City University of New York (CUNY)

Expulsive Greening: A Cross-Sectional Analysis of Green Gentrification in The Resilience Paradigm, Brooklyn 2010-2020

Rose Jimenez
The Graduate Center, City University of New York

How does access to this work benefit you? Let us know!

More information about this work at: https://academicworks.cuny.edu/gc_etds/4965
Discover additional works at: https://academicworks.cuny.edu

[^0]Contact: AcademicWorks@cuny.edu

EXPULSIVE GREENING:

A CROSS-SECTIONAL ANALYSIS OF GREEN GENTRIFICATION

IN THE RESILIENCE PARADIGM, BROOKLYN 2010-2020
by
Rose Jimenez

A dissertation submitted to the Graduate Faculty in Earth and Environmental Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy, The City University of New York

Rose Jimenez

2022
Some Rights Reserved.
Except where otherwise noted, this work is licensed under the Creative Commons Attribution Non-Commercial-Share-Alike 4.0 International License. Images and third-party content are not being made available under the terms of this license. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/

EXPULSIVE GREENING:

A CROSS-SECTIONAL ANALYSIS OF GREEN GENTRIFICATION

IN THE RESILIENCE PARADIGM, BROOKLYN 2010-2020
By
Rose Jimenez

This manuscript has been read and accepted for the Graduate Faculty in Earth and Environmental Sciences in satisfaction of the dissertation requirement for the degree of Doctor of Philosophy.

Date
Juliana A. Maantay
Chair of Examining Committee

Date

Monica Varsanyi
Executive Officer

Supervisory Committee
Rupal Oza
Marianna Pavlovskaya
Valerie Were

Abstract
 EXPULSIVE GREENING: A CROSS-SECTIONAL ANALYSIS OF GREEN GENTRIFICATION IN THE RESILIENCE PARADIGM, BROOKLYN 2010-2020

By
Rose Jimenez
Advisor: Juliana A. Maantay
Background: This project analyzes the spatial coincidence between gentrification typologies and urban greening in Brooklyn, New York from 2010 to 2020. Assets formed under the NYC Green Infrastructure Program were chosen as a proxy for urban greening to represent the spatial practice specifically within the $21^{\text {st }}$-century climate change resilience paradigm of development. Methods: First, five indexes measuring variations of economic and demographic conditions related to gentrification were applied to Brooklyn for comparative analysis: NOAA's Social Vulnerability Indicators of Gentrification Pressure, The NYC Heat Vulnerability Index, The Small Area Index of Gentrification, Typologies of Gentrification and Displacement, and The Housing Risk Chart. Then, for each index, a point-in-polygon count vector analysis was conducted using GIS software to determine the prevalence of green infrastructure assets within the varying gentrification categories. Finally, using the method of dialectical materialism, close readings of theoretical, governmental, and corporate literature were used to examine the forces driving development practices during that time. Results: Gentrification varies per spatial unit with each index application, owing to varying index factors. However, the highest socioeconomic, gentrification, and ecological risk hot spots, regardless of index used, tend to be in northern Brooklyn, while cold spots tend to be located in southern Brooklyn. Despite
variability in gentrification hot and cold spots, every hot spot was highly associated with green stormwater infrastructure installed through the Green Infrastructure Program, while cold spots had few assets installed in their boundaries, if any. A review of the quantitative results against the reviewed literature indicate that NYC's "green" planning and policies are related to ongoing "green" gentrification trends in the United States.

Keywords: Brooklyn, Dialectical Materialism, Environmental Health, Green Gentrification, Landscape, New York City, Proxy Representations, Resilience, Uneven Development, Urban Greening

Table of Contents

Abstract iv
Table of Contents vi
List of Tables viii
List of Figures viii
Acknowledgements x
Foreword xiii
Chapter 1 • Introduction 1
Statement of the Research Problem 1
Methodological Inspirations 4
Site Selection 6
Brooklyn Administrative Geography 8
Project Overview 10
Chapter 2 • State of the Art 15
CSOs: What They Are and How They Work for New York City 15
Green Infrastructure Solutions to the CSO Problem 19
Site Suitability for Green Infrastructure 20
The New Green Infrastructure Landscape 23
CSO Changes in Brooklyn and Queens 29
Chapter 3 • Semiotic Landscapes of Urban Climate Resilience 36
Geography of Landscape 36
Grey and Green Urbanism 37
Simulating Nature in Urban Environments 40
Bioswales: Design Principles in Practice 45
Ontologies of Resilience and the Resilience Paradigm of Development 48
Chapter 4 • Political Ecology of Green Infrastructure 52
Paradox of Recovery Narratives 54
Green Futures 56
Public-Private Partnerships for Green Infrastructure 56
Land Use and Management 62
The Luxury Effect and an Ecology of Prestige 63
Precarity in Stewardship 64
Chapter 5 • Gentrification in Brooklyn 66
Gentrification 66
Green Gentrification 70
Community Attractiveness 72
Brooklyn Marine Fisheries Community Snapshot 75
Community (Re)Branding 76
Analysis of Income Disparities in Brooklyn with the Gini Index 79
Statistical Analysis of Select Racial Demographics in Brooklyn and New York City 82
Brooklyn Neighborhood Studies 83
Chapter 6 • Environmental Modeling 90
Environmental Modeling and Spatial Analysis 90
Use of Index to Measure Socioeconomic Risk and Gentrification 92
Data Management for a Spatial Coincidence Analysis 96
Quantitative Data Acquisition 97
Quantitative Data Aggregation, Assimilation, and Geoprocessing 100
Vector Analysis 101
Quantitative Data Processing 102
Data Limitations 102
Results Atlas 1 • Index Applications to Brooklyn 104

1. Social Vulnerability Indicators (SVI) of Gentrification Pressure 105
2. The New York City Heat Vulnerability Index 109
3. ANHD Housing Risk Chart 112
4. Small Area Index of Gentrification 115
5. Urban Displacement Project Typologies of Gentrification and Displacement 118
Results Atlas 2 • Spatial Coincidence of Green Infrastructure and Gentrification 121
6. Social Vulnerability Indicators (SVI) of Gentrification Pressure 122
7. New York City Heat Vulnerability Index 123
8. Housing Risk Chart 124
9. Small Area Index of Gentrification 125
10. Typologies of Gentrification and Displacement 126
Chapter 7 • Interpretation of Results 128
Key Findings 128
Health, Safety, and Sustainable Development 131
When The Data Doesn't Exist... 133
Policy Prescription 135
Future Work 137
Chapter 8 • Conclusions 138
Understanding Human Geography as an Environmental Science 138
The Causality Dilemma 140
Synthesis of Theoretical and Material Research 142
Appendix I: Archival Documents 144
Appendix II: Results Data for Spatial Coincidence Analysis 148
Abbreviations 161
Bibliography 163

List of Tables

Table 1: Green Roof Reimbursement Rates from Green Infrastructure Program 59
Table 2: Rezoning in Brooklyn, 1992-2010 77
Table 3: Neighborhood-level Gini Scores compared to Top earnings, for Brooklyn (2018) 81
Table 4: Index Factors (continued on next page) 95
Table 5: Number of Polygons Marked for Each Score in Each of the Five Indexes 104
Table 6: Social Indicator Scores for Gentrification Pressure in Brooklyn, 2009-2018. Raw Scores and Categorical Rankings. Data Source: NOAA Social Indicators Tool (National Marine Fisheries Service 2019) 107
Table 7: Number of Green Infrastructure Units within Each Scored Category for Each of Five Indexes 121
Table 8: Gentrification and Brooklyn Fisheries Archival Documents 145
Table 9: Municipal Government Reports and Data 147
Table 10: Green Infrastructure Point Counts in Community district Polygons and ANHD and HVI Scores 149
Table 11: Green Infrastructure Point Counts in Census Tract Polygons against Gini Scores, SAIG Scores, and UDP Gentrification Typologies (10 pages, continuous) 150
Table 12: In-Text Abbreviations 161
List of Figures
Figure 1: Brooklyn Area-Type Hierarchy for administration 9
Figure 2: Bath Beach NTA with 2010 Census Tracts (numbered) 9
Figure 3: Concept Map: Research Questions 14
Figure 4: CSO drainage Zones impacting Gravesend Bay, Brooklyn 18
Figure 5: A stormwater Greenstreet in Williamsburg, Brooklyn. Photo by Rose Jimenez 2022 23
Figure 6: Green Infrastructure Assets in Brooklyn, By Location. Point displacement added to symbology to ensureminimal point overlap. Data Source: NYC DEP via NYC Open Data, 201624

Figure 7: (continued from previous page). Distribution of Green Infrastructure Program Assets, by type, in Brooklyn. Data Source: NYC DEP via NYC Open Data, 201625

Figure 8: number of Green Infrastructure Program assets, by community district. Data Source: NYC DEP 2016 and NYC DDC 2018 via NYC Open Data 27
Figure 9: Green Infrastructure prominence map. Data Source: NYC DEP via NYC Open Data, 201628
Figure 10: Modeled CSO Overflow Volume trends, compared to rainfall, 2006, 2013, 2014, 2015, 2016. Data was acquired and aggregated from annual State Pollution Discharge Elimination System (SPDES) permit reports, 2012-2018, and is an aggregate of all the CSOs in Brooklyn and Queens (NYC Department of Environmental Protection 2019).
Figure 11: Brooklyn Neighborhood Reach Areas from Vision 2020. 喛= Area shared with Queens borough. Boxes refer to approximate center point of reach extent along the coast.
Figure 12: CSO Volume Changes 2006 to 2016, ft. Green Infrastructure Installation. Data Source: NYC DEP (2018) via NYC Open Data34

Figure 13: New York City's "Design Principles for Waterfront Public Spaces" as delineated in Vision 2020: New York City Comprehensive Waterfront Plan. (NYC Department of City Planning 2011)
Figure 14: Schematics of two popular types of bioswale used in New York City. Top: a bioswale with a subsurface storage gabion. Bottom: a Bioswale with subsurface pipeline. From "Standards for Green Infrastructure" (NYC DEP 2012, 2012). Source: Archive of NYC Drawings
Figure 15: Green Infrastructure Grant Program Flyer (NYC DEP 2021b).60

Figure 16: Special Regulations Applying in the Waterfront Area. Source: NYC Dept. of City Planning 202165
Figure 17: Brooklyn Gini Scores, by Census Tract, 2010 vs. 2019. Data Source: U.S. Census Bureau 80
Figure 18: Recreational Fishing in Gravesend Bay. The area in the black box is a ledge that was formerly open for crabbing and is now closed for storm surge risk. The large building in the top left corner is part of Ceasar's Bay Bazaar (a shopping complex). The horizon shows housing complexes in Coney Island. The yellow
arrows point to large holes in the sea wall from the original damaged, rusted fencing. Photo by Rose Jimenez 2018.
Figure 19: View of Coney Island looking south from Gravesend Bay. A distinct cross section in the skyline shows the border between high-density housing on the left and the gated housing community Seagate on the right (the westernmost tip of Coney Island. Photo by Rose Jimenez 2018.
Figure 20: Three Scales of Data Evaluation 97

Figure 21: This graphic shows a conceptual breakdown of the layers needed for the cartographic work in GIS software. In the maps below, the data level is hidden underneath the index parameters but is shown for illustrative purposes.
Figure 22: Gentrification Pressure Index Score Applied to Brooklyn, 2009 vs. 2018 105
Figure 23: SVI Gentrification Pressure Raw and Categorical Scores 2009-2018. Categorical scores are based on 5- Year averages. Data Source: NOAA Social Indicators Tool 107
Figure 24: New York City Heat Vulnerability Index applied to Brooklyn 109
Figure 25: ANHD Housing Risk Chart Index applied to Brooklyn 112
Figure 26: Small Area Index of Gentrification applied to Brooklyn 115
Figure 27: Housing price fluctuations associated with SAIG scores, applied to Brooklyn. Housing Scores are an important factor for the index but clearly highly differential from the gentrification score due to a lack ofrelevant demographic information.117
Figure 28: UDP Typologies of Gentrification and Displacement Index applied to Brooklyn 118
Figure 29: Application of NOAA's Social Vulnerability Indicators of Gentrification Pressure to Kings County in 2010, and in 2018 with an overlay of green infrastructure units. 122
Figure 30: Application of the Heat Vulnerability Index to Community districts in Brooklyn, with green infrastructure units 123
Figure 31: Application of the 2020 Housing Risk Chart to Community districts in Brooklyn, with green infrastructure units 124
Figure 32: Application of the Small Area Index of Gentrification to census tracts in Brooklyn, with green infrastructure units 125
Figure 33: Percent of Green Infrastructure unit locations within each gentrification type and map of Green Infrastructure overlaid on UDP Gentrification Typologies. 127
Figure 34: Green Infrastructure Units Per Gentrification Zone Scored with Hierarchical Index showing trends ofhigh correlation between green infrastructure installation and presence of gentrification. Note: trend lines$\left(r^{2}\right)$ are polynomial. 129Figure 35: Green Infrastructure Grant Pre-Application Form Sample. Source: nyc.gov134
Figure 36: Green Gentrification Concept Map 141

Acknowledgements

This dissertation would not be possible without the support of my academic advisor, Prof. Juliana Maantay, and committee members Dr. Valerie Were, Prof. Rupal Oza, and Prof. Marianna Pavlovskaya, from whom I have learned so much. Dr. Were and Prof. Maantay have been advising me through this project every step of the way since 2017, both intellectually and emotionally—from health scares to fixing my commas. Juliana was always there for me. She even directed me to an opportunity for PhD funding as soon as I reached out to her thinking of applying to this program, without which I don't know if I would have even finished my applications. Profs. Pavlovskaya and Oza have both been highly influential in my intellectual development. Prof. Pavlovskaya, both during my first course in my PhD program and during my dissertation phases, always matched my enthusiasm for bouncing all kinds of ideas around in the air. Prof. Oza, through class during my master's program and in her writing, introduced me to profoundly succinct applications of theory to acute real-world issues, which inspired me to pursue a PhD in Geography, and which I tried to emulate in this dissertation. Additionally, my recent NOAA Mentor Dr. Matthew Cutler and my high school Environmental Science teacher Mrs. Donna Nathan-Tran have helped me through this journey. And many thanks to Prof. Cindi Katz for her insightful and challenging comments during her dissertation workshop, Prof. Ruthie Gilmore for teaching me the methods of syncretism, and Prof. Melissa Checker for making me want to do better research. Each of these thinkers has challenged me to expand my own thinking.

A dissertation is as much about logistics as it is about data analysis and theoretical frameworks. During my research, a few of my colleagues and friends were exceedingly gracious in helping me figure out the logistics, prepare my proposal, obtain hard-to-find data, critique data visualizations, provide moral support, give me perspective on my work's purpose, advocate for
students' rights, share dinner, or endure endlessly long phone conversations-without which I never would have gotten through grad school, let alone formed the ideas in this dissertationRachel Corey, Diane Enobabor, Kait Gierlich, Dr. Azur Jafari, Sam Lawson, Saidan Qi, Dr. Celeste Sangiorgio, Parisa Setayesh, Asya Stepnova, Dr. Gisselle Mejía, Alana Menendez, Miranda Meyer, Bernadette Muller, Dr. Vee Narinesingh, Aiyana Parker, Mad Todd, Paradorn Wongchanapai, and Artin Yip. Special thanks to my friends Jessica Downes, J.D., for her peer review and schooling me in environmental law, and Angie Winner, for her peer support and teaching in spatial analysis. I would be remiss to deny that all my colleagues, classmates, and teachers over the years have contributed to my full understanding of the world, whether agreeing with me, challenging me, or allowing me to think out loud. I hope I am fortunate enough to see these people throughout the rest of my career. Thank you.

It is also important to note that most of the data, archives, and forums I attended to use in this dissertation were publicly funded by government agencies or supplied by public libraries and archives-all paid for by taxpayer monies. I choose to use public data and advocate for open data and better data because it was paid for by the people and should be owned by and used for the people. Additionally, there is a robust set of indexes and research applied in this dissertation that I made extensive use of through their authors making them available through various research libraries' online archives. I also received training, software access, and support from the Lehman College department of Environmental, Geographic, and Geological Sciences and the Urban GISc Lab.

I would like to thank the Hispanic Alliance for the Professoriate in Environmental Sciences and Engineering (H-AGEP, NSF 16-552) for the rigorous pedagogical training, opportunities to teach at CUNY's wonderful community colleges, and the ability to engage in
reinvigorating conversations together with faculty and students at The City University of New York and the University of Texas at El Paso during my last two years of study. Thank you to Profs. Seo and Hassebo, and our students at LaGuardia and Queensborough Community Colleges for making me a better teacher.

This research was supported by the NOAA Educational Partnership Program with Minority-Serving Institutions award \#NA16SEC4810008 to the Center for Earth System Sciences and Remote Sensing Technologies at The City College of New York. Contents are solely the responsibility of the award recipient and may not represent official views of NOAA or the U.S. Department of Commerce.

Finally, absolutely no thanks to the early morning traffic jams outside my Brooklyn window during the last thirty-two years.

Foreword

When I was a little kid, I watched Kevin Arnold and his dad Jack build a tree house on The Wonder Years, and since my mom worked at a hardware store, I was adamant that we build a treehouse outside our building on Bay Parkway. Then, she had the misfortune of having to deal with my response after telling me that we had exactly zero agency over the tree that would allow us to build a tree house in it, let alone ownership over our block, building, or house. I wonder if I ever viewed "home" quite the same way again. While some people view apartment rentals as some steppingstone to home ownership or temporary lodging like a hotel or a dorm, for many of us it is simply a permanent precarity.

As scientists, we are told that an anecdote is a "sample size of 1 "- it's not enough to prove something on a grander scale. What I call the "academic anecdote problem" is that adding an anecdote to your work might just show the foundation for your own bias. But how are we supposed to be intellectually separated from our own lived experience? Some people might feel scientists are a bunch of self-satisfied number crunchers and gerrymanderers, while others think scientists are a tiny group of elite people who should be revered. This is internalized by some scientists too-in classrooms and meetings and labs people talk about "the public" as some social class outside of academia. Well, I feel that I am wholeheartedly a member of "the public" even as I confer the title of "Doctor." Being a scientist is just a job a person has.

This is my conflict-scientists (especially geographers) are at once begged to stay unbiased while at the same time criticized for studying an area in which they are an outsider. I have the unique pleasure and burden of studying my hometown. Over the course of 20 years, my family's Brooklyn rent quadrupled, while our combined family income remained static. Our rent burden is ever-growing. And when rent goes up for the stores in our neighborhoods, so do the
prices for our food, clothing, furnishings, and toiletries (if what you need is even available at a brick-and-mortar store nowadays). We never, ever missed a meal or a rent payment, but we did miss out on a chance at equity, stability, leisure, and peace of mind that accompanies reasonable housing costs. This includes being able to pursue passions instead of taking whatever job pays the bills.

And before South Brooklyn was my hometown it was a beach getaway, and before that, "Breukelen" was a colony created by Dutch settlers who displaced the Native Americans that called the place Navack. Kings Highway was a Native American trail. Will people's homes always have to be overtaken by whoever commandeers spatial, political, and economic power next? It's a constant threat that at any point your community can be seized under eminent domain. But I digress.

Under different circumstances, the hundreds of thousands of dollars we have spent on rent during my lifetime could have easily amounted to a home paid for in full, but the game of catch-up is one that many families may never win.

This project is dedicated to my family, especially my ma, Lisa Jimenez, who always took on the tremendous load of making sure I always had a place to come home to after a day of pursuing any and everything I could get my hands into running around this city.

Chapter 1•Introduction

Flowers and trees growing from roof gardens and street tree beds should be warmly welcomed bright spots in the grey hardscapes of Brooklyn. But for many, ecological rejuvenation is a red flag for impending waves of gentrification that threaten to disrupt their housing stability and peace of mind.

Strategies to protect our waterways might be something that should fall under federal patronage, but cities in the United States often have to make strategic partnerships with private enterprise to fund them, and those businesses have their own financial priorities.

Site suitability studies for installing new infrastructure units tout objective and logical topological considerations, but when there are no tenant protections, empirical considerations still have socioeconomic impacts despite this "logic." Are we truly engineering or just building?

Statement of the Research Problem

What is the spatial relationship between urban greening practices and gentrification risk in Brooklyn, New York over the last decade? What is the landscape of urban greening, what is the landscape of gentrification, and to what extent do they coincide?

The increase in both magnitude and frequency of extreme weather events (superstorms, hurricanes, blizzards, and heat waves) has created a city planning paradigm of urgent ecological resilience against climate change. Urban greening practices are a big player in environmental mitigation, but urban greening and beautification can also be marshalled by the real estate sector to increase community attractiveness to developers, raise property values, and get tax breaks for green elements in new developments. In turn, these things may exacerbate gentrification-or coconstitutive demographic shifts and economic transformations-often associated with expelling or hurting longtime residents that cannot keep up with rising housing costs and other expenses.

The purpose of this research is to evaluate the extent to which municipally-sponsored urban greening is linked to ongoing trends of gentrification. Two themes in geographic theory literature speak to these issues. First, there is long-standing literature on the various city planning mechanisms that drive gentrification. Then, emerging literature speaks to the burgeoning geography of resilience against climate change hazards. A collage of close readings of scholarly, corporate, and governmental literature, including presentations from the city government to the public, and a spatial analysis of urban greening compared to gentrification risk, is fortified with illuminating themes from resilience planning principles in an attempt to understand how urban greening practice correlates to the emergent gentrification crisis in Brooklyn.

In 2005, in accordance with the Clean Water Act of 1972, the New York State Department of Environmental Conservation (DEC) ordered New York City to reduce untreated combined sewer overflows (CSOs) into open bodies of water. In response, starting in 2010, a new landscape of "green" stormwater infrastructure was planned and deployed across the city, offering some semblance of environmental betterment.

Green infrastructure is a stormwater management approach that uses a suite of structures, like green roofs or specially-engineered pavement, that operationalize naturalistic elements to capture and contain rainwater and stormflow to prevent water from entering the sewer system. In New York City specifically, this green infrastructure is meant to at once aid in compliance with the Clean Water Act, reduce overflows from combined sewers, capture loose trash and leaflitter, increase permeable surface area to moderate street flooding, ease urban heat island effects, and contribute to the ever-increasing necessity of resilience against climate change hazards, all while looking fresh and inviting. And yet, the economic transformations and demographic shifts that accompany an increase in neighborhood attractiveness related to these environmental amenities
have been theorized to create "newly uneven socio-environmental riskscapes" (L. L. Colburn and Jepson 2012, 1).

The "environment" as we understand it has many spheres, inclusive of all "the surroundings or conditions in which a person, animal, or plant lives or operates" ("Oxford Languages" n.d.). While the ecological sphere of the environment might be sated by green infrastructure, the social and economic spheres of the environment may become more hazardous to financially vulnerable populations as gentrification occurs.

The impacts of climate change and gentrification have both been proven to disproportionately harm marginalized groups (e.g., people of color, those who are poor, single women, and people with disabilities) (Bullard 1994; Hamilton 1994; Oliver and Barnes 2012; Shokry, Connolly, and Anguelovski 2020; Santos, Chor, and Werneck 2010; De Mel 2019; The Eviction Lab 2022). So, while climate risk reduction solutions presumably reduce those climate risk hazards, the gentrification that might accompany them may actually (re)create the risk and marginalization that the solutions aimed to fix.

Gentrification that is significantly marked by urban greening, or "green gentrification," is a phenomenon that has been observed to be accelerating rapidly in this resilience paradigm, but each permutation of urban green gentrification is unique to its locality and time because of the unique economy and ecology per locale. In the financialization of urban greening, climate mitigation practices that utilize naturalistic elements have been markedly tied up with real estate ventures (Zuk et al. 2015; Anguelovski et al. 2019; Lees 2003; Halasz 2018; Stein 2019; L. Graham, Debucquoy, and Anguelovski 2016; Maantay et al. 2020). Typically, urban greening studies focus on community gardens or parkland, or use satellite imagery to examine greening through vegetated land cover. This project is a slight departure from that, using not just vegetated
green infrastructure, but examining a specific government program as it ends its first decade of implementation, and including types of green infrastructure that are "blue" (or unvegetated), but still mimic natural water processes for stormwater management.

Methodological Inspirations

In Philadelphia, a framework comparing sites of commission (areas where green infrastructure was installed) versus sites of omission (areas where green infrastructure was not installed) for stormwater management infrastructure "demonstrate[d] that green resilience interventions from 2000 to 2016 are tightly enmeshed with processes that generate Sites of Commission through the correlation with gentrification in Philadelphia," (Shokry, Connolly, and Anguelovski 2020, 10). That is, areas that the real estate finance sector has predicted (and thus effectively decided) will gentrify or where ongoing gentrification will accelerate, were coincidentally chosen as sites of commission for green stormwater management infrastructure.

On the other side of the coin, the sites of omission are "forgotten places...that have experienced the abandonment characteristic of contemporary capitalist" transformations (Gilmore 2008, 31). In scholar-activist work, the method of dialectical materialism-close readings of government documents-was used to enrich and empower community activism by critically analyzing extensive technocratic planning documents that "merely fulfilled the law in letter but not in spirit" (Gilmore 2008, 48).

In Brooklyn, Maantay and Maroko used geographic information systems science (GISc) tools for a rigorous spatial analysis of green gentrification using community gardens as a proxy representation of urban greening. They ultimately found that while community gardens are spaces of intimate community building that also transform vacant and derelict land into useful green amenities, the linkages of new green space to property value appreciation led to
gentrification that threatened the very people who fostered that green space (Maantay and Maroko 2018; 2015; Maantay 2002a).

Green infrastructure is a multiscalar application and so, using the above methods as inspiration, a comparative analysis of socioeconomic indexes will be used to employ this framework of evaluating sites of commission vs. sites of omission for linking social conditions to infrastructure installation at various scales in Brooklyn (Wijsman et al. 2021). This will help to contextualize the uneven distribution of resilience infrastructure, specifically, in a larger literature of uneven development. It will also treat Brooklyn as a collection of interconnected neighborhoods rather than at the county-level or as discrete neighborhoods, which currently dominates the literature, and hopefully help bring together that otherwise disparate qualitative geographic research that is neighborhood- or community-specific.

To understand green gentrification within the resilience paradigm, this project examines the spatial coincidence of urban greening practices and gentrification risk throughout the borough, and the planning practices that have contributed to it. Because there is a constant flux of intentional, unintentional, official, and unofficial changes in land use and land cover, green stormwater infrastructure assets managed through the New York City Green Infrastructure Program were chosen as a proxy representation for urban greening. This program has stakes at federal, state, community-board, neighborhood, block, and household levels, which will speak to linkages in investigating green gentrification in Brooklyn at various scales. This will offer a neater, more contextualized, static representation of urban greening that also can draw upon the impacts of authoritative city planning elements on gentrification.

While complying with the Clean Water Act and mitigating the overflow of raw sewage from CSOs are the main goals of green stormwater infrastructure installation in New York City,
there are a number of fringe benefits built into its design principles. This dissertation aims to create a thread to show that technocratic planning decisions claiming to be based purely on physical geography are actually deeply entangled with private funding when they lack public funds and thus have harmful social consequences for some people while others get to enjoy these amenities.

Ecological prioritization is political. The people of New York City are suffering from a number of concurrent co-constitutive environmental crises, including segregation, poverty and wealth disparity, ill-health, and housing insecurity that are all worsening within our existing systems.

Site Selection

The National Oceanic and Atmospheric Administration's (NOAA) community social vulnerability indicators indicated that gentrification pressure aspects, especially related to housing disruption, have been steadily rising in northeastern United States coastal communities. In 2011, this gentrification pressure index indicated that the Housing Disruption element of gentrification reached the threshold to enter into their highest risk category (4 out of 4) in Brooklyn ${ }^{1}$. During the same time period, thousands of units of green infrastructure were slated to be installed across the borough, creating a natural experiment.

Drawing from this and a preliminary analysis of CSO volume changes in relation to green infrastructure deployment, the geographic extent of the project will be the New York City borough of Brooklyn, which is co-extensive with New York State's Kings County. The extent

[^1]will be evaluated at three scales: county/borough, neighborhood clusters (also known as "community districts"), and census tracts.

Prospect Park, a very large area just north of the center of the borough, will be the landmark used to situate some Brooklyn area descriptions. "Northern Brooklyn" will be used to refer to areas north, west, and east of Prospect Park. "Southern Brooklyn" will be used to refer to areas south and southeast of Prospect Park. "Neighborhoods" will be defined by New York City's Neighborhood Tabulation Areas (NTAs) ${ }^{2}$. These neighborhood-level polygons were created by the City of New York using census tracts and Public Use Microareas (PUMAs) for New York City's long-term sustainability plan. It is important to note that this cartographic depiction of neighborhoods is not meant to be definitive of the transient cultural or economic extent of neighborhoods (NYC Planning 2020). Neighborhood boundaries may be better described as gradients or networks with a functional identity, lacking complete "economic or social self-containment," (Jacobs 1992, 117). However, NTA and PUMA polygons will be quite useful for analysis of census data and the datasets that are publicly available through the City's open data portal with seamless data assimilation.

Several factors lead to a borough-specific rather than a citywide study of the relationship between urban greening and gentrification, including the high density and diversity of the populations. In terms of conducting a study on CSO-mitigation efficacy of green infrastructure, Brooklyn and Queens are a contiguous landmass with a cohesive sewer network and were treated as a unit for that initial research. The other 3 boroughs are separated by rivers and bays and do not affect each other's CSO outputs. While they are counties of the same municipality, New

[^2]York City is an archipelago, so rain in Manhattan, The Bronx, Staten Island, or any of the dozens of other small islands does not impact street-level stormflow in Brooklyn and Queens.

Administrative politics, planning prescriptions, and management practices are incongruent between Brooklyn and Queens, which does not suit the planning element of the study. While I believe this study can and should be replicated for each borough, the wealth of neighborhood gentrification studies, the diversity of industry, and the distinct differences between the northern and southern parts of Brooklyn, including a northern portion that is largely landlocked and the coastal southern portion that interfaces the New York Bight, piqued my interest in evaluating gentrification across the county as a whole. The idea of Brooklyn as a brand which has been alluded to journalistically but largely uncritiqued in academia, also motivated me to look at the borough (Shearman 2015; Metcalf 2013; Chandler 2014; Campanella 2019).

Brooklyn Administrative Geography

One of the five boroughs (administrative districts that make up New York City), Brooklyn can be broken down in a number of more conventional ways. While 2 boroughs are islands, and one is a peninsula connected to the rest of New York State, Brooklyn and Queens boroughs are physically connected to each other at the western end of Long Island. Brooklyn is coextensive with the New York State County if Kings. Generally, "Brooklyn borough" is used when discussing the area in its intracity context, and "Kings County" is used when talking about the area in the context of New York State. There are 18 community districts within Brooklyn that are coextensive with federal administrative PUMAS. Each community district is comprised of various neighborhoods, which are delineated by NTAs that are not completely authoritative neighborhood delineations, which are more fluid and cultural at the ground level, but used for
administrative purposes. Each NTA is made up of a cluster of 2018 census tracts, each of which are home to approximately 4000 people ("Census Tracts" 2010). See Figure 1, Figure 2.

Figure 1: Brooklyn Area-Type Hierarchy for administration

Figure 2: Bath Beach NTA with 2010 Census Tracts (numbered)

Project Overview

First, I wish to evaluate the effectiveness of green infrastructure installation in mitigating overflows from combined (sanitary and stormwater) sewer outfalls (CSOs) to get a baseline for the success of their primary function. So, in Chapter 2, I outline the form and function of CSOs. While these mechanisms are an engineering feat that has protected our wastewater treatment centers and sewer system, they contribute to water pollution across New York City, which poses its own set of ecological and political problems. Then, I describe green infrastructure deployment as a solution to the CSO problem, and site suitability considerations for green infrastructure. Finally, after providing geospatial data on the distribution of green infrastructure across Brooklyn, I measure the changes in CSO overflow volumes over time compared to rainfall and the timeline of green infrastructure implementation. Results from this analysis show that CSO volumes improved over the same time period as green infrastructure development, and some area-specific examples further support the idea that green infrastructure presence is related to these improvements.

The next chapter takes a step back to explore geographic thought and critical geographic theory around landscape. In particular, I am interested in urban greening as a tool that physically and symbolically reverses or repairs some of the environmental "greying" of the landscape that occurred through urbanization and industrialization. That is, urbanization removed much of the vegetated, permeable, water-capturing surface area, and these urban greening practices restore that lost permeability and vegetation. This has been successful, as shown by CSO improvements. However, the principles of green design used for this infrastructure have more than CSO mitigation on the docket. Beyond the physical environment and complying with city, state, and federal environmental policies, green infrastructure
incorporates green design elements that serve greater long-term city plans for urban rejuvenation, including green amenities for public and private use, influences on property values and rezoning, and development along the Brooklyn waterfront. This climate change resilience paradigm of development appears to have some internal contradictions in its goals.

In Chapter 4, I contextualize some of the market forces behind funding these green infrastructure projects and the contrivances for capital gain. Drawing from literature on political ecology and looking through planning principles guiding urban greening in New York City and Brooklyn borough specifically, I see that raising property values and partnering with private investors are precepts listed right alongside ecological benefits. Land management practices are also described in this chapter to discuss the precarious and potentially ephemeral nature of green infrastructure, as is discussed in some political ecology geographic theory, such as the spatio-temporal fix.

This is where I begin to draw my hypothesis: Because the funding for green infrastructure is intimately tied to property value change, which is presumed to raise housing costs, and rises in housing costs are a determinant factor in gentrification, I hypothesize that sites of green infrastructure commission will spatially coincide with gentrification hotspots across Brooklyn. At the county-temporal level, using a federal county-scale social vulnerability index that updates annually, I find that new thresholds for housing disruption raised to a new high level around the same time as greening proposals were announced. Because I see that gentrificationrelated housing disruption correlates more to the timing of green infrastructure plan announcements than to the timing of installation, I believe that gentrification is a planning issue that overly prioritizes urban greening as a marketing tool for real estate rather than strengthening communities through the re-creation of nature in urban environments.

As I learned from the analysis of green infrastructure distribution in Chapter 2, green infrastructure is unevenly developed across the county, owing to uneven geological factors and the uneven funding described in Chapter 4. Because of this, in Chapter 5 I begin a reading of literature that focuses on gentrification, green gentrification, gentrification in Brooklyn as a whole, and neighborhood-specific gentrification in Brooklyn. The literature tends to describe patterns of acute gentrification in areas closer to Manhattan and Queens (in the northern half of Brooklyn) at the turn of the $21^{\text {st }}$ century, while case studies of social and demographic changes in southern Brooklyn tend focus on the earlier half of the $20^{\text {th }}$ century.

From this reading, I further hypothesize that there are close ties between urban greening and gentrification at smaller scales, such as the community district and census tract. To test this, I use environmental modeling and spatial analysis techniques to compare urban greening prominence against several other gentrification indexes at various scales, which are detailed in Chapter 6. This requires two sets of data for comparison: one for urban greening and one for gentrification. While urban greening is a tangible element that can be mapped, it is still somewhat ephemeral and can be represented in a number of different ways. Drawing from the study of New York City's urban greening practices in Chapter 4, assets from The New York City Green Infrastructure Program were chosen as a proxy (or stand-in representation) for urban greening specifically in the resilience paradigm: 1) the geospatial data are readily available, 2) it was implemented specifically as a two-for-one deal to both mitigate a climaterelated problem and support beautification efforts, and 3) it is government managed.

Representing gentrification on a map is a bit more complicated. Many methodological studies on measuring gentrification choose certain their own sets of important statistics to define gentrification and supply a replicable index that can be applied to various other areas using
measurements and rates to color-code areas in the production of choropleth (color block) maps that indicate various index scores. Ultimately, I apply five indexes to Brooklyn: one at the county level, two at the community district level, and two at the census tract level, all of which can be seen in Results Atlas 1. While there is variation in the distribution of gentrification risk across the county, in indexes that use a hierarchy or level-based system to assign gentrification scores (i.e. scores 1 to 5 , where 5 is the highest-level risk category), higher rates of gentrification tend to be concentrated in the northern half of the borough, especially in community districts 1 and 5 (Greenpoint/Williamsburg/East New York) while there is less risk in southern areas like community districts 10 and 15 (Bay Ridge/Dyker Heights/Gravesend/Sheepshead Bay).

In the next phase, I overlay the green infrastructure shapefile on each of the five indexes, finding a high spatial coincidence between acute instances of gentrification and green infrastructure units despite the variability in gentrification rates in each hierarchy-based socioeconomic index.

Chapter 7 is an interpretation of the results. In the county-level index, you can see the rate of gentrification risk related to housing disruption reached a new threshold of risk in the same year that green infrastructure implementation took place. In all three index applications that break risk into 5 hierarchical levels, green infrastructure placement was highly concentrated in areas scored in the two highest levels. Compared against a typology-based gentrification index, green infrastructure tended to be clustered in low-income areas in the early phases of the gentrification process (as opposed to late-stage gentrification types, like super gentrification). This chapter also offers some notes on resilience, project limitations, and future research aspirations.

In the concluding chapter, I tackle some key thoughts, including the confluence between social and physical sciences, the causality dilemma in green gentrification, and a synthesis of the theoretical and material research.

Figure 3: Concept Map: Research Questions

Chapter 2•State of the Art

It is the national goal that the discharge of pollutants into navigable waters be eliminated by 1985.

Clean Water Act
Section 1251(a)(1)

CSOs: What They Are and How They Work for New York City

Much of New York City's sewer system handles a combination of both sanitary wastewater ${ }^{1}$ and street-level storm flow. During storms, excess stormwater directly enters the sewer system via sewer grates. If there is high domestic or commercial water use during inclement weather or snowmelt, the stress put on the system is at its highest. There is a point where too much water in the sewers causes overload, so there are a variety of points that act as a sump system wherein excess water gets discharged into various waterways to relieve the system when it is overtaxed. These discharge points are called combined sewer outfalls (CSOs). Home to nearly half the state population ${ }^{2}$ and having unique coastal conditions compared to the rest of the state, CSO overflow volumes are much higher in New York City than elsewhere in New York State.

The mix of untreated excess stormwater and sanitary wastewater in the sewer system that is released into open bodies of water contains large debris, particulate matter, and a plethora of chemical material from domestic, commercial, and industrial activities. This troublesome paste includes leaves, everyday litter, micro-plastics, lipids, human and animal excrement, discarded

[^3]food, detergents, petrol, pharmaceuticals, salt, viruses, bacteria, parasites, and any other material you might imagine is washed off the streets of New York City (or flushed down our toilets).

Though CSOs are vital to preventing damage at wastewater treatment plants and the sewer system by preventing back-ups and explosions, the resultant pollution has contributed to New York City being out of compliance with the U.S. Clean Water Act (CWA) water quality standards (Cherrier et al. 2016; Sapienza 2011). In particular, CSO overflows do not fulfill CWA Section 101(a)(2): "it is the national goal that wherever attainable, an interim goal of water quality which provides for the protection and propagation of fish, shellfish, and wildlife and provides for recreation in and on the water" (U.S. EPA 2002). Pollution poses health risks and lessens usefulness, recreational potential, and aesthetic value of waterbodies (Boyd 2015, 339). Swimming, wading, fishing (and eating that fish), baptisms and other religious ceremonies, and other activities in water that is contaminated by raw sewage can expose people to Escherichia coli (E. coli), Shigella, Giardia, norovirus, Cryptosporidium, strains of Staphylococcus aureus, including methicillin-resistant Staphylococcus aureus (MRSA), and other germs and parasites that cause recreational water illnesses (RWIs) like diarrhea, dermatitis, and infections (Young, Juhl, and O’Mullan 2013; NYC Health 2020). Exposure to degraded environments is also linked to mental health distress (Etman et al. 2016).

Two approaches to CSO overflow reduction would improve CSO outputs and address the waterbodies' "'Highest Attainable Use' pursuant to the 2001 EPA Guidance on Coordinating CSO LTCPs with Water Quality Standards Review" (Sapienza 2011, 7). One is a reduction in the total volume of CSO volume, and the other is a reduction in the concentration of pollutants in the CSO discharge. Green stormwater infrastructure described herein largely focuses on a reduction in the volume of CSO discharge, while separate management regimes are needed for

CSO pollutant concentrations in New York City ("Final Reports of the Tibor T. Polgar Fellowship Program 2020" 2021).

As illustrated in Figure 4, each combined sewer outfall is associated with a particular drainage zone that relays water to it, and empties into a particular body of water. For example, outfall 'OH-018' receives water from drainage zone 'OH-018', which empties into The Narrows (the strait between Brooklyn and Staten Island). However, stormflow may move quite a distance at street level, creating conditions where flooding and storm in one area may also affect surrounding drainage zones. So, to effectively combat stress on an outfall and its surrounding outfalls, targeted intervention should be taken in and/or around the associated drainage area.

Figure 4: CSO drainage Zones impacting Gravesend Bay, Brooklyn

Green Infrastructure Solutions to the CSO Problem

Green infrastructure is a water management approach wherein the natural water cycle is protected, restored, and/or mimicked (American Rivers 2021). In 2007, the EPA issued a memorandum to encourage green infrastructure approaches that "infiltrate, evapotranspirate or reuse stormwater, with significant utilization of soils and vegetation rather than traditional hardscape collection, conveyance and storage structures" (Grumbles 2007) as a solution to Clean Water Act non-compliance. Rain gardens, bioswales, green and blue roof technology, and various types of specially-engineered ground terrain (permeable pavement, special soils, etc.) accomplish this by increasing the amount of permeable surface, which was diminished with paving, urban development, and industrialization. The concrete, tar, and metal modernist utilitarian elements of industrialization denote a "greying" as part of the aesthetic and purpose. Largely naturalistic elements (soils, tree beds, grasses), as well as an "eco-friendly" aesthetic and purpose mark the infrastructure approach as "green." Urban greening (re)creates or reintroduces greenery lost during the greying processes not only ecologically, but also in the social realm by increasing attractiveness and capabilities for recreation, leisure, and the human relationship with nature. These "co-benefits" have been theorized to boost political salience and financial feasibility because they fall in line with green design principles that satisfy requirements for both financial sponsors and government regulations (Shokry, Connolly, and Anguelovski 2020).

In 2010, New York City made a "20-year citywide commitment to green infrastructure" (Sapienza 2011) in a Bloomberg-era New York Waterfront Development Plan, also known as "Vision 2020." The New York City Department of Environmental Protection (DEP) also introduced the New York City Green Infrastructure Program as a response to the CSO problem. The program includes the design, construction, and implementation of green stormwater
infrastructure designed to capture and retain rain, and capture and/or control stormwater runoff. Installation began in 2013 (NYC Dept. of Environmental Protection 2018). Green infrastructure's purpose is to passively capture water, stalling the point at which the sewer system reaches critical mass and activates the sump system that releases raw sewage into open bodies of water. These structures also capture incidental litter and leaflitter that otherwise clogs sewer catch basins and causes dangerous street flooding on a regular basis (Agonafir et al. 2022).

Site Suitability for Green Infrastructure

Determining site suitability for green infrastructure deployment is extremely complex. City planning, zoning ordinances, and building codes dictate what can be developed where. Developers fund and design projects, while engineers and economists determine site suitability. Land ownership determines where the city itself has permission to break ground. Right-of-way (ROW) (or curbside) units are essentially all created on public property, while many rooftop units are coordinated on with private property owners. Then, geophysical and structural site suitability must be determined. For example, ROW bioswales, which are deep water-capturing wells that use a mix of bioretention cells (that use biotic material like soil, plants, and microbes to filter water) and subsurface storage tanks built into tree beds, require complicated excavation, so sewer quality and surrounding topography must be examined in those site suitability studies. But if the underlying geological formation is unsuitable, it can be impossible to break ground, or worse, brittle or poorly demolished subsurface could crack, flooding basements or parts of the subway system or causing sinkholes. In much of upper Manhattan, the schist-type bedrock was determined to be too hard to break for bioswales at all, for example.

For green and blue roof potential, roofs are examined for their load-bearing capacity, including their slope (Kaplan 2006). Blue roofs have water-capturing rock basins that hold water
and allow it to evaporate later. Green roofs are have beds covered in vegetation and planting medium which primarily capture water and prevent storm water runoff (SWR) from entering rain gutters. Green roofs also have the potential to moderate building temperatures (which relieves heating, ventilation, and air conditioning (HVAC) system stress within the structure), reduce urban heat island effects (UHIE), and improve urban aesthetics. Some green roofs are also used to grow food or serve as private pavilions for building residents ${ }^{3}$. Of course, all these structures pose leak and collapse risks, as well.

Land-use classification for green infrastructure is as important to analyze as financial investments because areas with the least amenable natural topology or building structures for green infrastructure are deprived of urban greening. A built environment unsuitable for retrofitting green infrastructure, such as roofs that are damaged, structurally unsound, or too steep to hold the tanks, poses the same problem. Newer buildings, such as those in areas that have been rezoned for residential uses and have brand new buildings, accommodate green and blue roof technologies as built-in standards, while older buildings might need extreme modification or demolition to integrate green roof technology. A land-use classification study for extensive vegetative roof acreage potential (EVRAP) in the Bronx to propose green roof installation through GISc was unique from preceding land-use classification analyses because it focused on modifying the built environment rather than predeveloped or natural landscapes. Because urban greening is unevenly developed, its intended benefits will also be distributed unevenly. That EVRAP project:

[^4]"...could not assess potential for the entire range of buildings because each existing building would need to be defined in the database by criteria such as load-bearing capacity, roof slope, and access. Cumulative calculation of square footage by lot parcel and by land-use class provided by the main output, creating a hierarchy of landscapes for further GIS analysis and providing supporting baseline data for current initiatives at the neighbor and county level," (Kaplan 2006, 359).

The use of GISc software has expanded rapidly in government agencies, private enterprise, grassroots organizations, videogaming, and hobbyists (Boulos et al. 2017; Kaplan 2006). Many GISc projects have resulted in centralizing and digitizing a massive volume of disparate qualitative and quantitative data, publicizing it, and expediting its use. New York City has provided maps, infographics, and GISc applications displaying their Green Infrastructure Program and other citywide management systems, but most of those applications are driven by location data. Qualitative data is available in quarterly reports.

Historical hardcopy records of the sewer system that are used for this work were prepared with different standards, with different datasets, and under various jurisdictions and agencies: "Changes in managing responsibility and improvements in engineering design techniques have produced a system infrastructure that varies considerably in age, materials, and structure. Records of the sewer system were prepared with different standards, and with different datum for each borough. So, a GIS approach was used to map and represent the sewer system, rather than rely on 190,000 disparate original drawings and documents," (Crino, Rutberg, and Farag 2006, 377-78).

Both of these integrated (physical and social) applied geography projects were made possible (and organized to be digestible) by this extensive data acquisition, data aggregation, and data assimilation work. Site selection relies on completing such projects.

The New Green Infrastructure Landscape

In Brooklyn, 4052 green stormwater infrastructure units were sited (see Figure 6). Of these, 2575 are bioswales. There are a total of 26 different types of green infrastructure that I categorize in six ways: bioswales, rain gardens and greenstreets (Figure 5), green and blue roofs, speciallyengineered surfaces, subsurface storage systems, and subsurface pipes (see Figure 7).

Figure 5: A stormwater Greenstreet in Williamsburg, Brooklyn. Photo by Rose Jimenez 2022

Green Infrastructure Distribution, by Exact Location

Figure 6: Green Infrastructure Assets in Brooklyn, By Location. Point displacement added to symbology to ensure minimal point overlap. Data Source: NYC DEP via NYC Open Data, 2016

Figure 7: (continued from previous page). Distribution of Green Infrastructure Program Assets, by type, in Brooklyn. Data Source: NYC DEP via NYC Open Data, 2016

The Green Infrastructure Program assets are highly concentrated in the north and northeast community districts (CDs) of Brooklyn. Northeast Brooklyn CDs tend to have hundreds of units installed within them, and CD 5 has the most by far, with 1458 units installed. South Brooklyn communities have fewer than 40 units each, with CD 10 and CD 13 having zero green infrastructure units (see Figure 8).

To a certain extent, it is understandable that CSO improvements were slightly more urgent in the northern part of Brooklyn that borders Queens. This area is more landlocked and has several tight canals and creeks that have high (slower) flushing times-or water stratification turnover rates- because their underwater contours lead to challenges with removing pollutants naturally. In southern Brooklyn, the larger, more open bodies of water in the New York Bight (The Narrows, Gravesend Bay, Sheepshead Bay, Jamaica Bay, the Lower New York Bay, and the Atlantic Ocean) have a lower (faster) flushing time and thus better natural capacity to cycle out pollutants (Monsen et al. 2002; Boyd 2015).

CB \#: Community Board
\#: Number of Assets
outside Community Boards: 40

Figure 8: number of Green Infrastructure Program assets, by community district. Data Source: NYC DEP 2016 and NYC DDC 2018 via NYC Open Data

Green Infrastructure Distribution Prominence Heat Map

Figure 9: Green Infrastructure prominence map. Data Source: NYC DEP via NYC Open Data, 2016

CSO Changes in Brooklyn and Queens

SWR intervention provided by green infrastructure reduces the amount of water, debris, and stress on the sewer system (i.e., grey infrastructure) by stalling reaching the water budget-or surface capacities - that would otherwise trigger CSO overflow (Boyd 2015, 35-36; NYS DEC 2018). Surface capacities are increased by green infrastructure units capturing water, preventing it from flooding and/or entering sewer grates. In turn, CSO overflow volumes are decreased by a combination of that increased surface capacity and upgrades to sewers and wastewater treatment plants (WWTP). Diminishing pollutant concentrations is achieved through a combination of 1) upgraded WWTPs, 2) a decrease in high-pollution waterfront industries, and 3) environmental regulations on remaining waterfront industries (i.e., petroleum and chemical storage facilities, waste transfer stations, shipping), including better options for storage through the New York State DEC.

In addition to continued use of traditional methods of reducing CSO volumes, such as holding tanks and tunnels, the New York City Green Infrastructure Program proposes to capture the first inch of rainfall on 10% of the impervious surface in CSO watersheds over 20 years (Vision 2020, p. 67). Most of this technology relies on passive filtration (using gravity and capillary action to capture water rather than the use of pumps or components that require electricity), which either holds water or allows infiltration into the surrounding soil/groundwater.

Upgrades to the grey infrastructure will also be implemented, but they take much longer and cost a lot more money. This includes a plan to optimize the existing system of grey infrastructure with drainage plans and survey and rehabilitation of 149 miles of interceptor sewers, inspection and repair of flood gates, and measures to prevent lipid build-up that obstructs
sewers (Vision 2020, p. 67) in a phenomenon known as "Fatbergs." Green infrastructure is meant to be an interception at least until that grey infrastructure is upgraded.

In areas where the bathymetry-or underwater terrain— has been significantly altered (filled, dredged, etc.), CSO discharge mitigation alone would not result in significant water quality increases. Poor bathymetry can stifle natural processes the water would otherwise use to circulate and flush/expel wastewater loads (Rosenzweig et al. 2018). These areas require alternative and/or additional mitigation strategies. So, the waterbodies that 1) have poor bathymetry and 2) are associated specifically with Vision 2020 residential developments ${ }^{4}$ are subject to individualized water management investments by the city.

In a preliminary statistical analysis using modeled CSO overflow volume data from the city of New York (2006 to 2016), normalized against rainfall, average CSO volumes have significantly decreased since the beginning of the implementation of green stormwater infrastructure in 2013 (see

Figure 10). In 2006, the average CSO is estimated to have released over 69-million gallons of wastewater, while in 2018, that number was reduced to an average of 56-million gallons. Rainfall remained consistent over the time period, which would mean that in conjunction with other changes to the terrain, green stormwater infrastructure installation is linked to the $\sim 19 \%$ reduction in sewer overflow in these CSOs.

[^5]

Figure 10: Modeled CSO Overflow Volume trends, compared to rainfall, 2006, 2013, 2014, 2015, 2016. Data was acquired and aggregated from annual State Pollution Discharge Elimination System (SPDES) permit reports, 2012-2018, and is an aggregate of all the CSOs in Brooklyn and Queens (NYC Department of Environmental Protection 2019).

It is very important to note that CSO volumes supplied by the NYC DEP are modeled estimates. That is, there are not direct measurements of all CSO outputs. As described by NYC DEP representatives during a public workshop, the volumes in 2013-2016 are the same projected model that was used in 2006, but adding additional parameters accounting for green stormwater infrastructure installation (Cohn, Ranheim, and da Silva 2018). So, the 2006 volumes are estimated from a hydrological and hydraulic $(\mathrm{H} \& \mathrm{H})$ model using weather-dependent CSO scenarios known as the Infoworks CS (Sapienza 2011; NYC DEP n.d.).

As of 2018, New York City's wastewater treatment plants could manage and treat 1.3billion gallons of water to Clean Water Act standards during dry weather events. During wet
weather, "they have the capacity to partially treat and fully disinfect up to 3.7 billion gallons" of water per day (NYC Department of Environmental Protection 2019). As both magnitude and frequency of extreme weather events occur in the coming years, New York City's sewer system will be up against an unprecedented amount of stress and need these ongoing interventions and more (De Mel 2019).

None of these interventions are infallible or individually restorative, although they have a combined major palliative effect. Unfortunately, solutions in one area threaten to exacerbate environmental issues in other places both within and outside of the New York area. For example, while former industrial zones have become residential zones in Brooklyn and Queens, many of the industries have moved to the Bronx, where zoning has been changed from residential to manufacturing, exacerbating environmental injustice there (Maantay 2002a, 100). In anticipation of sea-level rise and extreme weather events, additional green infrastructure is deemed necessary, but so should be environmental justice mandates in land-use classifications (Vision 2020, p. 65).

Vision 2020 has impacts for the entire New York City waterfront, but breaks it into Neighborhood Reach Strategies: locally targeted strategic plans within the greater plan. Brooklyn's waterfront has six management regimes (see Figure 11). Each of these reach areas is linked with extensive environmental remediation, including some investments specifically linked to planned and prospective residential development. "CSO investments are projected to reduce CSO discharges by 8.5 billion gallons per year, relative to the mid-1990s," (NYC Department of City Planning 2011, 9), which in turn reduces viral, parasitic, and bacterial illness risk. Because of this, areas with green infrastructure, and coastal areas with green infrastructure in their CSO drainage area are likely to benefit from green infrastructure's many palliative ecological effects.

Reach 13 ${ }^{\text {啙: }}$: Newtown Creek

Reach 14N: Brooklyn Upper Bay, North

Reach 14S: Brooklyn Upper Bay, South

Reach 15: Southwest Brooklyn

Reach 16: Coney Island \& Sheepshead Bay

Reach $17^{\text {橎: }}$: Jamaica Bay \& The Rockaways

 Queens borough. Boxes refer to approximate center point of reach extent along the coast.

New York City's projected models of CSO discharge show that areas with green infrastructure installed have had significant improvements in CSO discharge volumes, while areas without it have stayed the same or worsened. In the Canarsie/Starrett City area for example, drainage zone $26 \mathrm{~W}-003$ had hundreds of green infrastructure units installed, and the associated CSO produced about a hundred million gallons less discharge in 2016 as compared to 2006. Conversely, there were fewer than 20 units installed in nearby drainage zone 26W-005 in the East New York area, and the associated CSO had an increase of about a hundred million
gallons of sewage discharge in 2016 compared to 2006^{5} (see Figure 12). At the very least, this shows a disparity in benefits from ecosystem services related to green infrastructure.

```
Legend
Green Infrastructure
Status
    - Constructad
    - Fnal Desion
    - in Constuction
    CSO Drainge Ama
Combined Sewer Outfall
Difference in CSO volumes 2016-2006.
    - .774.6T
- .66-0
- 1.142
- 143-391
- 392-1208
```


Figure 12: CSO Volume Changes 2006 to 2016, ft. Green Infrastructure Installation. Data Source: NYC DEP (2018) via NYC Open Data

Growing improvement in water quality increases the recreational value of waterways, as necessitated for CWA compliance. New York City water quality is acceptable for recreation most of the time during dry weather, but CSO overflows cause short-term spikes in bacteria levels after heavy rainfall (Boyd 2015; Brosnan and O'Shea 1996). There are strategies in place to try to protect residents from these hazards. Beaches are only designated and advertised for bathing if they are an adequate distance away from CSOs and subject to rigorous monitoring and advisory systems to relay hazard warnings to the public. The city also installed signage on the

[^6]water and land sides of the 422 CSOs (NYC Department of City Planning 2011, 69). Water quality data on 20 parameters from 85 sample stations are taken on a regular basis and available to the public. The city also launched wet weather alerts and a CSO warning system through NYAlert and New York City-based warning systems to ask those who have opted into receiving the messages to halt their domestic water use during inclement weather in their area. But at the DEP workshop where experts and scholars were called to submit advice and suggestions to optimize this program, questions arose as to whether asking individuals to curb their personal water use on demand based on modeled outputs based on weather forecasts would be effective, tactful, or fair (Cohn, Ranheim, and da Silva 2018).

Sewer damage and street flooding are life-threatening issues. From 2012 to 2018, a number of devastating summer sink holes in Bay Ridge, Brooklyn over a chronically damaged sewer pipe system were large enough that they engulfed multiple parked cars (DeJesus 2018). In June 2021, chronic flooding of a basement garage of a 136-unit Miami, Florida apartment building rocked the nation after the flooding destroyed the foundation leading to a collapse that killed a dozen people and injured nearly 150 more (Redlener 2021; Baker, Singhvi, and Mazzei 2021; Porter 2021). Just weeks later on July 8, 2021, Topical Storm Elsa caused some frightening subway floods in New York City. Dozens of people were retrieved by rescue teams from highways during life-threatening flash floods (Shanahan and Wong 2021; Bekiempis 2021). People with literally no other way to get home risked their lives just to get on a train at the end of the workday in water hip-deep across Harlem and the Bronx, where site suitability for bioswales was also unviable-but there have to be other solutions. Uneven street flood mitigation blamed solely on topography is almost too insulting to explain.

Chapter 3-Semiotic Landscapes of Urban Climate Resilience

We're lookin' pretty and gritty 'cause in the city we trust...
An Open Letter to NYC
(An Open Letter to NYC 2004)

Geography of Landscape

A landscape is the product of our culture and society, and so if we look really hard at it, we can see a reflection of that society. There are a lot of different ways to use geography and be a geographer. Geographers used physical geography, geology, and topography to site green infrastructure. City planners are geographers who use socioeconomic geography to site new commercial and residential buildings, businesses, and open spaces, and to zone or rezone areas for certain purposes. Geography is used to determine spaces that will be left as reserves, demolished, and/or renovated. Geographies are used to determine property and land values and calculate property and land futures. Critical geography and geographic theory aim to assess and critique these material spatial practices, spatial formations, landscapes, and land cover/land use dynamics.
"The dream of an unworked natural landscape is very much the fantasy of people who have never themselves had to work the land to make a living," (Cronon 1996a, 75). The concept of landscape is a useful framework to describe how certain elements-labor, weather, politics, economy, activism—go to work on the land. Sauer called landscape the object of the study of geography and wanted it to (somehow) remain objective from politics, though his framework still called for using the existing landscape as a way to understand the subjective political culture that made it (Sauer 1963, 343).

Landscape is the means by which geographers do history. "The landscape itself appears inert: ready to be dismembered and packaged for export. In contrast, the challenge...is to make
the landscape a lively actor. Landscapes are simultaneously natural and social, and they actively shift and turn the interplay of human and nonhuman practices," (Tsing 2005, 53). Landscape theory applies a historical lens to the formation of a spatial phenomenon. Drawing from Mitchell's use of this heuristic landscape framework, we can work "to get 'behind" the physical landscape of green infrastructure to understand how it was landscaped (spatially produced) and how it aids in landscaping (participates in producing the gentrification landscape) (Mitchell 2003, 236).

Grey and Green Urbanism

Industrialization produced a grey urban landscape. Urban greening coinciding with economic and demographic transformations created a green gentrification landscape in many cities. But not all urban greening is cut from the same cloth. While urban farms and community gardens are linked to a strengthened social fabric of a community (Albro 2019; Binelli 2013; Jimenez 2015; Maantay and Maroko 2018), and rejuvenated parks are often late-stage investments in a gentrified area (Zuk et al. 2015), New York City's municipal Green Infrastructure Grant Program funds private green spaces, such as private green roofs and street-level areas contracted out to private developers.

In the process of urbanization, the natural, often "green," landscape is replaced by a "grey" built environment. As a result, about 72\% of New York City is covered by impervious surface, which will not absorb or capture any flood or stormwater, causing it to flow down streets and run off into waterbodies (NYC Dept. of Environmental Protection 2018). Green infrastructure serves to reproduce the green and/or permeable acreage lost to the impervious concrete and tar landscape, perhaps also offering people the opportunity to commune with a naturalistic environment.

Despite its palliative end-goals, green infrastructure construction still has a myriad of costs, disturbances, and risks for residents in the shorter-term, such as noise pollution, reduced sidewalk navigation from damaged or shrunken sidewalks, or underground containment systems leaking or flooding their homes, causing wall collapses, ice in cold weather conditions, and general confusion and discomfort (Eckman et al. 2013). Sidewalk obstruction from new ROW green infrastructure creates mobility issues and trip hazards for residents, especially those who have difficulty walking or who use assistive mobility devices like wheelchairs (Etman et al. 2016), especially in the fall and winter when the sidewalks may also be covered in slippery leaflitter and ice. Additionally, wildlife habitat potential is advertised to attract "pollinators such as birds, butterflies, bees, and other beneficial insects" (Gowanus Canal Conservancy and Trees of New York 2018, 32), but captured trash and certain botanicals can also attract stray animals and vermin like rodents or roaches. Noise pollution, garbage piles, sanitary system insufficiency, water pollution, and air pollution have been collective burdens and risks in New York City since the onset of industrialization in the 1800s, (Merchant 2005; 1996; Bryant 2020).

Many residents have been publicly outspoken about the issues, from unsightly trash in the bioswales, to the disruption of daily construction noise, to deterring customers from entering small businesses. Residents and small business owners alike have gone toe-to-toe with construction crews during bioswale installation (Nir 2017; J. Rosenberg 2016; Eckman et al. 2013; Brady 2017).

The person with a jackhammer has just been sent on a job and the storefront owner is just trying to keep foottraffic pointed toward their business, and they're fighting each other for momentary power on the sidewalk, in a potentially dangerous interpersonal conflict. These
laborers are on the frontlines while absentee corporate landlords and developers sit in offices unknown and unscathed.

In Red Hook, Brooklyn, tree canopy dropped by approximately two-thirds from 2019 to 2020 after a contractor removed 457 trees "to make room for transformers, staging and subsystem ... infrastructure" (Barnes, Blondel, and Lundi 2021, 28) related to green infrastructure and waterfront development projects. The resulting "tree graveyards," (Barnes, Blondel, and Lundi 2021)—piles of downed trees in otherwise vacant or derelict lots-were staged in front of The Red Hook Houses (a public housing project), eventually sold to another agency, and caused much trauma to the residents who were exposed to the cascading failures: vacant/derelict land (VDL), the tree graveyard, grand-scale construction, and gale-force winds in a pandemic (Barnes, Blondel, and Lundi 2021; Maantay and Maroko 2015; Petroski 1985). The lack of canopy at the Red Hook campus during extreme heat (EH) events with surface temperatures over 90° made the landscape unusable for recreation-which could have been respite for local residents in summer of 2020, which was especially dangerous owing to the isolation necessitated by Coronavirus Disease 2019 (COVID-19) pandemic restrictions when they were mostly sequestered to their homes and block group.

The interim time between the onset of a project and its completion is an acute disturbance to nearby residents. A, let's say, 2-year construction project may seem short in a >30-year development plan, but means two years of sleep disturbance and inaccessible recreation areas for people who have to live there during that time. Time-restricted noise ordinances prioritize people who sleep during hours that appeal to those working out of the home from 9:00am to 5:00pm, but do nothing for those working second and third shifts (such as a $3 \mathrm{pm}-11 \mathrm{pm}$ work schedule) or doing domestic work. Sudden rouses and other sleep disturbances from noise have risks to
cardiovascular and mental health with the same severity as sleep apnea and asthma (Halperin 2014). The hazards of constructing health-promoting amenities are disamenities. After years of construction noise, residents may be priced out and have to leave, while new people in the neighborhood get to just walk in-"oh what a nice area this is!"

The years are short, but the days are long: green infrastructure is not a quick enough fix that existing residents do not bear any brunt of distress from construction processes. The newcomers get only the finished product.

Simulating Nature in Urban Environments

Exposure to neighborhood green space has a positive relationship to mental health outcomes in an area (Beyer et al. 2014). The increase in time at home and in isolation from social networks during the COVID-19 pandemic emphasized that access to green space near the home was a major influence on physical health, mental health, and safety (Fagerholm, Eilola, and Arki 2021; Adams, Macey, and Thornton 2021; Barnes, Blondel, and Lundi 2021; Benjamin, Cruz, and Veglia 2021). Planners, marketers, and developers explicitly use this principle in designing and marketing urban green spaces (Willamette Partnership and National Recreation and Park Association 2021; Bakhtiari 2019).

The concept of producing, recreating, or simulating nature in urban environments has been extensively examined (Cronon 1996b; D. Rosenberg and Harding 2005). Some argue that urban greening creates a visual simulation of nature (usually in the form of green spaces) that serves to camouflage the actual physical and emotional disconnect that urban dwellers have from a truer form of nature, and hopes to create an opportunity for people to interface with some semblance of nature (Olwig 1996; Hayles 1996). However, this is not just a simulation. It is 4052 small productions of nature across Brooklyn that might allow residents to be relieved from urban
fatigue. Again, green infrastructure recreates some of the "natural" water processes that are lost during urbanization. Studies have shown that while visual stimulus from scenic vistas is linked to mental health and neighborhood attractiveness, other sensory stimuli-sounds, smells, and tastes, including inhalation in higher air quality conditions-also promote mental and physical health, and warrant more study (Yagley et al. 2005; Franco, Shanahan, and Fuller 2017).

There are three ways in which the built environment can contribute to positive mental health impacts: 1) features for social interaction and control (like those found in community gardens), 2) social support (as found in healthy home and community centers), and 3) restoration or "recovery from cognitive fatigue and stress. Laboratory and field studies have demonstrated that exposure to natural elements such as trees, water, and natural landscapes replenishes cognitive energy" (Evans 2003, 545).

The aestheticized elements of green resilience are highly curated. Designers and GIS analysts use terrain modeling to simulate viewsheds and aesthetics of new development (Maantay and Ziegler 2006). The design principles for waterfront public spaces related to New York City's plan to green the city operationalize the aesthetic part of the landscape to construct an experience (Hayles 1996, 410-11). For example, some factors in the constructed viewshed include creating large open gateways that can be seen from downhill, varying the relationship between walkways and the waterfront, avoiding waterfront edge railing that would interfere with sightlines of seated patrons and avoid evoking the separation between the natural and built environment, and encouraging "the experience of the land from the water and the water from the land [to] treat the edge as a zone of exchange, not separation" while also incorporating edge technology that anticipates storm surge and walls of protection against seas level rise (NYC Department of City Planning 2011, 27). But for whom is the experience constructed?

Design Principles for Waterfront Public Spaces

The following principles are intended to guide the development of publicly accessible waterfront open spaces. Design measures reflecting these principles should be incorporated where appropriate and to the extent possible.

Access:

- Provide opportunities for the public to get to the water's edge.
- Make open spaces and upland connections inviting-entrances to open spaces in particular should clearly convey that the public is welcome.
- Vary the relationship between walkways and the waterfront edge, especially in areas where plantings can be installed next to the water.
- Connect shoreline path systems.

Amenities:

- Provide a sufficient quantity and variety of seating, including seating with backs and armrests, as well as companion spaces for those using wheelchairs or similar devices.
- Offer amenities and activities appropriate to the neighborhood and context.
- Install lighting that does not create excessive glare.
- Employ fences and sea rails that are as transparent as possible; avoid placing top rails at the eye level of those seated.
- Provide views of the water from lawn areas, unobstructed by benches or trees.
- Consider a varied landscape design vocabulary, including edge treatments, as appropriate to the program, site, and context.
- Incorporate or reference significant historic features or natural conditions associated with the site.
- Comply with City policies that discourage the use of tropical hard woods; encourage the use of sustainable and renewable materials.
- Provide both sunny and shaded spaces.

Environment:

- Promote the greening of the waterfront with a variety of plant material, including shrubs and groundcover, for aesthetic and ecological benefit.
- Use water- and salt-tolerant plantings in areas subject to flooding and salt spray.
- Maximize water-absorption functions of planted areas.
- Preserve and enhance natural shoreline edges.
- Design shoreline edges that foster a rich marine habitat.
- Design sites that anticipate the effects of climate change, such as sea level rise and storm surges.

Water Access:

- Provide connections between land and water, including opportunities for water recreation where appropriate.
- Provide water-dependent and water-enhancing uses at the water's edge such as fishing sites, boat launches, and get downs to the water.
- In the design of the spaces, encourage the experience of the land from the water and the water from the land. Treat the edge as a zone of exchange, not separation.
- Encourage dock construction and tie-up space for recreational, educational, or commercial vessels, as appropriate to the context, on piers, platforms, and bulkheaded shorelines. Provide ladders or other means of safely accessing the water or watercraft on such sites.

Figure 13: New York City's "Design Principles for Waterfront Public Spaces" as delineated in Vision 2020: New York City Comprehensive Waterfront Plan. (NYC Department of City
Planning 2011)

Green design aesthetics are a major tenet of green resilience in New York City and other urban areas (Kaplan 2006; Zuk et al. 2015; Zukin 2011). Design has a vocabulary that is valueladen. As distinct from a concept like beauty, the philosophy of aesthetics is linked to semiotics that convey particular values to an audience, whether stemming from a particular design paradigm or creating allusions to certain periods or historic figures. Green infrastructure has intrinsic aesthetic value and also contributes to the aesthetic values interpreted when looking at the landscape. The extrinsic value of the green infrastructure is the varied contributions to a green resilience aesthetic. The semiotic function of green aesthetics signals to potential residents of the modern gentry that the area fits in with their values-the area is perhaps up-and-coming, health-promoting, modern, quiet, comfortable, and useful for recreation (Zuk et al. 2015; Mead, Cosgrove, and Daniels 1989). The accessibility of green space and effectiveness of health promotion from urban green space only really works when the space is perceived as attractive and safe (Cohen et al. 2014).

Grey infrastructure exemplifies modernist architecture characterized by concrete hardscapes, modularity, and utilitarianism, as a distinct departure from Victorian-style personalization and frills. Modernist architecture is marked by modularity-an element can be dropped almost anywhere. Green infrastructure architecture elements are postmodernist-it uses utilitarianism from modernist design, but it takes a departure that integrates design choices meant to be distinct to the place where it is placed elevating their status to environmental amenities in a way intentionally under-aestheticized utilitarian projects do not (Gregory 2012, 567). That is, beyond their stormwater intervention function, they are supposed to be visually appealing. While modernism and modernization are concerned with architecture that is purposeful and marked by efficiency and intentionally "strict geometries" (Creswell 2013, 172) whose modular nature can
be placed anywhere, postmodernism is concerned with designing for local context with a "relativistic" multipurposeness (Gregory 2012, 567).

Each green infrastructure unit design must complement the suitability and character of the site. So, green roofs can only be built on buildings that can withstand them, bioswales can only be installed where the water table is low enough and the bedrock is penetrable, and green streets can only be built where there is an enormous public street space. A regular street is amenable to bioswales holding one tree, while triangles and traffic circles can accommodate small but lush rain gardens (refer back to Figure 5: A stormwater Greenstreet in Williamsburg, Brooklyn. Photo by Rose Jimenez 2022. An anti-essentialist attitude associated with postmodernism is taken toward green amenities: while their intrinsic purpose is to mitigate water pollution, their extrinsic purpose is beautification.

The philosophy of aesthetic value judgements has been widely debated for centuries, owing to the impossibility of empirical measurement or objective confirmation as can be accomplished in, say, mathematics (Slote 1971; Ginsborg 2019). However, the material spatial practices of aesthetics and their semiotic functions used in green infrastructure design and justification are quite empiric.

So, while modernist development models are critiqued for being products of technocratic governance-rooted, authoritatively, in technological advancements rather than holistically green infrastructure is framed as a move to a postmodernist "paradigm of urban ecological security" that moves past technocracy (Hodson and Marvin 2009). However, green infrastructure siting that claims to be rooted in purely topological considerations is technocratic as well (Vargas-Hernández and Zdunek-Wielgołaska 2021).

Maybe the postmodern aesthetic serves to camouflage that fact, which is why green gentrification theory poses:
"...economic and neighborhood attractiveness co-benefits ...boost political salience and financial feasibility. Yet, as social-ecological resilience is frequently framed in the context of reducing vulnerability to "natural" disasters and extreme events, it is thus decoupled from the political-economic landscape of cities' historic and ongoing patterns of uneven and unsustainable growth," (Shokry, Connolly, and Anguelovski 2020, 1).

Bioswales: Design Principles in Practice

Consider the bioswale. Comprised of a tree or other native vegetation, stormflow inlets, overflow outlets, a gravel bed, subsurface retention stones, and subsurface pipes, bioswales are curbside rain gardens that serve as a staple component of the NYC Green Infrastructure suite.

As further detailed in the schematics (Figure 14), the top section is comprised of a tree, soil, and vegetation that act as the main aesthetic components, and also as a tool for bioretention and capturing excess stormflow and its contained pollutants. Roots absorb water up through the plants while the soil holds and percolates water through to subsurface components, which include permeable hardscaping and pipes that release some of the captured water into the combined sewer. Some of the water transpires through the tree and plants. The perimeter of the bioswale is a low impermeable concrete barrier with curb inlets/outlets, iron tree guard, and signage.

The purported benefits of bioswales exemplify many design principles for resilience planning: reduced UHIE, reduced stormwater treatment needs, green jobs, wildlife habitat, carbon sequestration, improved air quality, reduced building energy, and neighborhood beautification (Gowanus Canal Conservancy and Trees of New York 2018; Eckman et al. 2013).

Figure 14: Schematics of two popular types of bioswale used in New York City. Top: a bioswale with a subsurface storage gabion. Bottom: a Bioswale with subsurface pipeline. From "Standards for Green Infrastructure" (NYC DEP 2012, 2012). Source: Archive of NYC Drawings

Green resilience developers list these as the benefits of bioswales:

1) Reduced temperatures and energy use
2) Enhanced habitat
3) Increased property values
4) Improved streetscape aesthetics, and
5) Green jobs (Gowanus Canal Conservancy and Trees of New York 2018, 32).

So, by design, the landscape of green infrastructure is intended and expected to raise property values and improve aesthetics, which is a major contributor to attracting residents (L. L. Colburn and Jepson 2012; Jimenez 2021).

There are two types of attractiveness when we talk about gentrification: land-use potential that is attractive to developers, and in turn, designs by developers that are attractive and accessible to potential new residents. That increased property values are an explicated benefit of bioswales means that increased property values are a tenet of the green infrastructure landscape. Nearly all indexes of gentrification or socioeconomic risk include fluctuation of property values or housing costs, where upward costs are associated with gentrification and depreciation is associated with dilapidation (Klein Rosenthal, Kinney, and Metzger 2014; L. L. Colburn and Jepson 2012; Johnson et al. 2021; Block 2020; Chapple and Thomas 2021).

Bioswales are also the site of an interagency endeavor between NYC DEP and NYC Schools. Inspired by the use of porcelain to line oyster farms in Jamaica Bay, the Department of Environmental Protection is lining some bioswales with upcycled porcelain from NYC Public School toilets in lieu of stone. One effort to reduce sanitary waste was to change NYC School toilets from models that use over 5 gallons of water per flush to models that use about 1 gallon per flush. The expense of this endeavor was too great for NYC Schools, whose budgets are
already stretched thin, so the Department of Environmental Protection paid for the new toilets, fronting the endeavor for 80% less sanitary wastewater from schools, and reclaiming materials for bioswales (NYC Water 2017). There's a lot of money in the environment.

Ontologies of Resilience and the Resilience Paradigm of Development

Resilience is now part of the "daily lexicon" of the multitude of actors involved in land stewardship (Branco and Waldman 2016). In an age where climate emergencies are increasing in both frequency and magnitude, the paradigm of development that responds to it appropriates concept of organism resilience and applies it to the built portion of the environment. Resilience was originally used as a bio-ecological concept, and is now "applied to coupled humanenvironmental systems," and contributes to analyses of human population vulnerability by "avoiding the artificial divide between a physical and social emphasis" (Berkes 2007, 284).

Biological resilience is a property measured by "the persistence of systems and their ability to absorb change and disturbance and still maintain the same relationships between populations or state variables," (Holling 1973, 14). That is not to say that the built human environment is separate from earth systems-in fact, the Anthropocene is a rich field of study.

But while Holling's flagship bio-ecological resilience study described resilience as distinct from stability, the resilience paradigm of planning and development treats the idea of stability as one of its tenets. Holling found that high variability and low stability within a species, coupled with high tolerance for unstable environments in individual organisms, increased their level of resilience (synonymous with survival rates). Highly stable organism communities were found to have low resilience because they were not elastic enough to bounce back without irreparable damage or death. This kind of stability is rigid. In contrast, within resilience planning,
stability is idealized as a characteristic of resilience alongside flexibility (Biñas 2018) or a dynamic that incorporates resilience (B. Walker et al. 2004).

Biñas argues unconvincingly that non-profit development work is traditionally centered on poverty reduction, but that climate change and the increase in natural hazards is risky to the extent that it compromises poverty alleviation strategies. To planners, this warrants an urgent and immediate shift to a planning paradigm of resilience against climate disasters, defining "disaster" as a condition in which communities and individuals are unable to cope and bounce back from a hazard event. While the conventional solution to a disaster involves humanitarian aid, this form of emergency management has a high occurrence of malpractice, (Biñas 2018, 5). And the eventbased nature of humanitarian aid work fails to solve long-term risk from natural disasters.

However, development under the resilience paradigm may be (re)creating risks to housing stability. The shift to climate resilience intends to put a pin in poverty reduction planning, shift to climate resilience, and then go back to poverty reduction once extreme weather resilience has been implemented (Biñas 2018). But do paradigmatic shifts really rebound in this way? This plan to pause and circle back does not account for the transformations in the economic and social realms that may happen both because of and independently of that green development, including a likely increase in the wealth gap.

Paradigmatic shifts create a new orthodoxy and the transformations during one paradigm theoretically prevent old paradigms from returning to business as usual (Kuhn 1994). Perhaps poverty reduction principles will come back, but the old paradigm will not. Reneging on a paradigmatic shift doesn't work because a paradigm makes its conventions unquestioned. In the resilience paradigm, greening is the convention. A "resilience paradigm requires assessment and monitoring of the social and ecological attributes of the system that confer resilience and the
mechanisms by which a system undergoes a regime shift to a new state-parameters such as thresholds, diversity, variability, social capital, modularity, slow variables, adaptability and transformability," (Parsons et al. 2016, 209). According to Mitchell (2003), the landscape makes this unquestionable and that is its purpose.

Vulnerability and resilience are often treated as sliding-scale reciprocals in evaluations of environmental hazard risk (Folke 2006; Gallopín 2006; Clay and Olson 2008; L. Graham, Debucquoy, and Anguelovski 2016). That is, the more resilience a community has, the less vulnerability it is calculated to have, and vice versa. Vulnerabilities can include exposure or sensitivity to risk without ability to recover, while resilience is the capacity to deflect or quickly recover from hazards. Environmental models recognize that (urban coastal) resilience and vulnerability are social-community attributes that both affect and are affected by external forces (B. Walker et al. 2004; L. L. Colburn and Jepson 2012).

Gentrification is a key external force of coastal community vulnerability that leads to restricting of the demographic makeup of a community to an extent that fragments formal and informal community support networks, exacerbating risks to health, wellness, and stability (L. L. Colburn and Jepson 2012; Baez 1996; Johnson et al. 2021; L. Colburn and Clay 2012). Therefore, greening strategies that contribute to gentrification pressure are antithetical to the idea of resilience.

The resilience paradigm of development rests on the ontology that extreme weather events related to climate change drained resources from the momentum of development. This conception indicates a shift from understanding climate change as a force that needs to be stopped to an orthodoxy we have to figure out how to live with. Calls to engineer for multihazard resilience focus on adding "man-made" disasters like fires, terrorism/war, and
nuclear/power plant explosions to the docket of hazard risk and differentiate building/structure resilience from community or organizational resilience in these events:
"After each calamity peoples restore their built-up environment. However, required resources (human, material, financial, time) for restoration are permanently increasing. Restoration of the vital functions of the key elements of the built environment (so called critical infrastructure) should be made in first instance in order to provide the right conditions for other elements of the built environment to get restored," (Kirillov, Metcherin, and Klimenko 2013, 127).

However, if the civic built environment is the "ultimate protection layer for peoples... provid[ing] the vital settings for human life and social activities," (Kirillov, Metcherin, and Klimenko 2013, 122) this neglects the need to understand and treat community housing stability as a type of critical infrastructure that gentrification threatens. Rather than reduce risk, the risk is merely diverted to another sector.

The momentum of perpetual development may be unsustainable regardless of ecological scenarios. Social, economic, and city planning restrictions are also hinderances to development. I believe that the momentum of perpetual development is actually sustained by unsustainable development that triggers boom and bust cycles. When it comes to resilience and sustainability, theorists fail to explicate their definitions, and the work begs the question: Resilient against what? Sustaining what? And for whom?

Chapter 4•Political Ecology of Green Infrastructure

The politics of preservation and restoration short circuit the radical possibilities of producing nature, authorizing instead, a privatized rescripting of nature.

Whose Nature, Whose Culture?
(Katz 2005, 56)
While landscape ecology concerns itself with spatial distribution of flora and fauna species, and cultural ecology concerns itself with human adaptions to environments, political ecology "emphasize[s] the role of political economy as a force of maladaptation and instability" (P. A. Walker 2006). Sited using a combination of financial, social, and ecological logistics, municipal greening initiatives in New York are a political ecology. Through this lens we can unpack the elements of the resilience paradigm wherein places are competing to be the "greenest" and real estate becomes just another greenwashed product for sale (Castree 2020).

In geographic applications of political economy, it is theorized that capitalist investment occurs by means of a two-phase spatio-temporal fix. Rather than sit on an accumulation of money, the people that hold it invest funds, effectively affixing the capital to a certain place at certain times...
"to build a fixed space (or "landscape") necessary for its own functioning at a certain point in its history only to have to destroy that space (and devalue much of the capital invested therein) at a later point in order to make way for a new 'spatial fix' (openings for fresh accumulation in new spaces and territories) at a later point in its history," (Harvey 2001, 25).

In the first phase-the spatial phase-of the spatial fix in the resilience paradigm, where the city government and developers are tied to greening obligations, and up-and-coming neighborhoods seek green space for both legal compliance and tenant attraction, green infrastructure investments are the place to affix your money (Oza 2011).

In the 1990's, Latour projected that ecologism would become a nonpartisan issue normalized in government with "the creation of specialized administrative bodies, like those for bridges and highways or water and forests, which would be all the more effective, since they would be cast in the mold of the well-established depoliticizing tradition of public sector administration," (Latour 2005, 220-21). In 2014, The Office of Climate Resiliency was founded within the New York City Office of the Mayor. Countless research institutes are dedicated to understanding climate change, from scholarly theory, to biogeochemistry, to clean-up crews. Green work is now an arm of our government and an economic boon.

While environmentalism is still far from politically ubiquitous, gentrification scholars have theorized that the global competition to be the greenest city and the need to comply with government rules like the Clean Water Act, combined with the post-modernist/resilience paradigmatic need for a green aesthetic are central to "boost[ing] political salience and financial feasibility," (Shokry, Connolly, and Anguelovski 2020, 1) for green infrastructure.

The United States Federal Emergency Management Agency (FEMA) suggests to developers that stormwater management solutions can be funded partially through residential utility fees and the leveraging of state-specific grant programs, (FEMA 2021, 202). Green infrastructure development (which includes site selection, geological examination, environmental impact assessment, design, architecture, construction, and ongoing maintenance) is funded in a myriad of ways and at different levels, but private entities that fund infrastructure have their own financial interests to maintain. Says Katz, "for a relatively small price, corporate capitalists buy the good will, averted glance, and forgiveness, as well as patronage, of much of the population, with changes in packaging and tokenistic 'green' gestures" (Katz 2005, 50).

A political ecology lens highlights "the dynamics among actors involved in environmental governance-including the state, civil society, and the public," and in this case, public-private partnerships for greening. "Municipal urban forestry campaigns can be understood as strategies used by competitive, global cities investing in environmental quality as part of city image-making, within a political-economic context of rescaled, post-industrial, neoliberalism," (Campbell 2015, 243). In this context, neoliberalism refers to capitalist practices in the United States that encourage government deregulation coupled with strategies to reduce government spending. This is "spatially manifested in the fragmentation of space at multiple scales, from the body to international borders," (Oza 2011, 256).

Uneven development of green infrastructure across the county is owed to state-sanctioned uneven funding as much as it is owed to uneven underlying geological formations, fragmenting the borough into a northwestern green "modernized" Brooklyn and a forgotten southeastern Brooklyn. When "green" is the contemporary mode of modernization, this leaves southeastern Brooklyn behind as the northern area modernizes.

Paradox of Recovery Narratives

United States historiography often evokes a narrative of recovery or salvation. Historians of the American environment show that what we call "natural" is framed as inert, pristine, or untouched, when in reality, pretty much the entire United States has been acted upon by humans, even prehistorically (Merchant 2005). Even if an area is known as a reserve, it has been delineated, stewarded, and defined to be as such. Natural resources (including amenities and reserves) are manifested by human intervention. "Up close, they replaced existing systems of human access and livelihood and ecological dynamics of replenishment with the cultural apparatus of capitalist expansion," (Tsing 2005, 53). Urban greening practices and ontologies
resilience treat the earth as an inherent autonomous "agent of regeneration" (Merchant 1996, 133).

Urban greening is treated as a strategy of recovery from urbanization. "As a powerful narrative, the idea of recovery functioned as ideology and legitimation for settlement in the New World, while capitalism, science, and technology provided the means of transforming the material world" (Merchant 1996, 137). In particular, environmental engineering and biotechnology serve to transform the terrain and the vegetation so that it can thrive in an otherwise hostile urban environment (Merchant 2013). These strategic ecological boom-andbust cycles reflect the financial investments in them as well. This is perhaps why the spatial fix is "one of the central contradictions of capital" (Harvey 2001, 25). Centering "the operationalization of resilience-how resilience is 'practiced,'" (L. Graham, Debucquoy, and Anguelovski 2016,113) can help open up a discussion of the back-loop of social-ecological system development at the community level and the resilience paradox at the individual level (Bonanno 2021; Folke et al. 2005).

Disasters open opportunities for financial prospecting. Climate disasters open opportunities to make money by incentivizing multiple realms of stakeholders to jump on the climate adaptation bandwagon (Klein 2008). FEMA directs city governments to "leverag[e] nature-based solutions in an era of climate change," (FEMA 2021, 2). However, FEMA has been heavily criticized for neoliberal policies that produce and then privatize environmental risks, especially related to flooding, across the United States in urban, rural, suburban, and industrial landscapes (Checker 2017; Fink 2016).

Green Futures

Neoliberal practice, which decreases government spending by looking for private enterprise investments for public goods, often results in partnerships between public and private institutions. Many private institutions evaluate what they stand to gain from participation in this partnership by evaluating economic "futures."

Economic "futures" are the (assumed or derived) future prices or rates of an object in a market. Weather derivatives for financial futures (based on future models of weather and climate) are a tool financiers use to protect themselves against expected damages caused by future climate and weather conditions (Oxley 2012). Financial contracts can be made between market investors and operators to exchange items (including land, real estate, and infrastructure) to ensure things are bought and sold at predetermined prices at a certain date or time period, or to determine insurance rates (Benth and Saltyte Benth 2013). With an onslaught of extreme weather coming to New York, as well as ecological resilience mandates from the federal government, this creates an incentive for investors to get into the urban greening arena. The United States has a history of investing in futures to maintain the (self-proclaimed) title of world leader in modernization (Newfield 2005). This necessitates investing in economic futures. Since the new paradigm is the environment, ecological futures are the new thing to invest in (Katz 2005). Green infrastructure has become the future and areas without it, like southern Brooklyn, are left behind.

Public-Private Partnerships for Green Infrastructure

As investors have an incentive to invest in urban greening, the City of New York is incentivized to reach out to investors to fund their green infrastructure solutions. It is not only their money we need, but the resources, labor, and partners these private investors and developers have available to do the actual work. Contractors are also fully liable for property damage due to construction
activities (NYC DEP 2021a), so the liability is displaced from the City. Many New York City government agencies have official public-private partnership $\left(\mathrm{P}_{3}\right)$ divisions to maintain ongoing relations with private enterprise.

Research from Water Law and Policy Monitor (a Bloomberg BNA publication) purports that community-based P_{3} models for funding green infrastructure disrupt the status quo (a piecemeal project-based approach), but they still heavily rely on a market-based approach to investment using ecological derivatives to analyze futures. The plan involves employing toplevel specialists "who could most efficiently scan the landscape for scenarios providing the lowest-cost opportunity for [green infrastructure] implementation. Some turn-keys could potentially specialize in land use types/scenarios to further increase efficiency" (Lueckenhoff and Brown 2015, 6).

The New York City Department of City Planning expanded requirements for vegetation and permeable surfaces in waterfront developments, front yards, and commercial parking lots, creating an imperative for real estate development to go green (NYC Department of City Planning 2011). There is a mutual imperative encouraged between the public (government) and the private (enterprise) to green ${ }^{1}$ an area. The resilience paradigm creates the convention, then city government mandates green infrastructure, then the green infrastructure needs to be funded, private investors need to build green infrastructure, and the city needs to leverage private funding for development.

The combination of public and private investment in green infrastructure complicates the equity of green infrastructure installation (Cherrier et al. 2016). Private financial resources for

[^7]urban greening are leveraged by licensing land within or adjacent to parkland and open spaces owned by the city. This can create citywide inequity where parks and forested areas in surrounding neighborhoods are stewarded with private investment funds while others are unmaintained. Private investors in and around parks then have a profit incentive to recoup their investment, which, for them, necessitates things like high rents or tax breaks garnered from green elements or income bracket-based rentals that can block out poorer residents (NYC Department of City Planning 2011). Income-based rentals are based on the median income for residents in the area, so even the people getting supposedly affordable rent in an area are wealthier than average if the area is wealthier than average.

A bioswale can run about $\$ 60,000$ per unit, which, along with construction disturbances, has led to local protests of their installation (J. Rosenberg 2016). Historically, an aversion to paying taxes for public environmental amenities has also been linked to suburbanization, urban sprawl, "white flight," and related tax breaks for the wealthy to discourage them from leaving their residence or and dropping out of P_{3} 's, so seeing reinvestment in public goods, like parks, can also raise concerns of eventual displacement for longtime working class residents (Checker 2020, 73; Pulido 2000).

One such project funded under the P_{3} model was a set of major green roof installations at Admiral's Row ${ }^{2}$, which has been rezoned for residential purposes. While there is expulsion of

[^8]poorer residents from existing residential areas, there are also areas newly zoned for residential use on the waterfront are being newly built up as luxury residential areas.

One 11,736-square-foot green roof project received $\$ 351,788$ from the New York City Green Infrastructure Grant Program and $\$ 537,000$ funded from the private company associated with the property. It was designed and constructed by private contractors. The other green roof nearby was paid for in-full by a Green Infrastructure Grant of $\$ 344,881$ (NYC DEP 2021b).

To qualify for green roof retrofit funding from the New York City Green Infrastructure Grant Program, the following criteria must be met: a private property owner must pre-apply, and projects must have a minimum of 1.5 " soil depth, an area of $5,000 \mathrm{ft}^{2}$, and cost a minimum of $\$ 50,000$ (see Table 1). Private rooftop gardens and even full-fledged rooftop parks are amenities used to attract tenants not just to neighborhoods, but also specifically to new blockbuster luxury condominiums like those in the Brooklyn Navy Yard, where a one-bedroom one-bathroom (1blba) apartment can now be rented for $\$ 4,500$ a month.

Table 1: Green Roof Reimbursement Rates from Green Infrastructure Program
Reimbursement Rates ($\mathbf{\$ / f \mathbf { f } ^ { 2 } \text {) for Green Roof Projects }}$

Soil Depth (Inches)	Price per Square Foot*
$1.5-1.99$	$\$ 10$
$2.0-2.99$	$\$ 15$
$3.0-3.99$	$\$ 25$
$4.0+$	$\$ 30$
* In projects between 5,000 and 20,000 ft . The reimbursement rate per ft ${ }^{2}$ of planted area over 20,000 ft t^{2} is calculated using 50\% of the rate shown above. (NYC DEP 2021b)	

NYC Green Infrastructure Grant Program

DEP's Green Infrastructure Grant Program provides funds for the design and construction of green roof retrofits on private property in NYC

ProgramBackground

The New York City Department of Environmental Protection (DEP) offers green roof retrofit funding for private property owners in New York City. The goal of the Green Infrastructure Grant Program is to incentivize private property owners to retrofit their roofs with green roofs to manage stormwater runoff.

Design Guidelines

Green roofs are vegetated systems built on roof tops, designed to capture and manage stormwater runoff before it enters the sewer system. Funding for green roof retrofits is determined based on green roof area and soil depth following the reimbursement schedule. A retrofit is defined as a project built on an existing building. All projects must contain a root barrier, drainage layer, filter layer, growing media, and vegetation. A structural analysis is required with each application.

*includes hard and soft costs.
"Inciudes hard and soft costs.

Website:
https://nyc.gov/dep/gigrantprogram
Email:
gigrantprogram@dep.nyc.gov

Environmental Protection

Figure 15: Green Infrastructure Grant Program Flyer (NYC DEP 2021b).

The buildings on Admiral's Row that received this green roof funding are anchored to the adjacent Wegmans Food Market, a high-end supermarket chain, which is another form of P_{3} planning. In shopping centers, anchor retail tenants are usually franchises of long-reputed companies renting the largest spaces in an area that are expected to draw shoppers to the surrounding smaller businesses and residences. In some cases, anchor businesses will be so fundamental to the plan for an area that landlords will write stipulations in leases that other tenants can be relieved of contracts if the anchor tenant leaves (Agrawal and Cockburn 2003). These big-box retailers (stores that take up large swaths of physical space and industry space), also called "category killers" ${ }^{3 "}$ (Kroll 1999) in their industry because they crush any competing small businesses, are chosen because they have a built-in customer base and low competition.

Proximity to supermarkets is also a strategic marketing point for real estate agents, where they even use supermarket brands to gauge where the next "hot" market neighborhood might be. Real estate surveys find that the importance of supermarket proximity in looking for a home fall only behind affordability, proximity to schools and workplaces, and neighborhood crime rates (Martin 2017; Rent Editorial Team 2014). Among those surveyed in 2017, Wegmans' markets are the highest rated supermarkets among prospective property owners, preferred by 77% of participants (Martin 2017).

In this case, the supermarket creates a quintessential resource for a large, newly residential area that formerly had no amenities of that type, and in conjunction with urban greening amenities, several perks for attracting new residents to buildings and keeping the real

[^9]estate market there viable and valuable. In New York City, where most people are walking to the store on foot, walkable proximity is doubly important.

Land Use and Management

In order to keep vegetated roofs viable and valuable, some sort of groundskeeping is needed to maintain them. So, private property owners who receive grants for green roofs must do it themselves, hire a contractor or create a team to do so, or give these extra specialized duties to staff groundskeepers.

In addition to the Green Infrastructure Program, a suite of city plans under the title 'PlaNYC 2030' incorporated a number of greening initiatives and ecosystem services for resilience against climate change, including the MillionTreesNYC (MTNYC) campaign for urban reforestation and afforestation ${ }^{4}$. This project had a goal to plant one million trees in New York City, and surpassed that goal.

However, many trees failed to thrive due to soil properties, disturbance histories, and management regimes (Mejía et al. 2022). Approximately 88% of all trees survived after the first year and, of those, 90% survived through the second year. While this is a generally high and acceptable success rate, a specific pattern of very low survival rate in high-disturbance areas underscored that land-use history and management were underestimated and need to be taken into greater consideration in urban greening projects (Mejía et al. 2022; Simmons and Auyeung 2017). Since these assets are public municipal parkland, "management" refers to undertakings by

[^10]the NYC Parks department, such as addition or removal of trees, mowing, paving, and other municipal land management techniques. "Land-use history" refers to legacy effects from urban land-use change and anthropogenic disturbances: landfill, former farmland, prior residential or industrial areas, etc. (Yang et al. 2017). Additionally, many trees are removed during various construction projects throughout the city, which lowers the net gain of tree coverage (see, Grey and Green Urbanism in Chapter 3).

The Luxury Effect and an Ecology of Prestige

In both Los Angeles and New York City, high urban vegetative success rates have been observed to be concomitated with wealthier residential areas despite very different ecological conditions.

A soil legacy effect type known as the "luxury effect" has had a significant impact on urban vegetative success. Luxury effect is a phenomenon in which wealthier residential areas in urban areas have higher quality soils, yielding higher afforestation success and, therefore, higher rates of tree canopy coverage (Yang et al. 2017; Grove, Locke, and O'Neil-Dunne 2014; L. W. Clarke, Jenerette, and Davila 2013). While the luxury effect is largely found in arid cities that do not have ecological disturbances from winter effects like those encountered in the northeast coastal region, an analogous phenomenon known as an "ecology of prestige" is found in New York City.

An ecology of prestige is a "theory of lifestyle behavior which hypothesizes that many locational choices, environmental management decisions, and expenditures on publicly visible environmental relevant goods and services at household and neighborhood levels are motivated by identity and social status associated with different lifestyles and lifestages," (Grove, Locke, and O'Neil-Dunne 2014, 404) in order to uphold visible neighborhood prestige.

Precarity in Stewardship

With Vision 2020, the City vowed 20 years of commitment to green infrastructure, but what happens after that? A chronic issue for new green space budgeting is finding reserve revenue for ongoing maintenance and improvement (NYC Department of City Planning 2011). Some of this is supplemented by large numbers of unpaid court-mandated community service personnel and parks volunteers, and non-profit parks partnerships (like the Prospect Park Alliance, Partnership for Parks, and AmeriCorps), but these can be too precarious to depend on exclusively and rely on morally compromised largely unpaid labor practices.

Are vegetated projects doomed to a brown out? Over 90% of the green infrastructure units in Brooklyn are ROW, easily subject to damage from vehicles and the public. A unique property of vegetated green infrastructure compared to grey or blue infrastructure is its animate, perishable, ecological trajectory. If the infrastructure assets fail to be properly stewarded in perpetuity, they will fail to thrive, and the labor and monetary investments in them will have been wasted (at least from the perspective of people who value the green space as an amenity).

A lapse in stewardship can cause a complete failure of the living components of a green infrastructure unit-they are ephemeral. While native plant cultivars are selected to suit the environment, without stewardship, damages (intentional and accidental) and heavily compacted soils from vehicle wheels, pedestrians, snowbanks, trash staging, and other anthropogenic impacts can stop the vegetative portions of green infrastructure from continuing to thrive.

In special regulations applied to the waterfront area, as seen in
Figure 16, the maintenance of these amenities is part of a plan "to create a desirable relationship between waterfront development and the water's edge, public access areas and adjoining upland communities," and "allow waterfront developments to incorporate [coastal
flooding] resiliency measures" (NYC Planning 2009). This is as much about increasing area desirability as it is about flood mitigation.

A system of "sustainable dilapidation" (Lawrence 2015), like the spatial fix, is theorized to produce amenities that only last as long as it takes to draw in investors and tenants and get a return on the investment. In decreasing public spending by pursuing private monies, the government relinquishes certain powers (i.e., regulation) to private stakeholders. A P_{3} model for green stormwater infrastructure development funding is a small but powerful part of a political ecology wherein privatization of infrastructure causes uneven funding that enables uneven governance (Appel, Anand, and Gupta 2018).

A sister theory to political economy, the theory of historical materialism posits that the way economics are organized within a community determines the organization of its institutions, such as infrastructure. Dialectical materialism, the method by which historical materialism is enacted, involves looking at contradiction of needs within historical events and material conditions within a landscape and shall be used in this project to display some of the fundamental contradictions of green gentrification.

62-00 GENERAL PURPOSES LAST AMENDED 5/12/2021 (๑) HISTORY \downarrow (\mathcal{O}

The provisions of this Chapter establish special regulations which are designed to guide development along the City's waterfront and in so doing to promote and protect public health, safety and general welfare. These general goals include, among others, the following purposes:
(a) to maintain and reestablish physical and visual public access to and along the waterfront;
(b) to promote a greater mix of uses in waterfront developments in order to attract the public and enliven the waterfront;
(c) to encourage water-dependent (WD) uses along the City's waterfront;
(d) to create a desirable relationship between waterfront development and the water's edge, public access areas and adjoining upland communities;
(e) to preserve historic resources along the City's waterfront;
(f) to protect natural resources in environmentally sensitive areas along the shore; and
(g) to allow waterfront developments to incorporate resiliency measures that help address challenges posed by coastal flooding and sea level rise.
Figure 16: Special Regulations Applying in the Waterfront Area. Source: NYC Dept. of City Planning 2021

Chapter 5 • Gentrification in Brooklyn

I can't take the smell, I can't take the noise, got no money to move out, I guess I got no choice. The Message
(The Message 1982)

Gentrification

The 2020 Brooklyn population was actually smaller than it was in 1940 (2,698,285 vs. 2,576,771 people) (NYC DCP 2022). So with the swaths of new residential development over the last century, why has it become so much harder to find suitable housing?

Gentrification is a complex spatial phenomenon. In general quantitative analysis, gentrification is defined as a measure of demographic shifts coupled with economic transformations (L. L. Colburn and Jepson 2012). The Center for Disease Control (CDC) defines gentrification as a sharp change in land value from low to high (CDC 2017). Gentrification can also be "explained as the result of an alteration of preferences and/or a change in the constraints determining which preferences will or can be implemented" (N. Smith 1979, 539). New residents, new landlords and new landowners, or new businesses tend to thrive in these conditions, while longtime residents (often with lower income than newcomers) are at risk of being displaced or destabilized.

The etymological origins of "gentrification" are quite illuminating. The term was coined in 1964 by Ruth Glass, here:
"One by one...the working-class quarters...have been invaded by the middle classes...[M]odest mews and cottages...have been taken over, when their leases have expired, and have become elegant, expensive residences. Larger Victorian houses, downgraded in an earlier or recent period-which were used as lodging houses or were otherwise in multiple occupation... are being sub-divided into costly flats or 'houselets'
(in terms of the new real estate snob jargon). The current social status and value of such dwellings are frequently in inverse relation to their size, and in any case enormously inflated by comparison with previous levels in their neighbourhoods. Once this process of 'gentrification' starts in a district, it goes on rapidly until all or most of the original working-class occupiers are displaced, and the whole social character of the district is changed," (Glass 1964, 22-23).

Gentrification here seems to refer back to the gentry and genteel shop windows described earlier in the book. The term "gentry" refers generally to a gentle/gentil/genteel or "civilized" noble class of (rich, white) landowners in elite social standing who rented out farmland. It evokes colonialism, respectability politics, classism, racism, and even genocide.

And while Glass is describing London prior to the 1960s, Victorian houses and modest row houses all over Brooklyn have been demolished and replaced with modernist modular buildings. The Victorian houses in Ditmas Park, Brooklyn have historical landmark protections, so while they're not being demolished, some have been turned into boarding houses, broken up into expensive rental apartments the way they were in London, or chartered out as vacation lodging through short-term rental accommodation services like the popular AirBnB or Hostelworld.

Jane Jacobs' theories of urban planning make extensive use of gentrification and integrated greening as alternatives to modernist urban renewal processes that involve razing of communities and rebuilding. The Death and Life of Great American Cities calls for integration of green space in the landscape as part of the "urban fabric" rather than fully segregating different land use types, partially to avoid severe overcrowding in zones that would otherwise be for discrete residential use (Jacobs 1992, 207). Jacobs believed that a mix of new and old buildings
and amenities in the same area contributed to urban vibrancy and increased economic diversity in an area, which is both a tenet of sustainable development and a departure from modernist planning that would prioritize demolition of older buildings and building of uniform, orderly buildings, as promoted for New York City by urban planner Robert Moses (Caro 1975; Jimenez 2021). While this promotion of gentrification is optimistic for social and economic diversity invigorating neighborhoods, gentrification has reached a point where the poorest residents are expelled or excluded from these invigorated areas. And without laws in place to protect longtime residents in an area, they remain vulnerable to housing disruption (Freeman 2015; Jacobs 1992; Stein 2019).

Gentrification is a process where a pattern of neglect or divestment of monies from poor neighborhoods exacerbates vacancies and drives down land value, followed by a period of reinvigoration by private investors encouraged by governmental and private financial incentives that increase the attractiveness of an area (N. Smith 1979; 1987). As opposed to persistent ideas of gentrification that lay the blame with new residents, which may be traced to early theorists of gentrification, more contemporary scholarship on gentrification describes gentrification as a topdown process, naming the top at difference scales: private investors, city government, federal government, financial institutions, and/or capitalism as a whole (Glass 1964; N. Smith 1987; Hammel and Wyly 1996; Stein 2019; Anguelovski et al. 2019; Checker 2020; Johnson et al. 2021).

Sometimes the process of gentrification involves wealthy investors buying property in new development areas and remaining absent from the building. Companies may also buy out clusters of existing homes in a neighborhood and sell them to people in a much different wealth bracket or ethnic background than current residents. Neighborhoods that are filled with families
may start seeing apartments and houses shared by young upwardly-mobile urban professionals ${ }^{1}$ who are not related, have no dependents, and may not even know each other, but have a higher combined total income than a family with one or two working adults and dependents.

So, hypothetically, if one head-of-household on a single salary, is looking to rent a 3bedroom apartment for their family, but three individual unrelated adult roommates (often unpartnered and/or without children) on the same salary each, then their budget for the same space is triple the family's. Single-income households also have a more unstable (read: less economically resilient) financial situation than a three-income household. One person losing their job in the family puts the family out on the street. One roommate losing their job obligates the rest of the household to pick up the slack or find a new roommate without having to turn over their entire lease. The competition is stiff. What's a better scenario for landlords?

In particular, poor women of color are the most likely head-of-household demographic to be evicted from their homes, especially if they are raising children in the household. "Today, most poor renting families spend at least half of their income on housing costs, with one in four of those families spending over 70 percent of their income just on rent and utilities." At the same time, "only one in four families who qualifies for affordable housing programs gets any kind of help. Under those conditions, it has become harder for low-income families to keep up with rent and utility costs, and a growing number are living one misstep or emergency away from eviction" (The Eviction Lab 2022). These family displacements disrupt the lives of children in a community—lowering school enrollment, perpetuating poverty, making it more difficult to obtain or maintain a job, making it more difficult to escape or avoid domestic abuse, cause

[^11]severe mental and physical distress, and/or (in the case of eviction) make it difficult to ever rent another unit under your name.

From 1999 to 2002, my multi-generational family-of-five leased a $1250-\mathrm{ft}^{2} 3$-bedroom 1bathroom top-floor cooperative housing (co-op) apartment on Bay Parkway near Gravesend Bay for a for $\$ 1000.00$ a month. The co-op shareholders were looking to sell the unit shares to us for $\$ 149,000.00$, without consideration of the $\$ 36,000.00+$ we had already paid them in rent and the maintenance we had done on the unit. Unfortunately, we were unable to make the down payment at that time, despite my aunt working parttime, my grandmother working fulltime, and my mother working overtime, and we had to leave, which was probably one of the most devastating blows to our quality of life. A decade later, environmental remediation and waterfront development related to damages from Superstorm Sandy transformed the economic landscape of the area. In 2020, the same unit was listed online at Zillow.com for over \$600,000.00-a $400+\%$ appreciation in value.

Green Gentrification

In the second phase-the temporal phase-of the spatial fix, the capital investments that get displaced into long-term projects take "many years to return their value to circulation through the productive activity they support" (Harvey 2003, 88; cf. Oza 2011). In the era of green climate resilience orthodoxy, investors affix their money to various forms of green infrastructure in up-and-coming neighborhoods where property values are promised to rise, as stated in driving design principles and long-term city plans (NYC Department of City Planning 2011; Fekete and Rosenzweig 2018). The promise of property value rise is what actually manifests the investment that raises the property value.

Public events for resident participation in development facilitated by formal organizations may foster an environment that stifles community members' capacity for input (J. T. Miller 2016). The compromises that occur during these processes leave residents with the fraught paradoxical and "painful choice of either resisting environmental improvements altogether or of being priced out of their neighborhoods," (Checker 2020, 82). These "green locally unwanted land uses (green LULUs)" are often indicators to socially vulnerable groups that they either have to modify their relationship with their neighborhood or risk displacement (Shokry, Connolly, and Anguelovski 2020, 2).

Health, safety, and sustainable development are intimately linked, which is illustrated by the socioeconomic gradient for many health outcomes where the poor are sicker and the wealthy are healthier (Molamohamadi and Ismail 2014; Zhang et al. 2013). Gentrification affects community health and the health of legacy residents in many ways by shifting access to appropriate resources (CDC 2017). The CDC names gentrification as a factor in negative environmental health impacts, where increasing environmental injustice limits access to affordable healthy housing, healthful and culturally appropriate food choices, transportation options, well-funded schools ${ }^{2}$, bicycle and walking paths, exercise facilities, and social networks, while also potentially changing stress levels, injuries, violence and crime, mental health, and social and environmental justice (CDC 2017; cf. Comber, Brunsdon, and Radburn 2011; Maguire et al. 2017; Baez 1996).

[^12]Creation and/or restoration of green amenities in conjunction with rapid economic and demographic transformation in an area constitutes environmental or "green" gentrification (K. Gould and Lewis 2016). Green gentrification is a process of ecological clean-up that follows the onset of gentrification in an area, which accelerates community changes or displacement, especially for the most economically and socially vulnerable (Maantay and Maroko 2018; Maantay 2002a; 2002b). However, it has also been theorized that greening sparks gentrification, rather than perpetuating gentrification, or that only certain types of greening, like large parks, are related to gentrification (K. A. Gould and Lewis 2017; Rigolon and Németh 2020). Much green gentrification research has been on parks and restoration projects, but none so far have touched upon the ongoing green stormwater infrastructure efforts in New York City.

In Gowanus, Brooklyn, it was shown that water quality improvement efforts were the result of gentrification already taking place, making the city consider the area "'worth' cleaning up" (J. T. Miller 2016). Suddenly making an area or resource more "amenable" may negatively impact longtime residents that suddenly find themselves surrounded by wealthier neighbors, and often is followed by people being slowly displaced by either eviction, being priced out of their homes, or general antagonism towards them from new, more affluent residents (Nir 2017; J. Rosenberg 2016; Martinez 2017).

Community Attractiveness

Federal research on measuring gentrification in United States northeast coastal areas, including Brooklyn, treats attractiveness of coastal towns for new residents as a given (L. L. Colburn et al. 2016; Jepson and Colburn 2013). In addition to the primary ecological benefits, green infrastructure proposals include beautification as part of a suite of neighborhood attractiveness
co-benefits (see Chapter 3). The fringe impacts of green infrastructure like UHIE relief are necessary to get projects greenlighted as per mandated design principles.

There are concerted efforts to use urban greening as a strategy to actively reduce the environmental justice issue of thermal inequity, for example (Byrne et al. 2016; Klein Rosenthal, Kinney, and Metzger 2014). However, diminished heat stress in one area does not help people who wind up being displaced from these "cooled" areas—and cooled areas are cool. Lowered risk of heat vulnerability and desire for access to natural amenities are linked to neighborhood attractiveness for yuppies and other wealthy groups, (L. L. Colburn and Jepson 2012). In maddening contrast, numerous studies have shown that areas in cities across the United States communities with largely Asian-American, Black, Hispanic, and/or low-income populations are the hottest and have the least tree canopy by a whopping 92% (Bock et al. 2021; K. M. Hoffman et al. 2016; J. S. Hoffman, Shandas, and Pendleton 2020; McDonald et al. 2021; Klein Rosenthal, Kinney, and Metzger 2014; Nayak et al. 2018).

The framing of green infrastructure deployment's multiplicity of benefits renders it "decoupled from the political-economic landscape of cities' historic and ongoing patterns of uneven and unsustainable growth" (Shokry, Connolly, and Anguelovski 2020, 1). However, there is a slippery slope in the discourse of neighborhood attractiveness causing gentrification. That is, certain qualities make areas attractive to developers, who then use market research to develop with the intention of attracting new residents to a location, and development prospects must appeal to planners who have the say in official development.

Vulnerability is a structural problem, not an individual or interpersonal one (Domi 2021). So, while newcomers' financial investments in their communities (like which stores they choose to patronize or not patronize) may contribute to social, cultural, or economic changes that fall out
of line with immigrant and/or longtime resident communities, the structure that drives these behaviors is much larger than that. For example, chain stores with identical layouts at every franchise selling familiar brand name products may be less intimidating to a new, white population than specialty stores appealing to specific cultural needs or mom-and-pop shops, drawing in more shoppers even if they are pricier.

I explored qualitative data and local ecological knowledge (LEK) from NOAA's Voices: Oral History Archives to expand upon some of the pressing social indicators of gentrification pressure. This archive is a collection of oral histories from people who have a diversity of experiences working in or alongside the marine fisheries industry. One document described the process of sustainable dilapidation as antithetical to the essence of the "cultural view-shed issue" that draws new residents to the area in the first place (Lawrence 2015, 34-35). That is, mainstay small business and community hubs form a distinct and appealing community for tourists and new residents. Larger populations, however, increase demands on businesses that necessitate changes to their business practices that are not as aesthetically appealing as their existing, more artisanal practices (such as a fishmonger needing supply from fish farms rather than local wild fishermen).

The element of culture and authenticity is often hailed as quintessential to attractiveness, but there is a paradox at play. Gentrification and sustainable dilapidation "chang[e] the essential character and flavor of a community" (Yagley et al. 2005, 1), while "the people who produce space through their everyday labor and practice -and not just those with the money to buy a piece of land and property-should control its form and function: the city must belong to those who build it, not those who buy it" (Stein 2019).

Brooklyn Marine Fisheries Community Snapshot

The dwindling marine fisheries economy in Brooklyn was an early catalyst of vast socioeconomic change resulting from an ecology of deteriorating water ecology in New York City. Drawing from methods used to create a story map of gentrification pressure in NOAA's Northeast Fisheries jurisdiction (Jimenez 2021), I conducted a trend analysis based on qualitative data from several resources, including NOAA's community social vulnerability indicators (CSVI) and community snapshot online portals. Supporting LEK was excavated from materials in the Voices Oral History Archives.

Keyword search terms were used to locate relevant oral histories in the online archive collection. The search term Gentrification only yielded 12 results, and the archive was not optimized to search for partial terms or modifiers like gentri- or gentr*. Furthermore, orators tended to talk casually about issues related to gentrification, such as having to move due to a career advancement or the political climate, without explicitly using the word "gentrification."

The search term Brooklyn yielded 36 interview results. Some results were redundant due to the archive being organized by orator and some oral histories having multiple people in conversation, or others being interviewed in multiple parts. I read through the remaining transcripts, and excluded those where the term was only included in the metadata ${ }^{3}$. Ultimately, I surmised the following from close readings of from 20 transcripts (listed in Appendix I):

Brooklyn's maritime and fisheries industry has been in a slow decline for many decades. As the coastal economy shifted from the 1960s through the 1990s, industry workers (largely based out of Sheepshead Bay in southern Brooklyn) migrated north to New England or south to

[^13]Virginia and the Carolinas, (Jeffries 2011; Cordell Expeditions. Oral History Interview with Elaine Dvorak, Sue Estay and Don Dvorak by Dewey Livingston and Jennifer Stock on March 9, 2012. 2012; Grachek and Hall-Arber 2011; Kvilhaug 2005; Allerdt 2011). Housing cost, fishing regulations and restrictions in New York State, especially related to the Long Island Sound, compared to other states (Ruhle 1987), permanent and seasonal job opportunities (Scavone 2011; Roche 2010; Pederson 2008; Rogers 1997), or desire for more amenable ports with space for bigger or more technologically advanced boats (Dawson 2005; Ulrichsen and Ulrichsen 2017) made these moves attractive. Pollution overload and waste management were also a great contributor to shifting economies related to manufacturing decline and fishery reduction in Brooklyn (Merchant 1996; Bryant 2020; Bernice et al. 2016).

Subsistence fishing became untenable. Being unable to safely eat their own catch from the Long Island sound seems to be a trigger for families living and working near the water and depending on their catch for either home use, business supply, or both, (Tursi 2016). Fisheries work on the southern coast of Brooklyn became less and less sustainable around the same time the garment and manufacturing industries largely housed on the northwest coast also started dwindling.

Community (Re)Branding

Zukin theorizes that the union between culturally dominant newcomers and "profit-oriented place entrepreneurs" (as Logan and Molotch (2007) call them) creates a discourse that "brands" a place, and that branding turns into "shaping new zoning (and other) laws" for development (Zukin 2011, 162). And rezoning and planning are as much about exclusion as they are about inclusion. In many respects, Brooklyn itself has become a brand, but each neighborhood gets
branded and rebranded with both official re-delineations and the passage of time. Check out
Table 2, for a more detailed list of rezoning in the borough from 1992 to 2010.
Table 2: Rezoning in Brooklyn, 1992-2010

Original Zoning	Code \| Area Name	Rezoning
Non-Residential	B1 \| Greenpoint/Williamsburg	Residential/Mixed Use/Commercial
	B2 \| The New Domino	Residential/Commercial
	B3 \| Williamsburg Bridge	Non-Residential and Commercial
	B4 \| Kedem Winery	Residential/Commercial
	B5 \| Schaefer Brewery	Residential/Commercial
	B6 \| Rose Plaza on River	Residential and commercial
	B7 \| Vinegar Hill	Residential/Mixed Use/Commercial
	B8 \| DUMBO	Mixed Use
	B9 \| Main Street	Residential/Commercial
	B10 \| Dock Street	Mixed Use
	B11 \| Red Hook Stores	Mixed Use
	B12 \| Ikea	Non-Residential (other)
	B13 \| 363-365 Bond Street	Residential/Mixed Use
Low-Density Residential	B14 \| The Home Depot	High-Density Residential and Commercial
	B15 \| Coney Island	

For example, in the northern Brooklyn neighborhood Williamsburg, the shutdown of ports and the Brooklyn Navy Yard, and abandonment of factories in the area throughout the fiscal crisis of the 1960s and ' 70 s drew in a population of artists and musicians assuming empty warehouse space in the area for community building, work space, shelter, music performances, and parties that continued through the new millennium (Zukin et al. 2009, 53). But, from the mid-1990's through 2005, loft spaces and apartments were slowly bought up and converted to condominiums, stores, and bars.

In 2005, the East River waterfront was rezoned from industrial to residential. About this, the New York Times said the rezoning...
"would transform the long-crumbling waterfront into a residential neighborhood complete with 40-story luxury apartment buildings... and manicured recreational areas [including 54
acres of parkland]...to capitalize on one of New York's most ignored assets, its miles of neglected waterfront, while also protecting a neighborhood that has long been a repository for unpopular projects like power plants, waste transfer stations and porn shops," (Cardwell 2005, 1).

And while the article even acknowledges that "young people seeking an alternative to Manhattan" (p. 1) fueled a nightlife boom in that area of Brooklyn that helped propel the housing market there, what these mainstream ideas ignore is that the neglect of the area was on a municipal level, and that longtime Polish and Latino working-class communities, as well as the more informal subcultures and artist communities, were caring for the neighborhood for a long time. But these new developments are the ones eligible for 25 -year tax exemptions and public esplanade ${ }^{4}$ grants. It is important to note what is said in the humanities and big publications like this because it is consumed by the public and shapes public perceptions and social dynamics.

These diverse street and warehouse community uses (like underground punk rock and hip-hop music venues, art warehouses, or fruit vendors) were largely operating outside legal business parameters (unlicensed collectives not necessarily paying taxes). And so when the investors came in, they had to get out. Perhaps a radical take on these community amenities is that the cultural contributions of these grassroots collectives directly do more for the community than the transformations of their tax contributions would do.

Additionally, rezoning in Brooklyn is related to rezoning in other areas, essentially just displacing certain environmental issues to other places. Fishing moved up and down the coast to other states, and a lot of manufacturing moved overseas. More locally, "expulsive zoning"

[^14]practices show growing pollutive manufacturing zones in low-income and racialized areas, such as the south Bronx, are linked to shrinking pollutive zones in Brooklyn and Manhattan (Maantay 2002a). Environmental "negatives" are not simply eliminated in areas with green infrastructure installation, they are (re)moved elsewhere.

Analysis of Income Disparities in Brooklyn with the Gini Index

The Gini Index is a statistical analysis that expresses the dispersal of wealth within a given area, based on the frequency of certain values (in this case, individuals' income), where a coefficient of 0% would indicate perfectly equal distribution of wealth, and 100% indicates one person holding all of the wealth. Usually, 25% is the projected tipping point of harmful inequality. As higher-earning individuals move into lower-income neighborhoods and lower-income individuals move out of them, these dynamics change income inequality measured in percentage or Gini scores. While areas can have similar coefficients of wealth disparity, they can differ in overall wealth.

In Brooklyn, Gini coefficients for each neighborhood tabulation area (NTA) vary somewhat (38.6% to 53.2%). However, the difference in wealth between NTAs varies greatly, with the top earnings of $\$ 195$ thousand per year in East New York but top earnings as high as $\$ 1$ million per year in Brooklyn Heights while they have almost the same Gini score (48.3% vs. 52.6\%). In Table 3: Neighborhood-level Gini Scores compared to Top Earnings for Brooklyn (2018), a more detailed breakdown of Gini scores in Brooklyn neighborhoods can be seen. See also Figure 17, where the Gini scores are mapped over time, indicating a growth in the wealth gap across the entire borough at the census tract level.

While neighborhoods are not as socially segregated by strict geometric borders, the approximate borders used for cartographic NTA delineation have revealed that neighborhoods in

Brooklyn have distinct wealth and property value disparity, which greatly impacts rent and mortgage rates, which in turn impacts the demographics (economic, racial, ethnic, age brackets, etc.) of the residents in that neighborhood, and eventually the brand of the neighborhood, too (Jacobs 1992). This enacts something of a "power-geometry," or a space-time condition where some people (in this case, the wealthiest people) can move into any neighborhood they wish, while the poorest people must stay put until they get priced out of their homes (D. Massey 1993). Socially, many neighborhood borders are only permeable in one direction.

Figure 17: Brooklyn Gini Scores, by Census Tract, 2010 vs. 2019. Data Source: U.S. Census Bureau

Table 3: Neighborhood-level Gini Scores compared to Top earnings, for Brooklyn (2018)

Statistical Analysis of Select Racial Demographics in Brooklyn and New York City

The borough of Brooklyn is about 70.82 square miles of land with a population of over 2.7 million people (U.S. Census 2020). And this population is highly racially segregated. Based on application of United States Census (2010) data to indexes of segregation, New York City has a score of 56.9% on the Isolation Index of Segregation and a score of 82.2% on the Index of Dissimilarity.

The isolation index assigns a score from 0-100, indicating the percentage of the population falling into a certain demographic out of the total population of a census tract. In this case, we are indexing self-identified people of non-Hispanic Black or African American descent. As the isolation index approaches 100, it approaches total isolation. Lower scores indicate higher integration/dispersal of that group within the census tract. Of course, since the isolation index only looks at one group compared to one census tract, it is not necessarily indicative of intersectional diversity throughout the tract. It also means that as the population of census tract increases, the isolation index will likely fall, (Wong 2005; Johnston, Poulsen, and Forrest 2009). Of course, social integration and statistical population dispersal are not necessarily intertwined. People can live in very close proximity and not be very socially interactive.

The Index of Dissimilarity compares how dissimilarly two mutually exclusive demographic groups are dispersed across census tracts. Ranging from 0-100, a higher number $(60+)$ indicates a high level of segregation. A score of $40-50$ is moderate. Scores of 30 or less are considered low. In this case we are comparing the non-Hispanic Black population to the nonHispanic white population. Again, this also does not take into account the populations other than the two demographic markers compared in it, (D. S. Massey and Denton 1988). The non-

Hispanic Black population of New York City has a moderate-to-high isolation index and has a high index of dissimilarity with the non-Hispanic white population of New York City.

Brooklyn Neighborhood Studies

Recent GISc-based studies on Brooklyn have shown that greening (defined in this context as "environmental amenity creation and restoration") is not an indicator of incoming gentrification, but an indicator of acceleration of the process, especially in the era of New York City's waterfront development plan and CSO control orders to comply with the Clean Water Act (Cherrier et al. 2016; Waterkeeper Alliance 2019; J. T. Miller 2016; Maantay and Maroko 2018).

Likely owing to this immense size, heavily concentrated population density $(38,634$ people per square mile), and high rates of racial and economic segregation, many research projects on Brooklyn geography are conducted at the neighborhood level, and are also specific in the conditions related to gentrification there. However, most studies here still bring up the idea of taking aspects of the community built by community grassroots and seized for capital expansion, and most are done with consideration of a specific local waterbody.

Transportation and evaluation of the delivery and accessibility of healthcare service amenities in the Greenpoint and Williamsburg area, which has extensive waterfront development in recently rezoned areas, speak to an increase in demand for hospital care being related to an increase in residential populations after a change in zoning from industrial to residential, and differences in hospital preference (largely outside the immediate area) spoke to a relative lack of healthcare coverage among ethnic and racial minorities, heterogenous/clustered population density across the area (Naphtali 2006). Some research on Greenpoint shows that the high relative bicycle usage and streetside bike storage by the 18-35-year-old crowd has changed several things in the Greenpoint landscape, some of which has led to police intervention (DeSena
2012). Drivers and bicyclists have conflicting needs on roads. Increased noise complaints have arisen from the both late-night parties by the younger population and early-morning traffic from working-class homeowners going to work, an interesting conflict rising from a phenomenon where two distinct age-group demographics have a temporal, or time-based, differentiation in the ways they use the same physical space.

Other research on Greenpoint posits that green resilient development related to Newtown Creek (including green infrastructure assets) may cause the tipping point in creating a supergentrification phase in the neighborhood by displacing the rest of the working-class population there, (Curran and Hamilton 2012). The cultural shifts in Williamsburg from World War I to World War II, serialized in the novel A Tree Grows in Brooklyn (B. Smith 1943), show a long history of struggling revitalization and dilapidation waves in this area.

The prevalence of community gardens has been found to coincide with low-income areas in The Bronx, Manhattan, and Brooklyn. The confrontation of community gardens with the municipality and real estate entrepreneurs during gentrification waves was examined in Bedford-Stuyvesant Heights (AKA Bed-Stuy), Brooklyn, where community gardens were labeled as "vacant" lots on maps that were given over to developers, (Eizenberg 2013). Bed-Stuy has long been a cultural center for Black and African-American communities, especially after many people migrated there and surrounding neighborhoods from Harlem in the 1930s.

Work with Black residents of Clinton Hill revealed a nuanced account of longtime residents' attitudes on gentrification. Gentrification signaled opportunities for financial revitalization in the area (for example, sale or rental revenue for homeowners, new commercial retail and food offerings, and other amenities like rejuvenated parks) (Freeman 2015). While these benefitted people on a family and individual level, there are risks to housing stability,
unaffordable prices in some new businesses, incidences of racially discriminatory practices at new storefronts, and changes in police presence associated with gentrification that can be risky in the long-term.

Brooklyn Heights is regarded as the first neighborhood in the borough to be revitalized after World War II, drawing in many white-collar professionals that could have very easy access to the financial district in Manhattan, and maintains its old-money status with significantly more wealth than other neighborhoods (Osman 2011). Demographic and economic conditions in Brooklyn Heights, Park Slope, and the surrounding area, colloquially known as "Brownstone Brooklyn," are categorized as undergoing super-gentrification, where people with extreme wealth have even displaced a middle-class (Osman 2011; Lees 2003; Halasz 2018).

Environmental remediation strategies in Gowanus have been used as a tool of capitalist accumulation in what Gould and Lewis call "the green growth machine," (K. Gould and Lewis 2016, 146; Checker 2015). The onset of clean-up in the long-dilapidated post-industrial landscape along the Gowanus Canal called into question which parts of the population were included or excluded from considerations. Miller (2016) notes that gentrification took place in the Gowanus area while a long, highly combative process occurred trying to plan the clean-up of one of the most polluted bodies of water in the United States. In particular, as demographics shifted towards a "wealthier, whiter, and more [formally] educated" (J. T. Miller 2016, 286) population, economic transformations include ever-rising rent and housing costs since 2000.

The consequences of installing environmental amenities in and around Prospect Park have been studied for an analysis of green gentrification in Park Slope, (K. Gould and Lewis 2016). This study determined that class-based housing segregation functionally creates other forms of segregation within the population: racial segregation, disparities in access to amenities
(including green space), and difference in proximity to environmental health hazard risks, all of which impact poorest people the most harshly.

Gravesend and the Bensonhurst area have also long-been subjects of popular historical fiction focused on demographic changes in the area, (Badham 1977; A. Miller 1993). A hot spot for recreational fishing, after Superstorm Sandy in 2012, barricades were put up for storm surge protection but also diminished the amount of space for fishing anywhere that was not out in the open, as shown in Figure 18. In my story map and forthcoming research on Gravesend Bay, I trace mitigation strategies following a series of environmental disasters in the area, where development proposals that had been previously rejected (such as a waste transfer station) were eventually approved when proposed under a new umbrella of environmental remediation and ecosystem services (Jimenez 2018; C. Miller 2017).

An entire dissertation could be dedicated to the history of social and ecological disasters and revivals in Coney Island. Coney Island itself was physically connected to Brooklyn via a series of compounded bridges starting in the early 1800s to ease access to resorts there (Phalen 2016). A highly diverse area overall, the population is significantly segregated by class and the physical landscape is distinctly organized by use-from the gated community of Seagate on the west end to the adjacent to public housing projects, to the homeless population on the boardwalk that also houses two massive amusement parks, the New York Aquarium, an amphitheater, and a baseball stadium. The segregation can be seen in the skyline, as shown in Figure 19.

Figure 18: Recreational Fishing in Gravesend Bay. The area in the black box is a ledge that was formerly open for crabbing and is now closed for storm surge risk. The large building in the top left corner is part of Ceasar's Bay Bazaar (a shopping complex). The horizon shows housing complexes in Coney Island. The yellow arrows point to large holes in the sea wall from the original damaged, rusted fencing. Photo by Rose Jimenez 2018.

Figure 19: View of Coney Island looking south from Gravesend Bay. A distinct cross section in the skyline shows the border between high-density housing on the left and the gated housing community Seagate on the right (the westernmost tip of Coney Island. Photo by Rose Jimenez 2018.

Innovations in steel, ideologies of a technological utopia popularized in The 1939 New York's World Fair, and trends from the City Beautiful movement ${ }^{5}$ at the turn of the century influenced the rapid and grand development of amusement parks in Coney Island in the 1940s (Busá 2012). In 1994, sand began to be pumped under the boardwalk in Coney Island as a means to deter people who are homeless from using the area, diminish violent crimes and drug use reported there, and act as a storm surge barrier. Coney Island still took huge hits after Superstorm Sandy in 2012, and has only just come back in full force, although some of the chain restaurants
${ }^{5}$ The City Beautiful Movement was a revolution in city planning at the turn of the $20^{\text {th }}$ century. A product of the Progressive Era in North America, this development reform touted a philosophy of adding grandiose neoclassical and Mediterranean Revival aesthetics to amenities and infrastructure to encourage civic virtue. The Municipal Arts Society of New York was developed in this era, which supported the passing of The 1956 Bard Act and the 1965 New York City Landmarks Law for the preservation of landmarks.
and new attractions have been criticized for Disneyfication, or "the transformation (as of something real or unsettling) into carefully controlled and safe entertainment or an environment with similar qualities" of the area (Merriam-Webster 2019; cf. Lipton 1959, 143-44). Now, after 100 years, $\$ 114.5$ million in funding will be invested in reconstruction of the boardwalk, (NYC Parks 2021).

Chapter 6 •Environmental Modeling

In the worthy quest to transform contaminated or otherwise unused urban land into beneficial green space, we must acknowledge and never lose sight of the fact that these greening actions tend to pit the goals of environmental justice against the effects of environmental gentrification.

Brownfields to Greenfields
(Maantay and Maroko 2018, 13)

Environmental Modeling and Spatial Analysis

A "model" is the best possible representation for a person, place, or thing. In cartography, everything on a map is a model for a real-world phenomenon. Dots are a model of locations, polygons drawn to represent statistical rates are models of social conditions. For immaterial things, like the phenomenon of gentrification, scores from indexes can model gentrification developed from complex ontologies of what gentrification is. The index score acts as a stand-in, or proxy for gentrification because gentrification is something that can only really be measured, not simply geolocated. For example, it is hard to just put a pin on map and say "this is gentrification."

Instead, it is more useful to pick out an area, look at the various data for the conditions within the area, and generate some kind of score for that area that we can mark with some color scheme, shape, or label. Since there are many economic and demographic conditions that will be fluctuating in a gentrification process, an index is useful to measure those changes ${ }^{1}$ within a specific time period and their coincidence and singularly symbolize them on a map (Cherrier et al. 2016).

[^15]By creating singular scores or types for each spatial unit, the index allows cartographers and geostatisticians to singularly symbolize spatial units on a map in a way that represents multiple factors at once, fit for a cross-sectional analysis looking at one data point that encompasses a dynamic confluence of factors within a temporality, such as with a choropleth (color-block) map. And since the breadth of literature has so many complementary but varying sets of variables to measure gentrification, evaluating green infrastructure against a number of different gentrification measurements will hopefully provide us with a trend or pattern (or lack thereof) to interpret the gentrification landscape. These expected patterns allude not only to the internal spatial relationship of gentrification rates between communities in the borough during the time period, but also the varying spatial relationship between permutations of gentrification and green infrastructure. Because of the different variables with each index and differing scales of analysis, it is expected that each area could receive up to five gentrification statuses dependent on the index applied to it.

Proxy Representations

To place the more tangible elements on a map, like urban greening practices or existing structures, we can simply make points on maps that correspond to actual locations, but proxy representations are still useful. Beyond data being readily available, data existence plays a critical role in any kind of spatial modeling, and the green infrastructure data is readily, reliably, and publicly available (Montello and Sutton 2006; Bowen et al. 2020; National Centers for Environmental Information n.d.; K. C. Clarke, Parks, and Crane 2002). Sociological critique of representations, or proxies, emphasize that the author's choice(s) in representation reveal "conditions for environmental action, communication, politics, democracy, management, and governance" (Boström and Uggla 2016, 356).

The choice to use the Green Infrastructure Program as a proxy for urban greening and CSOs as a proxy for existing grey infrastructure is not a neutral one, even though they are intimately connected (it is almost a dialectical "no-brainer" that you have to discuss one when discussing the other) and the convenience and breadth of data availability are factors in choosing them. There are other options, such as change in vegetation over the time period gathered from satellite data, or growth and loss of parks and open spaces. However, this would not encompass all of the spatial politics at play, especially since so many of the green infrastructure projects are tied to funding and structure. Some data are dynamic and ever-changing, like satellite imagery of vegetation. Dynamic data like this might be more useful in evaluations of afforestation success. For this cross-sectional experiment, it is more appropriate to have static data points from the Green Infrastructure Program and indexes that represent a change in time around them.

The Green Infrastructure Program asset shapefile does two things as a proxy: it gives us actual location data to place elements on a map and it encapsulates elements of urban greening beyond vegetation that this dissertation wishes to interrogate: the resilience paradigm, city planning and development actions, funding differentials, and real estate relationships to urban greening.

Use of Index to Measure Socioeconomic Risk and Gentrification

An index is a useful way for statisticians to represent "multifactorial phenomena like gentrification or deprivation" with a discrete score (Johnson et al. 2021). Comparative visual analysis can be useful between maps with different data sets for the same physical area, for example, one choropleth map showing mean or median rents next to a choropleth map of the same place showing median income. The observer is expected to look at these maps side-by-side with casual visual analysis that, if properly symbolized, will show clear comparisons. Other
maps may show a choropleth map with an overlay of dots or symbols. For example. Vector polygons representing neighborhoods may represent mean or median rents with a color gradient, with dots/points overlain with certain densities to represent population numbers. However, these observations are particularly visually subjective. Instead, indexing multiple data factors to create single symbols for regions offers a unified picture, although they are still visually subjective.

Many indexes have been developed at various scales to measure gentrification or other hazards in New York City or areas that include New York City. Among these are rate-based gentrification indexes like NOAA's Gentrification Pressure index for coastal communities, The New York City Heat Vulnerability Index (HVI) developed by the Department of Health, the Housing Risk Chart from the Association for Neighborhood \& Housing Development (ANHD), and the Small Area Index of Gentrification from researchers at The City University of New York. There is also a graduated typology-based index like Typologies of Gentrification and Displacement from the Urban Displacement Project. See Table 4 for all indexes and factors included in this study.

Each index incorporates a unique set of varying economic, demographic (and in some cases ecological) factors to grade levels or typologies of gentrification at a certain scale in an area. Among themes in the index data are traditionally accepted factors in evaluating gentrification: whiteness vs. non-whiteness, age group distribution, level of college education, and housing cost burdens, where new residents related to gentrification patterns tend to be some combination of young (aged 18 to 35), non-Hispanic white, wealthy, able-bodied (not receiving disability or social security benefits), and formally educated in 4-year institutions. While most of the indexes use governmental data from the United State Census, American Community Survey (ACS), and American Housing Survey (AHS) data, each of the permutations of gentrification is
likely to result in marking hot spots of gentrification risk. Each has its own purposes and its own limitations. The findings of each index also emphasize a particular factor as highly definitive.

To compare gentrification hot spots, each index was applied to a map of Brooklyn using QGIS geographic information systems software Version 3.10 using a shapefile of Kings County from NYC Open Data-a data portal created and provided by the municipal government. Each index was symbolized into approximately 5 categories using the same color ramp for ease of comparative visual analysis, while also remaining loyal to the index author's categorization.

Table 4: Index Factors (continued on next page)

Index	Creator	Data Year(s)	Scale	Score Style	Score Factors

Housing Risk Chart	Association for Neighborhood and Housing Development (Non-profit)	2020	Community Board	Ranking	COVID Case Rate (per 1000)
					COVID Death Rate (per 1000)
					Mortality from underlying conditions (per 1000)
					\% uninsured (2018)
					\% service workers (2018)
					\% with severe crowding (2018)
					\% people of color (2018)
					\% with rent burden
					\% of area median income
					Rate of evictions (per 1000)
					Number of housing litigations (2019)
					Number of foreclosure filings (2019)
					Number of SCRIE/DRIE recipients (2019)
					\% change in avg price per ft^{2} of residential sales
					Number of rent stabilized apartments
					Number of NYCHA units (2020)
					Serious housing code violations in 6+ Unit buildings (per 1000 units)
					LIHTC Units Eiigible to Expire 20212025)
					Share of 1-4 unit non-bank home purchase loans, 2018

Data Management for a Spatial Coincidence Analysis

A spatial coincidence analysis serves as the quantitative portion of this mixed-methods approach to looking at green infrastructure. Extensive data management included phases of data acquisition, geoprocessing for aggregation and assimilation, use of vector analysis tools, and digital cartography. The data will be evaluated at three scales: borough, community district, and census tract (see image below). All data related to results for the HVI, Housing Risk Chart, UDP Typologies, and the SAIG, including results from the vector analysis can be found within Appendix II: Results Data for Spatial Coincidence Analysis.

Figure 20: Three Scales of Data Evaluation

Quantitative Data Acquisition

The primary data mode for the quantitative portion was the shapefile format (.shp). A shapefile is a digital method for storing geometric location and attribute/feature data. I used shapefiles that were readily available, however, each index dataset and shapefile could also be replicated using the authors method and data that are readily available through the United States Census Bureau and other publicly available surveys, as applicable. Each shapefile is initially nontopological, or unconnected to other spatial datasets, when they are all uploaded into a GIS project file. However, shapefiles contain coded information (such as community district, county, and census tract codes), that allows each polygon to be located and "know" its relationship with surrounding polygons. Each shapefile's set of attributes can be used to assimilate, or adjust to conform, to one another, using GIS software tools such as "join" functions matching field names in their attribute tables so that they can be linked and analyzed together inside the GIS software.

All datasets were downloaded from online sources ${ }^{2}$, as follows:
A shapefile for the Green Infrastructure Program assets was downloaded from NYC Open Data, New York City's open access data portal. The attributes in this file include the following for each asset:

- Unique asset identification numbers
- The asset's implementation/installation phase and construction stages
- The name of the asset in the contract
- Right-of-Way (built in city streets and sidewalks) projects vs. Onsite (all other, built within the property line of a City-owned site such as parklands and schools) projects
- The green infrastructure class (bioswale, green roof, etc.) and category
- Location Data for the purposes of placing on a map: longitudinal and latitudinal ("X and Y") coordinates, borough, nearest physical address, and cross street,
- Sewer type, tributary, and waterbody whose watershed contains the asset
- Political and Jurisdiction information: ownership class, community district, city council district, assembly district
- Asset length, width, and area
- Tree species cultivar, if applicable

Shapefiles for New York City boroughs and neighborhoods were also downloaded from NYC Open Data. These shapefiles represent the same jurisdictions and extents used by and for

[^16]the city in their planning, development, and evaluations so they are both accurate to the study and easily assimilated to the green infrastructure datasets.

Data for the NOAA Social Indicators of Gentrification Pressure were downloaded from the CSVI Tool, an interactive online map ${ }^{3}$. The papers associated with the data (L. L. Colburn and Jepson 2012; L. L. Colburn et al. 2016; Jepson and Colburn 2013) are also available online in the NOAA Institutional Repository ${ }^{4}$.

Shapefiles and a spreadsheet (.csv) for the New York City Heat Vulnerability Index (NYC Dept. of Health 2017) were downloaded from a now-defunct webpage about the index on the New York City government website, but is currently available from the online Environment \& Health Data Portal ${ }^{5}$.

The Association for Neighborhood and Housing Development makes shapefile and data chart for the Housing Risk Chart readily available for download from the annual report (Block 2020) webpage ${ }^{6}$ for 2020.

The Urban Displacement Project has its papers (Chapple and Thomas 2021) and shapefiles available for download from its interactive map tool webpage ${ }^{7}$.

Datasets and shapefiles for the Small Area Index of Gentrification are accompanied by data disclosure attachments from the peer reviewed article (Johnson et al. 2021) at Taylor \&

[^17]Francis Online ${ }^{8}$, which I was able to retrieve through institutional library access privileges from my enrollment at the City University of New York Graduate School and University Center.

Quantitative Data Aggregation, Assimilation, and Geoprocessing

First, shapefiles of New York City boroughs, New York City census tracts, and New York City community districts were acquired from New York City's Open Data web portal. Then, the shapefiles were imported to QGIS geographic information system software and clipped to contain only Brooklyn.

Shapefiles for each of the indexes were imported and applied to the map and clipped down to the Brooklyn extent. The census tract-level indexes have some spaces without symbolization due to them having missing data, being designated as official city parks or open spaces, or airport designations. These are accounted for in the map keys, if applicable. The county data layer will be used to contextualize the county boundaries and create maps of consistent shape and size for each index. Then, each hierarchical map was symbolized using the same color ramp to symbolize the 5 classes the same way for consistency as well. The typological map is symbolized similarly, as appropriate using aggregation class modes from the original authors' results.

A shapefile for green infrastructure assets was then applied and clipped to the extent of Brooklyn from the borough column (labeled "Boro") of its asset table (the spreadsheet of data that comprises the shapefile).

8
https://www.tandfonline.com/doi/figure/10.1080/13658816.2021.1931873?scroll=top\&needA ccess=true

Vector Analysis

A vector model is a geometric graphic made out of lines, points, and resultant polygons ${ }^{9}$. The points are "XY" or latitude/longitude coordinates, and vector lines connect each point/vertex with paths, or more complicated topologically connected networks. Each of the aforementioned shapefiles are in vector format.

In QGIS, the "Count Points in Polygon" vector analysis tool ${ }^{10}$ was used to count the number of green infrastructure points inside the index polygons (which are shaped by clusters of census tract vectors). This point-in-polygon algorithm counts the number of attributes in a points layer that fall within the boundaries of polygons in a vector layer on the same map. This tool generates a new layer containing all the data from both original layers but containing a new attribute table field with the count corresponding to each polygon ("QGIS" 2021) ${ }^{11}$. See Figure 21 for a breakdown of layers.

[^18]

Figure 21: This graphic shows a conceptual breakdown of the layers needed for the cartographic work in GIS software. In the maps below, the data level is hidden underneath the index parameters but is shown for illustrative purposes.

Quantitative Data Processing

The count results from the automated vector process tool yielded results for individual polygons.
The attribute tables were exported to spreadsheet files. Then the data were sorted by the gentrification score result and the number of assets was tallied for each gentrification score for each index.

Data Limitations

These indexes were not developed for green forms of gentrification and may not be optimized for such. Additionally, United States Census Data used for these indexes is limited, as only about
60% of the New York City population responds to the U.S. Census, answers are subjective or surveys are incomplete, and definitions of households refer to tax-levy household status rather than residents per home unit. Census statistics for younger adults (18-24) are also likely highly underrepresented while that group is also highly associated with the gentrification process ${ }^{12}$ (US Census Bureau 1998). Some groups also remain reticent in the census due to discomfort with surveillance.

The visual nature of choropleth mapping has limits including visual subjectivity and difficulty in accessibility for people with blindness, colorblindness, or low visual acuity.
${ }^{12}$ Many students and young professionals who dorm or live in shared and/or precarious or temporary housing situations maintain their permanent address in different neighborhoods, cities, states, or countries than where they reside on a daily basis, and may not be accounted for at the de facto address on the census although they are participating in the local economy.

Results Atlas $1 \cdot$ Index Applications to Brooklyn

Table 5: Number of Polygons Marked for Each Score in Each of the Five Indexes

Index	Category (Raw Score, if applicable)			\# of Polygons	Unit of Aggregation
1. Social Vulnerability Index			Gentrification Pressure	1	County
2. Heat Vulnerability Index			1	1	Community District
			2	4	
			3	3	
			4	6	
			5	4	
3. Housing Risk Chart 2020			1 (1-4)	5	
			2 (4-8)	5	
			3 (8-13)	5	
			4 (13-20)	1	
			5 (20-23)	2	
4. Small Area Index of Gentrification			1 (-1.68--0.58)	149	Census Tract (excludes parks, airports, etc.)
			$2(-0.58--0.21)$	149	
			3 (-0.21-0.40)	148	
			4 (0.4-1.83)	150	
			5 (1.83-4.5)	149	
5. Typologies of Gentrification and Displacement	Low Income		Not Losing Low-Income Housing	208	
			At Risk of Gentrification	53	
		Ongoin	acement of Low-Income Housing	100	
			Ongoing Gentrification	80	
	Moderate to High Income		Advanced Gentrification	44	
			Stable Exclusion	187	
			Ongoing Exclusion	67	
	Very High Income		Super Gentrification or Exclusion	4	

1. Social Vulnerability Indicators (SVI) of Gentrification Pressure

Brooklyn 2010 NOAA NEFSC Gentrification Pressure Score
Brooklyn 2018 NOAA NEFSC Gentrification Pressure Score

Figure 22: Gentrification Pressure Index Score Applied to Brooklyn, 2009 vs. 2018
NOAA is an agency of the U.S. Department of Commerce that monitors and manages economic vitality related to weather, climate, marine commerce, and coastal conditions. NOAA Fisheries developed the Community Social Vulnerability Indicators (CSVI) of fishing community vulnerability and resilience in U.S. Coastal regions at the county level. The social indicators of Gentrification Pressure-Housing Disruption, Retiree Migration, and Urban Sprawl—were a subindex of this index developed using statistical analysis of pressing concomitant demographic and economic statistics determined from qualitative surveys.

- Housing Disruption scores factor home value changes, mortgage rate changes, and housing cost burdens.
- The Urban Sprawl index measures the impacts of migration from cities into the peripheral populations, factoring population density, dynamics with nearby urban centers, cost of living, and median home value.
- Retiree Migration indicators are measured by the percentages of households with persons over 65 years of age, receiving retirement income, receiving social security income (SSI), and the inverse percent of the adult population in the workforce.

The raw scores are calculated from 5-Year-Average American Community Survey (ACS) data from the U.S. Bureau of the Census. Raw scores are then used to categorize areas from level 1 ("low"), level 2 ("medium"), level 3 ("med-high"), and level 4 ("high"). Applied at the county scale, but centered around activity in Sheepshead Bay and the southern Brooklyn coast, NOAA's gentrification pressure index shows Housing Disruption as the factor most significantly contributing to an increasing gentrification pressure in Brooklyn during the time period 20092018. Retiree Migration has remained consistently low categorically, and the raw score is falling. Urban sprawl has remained categorically high, although its raw score has fluctuated within that range. Urban sprawl rates in the United States have historical fluctuated greatly (Lopez 2014). Housing Disruption has been steadily increasing and in 2011 crossed the threshold from medhigh to high (from a score of 3 out of 4 to score of 4 out of 4), bringing the overall Gentrification Pressure index categorical score from med-high to high (from 8-out-of-12 to 9-out-of-12).

Drawing from methods in Social Indicators of Gentrification Pressure in Fishing
Communities: A Context for Social Impact Assessment (L. L. Colburn and Jepson 2012) and guidance from the NOAA Social Indicators Team, I summed the scores for each of the three elements to arrive at the overall gentrification pressure score for each year. With urban sprawl in flux and the retiree migration raw score slowly declining, this points toward an influx of people
in the 24-35-year age range in the population. See Table 6 for a breakdown of raw and categorical scores across the timeframe.

Table 6: Social Indicator Scores for Gentrification Pressure in Brooklyn, 2009-2018. Raw Scores and Categorical Rankings. Data Source: NOAA Social Indicators Tool (National Marine Fisheries Service 2019)

Social Indicators of Gentrification

Raw Score										
Indicator	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
Housing Disruption	0.945	0.896	1.105	1.233	1.3	1.603	1.621	1.851	1.839	2.179
Retiree Migration	-0.449	-0.528	-0.546	-0.575	-0.628	-0.674	-0.72	-0.738	-0.72	-0.741
Urban Sprawl	3.707	1.597	3.827	3.846	1.812	4.086	1.174	4.08	4.104	4.13
Categorical Ranking 1-Low, 2-Medium, 3-Med-High, 4-High										
Indicator	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
Housing Disruption	3	3	4	4	4	4	4	4	4	4
Retiree Migration	1	1	1	1	1	1	1	1	1	1
Urban Sprawl	4	4	4	4	4	4	4	4	4	4
Additive Score (out of 12)	8	8	9	9	9	9	9	9	9	9

Figure 23: SVI Gentrification Pressure Raw and Categorical Scores 2009-2018. Categorical scores are based on 5-Year averages. Data Source: NOAA Social Indicators Tool

Although this might seem like a minor change, these scores are critical when it comes to federal governmental management strategies (Rouleau, Adkins, and Were 2016). That raw scores can rise infinitely without a change in categorical ranking once they hit level 4 is also an issue that is being discussed currently amongst the Social Indicators Team. Categories could be either left as they are or recalibrated, or additional categories or outlier notations could be useful to add. In order to fortify the gentrification studies, NOAA creates community snapshots and story maps to narrativize the unique permutations of gentrification in each of their jurisdiction counties.

2. The New York City Heat Vulnerability Index

Brooklyn 2018 Heat Vulnerability Index Score

Figure 24: New York City Heat Vulnerability Index applied to Brooklyn

The purpose of the HVI is to identify neighborhoods with a higher risk of heat-related deaths and direct resources to those neighborhoods, including community outreach, and street tree planting (Knowlton et al. 2007; Klein Rosenthal, Kinney, and Metzger 2014). While the HVI is not intended to be an index of gentrification, several factors of heat vulnerability make this index very useful for understanding green gentrification in New York City ${ }^{1}$.
${ }^{1}$ A separate index of Heat Vulnerability was subsequently developed for New York State (Nayak et al. 2018), and excluded New York City data.

The HVI works with a confluence of economic and demographic factors to score its areas of interest common in most gentrification studies, but also has ecological condition factors. These include racial disparities in deaths related to heat stress, percentage of households with air conditioning, poverty rates, surface temperature, and green space (in the form of tree, grass, or shrub cover).

Reducing UHIE, including human heat vulnerability, is one of the fringe goals of the New York City Green Infrastructure Program. Additionally, UHIE reduction strategy proposals in New York City include success rates of the Green Infrastructure Program and synergy with the ongoing Green Infrastructure Program practices for stormwater management in their justification documentation and their scenario modeling, (NYC Mayor's Office of Climate Resiliency 2017). With reduction of UHIE being one of the multiple benefits used to justify urban greening projects and the emergent EH crisis, the HVI is an invaluable measure of socioeconomic risk to compare against green infrastructure installation. Data sources for the index include American Community Survey (2013-2017 5-year estimates, New York City Department of Parks and Recreation (2017), U.S. Geological Survey LandSat (2018), and the United States Census Housing and Vacancy Survey.

Across the United States, more people die from heat-related illness than all other natural disasters combined (NYC Dept. of Health 2017; Madrigano et al. 2015; De Mel 2019). Heatrelated illnesses, such as respiratory and cardiovascular distress, heat stroke, are more likely to occur during EH events, which in New York City, is defined as 2 or more days with a heat index over $95^{\circ} \mathrm{F}$ or 1 day reaching $100^{\circ} \mathrm{F}$ or more (Klein Rosenthal, Kinney, and Metzger 2014). Social isolation also increases risk of heat-related mortality for vulnerable populations due to mobility issues that are caused or exacerbated by EH. Low socioeconomic status indicators (poverty,
unemployment, age, and disability) are highly correlated with a need for heat-adaptation and relief amenities like home air conditioning, air-conditioned cooling centers, shaded recreation areas, and/or places like cafes that require purchase for entry.

While evaluating this map, the reader should note that the polygons represent community boards. Scores fall into five numbered categories. Areas with no data (namely Prospect Park in the center, and the small islands in Jamaica Bay on the southwest coast) are nonresidential parkland so they are masked.

When applied to Brooklyn, the HVI shows that the northern half of Brooklyn bordering Queens falls within the two highest risk categories (4 and 5) and becomes gradually lower risk toward the southern Brooklyn coast.

3. ANHD Housing Risk Chart

Figure 25: ANHD Housing Risk Chart Index applied to Brooklyn
The Association for Neighborhood and Housing Development (ANHD) is a consortium of neighborhood organizations doing data analysis for housing justice organizations that focus on economic and racial justice frameworks. They publish an annual Housing Risk Chart entitled How is Affordable Housing Threatened in Your Neighborhood? ${ }^{2}$ to show how vulnerable housing security is in New York City's community districts. ANHD's purpose of conducting this analysis is to help community-based groups, government officials, and other stakeholders

[^19]"determine where to direct resources to promote community stability and vitality," (Block 2020). In 2020, the index was updated to account for the hit on the economy caused in-part by extreme drop in population related to the COVID-19 pandemic from out-migration and, unfortunately, premature deaths.
 from conditions causing higher risk of severe illness with COVID-19 ${ }^{\dagger}$ 2015, percent uninsured, percent service workers, percent with severe crowding, percent non-white 2018, percent with rent burden over 30% 2018, percent of area median income (based on household size), the residential eviction rate ${ }^{\dagger}$ 2019, number of housing litigations and foreclosure filings 2019, number of SCRIE/DRIE ${ }^{4}$ recipients 2019, number of rent stabilized apartments and New York City Housing Authority (NYCHA) housing project units, percent change in the average price per square-foot for residential scales 2017-2019, units with housing code violations ${ }^{\dagger}$, units receiving Low Income Housing Tax Credits (LIHTC) that are eligible to expire between 2021 and 2015, and the share of 1-4-unit home purchase loans from independent lenders 2019. These loans are from lenders that are not supervised under regulations from the Community Reinvestment Act (CRA) of 1977, such as banks or even credit unions, and are particularly risky for recipients. Many people may be using these kinds of loans because they were not approved for betterregulated bank loans.

Overall, this study found that "communities of color are the ones facing monumental housing insecurity, economic precarity, and public health disasters," (Block 2020), which has
${ }^{3}$ t=Per 1000
${ }^{4}$ Senior Citizen Rent Increase Exemption (SCRIE) and Disability Rent Increase Exemption (DRIE) benefits are for qualifying tenants in rent-stabilized apartments.
been the outcome of most environmental justice studies, (Bullard 1994). Key findings in Brooklyn were that communities with the greatest housing in risk contain a high percentage of non-white population. Among the highest risk areas for housing instability, East Flatbush ${ }^{5}$ was approximately 96% non-white, had high rates of non-bank lenders, and some of the highest rates of COVID-19 deaths in Brooklyn.

The wide breadth of factors in this index, and index factors that are contemporary to this study may be a smoking gun that shows unprecedented mass casualty events are harshest on those already in the most vulnerable situations. Crowding, for example, becomes an even bigger household stressor when 1) a new respiratory illness has become prevalent and life-threatening, and 2) many more people begin working or schooling from home.

[^20]
4. Small Area Index of Gentrification

Brooklyn Small Area Index of Gentrification

Figure 26: Small Area Index of Gentrification applied to Brooklyn
Examined at the census tract level for the period 2000-2016, the Small Area Index of Gentrification (SAIG) (Johnson et al. 2021) uses changes in the following as key input variables:

1) median family income, 2) median rent of occupied housing units, 3) proportions of nonHispanic white in the population, 4) adults > age 24 with at least a 4 -year college degree, and 5) 20- to 34-year-olds in the population. Data was sourced from the GeoLytics Neighborhood Change Database, the NYC Geodatabase from the City University of New York—Baruch college geoportal, and the U.S. Census and American Community Survey through 2016.

For the purposes of cartography in GIS software, the index developers used a Bayesian conditional autoregressive model to smooth the somewhat arbitrary lines between census tracts.

This method is traditionally used to blur lines to better visually represent fluid health hazard risks like air pollution exposure, or disease risk transmission like those from mosquitos or viruses (Brown, McLafferty, and Moon 2010; M. Gould 2010).

Using this methodology for gentrification does two things. First, it helps deemphasize the arbitrary, but "official" polygons like census tracts or official neighborhood tabulation areas (NTA) made from census tract clusters that are used to define regions because neighborhood boundaries may be better described as gradients or networks with a functional identity, lacking complete "economic or social self-containment" (Jacobs 1992, 117). People walk freely and interact across these boundaries or limit their actual time within them. However, base polygons from census tract data or other empirical datasets are perhaps the only way to effectively geolocate the qualitative attribute data that is available. The Bayesian model emphasizes both of these conflicting aspects of defining an area.

Findings of this index emphasize the relationship of housing cost and gentrification, even when normalized for inflation. The authors found that populations in northern Brooklyn stood out for gentrification owing largely to high population density and extreme demographic transitions over the time period.

Compared to an analysis of just the categorized housing cost changes (low to low, low to high, high to low, and high to high), their interpretation of gentrification is unbalanced, implying a high correlation with gentrification and other factors, especially an increase in the nonHispanic white and/or college-educated ${ }^{6}$ population.

[^21]

Figure 27: Housing price fluctuations associated with SAIG scores, applied to Brooklyn.
Housing Scores are an important factor for the index but clearly highly differential from the gentrification score due to a lack of relevant demographic information.

5. Urban Displacement Project Typologies of Gentrification and Displacement

Figure 28: UDP Typologies of Gentrification and Displacement Index applied to Brooklyn
A huge gap in the analysis of gentrification is measurement of the "displacement" or exclusion. In an attempt to characterize permutations of gentrification in census tracts across the New York City region, the Urban Displacement Project developed Typologies of Gentrification and Displacement (Bianco et al. 2018; Chapple and Thomas 2021). Factors included in this index are population in 2000 and 2016, housing units in pre-1950 buildings, employment density, change in median rent price from 2000 to 2016, change in low income households ${ }^{\S 7}$, change in

[^22]low-income population migration 2009-2016, percentage of low-income households ${ }^{\ddagger 8}$, adults aged $25+$ with a college degree ${ }^{\ddagger}$, non-white population percentage ${ }^{\ddagger}$, change in college-educated adult population ${ }^{\S}$, median household income 2016, median rent price ${ }^{\ddagger}$, change in median home value percentage ${ }^{\S}$, and low-income in-migration percentage in 2009 and 2016.

After a data results validation process that involved meetings with local communities, typology names originally used in a study of Los Angeles were updated to fit the New York. Typologies were arranged by a combination of income-level and confluence of the other conditions. The low-income typologies are:

1) Not Losing Low-Income Households
2) At Risk of Gentrification
3) Ongoing Displacement of Low-Income Households
4) Ongoing Gentrification

The moderate-to-high income typologies are:
5) Advanced Gentrification
6) Stable Exclusion
7) Ongoing Exclusion

And the very high income-level typology is:
8) Super Gentrification or Exclusion.

In particular, the first type indicates no gentrification or gentrification risk. The next three types indicate the early phases of gentrification, and the last four types indicate advanced stages of gentrification.
${ }^{8} \ddagger=$ data for years 1990, 2000, and 2016

This index shows the aforementioned "Super Gentrification" (a late-stage form of gentrification where even upper middle class households are being priced out by the super wealthy) in the northwest Brooklyn Heights/DUMBO ${ }^{9} /$ Park Slope area as shown in Chapter 5's Brooklyn Neighborhood Studies (Lees 2003; Halasz 2018).

Analysts found that the very lowest income areas were not losing low-income housing over the time period, but many of those areas had NYCHA public housing facilities located within their boundaries, which are highly regulated for low-income households. Otherwise, their findings suggest that those with the lowest income are at highest risk of ongoing displacement patterns across the borough.

[^23]
Results Atlas 2•Spatial Coincidence of Green Infrastructure and Gentrification

Table 7: Number of Green Infrastructure Units within Each Scored Category for Each of Five Indexes

${ }^{1}$ Count of Green infrastructure units within residential areas. Units on borders of polygons may be counted twice if they pose equal representation for both units, and impact street flooding and storm flow for both areas.
${ }^{2} 44$ green infrastructure units fell outside of the active study area for this index (I.e. in parks rather than residential areas, areas with insufficient census/ACS data)
${ }^{3} 44$ green infrastructure units fell outside of the active study area for this index because of missing data and non-residential placement

1. Social Vulnerability Indicators (SVI) of Gentrification Pressure

Figure 29: Application of NOAA's Social Vulnerability Indicators of Gentrification Pressure to Kings County in 2010, and in 2018 with an overlay of green infrastructure units.

Since the Gentrification Pressure Index from NOAA's SVI is a county-level score, all 4,052 units of green infrastructure that fall within residential areas, but it is notable that aspects related to housing disruption passed the threshold into "high" level housing disruption in 2011 (based on 5-year ACS averages), the same year that Vision 2020 was released announcing the forthcoming landscape of green infrastructure.

2. New York City Heat Vulnerability Index

Figure 30: Application of the Heat Vulnerability Index to Community districts in Brooklyn, with green infrastructure units

NYC HVI scores are marked at community district-level polygons. Of 18 community districts (CDs) in Brooklyn, 10 fell into the two highest categories of heat vulnerability and have 3803 units of green stormwater infrastructure within them. Within the 4 CDs that scored the highest alone (CD-3, CD-5, CD-16, and CD-17), 2857 units of green infrastructure are sited70% of all Green Infrastructure Program assets in Brooklyn. In contrast, there are 118 units in the 4 community districts that scored at level 2, and zero units of Green Infrastructure Program assets were installed in CD-10, which falls in the lowest heat vulnerability category.

3. Housing Risk Chart

Figure 31: Application of the 2020 Housing Risk Chart to Community districts in Brooklyn, with green infrastructure units

The Housing Risk Chart, also entitled How is Affordable Housing Threatened in Your Neighborhood?, is applied at the community district level. Out of 18 Brooklyn CDs, 3 of them (CD-5, CD-16, and CD-17) fell into the two highest categories of housing risk and contain 2298 units of Green Infrastructure Program assets. In the highest category alone, 1463, or 40\%, of the Green Infrastructure Program assets are sited. In contrast, 292 units were sited within the lowest housing risk categories, accounting for less than 1% of assets.

4. Small Area Index of Gentrification

Figure 32: Application of the Small Area Index of Gentrification to census tracts in Brooklyn, with green infrastructure units

The SAIG is applied at the census tract level. The way that risk is distributed, however, is different than other indexes-there are a near-equal number of tracts (149 ± 1) distributed with each of five scores in resultant "quintiles" as per the index authors' methods. This shows scores in relation to each other in ranking, rather than categorizing by graduated scores. After excluding units in areas with missing data and units that fall outside of census tracts, 4004 units of green infrastructure are found to spatially coincide with areas measured by the SAIG. However, 2725 units, or about 67%, of the green infrastructure assets lie within the top two quintiles (1513 units in level 4 and 1212 units in level 5). In comparison, 365 units, or less than 1% of the included green infrastructure assets lie in the census tracts that fall in the first two quintiles.

5. Typologies of Gentrification and Displacement

The Urban Displacement Project's gentrification and displacement index offers a typologybased, rather than hierarchical ranking, representation of gentrification permutations. The index indicates eight types of gentrification, categorized into three income levels: "very high income" (VHI), "moderate to high income" (MHI) and "low income" (LI).

Excluding census tracts with missing information, 4004 units of green infrastructure fall into census tracts measured by the urban displacement project. Four units (less than 0.01%) of the green infrastructure were installed in VHI census tracts marked as in a completed phase of "super gentrification." As also described in the aforementioned geographic literature, these super-gentrified census tracts lie west of Prospect Park, spanning from Park Slope to Brooklyn Heights. About 9% of the units fall within the MHI bracket, which include types of late-stage gentrification (stable or advanced exclusion phases).

Finally, 3613 units amounting to over 90% of green infrastructure are located in areas in the "low income" category. There are four types of gentrification status under the LI category. Three are types in earlier-stage gentrification and the fourth is "not losing low-income housing." About 59\% of green infrastructure units that land in areas covered by this index fall within the three earlier-stage gentrification types: "ongoing displacement of low-income housing," "at risk of gentrification," and "ongoing gentrification."

Figure 33: Percent of Green Infrastructure unit locations within each gentrification type and map of Green Infrastructure overlaid on UDP Gentrification Typologies.

Chapter 7 • Interpretation of Results

Brooklyn Heights is the most expensive neighborhood.
Then you got Park Slopes, Fort Greene, Cobble Hill, Clinton Hill and then, you know, it works like this... the rents get cheaper the further away you go from [Manhattan]. And the reality is, after the sand on Coney Island, it's the motherfucking Atlantic Ocean. So, where you gonna go? Where you gonna go?
Spike Lee on Gentrification
(Live at Black History Month Event at Pratt Institute in Brooklyn 2014)

Key Findings

In the annual county-wide index, we see that gentrification crossed a threshold into a new category rating for housing disruption in Kings County around the same time that green infrastructure was proposed across the city in 2011. The scores are categorical and based on raw scores that are derived from five-year averages of census data.

In the three indexes that provide hierarchical scores at the community district and census tract level-The Housing Risk Chart, Small Area Index of Gentrification, and Heat Vulnerability Index-there is a positive spatial relationship between the two highest gentrification score categories out of five and the vast majority of Green Infrastructure Program assets. In contrast, less than 7% of this new green infrastructure falls into areas in the lowest risk categories for both the Housing Risk Chart and Small Area Index of Gentrification. Zero units fall into the lowest heat vulnerability category. See Figure 34.

Figure 34: Green Infrastructure Units Per Gentrification Zone Scored with Hierarchical Index showing trends of high correlation between green infrastructure installation and presence of gentrification. Note: trend lines $\left(r^{2}\right)$ are polynomial.

The correlation is highest $\left(\mathrm{r}^{2}=97 \%\right)$ in the Heat Vulnerability Index. This high correlation is not unexpected owing to the tight links to UHIE co-benefits in green stormwater infrastructure development.

The SAIG was the only hierarchical index where the very highest score (5 out of 5) did not have the most units of green stormwater infrastructure, although it is still largely gathered within the top two categories. Though this was unanticipated, the smaller polygon size (census tract rather than the large community district) leads to much higher variability within the total area, and more entropy is to be expected.

Yet this variation might still be better explained by findings in the census-tract based trend analysis for the gentrification and displacement typologies in UDP's index application,
where the highest category in the SAIG coincides somewhat with the "super-gentrification" typology.

There are several categories of gentrification type (including "not gentrifying" and supergentrification, a late-stage gentrification status) in the UDP index. Very few units of green infrastructure fall into late-stage gentrification brackets or high-income gentrifying areas. About 90% of the units fall into low-income categories in this index, which is a pattern also observed in the HVI results. However, 59% of all the infrastructure falls into areas that have both of the following two characteristics: low-income populations and early-stage gentrification.

Due to social, financial, and geological factors, the green infrastructure installed in Brooklyn is concentrated in the northern half of the borough. Drawing from literature linking urban greening practices to gentrification, it was predicted that this green infrastructure would spatially coincide with gentrification across the borough.
"Gentrification" is phenomenon that is not easy to define in absolute terms. In each study, gentrification is defined by a varying set of factors, although most tend to point to a population that is becoming wealthier and whiter. Despite the differentiation, and while all community districts in Brooklyn are gentrifying to some extent, all indexes in this study show far greater rates of gentrification in the northern half of Brooklyn.

So, green infrastructure is highly associated with both displacement risk and phases of gentrification that are related to more recent economic changes in the area, such as financialization of urban greening initiatives. High correlation between green stormwater infrastructure and gentrification constitutes a green gentrification condition.

Overall, I found that the Typologies of Gentrification and Displacement from the Urban Displacement Project was the most illuminating measure for the purposes of identifying the
relationship between green infrastructure and gentrification during this time period.
While all the indexes and all the scales were extremely useful (the Housing Risk Chart and HVI both have significant health indicators, for example), the UDP index was most helpful for interpreting the results of the other indexes and drawing conclusions. There is extremely high spatial coincidence between acute ${ }^{1}$ forms of gentrification and urban greening within this set of green infrastructure units. In particular, I understand greening as a means to refuel ongoing gentrification processes that had stagnated amongst the climate crisis, and gentrification as a means to fund climate solutions rather than determining a cause-and-effect relationship between the two processes ${ }^{2}$.

Health, Safety, and Sustainable Development

Conventional wisdom in the resilience paradigm says green infrastructure is the future. Design principles of this green New Economy promises that urban greening will create a new and better environment and increase property values for the entire community. However, in a place like Brooklyn where over 70\% of housing is renter-occupied (U.S. Census Bureau 2019), increased property values and outside investment in their neighborhoods do not mean higher returns on equity and higher quality of life-they mean higher rent rates and demographic transformations in their area that largely favor wealthier individuals.

Combining these ideas, what I am calling the "green gentrification landscape" is a dialectic in which targeted investment in municipally owned/managed/sponsored urban greening

[^24]practices as part of the resilience paradigm has fortified gentrification pressure and risk throughout the borough of Brooklyn. Green infrastructure is an attempt at solving ecological crises and increasing quality of life in neighborhoods. However, it is not separable from demographic shifts and economic transformations that create housing security risks for existing residents. The Green Infrastructure Program was a revelatory case to use as a proxy representation in this cross-sectional analysis because of its time frame, components, integration with long-term city plans and authoritative position, the availability of data, and its material spatial practices overall.

Modeled CSO measurements showing improvements in sewer overflows should not be the only base for measuring the outcomes of the Green Infrastructure Program. By looking at social and economic conditions in the areas with different green infrastructure presence as intimately connected to the physical structural improvements, we can approach a more holistic approach to understanding the landscape-a vision connecting the people and the land rather than compartmentalizing them (Hernandez 2022, 121). A paradigm of resilience is not a successful one if people's lives are harmed.

In an optimistic sense, applying a resilience framework to coupled human-environment system emphasizes the dynamic relationship between humans and environments as that dynamic operates in response to various hazards. But this is also an opportunity to rethink what we view as a hazard. Yes, a superstorm is a hazard to our environment, but precarious environmental funding and stewardship is also an environmental hazard.

Part of what is occurring in New York City green infrastructure practices is a direct pathway from working within the natural confines to inequitable green infrastructure impacts. The natural topography (water table height, bedrock composition, waterbody flushing time, etc.)
has been used to determine where the grey landscape is greened, which in turn likely exacerbates gentrification and environmental injustice. Water pollution and flooding are hazards to human health and safety, but so is the uneven distribution of health-promoting amenities like those associated with green development.

So, while all this environmental remediation is supposed to be protecting people from a huge influx of water, those who are displaced by gentrification might instead just find themselves "wiped out by the green wave" (Checker 2020, 82).

When The Data Doesn't Exist...

I sought to create one additional map for an analysis of sites for omission vs. commission for green infrastructure grant public program-funded green roof projects such as those in Brooklyn Navy Yard. Noting that existing green roof contracts were highly concentrated in the northwest part of Brooklyn, I was interested in creating a map that showed sites with granted green roof funding and sites of rejected applications. In theory, I would have created a map showing granted applications with green symbols and rejected/ungranted applications with black symbols, hypothesizing that rejected applications would fill out some of the otherwise "empty" space in the southern portions of the map. This was interesting to me because since so many areas in southern Brooklyn were determined to be unsuitable for bioswale or other street-level green infrastructure installation, green and blue roofs or other strategies might have been a viable option for the area, especially owing to the many large, high-density buildings.

However, in my attempts to request data through the NYC FOIA portal and further research, I found that the data I was looking for on rejected grant applications did not exist. One
reason was that most older paper applications (prior to 2013) were not readily available through the DEP or were perhaps past the time frame of document disposal limitations ${ }^{3}$.

The other reason is that more recent rejected applications simply do not exist. Potential green roof grant applicants have "pre-application" group meetings to see if they should actually apply for grants, eliminating this data point from existing. The pre-application application is extremely straight-forward, as you can see in the image below (Figure 35).

NYC GREEN INFRASTRUCTURE				
GRANT PROGRAM				
Form Submission: Please download and send completed form to gigrantprogram@dep.nyc.gov				
APPLICANT CONTACT INFORMATION				
Name:				
Legal Name of Business/Organization (if applicable):				
Address:				
City: State: Zip Code:				
Email: Confirm Email:				
Phone Number:				
Applicant Role:				
Check if Applicant Contact Information is the same as Property Owner				
PROPERTY OWNER INFORMATION				
Name:				
Legal Name of Business/Organization (if applicable):				
Address:				
City: State: Zip Code:				
Email: Confirm Email:				
Phone Number:				
PROJECT INFORMATION				
Project Name:				
Project Address:				
Project City:	Projec		Pr	
Borough/Block/Lot:				
The property is served by:			Property Type:	0
Total Impervious Area of Roof (SF):				

Figure 35: Green Infrastructure Grant Pre-Application Form Sample. Source: nyc.gov

[^25]I hoped I could take the neighborhood residence data from the meetings and compare it to existing accepted applications but a request for anonymized data for individuals who had preapplication meetings was denied. Additionally, potential applicants can now attend application group workshops to learn about the application process and if they should apply (NYC DEP 2022; Euton, n.d.).

This research attempt would have enabled me to create a map of green roof desire vs. green roof reality. Data obfuscation such as this is a major limitation of secondary data, public data, and public participation. I still hope to pursue this research.

Policy Prescription

How can we ensure communities are resilient against both ecological hazards and environmental gentrification? The objective of environmental justice is to remedy a landscape where poor and racialized communities have historically lived and worked in places with environmental conditions that negatively impact their physical and mental health and wellness. Urban greening in these areas has the potential to mitigate urban environmental burdens, such as flood risk, high heat, and exposure to dereliction. But results here indicate that areas with city-sponsored greening also have high-risk of displacement for those who are made vulnerable in the first place.

A diversity of land use in a small area seems to be a trend in environmental justice proposals against green gentrification. Similar to integrated city planning goals, the "just green enough" strategy of Brooklyn environmental mitigation proposes a mixture of environmental goods, such as community gardening and other "ordinary environmentalisms" (Milbourne 2012) without eschewing industrial uses. This would entail having small but not absent manufacturing presence that would seemingly deter the inevitability of green gentrification because such land
uses are not usually found linked to such a phenomenon (Jacobs 1992; Curran and Hamilton 2012). However much grassroots greening and network building strengthens communities, we see time and again that private investors only quash any semblance of community stability we build.

Urban greening should be government funded without corporate property-value increase incentives. I believe that the federal encouragement for cities to engage in partnerships with private enterprise leads directly to uneven, and thus unjust, funding for greening across the city. Though it would likely still be heavily bureaucratic, robust government sponsorship of greening rather than privatized greening may curtail the conflicts of interest.

There needs to be a change in social relations around housing ownership. Cooperative housing and other forms of solidarity economy around housing may be the solution. Absent landlords, especially in the form of residential building ownership by limited liability corporations (LLCs) that has removed some of the intimacy from apartment buildings, should be broken up in the name of antitrust principles. Currently, housing is hoarded and is thus able to be rented out at inflated rates. Corporations that build or buy buildings divert monies from community members because they are better able to develop or enhance green space on these properties that qualify for related government grants and tax breaks.

Additionally, other policy tools, including rent control and incentives for limited-equity apartment purchasing for first-time home buyers may help residents maintain housing stability. Other issues in New York City that reduce the amount of affordable or low-income Brooklyn housing might need to be cracked down on include people renting apartments only to rent them out through services like AirBnB, landlords holding apartments empty for tax incentives and
refusing renters with vouchers, reducing luxury condominium approvals, and matching our homeless with empty units to give them a new lease on life.

Future Work

Several other analyses and projects could also contribute to ongoing questions from this research:

- Borough replications: This experiment could be replicated for each borough, borough pairs, or citywide. Although the proxy representation for urban greening could be adjusted, either by green infrastructure type, using another urban greening practice, or a future time period.
- Green gentrification index: Drawing from the index development methodologies for each of the five indexes, an index of green gentrification could be developed by integrating a green infrastructure presence factor within a certain time period.
- Green infrastructure longevity: Time series analysis of LANDSAT data for afforestation success in vegetated green infrastructure units.
- Resident protections: I intend on moving forward with this research with grassroots organizers and tenants' rights organizations in Brooklyn and Queens.
- Type-specific analysis: Analysis of green gentrification or other property value data related to different types of green infrastructure (bioswales vs. green roofs, or ROW vs. on-site, for example).
- Network Analysis: Network analysis of walkways with right-of-way green infrastructure and accessibility.
- Risk displacement: Further analysis of risk of displacement per green infrastructure typology

Chapter $8 \cdot$ Conclusions

It was the last time she'd see the river from that window... This that I see now, she thought, to see no more this way.
A Tree Grows in Brooklyn (B. Smith 1943, 415)

Understanding Human Geography as an Environmental Science

In the 18th century, after a boom in population and industry (and several cholera outbreaks), New York City began installing underground sewers to confront its deadly serious sanitation issues. Sewers lining the entirety of the underlying geological formations were outfitted with CSOs to act as a sump system that would protect the sewers by relieving them of anticipated occasional surges in water influx. Now as we start the 21 st century, that aging grey infrastructure has become more and more insufficient as there are more and more demands on it. The system must be supplemented by a potentially precarious suite of green infrastructure that needs to tide us over at least until the longer, more expensive "permanent" upgrades and retrofits to existing grey infrastructure can be implemented.

At the same time, green infrastructure is marketed as an environmental boon-a healthpromoting amenity that heals the landscape and the people in it. But when the government both mandates greening for any new development in a city where development is constant, and necessitates private investment as a means to fund those projects, property values rise as part of a return on that investment.

When siting for green infrastructure is dependent on both where investors want to invest and site suitability is determined in a way that prioritizes the topology and funding opportunities rather than community health, the development across the county is uneven. Uneven funding equals uneven governance.

In the same space, gentrification-a convergence of demographic shifts and economic transformations-is highly concentrated in certain areas of the borough. The political ecology of green infrastructure theoretically exacerbates economic and demographic conditions in an area, and the confluence of these phenomena beg a natural experiment evaluating whether a case of green gentrification is afflicting Brooklyn, New York-and it is.

So, CSOs have been mitigated by green infrastructure. Great. Green infrastructure is touted as a tool for environmental betterment, but we must think of the environment beyond geophysical processes.

The environment is made of several spheres existing in the same place at the same time, and they are not easily separable-the physical environment, the social environment, the economic environment, the political environment - the list goes on. This dissertation comes from a Department of Earth and Environmental Sciences, which has two official specializations: "Geography," which centers on human geography, and "Environmental and Geological Sciences," that can be mutually supportive areas if we make a conscientious effort to do so. I want to make a call to critical geographers and physical environmental scientists to think about the way we use "the environment" in our daily lexicon. Think about the environment as multifaceted beyond and within the ecological realm. Geography is one of the earth and environmental sciences for a reason. Environmental Sciences-plural.

Responsible applications of political ecology should string these layers together. Greening does not relieve all aspects of the environment. And social problems cannot be solved without considering the ecological terrain on which they occur. Green infrastructure remedies an ecological problem that is highly political, but it exacerbates gentrification and all its associated risks in the socioeconomic environment. An environment is "the surroundings or conditions in
which a person, animal, or plant lives or operates" ("Oxford Languages" n.d.) and that is highly social.

The Causality Dilemma

So, which came first, the greening or the gentrification? This has been a question through every iteration of this project. This cross-sectional analysis structure is used to show that this question could only yield a paradoxical response. The inquiry looks at one cross section of time (20102020) for an analysis of correlation rather than causation.

Using evidence from literature, this study operates under the assumption that gentrification is ongoing and constant, and reaches many junctures (ecological and social) that affect its trajectory. In this particular moment in space-time (the resilience paradigm), urban greening practices are one of those many moments that fuel and accelerate gentrification.

Development and urban rejuvenation processes hit a wall when climate emergencies became too ubiquitous for their existing development practices to be viable. Influenced both politically and financially by principles of the resilience paradigm, green development was launched at the climate emergency obstacle to clear the path for gentrification to continue. Further evidentiary support for this is given by results from the CSVI of Gentrification Pressure showing a sharp increase in gentrification correlating to the release of the Vision 2020 plan and UDP Gentrification and Displacement Typology Index showing a high spatial coincidence between green infrastructure and areas specifically in the nascent stages of gentrification.

Urban greening in the form of green infrastructure relies heavily on the processes of gentrification for its funding and usage. Moreover, to say that green infrastructure installation sparked gentrification in the area would be a slight to the countless people negatively impacted
by their rent burden and the swaths of scholarly and activist work dedicated to it. Gentrification is cyclic and has its own paradigmatic eras-in this moment we are in a green gentrification era.

There can be a fine line between sounding pedantic and sounding conscientious. This may not be a perfect response, but an assumption of one or the other in a chicken-and-egg ${ }^{1}$ question is somewhat antithetical to the purposes of this dissertation.

Figure 36: Green Gentrification Concept Map
${ }^{1}$ Even the classic question "which came first, the chicken or the egg" has become a scientifically and socially flawed question whose answer is only a paradox. "Eggs" themselves existed prior to a chicken ever did, and as for what we know as a chicken, the egg the first chicken hatched from would therefore not be an egg from a chicken, but it might be called a "chicken egg" because of what it produced, while others say the first egg begat from a chicken was the first chicken egg (Zushi 2017).

Synthesis of Theoretical and Material Research

I'm drowning here, and you're describing the water!

As Good as It Gets

(Brooks 1997)
A landscape is a site of two types of transformation. One: the terrain itself is landscaped by actions and actors, including financialization, ecological events, and law. Two: materials enter the landscape and become transformed-for examples, people live and work within a landscape and their health is impacted (for better or worse) by it, or a sum of money that is invested in that landscape will yield either losses or returns and grow or shrink, depending on the market.

In Brooklyn, two major factors are creating an uneven landscape of green infrastructure development. First, the different types of underlying geological formations necessitate a high diversity of green infrastructure types of units in order to accommodate all areas. Then, a privatized model for funding leads to uneven support because of the private enterprise's own investment site analyses. This green scheme, in turn and by design, leads to increases in property values which draws in cultural investments in the area like new luxury residential buildings and stores.

In the case of a health-promoting amenity, like the green infrastructure, there is big distinction between sites of commission and sites of omission:

In sites of green stormwater infrastructure commission, people in the landscape reap health benefits and monetary investments appreciate in the processes of gentrification. However, poorer residents are likely expelled from these areas, perhaps even into the areas of omission, and new wealthy residents enter into this part of the landscape, which would mean that only the people with stable or growing high monetary wealth and status reap the health benefits.

The sites of green stormwater infrastructure omission-the forgotten places-are left out of the progressive land transformations, and likely experience dilapidated environments. Expulsive greening practices do not just remove poverty and other environmental "negatives" from the greened area-they remove the people experiencing poverty. These landscapes are not healing for the people who live there now nor the people who have already gone.

Uneven investment in the terrain is equivalent to uneven investment in its people.
Resilience is not sustainable.

Appendix I: Archival Documents

Table 8: Gentrification and Brooklyn Fisheries Archival Documents

Author	Investigator	Date	Description	Collection
Frank Tursi	Barbara GarrityBlake	5/24/16	Retired journalist describes his upbringing in Brooklyn, New York and how he moved to North Carolina with the industry	1997 North Carolina Fisheries Reform Act
Don Dvorak	Dewey Livingston Jennifer Stock	3/9/12	The personal experiences of the pioneer divers of Cordell Expeditions, who collected specimens, video footage, photographs, and engaged the media to bring awareness to this poorly known marine habitat off the Marin/Sonoma coast, many of whom are now approaching advanced age, are unique and irreplaceable elements of the historic expedition that have not been recorded.	Cordell Expeditions
Elaine Dvovak				
Sue Estey				
Joe Scavone	Nancy Solomon	6/8/11	Interview with Scavone, whose family were fishermen in Brooklyn for multiple generations	Long Island Traditions
Tom Jefferies		10/19/11	Interview with Jefferies. Marketable fish species have diversified as the country as diversified.	
Bill Marinaccio		6/18/15	Retired charter boat captain Marinaccio of Freeport shares some stories of working alongside his father on board the Dutchess	Long Island Traditions Climate Change and Sandy
Laurel Bryant	Molly Graham	11/13/20	Laurel Bryant was born in Mount Vernon, Washington, and raised in Seattle.	NOAA 50th Anniversary Oral History Project
Doug Rogers	Nancy Solomon	7/17/97	Rogers has worked the Peconic bays for 35 years.	Peconic Estuary Interviews
Philip Ruhle	Jennifer Murray	9/29/87	Born in Brooklyn, Ruhle began his work in the fishing industry during the 1940's.	The Fishing Industry in Newport, RI 1930-1987
Paul Swain	Janice Gadaire Fleuriel	9/25/04	Work schedule changes related to advanced boating and fishing technology	The Working Waterfront Festival Community Documentation Project
Kevin Dawson		9/24/05	Location changes with advanced freezer technology.	
Malvin Kvilhaug			Houses used as collateral for boats.	
Theodore "Ted" Pederson		9/27/08	Pederson discusses his experiences in the fishing industry. His wife, Ethel, joins him in the interview.	
Leonard Roche	Madeleine Hall-Arber	9/25/10	Dr. Roche is a retired fisherman who had a simultaneous career as an educator and school principal.	

Henry Allerdt	Mike Petillo	$9 / 24 / 11$	Allerdt recalls some of the worst weather he has been through, along with the various boats he has fished.	The Working Waterfront Festival Community
Dick Grachek	Madeleine Hall-Arber	$9 / 25 / 11$	Grachek has fished for just about every species of fish. Leaving the ocean to pursue a degree the lure was strong and he returned.	Documentation Project
Hans Davidson	Markham Starr	$9 / 30 / 02$	Although now retired, Davidson recalls the struggle against what he refers to as "draconian" regulations.	
Lewis Lawrence	David Caruso	$2 / 20 / 15$	Sustainable dilapidation and community attractiveness for the investors and new residents and tourists	Voices from the Working Waterfront Oral History Project
 Sharon Ulrichsen	Fred Calabretta	$7 / 12 / 17$	Owners of the family business Harbor Hydraulics in Fairhaven, CT.	Workers on the New Bedford Waterfront

Table 9: Municipal Government Reports and Data

Document, Year (Purpose)	Department	URL	Format
SPDES Report 2014 (CSO output volumes)	NYC Dept. of Environment al Protection	http://www.nyc.gov/html/dep/pdf/harbor/spdes bmp report 2014.pdf	.pdf
SPDES Report 2015		http://www.nyc.gov/html/dep/pdf/harbor/spdes bmp_report 2015.pdf	.pdf
SPDES Report 2016		http://www.nyc.gov/html/dep/pdf/harbor/spdes bmp report 2016.pdf	.pdf
SPDES Report 2018		https://www1.nyc.gov/assets/dep/downloads/pd f/water/stormwater/spdes-bmp-cso-annual-report-2018.pdf	.pdf
DEP Green Infrastructure, 2018		No Longer available. Originally accessed via nyc open data, 2018.	.shp
Vision 2020: New York City Comprehensiv e Waterfront Plan, 2010	NYC Dept. of City Planning	https://www1.nyc.gov/site/planning/plans/vision -2020-cwp/vision-2020-cwp.page	.pdf
NYC Urban Tree Canopy Assessment Metrics 2010 (CSO Drainage Zones)	NYC Dept. of Parks and Recreation	https://data.cityofnewyork.us/Environment/NYC- Urban-Tree-Canopy-Assessment-Metrics- 2010/hnxz-kkn5	.shp
Neighborhood Tabulation Areas, 2010	City Of New York	https://data.cityofnewyork.us/City- Government/2010-Neighborhood-Tabulation- Areas-NTAs-/cpf4-rkhq	.shp
NYC Heat Vulnerability Index	NYC Dept. of Health	https://a816dohbesp.nyc.gov/IndicatorPublic/HeatHub/hvi.ht ml	$\begin{aligned} & . \operatorname{csv}, \\ & . \operatorname{shp} \end{aligned}$

Appendix II: Results Data for Spatial Coincidence Analysis

Community Board District	CB Code	shape_area	shape_leng	Neighborhood	ANHD Number of Housing Threats	Heat Vulnerability Index Score	NUMPOINTS
BK 1	301	131742345.9	68957.4477	Greenpoint/Williamsburg	3	4	112
BK 2	302	79329421.36	74179.91486	Brooklyn Hts/Ft. Greene	3	3	104
BK 3	303	79461502.55	36213.67136	Bedford Stuyvesant	13	5	559
BK 4	304	56662612.93	37007.80652	Bushwick	8	4	437
BK 5	305	155482383.7	65113.74904	E. New York/Starrett City	23	5	1463
BK 6	306	85497428.15	82129.62118	Park Slope/Carroll Gdns/Gowanus/Red Hook	3	2	72
BK 7	307	104130714.1	87416.96312	Sunset Park	6	2	3
BK 8	308	45592714.72	38229.57701	Crown Heights	6	4	202
BK 9	309	45326334.17	29944.47419	S. Crown Hts/Prospect Hts	11	4	192
BK 10	310	111328282.6	44788.15626	Bay Ridge	1	1	0
BK 11	311	103177785.4	51549.55763	Bensonhurst	8	2	39
BK 12	312	99525500.13	52245.83132	Borough Park	11	4	2
BK 13	313	88195685.8	65821.87903	Coney Island	10	3	0
BK 14	314	82167088.19	49292.35139	Flatbush/Midwood	9	4	1
BK 15	315	131644187.9	115292.8116	Sheepshead Bay	4	2	4
BK 16	316	51768906.81	32997.57469	Brownsville	19	5	681
BK 17	317	93818790.08	43327.41058	East Flatbush	20	5	154
BK 18	318	235456955	189415.511	Flatlands/Canarsie	7	3	24

Table 11: Green Infrastructure Point Counts in Census Tract Polygons against Gini Scores, SAIG Scores, and UDP Gentrification Typologies (10 pages, continuous)

\square + TMT
 SNA Score SA

Abbreviations

Table 12: In-Text Abbreviations

ACS	American Community Survey
AHS	American Housing Survey
ANHD	Association for Neighborhood and Housing Development
CD	Community District
Co-op	Cooperative Housing
COVID	Coronavirus Disease
CRA	Community Reinvestment Act
CSO	Combined Sewer Outfall/Overflow
CWA	Clean Water Act
DEC	NYS Department of Environmental Conservation
DEP	NYC Department of Environmental Protection
DRIE	Disability Rent Increase Exemption
EH	Extreme Heat
EPA	United States Environmental Protection Agency
EVRAP	Extensive Vegetative Roof Acreage Potential
FEMA	United States Federal Emergency Management Agency
FOIA	Freedom of Information Act
FOIL	Freedom of Information Law
GIS	Geographic Information Systems Software
GISc	Geographic Information Systems/Science
H\&H	Hydrological and Hydraulic
HVAC	Heating, Ventilation, and Air Conditioning
HVI	Heat Vulnerability Index
LEK	Local Ecological Knowledge
LI	Low Income
LIHTC	Low Income Housing Tax Credits
LLC	Limited Liability Corporation
LTCP	Long-Term Control Plan
LULU	Locally-Unwanted Land Uses
MHI	Moderate to High Income
MRSA	Methicillin-Resistant Staphylococcus Aureus
MTNYC	MillionTreesNYC
NOAA	National Oceanic and Atmospheric Administration
NTA	Neighborhood Tabulation Area
NY/NYS	New York State
NYC	New York City
NYCHA	New York City Housing Authority
P_{3}	Public-Private Partnership
PUMA	Public Use Microarea
ROW	Right-of-Way

RWI	Recreational Water Illnesses
SAIG	Small Area Index of Gentrification
SCRIE	Senior Citizen Rent Increase Exemption/
SPDES	State Pollution Discharge Elimination System
SSI	Social Security Income
SVI	Social Vulnerability Index
SWR	Storm Water Runoff
UDP	Urban Displacement Project
UHIE	Urban Heat Island Effects
VDL	Vacant and Derelict Land
VHI	Very High Income
Vs.	Versus
WWTP	Wastewater Treatment Plant
Yuppie	Young Upwardly-mobile/Urban Professional

Bibliography

Adams, Fiona, Claudette Macey, and James A. Thornton. 2021. "Combating Social Isolation for Older New Yorkers." Public Symposium, Brooklyn, New York, January 29.
Agonafir, Candace, Alejandra Ramirez Pabon, Tarendra Lakhankar, Reza Khanbilvardi, and Naresh Devineni. 2022. "Understanding New York City Street Flooding through 311 Complaints." Journal of Hydrology 605 (February): 127300. https://doi.org/10.1016/j.jhydrol.2021.127300.
Agrawal, Ajay, and lain Cockburn. 2003. "The Anchor Tenant Hypothesis: Exploring the Role of Large, Local, R\&D-Intensive Firms in Regional Innovation Systems." International Journal of Industrial Organization 21 (9): 1227-53. https://doi.org/10.1016/S0167-7187(03)00081-X.
Albro, Sandra. 2019. Vacant to Vibrant: Creating Successful Green Infrastructure Networks. Washington, DC: Island Press/Center for Resource Economics Imprint: Island Press.
Allerdt, Henry. 2011. Oral History Interview, September 24, 2011, by Mike Petillo. The Working Waterfront Festival Community Documentation Project. NOAA Voices Oral History Archives.
American Rivers. 2021. "What Is Green Infrastructure?" American Rivers. 2021. https://www.americanrivers.org/threats-solutions/clean-water/green-infrastructure/what-is-green-infrastructure/.
An Open Letter to NYC. 2004. 12" Vinyl Record. To the 5 Boroughs. Capitol.
Anguelovski, Isabelle, James J. T. Connolly, Hamil Pearsall, Galia Shokry, Melissa Checker, Juliana Maantay, Kenneth Gould, Tammy Lewis, Andrew Maroko, and J. Timmons Roberts. 2019. "Opinion: Why Green 'Climate Gentrification' Threatens Poor and Vulnerable Populations." Proceedings of the National Academy of Sciences 116 (52): 26139-43. https://doi.org/10.1073/pnas. 1920490117.
Appel, Hannah, Nikhil Anand, and Akhil Gupta. 2018. "Introduction: Temporality, Politics, and the Promise of Infrastructure." In The Promise of Infrastructure. Duke University Press. https://doi.org/10.1215/9781478002031.
Badham, John, dir. 1977. Saturday Night Fever. Aspect ratio 1.85 : 1. Drama, Music. Paramount Pictures.
Baez, EJ. 1996. "Spirituality and the Gay Latino Client." In Human Services for Gay People: Clinical and Community Practice, edited by Michael Shernoff. New York: Harrington Park Press.
Baker, Mike, Anjali Singhvi, and Patricia Mazzei. 2021. "Engineer Warned of 'Major Structural Damage' at Florida Condo Complex." The New York Times, June 26, 2021, sec. U.S. https://www.nytimes.com/2021/06/26/us/miami-building-collapse-investigation.html.
Bakhtiari, Kian. 2019. "Stop Marketing To Millennials Or Gen-Z And Start Marketing To Tribes." Forbes, December 13, 2019. https://www.forbes.com/sites/kianbakhtiari/2019/12/13/stop-marketing-to-millennials-or-gen-z-and-start-marketing-to-tribes/.
Barnes, Janice, Karen Blondel, and Daphne Lundi. 2021. "Environmental Health and Preparedness:" Public Symposium, Brooklyn, New York, January 28.

Bekiempis, Victoria. 2021. "Hail, Tornadoes and Flooded New York Subways as Stormy Weather Hits East Coast." The Guardian, July 9, 2021, sec. US news. https://www.theguardian.com/us-news/2021/jul/08/tropical-storm-elsa-new-york-flooding-rain.
Benjamin, Yannick, Diana Cruz, and Lisa Veglia. 2021. "Overcoming the Barriers to Accessibility during the COVID-19 Pandemic." Public Symposium, Brooklyn, New York, January 28.
Benth, Fred Espen, and Jurate Saltyte Benth. 2013. MODELING AND PRICING IN FINANCIAL MARKETS FOR WEATHER DERIVATIVES. Advanced Series on Statistical Science and Applied Probability, Vol. 17. New Jersey: World Scientific.
Berkes, Fikret. 2007. "Understanding Uncertainty and Reducing Vulnerability: Lessons from Resilience Thinking." Natural Hazards 41 (2): 283-95. https://doi.org/10.1007/s11069-006-9036-7.
Bernice, Rosenzweig, Arnold L. Gordon, Marra John, Chant Robert, Christopher J. Zappa, and Adam S. Parris. 2016. "Resilience Indicators and Monitoring: An Example of Climate Change Resiliency Indicators for Jamaica Bay." In Prospects for Resilience, edited by Eric W. Sanderson, William D. Solecki, John R. Waldman, and Adam S. Parris, 141-65. Washington, DC: Island Press/Center for Resource Economics. https://doi.org/10.5822/978-1-61091-734-6_7.
Beyer, Kirsten, Andrea Kaltenbach, Aniko Szabo, Sandra Bogar, F. Nieto, and Kristen Malecki. 2014. "Exposure to Neighborhood Green Space and Mental Health: Evidence from the Survey of the Health of Wisconsin." International Journal of Environmental Research and Public Health 11 (3): 3453-72. https://doi.org/10.3390/ijerph110303453.
Bianco, Federica, Karen Chapple, Neil Kleiman, Stanislav Sobolevsky, Dana Chermesh Reshef, Hao Xi, Gerardo Rodriguez Vázquez, and Ruben Hambardzumyan. 2018. "Map of Gentrification and Displacement for The Greater New York." Capstone, New York University. 2018 Capstones.
Biñas, Rustco "Rusty." 2018. The Resilience Paradigm: Facts for Transformation. Germany: Cordaid/Caritas.
Binelli, Mark. 2013. Detroit City Is the Place to Be: The Afterlife of an American Metropolis. 1. Picador ed. New York, NY: Picador.
Block, Lucy. 2020. "How Is Affordable Housing Threatened in Your Neighborhood? 2020." Association for Neighborhood and Housing Development. July 6, 2020. https://anhd.org/report/how-affordable-housing-threatened-your-neighborhood-2021.
Bock, Jennifer, Palak Srivastava, Sonal Jessel, Jacqueline M. Klopp, and Robbie M. Parks. 2021. "Compounding Risks Caused by Heat Exposure and COVID-19 in New York City: A Review of Policies, Tools, and Pilot Survey Results." Journal of Extreme Events 08 (02): 2150015. https://doi.org/10.1142/S2345737621500159.
Bonanno, George A. 2021. "The Resilience Paradox." European Journal of Psychotraumatology 12 (1): 1942642. https://doi.org/10.1080/20008198.2021.1942642.
Boström, Magnus, and Ylva Uggla. 2016. "A Sociology of Environmental Representation." Environmental Sociology 2 (4): 355-64. https://doi.org/10.1080/23251042.2016.1213611.
Boulos, Maged N, Zhihan Lu, Paul Guerrero, Charlene Jennett, and Anthony Steed. 2017. "From Urban Planning and Emergency Training to Pokémon Go: Applications of Virtual Reality

GIS (VRGIS) and Augmented Reality GIS (ARGIS) in Personal, Public and Environmental Health." International Journal of Health Geographics 16 (1): 7, s12942-017-0081-0. https://doi.org/10.1186/s12942-017-0081-0.
Bowen, Gabriel J., Brenden Fischer-Femal, Gert-Jan Reichart, Appy Sluijs, and Caroline H. Lear. 2020. "Joint Inversion of Proxy System Models to Reconstruct Paleoenvironmental Time Series from Heterogeneous Data." Climate of the Past 16 (1): 65-78. https://doi.org/10.5194/cp-16-65-2020.
Boyd, Claude E. 2015. Water Quality: An Introduction. 2nd edition. Cham Heidelberg New York: Springer.
Brady, Ryan. 2017. "The Anti-Bioswale Fighter of Flushing Neighborhood Resident, at Least Temporarily, Stopped Work by DEP." Queens Chronicle, January 5, 2017. https://www.qchron.com/editions/queenswide/the-anti-bioswale-fighter-of-flushing/article_ea607e15-9369-57e8-ae01-01657b1baae8.html.
Branco, Brett, and John R. Waldman. 2016. "Resilience Practice in Urban Watersheds." In Prospects for Resilience, edited by Eric W. Sanderson, William D. Solecki, John R. Waldman, and Adam S. Parris, 21-42. Washington, DC: Island Press/Center for Resource Economics. https://doi.org/10.5822/978-1-61091-734-6_2.
Brooks, James L., dir. 1997. As Good as It Gets. 35 mm. Romantic Comedy-Drama. Sony Pictures Releasing.
Brosnan, Thomas M., and Marie L. O’Shea. 1996. "Sewage Abatement and Coliform Bacteria Trends in the Lower Hudson-Raritan Estuary since Passage of the Clean Water Act." Water Environment Research 68 (1): 25-35. https://doi.org/10.2175/106143096X127181.
Brown, Tim, Sara McLafferty, and Graham Moon, eds. 2010. A Companion to Health and Medical Geography. Blackwell Companions to Geography 8. Chichester, West Sussex, U.K. ; Malden, MA: Wiley-Blackwell.

Bryant, Laurel. 2020. Laurel Bryant: NOAA 50th Anniversary Oral History Project Interview by Molly Graham. NOAA Voices Oral History Archives.
Bullard, Robert D. 1994. "Environmental Justice For All." In Unequal Protection: Environmental Justice and Communities of Color, edited by Robert D. Bullard, 3-22. San Francisco: Sierra Club Books.
Busá, Alessandro. 2012. "Rezoning Coney Island: A History of Decline and Revival, of Heroes and Villains at the 'People’s Playground.'" In The World in Brooklyn: Gentrification, Immigration, and Ethnic Politics in a Global City, edited by Judith N. DeSena and Timothy Shortell. Lanham: Lexington Books.
Byrne, Jason, Christopher Ambrey, Chloe Portanger, Alex Lo, Tony Matthews, Douglas Baker, and Aidan Davison. 2016. "Could Urban Greening Mitigate Suburban Thermal Inequity?: The Role of Residents' Dispositions and Household Practices." Environmental Research Letters 11 (9): 095014. https://doi.org/10.1088/1748-9326/11/9/095014.
Campanella, Thomas J. 2019. Brooklyn: The Once and Future City. Princeton: Princeton University Press.
Campbell, Lindsay K. 2015. "Constructing New York City’s Urban Forest the Politics and Governance of the MillionTreesNYC Campaign." In Urban Forests, Trees, and

Greenspace: A Political Ecology Perspective, edited by L. Anders Sandberg, Adrina Bardekjian, and Sadia Butt, 242-60. London New York: Earthscan from Routledge. Cardwell, Diane. 2005. "City Backs Makeover for Decaying Brooklyn Waterfront." The New York Times, May 3, 2005, National Edition edition, sec. A.
Caro, Robert A. 1975. The Power Broker: Robert Moses and the Fall of New York. New York: Vintage Books.
Castree, Noel. 2020. "Capitalism and the Marxist Critique of Political Ecology." In The Routledge Handbook of Political Ecology, edited by Tom Perreault, Gavin Bridge, and James McCarthy, First published in paperback. Routledge International Handbooks. London New York: Routledge.
CDC. 2017. "Center for Disease Control - Healthy Places - Health Effects of Gentrification." June 8, 2017. https://www.cdc.gov/healthyplaces/healthtopics/gentrification.htm.
"Census Tracts." 2010.
Chandler, Sarah. 2014. "A Brand Grows in Brooklyn: NYC's Most Happening Borough." CNBC. October 17, 2014. https://www.cnbc.com/2014/10/17/brooklyn-the-billion-dollarbrand.html.
Chapple, Karen, and T Thomas. 2021. "Urban Displacement Project." Berkeley, CA.
Checker, Melissa. 2015. "Green Is the New Brown: ‘Old School Toxics’ and Environmental Gentrification on a New York City Waterfront." In Sustainability in the Global City: Myth and Practice, edited by Cindy Isenhour and Gary McDonogh. New York: Cambridge University Press. https://doi.org/10.1017/CBO9781139923316.
———. 2017. "Stop FEMA Now: Social Media, Activism and the Sacrificed Citizen." Geoforum 79 (February): 124-33. https://doi.org/10.1016/j.geoforum.2016.07.004.
———. 2020. The Sustainability Myth: Environmental Gentrification and the Politics of Justice. New York: New York University Press.
Cherrier, J., Y. Klein, H. Link, J. Pillich, and N. Yonzan. 2016. "Hybrid Green Infrastructure for Reducing Demands on Urban Water and Energy Systems: A New York City Hypothetical Case Study." Journal of Environmental Studies and Sciences 6 (1): 77-89. https://doi.org/10.1007/s13412-016-0379-4.
Clarke, Keith C., Bradley O. Parks, and Michael P. Crane. 2002. "Data Sources and Measurement Technologies for Modeling." In Geographic Information Systems and Environmental Modeling. Prentice Hall Series in Geographic Information Science. Upper Saddle River, N.J: Prentice Hall.

Clarke, Lorraine Weller, G. Darrel Jenerette, and Antonio Davila. 2013. "The Luxury of Vegetation and the Legacy of Tree Biodiversity in Los Angeles, CA." Landscape and Urban Planning 116 (August): 48-59. https://doi.org/10.1016/j.landurbplan.2013.04.006.
Clay, Patricia M, and Julia Olson. 2008. "Defining 'Fishing Communities': Vulnerability and the Magnuson-Stevens Fishery Conservation and Management Act." Human Ecology Review 15 (2): 18.
Cohen, Deborah A., Terry Marsh, Stephanie Williamson, Bing Han, Kathryn Pitkin Derose, Daniella Golinelli, and Thomas L. McKenzie. 2014. "The Potential for Pocket Parks to Increase Physical Activity." American Journal of Health Promotion 28 (3_suppl): S19-26. https://doi.org/10.4278/ajhp.130430-QUAN-213.

Cohn, Alan, Beau Ranheim, and Rosana da Silva. 2018. "Advancing Public Notifications Methods for CSO Events." Workshop, US Customs House, Bowling Green, New York Clty, November 16.
Colburn, Lisa, and Patricia Clay. 2012. "The Role of Oral Histories in the Conduct of Fisheries Social Impact Assessments in Northeast US." Journal of Ecological Anthropology 15 (1): 74-80. https://doi.org/10.5038/2162-4593.15.1.6.
Colburn, Lisa L., and Michael Jepson. 2012. "Social Indicators of Gentrification Pressure in Fishing Communities: A Context for Social Impact Assessment." Coastal Management 40 (3): 289-300. https://doi.org/10.1080/08920753.2012.677635.

Colburn, Lisa L., Michael Jepson, Changhua Weng, Tarsila Seara, Jeremy Weiss, and Jonathan A. Hare. 2016. "Indicators of Climate Change and Social Vulnerability in Fishing Dependent Communities along the Eastern and Gulf Coasts of the United States." Marine Policy 74 (December): 323-33. https://doi.org/10.1016/j.marpol.2016.04.030.
Comber, Alexis J, Chris Brunsdon, and Robert Radburn. 2011. "A Spatial Analysis of Variations in Health Access: Linking Geography, Socio-Economic Status and Access Perceptions." International Journal of Health Geographics 10 (1): 44. https://doi.org/10.1186/1476-072X-10-44.
Cordell Expeditions. Oral History Interview with Elaine Dvorak, Sue Estay and Don Dvorak by Dewey Livingston and Jennifer Stock on March 9, 2012. 2012. PDF,MP3,JPEG. NOAA Voices Oral History Archives. https://doi.org/10.7289/V51C1V72.
Creswell, Tim. 2013. Geographic Thought: A Critical Introduction. Wiley-Blackwell.
Crino, Michael, Karen Rutberg, and Magdi Farag. 2006. "Case Study Seven: Infrastructure Mapping for Planning and Maintenance: GIS Mapping of the New York City Sewer and Storm Drain System." In , by Juliana Maantay and John Ziegler, 1st ed., 377-82. Redlands, California, USA: ESRI Press.
Cronon, William, ed. 1996a. "The Trouble with Wilderness; or, Getting Back to the Wrong Nature." In Uncommon Ground: Rethinking the Human Place in Nature, 1. publ. as pbk, 69-90. New York, NY: Norton.
———, ed. 1996b. Uncommon Ground: Rethinking the Human Place in Nature. 1. publ. as pbk. New York, NY: Norton.
Curran, Winifred, and Trina Hamilton. 2012. "Just Green Enough: Contesting Environmental Gentrification in Greenpoint, Brooklyn." Local Environment 17 (9): 1027-42. https://doi.org/10.1080/13549839.2012.729569.
Dawson, Kevin. 2005. Oral History Interview, September 24, 2005, by Janice Gadaire Fleuriel,. NOAA Voices Oral History Archives.
De Mel, Manishka. 2019. "Integrating Climate Risk Information to Build Resilience in the Mesoamerican Reef Region." Seminar, The City College of New York, October 11.
DeJesus, Jamie. 2018. "Recurring Sinkhole near Bay Ridge Schoolyard Has Residents Wanting Permanent Fix." Brooklyn Eagle. August 1, 2018. https://brooklyneagle.com/articles/2018/08/01/recurring-sinkhole-near-bay-ridge-schoolyard-has-residents-wanting-permanent-fix/.
DeSena, Judith N. 2012. "Gentrification in Everyday Life in Brooklyn." In The World in Brooklyn: Gentrification, Immigration, and Ethnic Politics in a Global City, edited by Timothy Shortell. Lanham: Lexington Books.

Domi, Tanya. n.d. "Beyond Acceptance: Documenting the Experiences of Queer Youth and Their Families." The Thought Project. Accessed July 3, 2021.
Eckman, Karlyn, Valerie Were, Valerie Brady, Jesse Schomberg, Richard Axler, and Chris Kleist. 2013. "Using Social Science Data to Evaluate Residential Stormwater Treatments in Duluth, Minnesota." Water Resources IMPACT 15 (2): 13-16.
Eizenberg, Efrat. 2013. From the Ground up: Community Gardens in New York City and the Politics of Spatial Transformation. Farnham, Surrey, England ; Burlington, VT: Ashgate.
Etman, Astrid, Carlijn B. M. Kamphuis, Frank H. Pierik, Alex Burdorf, and Frank J. Van Lenthe. 2016. "Residential Area Characteristics and Disabilities among Dutch CommunityDwelling Older Adults." International Journal of Health Geographics 15 (1): 42. https://doi.org/10.1186/s12942-016-0070-8.
Evans, G. W. 2003. "The Built Environment and Mental Health." Journal of Urban Health: Bulletin of the New York Academy of Medicine 80 (4): 536-55. https://doi.org/10.1093/jurban/jtg063.
Fagerholm, Nora, Salla Eilola, and Vesa Arki. 2021. "Outdoor Recreation and Nature's Contribution to Well-Being in a Pandemic Situation - Case Turku, Finland." Urban Forestry \& Urban Greening 64 (September): 127257. https://doi.org/10.1016/j.ufug.2021.127257.
Fekete, Balazs, and Bernice Rosenzweig. 2018. "Green Infrastructure Plan: Opportunities for Innovation in Climate-Change Resilience." In Smarter New York City: How City Agencies Innovate, edited by André Corrêa d'Almeida. New York: Columbia University Press.
FEMA, ed. 2021. "Building Community Resilience with Nature-Based Solutions: A Guide for Local Communities." https://www.fema.gov/sites/default/files/documents/fema_riskmap-nature-based-solutions-guide_2021.pdf.
"Final Reports of the Tibor T. Polgar Fellowship Program 2020." 2021. Hudson River Foundation and The New York State Department of Environmental Conservation.
Fink, Sheri. 2016. Five Days at Memorial: Life and Death in a Storm-Ravaged Hospital. EBSCO Publishing (Firm). http://www.vlebooks.com/vleweb/product/openreader?id=none\&isbn=978030771898 3.

Folke, Carl. 2006. "Resilience: The Emergence of a Perspective for Social-Ecological Systems Analyses." Global Environmental Change 16 (3): 253-67. https://doi.org/10.1016/j.gloenvcha.2006.04.002.
Folke, Carl, Thomas Hahn, Per Olsson, and Jon Norberg. 2005. "ADAPTIVE GOVERNANCE OF SOCIAL-ECOLOGICAL SYSTEMS." Annual Review of Environment and Resources 30 (1): 441-73. https://doi.org/10.1146/annurev.energy.30.050504.144511.
Franco, Lara S., Danielle F. Shanahan, and Richard A. Fuller. 2017. "A Review of the Benefits of Nature Experiences: More Than Meets the Eye." International Journal of Environmental Research and Public Health 14 (8): 864. https://doi.org/10.3390/ijerph14080864.
Freeman, Lance. 2015. There Goes the 'Hood: Views of Gentrification from the Ground Up. Philadelphia: Temple University Press. http://grail.eblib.com.au/patron/FullRecord.aspx?p=535529.

Gallopín, Gilberto C. 2006. "Linkages between Vulnerability, Resilience, and Adaptive Capacity." Global Environmental Change 16 (3): 293-303.
https://doi.org/10.1016/j.gloenvcha.2006.02.004.
Gilmore, Ruth Wilson. 2008. "Forgotten Places and the Seeds of Grassroots Planning." In Engaging Contradictions: Theory, Politics, and Methods of Activist Scholarship, edited by Charles R. Hale, 31-61. Global, Area, and International Archive. Berkeley: University of California Press.
Ginsborg, Hannah. 2019. "Kant's Aesthetics and Teleology." In The Stanford Encyclopedia of Philosophy, edited by Edward N. Zalta, Winter 2019.
Glass, Ruth. 1964. London: Aspects of Change. Centre for Urban Studies Report ; No. 3. London: London: MacGibbon \& Kee.
Gould, K, and T Lewis. 2016. "Green Gentrification and Hurricane Sandy: The Resilience of the Green Growth Machine around Brooklyn's Gowanus Canal." In Taking Chances: The Coast after Hurricane Sandy, edited by Karen M. O’Neill and Daniel J. Van Abs. New Brunswick, New Jersey: Rutgers University Press.
Gould, Kenneth Alan, and Tammy L. Lewis. 2017. Green Gentrification: Urban Sustainability and the Struggle for Environmental Justice. Routledge Equity, Justice and the Sustainable City Series. London New York: Routledge.
Gould, Myles. 2010. "Modeling Chronic Disease." In A Companion to Health and Medical Geography, edited by Tim Brown, Sara McLafferty, and Graham Moon. Blackwell Companions to Geography 8. Chichester, West Sussex, U.K. ; Malden, MA: WileyBlackwell.
Gowanus Canal Conservancy, and Trees of New York. 2018. "Bioswales in New York City: Understanding, Advocating, Stewarding." https://gowanuscanalconservancy.org/wp-content/uploads/2018/02/Bioswales-in-NYC_extra-small.pdf.
Grachek, Dick, and Madeleine Hall-Arber. 2011. Dick Oral History Interview, September 25, 2011, by Madeline Hall-Arber. NOAA Voices Oral History Archives.
Graham, Leigh, Wim Debucquoy, and Isabelle Anguelovski. 2016. "The Influence of Urban Development Dynamics on Community Resilience Practice in New York City after Superstorm Sandy: Experiences from the Lower East Side and the Rockaways." Global Environmental Change 40 (September): 112-24. https://doi.org/10.1016/j.gloenvcha.2016.07.001.
Gregory, Derek. 2012. "Postmodernism." In The Dictionary of Human Geography. WileyBlackwell.
Grove, J. Morgan, Dexter H. Locke, and Jarlath P. M. O’Neil-Dunne. 2014. "An Ecology of Prestige in New York City: Examining the Relationships Among Population Density, Socio-Economic Status, Group Identity, and Residential Canopy Cover." Environmental Management 54 (3): 402-19. https://doi.org/10.1007/s00267-014-0310-2.
Grumbles, Benjamin H. 2007. "Memorandum: Using Green Infrastructure to Protect Water Quality in Stormwater, CSO, Nonpoint Source and Other Water Programs."
Halasz, Judith R. 2018. "The Super-Gentrification of Park Slope, Brooklyn." Urban Geography 39 (9): 1366-90. https://doi.org/10.1080/02723638.2018.1453454.

Halperin, Demian. 2014. "Environmental Noise and Sleep Disturbances: A Threat to Health?" Sleep Science 7 (4): 209-12. https://doi.org/10.1016/j.slsci.2014.11.003.

Hamilton, Cynthia. 1994. "Concerned Citizens of South Cental Los Angeles." In Unequal Protection: Environmental Justice and Communities of Color, edited by Robert D. Bullard, 207-19. San Francisco: Sierra Club Books.
Hammel, Daniel J., and Elvin K. Wyly. 1996. "A Model for Identifying Gentrified Areas with Census Data." Urban Geography 17 (3): 248-68. https://doi.org/10.2747/02723638.17.3.248.

Harvey, David. 2001. "Globalization and the 'Spatial Fix.'" Geographische Revue, Marxism in Geography, 3 (2): 23-30.
———. 2003. The New Imperialism. Oxford ; New York: Oxford University Press.
Hayles, N. Katherine. 1996. "Simulated Nature and Natural Simlulations: Rethinking the Relation Between the Beholder and the World." In Uncommon Ground: Rethinking the Human Place in Nature, edited by William Cronon, 1. publ. as pbk, 409-25. New York, NY: Norton.
Hodson, Mike, and Simon Marvin. 2009. "'Urban Ecological Security': A New Urban Paradigm?" International Journal of Urban and Regional Research 33 (1): 193-215. https://doi.org/10.1111/j.1468-2427.2009.00832.x.
Hoffman, Jeremy S., Vivek Shandas, and Nicholas Pendleton. 2020. "The Effects of Historical Housing Policies on Resident Exposure to Intra-Urban Heat: A Study of 108 US Urban Areas." Climate 8 (1): 12. https://doi.org/10.3390/cli8010012.
Hoffman, Kelly M., Sophie Trawalter, Jordan R. Axt, and M. Norman Oliver. 2016. "Racial Bias in Pain Assessment and Treatment Recommendations, and False Beliefs about Biological Differences between Blacks and Whites." Proceedings of the National Academy of Sciences 113 (16): 4296-4301. https://doi.org/10.1073/pnas.1516047113.
Holling, C. S. 1973. "Resilience and Stability of Ecological Systems." Annual Review of Ecology and Systematics 4: 1-23.
Jacobs, Jane. 1992. The Death and Life of Great American Cities. Vintage Books ed. New York: Vintage Books.
Jeffries, Tom. 2011. Tom Jefferies: Long Island Traditions Interview by Nancy Solomon. NOAA Voices Oral History Archives.
Jepson, M, and Lisa L. Colburn. 2013. "Development of Social Indicators of Fishing Community Vulnerability and Resilience in the U.S. Southeast and Northeast Regions." U.S. Department of Commerce, NOAA Technical Memorandum NMFS-F/SPO-129.
Jimenez, Rose. 2015. "Bad Apple: Complexities of New York City Food Aid Programs." CUNY Academic Works.
———. 2018. "The Gravesend Bay History Project: A Geographic Case Study in Brookyn, New York." Map Application. 2018. https://www.arcgis.com/apps/MapTour/index.html?appid=c93d234dd0824791aa4fa73 14a23c7d8.
———. 2021. "Developing a Story Map to Illustrate a Cross-Sectional Analysis of Gentrification in 29 Northeast United States Fishing Communities." Technical Report. NERTO Report. National Oceanic and Atmospheric Administration.
Johnson, Glen D., Melissa Checker, Scott Larson, and Hanish Kodali. 2021. "A Small Area Index of Gentrification, Applied to New York City." International Journal of Geographical Information Science, June, 1-21. https://doi.org/10.1080/13658816.2021.1931873.

Johnston, Ron, Michael Poulsen, and James Forrest. 2009. "Research Note—Measuring Ethnic Residential Segregation: Putting Some More Geography In." Urban Geography 30 (1): 91-109. https://doi.org/10.2747/0272-3638.30.1.91.
Kaplan, Karen S. 2006. "Case Study Five: Urban Environmental Planning: Land-Use Classifcation for Extensive Vegetative Roof Acreage Potential in the Bronx." In GIS for the Urban Environment, by Juliana Maantay and John Ziegler. ESRI Press.
Katz, Cindi. 2005. "Whose Nature, Whose Culture?: Private Productions of Space and the 'Preservation' of Nature." In Remaking Reality: Nature at the Millenium, edited by Bruce Braun and Noel Castree, 1st ed. Routledge. https://www.taylorfrancis.com/books/9780203983966.
Kirillov, Igor, Sergei Metcherin, and Stanislav Klimenko. 2013. "Towards Multi-Hazard Resilience as a New Engineering Paradigm for Safety and Security Provision of Built Environment." In Transactions on Computational Science XVIII, edited by Marina L. Gavrilova, C. J. Kenneth Tan, and Arjan Kuijper, 7848:121-36. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-38803-3_7.
Klein, Naomi. 2008. The Shock Doctrine: The Rise of Disaster Capitalism. https://archive.org/details/shockdoctriner00unse.
Klein Rosenthal, Joyce, Patrick L. Kinney, and Kristina B. Metzger. 2014. "Intra-Urban Vulnerability to Heat-Related Mortality in New York City, 1997-2006." Health \& Place 30 (November): 45-60. https://doi.org/10.1016/j.healthplace.2014.07.014.
Knowlton, Kim, Barry Lynn, Richard A. Goldberg, Cynthia Rosenzweig, Christian Hogrefe, Joyce Klein Rosenthal, and Patrick L. Kinney. 2007. "Projecting Heat-Related Mortality Impacts Under a Changing Climate in the New York City Region." American Journal of Public Health 97 (11): 2028-34. https://doi.org/10.2105/AJPH.2006.102947.
Kroll, Karen M. 1999. "Industry Turns to Supermarket Anchors to Fill Big Boxes." Shopping Centers Today, February. https://web.archive.org/web/20090923212001/http://www.icsc.org/srch/sct/sct9902/0 2.php.

Kuhn, Thomas S. 1994. The Structure of Scientific Revolutions. 2. ed., Enlarged, 21. print. International Encyclopedia of Unified Science, 2,2. Chicago: Univ. of Chicago Press.
Kvilhaug, Malvin. 2005. Oral History Interview, September 24, 2005, by Janice Gadaire Fleuriel. NOAA Voices Oral History Archives.
Latour, Bruno. 2005. "To Modernise or Ecologise? That Is the Question." In Remaking Reality: Nature at the Millenium, edited by Bruce Braun and Noel Castree, translated by Charis Cussins, 1st ed. Routledge. https://www.taylorfrancis.com/books/9780203983966.
Lawrence, Lewis. 2015. Lewis Lawrence Middle Peninsula Public Access Authority Oral History Interview by David Caruso. Voices from the Working Waterfront: Oral Histories from around the Nation. Voices from the Fisheries. https://voices.nmfs.noaa.gov/lewislawrence.
Lees, Loretta. 2003. "Super-Gentrification: The Case of Brooklyn Heights, New York City." Urban Studies 40 (12): 2487-2509. https://doi.org/10.1080/0042098032000136174.
Lipton, Lawrence. 1959. The Holy Barbarians. 1st ed. Julian Messner.

Logan, John R., and Harvey Luskin Molotch. 2007. Urban Fortunes: The Political Economy of Place. 20th anniversary ed. with a new preface. Berkeley: University of California press.
Lopez, Russell. 2014. "Urban Sprawl in the United States: 1970-2010." Cities and the Environment (CATE) 7 (1): Article 7.
Lueckenhoff, Dominique, and Seth Brown. 2015. "Public-Private Partnerships Beneficial for Implementing Green Infrastructure." Water Law \& Policy Monitor, July.
Maantay, Juliana. 2002a. "Industrial Zoning Changes in New York City: A Case Study of ‘Expulsive’ Zoning." Projections (Cambridge, Mass.) 3 (January): 63-108.
———. 2002b. "Mapping Environmental Injustices: Pitfalls and Potential of Geographic Information Systems in Assessing Environmental Health and Equity." Environmental Health Perspectives 110 (suppl 2): 161-71. https://doi.org/10.1289/ehp.02110s2161.
Maantay, Juliana, and Andrew Maroko. 2015. "'At-Risk' Places: Inequities in the Distribution of Environmental Stressors and Prescription Rates of Mental Health Medications in Glasgow, Scotland," October.
———. 2018. "Brownfields to Greenfields: Environmental Justice Versus Environmental Gentrification." International Journal of Environmental Research and Public Health 15 (10): 2233. https://doi.org/10.3390/ijerph15102233.

Maantay, Juliana, Andrew Maroko, Isabelle Anguelovski, and John Connolly. 2020. "The Paradox of Urban Greening: Does It Harm the Very People Who Need It the Most?" The International Journal of the Constructed Environment 10 (4): 13-37. https://doi.org/10.18848/2154-8587/CGP/v10i04/13-37.
Maantay, Juliana, and John Ziegler. 2006. GIS for the Urban Environment. ESRI Press.
Madrigano, Jaime, Kazuhiko Ito, Sarah Johnson, Patrick L. Kinney, and Thomas Matte. 2015. "A Case-Only Study of Vulnerability to Heat Wave-RelatedMortality in New York City (2000-2011)." Environmental Health Perspectives 123 (7): 672-78. https://doi.org/10.1289/ehp. 1408178.
Maguire, Eva R., Thomas Burgoine, Tarra L. Penney, Nita G. Forouhi, and Pablo Monsivais. 2017. "Does Exposure to the Food Environment Differ by Socioeconomic Position? Comparing Area-Based and Person-Centred Metrics in the Fenland Study, UK." International Journal of Health Geographics 16 (1): 33. https://doi.org/10.1186/s12942-017-0106-8.
Martin, Erik J. 2017. "Why Buying a Home near Your Favorite Grocery Store Matters." Mortgage Rates, Mortgage News and Strategy : The Mortgage Reports (blog). August 29, 2017. https://themortgagereports.com/31212/why-buying-a-home-near-your-favorite-grocery-store-matters.
Martinez, Gina. 2017. "Avella Pushes for Opt-out Provision for City's Bioswale Program." Times Ledger, February.
Massey, Doreen. 1993. "Power-Geometry and a Progressive Sense of Place." In Mapping the Futures: Local Cultures, Global Change, edited by Jon Bird, Barry Curtis, Tim Putnam, and Lisa Tickner. Futures, New Perspectives for Cultural Analysis. London ; New York: Routledge.
Massey, Douglas S., and Nancy A. Denton. 1988. "The Dimensions of Racial Segregation." Social Forces 67 (2): 281-315.
McDonald, Robert I., Tanushree Biswas, Cedilla Sachar, Ian Housman, Timothy M. Boucher, Deborah Balk, David Nowak, Erica Spotswood, Charlotte K. Stanley, and Stefan Leyk.
2021. "The Tree Cover and Temperature Disparity in US Urbanized Areas: Quantifying the Association with Income across 5,723 Communities." Edited by Kunwar K. Singh. PLOS ONE 16 (4): e0249715. https://doi.org/10.1371/journal.pone. 0249715.
Mead, W. R., Denis Cosgrove, and Stephen Daniels. 1989. "The Iconography of Landscape: Essays on the Symbolic Representation, Design and Use of Past Environments." The Geographical Journal 155 (1): 129. https://doi.org/10.2307/635410.
Mejía, Gisselle A., Peter M. Groffman, Alisen E. Downey, Elizabeth M. Cook, Sanpisa Sritrairat, Richard Karty, Matthew I. Palmer, and Timon McPhearson. 2022. "Nitrogen Cycling and Urban Afforestation Success in New York City." Edited by Jason P. Kaye. Ecological Applications 32 (3). https://doi.org/10.1002/eap. 2535.
Merchant, Carolyn. 1996. "Reinventing Eden: Western Culture as a Recovery Narrative." In Uncommon Ground: Rethinking the Human Place in Nature, edited by William Cronon, 1. publ. as pbk. New York, NY: Norton.
———. 2005. The Columbia Guide to American Environmental History. Columbia Guides to American History and Cultures. New York: Columbia University Press.
———. 2013. Reinventing Eden: The Fate of Nature in Western Culture. New York, NY: Taylor and Francis. http://www.123library.org/book_details/?id=95541.
Merriam-Webster. 2019. "Definition of DISABLE." In . https://www.merriamwebster.com/dictionary/disable.
Metcalf, Stephen. 2013. "Brooklyn: The Brand." The New York Times, March 17, 2013, sec. T Magazine. https://www.nytimes.com/2013/03/17/t-magazine/brooklyn-thebrand.html.
Milbourne, Paul. 2012. "Everyday (in)Justices and Ordinary Environmentalisms: Community Gardening in Disadvantaged Urban Neighbourhoods." Local Environment 17 (9): 943-57. https://doi.org/10.1080/13549839.2011.607158.
Miller, Arthur. 1993. Death of a Salesman: Certain Private Conversations in Two Acts and a Requiem. Repr. Penguin Plays. New York: Penguin Books.
Miller, Carly. 2017. "Oil Spill Dumps 27,000 Gallons Toward The Gravesend Bay." BKLYNER, April 4, 2017.
Miller, Jessica Ty. 2016. "Is Urban Greening for Everyone? Social Inclusion and Exclusion along the Gowanus Canal." Urban Forestry \& Urban Greening 19 (September): 285-94. https://doi.org/10.1016/j.ufug.2016.03.004.
Mitchell, Don. 2003. "Dead Labor and the Politcal Economy of Landscape—California Living, California Dying." In N Handbook of Cultural Geography. https://bbhosted.cuny.edu/bbcswebdav/pid-32015330-dt-content-rid134777011_1/courses/GRAD_EES_70900_36757_201790/Mitchell\ 2003\ Dead\%2 OLabor\%20in\%20Handbook\%20of\%20Cultural\%20Geography.pdf.
Molamohamadi, Zohreh, and Napsiah Ismail. 2014. "The Relationship between Occupational Safety, Health, and Environment, and Sustainable Development: A Review and Critique." International Journal of Innovation, Management and Technology 5 (3): 5.
Monsen, Nancy E., James E. Cloern, Lisa V. Lucas, and Stephen G. Monismith. 2002. "A Comment on the Use of Flushing Time, Residence Time, and Age as Transport Time Scales." Limnology and Oceanography 47 (5): 1545-53. https://doi.org/10.4319/lo.2002.47.5.1545.

Montello, Daniel R., and Paul C. Sutton. 2006. An Introduction to Scientific Research Methods in Geography. Thousand Oaks, Calif: Sage Publications.
Naphtali, Zvia Segal. 2006. "Delivering Health-Care Services to an Urban Population." In GIS for the Urban Environment, by Juliana Maantay and John Ziegler. ESRI Press.
National Centers for Environmental Information. n.d. "What Are 'Proxy' Data?" Accessed February 26, 2022. https://www.ncdc.noaa.gov/news/what-are-proxy-data.
Nayak, S.G., S. Shrestha, P.L. Kinney, Z. Ross, S.C. Sheridan, C.I. Pantea, W.H. Hsu, N. Muscatiello, and S.A. Hwang. 2018. "Development of a Heat Vulnerability Index for New York State." Public Health 161 (August): 127-37. https://doi.org/10.1016/j.puhe.2017.09.006.
Newfield, Christopher. 2005. "The Future of Old Economy: New Deal Motives in New Economy Investors." In Histories of the Future, edited by Daniel Rosenberg and Susan Friend Harding, 231-54. Durham: Duke University Press.
Nir, Sarah Maslin. 2017. "To the City, a Green Pollution Fighter. To Some Residents, an Eyesore." The New York Times, March, 21.
NYC DCP. 2022. "New York City Population by Borough, 1950-2040: Unadjusted Decennial Census Data from 1950-2000 and Projected Figures from 2010-2040." NYC Open Data. 2022.

NYC DEP. 2012. "Standards for Green Infrastructure." NYC Drawings.
———. 2021a. "Right-of-Way Green Infrastructure Protection During Construction." September.
———. 2021b. "New Green Roofs at the Brooklyn Navy Yard Absorb Stormwater." The Official Website of the City of New York. October 4, 2021. http://www1.nyc.gov/site/dep/news/21-035/new-green-roofs-the-brooklyn-navy-yard-absorb-stormwater-ease-pressure-the-local-drainage.
———. n.d. "Glossary of Modeling Terms." In , 1-2. Accessed January 4, 2022. https://www1.nyc.gov/assets/dep/downloads/pdf/water/nyc-waterways/citywideItcp/modeling_meeting_glossary.pdf.
NYC Department of City Planning. 2011. "Vision 2020: New York City Comprehensive Waterfront Plan." https://www1.nyc.gov/assets/planning/download/pdf/plans-studies/vision-2020-cwp/vision2020/vision2020_nyc_cwp.pdf.
NYC Department of Environmental Protection. 2019. "14 Wastewater Resource Recovery Facilities' Spdes Permits Combined Sewer Overflows Best Management Practices Annual Report for the Period January 1, 2018 - December 31, 2018." https://www1.nyc.gov/assets/dep/downloads/pdf/water/stormwater/spdes-bmp-cso-annual-report-2018.pdf.
NYC Dept. of Environmental Protection. 2018. "NYC Stormwater Management Program."
NYC Dept. of Health. 2017. "Heat Vulnerability Index: NYC." 2017. https://a816dohbesp.nyc.gov/IndicatorPublic/HeatHub/hvi.html.
NYC Health. 2020. "Recreational Water Illness \& Injury Prevention." NYC.Gov. 2020. https://www1.nyc.gov/site/doh/health/health-topics/recreational-water-illness.page.
NYC Mayor's Office of Climate Resiliency. 2017. "Cool Neighborhoods NYC: A Comprehensive Approach to Keep Communities Safe in Extreme Heat."

NYC Parks. 2021. "City Hall in Your Borough: NYC Parks Announces \$114.5 Million in Funding to Begin Phased Reconstruction of the Iconic Riegelmann Boardwalk in Coney Island." https://www.nycgovparks.org/news/press-releases?id=21919.
NYC Planning. 2009. "Article VI, Chapter 2, Section 62-00: Special Regulations Applying in the Waterfront Area." In NYC Zoning Resolution,
———. 2020. "Other City Planning Datasets: Open Data." 2020.
NYC Water, dir. 2017. From Toilets to Rain Gardens. New York City.
NYS DEC. 2018. "Green Infrastructure Funding Sources - NYS Dept. of Environmental Conservation." 2018. https://www.dec.ny.gov/chemical/108961.html.
Oliver, Michael, and Colin Barnes. 2012. The New Politics of Disablement. Houndmills, Basingstoke ; New York, NY: Palgrave Macmillan.
Olwig, Kenneth R. 1996. "Reinventing Common Nature: Yosemite and Mount Rushmore-A Meandering Tale of a Double Nature." In Uncommon Ground: Rethinking the Human Place in Nature, edited by William Cronon, 1. publ. as pbk, 379-408. New York, NY: Norton.
Osman, Suleiman. 2011. Invention of Brownstone Brooklyn: Gentrification and the Search for Authenticity in Postwar New York. Cary: Oxford University Press, USA.
"Oxford Languages." n.d. Accessed March 25, 2022. https://languages.oup.com/.
Oxley, Lawrence J. 2012. Extreme Weather and Financial Markets: Opportunities in Commodities and Futures. Hoboken, NJ: Wiley \& Sons.
Oza, Rupal. 2011. "Special Economic Zones: Space, Law, and Dispossession." In India's New Economic Policy: A Critical Analysis, edited by Waquar Ahmed, Amitabh Kundu, and Richard Peet. Routledge Studies in Development and Society 26. New York: Routledge.
Parsons, Melissa, Martin C. Thoms, Joseph Flotemersch, and Michael Reich. 2016. "Monitoring the Resilience of Rivers as Social-Ecological Systems: A Paradigm Shift for River Assessment in the Twenty-First Century." In River Systems: Research and Management for the 21st Century, edited by D. Gilvear. Hoboken, NJ: John Wiley \& Sons.
Pederson, Theodore "Ted." 2008. Oral History Interview, September 27, 2008, by Janice Gadaire Fleuriel. NOAA Voices Oral History Archives.
Petroski, Henry. 1985. To Engineer Is Human: The Role of Failure in Successful Design. 1st ed. New York, N.Y: St. Martin's Press.
Phalen, William J. 2016. Coney Island: 150 Years of Rides, Fires, Floods, the Rich, the Poor and Finally Robert Moses. Jefferson, North Carolina: McFarland \& Company, Inc., Publishers.
Porter, Tom. 2021. "The Collapsed Miami Condo Had Regular Floods in the Basement Garage Which Could've Seriously Damaged It, Reports Say." Business Insider. 2021. https://www.businessinsider.com/collapsed-florida-condo-had-regular-floods-in-basement-reports-2021-6.
Pulido, Laura. 2000. "Rethinking Environmental Racism: White Privilege and Urban Development in Southern California." Annals of the Association of American Geographers 90 (1): 12-40 ,. https://doi.org/10.1111/0004-5608.00182.
"QGIS." 2021. MAC OS.
Redlener, Irwin. 2021. "South Florida Collapse Shows Infrastructure Is a Persistent Threat to Public Health." The Hill, July 4, 2021. https://thehill.com/opinion/white-house/561512-south-florida-collapse-shows-infrastructure-is-a-persistent-threat-to/.

Rent Editorial Team. 2014. "Benefits of Living Near a Grocery Store - The Rent.Com Blog : A Renter's Guide for Tips \& Advice." Apartment Hunting (blog). June 29, 2014. https://www.rent.com/blog/benefits-of-living-near-a-grocery-store/.
Rigolon, Alessandro, and Jeremy Németh. 2020. "Green Gentrification or 'Just Green Enough': Do Park Location, Size and Function Affect Whether a Place Gentrifies or Not?" Urban Studies 57 (2): 402-20. https://doi.org/10.1177/0042098019849380.
Roche, LEONARD. 2010. Oral History Interview, September 25, 2010, by Madeleine Hall-Arber Interview by Madeleine Hall-Arber. NOAA Voices Oral History Archives.
Rogers, Doug. 1997. Oral history interview with Doug Rogers by Nancy Solomon. Peconic Estuary Interviews. NOAA Voices Oral History Archives.
Rosenberg, Daniel, and Susan Friend Harding, eds. 2005. Histories of the Future. Durham: Duke University Press.
Rosenberg, Jaime. 2016. "Bayside Nabe Pushing Back on Bioswales." Forest Hills Times, July.
Rosenzweig, Bernice R., Peter M. Groffman, Chester B. Zarnoch, Brett F. Branco, Ellen K. Hartig, James Fitzpatrick, Helen M. Forgione, and Adam Parris. 2018. "Nitrogen Regulation by Natural Systems in 'Unnatural' Landscapes: Denitrification in Ultra-Urban Coastal Ecosystems." Ecosystem Health and Sustainability 4 (9): 205-24. https://doi.org/10.1080/20964129.2018.1527188.
Rouleau, Tracy, Jeffery Adkins, and Valerie Were. 2016. "U.S. Ocean and Coastal Economies: Significant Contribution to the National Economy." Proceedings of the Marine Safety \& Security Council, the Coast Guard Journa of Safety and Security at Sea, America's Economic Engine, 73 (2).
Ruhle, Philip. 1987. Philip Ruhle: The Fishing Industry in Newport, RI 1930-1987 Interview by Jennifer Murray. NOAA Voices Oral History Archives.
Santos, Simone M, Dora Chor, and Guilherme Werneck. 2010. "Demarcation of Local Neighborhoods to Study Relations between Contextual Factors and Health." International Journal of Health Geographics 9 (1): 34. https://doi.org/10.1186/1476-072X-9-34.
Sapienza, Vincent. 2011. "Comparison of the 2005/2008 CSO Order versus 2011 Modified CSO Order." NYC DEP. https://www.dec.ny.gov/docs/water_pdf/csowp2011.pdf.
Sauer, Carl. 1963. "The Morphology of Landscape." In Land and Life: A Selection of the Writings of Carl Ortwin Sauer, edited by J. Leighly, 315-50. Berkeley, CA: University of California Press.
Scavone, Joe. 2011. Joe Scavone: Long Island Traditions Interview by Nancy Solomon. NOAA Voices Oral History Archives.
Shanahan, Ed, and Ashley Wong. 2021. "Heavy Rains Pound New York City, Flooding Subway Stations and Roads." The New York Times, July 9, 2021, sec. New York. https://www.nytimes.com/2021/07/08/nyregion/flooding-subways-nyc.html.
Shearman, Sarah. 2015. "Made in Brooklyn: The New York Borough That Became a Global Brand." The Guardian, September 29, 2015, sec. Media Network. https://www.theguardian.com/media-network/2015/sep/29/made-in-brooklyn-new-york-borough-global-brand.
Shokry, Galia, James JT Connolly, and Isabelle Anguelovski. 2020. "Understanding Climate Gentrification and Shifting Landscapes of Protection and Vulnerability in Green Resilient

Philadelphia." Urban Climate 31 (March): 100539. https://doi.org/10.1016/j.uclim.2019.100539.
Simmons, Brady, and Novem Auyeung. 2017. "MillionTreesNYC: Citywide Survivorship Assessment." City of New York Parks \& Recreation. https://www.nrs.fs.fed.us/nyc/pubs/resources/MillionTreesNYC_Report_Final_2017120 6.pdf.

Slote, Michael A. 1971. "The Rationality of Aesthetic Value Judgments." The Journal of Philosophy 68 (22): 821-39.
Smith, Betty. 1943. A Tree Grows in Brooklyn. First Perennial Library Edition 1968. New York: Harper \& Row.
Smith, Neil. 1979. "Toward a Theory of Gentrification A Back to the City Movement by Capital, Not People." Journal of the American Planning Association 45 (4): 538-48. https://doi.org/10.1080/01944367908977002.
———. 1987. "Gentrification and the Rent Gap." Annals of the Association of American Geographers 77 (3): 462-65. https://doi.org/10.1111/j.1467-8306.1987.tb00171.x.
Spike Lee on Gentrification (Live at Black History Month Event at Pratt Institute in Brooklyn). 2014. SoundCloud File. Pratty Institute, Brooklyn, New York. Daily Intelligencer.

Stein, Samuel. 2019. Capital City: Gentrification and the Real Estate State. Jacobin Series. London ; Brooklyn, NY: Verso.
The Eviction Lab. 2022. "Eviction Lab." 2022.
The Message. 1982. 12" Vinyl Record. The Message. Englewood, NJ: Sugar Hill.
Tsing, Anna. 2005. "How to Make Resources in Order to Destroy Them (and Then Save Them?) On the Salvage Frontier." In Histories of the Future, edited by Daniel Rosenberg and Susan Friend Harding, 231-54. Durham: Duke University Press.
Tursi, F. 2016. 1997 North Carolina Fisheries Reform Act. Oral history interview with Frank Tursi, by Barbara Garrity-Blake on May 24, 2016. https://doi.org/10.25923/2GRE-K712.
Ulrichsen, Sharon, and Petter Ulrichsen. 2017. Oral History Interview, June 12, 2017, by Fred Calabretta. Workers on the New Bedford Waterfront. NOAA Voices Oral History Archives.
US Census Bureau. 1998. "Appendix III."
https://www2.census.gov/library/publications/1998/compendia/statab/118ed/tables/s aappiii.pdf.
U.S. EPA. 2002. Federal Water Pollution Control Act.

Vargas-Hernández, José G., and Justyna Zdunek-Wielgołaska. 2021. "Urban Green Infrastructure as a Tool for Controlling the Resilience of Urban Sprawl." Environment, Development and Sustainability 23 (2): 1335-54. https://doi.org/10.1007/s10668-020-00623-2.
Walker, Brian, C. S. Holling, Stephen R. Carpenter, and Ann P. Kinzig. 2004. "Resilience, Adaptability and Transformability in Social-Ecological Systems." Ecology and Society 9 (2): art5. https://doi.org/10.5751/ES-00650-090205.

Walker, Peter A. 2006. "Political Ecology: Where Is the Policy?" Progress in Human Geography 30 (3): 382-95. https://doi.org/10.1191/0309132506ph613pr.
Waterkeeper Alliance. 2019. "Environmental Groups Sue NYC to Enforce Sewage Pollution Right to Know Act." Waterkeeper (blog). October 16, 2019.
https://waterkeeper.org/news/environmental-groups-sue-nyc-to-enforce-sewage-pollution-right-to-know-act/.
Wijsman, Katinka, D. S. Novem Auyeung, Pippa Brashear, Brett F. Branco, Kathryn Graziano, Peter M. Groffman, Helen Cheng, and Dylan Corbett. 2021. "Operationalizing Resilience: Co-Creating a Framework to Monitor Hard, Natural, and Nature-Based Shoreline Features in New York State." Ecology and Society 26 (3): art10. https://doi.org/10.5751/ES-12182-260310.
Willamette Partnership, and National Recreation and Park Association. 2021. "Green Infrastructure and Health: A Literature Review."
Wong, David W. 2005. "Formulating a General Spatial Segregation Measure." The Professional Geographer 57 (2): 285-94. https://doi.org/10.1111/j.0033-0124.2005.00478.x.
Yagley, J., L. George, C. Moore, and J. Pinder. 2005. "They Paved Paradise...Gentrification in Rural Communities. Report for U.S. Department of Housing and Urban Development (HUD), Housing Assistance Council." Washington, DC.
Yang, Jun, Pengbo Yan, Rongxiao He, and Xiqiang Song. 2017. "Exploring Land-Use Legacy Effects on Taxonomic and Functional Diversity of Woody Plants in a Rapidly Urbanizing Landscape." Landscape and Urban Planning 162 (June): 92-103. https://doi.org/10.1016/j.landurbplan.2017.02.003.
Young, Suzanne, Andrew Juhl, and Gregory D. O’Mullan. 2013. "Antibiotic-Resistant Bacteria in the Hudson River Estuary Linked to Wet Weather Sewage Contamination." Journal of Water and Health 11 (2): 297-310. https://doi.org/10.2166/wh.2013.131.
Zhang, Xin, Penny A Cook, Paulo J Lisboa, Ian H Jarman, and Mark A Bellis. 2013. "The Effects of Deprivation and Relative Deprivation on Self-Reported Morbidity in England: An AreaLevel Ecological Study." International Journal of Health Geographics 12 (1): 5. https://doi.org/10.1186/1476-072X-12-5.
Zuk, Miriam, Ariel H Bierbaum, Karen Chapple, Karolina Gorska, Anastasia Loukaitou, Paul Ong, and Trevor Thomas. 2015. "Gentrification, Displacement and the Role of Public Investment: A Literature Review," 76.
Zukin, Sharon. 2011. "Reconstructing the Authenticity of Place." Theory and Society 40 (2): 16165. https://doi.org/10.1007/s11186-010-9133-1.

Zukin, Sharon, Valerie Trujillo, Peter Frase, Danielle Jackson, Tim Recuber, and Abraham Walker. 2009. "New Retail Capital and Neighborhood Change: Boutiques and Gentrification in New York City." City \& Community 8 (1): 47-64. https://doi.org/10.1111/j.1540-6040.2009.01269.x.
Zushi, Yo. 2017. "Which Came First: The Chicken or the Egg?" New Statesman, February 27, 2017, sec. Science \& Tech. https://www.newstatesman.com/science-tech/2017/02/which-came-first-chicken-or-egg.

[^0]: This work is made publicly available by the City University of New York (CUNY).

[^1]: ${ }^{1}$ This conclusion is drawn from 5-year average U.S. census data and marine fisheries statistics from Sheepshead Bay, Brooklyn.

[^2]: ${ }^{2}$ formerly known as Neighborhood Projection Areas

[^3]: 1 "Sanitary wastewater" refers to untreated/raw effluent from toilets, tubs, and sinks that contains human waste.
 ${ }^{2} 8.5$-million people live in New York City out of all 19.75-million people in New York State

[^4]: ${ }^{3}$ Buildings can also offer pavilions as public-use areas for tax breaks, although this is exceedingly complicated and can be easily hidden from public knowledge or wrongly marked as closed.

[^5]: ${ }^{4}$ These include Newtown Creek, Gowanus Canal, Coney Island Creek, Paerdegat Basin, and Fresh Creek (Boyd 2015; NYC Department of City Planning 2011, 64-66).

[^6]: ${ }^{5}$ Further analysis is needed to explain this increase in CSO overflow volume. The increase is likely due to increased residential crowding in this area during the timer period.

[^7]: ${ }^{1}$ Green is a verb now.

[^8]: ${ }^{2}$ Formerly a row of 10 houses for U.S. Navy personnel when the Brooklyn Navy Yard was functioning as such

[^9]: ${ }^{3}$ For example, stores like home improvement retailer The Home Depot are category killers for multiple small business types within the "home improvement" category-carpentry and plumbing suppliers, greenhouses, hardware stores, furniture stores.

[^10]: ${ }^{4}$ Reforestation is the process of replacing the lost tree population or planting more trees in an area where the number of trees is in decline, while afforestation refers to planting trees in an area where no trees existed in the recent past.

[^11]: ${ }^{1}$ Or "yuppies."

[^12]: ${ }^{2}$ Public school funding is tied to residents' income levels. Public schools are often funded by local taxes, so areas with people in lower tax brackets have lower funding for public schools than areas with people in higher tax brackets.

[^13]: ${ }^{3}$ Such as the participant's birth place

[^14]: ${ }^{4}$ Fancy word for "walkways" used in development proposals.

[^15]: ${ }^{1}$ Each of the indexes chosen are singular scores of change over a specific period of time, as indicated.

[^16]: ${ }^{2}$ All data source webpage uniform resource locator (URL) links are active and accurate as of March 3, 2022, but are subject to change, migration, or removal at the discretion of the domain holders and content managers.

[^17]: ${ }^{3}$ https://www.st.nmfs.noaa.gov/data-and-tools/social-indicators/
 ${ }^{4}$ https://repository.library.noaa.gov/
 ${ }^{5}$ https://a816dohbesp.nyc.gov/IndicatorPublic/VisualizationData.aspx?id=2191,4466a0,100,Map,Score,2018 ${ }^{6}$ https://anhd.org/report/how-affordable-housing-threatened-your-neighborhood-2020
 ${ }^{7}$ https://www.urbandisplacement.org/maps/new-york-gentrification-and-displacement/

[^18]: ${ }^{9}$ This is distinct from raster images, which are made from grids of pixels, as you would commonly see in satellite imagery or a digital photograph.
 ${ }^{10}$ Also called "Point-in-Polygon" tool on other platforms, such as in ESRI-brand products
 ${ }^{11}$ An optional weight field can be used to assign weights to each point. If set, the count generated will be the sum of the weight field for each point contained by the polygon. Unique class fields could also be used to differentiate types of points, but as every green infrastructure unit is being treated equally, this feature was not utilized ("QGIS" 2021).

[^19]: ${ }^{2}$ Original research and analysis by the Association for Neighborhood \& Housing Development (ANHD).

[^20]: ${ }^{5}$ Defined by Brooklyn Community District (CD) 17

[^21]: ${ }^{6}$ Based on completion at 4-year institutions/Bachelor's degree

[^22]: ${ }^{7} \S=$ change from 1990-2000 and 2000-2016

[^23]: ${ }^{9}$ DUMBO is an acronym for "Down Under the Manhattan Bridge Overpass."

[^24]: ${ }^{1}$ In the three indexes that use hierarchy, "acute" refers to the two highest gentrification scores, and in the typology-based index, "acute" refers to the early phases of gentrification. ${ }^{2}$ see The Causality Dilemma, below.

[^25]: ${ }^{3}$ Usually 7 years.

