)

An eps produces a collection of forecasts for the same prediction time that

constitutes a representative sample of the possible future states of the atmo-

sphere. An ensemble is typically composed of 10 to 50 individual forecasts

referred to as members. To produce the different members, nwp centers employ

combinations of several techniques, including changing initial conditions in the

most sensitive directions, changing the parameters of the simulation, combining

different models or building time-lagged ensembles. Those variations, however,

are considered as physically equal. But the resulting ensemble members may

differ notably from each other with those differences emerge from e.g. small

differences in the initial conditions. Please refer to [? ? ? ? ].

2.1.1. Characteristics

For deterministic medium-range prediction, the typical setup of a forecasting

system is a dynamical core with a resolution of around 15 km (horizontal) and

80 levels. The dynamical core might be hydrostatic or as in more advanced

models fully compressible. Standard practices involve running the model 2 or 4

times a day, with output at a 1-, 3-, or 6-hour intervals.

For deterministic short-range prediction, the model is restricted to a limited

area, non-hydrostatic effects are taken into account, and the resolution is im-

proved to a horizontal grid of 1.5 to 5 km. Runs are also shorter (around a day

of output) and run more frequently (from 4 to 8 times a day).

Since ensemble predictions require multiple model runs (10 to 50) for the

same time interval, lower resolutions compared with the deterministic systems

are used. The horizontal resolution is typically around twice the resolution for

the deterministic prediction, and the vertical levels are also reduced. Depending

on the area of interest and the target time interval, ensemble predictions can be

classified in three categories:
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• Global, medium-range forecasts are run for the whole globe and usually aim

at forecasting 2 to 10 days ahead. They capture the uncertainty associated

with planetary-level perturbations.

• Limited Area Models (lam), short-range forecasts predict weather in a spe-

cific region at a 1-2 day timescale. The associated uncertainty captured by

lam forecasts is associated with mesoscale-alpha phenomena (200-2000 km

characteristic scales).

• lam, very short range forecasts produce predictions for a time-horizon of a

few hours. The uncertainty is related to mesoscale-beta (20-200 km) and

mesoscale-gamma (2-20 km) phenomena.

2.1.2. Medium-range ensemble forecasting

The World Meteorological Organization launched the THORPEX (The Ob-

serving System Research and Predictability Experiment) research initiative in

2004 to stimulate the development, usage, utility and accuracy of medium-range

ensemble forecasts. Importantly, it created the tigge dataset1 [? ].

tigge contains global medium-range ensemble forecast data produced by

several nwp centers for scientific research [? ] in a homogeneous format. It

is hosted on the website of the European Center for Medium-Range Weather

Forecasts (ecmwf).2 The ecmwf [? ], the Canadian Meteorological Center [?

] and the National Center for Environmental Prediction (NCEP) [? ], among

others, develop ensemble prediction systems included in tigge. ECMWF EPS

has nowadays a horizontal resolution of 18 km to be able to forecast the weather

at the whole globe for 2 to 10 days. Nevertheless, as hardware becomes more

efficient and less expensive, the nwp upgrade their systems to increase the

resolution of their forecasts.

In 2014, the tigge-lam dataset was also launched to include regional en-

sembles on finer (from 2 to 10 km) grids.

1http://tigge.ecmwf.int/documents/
2http://apps.ecmwf.int/datasets/
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2.1.3. lam ensemble forecasting

By limiting the area and period of interest, lams can use a higher reso-

lution. Examples of these models include: The UK Met’s MOGREPS [? ];

the AEMET’s SREPS [? ] ensemble; the Norwegian Meteorological Institute’s

LAMEPS [? ] the COnsortium for Small-scale MOdelling’s COSMO-LEPS [?

] Météo France’s pearp [? ]. lams often focus on land regions to study the

weather in areas of greater impact on human activities; as a consequence, their

oceanic and maritime coverage is often limited.

2.2. Convection Indicators

We attempt to delimit high-risk areas due to deep convection (vertical range

up to the top of the troposphere) and their respective uncertainty. “Convec-

tive area” is herein defined as an area of potentially developing storms, which

comprise events such as individual storm cells, multi-cells, mesoscale convec-

tive complexes and squall lines. Favourable environmental characteristics and

conditions for the development of some of these types of convective phenomena

include e.g.:

• A squall line (at least in Central Europe) very often develops several hundred

kilometers ahead of and parallel to an approaching cold front. It is accom-

panied and recognized prior to its development by a boundary convergence

line. Many such lines are often separated approx. 10 km, but not all of them

necessarily develop into a squall line, though some of them do.

• Air mass storms preferably develop in the afternoon. The onset time of

first shallow clouds and the development of deep convective clouds can be

forecasted by standard meteorological procedures.

• Moderate mid-level shear enhances the storm strength, while extremely strong

shear and no-shear environments are more likely related to weak storms.

• Long-lived storms are linked to the renewal and generation of new cells im-

mediately ahead of a mature cell.
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• Storms embedded in a cold front, which are out of the scope of this study as

they can be forecasted very well by synoptic forecasts of low pressure systems.

• The structure of the environmental temperature profile allows deriving cer-

tain features of the storm. Maritime dominated storms reveal a temperature

profile close to the moist-adiabatic implying weak updrafts, while continental

storms exhibit more potential energy to be released. The latter is defined by

the area between the temperature profile and the moist adiabatic of a given

air parcel if it rose from the surface vertically through the entire atmosphere.

Important to note is that the above characteristics are necessary conditions

for convection, but they do not allow the forecast of the precise location, ex-

tension, onset, duration, intensity, and movement. Convective storms require

a trigger mechanism that needed to be forecasted (if possible). Trigger mech-

anisms such as boundary convergence lines, tropospheric gravity waves, moun-

tains or surface temperature inhomogeneities provide the needed lift to initiate

convection.

From the above, we conclude that we need an indicator to describe the neces-

sary precondition for the potential development of convection, which comprises

the essential activator to develop a storm. This will be done by using a combi-

nation of two convection indicators, namely Total Totals Index and Convective

Precipitation, which are both available as part of an EPS forecast.

2.2.1. Total Totals Index (TT )

3 TT is the sum of the vertical totals (V T ) and the cross totals (CT ), where:

V T = T850 − T500

is the temperature gradient between 850 hPa and 500 hPa, and

CT = Td850 − T500

3attributable to National Weather Service Louisville, KY:

http://www.weather.gov/lmk/indices, accessed July 25, 2016.
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Thunderstorm activity

TTi Moderate Heavy Severe Tornadoes

< 44 - - - -

44-45 Isolated - - -

46-47 Scattered Few - -

48-49 Scattered Few Isolated -

50-51 * Scattered Few Isolated

52-55 * Numerous Few/scattered Few

> 55 * Numerous Scattered Scattered

Table 1: Operational taxonomy of risk of severe weather activity.

is the moisture content between 850 hPa and 500 hPa by subtracting the tem-

perature in 500 hPa from dew point temperature in 850 hPa.

As a result, TT accounts for both static stability and 850 hPa moisture but

would be unrepresentative in situations where the low-level moisture resides

below the 850 hPa level. Also, convection may be inhibited despite a high

TT value if a significant capping inversion is present. V T = 40 is close to

dry adiabatic for the 850-500 hPa layer. However, V T generally will be much

less, with values around 26K or more, representing sufficient static instability

(without regard to moisture) for thunderstorm occurrence. CT > 18K often is

necessary for convection, but the combined TT is more correlated to convection

than its components (VT and CT) separately. The risk of severe weather activity

is operationally defined as in Table 1 (see also [? ]).

2.2.2. Convective Precipitation (CPre)

4 CPre is a model output quantity and is an estimation of the precipitation

coming from convective clouds. The total model precipitation is the sum of the

4ECMWF, Reading, UK, accessed July 25, 2016:

http://www.ecmwf.int/en/research/modelling-and-prediction/atmospheric-physics.
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so-called large-scale precipitation and the convective precipitation.

The moist convection scheme, we are here referring to, is based on the mass-

flux approach and represents deep (including cumulus congestus), shallow and

mid-level (elevated moist layers) convection. The distinction between deep and

shallow convection is made based on the cloud depth (< 200 hPa for shallow).

For deep convection the mass-flux is determined by assuming that convection

removes the so-called Convective Available Potential Energy (CAPE) over a

given time scale. The intensity of shallow convection is based on the budget of

the moist static energy, i.e. the convective flux at cloud base equals the contri-

bution of all other physical processes when integrated over the sub-cloud layer.

Finally, mid-level convection can occur for elevated moist layers, and its mass

flux is set according to the large-scale vertical velocity. The scheme, originally

described in Tiedtke [? ], has evolved over time and amongst many changes

includes a modified entrainment formulation leading to an improved represen-

tation of tropical variability of convection [? ], and a modified CAPE closure

leading to a significantly improved diurnal cycle of convection [? ]. The mass

flux scheme, in other words, imitates the net effect of convection and rearranges

atmospheric layers towards a thermodynamic stable static atmosphere.

2.3. Calculation of probability of convention/clear air

Using the grid-based output of TT and CPre from the ECMWF-EPS data,

which results in TT and CPre values for each member at the horizontal nodes

of the desired sub-grid. With this information, we compute an ensemble-based

probability of convection/clear air for each grid point.

Probability of convection: The ensemble-based probability of convection is

the fraction of ensemble members with values above the given thresholds TTH

and CPreH for all TT and CPre of the ensemble members. For TTH we

suggest one of the threshold values given in Table 1. For CPreH we suggest 0;

which means that any given amount of convective precipitation originates from

convective events:

pc =
Nc
N
, (1)
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Figure 1: Schematic illustration of the suggested classification of convective activity. In the

coloured ares, one can distinguish red (severe), blue (heavy), and green (moderate) convective

activity.

where N is the numbers of ensemble members, Nc =
∑N

i=1 i, and so that TTi >

TTH ∧ CPrei > CPreH . This probability of convection (pc) will be used in

Eq. 17 to compute the objective function.

Probability of clear air: This value shows regions of clear air with low un-

certainty:

pnc =
Nnc

N
, (2)
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where N is the numbers of ensemble members, Nnc =
∑N
i=1 i, and so that

TTi ≤ TTH ∧ CPrei ≤ CPreH .

3. Robust Trajectory Planning Methodology

We consider the problem of flight planning, i.e., 1-3 hours before departure.

To model uncertainties in the weather forecast, we rely on eps forecasts. The

uncertainty will be represented with a quadrature rule where each member of the

eps forecast corresponds to a quadrature point. Each scenario will be weighted

equally; if the eps contains N members, then the weight of each member is

wk = 1/N . The approach is based on a robust optimal control approach to

aircraft trajectory optimization problems [? ]. We will summarize the method

and incorporate the convective indicator.

3.1. Robust Optimal Control

Let us consider a dynamical system given by a randomly parametrized

differential-algebraic equation with constraints. Uncertainty is described us-

ing a standard Kolmogorov probability space (Ω,F , P ); it is composed by a

sample space of possible outcomes Ω, a σ-algebra of events F containing sets

of outcomes, and the probability function P that assigns a probability to each

of these events. The uncertain parameters of the system will be modeled as a

constant random variable ξ : Ω → Rnξ . For each possible outcome ω ∈ Ω, the

random variables take a different value ξ(ω).

Let us denote the state vector by x ∈ Rnx , the control vector by u ∈ Rnu ,

the algebraic variables by z ∈ Rnz and t ∈ R as independent variable (usually

time). For each outcome ω0 ∈ Ω, there exist a unique trajectory path t →
(x(ω0, t), z(ω0, t),u(ω0, t)) that corresponds to the realization of the random

variables ξ(ω0). The dynamics of the system are given by the functions f :

Rnx × Rnz × Rnu × Rnξ × R → Rnx , h : Rnx × Rnz × Rnu × Rnξ × R → Rnh ,

and g : Rnx × Rnz × Rnu × Rnξ × R → Rng , such that valid trajectories fulfill
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the conditions almost surely (i.e. with probability 1):5

d

dt
x(ω, t) = f(x(ω, t), z(ω, t),u(ω, t), ξ(ω), t), (3)

h(x(ω, t), z(ω, t),u(ω, t), ξ(ω), t) = 0, (4)

gL ≤ g(x(ω, t), z(ω, t),u(ω, t), ξ(ω), t) ≤ gU , (5)

where ω ∈ Ω is the sample point on the underlying abstract probability

space and gL and gU are lower and upper bounds. Therefore, for each possible

scenario or realization of the random parameters ξ(ω), the trajectory will follow

the deterministic differential equation (3) for the corresponding fixed value of

ξ. We employ the notation x(ω, t) and u(ω, t) to emphasize the fact that the

trajectory depends on the realization of the random parameters.

The optimal guidance scheme relies herein on the notion of tracked states:

Definition 3.1. A state is said to be tracked if its trajectory is assumed to be

independent of the realization of the random variables almost surely, i.e. with

probability of one.

In such optimal guidance scheme, some of the states are “tracked” (i.e. iden-

tical in all scenarios) and the controls are specific to each scenario to guarantee

that the tracked states follow the unique computed trajectory. The associated

practical concept demands that the controls can be computed online in this

fashion to follow a guidance path; this condition is verified in aircraft trajectory

planning, where the pilot or the autopilot can manage the aircraft to follow the

route and the vertical profile.

Definition 3.2. The amount control degrees of freedom d of the dynamical

system is defined herein as the number of controls and free algebraic variables

minus the number of algebraic restrictions: d = nz + nu − nh.

5The ≤ sign applies in an element-wise fashion in Equation (5) and analogous equations.
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Let qx ≤ min{nx, d} be the number of tracked states; without loss of gen-

erality, we can assume that the tracked states are the first qx states (rearrange

the state vector otherwise), i.e.

x =
[
x1 . . . xqx xqx+1 . . . xnx

]T
=

xq

xr

 ,

where xq is the tracked part of the state vector and xr is the untracked part.

Let In be the identity matrix of shape n× n and 0n1,n2 be the zero matrix (i.e.

a matrix with zeroes in all its entries) of shape n1 × n2. We define the matrix

Ex ∈ Rqx×nx as

Ex =
[
Iqx 0qx,nx−qx

]
.

This matrix transforms the state vector into the “tracked states” vector

xq = Exx that contains only the states whose evolution is equal in all scenarios.

In this work, qx = d will hold so that there are enough tracked states to consume

all available control degrees of freedom.

With the aid of the tracking matrices, we can now define the tracking con-

ditions (which, again, apply almost surely):

Ex(x(ω1, t)− x(ω2, t)) = 0, ∀t, ∀ ω1, ω2 ∈ Ω,

Ez(z(ω1, t)− z(ω2, t)) = 0, ∀t, ∀ ω1, ω2 ∈ Ω,

Eu(u(ω1, t)− u(ω2, t)) = 0, ∀t, ∀ ω1, ω2 ∈ Ω.

(6)

The tracking conditions enforce equality in the tracked variables between

realizations: note that Ex(x(ω1, t) − x(ω2, t)) is the vector of differences be-

tween the tracked states in outcome ω1 and the tracked states in outcome ω2.

The other two conditions are analogous tracking conditions for the dependent

variables and the controls.

Let us define a Bolza type functional in optimal control problems:

Ĵ = Φ(t0, tf ,x(w, t0),x(w, tf ))+∫ tf

t0

L (x(w, t), z(w, t),u(w, t), ξ(w), t)dt.
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For each possible scenario or realization of the random parameters ξ(ω), we

have an objetive value of Ĵ . In order to build a scalar objective function, we

rely on both expectations and dispersions. Without of generality, the latter can

be characterized using central moments, the range, or the interquartile range

(IQR), just to mention a few.

Let us then define the range R of Ĵ as

R(Ĵ) =

(
max
ω∈Ω

Ĵ −min
ω∈Ω

Ĵ

)
.

Let us also define the nth central moment of Ĵ as:

µn(Ĵ) = E
[
(Ĵ − E[Ĵ ])n

]
.

The objetive function can then be defined as:

min J = E[Ĵ ] + kR ·R(Ĵ) + kµi · µi(Ĵ), i = 1 . . . n;

where kR and kµi (i = 1 . . . n;) are generic weighting parameters.

Problem 3.1. The robust optimal control problem with tracking (ROCT) can

be defined as:

minJ = E[Ĵ ] + kR ·R(Ĵ) + kµi · µi(Ĵ) (7)

subject to (8)

x(w, t0) = x0; (9)

d

dt
x(w, t) = f(x(w, t), z(w, t),u(w, t), ξ(w), t); (10)

h(x(w, t), z(w, t),u(w, t), ξ(w), t) = 0; (11)

gL ≤ g(x(w, t), z(w, t),u(w, t), ξ(w), t) ≤ gU ; (12)

E [Ψ(tf ,x(w, tf ))] = 0; (13)

Ez(z(ω1, t)− z(ω2, t)) = 0, ∀t, ∀ ω1, ω2 ∈ Ω; (14)

Eu(u(ω1, t)− u(ω2, t)) = 0, ∀t, ∀ ω1, ω2 ∈ Ω (15)

Ex(x(ω1, t)− x(ω2, t)) = 0, ∀t, ∀ ω1, ω2 ∈ Ω; (16)

where in the above: E[·] is the expectation operator associated with the probability

space (Ω,F , P ); Ĵ is Bolza type functional with R×R×Rnx ×Rnx → R with a
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terminal cost or Mayer term Φ : R× R× Rnx × Rnx → R and running cost or

Lagrange term L : Rnx×Rnz×Rnu×Rnξ×R→ R; kR and kµi (i = 1 . . . n;) are

generic weighting parameters; f , h, g denote the differential-algebraic equations

and constraints (3) (4) (5); Ex, Ey, Ez are the tracking conditions (6); and

function Ψ : R× R× Rnx × Rnx → Rnx denotes the final conditions.

3.2. Objective function

We want to find routes that minimize a weighted sum of average flight time

and average fuel consumption (weighted with the Cost Index CI factor), flight

time dispersion (weighted with the “dispersion penalty” parameter DP ) and

exposure to convective risk (weighted with the “convection penalty” parameter

CP ).

We model convective conditions (recall that they are necessary though not

sufficient conditions) with the function c(φ, λ, t), where φ denotes latitude and

λ longitude. Given the latest eps forecast available at planning time tp, this

function represents the fraction of the eps members forecasting that two indica-

tors of convective conditions (TT and CP ) will exceed their thresholds at point

(φ, λ) and at time t. For convenience, we assume that the planning time tp is

unambiguous and denotes the function c(φ, λ, t).

Assume now that an aircraft has a trajectory described by the time do-

main T = [t0, tf ], the groundspeed profile vg(t), and a lateral profile described

by (φ(t), λ(t)). Let c(φ, λ, t) be the smoothed and interpolated probability of

convection and let the exposure to convection (EC) be:

EC =

∫ tf

t0

c(φ(t), λ(t), t) · vg(t) · dt. (17)

Assume now that the flight planner has time-fuel preferences described by a

Cost Index (CI) and average cost - uncertainty cost preferences described by a
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Dispersion Penalty (DP ) parameter, i.e., the cost functional is given by

J = −E[m(tf )] + CI · E[tf ]︸ ︷︷ ︸
Cost-Index based operational cost

+

CP · E[EC]︸ ︷︷ ︸
Cost of exposure to convection

+ DP ·R[tf ]︸ ︷︷ ︸
Cost of arrival time dispersion

(18)

where R[tf ] represents the uncertainty in the arrival time as given by the range

of possible final times, and m(tf ) denotes the mass of the aircraft at the final

time. Notice thus that we are not considering central moments, though the

formulation can be also applied by considering them.

With this cost functional, the parameters CI, DP , and CP regulate the

solution flight plan depending on the preferences of the flight planner. High

values of DP will produce more predictable trajectories (not considering po-

tential convection-related reroutes) by avoiding regions where the wind is more

unpredictable. High values of CP will produce trajectories that are less likely to

be rerouted by avoiding regions where there is a high likelihood of convection.

Low values of the parameters will produce flight plans that are more efficient on

average, but less predictable. In turn, the CI parameter weights the preferences

in terms of flight time and fuel burn. A higher CI6. would result in a preference

for flying faster at the toll of consuming more fuel, which might be convenient

when connecting flights. While the latter (CI) is commonly used by airlines

on a daily basis, neither the cost of being predictable nor the cost of reducing

exposition to convective areas is being considered in today’s practices.

6 It should be noted that we will use the International System Units, i.e., kg/sec. for the

CI. Please note that this would result in values that are far form those used in commercial

aircraft, which typically use kg/min
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3.3. Aircraft dynamics

We restrict ourselves to a constant altitude flight.7 As this is a routing

problem, turning dynamics become relatively unimportant. BADA 48 will be

used as the aircraft performance model, which among other features, incorpo-

rates a non-parabolic drag polar that takes compressibility effects into consid-

eration. This is needed to obtain meaningful results since flight optimization

tools/algorithms based on BADA 3 (which incorporate a parabolic drag polar)

are known to underestimate drag at high speed (near the transonic regime),

resulting in unrealistic speed profiles. See for instance [? ]

Thus, the differential equations governing the 3-DoF motion of the aircraft

are:

ẋ =
d

dt



φ

λ

v

m


=



v cos(χ) + wx
(RN + h)

v sin(χ) + wy
(RM + h) cosφ

(T −D)

m

−fc(CT )


, (19)

where the drag (D) is computed according to the assumption that the lift

force is equal to the weight. In Equation (19), v denotes the true airspeed,

m the mass, χ the heading angle, wx and wy the zonal and meridional wind

components, respectively, RN and RM the Earth’s (modelled as an ellipsoid)

radius of curvature in the prime vertical and the meridian, respectively, φ the

bank angle, T the thrust force, and fc is a fuel consumption function that

depends on a coefficient of Thrust (CT ).

We will also consider the following constraints that are related to the airspeed

and the thrust limits:

7Note, however, that the methodology can be extended to full 4D problems since direct

methods are flexible enough that they can handle more complex problems; we choose our

assumptions, which are comparable to most of the published routing algorithms, for simplicity.
8https://simulations.eurocontrol.int/solutions/bada-aircraft-performance-model/

18

https://simulations.eurocontrol.int/solutions/bada-aircraft-performance-model/


vCAS,stall ≤ vCAS(v) ≤ vCAS,max,

M(v) ≤Mmax,

Tidle(v) ≤ T ≤ Tmax,

(20)

where vCAS denotes the calibrated airspeed and M the Mach number.

3.4. Problem statement

We do the following manipulations to reformulate the problem (details can

be found in [? ]):

• Let us reformulate this dynamical system as a differential-algebraic system

(dae) with the addition of the ground speed vG as an algebraic variable and

the course ψ as a control variable, linked to the remaining variables by two

new equality constraints. This is advantageous for computational purposes

and for clarity of exposition.

• In the robust optimal control framework, the independent variable (time) is

unique in all scenarios (it varies in the same range). Therefore, the direct

application of the state-tracking formulation would demand the position of

the aircraft to be in a fixed schedule with respect to time in all scenarios,

and thus the groundspeed would be fixed. This implies that, under this

concept, the variability in wind speed would be fully compensated by airspeed

modifications, with associated variations in fuel burn. Thus, we will employ

distance flown along the route (s) as the independent variable, because its

initial and final values are the same in all scenarios that follow a unique route.

As a consequence, the time t becomes a state variable and the new dynamical

function can be obtained by dividing the time derivatives by ds/dt = vG.

We also define a := dv/ds for practical purposes, to combine the derivative

of v and its tracking condition in a single set of constraints. Its physical

interpretation is the slope of the airspeed profile.

• The robust optimal control framework requires the formulation of the tra-

jectory ensemble. An ensemble forecast contains a set of ensemble members,
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each one defining a different wind forecast (and, therefore, different functions

wx and wy). If the ensemble contains N members, we define N scenarios,

each one having a weight of wk = 1/N and the wind field that corresponds

to the respective member.

Taking advantage of these manipulations, we can define the dynamical sys-

tem associated with the trajectory ensemble with the dynamical function:

dxE
ds

=
d

ds



φ

λ

v

t1
...

tN

m1

...

mN



=



cos(ψ)/(RN + h)

sin(ψ)/(RN + h) cosφ

a

1/vG,1

...

1/vG,N

−fcT1/vG,1

...

−fcTN/vG,N



, (21)

with the control vector:

uE =
[
a ψ T1 . . . TN χ1 . . . χN

]T
,

the equality constraints:



vG,1 cos(ψ)
...

vG,N cos(ψ)

vG,1 sin(ψ)
...

vG,N sin(ψ)

a · vG,1

...

a · vG,N



=



v cos(χi) + wx,1
...

v cos(χi) + wx,N

v sin(χi) + wy,1
...

v sin(χi) + wy,N

(T1 −D1)/m1

...

(TN −DN )/mN



, (22)
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and the inequality constraints:

vCAS,stall ≤ vCAS(v) ≤ vCAS,max,

M(v) ≤Mmax,

Tidle(v) ≤ Tk ≤ Tmax

0 ≤ vG,k

∀k ∈ {1, . . . N}
. (23)

Note that xE and uE denote extended state and control vectors termed state

ensemble and control ensemble, respectively.

4. Case Study

4.1. Description

We consider a BADA4 A330 Aircraft model flying from the vertical of New

York (-73.8 deg, 40.6 deg) to the vertical of Argel (3.2 deg, 36.7 deg) at constant

barometric altitude 200hPa. Initial mass and initial Mach have been set to 200

tons and M=0.82, respectively. We use a forecast for a pressure of 200 hPa 9

hours in advance for the 19th of December, 2016 from the ECMWF ensemble

with 51 members. The relevant variables for our purposes are the values at

isobaric levels of the temperature T , the geopotential height H, the total to-

tals (TT), the Convective Precipitation (CPre), and the zonal and meridional

components of the wind vw. These fields will be spatially interpolated through

cubic b-splines to produce a continuous and smooth field that can be employed

in optimal control. We rely on a constant weather picture for ease of exposition

and analysis. We rely on the CasADi library [? ] as NLP interface [? ] and

IPOPT [? ] as NLP solver running with the MA27 sparse symmetric linear

solver from the HSL Mathematical Software Library and initial barrier param-

eter µ = 10−3.8. The computations are performed in a workstation equipped

with an Intel(R) Core(TM) i5-3570K CPU running at 3.40GHz and with 16Gb

RAM. We employ a trapezoidal transcription scheme with piecewise-constant

controls as direct collocation method. In any case, other discretization methods

are suitable for this work.
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The NLP model used to solve this problem had 12002 variables, 11924 equal-

ity constraints, and 9852 inequality constraints. Focusing on, e.g., the case with

parameters DP0.2 CP=0.1 CI=0 (needless to say, computational performance is

similar for all the cases), IPOPT solver took 50 iterations to find a solution with

a computation time in IPOPT function evaluations (time spent in the MA27

linear solver and solving the Karush-Kuhn-Tucker) of 1674.7 sec., and a com-

putation time in NLP function evaluations (time spent in objective, gradient,

Jacobian, and Hessian functions) of 110.4 secs.

4.2. Results and discussion

We first show results sweeping values for each of the parameters in the

objective function, namely CP , DP , and CI. Figure 2 shows the geographical

paths: while they do not change significantly when modifying CI (setting CP =

0 and DP = 0), it can be seen that routes computed with higher DP (setting

CP = 0 and CI = 0) tend to avoid the high uncertainty zone in the North

Atlantic to increase predictability, at the cost of taking a more indirect route

that is expected to be longer. It can be also observed that routes computed

with higher CP (setting DP = 0 and CI = 0) tend to reduce the exposure to

convective risk zones, again at the cost of taking a more indirect route.

Figure 3-4 shows the evolution of relevant state/control variables in the

problem, namely true airspeed (TAS), coefficient of thrust (CT), coefficient of

lift (CL), and mass (m). The effects of each of the penalty parameters can be

readily seen therein. It can be observed that the main influence in the airspeed

profile is the variation in the CI, as expected, the higher it is is, the higher

the airspeed values along the whole trajectory. The CP parameter does not

have a big influence on the shape of the airspeed profile, which changes as the

lateral path shifts to a different location. Finally, in those cases with high DP

the airspeed changes locally depending on the uncertainty of the winds at each
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(a) Optimal paths with different DP values (CP = 0 and CI = 0).

(b) Optimal paths with different CP values (DP = 0 and CI = 0).

(c) Optimal paths with different CI values (DP=0 and CP=0).

Figure 2: Optimal trajectories for different CP/DP/CI values. Color contour scale indicates wind uncertainty

characterized as
√

σ2
u + σ2

v , with σu being the standard deviation of the u component of wind across different

members and σv analogous for the v-component. Dashed regions indicate regions of convective exposure.
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point in the trajectory, with higher airspeeds when the aircraft crosses higher

uncertainty zones. This influence is moderated by higher CI settings.

(a) TAS (as a function of DP ) (b) TAS (as a function of CP )

(c) TAS (as a function of CI) (d) CT (as a function of DP )

(e) CT (as a function of CP ). (f) CT (as a function of CI)

Figure 3: Evolution of TAS, CT, CL, and mass over time
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(a) CL (as a function of DP ) (b) CL (as a function of CP )

(c) CL (as a function of CI) (d) m (as a function of DP )

(e) m (as a function of CP ) (f) m (as a function of CI)

Figure 4: Evolution of TAS, CT, CL, and mass over time

4.2.1. Featured trajectories

In order to discuss and better analyse the different phenomena, we have

featured 8 trajectories with different parameter values that illustrate the effects
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of each of them in the solution. Parameter values can be consulted in Table 2.

DP CP CI

Trj. #1 0 0 0

Trj. #2 0 0 5

Trj. #3 0 0.1 0

Trj. #4 0 0.1 5

Trj. #5 10 0 0

Trj. #6 10 0 5

Trj. #7 10 0.1 0

Trj. #8 10 0.1 5

Table 2: Featured trajectories: parameter values.

Figure 5 illustrates the optimal paths of these featured trajectories. The

clearest interaction takes place when CI increases since it “pulls back” the tra-

jectories with higher CP and DP values towards the optimal trajectory on aver-

age; this can be explained by the fact that the dispersion and convection terms

lose relative weight as CI increases. The other interaction that can be observed

is that, when DP is increased at high CP, the optimal trajectory shifts even

more towards the North instead of being pulled South towards the “high DP”

solution, which illustrates the nonlinear effects caused by the non-convexity of

the uncertainty and convection fields.

We show the evolution of the time dispersion along the trajectory in Figure 6.

In this chart, we plot the flyby times at each point in the trajectory for each of

the 50 ensemble members. It can be observed that higher DP settings lead to

tighter uncertainty profiles, just as expected; however, this trend is moderated
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figs/ch7/geoplot_thesis_feat.pdf

Figure 5: Optimal paths of featured trajectories. Color contour scale indicates wind uncer-

tainty characterized as
√
σ2
u + σ2

v , with σu being the standard deviation of the u component

of wind across different members and σv analogous for the v-component. Dashed regions

indicate regions of convective exposure.

by the increase in the other parameters (particularly the CI), since the relative

importance of reducing dispersion due to wind uncertainty decreases.

Figure 7 illustrates the probability of convection c(φ, λ, t) along the route

(compare with Figure 5 to see how the segments of a high probability of convec-

tive conditions correspond to the crossing of the highlighted regions). Again,

it is clear that a higher CP parameter emphasizes avoidance of areas of likely
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(a) CI=0

(b) CI=5

Figure 6: Evolution of time dispersions for the different ensemble members.
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(b) CI=5

Figure 7: Evolution of the convective exposure.

convective conditions; the trajectories generated with CP=0.1 only encounter

(unavoidable) risk of convection at the end of the trajectory, near the final fix.
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(a) Optimal TAS profiles. (b) Optimal CL profiles.

(c) Optimal CT profiles.

Figure 8: Optimal profiles for the features trajectories.

Figure 8 shows the respective airspeed profiles. Together with the airspeed

profiles, coefficient of lift (CL), coefficient of thrust (CT) and mass of the vehicle

are presented. Clearly, at high CI values, the airspeed profiles also become high

and very similar. The airspeed profiles for the low CI trajectories show more

variability between them, which should be expected as they fly different lateral

paths and thus face different winds. Finally, the “speed-up on higher wind

uncertainty” effect is also clearly present for the trajectories with high DP but

low CI. Again, a higher CI setting has a regularizing effect, leading to smoother

airspeed profiles as the relative influence of the wind and its uncertainty is

reduced. It can be also observed how high CI values result in high CT values

and high CL values, in other words, in other to fly faster we need more thrust

and less CL is needed to balance lift with weight. Also, we can observe how fuel
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Figure 9: Trade-offs (Pareto fronts) for fixed exposure to convective risk and flight time

dispersions.

is being burnt and, thus, the mass of the aircraft decreases.
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Figure 10: Trade-offs (Pareto fronts) for fixed average flight times and average fuel consump-

tions.

Finally, we illustrate the trade-offs that are available to the flight planner.

In Figure9, we illustrate the trajectory options in terms of the average

performance, which can be obtained for selected amounts of uncertainty (both

from time spread and convection). In first place, it can be observed that the

cost of reducing uncertainty due to wind has a nonlinear shape, with the level

curves being relatively closer between 200 s and 180 s of arrival time range than

between 180 s and 130 s. in other words, using airspeed variations allows the

algorithm to cheaply improve predictability up to a point where it saturates or

becomes inefficient; afterwards, the more expensive lateral path modifications

need to be employed and the cost of reducing the arrival time window (R[tf])

by 10 seconds is between 100 to 200 kg (E[m0−mf]) on average or 3 to 6

minutes ((E[tf])). Reducing exposure to convection appears to have a more
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homogeneous penalty in terms of cost, with the cost of encountering 50 ekm9

less of potential convective conditions being on the order of 5 to 10 minutes or

100 to 200 kilograms of average fuel consumption.

In Figure 10, we can observe the uncertainty that a trajectory will face for

a given average performance (in terms of average flight time or average fuel

consumption). We can again observe the mentioned nonlinearity: at higher

dispersion in the arrival time, the cost to reduce it (now in terms of exposition

to convection at fixed E[tf ] and E[m0−mf ]) is smaller. This can be readily seen

looking at the the level curves, which are flatter at the right of the kink point.

However, they become steeper at the left of this point. The mentioned trade-offs

between exposition to convection and average performance can also be observed

more clearly in this graph: at around 180 seconds of arrival window size, 250

kg of average fuel burn can reduce exposition to convection by 15 to 20 ekm

in faster flights and by 30 to 40 ekm in later arrivals. In other words, at high

CI settings (faster flights), where the flight time is more relatively important,

predictability improvements are more expensive in terms of average fuel burn

than they are at slower flights, as the algorithm has more “room” to tune the

flight plan.

5. Conclusions and future work

A robust optimal control methodology has been used for computing efficient

and predictable routes based on Ensemble Prediction Systems, including an ap-

proach to calculate the risk of convection. This risk, a necessary though not

sufficient condition for the formation of storms, has been included in the objec-

tive functional of the robust optimal control problem. This cost combines other

objectives, such as flight time predictability or a cost-index based operational

performance. We have demonstrated its utility in studying trade-offs between

operational performance (measured in terms of average flight times and fuel

9ekm denotes equivalent kilometers, i.e., the kilometers flown under hypothetical probabil-

ity of convection equal to one
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consumption, and weighted by a cost index), predictability (measured in terms

of dispersion in the final time) and exposure to convection. Pareto-optimal solu-

tions have been presented and discussed. We can conclude that uncertainty (in

this case due to wind) can not only be quantified but also reduced by proposing

alternative trajectories. Also, convective areas can be avoided at the cost of

predictability and operational efficiency. The latter can be regulated by the

selection of the cost-index value. All in all, a portfolio of solutions can be made

available to flight dispatchers to select its prefer planning strategy by tuning

the three parameters (DP, CP, and CI) that regulate the different objectives of

the problem (dispersion, convective exposure, and operational efficiency).

Future directions of research are twofold: on one hand, the extension of this

work to three-dimensional flights, which would permit the analysis of uncer-

tainties associated to the top-of-climb and top-of-descent and the modelling of

airport-to-airport problems. An important challenge would be related to growth

in the number of states and controls, which in the robust approach presented

herein grow with the number of members in the ensemble. Also, modelling the

ceiling of the convection area would be of interest for vertical avoidance. To

circumvent these challenges, a second direction of research interest would be to

explore heuristic approaches, which would allow the consideration of realistic

flight planning problems, including structured airspaces and decision-making.
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