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ABSTRACT

INEXACT FIXED-POINT PROXIMITY ALGORITHMS
FOR NONSMOOTH CONVEX OPTIMIZATION

Jin Ren
Old Dominion University, 2022
Director · Dr. Yuesheng Xu

The aim of this dissertation is to develop efficient inexact fixed-point proximity algorithms

with convergence guaranteed for nonsmooth convex optimization problems encountered in data

science. Nonsmooth convex optimization is one of the core methodologies in data science to

acquire knowledge from real-world data and has wide applications in various fields, including

signal/image processing, machine learning and distributed computing. In particular, in the con-

text of image reconstruction, compressed sensing and sparse machine learning, either the objec-

tive functions or the constraints of the modeling optimization problems are nondifferentiable.

Hence, traditional methods such as the gradient descent method and the Newton method are not

applicable since gradients of the objective functions or the constraints do not exist. Fixed-point

proximity algorithms were developed via subdifferentials of the objective function to address the

challenges. The theory of nonexpansive averaged operators was successfully employed in the ex-

isting analysis of exact/inexact fixed-point proximity algorithms for nonsmooth convex optimiza-

tion. However, this framework has imposed restricted constraints on the algorithm formulation,

which slows down the convergence and conceals relations between different algorithms.

In this work, we characterize the solutions of convex optimization as fixed-points of certain

operators, and then adopt the matrix splitting technique to obtain a framework of fully implicit

fixed-point proximity algorithms. This results in a new class of quasiaveraged operators, which

extends the class of nonexpansive averaged operators. Such framework covers and generalizes

most of the existing popular algorithms for nonsmooth convex optimization. To deal with the

implicitness of this framework, we follow the inspiration of the Schur’s lemma on the uniform

boundedness of infinite matrices and propose a framework of inexact fixed-point iterations of



quasiaveraged operators. This framework generalizes the inexact iterations of nonexpansive av-

eraged operators. A combination of the frameworks of inexact fixed-point iterations and the

implicit fixed-point proximity algorithms leads to the framework of inexact fixed-point prox-

imity algorithms, which further extends existing methods for nonsmooth convex optimization.

Numerical experiments on image deblurring problems demonstrate the advantages of inexact

fixed-point proximity algorithms over existing explicit algorithms.
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CHAPTER 1

INTRODUCTION

This dissertation proposes efficient inexact fixed-point proximity algorithms for nonsmooth

convex optimization in data science with convergence analysis. Specifically, we characterize

the solutions of convex optimization as fixed-point of proximity operators and then adopt the

matrix splitting technique to obtain a general framework of fully implicit fixed-point proximity

algorithms with convergence analysis. To overcome the difficulty brought by the implicitness of

this framework, we follow the inspiration of the Schur’s lemma on the uniform boundedness of

infinite matrices to propose a general framework of inexact fixed-point iterations. These two gen-

eral frameworks cover and generalize existing analyses of exact/inexact fixed-point iterations for

nonsmooth convex optimization. Finally we assemble these results to establish the framework of

inexact fixed-point proximity algorithms. Numerical experiments on image deblurring problems

show advantages of the proposed inexact fixed-point proximity algorithms over existing explicit

algorithms.

1.1 NONSMOOTH CONVEX OPTIMIZATION

It is the core essence of the data science that learning information from observations gath-

ered from the real world and then applying those knowledge back to the world for the sake of

all well-being. The attempts to apply mathematical methods to extract information from data

have been carried out since ancient times, of which the earliest studies in modern form might be

traced back to the groundbreaking work Philosophiæ Naturalis Principia Mathematica by Sir Issac

Newton in 1687 [76] and the works in following centuries, e.g., [9, 43, 53, 54].

As human entered digital era after the profound invention and extensive usage of electronic

computer, huge amount of data has been generated and gathered, challenging data scientists for

developed and functional tools capable of extracting information with accuracy and efficiency.

Since then, optimization, especially general nonsmooth convex optimization, has been proven to
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be a successful approach, and eventually permeated substantially into all branches of data science.

Followings are some representative areas and optimization models.

Image Processing. The observation process of an image 𝑧 ∈ ℝ𝑛×𝑚 can be generally modeled by

𝑧 = 𝐾𝑥 + 𝜀, where 𝑥 ∈ ℝ𝑛×𝑚 stands for the clear image, 𝐾 ∶ ℝ𝑛×𝑚 → ℝ𝑛×𝑚 is the linear

measurement operator, and 𝜀 ∈ ℝ𝑛×𝑚 is some randomly-distributed additive noise. Here

ℝ𝑛×𝑚 denotes the set of all real 𝑛-by-𝑚 matrices. Different models are applied according

to different kinds of measurement and noise. Emblematic applications are, Rudin-Osher-

Fatemi model [89] for restoring images polluted by Gaussian noise, L1-TV denoising model

[21, 23, 77] for uniform impulse noise, L1-TV deblurring model [2, 27, 49, 74] and L2-TV

deblurringmodel [8, 22, 78] for blurred images with corresponding kinds of noise, fast high-

resolution image reconstruction models [64, 65, 66, 67] and their applications in medical

imaging [44, 48, 50, 60, 69].

Machine Learning. Various optimization problems arising from machine learning always seek

to minimize a loss function with regularization. The loss function models the expected cost

or the degree of under-fitting with respect to training data, and the regularization term re-

stricts the range of solutions in order to reduce ill-posedness of the problem and avoid over-

fitting. Emblematic applications are, the well-known least absolute shrinkage and selection

operator method [95], which is also known as basis pursuit problem in compressed sens-

ing [16, 25, 35], the L1-regularized classification model [32, 58, 93, 99], the L1-regularized

regression model [38, 57] and the reproducing kernel Banach/Hilbert spaces for machine

learning [101, 102, 105, 110].

Distributed Computing. Single computer or processor is increasingly insufficient in big data

analysis due to its limited computation capability. In distributed computing, a problem is

divided into many tasks, each of which is solved by one or more processors communicat-

ing with each other via message passing [68, 94]. Emblematic applications are consensus

problems [96, 97] and exchange problems [98].
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1.2 FIXED-POINT PROXIMITY ALGORITHMS

As an algorithmic method to solve optimization problems, the gradient method invented by

Augustin-Louis Cauchy [17] for a data fitting problem in astronomy, might serve as one of the

most successful iterative methods with convergence in optimization. Historically, the first ap-

plication of fixed-point iterations could be found in the work of solving initial value problem of

ordinary differential equations by Charles Émile Picard [80]. Such iteration method is therefore

named as Picard iteration. In this work Picard proved the convergence of the Picard iteration of

a special class of integral operators, which was later extended to the class of contraction map-

pings, i.e., the class of operators with Lipschitz constant 𝐿 < 1, by Stefan Banach [4]. Then the

class of nonexpansive operators, i.e., the class of operators with Lipschitz constant 𝐿 = 1, got

noticed by mathematicians and finally resulted in a second extension of Picard iteration. For

fixed-point problems of nonexpansive operators, Mark Aleksandrovich Krasnosel’skiĭ [52] de-

veloped a method of successive approximations based on the work of mean value method by

William Robert Mann [70], which is therefore named as KM iteration. This work initiated the

study of the class of nonexpansive averaged operators. Since then many problems in data science

were modeled and studied under the framework of fixed-point problems with KM iterations; see

e.g., [28, 73, 82, 88, 103, 108, 109]. This framework also has profound applications in nonsmooth

convex optimization.

There are plenty of practical algorithms for nonsmooth convex optimization, popular ones

among which could be considered as, gradient descent method [17], proximal point method

[71, 72], Douglas-Rachford splitting algorithm [37, 62], first-order primal-dual algorithm [19, 41],

primal-dual hybrid gradient method [46], fixed-point proximity algorithm [56, 74], alternating

direction method of multipliers [10, 40, 45], split Bregman iteration [47], linearized alternating di-

rection method of multipliers [61, 106] and inexact Uzawa method [11, 111]. These methods were

once proposed from different perspectives, e.g., Fenchel-Rockafellar duality theory (first-order

primal-dual algorithm, primal-dual hybrid gradient method, etc.) and augmented Lagrangian

technique (Douglas-Rachford splitting algorithm, alternating direction method of multipliers,

etc.). However theymore or less rely on the notation of proximity operators. This class of operators

was introduced early in [75, 86] and later was found out to be firmly-nonexpansive, i.e., a special

case of nonexpansive averaged operators. That was the very time the fixed-point theory for non-
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expansive/nonexpansive averaged operators started being applied to this field [6, 30, 56, 74] and

eventually forged such a prosperous family of algorithms for nonsmooth convex optimization.

In particular, [56, 74] characterized the solutions of nonsmooth convex optimization problems

into fixed-points of proximity equations, and then they adopted the matrix splitting technique

to develop a class of explicit fixed-point proximity algorithms. This analysis has been proven

to cover several popular methods, e.g., proximal point method, Douglas-Rachford splitting algo-

rithm, first-order primal-dual algorithm and alternating direction method of multipliers and so

on.

However such analysis of fixed-point proximity algorithms highly depends on the frame-

work of iterations of nonexpansive averaged operators. This framework has rather restrict con-

straint on the iteration formulation and slows down the convergence. With a close study of

fixed-point proximity equations, we observe that a full application of matrix splitting technique

will lead to a general framework of implicit fixed-point proximity algorithms. This framework

covers most of the existing algorithms, but its convergence analysis falls out of the current studies

of nonexpansive/nonexpansive averaged operators. This eventually results in the class of quasi-

nonexpansive/quasiaveraged operators proposed in this work, which covers and generalizes the

class of nonexpansive averaged operators and governs the convergence analysis of the general

framework of implicit fixed-point proximity algorithms. Part of results from this topic is going

to be present in [84].

1.3 INEXACT FIXED-POINT PROXIMITY ALGORITHMS

Besides the development of fixed-point iterations, the inexact fixed-point iterations have also

been attracting much attention in numerical analysis [1, 33, 79]. Although the theoretical base

of fixed-point iterations was growing increasingly solid, data scientists noticed that it would be

advantageous to execute iterations with low precision and therefore at a high speed in first few

steps [1]. On the other hand, as we embark on a new big-data era, the situation that the iteration

scheme can only be carried out approximately has become more and more prevalent over time

[26, 85]. Also, explicit iterations always has narrower range of parameters, which conceals the

relations between different explicit algorithms and sometimes drags down the convergence speed

[63]. These observations drove interest of data scientists into the study of inexact fixed-point it-
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erations. Parallel to the study of exact fixed-point iterations, the inexact fixed-point iterations

were first proven to converge with contraction mappings [1, 33], then with nonexpansive aver-

aged operators [29, 59, 63]. Directly inherit from the study of inexact fixed-point iterations of

nonexpansive averaged operators, inexact algorithms for nonsmooth convex optimization also

access to their development opportunities [29, 59, 63].

Just analogous to general framework of implicit fixed-point proximity algorithms proposed

in this dissertation, the convergence of the corresponding inexact implicit fixed-point proximity

algorithms is as well not guaranteed by any of the existing literature. This limits the application

of the newly proposed implicit algorithms, especially when the iteration is fully implicit and

therefore cannot be exactly updated. Following the inspiration of Schur’s lemma on the uniform

boundedness of infinitematrices [91] (also see e.g., [26, Lemma 6.21]), we propose a generalization

of the existing analysis of inexact iterations of nonexpansive averaged operators, which covers

the newly proposed quasinonexpansive/quasiaveraged operators. Then a direct application of

this framework to implicit fixed-point proximity algorithms establishes the convergence analysis

of inexact implicit fixed-point proximity algorithms. Part of results from this topic is going to be

present in [84].

1.4 DISSERTATION CONTRIBUTIONS

This dissertation mainly contributes generalizations to inexact fixed-point iterations, im-

plicit fixed-point proximity algorithms for nonsmooth convex optimization, and inexact implicit

fixed-point proximity algorithms for nonsmooth convex optimization.

Inexact Fixed-Point Iterations. Inspired by the Schur’s lemma [91] (also see e.g., [26, Lemma

6.21]) which considers the uniform boundedness of an infinite matrix, we propose a gen-

eral framework of inexact fixed-point iterations of Lipschitz operators. Such framework

covers existing analysis of inexact fixed-point iterations of Picard/KM iterations for non-

expansive/nonexpansive averaged operators. As a compelling application, we propose

new classes of operators, quasinonexpansive and quasiaveraged operators, generalizing

the classes of nonexpansive/nonexpansive averaged operators respectively, and prove the

convergence of their inexact Picard/KM iterations via the proposed framework of inexact
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fixed-point iterations.

Implicit Fixed-Point Proximity Algorithms. Inspired by the work of fixed-point proximity

algorithms [56, 74], we characterize the solutions of the nonsmooth convex optimization

problems to be fixed-points of a proximity operator coupling with a linear mapping. Al-

though proximity operator has novel convergence property, the linear mapping is expand-

ing and therefore invalidates the naïve Picard/KM iteration for such fixed-point problem.

Following the matrix splitting technique in [56, 74], we then split all the matrices in the

fixed-point equation, which results in a fully implicit fixed-point iteration scheme. Al-

though the convergence of such general scheme could not be proven via the results for

nonexpansive/nonexpansive averaged operators, it turns out that the iterating operator

is quasiaveraged and therefore the framework of exact fixed-point iteration of quasiaver-

aged operators could be applied here. Such framework generalizes most of the existing

analysis of numerous explicit schemes and could serve as a unified methodology of non-

smooth convex optimization, covering and generalizing gradient descent method, proxi-

mal point method, Douglas-Rachford splitting algorithm, first-order primal-dual algorithm,

primal-dual hybrid gradient method, fixed-point proximity algorithm, alternating direction

method of multipliers, split Bregman iteration, linearized alternating direction method of

multipliers and inexact Uzawa method.

Inexact Implicit Fixed-Point Proximity Algorithms. Framework of inexact implicit fixed-

point proximity algorithms follows from a direct combination of frameworks of inexact

fixed-point iteration and implicit fixed-point proximity algorithms. To have an executable

scheme of the fully implicit fixed-point proximity algorithms, we again apply the matrix

splitting technique to the implicit scheme, introducing an inner loop in every step of the

algorithm. With a careful choice of parameters, the inexact implicit fixed-point proximity

algorithms fall into the intersection of the frameworks of inexact fixed-point iteration and

implicit fixed-point proximity algorithms. The convergence therefore follows immediately.

Such framework coversmost of the analysis on inexact iterations of nonexpansive averaged

operators, e.g., [29, 59, 63]. As a concrete application, we propose the class of 𝜃-inexact

block-separable fixed-point proximity algorithms with convergence analysis, covering and
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extending the explicit fixed-point proximity algorithms.

1.5 DISSERTATION OUTLINE

This section outlines the main structure of this dissertation. Chapter 2 proposes the general

framework of inexact fixed-point iterations, which is one of the main pillars of this dissertation.

We introduce the fixed-point problems and review the development of exact/inexact methods

with stationary/nonstationary iterations for fixed-point problems. Then we propose the frame-

works of inexact stationary/nonstationary iterations, which then are proven to cover most of

the typical iterative methods nowadays. Chapter 3 then switches to the nonsmooth convex op-

timization problem, which is the other main topic of this dissertation. We introduce the non-

smooth convex optimization problems and review the latest iterative methods for this kind of

problems. In this chapter we propose the general framework of implicit fixed-point proximity

algorithms, which then is proven to cover most of the popular proximity algorithms. Chap-

ter 4 thereafter combines the proposed frameworks of inexact fixed-point iterations and implicit

fixed-point proximity algorithms, leading us to a comprehensive framework of inexact implicit

fixed-point proximity algorithms. To validate these new frameworks in this dissertation, Chap-

ter 5 applies the inexact implicit fixed-point proximity algorithms to image processing problems,

with comparison to popular existing explicit methods. The numerical experiments approve the

superiority of the general framework of inexact implicit fixed-point proximity algorithms over

explicit ones. As a conclusion, Chapter 6 summarizes results proposed in this dissertation and

discusses possible direction of further studies.
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CHAPTER 2

INEXACT FIXED-POINT ITERATIONS

We in this chapter review several classical exact/inexact fixed-point methods for fixed-point

problems, and propose generalized framework of inexact fixed-point iterations. Specifically, we

review exact/inexact Picard/Krasnosel’skiĭ-Mann iterations of nonexpansive/nonexpansive av-

eraged operators. Then following the inspiration of Schur’s lemma on uniform boundedness of

infinite matrices, we propose a general analysis of inexact fixed-point iterations of Lipschitz oper-

ators. As applications, we define the class of quasinonexpansive/quasiaveraged operators and con-

sider the exact/inexact Picard/Krasnosel’skiĭ-Mann iterations of them. These new results cover

and extend existing analysis for nonexpansive/nonexpansive averaged operators accordingly. It

is worthy mentioning that this framework provides new understandings and extensions for in-

exact Picard/Krasnosel’skiĭ-Mann iterations of widely-used firmly quasinonexpansive operators.

2.1 FIXED-POINT PROBLEM AND ITERATIVE METHODS

In this section we clarify the fixed-point problem, and review several universal iterative

methods with their existing convergence theorems.

The fixed-point problem is, for an operator 𝑇 ∶ ℝ𝑛 → ℝ𝑛 having a nonempty fixed-point set

Fix 𝑇 ∶= {𝑧 ∈ ℝ𝑛 ∶ 𝑇 𝑧 = 𝑧},

we need to find a point in Fix 𝑇 . With ℝ𝑛 we denote the 𝑛-dimensional Euclidean space. Fixed

points can describe solutions and many fundamental concepts of equilibria or stability in various

fields. Mentioned below are several typical applications.

Ordinary Differential Equations. The initial value problem considers differential equation of

𝑥 ∶ ℝ → ℝ𝑛 such that
𝑥′(𝑡) = 𝑓 (𝑡, 𝑥(𝑡)), 𝑥(𝑡0) = 𝑥0,
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with 𝑓 ∶ Ω → ℝ𝑛 and (𝑡0, 𝑥0) ∈ Ω where Ω ⊂ ℝ × ℝ𝑛 is an open set. Then the solution of

initial value problem can be characterized [80] as the fixed-point of the operator mapping

function 𝑥 = 𝑥(𝑡) to
𝑥(𝑡) ↦ 𝑥0 + ∫

𝑡

𝑡0
𝑓 (𝜏, 𝑥(𝜏))d𝜏.

Zeros of Operators. For a function 𝑓 ∶ ℝ𝑛 → ℝ𝑛, the zeros of 𝑓 can be characterized as fixed

points of 𝐼 −𝑓 , i.e., Fix(𝐼 −𝑓 ). Here 𝐼 is the identity operator, and 𝐼𝑛 is the identity operator

in ℝ𝑛 if the dimension is clearly needed.

Smooth Convex Optimization. For a differential convex function 𝑓 ∶ ℝ𝑛 → ℝ, Fermat’s rule

[42] claims that all global minimizers of 𝑓 can be characterized as zeros of ∇𝑓 , and therefore

can be modeled by Fix(𝐼 − ∇𝑓 ). Here ∇𝑓 is the gradient operator of 𝑓 .

For general fixed-point problems, there are briefly two types of methods, i.e., direct method,

which attempts to solve the problem by a finite sequence of operations, and iterative method,

which uses an initial value to generate a sequence of improving approximate fixed-points, in

which the next approximation is derived from the previous ones. Although direct method the-

oretically gives an exact solution at most of the time, it still suffers from several drawbacks,

e.g., theoretical difficulty of convergence analysis with nonlinear problems, and high time/space

complexity with problems of large size. As problems and data sets arise from data science are

getting more and more complicated and large, iterative method has been increasingly attractive

and practical.

In following subsections, we review exact iterative methods and inexact iterative methods

for fixed-point problems. Several typical iterative methods are described with existing conver-

gence theorems respectively.

2.1.1 EXACT ITERATIVE METHODS

This subsection reviews general exact iterative methods for fixed-point problems, namely

Picard fixed-point iteration for contraction mappings and nonexpansive averaged operators, and

Krasnosel’skiĭ-Mann iteration for nonexpansive averaged operators.

Plenty of methods are proposed to solve the fixed-point problems throughout the history

of computational mathematics. Charles Émile Picard firstly initiated the fundamental method of
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successive approximations which then was named after him, the Picard iteration [80], as

For 𝑘 ∈ ℕ
⌊ 𝑧𝑘+1 ← 𝑇 𝑧𝑘

(1)

for a special kind of contraction operator 𝑇 ∶ ℝ𝑛 → ℝ𝑛 with Fix 𝑇 ≠ ∅ raising from differential

equations. Here ℕ denotes the set of non-positive integers, and ‘←’ assigns the value on the

right-hand side to the variable on the left-hand side. Then the convergence theorem for general

contraction mappings was formally stated later by Stefan Banach [4] as follows. A mapping

𝑇 ∶ ℝ𝑛 → ℝ𝑛 is Lipschitz continuous if there exists 𝐿 ∈ [0,+∞) such that

‖𝑇 𝑥 − 𝑇 𝑦‖ ≤ 𝐿‖𝑥 − 𝑦‖, for all 𝑥, 𝑦 ∈ ℝ𝑛,

where norm ‖ ⋅ ‖ ∶= ‖ ⋅ ‖2 is the Euclidean norm of ℝ𝑛. An operator 𝑇 ∶ ℝ𝑛 → ℝ𝑛 is a contraction

mapping if it is 𝐿-Lipschitz with 𝐿 ∈ [0, 1). The following theorem was once proved in [4].

Theorem 2.1. If 𝑇 ∶ ℝ𝑛 → ℝ𝑛 is a contraction mapping, then Fix 𝑇 is a singleton and for any

𝑧0 ∈ ℝ𝑛, the sequence {𝑧𝑘}𝑘∈ℕ generated by Picard iteration (1) converges to the unique point of Fix 𝑇 .

However contraction mappings are limited in application due to their rather strong and ad

hoc hypothesis. Originating in the study [52] by Mark Krasnosel’skiĭ, a broader class of operators

that extends contraction mappings, the so-called nonexpansive averaged operators, then grad-

ually took its form and was finally proven to be converging towards fixed-points under Picard

iterations as well. An 𝐿-Lipschitz continuous operator with 𝐿 = 1 is also called nonexpansive op-

erator. An operator 𝑇 ∶ ℝ𝑛 → ℝ𝑛 is nonexpansive averaged [3, 29, 73, 90], if there exists 𝜅 ∈ (0, 1)

and a nonexpansive operator 𝑅∶ ℝ𝑛 → ℝ𝑛 such that

𝑇 = (1 − 𝜅)𝐼 + 𝜅𝑅. (2)

In particular, nonexpansive 1/2-averaged operators are called firmly nonexpansive [13, 14]. No-

tice that all nonexpansive averaged operators are contraction mappings, however identity oper-

ator 𝐼 serves as a trivial nonexpansive averaged example that is not contraction mapping. This

argument implies that the following theorem, which could be found in [12, 90], essentially ex-

tends Theorem 2.1.
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Theorem 2.2. Suppose 𝑇 ∶ ℝ𝑛 → ℝ𝑛 is nonexpansive 𝜅-averaged with 𝜅 ∈ (0, 1). If Fix 𝑇 ≠ ∅, then

for any 𝑧0 ∈ ℝ𝑛, the sequence {𝑧𝑘}𝑘∈ℕ generated by Picard iteration (1) converges to a point in Fix 𝑇 .

As Picard iteration (1) may fail with nonexpansive operator 𝑇 , Theorem 2.2 can be considered

as a generalized version of Picard iteration for nonexpansive operator 𝑇 . To see this, for 𝑇 ∶ ℝ𝑛 →

ℝ𝑛 we consider the following algorithm

For 𝑘 ∈ ℕ
⌊ 𝑧𝑘+1 ← (1 − 𝜆)𝑧𝑘 + 𝜆𝑇 𝑧𝑘

(3)

where 𝜆 ∈ ℝ. If 𝑇 is a contraction mapping, thenTheorem 2.1 claims the convergence of iteration

(3) towards Fix 𝑇 when 𝜆 ∈ (0, 1]. If 𝑇 is merely nonexpansive with Fix 𝑇 ≠ ∅ and 𝜆 ∈ (0, 1), then

(1 − 𝜆)𝐼 + 𝜆𝑇 is nonexpansive averaged, therefore Theorem 2.2 ensures that (3) converges to a

point in
Fix((1 − 𝜆)𝐼 + 𝜆𝑇 ) = Fix 𝑇 .

The argument above proves the following corollary.

Corollary 2.3. Suppose 𝑇 ∶ ℝ𝑛 → ℝ𝑛 is nonexpansive with Fix 𝑇 ≠ ∅. If 𝜆 ∈ (0, 1), then for any

𝑧0 ∈ ℝ𝑛, the sequence {𝑧𝑘}𝑘∈ℕ generated by iteration (3) converges to a point in Fix 𝑇 .

The algorithm (3) also leads to the following well-known corollary.

Corollary 2.4. Suppose 𝑇 ∶ ℝ𝑛 → ℝ𝑛 is nonexpansive 𝜅-averaged with 𝜅 ∈ (0, 1) and Fix 𝑇 ≠ ∅.

If 𝜆 ∈ (0, 1/𝜅), then for any 𝑧0 ∈ ℝ𝑛, the sequence {𝑧𝑘}𝑘∈ℕ generated by iteration (3) converges to a

point in Fix 𝑇 .

Proof. Observe that if 𝑇 is nonexpansive 𝜅-averaged, then there exists a nonexpansive operator

𝑅 ∶ ℝ𝑛 → ℝ𝑛 such that
𝑇 = (1 − 𝜅)𝐼 + 𝜅𝑅.

Therefore for 𝜆 ∈ ℝ we have

(1 − 𝜆)𝐼 + 𝜆𝑇 = (1 − 𝜆)𝐼 + 𝜆((1 − 𝜅)𝐼 + 𝜅𝑅)
= (1 − 𝜆𝜅)𝐼 + 𝜆𝜅𝑅,

which means that for any 𝜆 ∈ (0, 1/𝜅), operator (1−𝜆)𝐼 +𝜆𝑇 is nonexpansive 𝜆𝜅-averaged. Then

a direct application of Theorem 2.2 proves the convergence of iteration (3).
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After combined with the earlier idea of nonstationary iteration by W. Robert Mann [70], (3)

was finally extended to the Krasnosel’skiĭ-Mann (KM) iteration for nonexpansive operators. For

nonexpansive operator 𝑇 ∶ ℝ𝑛 → ℝ𝑛, the KM iteration [83] updates

For 𝑘 ∈ ℕ
⌊ 𝑧𝑘+1 ← (1 − 𝜆𝑘)𝑧𝑘 + 𝜆𝑘𝑇 𝑧𝑘

(4)

where {𝜆𝑘}𝑘∈ℕ ⊂ ℝ. Such iteration is no longer a Picard iteration. Actually it is a nonstationary

iteration, since update rule is changing in each step. Notice that (3) is a special case of iteration

(4) with 𝜆𝑘 = 𝜆 for 𝑘 ∈ ℕ and some 𝜆 ∈ ℝ. The following theorem was once established in [83].

Theorem 2.5. Suppose 𝑇 ∶ ℝ𝑛 → ℝ𝑛 is nonexpansive with Fix 𝑇 ≠ ∅ and {𝜆𝑘}𝑘∈ℕ ⊂ [0, 1]. If

∑
𝑘∈ℕ

𝜆𝑘(1 − 𝜆𝑘) = ∞,

then for any 𝑧0 ∈ ℝ𝑛, the sequence {𝑧𝑘}𝑘∈ℕ generated by KM iteration (4) converges to a point in Fix 𝑇 .

Theorem 2.5 clearly covers Theorem 2.2. Analogous to Theorem 2.2, Theorem 2.5 has its

corresponding corollary on nonexpansive averaged operators.

Corollary 2.6. Suppose 𝑇 ∶ ℝ𝑛 → ℝ𝑛 is nonexpansive 𝜅-averaged with 𝜅 ∈ (0, 1), Fix 𝑇 ≠ ∅, and

{𝜆𝑘}𝑘∈ℕ ⊂ [0, 1/𝜅]. If

∑
𝑘∈ℕ

𝜆𝑘(
1
𝜅
− 𝜆𝑘) = ∞,

then for any 𝑧0 ∈ ℝ𝑛, the sequence {𝑧𝑘}𝑘∈ℕ generated by KM iteration (4) converges to a point in Fix 𝑇 .

Proof. Set 𝑅 ∶= (𝑇 − (1 − 𝜅)𝐼 )/𝜅 and 𝛼𝑘 ∶= 𝜆𝑘𝜅 for 𝑘 ∈ ℕ. Then by conditions we have that 𝑅 is

nonexpansive, Fix 𝑇 = Fix𝑅, {𝛼𝑘}𝑘∈ℕ ⊂ [0, 1] and

∑
𝑘∈ℕ

𝛼𝑘(1 − 𝛼𝑘) = ∞.

Notice that (4) is equivalently updating via

𝑧𝑘+1 = (1 − 𝛼𝑘)𝑧𝑘 + 𝛼𝑘𝑅𝑧𝑘,

therefore the convergence of iteration (4) directly follows Theorem 2.5.
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KM iteration nowadays still attracts wide interest among computational mathematics com-

munity and gets development continuously, e.g., the variable KM iteration [104, 107] was pro-

posed as
For 𝑘 ∈ ℕ
⌊ 𝑧𝑘+1 ← (1 − 𝜆𝑘)𝑧𝑘 + 𝜆𝑘𝑇𝑘𝑧𝑘

(5)

where {𝑇𝑘}𝑘∈ℕ are group of nonexpansive operators satisfying certain conditions. To generally

handle such kind of iterations, the nonstationary iteration is modeled by the general form

For 𝑘 ∈ ℕ
⌊ 𝑧𝑘+1 ← 𝑇𝑘𝑧𝑘

(6)

Notice that Picard iterations (1), KM iteration (4) and variable KM iteration (5) are special cases

of nonstationary iterations (6).

2.1.2 INEXACT ITERATIVE METHODS

We in this subsection review inexact iterative methods for fixed-point problems, which gen-

eralizes exact methods introduced in Section 2.1.1.

Iterativemethods (1), (3) and (4) are practical and useful in finding fixed-points of an operator

𝑇 ∶ ℝ𝑛 → ℝ𝑛 under different conditions, but such novel properties are theoretically guaranteed

only if the value 𝑇 𝑧 can be exactly evaluated for all 𝑧 ∈ ℝ𝑛. In numerical analysis it is common

that the evaluation of 𝑇 could only be carried out approximately [1, 33, 79], or it is beneficial to

approximate the evaluation of 𝑇 instead of solve it exactly [1, 63]. That is, instead of the exact

value 𝑇 𝑧, the actual value available is the inexact value 𝑇 𝑧 + 𝜀, where limited information of 𝜀 is

known (e.g., ‖𝜀‖ could be obtained or bounded).

Plenty of remarkable works were undertook to generalize convergence results of exact it-

erative methods to inexact settings. The inexact Picard iteration for a contraction mapping was

once systematically formalized and studied in [1] as the following. Consider the inexact Picard

iteration for 𝑇 ∶ ℝ𝑛 → ℝ𝑛,
For 𝑘 ∈ ℕ
⌊ �̃�𝑘+1 ← 𝑇 �̃�𝑘 + 𝜀𝑘

(7)

where {�̃�𝑘}𝑘∈ℕ is the inexact iteration sequence and {𝜀𝑘}𝑘∈ℕ ⊂ ℝ𝑛 are evaluation errors that can not

be exactly obtained. The following theorem was once proven in [1].
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Theorem 2.7. Suppose 𝑇 ∶ ℝ𝑛 → ℝ𝑛 is a contraction mapping. If lim𝑘∈ℕ 𝜀𝑘 = 0, then for any

𝑧0 ∈ ℝ𝑛, the sequence {𝑧𝑘}𝑘∈ℕ generated by inexact Picard iteration (7) converges to the unique point

of Fix 𝑇 .

Theorem 2.1 is apparently a special case of Theorem 2.7 where 𝜀𝑘 = 0 for 𝑘 ∈ ℕ. Similarly

the inexact version of KM iterations (4) was studied [29, 59]. Consider

For 𝑘 ∈ ℕ
⌊ �̃�𝑘+1 ← (1 − 𝜆𝑘)�̃�𝑘 + 𝜆𝑘(𝑇 �̃�𝑘 + 𝜀𝑘)

(8)

where {𝜆𝑘}𝑘∈ℕ ⊂ ℝ, {�̃�𝑘}𝑘∈ℕ is the inexact iteration sequence and {𝜀𝑘}𝑘∈ℕ ⊂ ℝ𝑛 are evaluation

errors of {𝑇 �̃�𝑘}𝑘∈ℕ. Here by 𝓁𝑝(ℝ𝑛) we denote the collection of all sequences {𝑥𝑘}𝑘∈ℕ ⊂ ℝ𝑛 with the

property that
∑
𝑘∈ℕ

‖𝑥𝑘‖𝑝 < ∞,

and by 𝓁𝑝 when the domain is clear in context. The following theorem could be found in [29].

Theorem 2.8. Let 𝑇 ∶ ℝ𝑛 → ℝ𝑛 be nonexpansive with Fix 𝑇 ≠ ∅, {𝜆𝑘}𝑘∈ℕ ⊂ [0, 1] and {𝜀𝑘}𝑘∈ℕ ⊂ ℝ𝑛.

If
{𝜆𝑘𝜀𝑘}𝑘∈ℕ ∈ 𝓁1 and ∑

𝑘∈ℕ
𝜆𝑘(1 − 𝜆𝑘) = ∞,

then for any �̃�0 ∈ ℝ𝑛, the inexact sequence {�̃�𝑘}𝑘∈ℕ generated by inexact KM iteration (8) converges

to a point in Fix 𝑇 .

Theorem 2.8 can be easily extended to inexact iteration of nonexpansive averaged operators

similar as Theorem 2.5.

Corollary 2.9. Let 𝑇 ∶ ℝ𝑛 → ℝ𝑛 be nonexpansive 𝜅-averaged with 𝜅 ∈ (0, 1), Fix 𝑇 ≠ ∅, {𝜆𝑘}𝑘∈ℕ ⊂

[0, 1/𝜅] and {𝜀𝑘}𝑘∈ℕ ⊂ ℝ𝑛. If

{𝜆𝑘𝜀𝑘}𝑘∈ℕ ∈ 𝓁1 and ∑
𝑘∈ℕ

𝜆𝑘(
1
𝜅
− 𝜆𝑘) = ∞,

then for any �̃�0 ∈ ℝ𝑛, the inexact sequence {�̃�𝑘}𝑘∈ℕ generated by inexact KM iteration (8) converges

to a point in Fix 𝑇 .
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Proof. This proof basically follows Corollary 2.6. Set 𝛼𝑘 ∶= 𝜆𝑘𝜅 for 𝑘 ∈ ℕ and

𝑅 ∶=
1
𝜅
𝑇 +(1 −

1
𝜅)

𝐼 .

Then by conditions we have that 𝑅 is nonexpansive, Fix 𝑇 = Fix𝑅, {𝛼𝑘}𝑘∈ℕ ⊂ [0, 1] and

∑
𝑘∈ℕ

𝛼𝑘(1 − 𝛼𝑘) = ∞.

Notice that (8) is equivalently updating via

�̃�𝑘+1 = (1 − 𝛼𝑘)�̃�𝑘 + 𝛼𝑘𝑅�̃�𝑘 + 𝜆𝑘𝜀𝑘,

therefore the convergence of iteration (8) directly follows Theorem 2.8.

Corollary 2.9 has a trivial corollary on inexact Picard iteration of nonexpansive averaged

operators.

Corollary 2.10. Let 𝑇 ∶ ℝ𝑛 → ℝ𝑛 be nonexpansive 𝜅-averaged with 𝜅 ∈ (0, 1), Fix 𝑇 ≠ ∅ and

{𝜀𝑘}𝑘∈ℕ ⊂ ℝ𝑛. If
{𝜀𝑘}𝑘∈ℕ ∈ 𝓁1 and 𝜆𝑘 = 𝜆 ∈ (0, 1/𝜅) for all 𝑘 ∈ ℕ,

then for any �̃�0 ∈ ℝ𝑛, the inexact sequence {�̃�𝑘}𝑘∈ℕ generated by inexact Picard iteration (8) converges

to a point in Fix 𝑇 .

Finally, for nonstationary iteration (6), [59] considered the following inexact nonstationary

KM iteration. Let 𝑇Γ ∶ ℝ𝑛 → ℝ𝑛 be a nonexpansive operator depending on parameter Γ and

operators 𝑇Γ𝑘 ∶ ℝ𝑛 → ℝ𝑛 for 𝑘 ∈ ℕ. Then the inexact nonstationary KM iteration is read

For 𝑘 ∈ ℕ
⌊ �̃�𝑘+1 ← (1 − 𝜆𝑘)�̃�𝑘 + 𝜆𝑘(𝑇Γ𝑘 �̃�𝑘 + 𝜀𝑘)

(9)

where {𝜆𝑘}𝑘∈ℕ ⊂ ℝ, {�̃�𝑘}𝑘∈ℕ is the inexact iteration sequence and {𝜀𝑘}𝑘∈ℕ ⊂ ℝ𝑛 are evaluation errors.

Define
𝑇Γ,𝜆𝑘 ∶= (1 − 𝜆𝑘) 𝐼 +𝜆𝑘𝑇Γ, 𝑇Γ𝑘 ,𝜆𝑘 ∶= (1 − 𝜆𝑘) 𝐼 +𝜆𝑘𝑇Γ𝑘 ,

and for all 𝜌 ≥ 0, denote
Δ𝑇
𝑘,𝜌 ∶= sup

‖𝑧‖≤𝜌

‖‖𝑇Γ𝑘𝑧 − 𝑇Γ𝑧‖‖.
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Readers are referred to [59] for the following theorem.

Theorem 2.11. Assume that 𝑇Γ ∶ ℝ𝑛 → ℝ𝑛 is nonexpansive with Fix 𝑇Γ ≠ ∅, and followings hold

(i) 𝑇Γ𝑘 ,𝜆𝑘 is (1 + 𝛽𝑘)-Lipschitz with 𝛽𝑘 ≥ 0 for 𝑘 ∈ ℕ and {𝛽𝑘}𝑘∈ℕ ∈ 𝓁1,

(ii) {𝜆𝑘}𝑘∈ℕ ⊂ (0, 1) with inf𝑘∈ℕ 𝜆𝑘(1 − 𝜆𝑘) > 0,

(iii) {𝜆𝑘𝜀𝑘}𝑘∈ℕ ∈ 𝓁1,

(iv) {𝜆𝑘Δ𝑇
𝑘,𝜌}𝑘∈ℕ ∈ 𝓁1 for all 𝜌 ≥ 0.

Then for any �̃�0 ∈ ℝ𝑛, the inexact sequence {�̃�𝑘}𝑘∈ℕ generated by inexact nonstationary KM iteration

(9) converges to a point in Fix 𝑇Γ.

Theorem 2.11 has a direct corollary for nonexpansive averaged operators similar as Theo-

rem 2.5, proof of which is quite straightforward and was once discussed in [59].

Corollary 2.12. Assume that 𝑅Γ and {𝑅Γ𝑘 }𝑘∈ℕ are nonexpansive operators in ℝ𝑛 with Fix 𝑇Γ ≠ ∅,

and followings hold

(i) 𝑇Γ𝑘 = (1 − 𝜅𝑘)𝐼 + 𝜅𝑘𝑅Γ is nonexpansive 𝜅𝑘-averaged with 𝜅𝑘 ∈ (0, 1] for 𝑘 ∈ ℕ,

(ii) 𝜆𝑘 ⊂ (0, 1/𝜅𝑘) with inf𝑘∈ℕ 𝜆𝑘𝜅𝑘(1 − 𝜆𝑘𝜅𝑘) > 0,

(iii) {𝜆𝑘𝜅𝑘𝜀𝑘}𝑘∈ℕ ∈ 𝓁1,

(iv) {𝜆𝑘𝜅𝑘Δ𝑅
𝑘,𝜌}𝑘∈ℕ ∈ 𝓁1 for all 𝜌 ≥ 0.

Then for any �̃�0 ∈ ℝ𝑛, the inexact sequence {�̃�𝑘}𝑘∈ℕ generated by inexact nonstationary KM iteration

(9) converges to a point in Fix𝑅Γ.

In this sectionwe review the origin of fixed-point problem and several classical exact/inexact

iterative methods for fixed-point problem, e.g., exact/inexact Picard iterations, exact/inexact KM

iterations and exact/inexact nonstationary KM iterations, with existing convergence theorems

respectively. In the following sections, we propose the general frameworks of inexact Picard

fixed-point iterations and inexact nonstationary iterations, which covers and extends results in

this section.

2.2 FRAMEWORK OF INEXACT PICARD FIXED-POINT ITERATIONS

In the following two sections we propose the general framework of inexact fixed-point it-

eration, which is one of the main pillars in this dissertation. First we consider the inexact Pi-
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card fixed-point iteration of quasinonexpansive operators. Then we introduce a generalized class

of quasinonexpansive operators, to which we extend the proposed inexact fixed-point iteration

framework.

Recall that inexact Picard iteration designates the following numerical scheme

For 𝑘 ∈ ℕ
⌊ �̃�𝑘+1 ← 𝑇 �̃�𝑘 + 𝜀𝑘

(7)

where {𝜀𝑘}𝑘∈ℕ ⊂ ℝ𝑛 are the local errors. One of the main purpose of this study is to establish a

general theorem which identifies essential conditions on the local error to ensure convergence of

the inexact fixed-point iteration for Lipschitz operators. The critical issue for the convergence is

to enforce local errors to be distributed in certain uniform manner so that they are under control

globally. Inspired by the Schur’s lemma [91] (also see e.g., [26, Lemma 6.21]), which considers

the uniform boundedness of an infinite matrix, we put forward a general convergence theorem

for inexact Picard iterations. We first present a technical lemma.

Lemma 2.13. Let {𝑥𝑘}𝑘∈ℕ ⊂ ℝ𝑛. If
∑
𝑘∈ℕ

‖𝑥𝑘+1 − 𝑥𝑘‖ < ∞,

then {𝑥𝑘}𝑘∈ℕ is a Cauchy sequence.

Proof. By hypothesis, for any given 𝜀 > 0, there exists 𝑁 > 0 such that for any 𝑝 > 𝑁 , there

holds∑∞
𝑘=𝑝 ‖𝑥𝑘+1 − 𝑥𝑘‖ < 𝜀. This ensures that

‖‖𝑥𝑝 − 𝑥𝑞‖‖ ≤
𝑞−1

∑
𝑘=𝑝

‖𝑥𝑘+1 − 𝑥𝑘‖ < 𝜀, for all 𝑝 > 𝑞 > 𝑁 ,

which proves that {𝑥𝑘}𝑘∈ℕ is a Cauchy sequence.

We are now ready to state a general convergence theorem for inexact Picard iteration (7).

Recall that 𝐿-Lipschitz continuous operator with 𝐿 = 1 is called nonexpansive operator, and an

operator 𝑇 ∶ ℝ𝑛 → ℝ𝑛 is called quasinonexpansive [34, 36], if

‖𝑇 𝑥 − 𝑧‖ ≤ ‖𝑥 − 𝑧‖, for all 𝑥 ∈ ℝ𝑛, 𝑧 ∈ Fix 𝑇 . (10)

A nonexpansive operator is quasinonexpansive, but a quasinonexpansive operator is not neces-
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sarily nonexpansive. The following function serves as a counterexample.

Example 2.14. Define 𝑇 ∶ ℝ → ℝ as

𝑇 (𝑥) ∶=

{
𝜋−1𝑥 arctan(𝑥) sin(ln|𝑥 |), 𝑥 ≠ 0,
0, 𝑥 = 0,

then 𝑇 is quasinonexpansive and Lipschitz continuous, but not nonexpansive.

For quasinonexpansive and Lipschitz operators, we have the following general theorem of

inexact iterations.

Theorem 2.15. Suppose that 𝑇 ∶ ℝ𝑛 → ℝ𝑛 is quasinonexpansive with Fix 𝑇 ≠ ∅, Lipschitz contin-

uous, and for all 𝑧 ∈ ℝ𝑛, the exact Picard sequence {𝑇 𝑘𝑧}𝑘∈ℕ converges to a point in Fix 𝑇 . If local

errors
{𝜀𝑘}𝑘∈ℕ ∈ 𝓁1,

then for any �̃�0 ∈ ℝ𝑛, the inexact sequence {�̃�𝑘}𝑘∈ℕ generated by inexact Picard iteration (7) converges

to a point in Fix 𝑇 .

Proof. Let 𝐿 be the Lipschitz constant of 𝑇 . If 𝐿 < 1, then 𝑇 is indeed a contraction mapping,

and by Theorem 2.7 the inexact Picard sequence {�̃�𝑘}𝑘∈ℕ generated by iteration (7) converges to a

point in Fix 𝑇 .

We now consider the case when 𝐿 ≥ 1. First we prove the boundedness of {�̃�𝑘}𝑘∈ℕ. For any

fixed 𝑧 ∈ Fix 𝑇 and for all 𝑘 ∈ ℕ, using the triangle inequality we have that

‖�̃�𝑘 − 𝑧‖ = ‖𝑇 �̃�𝑘−1 + 𝜀𝑘−1 − 𝑧‖ ≤ ‖𝑇 �̃�𝑘−1 − 𝑧‖ + ‖𝜀𝑘−1‖.

Applying (10) to the first term on the right hand side of the inequality above yields

‖�̃�𝑘 − 𝑧‖ ≤ ‖�̃�𝑘−1 − 𝑧‖ + ‖𝜀𝑘−1‖.

Recursive application of the above inequality leads to

‖�̃�𝑘 − 𝑧‖ ≤ ‖�̃�0 − 𝑧‖ +
𝑘−1

∑
𝑙=0

‖𝜀𝑙‖ ≤ ‖�̃�0 − 𝑧‖ +∑
𝑙∈ℕ

‖𝜀𝑙‖,
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which implies that for all 𝑘 ∈ ℕ, ‖�̃�𝑘‖ ≤ 𝑐 ∶= ‖𝑧‖ + ‖�̃�0 − 𝑧‖ +∑𝑙∈ℕ ‖𝜀𝑙‖. The boundedness of {�̃�𝑘}𝑘∈ℕ
ensures that there exists a convergent subsequence {�̃�𝑘𝑙 }𝑙∈ℕ. Let 𝑢 ∶= lim𝑙→∞ �̃�𝑘𝑙 . By assumptions,

𝑣 ∶= lim𝑙→∞ 𝑇 𝑙𝑢 exists and 𝑣 ∈ Fix 𝑇 . We next prove that lim𝑘→∞ �̃�𝑘 = 𝑣, which would complete

the proof of this theorem.

Suppose 𝜀 > 0. Since 𝑣 = lim𝑙→∞ 𝑇 𝑙𝑢, there exists 𝑁 ∈ ℕ such that

‖‖𝑇
𝑁𝑢 − 𝑣‖‖ < 𝜀. (11)

Since {𝜀𝑘}𝑘∈ℕ ∈ 𝓁1, there exists 𝑀1 ∈ ℕ such that for all 𝑚 ≥ 𝑀1,

∞

∑
𝑗=𝑘𝑚

‖‖𝜀𝑗 ‖‖ < 𝐿−𝑁 𝜀. (12)

Moreover, because lim𝑙→∞ �̃�𝑘𝑙 = 𝑢, there exists 𝑀2 ∈ ℕ such that for all 𝑚 ≥ 𝑀2,

‖‖�̃�𝑘𝑚 − 𝑢‖‖ < 𝐿−𝑁 𝜀. (13)

Let 𝑀 ∶= max{𝑀1, 𝑀2}. We next estimate ‖�̃�𝑘𝑀+𝑁 − 𝑣‖ by employing the decomposition

�̃�𝑘𝑀+𝑁 − 𝑣 = (�̃�𝑘𝑀+𝑁 − 𝑇 𝑁 �̃�𝑘𝑀) + (𝑇 𝑁 �̃�𝑘𝑀 − 𝑇 𝑁𝑢) + (𝑇 𝑁𝑢 − 𝑣). (14)

For the first term on the right hand side of (14), by (7) we obtain that

�̃�𝑘𝑀+𝑁 − 𝑇 𝑁 �̃�𝑘𝑀 = 𝑇 �̃�𝑘𝑀+𝑁−1 + 𝜀𝑘𝑀+𝑁−1 − 𝑇 𝑁 �̃�𝑘𝑀 .

The triangle inequality combined with the Lipschitz continuity of 𝑇 implies that

‖‖�̃�𝑘𝑀+𝑁 − 𝑇 𝑁 �̃�𝑘𝑀 ‖‖ ≤ 𝐿‖‖�̃�𝑘𝑀+𝑁−1 − 𝑇 𝑁−1�̃�𝑘𝑀 ‖‖ + ‖‖𝜀𝑘𝑀+𝑁−1‖‖.

Repeatedly applying the above inequality, we observe that

‖‖�̃�𝑘𝑀+𝑁 − 𝑇 𝑁 �̃�𝑘𝑀 ‖‖ ≤ 𝐿𝑁−1
𝑁−1

∑
𝑗=0

𝐿−𝑗 ‖‖𝜀𝑘𝑀+𝑗 ‖‖. (15)
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The hypothesis 𝐿 ≥ 1 ensures that

𝑁−1

∑
𝑗=0

𝐿−𝑗 ‖‖𝜀𝑘𝑀+𝑗 ‖‖ ≤
𝑁−1

∑
𝑗=0

‖‖𝜀𝑘𝑀+𝑗 ‖‖ ≤
∞

∑
𝑗=𝑘𝑀

‖‖𝜀𝑗 ‖‖.

Substituting this inequality into the right hand side of (15) and using (12), we find that

‖‖�̃�𝑘𝑀+𝑁 − 𝑇 𝑁 �̃�𝑘𝑀 ‖‖ ≤ 𝐿𝑁−1
∞

∑
𝑗=𝑘𝑀

‖‖𝜀𝑗 ‖‖ < 𝐿−1𝜀. (16)

For the second term on the right hand side of (14), by the Lipschitz continuity of 𝑇 and (13), we

derive that
‖‖𝑇

𝑁 �̃�𝑘𝑀 − 𝑇 𝑁𝑢‖‖ ≤ 𝐿𝑁 ‖‖�̃�𝑘𝑀 − 𝑢‖‖ < 𝜀. (17)

The third term on the right hand side of (14) has been estimated by (11). Combining (11), (14),

(16) and (17), we get the estimation

‖‖�̃�𝑘𝑀+𝑁 − 𝑣‖‖ < (𝐿−1 + 2)𝜀. (18)

Once again, by repeatedly using (10), for 𝑣 ∈ Fix 𝑇 , we have for all 𝑗 ∈ ℕ,

‖‖�̃�𝑘𝑀+𝑁+𝑗 − 𝑣‖‖ = ‖‖𝑇 �̃�𝑘𝑀+𝑁+𝑗−1 + 𝜀𝑘𝑀+𝑁+𝑗−1 − 𝑣‖‖
≤ ‖‖�̃�𝑘𝑀+𝑁+𝑗−1 − 𝑣‖‖ + ‖‖𝜀𝑘𝑀+𝑁+𝑗−1‖‖

≤ ‖‖�̃�𝑘𝑀+𝑁 − 𝑣‖‖ +
𝑗−1

∑
𝑝=0

‖‖𝜀𝑘𝑀+𝑁+𝑝‖‖.

Substituting (12) and (18) inter the right hand side of the above inequality gives for all 𝑗 ∈ ℕ,

‖‖�̃�𝑘𝑀+𝑁+𝑗 − 𝑣‖‖ < (𝐿−1 + 3)𝜀, (19)

which proves that lim𝑘→∞ �̃�𝑘 = 𝑣 ∈ Fix 𝑇 .

Here we further consider inexact Picard iterations for a generalized class of quasinonex-

pansive operator. We denote the set of symmetric positive definite 𝑛-by-𝑛 matrices as 𝕊𝑛, and

‖ ⋅ ‖𝑉 ∶=
√
⟨⋅, 𝑉 ⋅⟩ is the weighted semi-norm with respect to 𝑉 ∈ 𝕊𝑛. An operator 𝑇 ∶ ℝ𝑛 → ℝ𝑛 is
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quasinonexpansive with respect to 𝑉 ∈ 𝕊𝑛, if

‖𝑇 𝑥 − 𝑧‖𝑉 ≤ ‖𝑥 − 𝑧‖𝑉 , for all 𝑥 ∈ ℝ𝑛, 𝑧 ∈ Fix 𝑇 . (20)

Clearly quasinonexpansive operators are special cases of quasinonexpansive operators with re-

spect to 𝐼𝑛. An operator is 𝐿-Lipschitz with respect to 𝑉 ∈ 𝕊𝑛 if

‖𝑇 𝑥 − 𝑇 𝑦‖𝑉 ≤ 𝐿‖𝑥 − 𝑦‖𝑉 , for all 𝑥, 𝑦 ∈ ℝ𝑛,

and the class of 1-Lipschitz operators with respect to 𝑉 are also specified as nonexpansive oper-

ators with respect to 𝑉 .

Now we are ready to propose a generalization of Theorem 2.15. For 𝑉 ∈ 𝕊𝑛, denote
√
𝑉 ∈ 𝕊𝑛

as the unique symmetric positive definite matrix such that 𝑉 =
√
𝑉
√
𝑉 .

Theorem 2.16. Suppose that 𝑉 ∈ 𝕊𝑛, 𝑇 ∶ ℝ𝑛 → ℝ𝑛 is quasinonexpansive with respect to 𝑉 and

Lipschitz continuous with respect to 𝑉 , Fix 𝑇 ≠ ∅, and for all 𝑧 ∈ ℝ𝑛, the exact Picard sequence

{𝑇 𝑘𝑧}𝑘∈ℕ converges to a point in Fix 𝑇 . If local errors

{√
𝑉 𝜀𝑘

}
𝑘∈ℕ ∈ 𝓁1,

then for any �̃�0 ∈ ℝ𝑛, the inexact sequence {
√
𝑉 �̃�𝑘}𝑘∈ℕ generated by inexact Picard iteration (7) con-

verges to a point in
√
𝑉 Fix 𝑇 .

Proof. This proof basically follows the proof ofTheorem 2.15. By Lipschitz continuity of 𝑇 , assume

that there exists 𝐿 ≥ 1 such that

‖𝑇 𝑥 − 𝑇 𝑦‖𝑉 ≤ 𝐿‖𝑥 − 𝑦‖𝑉 . for all 𝑥, 𝑦 ∈ ℝ𝑛.

First notice (20) ensures for 𝑘 ∈ ℕ and 𝑧 ∈ Fix 𝑇 ,

‖�̃�𝑘 − 𝑧‖𝑉 ≤ ‖𝑇 �̃�𝑘−1 − 𝑧‖𝑉 + ‖𝜀𝑘−1‖𝑉 ≤ ‖�̃�𝑘−1 − 𝑧‖𝑉 + ‖𝜀𝑘−1‖𝑉 .

Recursive application of the above inequality results in

‖‖‖
√
𝑉 �̃�𝑘

‖‖‖ ≤ ‖𝑧‖𝑉 +∑
𝑙∈ℕ

‖𝜀𝑙‖𝑉 , for all 𝑘 ∈ ℕ.
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This proves that {
√
𝑉 �̃�𝑘}𝑘∈ℕ is bounded, then there exists a convergent subsequence {

√
𝑉 �̃�𝑘𝑙 }𝑙∈ℕ.

Since range of
√
𝑉 is closed, there exists 𝑢 ∈ ℝ𝑛 such that

√
𝑉𝑢 = lim𝑙→∞

√
𝑉 �̃�𝑘𝑙 . By assumptions,

𝑣 ∶= lim𝑙→∞ 𝑇 𝑙𝑢 exists and 𝑣 ∈ Fix 𝑇 . We next prove that lim𝑘→∞
√
𝑉 �̃�𝑘 =

√
𝑉 𝑣, which would

complete the proof of this theorem.

Suppose 𝜀 > 0. Since 𝑣 = lim𝑙→∞ 𝑇 𝑙𝑢, there exists 𝑁 ∈ ℕ such that

‖‖𝑇
𝑁𝑢 − 𝑣‖‖𝑉 < 𝜀. (21)

Since {
√
𝑉 𝜀𝑘}𝑘∈ℕ ∈ 𝓁1, there exists 𝑀1 ∈ ℕ such that for all 𝑚 ≥ 𝑀1,

∞

∑
𝑗=𝑘𝑚

‖‖𝜀𝑗 ‖‖𝑉 < 𝐿−𝑁 𝜀. (22)

Moreover, because
√
𝑉𝑢 = lim𝑙→∞

√
𝑉 �̃�𝑘𝑙 , there exists 𝑀2 ∈ ℕ such that for all 𝑚 > 𝑀2,

‖‖�̃�𝑘𝑙 − 𝑢‖‖𝑉 < 𝐿−𝑁 𝜀. (23)

Let 𝑀 ∶= max{𝑀1, 𝑀2}. We next estimate ‖�̃�𝑘𝑀+𝑁 − 𝑣‖𝑉 by employing the decomposition

�̃�𝑘𝑀+𝑁 − 𝑣 = (�̃�𝑘𝑀+𝑁 − 𝑇 𝑁 �̃�𝑘𝑀) + (𝑇 𝑁 �̃�𝑘𝑀 − 𝑇 𝑁𝑢) + (𝑇 𝑁𝑢 − 𝑣). (24)

For the first term on the right hand side of (24), by (7)

�̃�𝑘𝑀+𝑁 − 𝑇 𝑁 �̃�𝑘𝑀 = 𝑇 �̃�𝑘𝑀+𝑁−1 + 𝜀𝑘𝑀+𝑁−1 − 𝑇 𝑁 �̃�𝑘𝑀 .

The triangle inequality combined with the Lipschitz continuity of 𝑇 implies that

‖‖�̃�𝑘𝑀+𝑁 − 𝑇 𝑁 �̃�𝑘𝑀 ‖‖𝑉 ≤ 𝐿‖‖�̃�𝑘𝑀+𝑁−1 − 𝑇 𝑁−1�̃�𝑘𝑀 ‖‖𝑉 + ‖‖𝜀𝑘𝑀+𝑁−1‖‖𝑉 .

Repeatedly applying the above inequality, we observe that

‖‖�̃�𝑘𝑀+𝑁 − 𝑇 𝑁 �̃�𝑘𝑀 ‖‖𝑉 ≤ 𝐿𝑁−1
𝑁−1

∑
𝑗=0

𝐿−𝑗 ‖‖𝜀𝑘𝑀+𝑗 ‖‖𝑉 . (25)
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The hypothesis 𝐿 ≥ 1 ensures that

𝑁−1

∑
𝑗=0

𝐿−𝑗 ‖‖𝜀𝑘𝑀+𝑗 ‖‖𝑉 ≤
𝑁−1

∑
𝑗=0

‖‖𝜀𝑘𝑀+𝑗 ‖‖𝑉 ≤
∞

∑
𝑗=𝑘𝑀

‖‖𝜀𝑗 ‖‖𝑉 .

Substituting this inequality into the right hand side of (25) and using (22), we find that

‖‖�̃�𝑘𝑀+𝑁 − 𝑇 𝑁 �̃�𝑘𝑀 ‖‖𝑉 ≤ 𝐿𝑁−1
∞

∑
𝑗=𝑘𝑀

‖‖𝜀𝑗 ‖‖𝑉 < 𝐿−1𝜀. (26)

For the second term on the right hand side of (24), by the Lipschitz continuity of 𝑇 and (23), we

derive
‖‖𝑇

𝑁 �̃�𝑘𝑀 − 𝑇 𝑁𝑢‖‖𝑉 ≤ 𝐿𝑁 ‖‖�̃�𝑘𝑀 − 𝑢‖‖𝑉 < 𝜀. (27)

The third term on the right hand side of (24) has been estimated by (21). Combining (21), (24),

(26) and (27), we get the estimation

‖‖�̃�𝑘𝑀+𝑁 − 𝑣‖‖𝑉 < (𝐿−1 + 2)𝜀. (28)

Once again, by repeatedly using (10), for 𝑣 ∈ Fix 𝑇 , we have for all 𝑗 ∈ ℕ,

‖‖�̃�𝑘𝑀+𝑁+𝑗 − 𝑣‖‖𝑉 = ‖‖𝑇 �̃�𝑘𝑀+𝑁+𝑗−1 + 𝜀𝑘𝑀+𝑁+𝑗−1 − 𝑣‖‖𝑉
≤ ‖‖�̃�𝑘𝑀+𝑁+𝑗−1 − 𝑣‖‖𝑉 + ‖‖𝜀𝑘𝑀+𝑁+𝑗−1‖‖𝑉

≤ ‖‖�̃�𝑘𝑀+𝑁 − 𝑣‖‖𝑉 +
𝑗−1

∑
𝑝=0

‖‖𝜀𝑘𝑀+𝑁+𝑝‖‖𝑉 .

Substituting (22) and (28) inter the right hand side of the above inequality gives for all 𝑗 ∈ ℕ,

‖‖�̃�𝑘𝑀+𝑁+𝑗 − 𝑣‖‖𝑉 < (𝐿−1 + 3)𝜀, (29)

which proves that lim𝑘→∞
√
𝑉 �̃�𝑘 =

√
𝑉 𝑣 ∈

√
𝑉 Fix 𝑇 .

It is easy to check that Theorem 2.15 is a special case of Theorem 2.16, where 𝑉 = 𝐼𝑛.

In this section we propose the framework for inexact Picard fixed-point iterations of quasi-

nonexpansive operators Theorems 2.15 and 2.16. In the next section we consider the framework

of inexact nonstationary iterations.
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2.3 FRAMEWORK OF INEXACT NONSTATIONARY ITERATIONS

In this section we propose the general framework of inexact nonstationary iterations, as an

important generalization of inexact fixed-point iterations discussed in Section 2.2. This frame-

work covers the inexact Krasnosel’skiĭ-Mann (KM) iteration (8) and the inexact nonstationary

KM iteration (9).

Consider the following inexact nonstationary iteration, designating the following numerical

scheme
For 𝑘 ∈ ℕ
⌊ �̃�𝑘+1 ← 𝑇𝑘�̃�𝑘 + 𝜀𝑘

(30)

where 𝑇𝑘 ∶ ℝ𝑛 → ℝ𝑛 are dependent on iteration number 𝑘 ∈ ℕ, {�̃�𝑘}𝑘∈ℕ is the inexact iteration

sequence and {𝜀𝑘}𝑘∈ℕ ⊂ ℝ𝑛 are local errors. Notice that inexact Picard iterations (7) are special

cases of inexact nonstationary iterations (30), where 𝑇𝑘 are all identical for 𝑘 ∈ ℕ. First we

propose a convergence theorem by a generalization of Theorem 2.16. To analyze such inexact

nonstationary iterations, we need the following lemma, which could be found in majority of

complex analysis textbooks (e.g., [51]).

Lemma 2.17. Let {𝑎𝑘}𝑘∈ℕ be a sequence of nonnegative numbers. Then the infinite product∏𝑘∈ℕ(1+

𝑎𝑘) < ∞ if and only if ∑𝑘∈ℕ 𝑎𝑘 < ∞.

Now we are ready for the following convergence theorem for inexact nonstationary itera-

tion, generalizing inexact Picard fixed-point iteration Theorems 2.15 and 2.16.

Theorem 2.18. Suppose 𝐶 ⊆ ℝ𝑛 is nonempty, 𝑉 ∈ 𝕊𝑛, operators {𝑇𝑘}𝑘∈ℕ in ℝ𝑛 and {
√
𝑉 𝜀𝑘}𝑘∈ℕ ⊂ ℝ𝑛

satisfy

(i) 𝑇𝑘 is 𝐿-Lipschitz continuous for 𝑘 ∈ ℕ, and there exist {𝐿𝑘}𝑘∈ℕ ⊂ [1,+∞) such that∑𝑘∈ℕ(𝐿𝑘−

1) < ∞ and ‖𝑇𝑘𝑥 − 𝑧‖𝑉 ≤ 𝐿𝑘‖𝑥 − 𝑧‖𝑉 for all 𝑥 ∈ ℝ𝑛 and 𝑧 ∈ 𝐶,

(ii) {𝑇𝑘}𝑘∈ℕ pointwisely converges to an operator 𝑇 ∶ ℝ𝑛 → ℝ𝑛, and for all 𝑧 ∈ ℝ𝑛, {𝑇 𝑘𝑧}𝑘∈ℕ

converges to a point in 𝐶,

(iii) {
√
𝑉 𝜀𝑘}𝑘∈ℕ ∈ 𝓁1.

Then for all �̃�0 ∈ ℝ𝑛, the inexact sequence {
√
𝑉 �̃�𝑘}𝑘∈ℕ generated by inexact nonstationary iteration

(30) converges to a point in
√
𝑉𝐶.
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Proof. This proof inherits the one of Theorem 2.16. By Lipschitz continuity of {𝑇𝑘}𝑘∈ℕ, we have

that there exists 𝐿 > 1 such that for all 𝑘 ∈ ℕ,

‖𝑇𝑘𝑥 − 𝑇𝑘𝑦‖𝑉 ≤ 𝐿‖𝑥 − 𝑦‖𝑉 , for all 𝑥, 𝑦 ∈ ℝ𝑛.

First we prove that {�̃�𝑘}𝑘∈ℕ is bounded. Define 𝐾 ∶= ∏𝑘∈ℕ 𝐿𝑘. By Lemma 2.17 we have 𝐾 < ∞.

Then by assumption (i), for all 𝑘 ∈ ℕ and 𝑧 ∈ 𝐶 we have

‖�̃�𝑘 − 𝑧‖𝑉 ≤ ‖𝑇 �̃�𝑘−1 − 𝑧 + 𝜀𝑘−1‖𝑉
≤ ‖𝑇 �̃�𝑘−1 − 𝑧‖𝑉 + ‖𝜀𝑘‖𝑉
≤ 𝐿𝑘−1‖�̃�𝑘−1 − 𝑧‖𝑉 + ‖𝜀𝑘‖𝑉 .

Recursive application of the above inequality gives us

‖�̃�𝑘 − 𝑧‖𝑉 ≤ 𝐿−1𝑘
𝑘−1

∑
𝑙=0

𝑘

∏
𝑚=𝑙+1

𝐿𝑚‖𝜀𝑙‖𝑉 +
𝑘−1

∏
𝑙=0

𝐿𝑙‖�̃�0 − 𝑧‖𝑉 ≤ 𝐾
(
∑
𝑙∈ℕ

‖𝜀𝑙‖𝑉 + ‖�̃�0 − 𝑧‖𝑉)
,

which, with assumption (iii), proves the boundedness of {�̃�𝑘}𝑘∈ℕ. Therefore there exists a con-

vergence subsequence {
√
𝑉 �̃�𝑘𝑙 }𝑙∈ℕ. Since the range of 𝑉 is closed, there exists 𝑢 ∈ ℝ𝑛 such that

√
𝑉𝑢 = lim𝑙→∞

√
𝑉 �̃�𝑘𝑙 . Then by assumption (ii), we have 𝑣 ∶= lim𝑘→∞ 𝑇 𝑘𝑢 exist and 𝑣 ∈ 𝐶. Now it

is sufficient to prove that lim𝑘→∞
√
𝑉 �̃�𝑘 =

√
𝑉 𝑣.

Suppose 𝜀 > 0. By definition of 𝑣, there exists 𝑁 ∈ ℕ such that

‖‖𝑇
𝑁𝑢 − 𝑣‖‖𝑉 < 𝜀. (31)

Then we prove the desired result by the decomposition

�̃�𝑘𝑙+𝑁+1 − 𝑣 = (�̃�𝑘𝑙+𝑁+1 − 𝑇𝑘𝑙+𝑁 𝑇𝑘𝑙+𝑁−1 ⋯ 𝑇𝑘𝑙 �̃�𝑙)
+ (𝑇𝑘𝑙+𝑁 𝑇𝑘𝑙+𝑁−1⋯ 𝑇𝑘𝑙 �̃�𝑙 − 𝑇𝑘𝑙+𝑁 𝑇𝑘𝑙+𝑁−1⋯ 𝑇𝑘𝑙𝑢)
+ (𝑇𝑘𝑙+𝑁 𝑇𝑘𝑙+𝑁−1⋯ 𝑇𝑘𝑙𝑢 − 𝑇 𝑁𝑢) + (𝑇 𝑁𝑢 − 𝑣).

(32)

For the first term, by Lipschitz continuity of {𝑇𝑘}𝑘∈ℕ, there holds

‖‖�̃�𝑘𝑙+𝑁+1 − 𝑇𝑘𝑙+𝑁 𝑇𝑘𝑙+𝑁−1⋯ 𝑇𝑘𝑙 �̃�𝑙‖‖𝑉 ≤
𝑁

∑
𝑚=0

𝐿𝑁−𝑚‖‖𝜀𝑘𝑙+𝑚‖‖𝑉 ,
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which, together with assumption (iii), means that there exists 𝑀1 ∈ ℕ such that for any 𝑙 > 𝑀1

there holds
‖‖�̃�𝑘𝑙+𝑁+1 − 𝑇𝑘𝑙+𝑁 𝑇𝑘𝑙+𝑁−1⋯ 𝑇𝑘𝑙 �̃�𝑙‖‖𝑉 < 𝜀. (33)

For the second term, notice that lim𝑙→∞
√
𝑉 �̃�𝑘𝑙 =

√
𝑉𝑢, which means that there exists𝑀2 ∈ ℕ such

that for all 𝑙 > 𝑀2,

‖‖𝑇𝑘𝑙+𝑁 𝑇𝑘𝑙+𝑁−1⋯ 𝑇𝑘𝑙 �̃�𝑙 − 𝑇𝑘𝑙+𝑁 𝑇𝑘𝑙+𝑁−1⋯ 𝑇𝑘𝑙𝑢‖‖𝑉 ≤ 𝐿𝑁 ‖‖�̃�𝑘𝑙 − 𝑢‖‖𝑉 < 𝜀. (34)

For the third term, we are going to prove that 𝑇𝑘𝑙+𝑁 𝑇𝑘𝑙+𝑁−1⋯ 𝑇𝑘𝑙𝑢 → 𝑇 𝑁𝑢 as 𝑙 → ∞. We show this

by induction on 𝑁 . For 𝑁 = 1 it is trivial to see that lim𝑙→∞ 𝑇𝑘𝑙𝑢 = 𝑇𝑢. For 𝑁 > 1, suppose that

lim𝑙→∞ 𝑇𝑘𝑙+𝑁−1𝑇𝑘𝑙+𝑁−2⋯ 𝑇𝑘𝑙𝑢 = 𝑇 𝑁−1𝑢. Then notice that 𝑇𝑘𝑙+𝑁 is Lipschitz continuous, we have

‖‖𝑇𝑘𝑙+𝑁 𝑇𝑘𝑙+𝑁−1 ⋯ 𝑇𝑘𝑙𝑢 − 𝑇 𝑁𝑢‖‖𝑉 = ‖‖𝑇𝑘𝑙+𝑁 𝑇𝑘𝑙+𝑁−1⋯ 𝑇𝑘𝑙𝑢 − 𝑇𝑘𝑙+𝑁 𝑇
𝑁−1𝑢‖‖𝑉 + ‖‖𝑇𝑘𝑙+𝑁 𝑇

𝑁−1𝑢 − 𝑇 𝑁𝑢‖‖𝑉
≤ 𝐿‖‖𝑇𝑘𝑙+𝑁−1𝑇𝑘𝑙+𝑁−2⋯ 𝑇𝑘𝑙𝑢 − 𝑇 𝑁−1𝑢‖‖𝑉 + ‖‖𝑇𝑘𝑙+𝑁 𝑇

𝑁−1𝑢 − 𝑇 𝑁𝑢‖‖𝑉 ,

whose right-hand side tends to 0 as 𝑙 → ∞, due to the induction hypothesis and assumption (ii).

Therefore there exists 𝑀3 ∈ ℕ such that for all 𝑙 > 𝑀3, there holds

‖‖𝑇𝑘𝑙+𝑁 𝑇𝑘𝑙+𝑁−1 ⋯ 𝑇𝑘𝑙𝑢 − 𝑇 𝑁𝑢‖‖𝑉 < 𝜀. (35)

Thus, combine (31) to (35), then for all 𝑙 > max{𝑀1, 𝑀2, 𝑀3} we have ‖�̃�𝑘𝑙+𝑁+1 − 𝑣‖ < 4𝜀. Finally, by

𝑣 ∈ 𝐶 and assumption (i), for all 𝑙 > max{𝑀1, 𝑀2, 𝑀3} and 𝑚 ∈ ℕ we have

‖‖�̃�𝑘𝑙+𝑁+𝑚 − 𝑣‖‖𝑉 ≤ 𝐾 ‖‖�̃�𝑘𝑙+𝑁+1 − 𝑣‖‖𝑉 < 4𝐾𝜀,

which finishes the proof.

It is clear that Theorem 2.18 covers Theorems 2.15 and 2.16. Conversely, by assumptions (i)

and (ii) of Theorem 2.18, we have lim𝑘→∞ 𝐿𝑘 = 1 and {𝑇𝑘}𝑘∈ℕ is indeed uniformly converging to 𝑇 ,

which means that 𝑇 in Theorem 2.18 actually satisfies conditions of Theorem 2.16.

However there are several important nonstationary iterations that {𝑇𝑘}𝑘∈ℕ is not converging

to any operators, such as KM iterations (8) and nonstationary KM iterations (9). To investigate

such kind of inexact nonstationary iterations, we propose another convergence theorem for such
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kind of inexact nonstationary iterations. In the following theorem, we assume that for any 𝑧 ∈

ℝ𝑛 and 𝑘 ∈ ℕ, the exact iteration {𝑇𝑙𝑇𝑙−1⋯ 𝑇𝑘𝑧}𝑙≥𝑘 always converges. In this case, the inexact

nonstationary iteration (30) could be illustrated by diagram

�̃�0 ⇒ 𝑇0�̃�0 ⇒ 𝑇1𝑇0�̃�0 ⇒ 𝑇2𝑇1𝑇0�̃�0 ⇒ ⋯ → 𝑈0�̃�0⇝

�̃�1 ⇒ 𝑇1�̃�1 ⇒ 𝑇2𝑇1�̃�1 ⇒ ⋯ → 𝑈1�̃�1⇝

�̃�2 ⇒ 𝑇2�̃�2 ⇒ ⋯ → 𝑈2�̃�2
⋮ ⋮

where the limit 𝑈𝑘𝑧 ∶= lim𝑙→∞ 𝑇𝑙𝑇𝑙−1 ⋯ 𝑇𝑘𝑧 for 𝑧 ∈ ℝ𝑛, ‘⇒’ denotes exact iteration, ‘→’ denotes

convergence, and ‘⇝’ denotes inexact evaluation, with local errors {𝜀𝑘}𝑘∈ℕ.

Nowwe are ready for the convergence theorem of inexact nonstationary iteration (30) where

operators {𝑇𝑘}𝑘∈ℕ are not converging.

Theorem 2.19. Suppose 𝐶 ⊂ ℝ𝑛 is nonempty and closed, 𝑉 ∈ 𝕊𝑛, operators {𝑇𝑘}𝑘∈ℕ in ℝ𝑛 and

{𝜀𝑘}𝑘∈ℕ ⊂ ℝ𝑛 satisfy

(i) 𝑇𝑘 is 𝐿𝑘-Lipschitz continuous with respect to 𝑉 and {𝐿𝑘}𝑘∈ℕ ∈ [1,+∞) such that

∑
𝑘∈ℕ

(𝐿𝑘 − 1) < ∞;

(ii) For all 𝑘 ∈ ℕ and 𝑧 ∈ ℝ𝑛, {𝑇𝑙𝑇𝑙−1⋯ 𝑇𝑘𝑧}𝑙≥𝑘 converges to a point in 𝐶.

(iii) {
√
𝑉 𝜀𝑘}𝑘∈ℕ ∈ 𝓁1.

Then for any �̃�0 ∈ ℝ𝑛, the inexact sequence {
√
𝑉 �̃�𝑘}𝑘∈ℕ generated by inexact nonstationary iteration

(30) converges to a point in
√
𝑉𝐶.

Proof. Define 𝐿 ∶= ∏𝑘∈ℕ 𝐿𝑘, and notice that since ∑𝑘∈ℕ(𝐿𝑘 − 1) < ∞, Lemma 2.17 implies that

𝐿 < ∞. Since 𝑇𝑘 is 𝐿𝑘-Lipschitz with respect to 𝑉 , for any 𝑘, 𝑚 ∈ ℕ such that 𝑚 ≥ 𝑘 we have

‖𝑇𝑚𝑇𝑚−1⋯ 𝑇𝑘+1�̃�𝑘+1 − 𝑇𝑚𝑇𝑚−1⋯ 𝑇𝑘�̃�𝑘‖𝑉
≤ 𝐿𝑚‖𝑇𝑚−1⋯ 𝑇𝑘+1�̃�𝑘+1 − 𝑇𝑚−1⋯ 𝑇𝑘�̃�𝑘‖𝑉

≤ ‖�̃�𝑘+1 − 𝑇𝑘�̃�𝑘‖𝑉
𝑚

∏
𝑙=𝑘+1

𝐿𝑙 = ‖𝜀𝑘‖𝑉
𝑚

∏
𝑙=𝑘+1

𝐿𝑙.
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Therefore, let 𝑚 → ∞ and recall the notation 𝑈𝑘𝑧 ∶= lim𝑚→∞ 𝑇𝑚𝑇𝑚−1⋯ 𝑇𝑘𝑧, then we have

‖𝑈𝑘+1�̃�𝑘+1 − 𝑈𝑘�̃�𝑘‖𝑉 ≤ 𝐿‖𝜀𝑘‖𝑉 .

Then, by assumption {
√
𝑉 𝜀𝑘}𝑘∈ℕ ∈ 𝓁1 and Lemma 2.13, we have that {

√
𝑉𝑈𝑘�̃�𝑘}𝑘∈ℕ is a Cauchy

sequence in
√
𝑉𝐶. Since

√
𝑉𝐶 is closed, there exists 𝑧∗ ∈ 𝐶 such that lim𝑘→∞

√
𝑉𝑈𝑘�̃�𝑘 =

√
𝑉 𝑧∗.

Then it is sufficient to prove
√
𝑉 �̃�𝑘 →

√
𝑉 𝑧∗ as 𝑘 → ∞. To this end, for 𝑘, 𝑁 > 0we reformulate

�̃�𝑁+𝑘 − 𝑧∗ = (�̃�𝑁+𝑘 − 𝑇𝑁+𝑘−1𝑇𝑁+𝑘−2⋯ 𝑇𝑁 �̃�𝑁 )
+ (𝑇𝑁+𝑘−1𝑇𝑁+𝑘−2 ⋯ 𝑇𝑁 �̃�𝑁 − 𝑈𝑁 �̃�𝑁 ) + (𝑈𝑁 �̃�𝑁 − 𝑧∗),

(36)

and we estimate these three terms in right-hand side respectively. For the first term, since

{𝜀𝑘}𝑘∈ℕ ∈ 𝓁1, there exists 𝑁1 ∈ ℕ such that

∞

∑
𝑙=𝑁1

‖𝜀𝑙‖𝑉 < 𝜀.

Therefore for 𝑁 > 𝑁1, by iteration (30), we have the estimation

‖�̃�𝑁+𝑘 − 𝑇𝑁+𝑘−1𝑇𝑁+𝑘−2⋯ 𝑇𝑁 �̃�𝑁 ‖𝑉
≤ ‖𝜀𝑁+𝑘−1 + 𝑇𝑁+𝑘−1�̃�𝑁+𝑘−1 − 𝑇𝑁+𝑘−1𝑇𝑁+𝑘−2 ⋯ 𝑇𝑁 �̃�𝑁 ‖𝑉
≤ ‖𝜀𝑁+𝑘−1‖𝑉 + 𝐿𝑁+𝑘−1‖�̃�𝑁+𝑘−1 − 𝑇𝑁+𝑘−2 ⋯ 𝑇𝑁 �̃�𝑁 ‖𝑉 .

Recursive application of the above inequality gives, for any 𝑁 > 𝑁1 and 𝑘 > 0,

‖�̃�𝑁+𝑘 − 𝑇𝑁+𝑘−1𝑇𝑁+𝑘−2⋯ 𝑇𝑁 �̃�𝑁 ‖𝑉 ≤ 𝐿
𝑁+𝑘−1

∑
𝑙=𝑁

‖𝜀𝑙‖𝑉 < 𝐿𝜀. (37)

For the second term, notice that by definition, lim𝑙→∞ 𝑇𝑁+𝑙𝑇𝑁+𝑙−1⋯ 𝑇𝑁 �̃�𝑁 = 𝑈𝑁 �̃�𝑁 . Then there exists

𝑁2 > 0 such that for all 𝑘 > 𝑁2,

‖𝑇𝑁+𝑘−1𝑇𝑁+𝑘−2 ⋯ 𝑇𝑁 �̃�𝑁 − 𝑈𝑁 �̃�𝑁 ‖𝑉 < 𝜀. (38)

For the third term, by the previous assertion, we have lim𝑁→∞ 𝑈𝑁 �̃�𝑁 = 𝑧∗. This means that there
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exists 𝑁3 > 0 such that for any 𝑁 > 𝑁3, there holds

‖𝑈𝑁 �̃�𝑁 − 𝑧∗‖𝑉 < 𝜀. (39)

Finally, combine (36) and estimations (37) to (39), then for all 𝑁 > max{𝑁1, 𝑁3} and 𝑘 > 𝑁2, we

have

‖�̃�𝑁+𝑘 − 𝑧∗‖𝑉 ≤ ‖�̃�𝑁+𝑘 − 𝑇𝑁+𝑘−1𝑇𝑁+𝑘−2⋯ 𝑇𝑁 �̃�𝑁 ‖𝑉
+ ‖𝑇𝑁+𝑘−1𝑇𝑁+𝑘−2 ⋯ 𝑇𝑁 �̃�𝑁 − 𝑈𝑁 �̃�𝑁 ‖𝑉 + ‖𝑈𝑁 �̃�𝑁 − 𝑧∗‖𝑉 < (2 + 𝐿)𝜀,

which proves
√
𝑉 �̃�𝑘 →

√
𝑉 𝑧∗ as 𝑘 → ∞.

Notice the difference between Theorems 2.18 and 2.19. Although Theorem 2.19 does not

require {𝑇𝑘}𝑘∈ℕ to be convergent, it requests rather strong Lipschitz properties of operators {𝑇𝑘}𝑘∈ℕ.

To clarify this, let’s reduce Theorems 2.18 and 2.19 to Picard fixed-point iteration, i.e., 𝑇𝑘 = 𝑇 for

𝑘 ∈ ℕ. In this scenario, both frameworks demand {𝑇 𝑘𝑧}𝑘∈ℕ to converge for all 𝑧 ∈ ℝ𝑛, however

Theorem 2.18 requires 𝑇 to be Lipschitz continuous and quasinonexpansive, while Theorem 2.19

requires 𝑇 to be nonexpansive.

In this section we propose two frameworks for inexact nonstationary iteration (30) under

different conditions. In the following section, we consider several applications of the proposed

frameworks of inexact iterations.

2.4 APPLICATIONS OF INEXACT METHODS

In this section we apply the frameworks of inexact iterations, Theorems 2.15, 2.16, 2.18

and 2.19, to various fixed-point problems, and discuss the results with the existing inexact meth-

ods.

Firstly, guided by the fact that quasinonexpansive operators generalizes nonexpansive op-

erators, we consider the exact/inexact iterations of quasinonexpansive operators parallel to The-

orems 2.5 and 2.8. To this end, we need the following propositions. For 𝑉 ∈ 𝕊𝑛, denote 𝑉 † as

the Moore-Penrose inverse of 𝑉 , i.e., the unique matrix satisfying 𝑉𝑉 †𝑉 = 𝑉 , 𝑉 †𝑉𝑉 † = 𝑉 †,
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(𝑉𝑉 †)T = 𝑉𝑉 † and (𝑉 †𝑉 )T = 𝑉 †𝑉 . For 𝑇 ∶ ℝ𝑛 → ℝ𝑛, define the kernel

Ker 𝑇 ∶= {𝑥 ∈ ℝ𝑛 ∶ 𝑇 (𝑥 + 𝑦) = 𝑇 𝑦 for all 𝑦 ∈ ℝ𝑛}.

When 𝑇 is linear, Ker 𝑇 is identical to the classical definition of the kernel of linear mappings, i.e.,

Ker 𝑇 = {𝑥 ∈ ℝ𝑛 ∶ 𝑇 𝑥 = 0}.

Proposition 2.20. Suppose 𝑉 ∈ ℝ𝑛×𝑛 and 𝑇 ∶ ℝ𝑛 → ℝ𝑛. If Ker 𝑉 ⊆ Ker 𝑇 , then 𝑇 = 𝑇𝑉 †𝑉 , and

there hold
Fix 𝑇 = 𝑇 𝑉 † Fix(𝑉 𝑇𝑉 †) and Fix(𝑉 𝑇𝑉 †) = 𝑉 Fix 𝑇 .

Proof. First notice that
𝑉 (𝐼 − 𝑉 †𝑉 ) = 𝑉 − 𝑉𝑉 †𝑉 = 𝑉 − 𝑉 = 0,

which means 𝑥 − 𝑉 †𝑉𝑥 ∈ Ker 𝑉 ⊆ Ker 𝑇 for any 𝑥 ∈ ℝ𝑛. This implies 𝑇 = 𝑇𝑉 †𝑉 .

Suppose 𝑥 ∈ Fix 𝑇 . Define 𝑧 ∶= 𝑉𝑥 . Then we have 𝑥 = 𝑇 𝑥 = 𝑇 𝑉 †𝑧, and then 𝑧 = 𝑉 𝑇𝑥 =

𝑉 𝑇𝑉 ∗𝑧. Therefore we have 𝑧 ∈ Fix(𝑉 𝑇𝑉 †). Conversely, suppose 𝑥 ∈ Fix(𝑉 𝑇𝑉 †). Denote 𝑧 ∶=

𝑇𝑉 †𝑥 , then we have 𝑉 𝑧 = 𝑉 𝑇𝑉 †𝑥 = 𝑥 and therefore 𝑧 = 𝑇𝑉 †𝑉 𝑧 = 𝑇 𝑧, which means 𝑧 ∈ Fix 𝑇 .

These arguments proves the identities of fixed-point sets simultaneously.

Also we need the following proposition of linear combinations of vectors in Hilbert spaces.

Proposition 2.21. Suppose 𝑉 ∈ 𝕊𝑛. For all 𝑥, 𝑦 ∈ ℝ𝑛 and 𝛼 ∈ ℝ, there holds

‖𝛼𝑥 + (1 − 𝛼)𝑦‖2𝑉 + 𝛼(1 − 𝛼)‖𝑥 − 𝑦‖2𝑉 = 𝛼‖𝑥‖2𝑉 + (1 − 𝛼)‖𝑦‖2𝑉 .

Proof. It is straightforward to check that

‖𝛼𝑥 + (1 − 𝛼)𝑦‖2𝑉 = 𝛼2‖𝑥‖2𝑉 + (1 − 𝛼)2‖𝑦‖2𝑉 + 2𝛼(1 − 𝛼)⟨𝑥, 𝑦⟩𝑉
= 𝛼‖𝑥‖2𝑉 + (1 − 𝛼)‖𝑦‖2𝑉 − 𝛼(1 − 𝛼)(‖𝑥‖2𝑉 − 2⟨𝑥, 𝑦⟩𝑉 + ‖𝑦‖2𝑉)
= 𝛼‖𝑥‖2𝑉 + (1 − 𝛼)‖𝑦‖2𝑉 − 𝛼(1 − 𝛼)‖𝑥 − 𝑦‖2𝑉 .

The special case of Proposition 2.21 with 𝑉 = 𝐼 and 𝛼 = 1/2 is the so-called Parallelogram

identity, and the special case with 𝑉 = 𝐼 and 𝛼 = 1/2, 𝑥 = 𝑧′−𝑥′ and 𝑦 = 𝑧′−𝑦′ with 𝑥′, 𝑦′, 𝑧′ ∈ ℝ𝑛

is the so-called Apollonius’s identity.
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Now we are ready for the convergence theorem of exact KM iteration of quasinonexpansive

operators.

Theorem 2.22. Suppose 𝑇 ∶ ℝ𝑛 → ℝ𝑛 is continuous and quasinonexpansive with respect to 𝑉 ∈ 𝕊𝑛,

Fix 𝑇 ≠ ∅, Ker 𝑉 ⊆ Ker 𝑇 and {𝜆𝑘}𝑘∈ℕ ⊂ [0, 1]. If

∑
𝑘∈ℕ

𝜆𝑘(1 − 𝜆𝑘) = ∞,

then for all 𝑧0 ∈ ℝ𝑛, the sequence {
√
𝑉 𝑧𝑘}𝑘∈ℕ generated by KM iteration (4) converges to a point in

√
𝑉 Fix 𝑇 .

Proof. Since 𝑇 is quasinonexpansive with respect to 𝑉 , by (20) we have

‖𝑇 𝑧𝑘 − 𝑧‖𝑉 ≤ ‖𝑧𝑘 − 𝑧‖𝑉 , for all 𝑘 ∈ ℕ, 𝑧 ∈ Fix 𝑇 .

Then by 𝑧𝑘+1 = (1 − 𝜆𝑘)𝑧𝑘 + 𝜆𝑘𝑇 𝑧𝑘 and Proposition 2.21, for 𝑘 ∈ ℕ and 𝑧 ∈ Fix 𝑇 we have

‖𝑧𝑘+1 − 𝑧‖2𝑉 = ‖(1 − 𝜆𝑘)(𝑧𝑘 − 𝑧) + 𝜆𝑘(𝑇 𝑧𝑘 − 𝑧)‖2𝑉
= (1 − 𝜆𝑘)‖𝑧𝑘 − 𝑧‖2𝑉 + 𝜆𝑘‖𝑇 𝑧𝑘 − 𝑧‖2𝑉 − 𝜆𝑘(1 − 𝜆𝑘)‖𝑇 𝑧𝑘 − 𝑧𝑘‖2𝑉
≤ ‖𝑧𝑘 − 𝑧‖2𝑉 − 𝜆𝑘(1 − 𝜆𝑘)‖𝑇 𝑧𝑘 − 𝑧𝑘‖2𝑉 .

This ensures that {
√
𝑉 𝑧𝑘}𝑘∈ℕ is bounded and ∑𝑘∈ℕ 𝜆𝑘(1 − 𝜆𝑘)‖𝑇 𝑧𝑘 − 𝑧𝑘‖𝑉 < ∞. By assumption

∑𝑘→∞ 𝜆𝑘(1 − 𝜆𝑘) = ∞, we have lim inf𝑘→∞ ‖𝑇 𝑧𝑘 − 𝑧𝑘‖𝑉 = 0. Thus there exists a convergent

subsequence {
√
𝑉 𝑧𝑘𝑙 }𝑙∈ℕ such that lim𝑙→∞ ‖𝑇 𝑧𝑘𝑙 − 𝑧𝑘𝑙 ‖𝑉 = 0. Define 𝑢 ∶= lim𝑙→∞

√
𝑉 𝑧𝑘𝑙 . Then by

Ker
√
𝑉 = Ker 𝑉 ⊆ Ker 𝑇 , continuity of 𝑇 and Proposition 2.20, we have

0 = lim
𝑙→∞

(
√
𝑉 𝑇 𝑧𝑘𝑙 −

√
𝑉 𝑧𝑘𝑙)

= lim
𝑙→∞

√
𝑉 𝑇

√
𝑉
†√

𝑉 𝑧𝑘𝑙 − 𝑢

=
√
𝑉 𝑇

√
𝑉
†
𝑢 − 𝑢,

which proves that 𝑢 ∈ Fix(
√
𝑉 𝑇

√
𝑉 †). Therefore by Proposition 2.20, there exists 𝑧∗ ∈ Fix 𝑇 such

that 𝑢 =
√
𝑉 𝑧∗. This means that lim𝑙→∞

√
𝑉 𝑧𝑘𝑙 =

√
𝑉 𝑧∗. Finally, by ‖𝑧𝑘+1 − 𝑧∗‖𝑉 ≤ ‖𝑧𝑘 − 𝑧∗‖𝑉 and

lim𝑙→∞ ‖𝑧𝑘𝑙 − 𝑧∗‖𝑉 = 0, we have lim𝑙→∞
√
𝑉 𝑧𝑘 =

√
𝑉 𝑧∗.
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Theorem 2.22 has a direct corollary in exact Picard iteration (3) of quasinonexpansive oper-

ators. To this end we need the following proposition.

Proposition 2.23. If {𝑥𝑘}𝑘∈ℕ ⊂ ℝ𝑛 converges, then for any 𝜆 ∈ (0, 2) and 𝑦0 ∈ ℝ𝑛, the sequence

{𝑦𝑘}𝑘∈ℕ defined by
𝑦𝑘+1 = (1 − 𝜆)𝑦𝑘 + 𝜆𝑥𝑘, for all 𝑘 ∈ ℕ

converges to the same limit of {𝑥𝑘}𝑘∈ℕ.

Proof. Denote 𝑥 ∶= lim𝑘→∞ 𝑥𝑘. Case 𝜆 = 1 is trivial. Suppose 𝜆 ≠ 1. Notice that for 𝑘 ∈ ℕ, by

definition we have

𝑦𝑘 = (1 − 𝜆)𝑘𝑦0 + 𝜆(1 − 𝜆)𝑘
𝑘−1

∑
𝑖=0

𝑥𝑖
(1 − 𝜆)𝑖+1

.

Given 𝜀 > 0. Then since lim𝑘→∞ 𝑥𝑘 = 𝑥 , there exist 𝑀 > 0 and 𝑁 ∈ ℕ such that sup𝑘∈ℕ ‖𝑥𝑘‖ < 𝑀

and for all 𝑘 > 𝑁 there holds ‖𝑥𝑘 − 𝑥‖ < 𝜀. Then since |1 − 𝜆| < 1, there exists 𝐾 ∈ ℕ such that for

all 𝑘 > 𝐾 , there holds |1−𝜆|𝑘 max{1, (|1−𝜆|−𝑁 −1)} < 𝜀. Therefore, for all 𝑘 > max{𝑁 , 𝐾 }we have

‖𝑦𝑘 − 𝑥‖ ≤ |1 − 𝜆|𝑘‖𝑦0 − 𝑥‖ + 𝜆|1 − 𝜆|𝑘
𝑘−1

∑
𝑖=0

‖𝑥𝑘 − 𝑥‖
|1 − 𝜆|𝑖+1

≤ 𝜀‖𝑦0 − 𝑥‖ + 2|1 − 𝜆|𝑘
(

𝑁−1

∑
𝑖=0

𝑀
|1 − 𝜆|𝑖+1

+
𝑘−1

∑
𝑗=𝑁

𝜀
|1 − 𝜆|𝑗+1)

≤ 𝜀‖𝑦0 − 𝑥‖ + 2
1 +𝑀

1 − |1 − 𝜆|
𝜀,

which proves that lim𝑘→∞ 𝑦𝑘 = 𝑥 .

Then we are ready for the convergence theorem of exact Picard iteration (3) of quasinonex-

pansive operators. For 𝑇 ∶ ℝ𝑛 → ℝ𝑛 define the range of 𝑇 as Ran 𝑇 ∶= {𝑇 𝑥 ∶ 𝑥 ∈ ℝ𝑛}.

Corollary 2.24. Suppose 𝑇 ∶ ℝ𝑛 → ℝ𝑛 is continuous and quasinonexpansive with respect to 𝑉 ∈ 𝕊𝑛,

Fix 𝑇 ≠ ∅, Ker 𝑉 ⊆ Ker 𝑇 . If 𝜆 ∈ (0, 1), then for all 𝑧0 ∈ ℝ𝑛, the sequence {𝑧𝑘}𝑘∈ℕ generated by

Picard iteration (3) converges to a point in Fix 𝑇 .

Proof. ByTheorem 2.22, we have {
√
𝑉 𝑧𝑘}𝑘∈ℕ generated by Picard iteration (3) converges to a point

in
√
𝑉 Fix 𝑇 . Let 𝑧∗ ∈ Fix 𝑇 such that

√
𝑉 𝑧∗ = lim𝑘→∞

√
𝑉 𝑧𝑘. Then by continuity of 𝑇 in Ran 𝑉 ,

lim
𝑘→∞

𝑇 𝑧𝑘 = lim
𝑘→∞

𝑇
√
𝑉
†√

𝑉 𝑧𝑘 = 𝑇
√
𝑉
†
lim
𝑘→∞

√
𝑉 𝑧𝑘 = 𝑇

√
𝑉
†√

𝑉 𝑧∗ = 𝑇 𝑧∗ = 𝑧∗.
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Therefore, by Proposition 2.23, we have {𝑧𝑘}𝑘∈ℕ also converges to 𝑧∗ ∈ Fix 𝑇 .

The convergence of inexact KM iteration of nonexpansive operators could be obtained as a

direct corollary of Theorems 2.19 and 2.22.

Theorem 2.25. Let 𝑇 ∶ ℝ𝑛 → ℝ𝑛 be nonexpansive with respect to 𝑉 ∈ 𝕊𝑛, Ker 𝑉 ⊆ Ker 𝑇 and

Fix 𝑇 ≠ ∅, {𝜆𝑘}𝑘∈ℕ ⊂ [0, 1] and {𝜀𝑘}𝑘∈ℕ ⊂ ℝ𝑛. If

{√
𝑉𝜆𝑘𝜀𝑘

}
𝑘∈ℕ ∈ 𝓁1 and ∑

𝑘∈ℕ
𝜆𝑘(1 − 𝜆𝑘) = ∞,

then for any �̃�0 ∈ ℝ𝑛, the sequence {
√
𝑉 �̃�𝑘}𝑘∈ℕ generated by inexact KM iteration (8) converges to a

point in
√
𝑉 Fix 𝑇 .

Proof. Define �̃�𝑘 ∶=
√
𝑉 �̃�𝑘 for 𝑘 ∈ ℕ. Then by Proposition 2.20 we have

�̃�𝑘+1 =
√
𝑉 ((1 − 𝜆𝑘)�̃�𝑘 + 𝜆𝑘𝑇 �̃�𝑘 + 𝜆𝑘𝜀𝑘)

= (1 − 𝜆𝑘)�̃�𝑘 + 𝜆𝑘
√
𝑉 𝑇

√
𝑉
†
�̃�𝑘 +

√
𝑉𝜆𝑘𝜀𝑘.

Define 𝑇 ′ ∶=
√
𝑉 𝑇

√
𝑉 † and 𝑇 ′

𝑘 ∶= (1−𝜆𝑘)𝐼 +𝜆𝑘𝑇 ′ for 𝑘 ∈ ℕ. Notice that by quasinonexpansiveness

of 𝑇 , for any 𝑥, 𝑦 ∈ ℝ𝑛 we have

‖‖𝑇
′𝑥 − 𝑇 ′𝑦‖‖ =

‖‖‖
√
𝑉 𝑇

√
𝑉
†
𝑥 −

√
𝑉 𝑇

√
𝑉
†
𝑦‖‖‖

= ‖‖‖𝑇
√
𝑉
†
𝑥 − 𝑇

√
𝑉
†
𝑦‖‖‖𝑉

≤ ‖‖‖
√
𝑉
†
𝑥 −

√
𝑉
†
𝑦‖‖‖𝑉 = ‖‖‖

√
𝑉
√
𝑉
†
(𝑥 − 𝑦)‖‖‖ ≤ ‖𝑥 − 𝑦‖,

which proves that 𝑇 ′ is nonexpansive. This, with {𝜆𝑘}𝑘∈ℕ ⊂ [0, 1], also proves that {𝑇 ′
𝑘 }𝑘∈ℕ are

nonexpansive. Then, by Theorem 2.22, for any 𝑢 ∈ ℝ𝑛 and 𝑘 ∈ ℕ, the exact iteration sequence

{𝑇 ′
𝑙 𝑇 ′

𝑙−1⋯ 𝑇 ′
𝑘𝑢}𝑙≥𝑘 always converges to a point in Fix 𝑇 ′. Also, notice that Fix 𝑇 ′ is closed due to

the continuity of 𝑇 ′. Therefore, by assumptions and Theorem 2.19 we have, for any �̃�0 ∈ ℝ𝑛,

the inexact sequence {�̃�𝑘}𝑘∈ℕ always converges to a point in Fix 𝑇 ′. This means that, for any

�̃�0 ∈ ℝ𝑛, the sequence {
√
𝑉 �̃�𝑘}𝑘∈ℕ generated by inexact KM iteration (8) converges to a point in

√
𝑉 Fix 𝑇 .

Notice that Theorem 2.25 covers Theorem 2.8 and therefore Theorems 2.1 and 2.5. Similar
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to Theorem 2.22 and Corollary 2.24, Theorem 2.25 has its corresponding corollary in the inexact

Picard iteration
For 𝑘 ∈ ℕ
⌊ �̃�𝑘+1 ← (1 − 𝜆)�̃�𝑘 + 𝜆(𝑇 �̃�𝑘 + 𝜀𝑘)

(40)

where 𝜆 ∈ ℝ.

Corollary 2.26. Let 𝑇 ∶ ℝ𝑛 → ℝ𝑛 be nonexpansive with respect to 𝑉 ∈ 𝕊𝑛, Ker 𝑉 ⊆ Ker 𝑇 and

Fix 𝑇 ≠ ∅, 𝜆 ⊂ (0, 1) and {𝜀𝑘}𝑘∈ℕ ⊂ ℝ𝑛. If

{√
𝑉 𝜀𝑘

}
𝑘∈ℕ ∈ 𝓁1,

then for any �̃�0 ∈ ℝ𝑛, the sequence {
√
𝑉 �̃�𝑘}𝑘∈ℕ generated by inexact Picard iteration (40) converges to

a point in
√
𝑉 Fix 𝑇 . If further lim𝑘→∞ 𝜀𝑘 = 0, then {�̃�𝑘}𝑘∈ℕ converges to a point in Fix 𝑇 .

Proof. The convergence of {
√
𝑉 �̃�𝑘}𝑘∈ℕ directly follows Theorem 2.25. Let 𝑧∗ ∈ Fix 𝑇 such that

lim𝑘→∞
√
𝑉 �̃�𝑘 =

√
𝑉 𝑧∗. If further lim𝑘→∞ 𝜀𝑘 = 0, then since

lim
𝑘→∞

(𝑇 �̃�𝑘 + 𝜀𝑘) = lim
𝑘→∞

𝑇
√
𝑉
†√

𝑉 �̃�𝑘 = 𝑇
√
𝑉
†
lim
𝑘→∞

√
𝑉 𝑧𝑘 = 𝑇

√
𝑉
†√

𝑉 𝑧∗ = 𝑇 𝑧∗ = 𝑧∗,

by Proposition 2.23, we have that {�̃�𝑘}𝑘∈ℕ converges to 𝑧∗ ∈ Fix 𝑇 .

Then we consider the inexact Picard/KM iterations for quasinonexpansive operators, which

generates the results for nonexpansive operators. First we consider the inexact Picard iteration

for quasinonexpansive operators.

Theorem 2.27. Suppose 𝑇 ∶ ℝ𝑛 → ℝ𝑛 is Lipschitz continuous and quasinonexpansive with respect

to 𝑉 ∈ 𝕊𝑛, Fix 𝑇 ≠ ∅, Ker 𝑉 ⊆ Ker 𝑇 and 𝜆 ∈ (0, 1). If

{𝜀𝑘}𝑘∈ℕ ∈ 𝓁1,

then for any �̃�0 ∈ ℝ𝑛, the sequence {�̃�𝑘}𝑘∈ℕ generated by inexact Picard iteration (40) converges to a

point in Fix 𝑇 .

Proof. Define 𝑇𝜆 ∶= (1 − 𝜆)𝐼 + 𝜆𝑇 . First notice that Fix 𝑇 = Fix 𝑇𝜆 and, by Corollary 2.24, for any

𝑘 ∈ ℕ and 𝑧 ∈ ℝ𝑛, the exact Picard sequence {𝑇 𝑙
𝜆𝑧}𝑙≥𝑘 converges to a point in Fix 𝑇 . Also notice
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that since 𝑇 is Lipschitz continuous, so does 𝑇𝜆. Then a direct application of Theorem 2.15 proves

the convergence of {�̃�𝑘}𝑘∈ℕ towards Fix 𝑇 .

Also we have the following theorem for inexact KM iteration for quasinonexpansive opera-

tors as a corollary of Theorems 2.19 and 2.22.

Theorem 2.28. Suppose 𝑉 ∈ 𝕊𝑛 and 𝑇 ∶ ℝ𝑛 → ℝ𝑛 is 𝐿-Lipschitz continuous with respect to 𝑉 and

quasinonexpansive with respect to 𝑉 , Fix 𝑇 ≠ ∅, Ker 𝑉 ⊆ Ker 𝑇 and {𝜆𝑘}𝑘∈ℕ ⊂ [0, 1]. If

{𝜆𝑘𝜀𝑘}𝑘∈ℕ ∈ 𝓁1 and (𝐿 − 1)+ ∑
𝑘∈ℕ

𝜆𝑘 < ∞,

then for any �̃�0 ∈ ℝ𝑛, the sequence {�̃�𝑘}𝑘∈ℕ generated by inexact KM iteration (8) converges to a point

in Fix 𝑇 .

Proof. Define 𝑇𝑘 ∶= (1 − 𝜆𝑘)𝐼 + 𝜆𝑘𝑇 for 𝑘 ∈ ℕ. First notice that by Corollary 2.24, for any 𝑘 ∈ ℕ

and 𝑧 ∈ ℝ𝑛, the exact Picard sequence {𝑇 ′
𝑙 𝑇 ′

𝑙−1⋯ 𝑇 ′
𝑘𝑧}𝑙≥𝑘 converges to a point in Fix 𝑇 . Also notice

that since 𝑇 is 𝐿-Lipschitz continuous with respect to 𝑉 , we have 𝑇𝑘 is (1 + (𝐿 − 1)𝜆𝑘)-Lipschitz

with respect to 𝑉 . Then a direct application of Theorem 2.19 proves the convergence of {�̃�𝑘}𝑘∈ℕ
towards Fix 𝑇 .

Notice that Theorem 2.28 is not covering Theorem 2.27.

So far we have discussed the convergence of exact/inexact Picard/KM iterations of nonex-

pansive/quasinonexpansive operators. Besides the above results, the proposed framework also

leads to an important generalization of nonexpansive averaged operators and the corresponding

inexact iterations. Such generalized class of operators would be of fundamental status in the fol-

lowing discussion of nonsmooth convex optimization. For 𝑉 , 𝑈 ∈ 𝕊𝑛, an operator 𝑇 ∶ ℝ𝑛 → ℝ𝑛 is

quasiaveraged with respect to (𝑉 , 𝑈 ) if

‖𝑇 𝑥 − 𝑧‖2𝑉 + ‖𝑇 𝑥 − 𝑥‖2𝑈 ≤ ‖𝑥 − 𝑧‖2𝑉 , for all 𝑥 ∈ ℝ𝑛, 𝑧 ∈ Fix 𝑇 . (41)

We further define the class of firmly quasinonexpansive operators to be all quasiaveraged operators

with respect to (𝑉 , 𝑉 ), where 𝑉 ∈ 𝕊𝑛. Figure 1 illustrates several cases of quasiaveraged operators

in ℝ2 with respect to (𝐼2, 𝜌𝐼2) for different 𝜌 ≥ 0.
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Figure 1. Possible regions of 𝑇 𝑥 with 𝑇 ∶ ℝ2 → ℝ2 is quasiaveraged with respect to
(𝐼2, 𝜌𝐼2) and 𝑧 ∈ Fix 𝑇

𝑧

𝑥

𝜌 = 0

𝜌 = 1/3
𝜌 = 1
𝜌 = 3

Quasiaveraged operators extends several important class of operators. First notice that non-

expansive averaged operators are special cases of quasiaveraged operators. To see this, observe

that an operator 𝑇 ∶ ℝ𝑛 → ℝ𝑛 is nonexpansive 𝜅-averaged with 𝜅 ∈ (0, 1) if and only if

‖𝑇 𝑥 − 𝑇 𝑦‖2 +
1 − 𝜅
𝜅

‖(𝑇 𝑥 − 𝑇 𝑦) − (𝑥 − 𝑦)‖2 ≤ ‖𝑥 − 𝑦‖2, for all 𝑥, 𝑦 ∈ ℝ𝑛. (42)

To prove this, one only need to notice that (𝑇 − (1 − 𝜅)𝐼 )/𝜅 is nonexpansive. Restricting 𝑦 ∈

Fix 𝑇 in (42) clearly shows that all nonexpansive 𝜅-averaged operators are quasiaveraged with

respect to (𝜅𝐼 , (1 − 𝜅)𝐼 ). Specially, quasiaveraged operators with respect to (𝐼/2, 𝐼/2) (equivalent

to quasiaveraged with respect to (𝐼 , 𝐼 ), also equivalent to firmly quasinonexpansive with respect

to 𝐼 ) are also known as firmly quasinonexpansive operators [5, 6]. Also, notice that quasiaveraged

operators with respect to (𝑉 , 𝑈 ) are always quasinonexpansive with respect to 𝑉 . The relations

between classes of operators introduced in this chapter could be summarized as in Figure 2. The

following example shows a quasiaveraged operator while not being nonexpansive.

Example 2.29. Define 𝑇 ∶ ℝ → ℝ as

𝑇 (𝑥) ∶=

{
𝜋−1|𝑥 | arctan(𝑥)(sin(ln|𝑥 |) + 1), 𝑥 ≠ 0,
0, 𝑥 = 0,
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Figure 2. Relations between classes of operators

Firmly
nonexpansive
operators

Firmly
quasinonexpansive

operators

Nonexpansive
averaged
operators

Quasiaveraged
operators

Nonexpansive
operators

Quasinonexpansive
operators

Lipschitz operators

then 𝑇 is quasiaveraged with respect to (𝐼 , 𝐼 ) and Lipschitz continuous, but not nonexpansive.

Then we propose the convergence theorem for exact/inexact Picard iteration (1) of quasiav-

eraged operators.

Theorem 2.30. Suppose 𝑉 , 𝑈 ∈ 𝕊𝑛, 𝑇 ∶ ℝ𝑛 → ℝ𝑛 is continuous, quasiaveraged with respect to (𝑉 , 𝑈 )

and Fix 𝑇 ≠ ∅. If
Ker 𝑉 ∪ Ker𝑈 ⊆ Ker 𝑇 ,

then for all 𝑧0 ∈ ℝ𝑛, the sequence {𝑧𝑘}𝑘∈ℕ generated by Picard iteration (1) converges to a point in

Fix 𝑇 .

Proof. Since 𝑇 is quasiaveraged with respect to (𝑉 , 𝑈 ), by (41) we have

‖𝑧𝑘+1 − 𝑧‖2𝑉 + ‖𝑧𝑘+1 − 𝑧𝑘‖2𝑈 ≤ ‖𝑧𝑘 − 𝑧‖2𝑉 , for all 𝑘 ∈ ℕ, 𝑧 ∈ Fix 𝑇 . (43)

This ensures that {
√
𝑉 𝑧𝑘}𝑘∈ℕ is bounded and lim𝑘→∞

√
𝑈 (𝑧𝑘+1 − 𝑧𝑘) = 0. Thus there exists a con-

vergent subsequence {
√
𝑉 𝑧𝑘𝑙 }𝑙∈ℕ. Since range of

√
𝑉 is closed, there exists 𝑢 ∈ ℝ𝑛 such that

lim𝑙→∞
√
𝑉 𝑧𝑘𝑙 =

√
𝑉𝑢. Then by Ker

√
𝑉 = Ker 𝑉 ⊆ Ker 𝑇 , continuity of 𝑇 and Proposition 2.20,
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we have
𝑧𝑘𝑙+1 = 𝑇 𝑧𝑘𝑙 = 𝑇

√
𝑉
†√

𝑉 𝑧𝑘𝑙 → 𝑇
√
𝑉
†√

𝑉𝑢 = 𝑇 𝑢, as 𝑙 → ∞.

Denote 𝑧∗ ∶= 𝑇 𝑢. By lim𝑙→∞
√
𝑈 (𝑧𝑘𝑙+1−𝑧𝑘𝑙) = 0, we have lim𝑙→∞

√
𝑈𝑧𝑘𝑙 =

√
𝑈𝑧∗. Then by continuity

of 𝑇 and Proposition 2.20, we have

𝑧∗ = lim
𝑙→∞

𝑧𝑘𝑙+1 = lim
𝑙→∞

𝑇 𝑧𝑘𝑙 = lim
𝑙→∞

𝑇
√
𝑈

†√
𝑈𝑧𝑘𝑙 = 𝑇

√
𝑈

†√
𝑈𝑧∗ = 𝑇 𝑧∗,

which proves that 𝑧∗ ∈ Fix 𝑇 . Finally, substituting 𝑧 by 𝑧∗ in (43) proves that lim𝑘→∞
√
𝑉 𝑧𝑘 =

√
𝑉 𝑧∗,

which further implies that

𝑧𝑘+1 = 𝑇 𝑧𝑘 = 𝑇
√
𝑉
†√

𝑉 𝑧𝑘 → 𝑇
√
𝑉
†√

𝑉 𝑧∗ = 𝑇 𝑧∗ = 𝑧∗, as 𝑘 → ∞.

This finishes the proof.

Theorem 2.30 for exact Picard iterations of quasiaveraged operators obviously generalizes

Theorem 2.2 for nonexpansive averaged operators. It has the following inexact version via The-

orem 2.15.

Corollary 2.31. Suppose 𝑉 , 𝑈 ∈ 𝕊𝑛, 𝑇 ∶ ℝ𝑛 → ℝ𝑛 is Lipschitz continuous, quasiaveraged with

respect to (𝑉 , 𝑈 ), Fix 𝑇 ≠ ∅. If local errors {
√
𝑉 𝜀𝑘}𝑘∈ℕ ∈ 𝓁1 and

Ker 𝑉 ∪ Ker𝑈 ⊆ Ker 𝑇 ,

then for any �̃�0 ∈ ℝ𝑛, the sequence {
√
𝑉 �̃�𝑘}𝑘∈ℕ generated by inexact Picard iteration (40) converges to

a point in
√
𝑉 Fix 𝑇 . If further lim𝑘→∞ 𝜀𝑘 = 0, then {�̃�𝑘}𝑘∈ℕ converges to a point in Fix 𝑇 .

Proof. This proof direct follows Proposition 2.20 andTheorems 2.15 and 2.30. ByTheorem 2.30 we

have for all 𝑧 ∈ ℝ𝑛 the exact Picard iteration sequence {𝑇 𝑘𝑧}𝑘∈ℕ converges to a point in Fix 𝑇 . Then

by Theorem 2.15 we have {
√
𝑉 �̃�𝑘}𝑘∈ℕ converges to 𝑣 ∈

√
𝑉 Fix 𝑇 . Finally, if further lim𝑘→∞ 𝜀𝑘 = 0,

then by continuity of 𝑇 and Proposition 2.20 we have

�̃�𝑘+1 = 𝑇 �̃�𝑘 + 𝜀𝑘 = 𝑇
√
𝑉
†√

𝑉 �̃�𝑘 + 𝜀𝑘 → 𝑇
√
𝑉
†
𝑣, as 𝑘 → ∞,

and by Proposition 2.20, 𝑇
√
𝑉 †𝑣 ∈ 𝑇

√
𝑉 † Fix(

√
𝑉 𝑇

√
𝑉 †) = Fix 𝑇 .
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For exact/inexact KM iterations of quasiaveraged operators, convergence theorems would

be rather complicated depending on the relation between 𝑉 and 𝑈 . Here we merely consider the

KM iterations of quasiaveraged operators with respect to (𝑉 , 𝜌𝑉 ) for some 𝜌 > 0.

Theorem 2.32. Suppose 𝑉 ∈ 𝕊𝑛 and 𝜌 > 0, 𝑇 ∶ ℝ𝑛 → ℝ𝑛 is continuous with respect to 𝑉 , and

quasiaveraged with respect to (𝑉 , 𝜌𝑉 ), Fix 𝑇 ≠ ∅, Ker 𝑉 ⊆ Ker 𝑇 and {𝜆𝑘}𝑘∈ℕ ⊂ [0, 1 + 𝜌]. If

∑
𝑘∈ℕ

𝜆𝑘(𝜌 + 1 − 𝜆𝑘) = ∞,

then for any 𝑧0 ∈ ℝ𝑛, the sequence {
√
𝑉 𝑧𝑘}𝑘∈ℕ generated by exact KM iteration (4) converges to a

point in
√
𝑉 Fix 𝑇 .

Proof. By quasiaveragedness of 𝑇 , for all 𝑧∗ ∈ Fix 𝑇 we have

‖𝑧𝑘+1 − 𝑧∗‖2𝑉 = ‖(1 − 𝜆𝑘)(𝑧𝑘 − 𝑧∗) + 𝜆𝑘(𝑇 𝑧𝑘 − 𝑧∗)‖2𝑉
= (1 − 𝜆𝑘)‖𝑧𝑘 − 𝑧∗‖2𝑉 + 𝜆𝑘‖𝑇 𝑧𝑘 − 𝑧∗‖2𝑉 − 𝜆𝑘(1 − 𝜆𝑘)‖𝑇 𝑧𝑘 − 𝑧𝑘‖2𝑉
≤ ‖𝑧𝑘 − 𝑧∗‖2𝑉 − 𝜆𝑘(𝜌 + 1 − 𝜆𝑘)‖𝑇 𝑧𝑘 − 𝑧𝑘‖2𝑉 .

Then a similar analysis of Theorem 2.22 will prove that for any 𝑧0 ∈ ℝ𝑛, the sequence {
√
𝑉 𝑧𝑘}𝑘∈ℕ

converges to a point of
√
𝑉 Fix 𝑇 .

Theorem 2.32 clearly covers and extends Theorems 2.1, 2.5 and 2.22 and Corollaries 2.4

and 2.6. It has the following inexact version via Theorem 2.15, which covers and extends Theo-

rem 2.8 and Corollary 2.9. Define (⋅)+ ∶= max {0, ⋅} as the Rectified Linear Unit (ReLU) activation

function in ℝ.

Theorem 2.33. Suppose 𝑉 ∈ 𝕊𝑛 and 𝐿, 𝜌 > 0, 𝑇 ∶ ℝ𝑛 → ℝ𝑛 is 𝐿-Lipschitz continuous with respect

to 𝑉 , and quasiaveraged with respect to (𝑉 , 𝜌𝑉 ), Fix 𝑇 ≠ ∅, Ker 𝑉 ⊆ Ker 𝑇 and {𝜆𝑘}𝑘∈ℕ ⊂ [0, 1 + 𝜌].

If

{√
𝑉𝜆𝑘𝜀𝑘

}
𝑘∈ℕ ∈ 𝓁1, ∑

𝑘∈ℕ
𝜆𝑘(𝜌 + 1 − 𝜆𝑘) = ∞ and ∑

𝑘∈ℕ
((𝐿 − 1)𝜆𝑘 + 2(𝜆𝑘 − 1)+)+ < ∞,

then for any �̃�0 ∈ ℝ𝑛, the sequence {
√
𝑉 �̃�𝑘}𝑘∈ℕ generated by inexact KM iteration (8) converges to a

point in
√
𝑉 Fix 𝑇 .
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Table 1. Convergence theorems by iteration types and operator classes

Operator Class
Exact Iteration Inexact Iteration

Picard KM Picard KM
Nonexpansive Corollary 2.3 Theorem 2.5 Corollary 2.26 Theorem 2.25

Nonexp. Averaged Corollary 2.4 Corollary 2.6 Corollary 2.10 Corollary 2.9
Quasinonexpansive Corollary 2.24 Theorem 2.22 Theorem 2.27 Theorem 2.28
Quasiaveraged Theorem 2.30 Theorem 2.32 Corollary 2.31 Theorem 2.33

Proof. This proof is totally analogous to the one ofTheorem 2.25. One only need to further notice

that by nonexpansiveness of 𝑇 , for any 𝜆 > 0 and 𝑥, 𝑦 ∈ ℝ𝑛,

‖(1 − 𝜆)(𝑥 − 𝑦) + 𝜆(𝑇 𝑥 − 𝑇 𝑦)‖𝑉 ≤ (|1 − 𝜆| + 𝜆𝐿)‖𝑥 − 𝑦‖𝑉
= (1 + (𝐿 − 1)𝜆 + 2(𝜆 − 1)+)‖𝑥 − 𝑦‖𝑉 ,

which proves that 𝑇 ′
𝑘 ∶= (1− 𝜆𝑘)𝐼 + 𝜆𝑘𝑇 is (1 + (𝐿−1)𝜆𝑘 +2(𝜆𝑘 −1)+)-Lipschitz continuous. Then

a direct application of Theorem 2.19 proves the conclusion.

The convergence theorems of various classes of operators presented in this chapter so far

are summarized in Table 1.

To close this section we consider the convergence theorem of inexact nonstationary KM

iteration (9) as a direct corollary of Theorem 2.19, which generalizes Theorem 2.11.

Theorem 2.34. Assume that 𝑇Γ ∶ ℝ𝑛 → ℝ𝑛 is nonexpansive with Fix 𝑇Γ ≠ ∅, and

(i) 𝑇Γ𝑘 ,𝜆𝑘 is 𝐿𝑘-Lipschitz with {𝐿𝑘}𝑘∈ℕ ⊂ [1,+∞) and ∑𝑘∈ℕ(𝐿𝑘 − 1) < ∞,

(ii) {𝜆𝑘}𝑘∈ℕ ⊂ (0, 1) with ∑𝑘∈ℕ 𝜆𝑘(1 − 𝜆𝑘) = ∞,

(iii) {𝜆𝑘𝜀𝑘}𝑘∈ℕ ∈ 𝓁1,

(iv) {𝜆𝑘Δ𝑘,𝜌}𝑘∈ℕ ∈ 𝓁1 for all 𝜌 ≥ 0.

Then for any �̃�0 ∈ ℝ𝑛, the inexact sequence {�̃�𝑘}𝑘∈ℕ generated by inexact nonstationary KM iteration

(9) converges to a point in Fix 𝑇Γ.

Proof. Rewrite nonstationary KM iteration (9) into stationary form

�̃�𝑘+1 = 𝑇Γ,𝜆𝑘 �̃�𝑘 + 𝜆𝑘𝜂𝑘, for all 𝑘 ∈ ℕ,
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where 𝑇Γ,𝜆𝑘 ∶= (1−𝜆𝑘)𝐼+𝜆𝑘𝑇Γ and 𝜂𝑘 ∶= 𝑇Γ𝑘 �̃�𝑘−𝑇Γ�̃�𝑘+𝜀𝑘 are local errors. By assumptions andTheo-

rem 2.5 we have, for any 𝑘 ∈ ℕ and 𝑧 ∈ ℝ𝑛, the exact stationary KM iteration {𝑇Γ,𝜆𝑙𝑇Γ,𝜆𝑙−1 ⋯ 𝑇Γ,𝜆𝑘𝑧}𝑙≥𝑘

converges to a point in Fix 𝑇Γ. Also notice that Fix 𝑇Γ = Fix 𝑇Γ,𝜆𝑘 for 𝑘 ∈ ℕ. Furthermore, by Lips-

chitz continuity of 𝑇Γ𝑘 ,𝜆𝑘 we have, for any 𝑧∗ ∈ Fix 𝑇Γ,

‖�̃�𝑘+1 − 𝑧∗‖ = ‖‖𝑇Γ𝑘 ,𝜆𝑘 �̃�𝑘 + 𝜆𝑘𝜂𝑘 − 𝑇Γ,𝜆𝑘𝑧∗‖‖
≤ ‖‖𝑇Γ𝑘 ,𝜆𝑘 �̃�𝑘 − 𝑇Γ𝑘 ,𝜆𝑘𝑧∗‖‖ + ‖‖𝑇Γ𝑘 ,𝜆𝑘𝑧∗ − 𝑇Γ,𝜆𝑘𝑧∗‖‖ + 𝜆𝑘‖𝜂𝑘‖
≤ 𝐿𝑘‖�̃�𝑘 − 𝑧∗‖ + 𝜆𝑘Δ𝑘,‖𝑧∗‖ + 𝜆𝑘‖𝜂𝑘‖,

which by assumptions, means {�̃�𝑘}𝑘∈ℕ is bounded. Define �̃� ∶= sup𝑘∈ℕ ‖�̃�𝑘‖, then we have

𝜆𝑘‖𝜂𝑘‖ = 𝜆𝑘‖‖𝑇Γ𝑘 �̃�𝑘 − 𝑇Γ�̃�𝑘 + 𝜀𝑘‖‖ ≤ 𝜆𝑘(Δ𝑘,�̃� + ‖𝜀𝑘‖),

right-hand side of which is summable by assumptions, and therefore {𝜆𝑘𝜂𝑘}𝑘∈ℕ ∈ 𝓁1. So far we

have proved the conditions ofTheorem 2.19 obtain, and the conclusion consequently follows.

Obviously Theorem 2.34 covers and refines Theorem 2.11, which illustrates the generality

of the proposed framework of inexact iterations. The following is the corresponding corollary

parallel to Corollary 2.12, proof of which is not repeated herein.

Corollary 2.35. Assume that 𝑅Γ and {𝑅Γ𝑘 }𝑘∈ℕ are nonexpansive operators in ℝ𝑛 with Fix𝑅Γ ≠ ∅,

and followings hold

(i) 𝑇Γ𝑘 = (1 − 𝜅𝑘)𝐼 + 𝜅𝑘𝑅Γ𝑘 is nonexpansive 𝜅𝑘-averaged with 𝜅𝑘 ∈ (0, 1] for 𝑘 ∈ ℕ,

(ii) {𝜆𝑘}𝑘∈ℕ ⊂ (0, 1/𝜅𝑘) with ∑𝑘∈ℕ 𝜆𝑘𝜅𝑘(1 − 𝜆𝑘𝜅𝑘) = ∞,

(iii) {𝜆𝑘𝜅𝑘𝜀𝑘}𝑘∈ℕ ∈ 𝓁1,

(iv) {𝜆𝑘𝜅𝑘Δ𝑅
𝑘,𝜌}𝑘∈ℕ ∈ 𝓁1 for all 𝜌 ≥ 0.

Then for any �̃�0 ∈ ℝ𝑛, the inexact sequence {�̃�𝑘}𝑘∈ℕ generated by inexact nonstationary KM iteration

(9) converges to a point in Fix 𝑇Γ.

Theorem 2.34 and Corollary 2.35 could be generalized to quasinonexpansive/quasiaveraged

operator respectively viaTheorems 2.28 and 2.33 with ease. As an end to the topic of inexact itera-

tions, we propose a convergence theorem of inexact KM iteration of nonexpansive/quasiaveraged

operators, which would be found applicable later in the following topic of the dissertation.
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Theorem 2.36. Assume that 𝑉 ∈ 𝕊𝑛, 𝜌 > 0 and 𝑇 ∶ ℝ𝑛 → ℝ𝑛 is nonexpansive with respect to 𝑉 and

quasiaveraged with respect to (𝑉 , 𝜌𝑉 ) with closed Fix 𝑇 ≠ ∅, and followings hold

(i) (1 − 𝜆)𝐼 + 𝜆𝑇 is nonexpansive with respect to 𝑉 with 𝜆 ∈ (0, 1 + 𝜌],

(ii) {𝜆𝑘}𝑘∈ℕ ⊂ [0, 1 + 𝜌] with∑𝑘∈ℕ 𝜆𝑘(1 + 𝜌 − 𝜆𝑘) = ∞,

(iii) {
√
𝑉𝜆𝑘𝜀𝑘}𝑘∈ℕ ∈ 𝓁1.

Then for any �̃�0 ∈ ℝ𝑛, the inexact sequence {
√
𝑉 �̃�𝑘}𝑘∈ℕ generated by inexact KM iteration (8) converges

to a point in
√
𝑉 Fix 𝑇 .

Proof. The proof directly follows Theorem 2.33. One only need to notice that the condition

∑𝑘∈ℕ((𝐿 − 1)𝜆𝑘 + 2(𝜆𝑘 − 1)+)+ < ∞ in Theorem 2.33 is replaced by condition (i).
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CHAPTER 3

IMPLICIT FIXED-POINT PROXIMITY ALGORITHMS

FOR NONSMOOTH CONVEX OPTIMIZATION

This chapter introduces the nonsmooth convex optimization problem of the main concern

in this dissertation and the framework of implicit fixed-point proximity algorithms which solves

the designated optimization problem. The main nonsmooth convex optimization problem of this

dissertation is firstly clarified with plenty of important applications arising from various scopes

in data science, such as inverse problems, image processing, machine learning and distributed

computing. Then we review some useful preliminaries in convex analysis and operator theory,

of which we make use to characterize solutions of the main model as fixed-points of a proximity

equation and further analysis. Due to the expanding nature of the fixed-point equation, the naïve

Picard/KM iteration does not necessarily converge. We overcome this difficulty by a full applica-

tion of thematrix splitting technique to the matrices involved in the fixed-point equations, which

leads us to a general framework of implicit fixed-point proximity algorithms with convergence

theorem. This framework covers and generalizes most of the popular explicit algorithms, in-

cluding gradient descent method, proximal point method, Douglas-Rachford splitting algorithm,

first-order primal-dual algorithm, primal-dual hybrid gradient method, fixed-point proximity al-

gorithm, alternating direction method of multipliers, split Bregman iteration, linearized alternat-

ing direction method of multipliers and inexact Uzawa method.

3.1 NONSMOOTH CONVEX OPTIMIZATION PROBLEM

We model the general composed convex optimization problem as

argmin
𝑥∈ℝ𝑛

{𝑓1(𝐴1𝑥) + 𝑓2(𝐴2𝑥)}, (44)
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where argmin 𝑓 denotes the set of global minimizers of 𝑓 , 𝑓1 ∈ Γ0(ℝ𝑛1), 𝑓2 ∈ Γ0(ℝ𝑛2)∩𝐶1
𝐿(ℝ𝑛2), 𝐴1 ∈

ℝ𝑛1×𝑛 and 𝐴2 ∈ ℝ𝑛2×𝑛. Here Γ0(ℝ𝑛) denotes the set of proper, convex and lower-semi continuous

functions mapping from ℝ𝑛 to positive-extended real numbers ℝ ∶= ℝ ∪ {+∞}, and ℝ denotes the

set of real numbers. With 𝐶1
𝐿(ℝ𝑛) we denote the set of all differentiable functions mapping ℝ𝑛 to

ℝ with 𝐿-Lipschitz gradient. We always assume that mentioned models have at least one solution

throughout this dissertation, several sufficient conditions of which could be found in [87].

Model (44) has various equivalent forms. One of the most popular form is the following

composite problem
argmin

𝑥∈ℝ𝑛
{𝑓 (𝑥) + 𝑔(𝐿𝑥) + ℎ(𝑥)}, (45)

with 𝑓 ∈ Γ0(ℝ𝑛), 𝑔 ∈ Γ0(ℝ𝑚), ℎ ∈ Γ0(ℝ𝑛) ∩ 𝐶1
𝐿(ℝ𝑛) and 𝐿 ∈ ℝ𝑚×𝑛. This problem is a special case

of model (44) with 𝑓1 = 𝑓 ⊕ 𝑔, 𝐴1 = (𝐼T𝑛 ⊕ 𝐿T)T, 𝑓2 = ℎ and 𝐴2 = 𝐼𝑛. Here 𝑓 ⊕ 𝑔 denotes the

separable sum of functions 𝑓 and 𝑔, mapping (𝑥, 𝑦) ∈ ℝ𝑛 × ℝ𝑚 to 𝑓 (𝑥) + 𝑔(𝑦), and 𝐴T denotes

the conjugate transpose of 𝐴 ∈ ℝ𝑛×𝑚. Conversely, (44) is a special case of model (45) with 𝑓 = 0,

𝑔 = 𝑓1, ℎ = 𝑓2 ◦ 𝐴2 and 𝐿 = 𝐴1. In the following discussion we propose the general framework in

terms of model (44), results of which are then extended to the composite model (45) as concrete

applications.

Model (44) has vast applications in many essential branches of data science throughout his-

tory, of which followings are some important examples. The correspondence between (44) and

the problems below are straightforward and therefore not further explained.

Multi-Block Convex Optimization. Instead of two functions, multi-block optimization con-

siders

argmin
𝑥∈ℝ𝑛

𝑁

∑
𝑖=1

𝑓𝑖(𝐴𝑖𝑥), (46)

where 𝑓𝑖 ∈ Γ0(ℝ𝑛𝑖), 𝐴𝑖 ∈ ℝ𝑛𝑖×𝑛 with {𝑛𝑖}𝑁𝑖=1 ⊂ ℕ+, and ℕ+ is the set of all positive integers.

Model (46) could be recast into the following reduced form

argmin
𝑥∈ℝ𝑛

𝑓 (𝐴𝑥), (47)
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where 𝑓 ∈ Γ0(×𝑁
𝑖=1ℝ𝑛𝑖) and 𝐴 ∈ (ℝ𝑛,×𝑁

𝑖=1ℝ𝑛𝑖) are defined as

𝑓 ∶=
𝑁

⨁
𝑖=1

𝑓𝑖, 𝐴 ∶=
(

𝑁

⨁
𝑖=1

𝐴T
𝑖 )

T

= [𝐴𝑇
1 𝐴T

2 ⋯ 𝐴T
𝑁]

T
.

Here ( ,) denotes the set of bounded linear operators from Banach space  to Banach

space  , () ∶= ( ,) for abbreviation, and×𝑁
𝑖=1 ℝ𝑛𝑖 is the Hilbert direct sum of spaces

{ℝ𝑛𝑖}𝑁𝑖=1 and (⨁𝑛
𝑖=1 𝑓𝑖)((𝑥𝑖)𝑛𝑖=1) = ∑𝑛

𝑖=1 𝑓𝑖(𝑥𝑖) is the separable sum of functions {𝑓𝑖}𝑁𝑖=1. It is

worthy to notice that (47) is the very special case of (46) with 𝑁 = 1, which implies the

preeminence of the simple model (47).

Multi-Sets Split Feasibility Problems [18]. As a general model for plenty of inverse problems

where constraints are imposed on the solutions in the domain of a linear operator as well

as in the operator’s range, this problem seeks for a point that satisfies finite convex con-

straints. It could be formulated by

argmin
𝑥∈ℝ𝑛

𝑁

∑
𝑖=1

𝜄𝐶𝑖(𝐴𝑖𝑥),

where 𝐶𝑖 is a closed convex set in ℝ𝑛𝑖 , 𝐴𝑖 ∈ ℝ𝑛𝑖×𝑛 for 𝑖 ∈ ℕ𝑁 ∶= {1, 2,… , 𝑁 }, and

𝜄𝐶(𝑥) ∶=

{
0, 𝑥 ∈ 𝐶,
+∞, 𝑥 ∉ 𝐶,

for all 𝑥 ∈ ℝ𝑛

is the indicator function of set 𝐶 ⊆ ℝ𝑛. The special case of 𝐴𝑖 = 𝐼 for 𝑖 ∈ ℕ𝑁 is the so-called

convex feasibility problem [109], and the case of 𝑁 = 2 and 𝐴1 = 𝐼 is known as the split

feasibility problem [15].

Image Processing. The observation process of an image 𝑧 ∈ ℝ𝑛×𝑚 can be generally modeled

by 𝑧 = 𝐾𝑥 + 𝜀, where 𝐾 ∈ (ℝ𝑛×𝑚) is the measurement operator, and 𝜀 ∈ ℝ𝑛×𝑚 is some

randomly-distributed additive noise. Different models are applied according to different

kinds of measurement and noise.

Rudin-Osher-Fatemi (ROF) Model [89]. ROF model is designated for restoration of a

polluted image by Gaussian noise. Define ‖𝑥‖TV ∶= ‖𝐷𝑥‖1 as the total variation norm
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[20, 89], where 𝐷 is the first order difference operator and ‖ ⋅ ‖𝑝 is the 𝓁𝑝 vector norm

for 1 ≤ 𝑝 ≤ ∞. Then ROF model reads, with 𝜆 > 0,

argmin
𝑥∈ℝ𝑛×𝑚

{
𝜆
2
‖𝑥 − 𝑧‖2 + ‖𝑥‖TV

}
.

L1-TV Denoising Model [21, 77]. This model is designated for restoration of a polluted

image by impulsive noise, reading, with 𝜆 > 0,

argmin
𝑥∈ℝ𝑛×𝑚

{𝜆‖𝑥 − 𝑧‖1 + ‖𝑥‖TV}.

L1-TV Deblurring Model [2, 27, 49, 74]. This model is designated for restoration of a

blurred image polluted by impulsive noise. Let 𝐾 ∈ (ℝ𝑛×𝑚) be the blurring kernel,

then this model reads, with 𝜆 > 0,

argmin
𝑥∈ℝ𝑛×𝑚

{𝜆‖𝐾𝑥 − 𝑧‖1 + ‖𝑥‖TV}.

Machine Learning. Various optimization problems arising from machine learning always seek

to minimize a loss function with regularization. The loss function models the expected

cost or the degree of under-fitting with respect to training data, and the regularization

term restricts the range of solutions in order to reduce ill-posedness of the problem and

avoid over-fitting.

L1-Regularized Linear Least Squares Problem. This problem is known as Basis Pur-

suit [16, 25, 35] in compress sensing and Least Absolute Shrinkage and Select Opera-

tor (LASSO) [95] in machine learning and statistics field. LetΦ ∈ ℝ𝑛×𝑚 be the sampling

matrix, 𝑏 ∈ ℝ𝑛 be observed measurements and 𝜆 > 0, then this model can be written

as
argmin

𝑥∈ℝ𝑛

{
𝜆
2
‖Φ𝑥 − 𝑏‖2 + ‖𝑥‖1

}
.

L1-Regularized Classification Model [32, 93, 99]. This model designates a linear clas-

sifier for classifying data in machine learning. Suppose {(𝑥𝑖, 𝑦𝑖)}𝑁𝑖=1 ⊂ ℝ𝑛 × ℝ are the

given data points, {𝑙𝑖}𝑁𝑖=1 are loss functions mapping ℝ → ℝ and 𝜆 > 0, then this model
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can be cast as

argmin
𝑤∈ℝ𝑛,𝑏∈ℝ

{

𝜆
𝑁

∑
𝑖=1

𝑙𝑖(𝑦𝑖 ⋅ (⟨𝑤, 𝑥𝑖⟩ + 𝑏)) + ‖𝑤‖1

}

.

Several classification models can be written in the form above with different choice

of the loss functions. For example, the Support Vector Machine (SVM) [32, 99] adopts

hinge loss function, and logistic regression optimization [93] utilizes the logistic loss

function.

Distributed Computing [68, 94]. Single computer or processor is increasingly insufficient in

big data analysis due to its limited computation capability. In distributed computing, a

problem is divided into many tasks, each of which is solved by one or more processors,

which communicate with each other via message passing.

Consensus Problem [96, 97]. The main focus of the consensus problem is to solve

argmin
𝑥∈ℝ𝑛

𝑁

∑
𝑖=1

𝑓𝑖(𝑥),

by distributing the vector component 𝑥 = (𝑥𝑗)𝑛𝑗=1 among 𝑛 processors.

Exchange Problem [98]. Exchange problem studies the minimum cost of a system with

a fixed amount of resources, i.e.,

argmin
{𝑥𝑖}𝑁𝑖=1⊂ℝ𝑛

𝑁

∑
𝑖=1

𝑓𝑖(𝑥𝑖), subject to
𝑁

∑
𝑖=1

𝑥𝑖 = 0,

where {𝑥𝑖}𝑁𝑖=1 can be distributed among different processors. This problem can be

equivalently formulated as

argmin
{𝑥𝑖}𝑁𝑖=1⊂ℝ𝑛

{
𝑁

∑
𝑖=1

𝑓𝑖(𝑥𝑖) + 𝜄{0}(

𝑁

∑
𝑖=1

𝑥𝑖)

}

.

Sharing Problem. Sharing problems serve as extensions of exchange problems, where



48

the strict constraint∑𝑁
𝑖=1 𝑥𝑖 = 0 is generalized. Sharing problem solves

argmin
{𝑥𝑖}𝑁𝑖=1⊂ℝ𝑛

{
𝑁

∑
𝑖=1

𝑓𝑖(𝑥𝑖) + 𝑔
(

𝑁

∑
𝑖=1

𝑥𝑖)

}

,

where 𝑔 ∈ Γ0(ℝ𝑛). Sharing problems reduce to exchange problems when 𝑔 = 𝜄{0}.

In the following sections of this chapter, we propose the general framework of fixed-point

proximity algorithms for (44) with convergence theorem, which could be applied to the above

problems.

3.2 PRELIMINARIES

In this section we review several useful preliminaries in convex analysis and operator theory

for further discussion. Most of the theorems in this section could be found in [6, 87] and references

therein.

Assume 𝑓 ∈ Γ0(ℝ𝑛). The subdifferential (or subderivative, subgradient) of 𝑓 is defined as

𝜕𝑓 ∶ ℝ𝑛 → 2ℝ
𝑛
∶ 𝑥 ↦ {𝑢 ∈ ℝ𝑛 ∶ ⟨𝑢, 𝑥 − 𝑦⟩ ≥ 𝑓 (𝑥) − 𝑓 (𝑦) for all 𝑦 ∈ ℝ𝑛}.

Here ⟨⋅, ⋅⟩ is the Euclidean product of ℝ𝑛. Subdifferentials play core roles in optimization. Par-

ticularly, if 𝑓 is further differentiable at 𝑥 ∈ ℝ𝑛, then 𝜕𝑓 (𝑥) = {∇𝑓 (𝑥)}. The conjugate (or Fenchel

conjugate, Legendre transform, Legendre-Fenchel transform) of 𝑓 is defined as

𝑓 ∗ ∶ ℝ𝑛 → ℝ ∶ 𝑥 ↦ sup
𝑢∈ℝ𝑛

{⟨𝑢, 𝑥⟩ − 𝑓 (𝑢)}.

By Fenchel-Moreau Theorem we have 𝑓 ∗ ∈ Γ0(ℝ𝑛) and 𝑓 = 𝑓 ∗∗ if 𝑓 ∈ Γ0(ℝ𝑛). Here 𝑓 ∗∗ ∶= (𝑓 ∗)∗

is the biconjugate of function 𝑓 . Also notice that for separable sum of 𝑓 ∈ Γ0(ℝ𝑛) and 𝑔 ∈ Γ0(ℝ𝑚)

we have (𝑓 ⊕ 𝑔)∗ = 𝑓 ∗ ⊕ 𝑔∗ and
𝜕𝑓 ⊕𝑔 = 𝜕𝑓 ⊗ 𝜕𝑔, (48)

where 𝑓 ⊗𝑔means the Cartesian product of two operators 𝑓 and 𝑔, mapping (𝑥, 𝑦) ↦ 𝑓 (𝑥)×𝑔(𝑦).

There holds an essential relation of subdifferentials between conjugate functions, that is, for 𝑥, 𝑢 ∈
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ℝ𝑛,
𝑢 ∈ 𝜕𝑓 (𝑥) if and only if 𝑥 ∈ 𝜕𝑓 ∗(𝑢). (49)

Define 𝕊𝑛+ to be the set of symmetric strictly positive-definite matrices in ℝ𝑛. The proximity oper-

ator (or proximal operator) of 𝑓 with respect to 𝑃 ∈ 𝕊𝑛+ is

prox𝑓 ,𝑃 ∶ ℝ𝑛 → ℝ𝑛 ∶ 𝑥 ↦ argmin
𝑢∈ℝ𝑛

{
𝑓 (𝑢) +

1
2
‖𝑢 − 𝑥‖2𝑃

}
.

Specially, denote prox𝑓 ∶= prox𝑓 ,𝐼 . Notice that for 𝑓𝑖 ∈ Γ0(ℝ𝑛𝑖) and 𝑃𝑖 ∈ 𝕊𝑛𝑖+ with 𝑖 ∈ ℕ𝑛, we have

prox⨁𝑛
𝑖=1𝑓𝑖,⨂

𝑛
𝑖=1𝑃𝑖((𝑥𝑖)

𝑛
𝑖=1) = (prox𝑓𝑖,𝑃𝑖(𝑥𝑖))

𝑛

𝑖=1
. (50)

Proximity operator closely relates with subdifferential. Specifically, for 𝑥, 𝑢 ∈ ℝ𝑛 and 𝑃 ∈ 𝕊𝑛+,

𝑢 ∈ 𝜕𝑓 (𝑥) if and only if 𝑥 = prox𝑓 ,𝑃(𝑥 + 𝑃−1𝑢). (51)

With the relation of subdifferentials and conjugate functions, we can easily show the Moreau’s

identity
𝐼 = prox𝑓 ,𝑃 + 𝑃−1 ◦ prox𝑓 ∗,𝑃−1 ◦ 𝑃 (52)

holds for any 𝑃 ∈ 𝕊𝑛+, where ‘◦’ denotes the composition of functions.

Followings are some useful examples of subdifferentials, conjugate functions and proximity

operators.

Example 3.1 (Constant function). Let 𝑐 ∈ ℝ and constant function 𝑓 (𝑥) = 𝑐 for 𝑥 ∈ ℝ𝑛. Then

𝜕𝑓 (𝑥) = 0 for all 𝑥 ∈ ℝ𝑛, and

𝑓 ∗(𝑥) = 𝜄{0}(𝑥) − 𝑐 =

{
−𝑐, 𝑥 = 0,
+∞, 𝑥 ≠ 0,

and 𝜕𝑓 ∗(𝑥) =

{
ℝ𝑛, 𝑥 = 0,
∅, 𝑥 ≠ 0.

Therefore, by Moreau’s identity (52), for any 𝑃 ∈ 𝕊𝑛+, we have prox𝑓 ,𝑃 = 𝐼 and prox𝑓 ∗,𝑃 = 0.

Example 3.2 (The 𝓁1 norm). For 𝓁1 norm ‖ ⋅ ‖1 in ℝ𝑛, since ‖ ⋅ ‖1 = ⨁𝑛
𝑖=1 | ⋅ |, we have ‖ ⋅ ‖∗1 = 𝜄𝐵∞(0;1),
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where 𝐵∞(0; 1) denotes the closed unit 𝓁∞-ball {𝑥 ∈ ℝ𝑛 ∶ ‖𝑥‖∞ ≤ 1}. Then by (48) and (49) we have

𝜕‖⋅‖1(𝑥) =
𝑛

⨂
𝑖=1

𝜕|⋅|(𝑥𝑖) and 𝜕‖⋅‖∗1(𝑢) =
𝑛

⨂
𝑖=1

𝜕|⋅|∗(𝑢𝑖),

where

𝜕|⋅|(𝑥) =

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

{1}, 𝑥 > 0,
[−1, 1], 𝑥 = 0,
{−1}, 𝑥 < 0,

and 𝜕|⋅|∗(𝑢) =

⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎩

[0,+∞), 𝑢 = 1,
{0}, 𝑢 ∈ (−1, 1),
(−∞, 0], 𝑢 = −1,
∅, |𝑢| > 1.

Therefore, by Moreau’s identity (52), for any 𝑃 = Diag(𝑝𝑖)𝑛𝑖=1 with positive {𝑝𝑖}𝑛𝑖=1, we have prox-

imity operators

prox‖⋅‖1,𝑃(𝑥) = (sgn(𝑥𝑖)(|𝑥𝑖| − 𝑝−1
𝑖 )+)

𝑛

𝑖=1
,

prox‖⋅‖∗1 ,𝑃(𝑢) = 𝑢 − 𝑃−1 prox‖⋅‖1,𝑃−1(𝑃𝑢)

= (min {1,max {𝑢𝑖,−1}})𝑛𝑖=1,

where ‘Diag’ creates diagonal matrix and ‘sgn’ is the sign function in ℝ. Notice that as the prox-

imity operator of an indicator function of a unit 𝓁∞-ball, prox‖⋅‖∗1 ,𝑃 is independent of 𝑃 as long as

𝑃 is diagonal.

Example 3.3 (The 𝓁2 norm). For 𝓁2 norm ‖ ⋅ ‖ in ℝ𝑛, we have ‖ ⋅ ‖∗ = 𝜄𝐵2(0;1) and

𝜕‖⋅‖(𝑥) =
⎧⎪⎪
⎨⎪⎪⎩

{
𝑥
‖𝑥‖

}
, 𝑥 ≠ 0,

𝐵2(0; 1), 𝑥 = 0,
and 𝜕‖⋅‖∗(𝑢) =

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

{0}, ‖𝑢‖ < 1,
{𝜆𝑢 ∶ 𝜆 ≥ 0}, ‖𝑢‖ = 1,
∅, ‖𝑢‖ > 1.

Therefore we have, for any 𝛼 > 0 we have

prox‖⋅‖,𝛼𝐼 (𝑥) =

{
𝑥 − 1

𝛼
𝑥
‖𝑥‖ , 𝛼‖𝑥‖ > 1,

0, 𝛼‖𝑥‖ ≤ 1,
and prox‖⋅‖∗,𝛼𝐼 (𝑢) =

{
𝑢
‖𝑢‖ , ‖𝑥‖ > 1,
𝑢, ‖𝑥‖ ≤ 1.

Similar to 𝓁1 norm, here prox‖⋅‖∗,𝛼𝐼 is independent of 𝛼 > 0.

Let us return to the subdifferential for its further properties. First by definition, we can easily
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get the Fermat’s rule as
argmin

𝑥∈ℝ𝑛
𝑓 (𝑥) = Zer 𝜕𝑓 , (53)

where Zer 𝜕𝑓 ∶= {𝑥 ∈ ℝ𝑛 ∶ 0 ∈ 𝜕𝑓 (𝑥)} is the zero set of operator 𝜕𝑓 . Also subdifferentials of

functions in Γ0(ℝ𝑛) are monotone operators, i.e., for

⟨𝑥 − 𝑦, 𝑢 − 𝑣⟩ ≥ 0, for all (𝑥, 𝑢), (𝑦, 𝑣) ∈ Gra 𝜕𝑓 .

Here Gra 𝜕𝑓 ∶= {(𝑥, 𝑢) ∈ ℝ𝑛 ×ℝ𝑛 ∶ 𝑢 ∈ 𝜕𝑓 (𝑥)} denotes the graph of 𝜕𝑓 . Monotonicity of subdiffer-

ential is pivotal in convergence analysis of convex optimization, e.g., we can easily derive from

the monotonicity of subdifferentials and (51) that for 𝑓 ∈ Γ0(ℝ𝑛) and 𝑃 ∈ 𝕊𝑛+, proximity operator

prox𝑓 ,𝑃 is nonexpansive 1/2-average (i.e., firmly nonexpansive) with respect to norm ‖ ⋅ ‖𝑃 . To

handle composite optimization problems, we need the calculus principle of subdifferential with

function additions and composition with linear transforms. Define the domain of function 𝑓 as

Dom 𝑓 ∶= {𝑥 ∈ ℝ𝑛 ∶ 𝑓 (𝑥) < +∞},

and the infimal convolution of 𝑓 ,𝑔 ∈ Γ0(ℝ𝑛) as

𝑓 □ 𝑔 ∶ ℝ𝑛 → [−∞,+∞] ∶ 𝑥 ↦ inf
𝑢∈ℝ𝑛

{𝑓 (𝑢) + 𝑔(𝑥 − 𝑢)}.

If for 𝑥 ∈ ℝ𝑛 there exists 𝑢 ∈ ℝ𝑛 such that (𝑓 □ 𝑔)(𝑥) = 𝑓 (𝑢) + 𝑔(𝑥 − 𝑢), then we say that 𝑓 □ 𝑔

is exact at point 𝑥 . If 𝑓 □ 𝑔 is exact at every point of its domain, we say 𝑓 □ 𝑔 is exact, in which

case it is denoted by 𝑓 ⊡ 𝑔. Also we define infimal postcomposition of 𝑓 ∈ Γ0(ℝ𝑛) and 𝐿 ∈ ℝ𝑛×𝑚 as

𝐿▷ 𝑓 ∶ ℝ𝑛 → [−∞,+∞] ∶ 𝑥 ↦ inf
𝑢∈ℝ𝑚
𝐿𝑢=𝑥

𝑓 (𝑢).

Similar to infimal convolution, if for 𝑥 ∈ ℝ𝑛 there exists 𝑢 ∈ ℝ𝑚 such that (𝐿▷ 𝑓 )(𝑥) = 𝑓 (𝑢), then

we say that 𝐿▷ 𝑓 is exact at point 𝑥 . If 𝐿▷ 𝑓 is exact at every point of its domain, we say 𝐿▷ 𝑓

is exact, in which case it is denoted by 𝐿 ⋅▷ 𝑓 .

We now ready for the calculation rule of subdifferentials. Let 𝑓 ∈ Γ0(ℝ𝑛), 𝑔 ∈ Γ0(ℝ𝑚) and

𝐿 ∈ ℝ𝑚×𝑛 be such that 𝐿(Dom 𝑓 ) ∩ Dom𝑔 ≠ ∅, and suppose that (𝑓 + 𝑔 ◦ 𝐿)∗ = 𝑓 ∗ ⊡ (𝐿T ⋅▷ 𝑔∗),
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then there holds
𝜕𝑓+𝑔◦𝐿 = 𝜕𝑓 + 𝐿T ◦ 𝜕𝑔 ◦ 𝐿. (54)

The above equation is normally mentioned as the additivity of subdifferentials when 𝐿 = 𝐼 , and

the chain rule of subdifferentials when 𝑓 = 0. Always assume (𝑓 +𝑔 ◦𝐿)∗ = 𝑓 ∗⊡(𝐿T ⋅▷𝑔∗) holds in
following discussion, of which several sufficient conditions could be found in [6, Theorem 15.27].

Then we introduce the duality in convex optimization. Suppose 𝑓 ∈ Γ0(ℝ𝑛), 𝑔 ∈ Γ0(ℝ𝑚) and

𝐿 ∈ ℝ𝑚×𝑛. The primal problem associated with the composite function 𝑓 + 𝑔 ◦ 𝐿 is

argmin
𝑥∈ℝ𝑛

{𝑓 (𝑥) + 𝑔(𝐿𝑥)}, (55)

and its dual problem is
argmin

𝑢∈ℝ𝑚

{
𝑓 ∗(−𝐿T𝑢) + 𝑔∗(𝑢)

}
. (56)

The primal optimal value is defined as 𝜇 ∶= inf {𝑓 + 𝑔 ◦ 𝐿} and the dual optimal value as 𝜇∗ ∶=

inf {𝑓 ∗ ◦ (−𝐿T) + 𝑔∗}. The dual gap is then defined as

Δ ∶=

{
0, 𝜇 = −𝜇∗ ∈ {±∞},
𝜇 + 𝜇∗, otherwise.

Generally we always have Δ ≥ 0. Notice that condition (𝑓 +𝑔 ◦ 𝐿)∗ = 𝑓 ∗ ⊡ (𝐿T ⋅▷𝑔∗) implies that

inf
𝑥∈ℝ𝑛

{𝑓 (𝑥) + 𝑔(𝐿𝑥)} = (𝑓 + 𝑔 ◦ 𝐿)∗(0)

= (𝑓 ∗ ⊡ (𝐿∗ ⋅▷ 𝑔∗))(0)
= min

𝑢∈ℝ𝑚

{
𝑓 ∗(−𝐿T𝑢) + 𝑔∗(𝑢)

}
,

which means that the dual problem has nonempty solution set, and dual gap Δ = 0. Specially, if

set 𝑓 = 𝑓2 ◦ 𝐴2, 𝑔 = 𝑓1 and 𝐿 = 𝐴1 in (55), then we have the dual problem of model (44) as

argmin
𝑢∈ℝ𝑛1

{
(𝑓2 ◦ 𝐴2)∗(−𝐴T

1𝑢) + 𝑓 ∗
1 (𝑢)

}
. (57)

The primal/dual optimal values are

𝜇 = min {𝑓1 ◦ 𝐴1 + 𝑓2 ◦ 𝐴2} and 𝜇∗ = min
{
(𝑓2 ◦ 𝐴2)∗ ◦ (−𝐴T

1) + 𝑓 ∗
1

}
.
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By assumptions, the dual gap Δ = 𝜇 + 𝜇∗ = 0.

We then introduce several terminology of operator theory for following discussion. An

operator 𝑇 ∶ ℝ𝑛 → ℝ𝑛 is 𝛽-cocoercive (or 𝛽-inverse strongly monotone) with 𝛽 > 0 if for all

𝑥, 𝑦 ∈ ℝ𝑛,
⟨𝑇 𝑥 − 𝑇 𝑦, 𝑥 − 𝑦⟩ ≥ 𝛽‖𝑇 𝑥 − 𝑇 𝑦‖2.

Notice that 𝑇 ∶ ℝ𝑛 → ℝ𝑛 is 𝛽-cocoercive if and only if 𝛽𝑇 is nonexpansive 1/2-averaged (i.e.,

firmly nonexpansive). A monotone operator 𝑇 ∶ ℝ𝑛 → 2ℝ𝑛 is maximal, if there exists no mono-

tone operator 𝑇 ′ ∶ ℝ𝑛 → 2ℝ𝑛 such that Gra 𝑇 ⊊ Gra 𝑇 ′. For a monotone operator 𝑇 ∶ ℝ𝑛 → 2ℝ𝑛 ,

the Fitzpatrick function 𝐹𝑇 of 𝑇 is defined by

𝐹𝑇 (𝑥, 𝑢) ∶= ⟨𝑥, 𝑢⟩ − inf
(𝑦,𝑣)∈Gra 𝑇

⟨𝑥 − 𝑦, 𝑢 − 𝑣⟩, for all 𝑥, 𝑢 ∈ ℝ𝑛.

A monotone operator 𝑇 ∶ ℝ𝑛 → 2ℝ𝑛 is called 3∗-monotone, if Dom 𝑇 × Ran 𝑇 ⊂ Dom 𝐹𝑇 .

The following identity reveals that Hilbert spaces are uniformly convex and strictly convex

Banach spaces, and it is vital in optimization embedded in Hilbert spaces. For all 𝑥, 𝑦 ∈ ℝ𝑛 and

𝛼 ∈ ℝ, we have

‖𝛼𝑥 + (1 − 𝛼)𝑦‖2 + 𝛼(1 − 𝛼)‖𝑥 − 𝑦‖2 = 𝛼‖𝑥‖2 + (1 − 𝛼)‖𝑦‖2. (58)

Identity (58) could be easily extended to weighted semi-norms. Recall that for 𝑊 ∈ 𝕊𝑛 we denote

the weighted semi-norm ‖ ⋅ ‖𝑊 ∶=
√
⟨⋅, 𝑊 ⋅⟩. Then there holds, for all 𝑥, 𝑦 ∈ ℝ𝑛 and 𝛼 ∈ ℝ,

‖𝛼𝑥 + (1 − 𝛼)𝑦‖2𝑊 + 𝛼(1 − 𝛼)‖𝑥 − 𝑦‖2𝑊 = 𝛼‖𝑥‖2𝑊 + (1 − 𝛼)‖𝑦‖2𝑊 . (59)

Here we propose several useful convergence lemmas. Recall that for 𝐴 ∈ ℝ𝑛×𝑚, we denote

its kernel as Ker𝐴.

Lemma 3.4. Suppose that {𝑥𝑘}𝑘∈ℕ ⊂ ℝ𝑛 and 𝑉 ,𝑊 ∈ 𝕊𝑛 such that Ker 𝑉 ⊆ Ker𝑊 .

(i) If {‖𝑥𝑘‖𝑉 }𝑘∈ℕ is bounded, then {𝑊𝑥𝑘}𝑘∈ℕ is bounded.

(ii) If lim𝑘→∞ ‖𝑥𝑘‖𝑉 = 0, then lim𝑘→∞𝑊𝑥𝑘 = 0.

Proof. Notice that for any 𝑉 ∈ 𝕊𝑛 there exists
√
𝑉 ∈ 𝕊𝑛 such that 𝑉 =

√
𝑉
√
𝑉 , and since Ker 𝑉 ⊆

Ker𝑊 , there exists 𝑈 ∈ ℝ𝑛×𝑛 such that 𝑊 = 𝑈𝑉 . Therefore we have ‖𝑥𝑘‖𝑉 = ‖
√
𝑉𝑥𝑘‖.
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(i) If {‖𝑥𝑘‖𝑉 }𝑘∈ℕ is bounded, then {
√
𝑉𝑥𝑘}𝑘∈ℕ is bounded, which means {𝑉 𝑥𝑘}𝑘∈ℕ is bounded,

and so does {𝑈𝑉𝑥𝑘}𝑘∈ℕ.

(ii) If lim𝑘→∞ ‖𝑥𝑘‖𝑉 = 0, then lim𝑘→∞
√
𝑉𝑥𝑘 = 0, which means lim𝑘→∞ 𝑉 𝑥𝑘 = 0. Therefore we

have lim𝑘→∞ 𝑊𝑥𝑘 = 𝑈 lim𝑘→∞ 𝑉𝑥𝑘 = 0.

3.3 FIXED-POINT CHARACTERIZATION OF MINIMIZERS

In this section we characterize the global minimizers of model (44) into fixed-points of a

proximity equation via preliminaries in Section 3.2.

For 𝑓 ∈ Γ0(ℝ𝑛), Fermat’s rule (53) equivalently characterizes the minimizers, argmin 𝑓 , as

Zer 𝜕𝑓 . However since 𝜕𝑓 is generally not one-to-one, such characterization is not of much help

in algorithm design, not to mention the composite problem (44). Fortunately, with proximity op-

erators, Fermat’s characterization could be cast into fixed-points of a proximity equation, which

provides a powerful guidance of algorithm framework. For model (44), we define linear trans-

form 𝑆 ∈ (ℝ𝑛+𝑛1) such that 𝑆(𝑥, 𝑢) = (−𝐴T
1𝑢, 𝐴1𝑥) for all (𝑥, 𝑢) ∈ ℝ𝑛 × ℝ𝑛1 . Notice that 𝑆 is

skew-symmetric, that is, for all 𝑧 ∈ ℝ𝑛+𝑛1 we have ⟨𝑧, 𝑆𝑧⟩ = 0. Also define Φ ∶= 0⊕ 𝑓 ∗
1 ∈ Γ0(ℝ𝑛+𝑛1)

and 𝐴 ∶= 𝐴2 ⊕ 0𝑛2×𝑛1 ∈ ℝ𝑛2×(𝑛+𝑛1).

Theorem 3.5. Suppose 𝑥 ∈ ℝ𝑛 is a solution of primal problem (44), then there exists 𝑢 ∈ ℝ𝑛1 as a

solution of dual problem (57) such that for any 𝑅 ∈ 𝕊𝑛+𝑛1+ there holds

𝑧 = proxΦ,𝑅((𝐼 + 𝑅−1𝑆)𝑧 − 𝑅−1𝐴T∇𝑓2(𝐴𝑧)), (60)

where 𝑧 ∶= (𝑥, 𝑢). Conversely, if there exists 𝑧 = (𝑥, 𝑢) ∈ ℝ𝑛 × ℝ𝑛1 such that (60) holds for some

𝑅 ∈ 𝕊𝑛+𝑛1+ , then 𝑥 is a solution of primal problem (44) and 𝑢 is a solution of dual problem (57).

Proof. Suppose 𝑥 ∈ ℝ𝑛 is a solution of model (44). Then by Fermat’s rule (53) and the calculus

principle of subdifferentials (54), we have

0 ∈ 𝜕𝑓1◦𝐴1+𝑓2◦𝐴2(𝑥) = 𝐴T
1𝜕𝑓1(𝐴1𝑥) + 𝐴T

2∇𝑓2(𝐴2𝑥),

which means, there exists 𝑢 ∈ 𝜕𝑓1(𝐴1𝑥) such that 0 ∈ 𝐴T
1𝑢 + 𝐴T

2∇𝑓2(𝐴2𝑥). Then by the relation of

subdifferentials between conjugate functions (49) and subdifferentials of separable sum of func-
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tions (48), we have {
−𝐴T

1𝑢 − 𝐴T
2∇𝑓2(𝐴2𝑥) ∈ 𝜕0(𝑥),

𝐴1𝑥 ∈ 𝜕𝑓 ∗
1 (𝑢),

(61)

where one need to notice that 𝜕0(𝑥) = {0} for any 𝑥 ∈ ℝ𝑛; see Example 3.1. If define 𝑧 ∶= (𝑥, 𝑢),

then by (48), Φ = 0⊕𝑓 ∗
1 and 𝐴 = 𝐴2⊕0𝑛2×𝑛1 , the above inclusions can be cast into a more compact

form as
𝑆𝑧 − 𝐴T∇𝑓2(𝐴𝑧) ∈ 𝜕Φ(𝑧).

Then by the relation between subdifferentials and proximity operators (51), for any 𝑅 ∈ 𝕊𝑛+𝑛1+ we

have (60) holds. Furthermore, from (61) we have

{
−𝐴1𝑥 ∈ 𝜕(𝑓2◦𝐴2)∗◦(−𝐴T

1 )(𝑢),
𝐴1𝑥 ∈ 𝜕𝑓 ∗

1 (𝑢),

which means
0 ∈ 𝜕(𝑓2◦𝐴2)∗◦(−𝐴T

1 ) + 𝜕𝑓 ∗
1 (𝑢) = 𝜕(𝑓2◦𝐴2)∗◦(−𝐴T

1 )+𝑓 ∗
1
(𝑢),

showing that 𝑢 is indeed a solution to the dual problem (57).

Conversely, if (60) holds for 𝑧 = (𝑥, 𝑢) and some 𝑅 ∈ 𝕊𝑛+𝑛1+ , then it is direct to check that (61)

holds, which finishes the proof with analogous argument above.

Fixed-point equation (60) not only characterizes the primal solutions, but also the dual solu-

tions integrated in one single equation. It has various forms under different settings. We present

several common cases covered by the composite problem (45). By (56) and (57), the dual problem

of model (45) is
argmin

(𝑢1,𝑢2)∈ℝ𝑛×ℝ𝑚

{
𝑓 ∗(𝑢1) + 𝑔∗(𝑢2) + ℎ∗(−𝑢1 − 𝐿T𝑢2)

}
. (62)

If we set 𝑅 = 𝐼𝑛 ⊗ 𝑃−1 ⊗ 𝑄 with 𝑃 ∈ 𝕊𝑛+, 𝑄 ∈ 𝕊𝑚+ and 𝑧 = (𝑥, 𝑢1, 𝑢2) ∈ ℝ𝑛 × ℝ𝑛 × ℝ𝑚 as a fixed-point

of (60), then by (50) we have (60) reduce to

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝑥 = prox0(𝑥 − 𝑢1 − 𝐿T𝑢2 − ∇ℎ(𝑥)),
𝑢1 = prox𝑓 ∗,𝑃−1(𝑃𝑥 + 𝑢1),

𝑢2 = prox𝑔∗,𝑄(𝑄
−1𝐿𝑥 + 𝑢2).
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The above can be simplified via (51) and (52) and Example 3.1 to

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝑥 = prox𝑓 ,𝑃(𝑥 − 𝑃−1(𝐿𝑢2 + ∇ℎ(𝑥))),

𝑢2 = prox𝑔∗,𝑄(𝑄
−1𝐿T𝑥 + 𝑢2),

𝑢1 = −𝐿𝑢2 − ∇ℎ(𝑥).

(63)

By previous discussion, the above characterization describes primal/dual solutions simultane-

ously, where 𝑥 is the solution of the primal problem (45) and (𝑢1, 𝑢2) is the solution of the dual

problem (62). Part of result (63) was discussed in [55]. We then discuss possible forms of (63) in

every probable cases that some of the three terms 𝑓 ,𝑔, ℎ are missing in (45).

Example 3.6. With 𝑓 = 0, (63) can be simplified to

{
𝑢2 = prox𝑔∗,𝑄(𝑄

−1𝐿T𝑥 + 𝑢2),

𝑢1 = −𝐿𝑢2 − ∇ℎ(𝑥∗) = 0.

With 𝑓 = 𝑔 = 0, (63) can be further simplified to

0 = ∇ℎ(𝑥) = 𝑢1 = 𝑢2.

Part of this result reverts to Fermat’s rule for smooth convex optimization. With 𝑓 = ℎ = 0, (63)

can be further simplified to {
𝑢2 = prox𝑔∗,𝑄(𝑄

−1𝐿T𝑥 + 𝑢2),

𝑢1 = 𝐿𝑢2 = 0.

Part of this result was discussed as dual formulation in [24].

Example 3.7. With 𝑔 = 0, (63) can be simplified to

{
𝑥 = prox𝑓 ,𝑃(𝑥 − 𝑃−1∇ℎ(𝑥)),

𝑢1 = −∇ℎ(𝑥), 𝑢2 = 0.

Part of this result was discussed in [31, 73]. With 𝑔 = ℎ = 0, (63) can be further simplified to

{
𝑥 = prox𝑓 ,𝑃(𝑥),

𝑢1 = 𝑢2 = 0.

Part of this result could be obtained by combining Fermat’s rule (53) and relationship (51).
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Example 3.8. With ℎ = 0, (63) can be simplified to

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

𝑥 = prox𝑓 ,𝑃(𝑥 − 𝑃−1𝐿𝑢2),

𝑢2 = prox𝑔∗,𝑄(𝑄
−1𝐿T𝑥 + 𝑢2),

𝑢1 = −𝐿𝑢2.

Notice that in this case the composite problem (45) is identical to (55), but the dual problem (62)

is different from (56), implying that dual problems may not unique in form. Part of this result

was discussed in [56].

Theorem 3.5 characterizes solution pairs of primal problem (44) and dual problem (57) as

fixed-points of the proximity equation (60). Compared with Fermat’s characterization, fixed-

point equation (60) gives a uniform and comprehensive description of the primal/dual solutions,

while being more suggestive for algorithm design. The proposed framework of fixed-point prox-

imity algorithms in this dissertation will based on the fixed-point equation (60).

3.4 IMPLICIT FIXED-POINT PROXIMITY ALGORITHMS

In this section we propose the general framework of implicit fixed-point proximity algo-

rithms for primal/dual problems (44) and (57) based on the fixed-point proximity equation (60).

We derive implicit iterations by an equivalent variation of (60) via applying matrix splitting

technique, and then consider conditions under which the derived implicit iteration will be well-

defined.

Theorem 3.5 characterizes solution pairs of primal/dual problems (44) and (57) to be exactly

Fix(proxΦ,𝑅 ◦ (𝐼 + 𝑅−1𝑆 − 𝑅−1∇𝑓2◦𝐴))

for any 𝑅 ∈ 𝕊𝑛+𝑛1+ . The proximity operator proxΦ,𝑅 is always nonexpansive 1/2-averaged with

respect to ‖ ⋅ ‖𝑅, which therefore has novel convergence property by Theorem 2.2. However, the

following property shows that |||𝐼+𝑅−1𝑆|||𝑅 is generally greater than 1, which invalidate the general

idea of naïve Picard iteration, especially when𝐴1 ≠ 0 and 𝑓2 = 0. Here |||⋅|||𝑅 is the induced operator
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norm with respect to weighted norm ‖ ⋅ ‖𝑅, i.e., for 𝑅 ∈ 𝕊𝑛+ and 𝐴 ∈ ℝ𝑛×𝑛, define

|||𝐴||| ∶= sup
𝑥∈ℝ𝑛⧵{0}

‖𝐴𝑥‖𝑅
‖𝑥‖𝑅

.

Part of result for the special case with block-diagonal 𝑅 was once discussed in [24, 56].

Proposition 3.9. Suppose 𝑅 ∈ 𝕊𝑛+𝑛1+ . There holds

||||||𝐼 + 𝑅−1𝑆||||||
2
𝑅 = 1 + |||𝑆|||2𝑅−1 .

In particular, 𝑆 ≠ 0 if and only if |||𝐼 + 𝑅−1𝑆|||𝑅 > 1.

Proof. By the skew-symmetry of 𝑆, for any 𝑥 ∈ ℝ𝑛+𝑛1 we have

‖‖‖(𝐼 + 𝑅−1𝑆)𝑥
‖‖‖
2

𝑅
= ⟨(𝑅 + 𝑆)𝑥, (𝐼 + 𝑅−1𝑆)𝑥⟩ = ‖𝑥‖2𝑅 + ‖𝑆𝑥‖2𝑅−1 ,

which proves that
||||||𝐼 + 𝑅−1𝑆||||||

2
𝑅 = 1 + ||||||𝑅

−1𝑆||||||
2
𝑅.

Thus |||𝐼 + 𝑅−1𝑆|||2𝑅 ≥ 1, and |||𝐼 + 𝑅−1𝑆|||2𝑅 = 1 if and only if |||𝑅−1𝑆|||𝑅 = 0, if and only if 𝑆 = 0.

Proposition 3.9 reveals the expanding nature of the linear transform 𝐼 + 𝑅−1𝑆, which makes

the naïve Picard iteration of operator proxΦ,𝑅 ◦ (𝐼 + 𝑅−1𝑆 − 𝑅−1∇𝑓2◦𝐴) not generally converge. For-

tunately, since such defect is brought by the linear transform, thematrix splitting technique could

be applied to construct a family of implicit algorithms with convergence analysis. This technique

was first introduced in [100] and then widely exploited in solving linear systems and differential

equations.

Here we apply the matrix splitting technique to the linear transforms 𝐼 and 𝐼 + 𝑅−1𝑆 in both

ends of the fixed-point equation (60). Precisely, we split 𝐼 = Λ + (𝐼 − Λ) in the left-hand side and

𝐼 + 𝑅−1𝑆 = 𝐸 +𝑀 in the right-hand side, then (60) becomes

Λ𝑧 + (𝐼 − Λ)𝑧 = proxΦ,𝑅(𝐸𝑧 +𝑀𝑧 − 𝑅−1𝐴T∇𝑓2(𝐴𝑧)),

therefore the proposed framework of Implicit Fixed-Point Proximity Algorithms (IFP²A) of this
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dissertation is proposed as

For 𝑘 ∈ ℕ

⌊
Λ𝑧𝑘+1 + (𝐼 − Λ)𝑤𝑘 = proxΦ,𝑅(𝐸𝑧𝑘+1 +𝑀𝑤𝑘 − 𝑅−1𝐴T∇𝑓2(𝐴𝑤𝑘))
𝑤𝑘+1 ← (1 − 𝜆)𝑤𝑘 + 𝜆𝑧𝑘+1

(64)

where 𝐸 + 𝑀 = 𝐼 + 𝑅−1𝑆 and 𝜆 ∈ ℝ. Notice that the first line of IFP²A (64) requires solving an

implicit proximity equation, which therefore generates implicit algorithms in general.

There are several fundamental questions following immediately after IFP²A, i.e.,

(Q1) The well-definedness of the IFP²A iteration.

(Q2) The convergence of the IFP²A.

(Q3) The feasible computation methods, which might be inexact, as IFP²A is implicit.

(Q4) The convergence of the inexact IFP²A.

In following parts of this dissertation all these questions (Q1) to (Q4) will be answered one

after another. In rest of this section we focus on the first question. To answer the first question

(Q1) on IFP²A, the following theorem serves as a sufficient condition for (64) to uniquely determine

an iteration for all possible inputs. Define GL𝑛 to be the group of invertible matrices in ℝ𝑛, and

ℙ𝑛
+ to be the set of all strictly-positive definite matrices in ℝ𝑛. For matrix 𝐴 ∈ (ℝ𝑛+𝑛1), define

𝐴 ∶= (𝐴 + 𝐴T)/2.

Theorem3.10. Suppose𝑅 ∈ 𝕊𝑛+𝑛1+ andΛ, 𝐸 ∈ (ℝ𝑛+𝑛1). If Λ ∈ GL𝑛+𝑛1 and there exists Γ = 𝛾0𝐼𝑛⊗𝛾1𝐼𝑛1
with 𝛾0, 𝛾1 > 0 such that Γ𝑅(𝐼 − 𝐸Λ−1) ∈ ℙ𝑛+𝑛1

+ , then for any 𝑢, 𝑣 ∈ ℝ𝑛+𝑛1 , the fixed-point equation

Λ𝑧 + 𝑢 = proxΦ,𝑅(𝐸𝑧 + 𝑣) (65)

has a unique solution 𝑧 ∈ ℝ𝑛+𝑛1 , and function 𝑧 = 𝑧(𝑢, 𝑣) is uniformly continuous.

Proof. Let 𝑧 = (𝑧0, 𝑧1) ∈ ℝ𝑛 × ℝ𝑛1 and 𝑢, 𝑣 as so. First we prove that (65) has at least one solution,

then we prove the uniqueness. Define 𝑥 ∶= Λ𝑧 + 𝑢 and 𝑃0 ∶= Γ𝑅(𝐼 − 𝐸Λ−1) ∈ ℙ𝑛+𝑛1
+ . Then by (51),

we have (65) equivalent to, for any Γ = 𝛾0𝐼𝑛 ⊗ 𝛾1𝐼𝑛1 ,

Γ𝑅𝑣 − Γ𝑅𝐸Λ−1𝑢 ∈ 𝜕0⊕𝛾1𝑓 ∗
1 (𝑥) + 𝑃0𝑥. (66)

Therefore for (65) to have at least one solution, it is sufficient to prove that Ran(𝜕0⊕𝛾1𝑓 ∗
1
+ 𝑃0) =
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ℝ𝑛+𝑛1 . To this end we need the following key results from operator theory. We can learn that

𝜕0⊕𝛾1𝑓 ∗
1
is maximally monotone [6, Theorem 20.25] and 3∗-monotone [6, Example 25.13], and 𝑃0 is

maximally monotone [6, Corollary 20.28]. By strict positive-definiteness of 𝑃0, we have

inf
𝑥∈ℝ𝑛+𝑛1⧵{0}

⟨𝑥, 𝑃0𝑥⟩
‖𝑃0𝑥‖2

≥ ‖‖𝑃
T
0 𝑃0‖‖

−1‖‖𝑃0
−1‖‖

−1 > 0.

It means 𝑃0 is |||𝑃T
0 𝑃0|||−1|||𝑃0−1|||−1-cocoercive, and thus 𝑃0 is 3∗-monotone [6, Proposition 25.16].

Then 𝜕0⊕𝛾1𝑓 ∗
1
+𝑃0 is maximally monotone [6, Corollary 25.5]. Finally, by non-singularity of 𝑃0 and

[6, Corollary 25.27], we have that 𝜕0⊕𝛾1𝑓 ∗
1
+ 𝑃0 is surjective on ℝ𝑛+𝑛1 . These prove that (65) has at

least one solution.

Then we further prove that (65) has a unique solution. Suppose (65) has solutions 𝑧 and 𝑧′.

Define 𝑥 ∶= Λ𝑧+𝑢 and 𝑥′ ∶= Λ𝑧′+𝑢. Then by (66) and monotonicity of subdifferentials, we have

0 ≤ ⟨𝑥 − 𝑥′, 𝑃0(𝑥′ − 𝑥)⟩,

which, by 𝑃0 ∈ ℙ𝑛+𝑛1
+ , means 𝑥 = 𝑥′ and thus 𝑧 = 𝑧′. These prove that (65) has exactly one solution.

Finally we prove the uniform continuity of 𝑧 = 𝑧(𝑢, 𝑣). Let 𝑧 = 𝑧(𝑢, 𝑣) and 𝑧′ = 𝑧′(𝑢′, 𝑣′) be

determined by (65). Define 𝑥 and 𝑥′ as before. Then by (66) and monotonicity of subdifferentials,

we have

0 ≤ ⟨𝑥 − 𝑥′, Γ𝑅(𝑣 − 𝑣′) − Γ𝑅𝐸Λ−1(𝑢 − 𝑢′) − 𝑃0(𝑥 − 𝑥′)⟩
≤ −‖‖𝑥 − 𝑥′‖‖

2
𝑃0
+ |||Γ𝑅|||‖‖𝑥 − 𝑥′‖‖(‖‖𝑣 − 𝑣′‖‖ + ||||||𝐸Λ

−1||||||‖‖𝑢 − 𝑢′‖‖),

which proves that 𝑧 = 𝑧(𝑢, 𝑣) defined by (65) is uniformly continuous.

Theorem 3.10 can be easily applied to IFP²A (64), resulting in the the following corollary.

Corollary 3.11. Suppose 𝑅 ∈ 𝕊𝑛+𝑛1+𝑛2+ and Λ, 𝐸 ∈ (ℝ𝑛+𝑛1). If Λ ∈ GL𝑛+𝑛1 and there exists Γ =

𝛾0𝐼𝑛 ⊗ 𝛾1𝐼𝑛1 with 𝛾0, 𝛾1 > 0 such that

Γ𝑅(𝐼 − 𝐸Λ−1) ∈ ℙ𝑛+𝑛1
+ ,

then for any 𝜆 ∈ ℝ and 𝑤0 ∈ ℝ𝑛+𝑛1 , IFP²A (64) uniquely determines iteration sequence {(𝑧𝑘, 𝑤𝑘)}𝑘∈ℕ.

Moreover, the mapping 𝑤𝑘 ↦ 𝑧𝑘+1 determined by IFP²A (64) is uniformly continuous.
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Proof. Since composition of uniformly continuous functions is uniformly continuous, by Theo-

rem 3.10, it is sufficient to prove that mapping 𝑧 ↦ 𝑀𝑤 − 𝑅−1𝐴T∇𝑓2(𝐴𝑧) is uniformly continuous.

Notice that 𝑓2 ∈ 𝐶1
𝐿(ℝ𝑛2), we have that ∇𝑓2 is 𝐿-Lipschitz continuous. Then for 𝑧, 𝑧′ ∈ ℝ𝑛+𝑛1 we

have
‖‖‖𝑀(𝑧 − 𝑧′) − 𝑅−1𝐴T(∇𝑓2(𝐴𝑧) − ∇𝑓2(𝐴𝑧

′))
‖‖‖ ≤ (|||𝑀 ||| + 𝐿||||||𝑅

−1𝐴T||||||‖𝐴‖)‖‖𝑧 − 𝑧′‖‖,

which finishes the proof.

In the following discussion, for 𝑅 ∈ 𝕊𝑛+𝑛1+ and Λ, 𝐸 ∈ (ℝ𝑛+𝑛1) such that Λ ∈ GL𝑛+𝑛1 and

Γ = 𝛾0𝐼𝑛 ⊗ 𝛾1𝐼𝑛1 with 𝛾0, 𝛾1 > 0, we define 𝑃0 ∶= Γ𝑅(𝐼 − 𝐸Λ−1). Corollary 3.11 provides a sufficient

condition for IFP²A (64) to uniquely determine an iteration, covering several results from [56, 63].

In the following corollary we prove that Corollary 3.11 covers a trivial case where IFP²A (64) of the

composite problem (45) is actually explicit. To this end we need the following technique lemma.

Lemma 3.12. Suppose that 𝑃 ∈ (ℝ𝑛+𝑚) takes block form

𝑃 = [
𝐴 0
𝐵 𝐶],

where 𝐴 ∈ ℙ𝑛
+, 𝐵 ∈ ℝ𝑚×𝑛 and 𝐶 ∈ ℙ𝑚

+ . Then there exists Γ = 𝐼𝑛 ⊗ 𝛾𝐼𝑚 with 𝛾 > 0 such that Γ𝑃 ∈ ℙ𝑛+𝑚
+ .

Proof. If 𝐵 = 0, then we have
⟨𝑧, 𝑃𝑧⟩ = ‖𝑥‖2𝐴 + ‖𝑢‖2𝐶 ,

implying that 𝑃 ∈ ℙ𝑛+𝑚
+ . Suppose 𝐵 ≠ 0. Let Γ = 𝐼𝑛 ⊗ 𝛾𝐼𝑚 with 𝛾 > 0. Since 𝐴 ∈ ℙ𝑛

+ and 𝐶 ∈ ℙ𝑚
+ ,

for any 𝑧 = (𝑥, 𝑢) ∈ ℝ𝑛 × ℝ𝑚 we have

⟨𝑧, Γ𝑃𝑧⟩ = ‖𝑥‖2𝐴 + 𝛾⟨𝐵𝑥, 𝑢⟩ + 𝛾‖𝑢‖2𝐶
≥ ||||||𝐴

−1||||||
−1‖𝑥‖2 + 𝛾 ||||||𝐶

−1||||||
−1‖𝑦‖2 − 𝛾 |||𝐵|||‖𝑥‖‖𝑢‖

= (
||||||𝐴

−1||||||
−1 −

𝛾
4
|||𝐵|||2||||||𝐶

−1||||||)‖𝑥‖
2 +

𝛾
4
||||||𝐶

−1||||||
−1
(2‖𝑢‖ − |||𝐵|||||||||𝐶

−1||||||‖𝑥‖)
2
.

Then for any 0 < 𝛾 < 4|||𝐴−1|||−1|||𝐵|||−2|||𝐶−1|||−1, we have ⟨𝑧, Γ𝑃𝑧⟩ ≥ 0 and furthermore, ⟨𝑧, Γ𝑃𝑧⟩ = 0

if and only if 𝑧 = 0. This finishes the proof.

Now we are ready for the following application of IFP²A (64) to composite problem (45).
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Corollary 3.13. Suppose that 𝑅 = 𝐼𝑛 ⊗ 𝑃−1 ⊗ 𝑄 with 𝑃 ∈ 𝕊𝑛+ and 𝑄 ∈ 𝕊𝑚+ , Λ, 𝐸 ∈ (ℝ2𝑛+𝑚) take

block forms

Λ =
⎡
⎢
⎢
⎢
⎣

0 𝐼𝑛 0
−𝑃 𝐼𝑛 + 𝑃𝐸1 0
0 0 𝐼𝑚

⎤
⎥
⎥
⎥
⎦

, 𝐸 =
⎡
⎢
⎢
⎢
⎣

0 0 0
0 𝐼𝑛 + 𝑃𝐸1 0
𝐸2 𝐸3 0

⎤
⎥
⎥
⎥
⎦

,

where 𝐸1 ∈ ℝ𝑛×𝑛 and 𝐸2, 𝐸3 ∈ ℝ𝑚×𝑛, then Λ ∈ GL2𝑛+𝑚 and there exists Γ = 𝛾0𝐼𝑛 ⊗ 𝛾1𝐼𝑛 ⊗ 𝛾2𝐼𝑚 with

𝛾0, 𝛾1, 𝛾2 > 0 such that Γ𝑃0 ∈ ℙ2𝑛+𝑚
+ ; therefore Corollary 3.11 applies.

Proof. First notice that

Λ−1 =
⎡
⎢
⎢
⎢
⎣

𝑃−1 + 𝐸1 −𝑃−1 0
𝐼𝑛 0 0
0 0 𝐼𝑚

⎤
⎥
⎥
⎥
⎦

,

which implies

𝑅(𝐼 − 𝐸Λ−1) =
⎡
⎢
⎢
⎢
⎣

𝐼𝑛 0 0
−𝐼𝑛 − 𝑃𝐸1 𝑃−1 0

−𝑄(𝐸2(𝑃−1 + 𝐸1) + 𝐸3) 𝑄𝐸2𝑃−1 𝑄

⎤
⎥
⎥
⎥
⎦

.

Then notice that 𝑅(𝐼 − 𝐸Λ−1) is strictly block-triangular with positive-definite block-diagonal

matrices. By a simple induction of Lemma 3.12, there exists Γ = 𝛾0𝐼𝑛⊗𝛾1𝐼𝑛⊗𝛾2𝐼𝑚 with 𝛾0, 𝛾1, 𝛾2 > 0

such that Γ𝑃0 ∈ ℙ2𝑛+𝑚
+ , which closes the proof.

Corollary 3.13 corresponds to the explicit IFP²A of composite problem (45), i.e., let 𝑧𝑘 =

(𝑥𝑘, 𝑢1𝑘, 𝑢2𝑘), then

For 𝑘 ∈ ℕ
⎢
⎢
⎢
⎣

𝑢1𝑘+1 ← −𝐿T𝑢2𝑘 − ∇ℎ(𝑥𝑘)
𝑥𝑘+1 ← prox𝑓 ,𝑃(𝑥𝑘 + 𝑃−1𝑢1𝑘+1 + 𝐸1(𝑢1𝑘+1 − 𝑢1𝑘))
𝑢2𝑘+1 ← prox𝑔∗,𝑄(𝑄

−1𝐿𝑥𝑘 + 𝐸2(𝑥𝑘+1 − 𝑥𝑘) + 𝐸3(𝑢1𝑘+1 − 𝑢1𝑘) + 𝑢2𝑘)

Thewell-definiteness of the above algorithm is self-evident, while Corollary 3.11 in addition pro-

vides the analytic property of the iteration. There are many other explicit cases for IFP²A when

applied to (45), e.g.,

For 𝑘 ∈ ℕ
⎢
⎢
⎢
⎣

𝑢1𝑘+1 ← −𝐿T𝑢2𝑘 − ∇ℎ(𝑥𝑘)
𝑢2𝑘+1 ← prox𝑔∗,𝑄(𝑄

−1𝐿𝑥𝑘 + 𝐸1(𝑢1𝑘+1 − 𝑢1𝑘) + 𝑢2𝑘)
𝑦𝑘+1 ← prox𝑓 ,𝑃(𝑥𝑘 + 𝑃−1𝑢1𝑘+1 + 𝐸2(𝑢1𝑘+1 − 𝑢1𝑘) + 𝐸3(𝑢2𝑘+1 − 𝑢2𝑘))
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and readers are encouraged to cover these cases via Corollary 3.11 in a similar way.

3.5 CONVERGENCE ANALYSIS

This section provides comprehensive convergence analysis of the proposed IFP²A (64), which

covers results from [56, 74] as special cases.

In last section we answer the first question (Q1) of IFP²A, that is, propose a sufficient con-

dition for IFP²A (64) to uniquely determine an iteration sequence for all possible initial inputs.

Then we consider the second question (Q2) of IFP²A, i.e., the condition for IFP²A (64) to converge

towards primal/dual solution pairs of model (44). To this end we first need to investigate the

property of IFP²A iteration.

Let  ∶ ℝ𝑛+𝑛1 → ℝ𝑛+𝑛1 be the mapping satisfying (𝑤0) = 𝑧1 for all 𝑤0 ∈ ℝ𝑛+𝑛1 in IFP²A (64)

throughout discussion, as long as it is well-defined, and define 𝜆 ∶= (1 − 𝜆)𝐼 + 𝜆 for all 𝜆 ∈ ℝ.

Then by Theorem 3.5, the primal/dual solution pairs could be characterized as Fix , and IFP²A

(64) generalizes {(𝑧𝑘, 𝑤𝑘)}𝑘∈ℕ by 𝑧𝑘+1 = 𝑤𝑘 and 𝑤𝑘+1 = 𝜆𝑤𝑘. That means, IFP²A finds points in

Fix by Picard iteration of 𝜆. Therefore we need a close study of the mapping  . First we prove

a technical lemma for smooth convex functions with Lipschitz continuous gradient.

Lemma 3.14. Suppose that 𝑓 ∈ Γ0(ℝ𝑛) ∩ 𝐶1
𝐿(ℝ𝑛) with 𝐿-Lipschitz continuous gradient. Then for all

𝑥, 𝑦, 𝑧 ∈ ℝ𝑛 there holds

⟨𝑥 − 𝑧,∇𝑓 (𝑦) − ∇𝑓 (𝑧)⟩ ≥ −
𝐿
4
‖𝑥 − 𝑦‖2.

Proof. It is well-known that for 𝑓 ∈ Γ0(ℝ𝑛) ∩ 𝐶1
𝐿(ℝ𝑛) with an 𝐿-Lipschitz continuous gradient, ∇𝑓

is 𝐿−1-cocoercive, i.e., for 𝑥, 𝑧 ∈ ℝ𝑛 there holds

⟨𝑥 − 𝑧,∇𝑓 (𝑥) − ∇𝑓 (𝑧)⟩ ≥ 𝐿−1‖‖∇𝑓 (𝑥) − ∇𝑓 (𝑧)‖‖
2.

One may find the proof in [6, Corollary 18.14]. Then by completing the square we have

⟨𝑥 − 𝑧,∇𝑓 (𝑦) − ∇𝑓 (𝑧)⟩ = ⟨𝑦 − 𝑧,∇𝑓 (𝑦) − ∇𝑓 (𝑧)⟩ + ⟨𝑥 − 𝑦,∇𝑓 (𝑦) − ∇𝑓 (𝑧)⟩
≥ 𝐿−1‖‖∇𝑓 (𝑦) − ∇𝑓 (𝑧)‖‖

2 + ⟨𝑥 − 𝑦,∇𝑓 (𝑦) − ∇𝑓 (𝑧)⟩

=
‖‖‖‖‖

1√
𝐿(

∇𝑓 (𝑦) − ∇𝑓 (𝑧)) +
√
𝐿
2
(𝑥 − 𝑦)

‖‖‖‖‖

2

−
𝐿
4
‖𝑥 − 𝑦‖2
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≥ −
𝐿
4
‖𝑥 − 𝑦‖2.

Nowwe are ready to state the pivotal quasiaveragedness property of the mapping  . Define

𝑉 ∶= 𝑅𝑀 + (𝑅 + 𝑆)(Λ − 𝐼 ), 𝑊 ∶= (𝐼 − ΛT)𝑅(𝑀 − 𝐼 + Λ) + 𝐿(𝐴Λ)T𝐴Λ/4,

where 𝐿 is the Lipschitz constant of ∇𝑓2 . For 𝑉 ∈ 𝕊𝑛+𝑛1 , define

𝑈𝜆 ∶=
1
𝜆
((2 − 𝜆)𝑉 − 2𝑊 ),

for all 𝜆 ∈ ℝ and 𝐷 ∶= {𝜆 ∈ ℝ ∶ 𝑈𝜆 ∈ 𝕊𝑛+𝑛1}. Notice that by definition 0 ∉ 𝐷.

Theorem 3.15. Suppose 𝑃0 ∈ ℙ𝑛+𝑛1
+ and 𝑅, 𝑉 ∈ 𝕊𝑛+𝑛1+ . If 𝜆 ∈ 𝐷, then 𝜆 is nonexpansive with

respect to 𝑉 and quasiaveraged with respect to (𝑉 , 𝑈𝜆). Specially, if 𝑊 = 0 then for 𝜆 ∈ (0, 2], 𝜆 is

nonexpansive with respect to 𝑉 and quasiaveraged with respect to (𝑉 , (2 − 𝜆)𝑉/𝜆).

Proof. Suppose 𝑥, 𝑦 ∈ ℝ𝑛+𝑛1 and set 𝑢 ∶= 𝑥 , 𝑣 ∶= 𝑦. Then by (51) and (64), we have

{
𝑅(𝐸 − Λ)𝑢 + 𝑅(𝑀 − 𝐼 + Λ)𝑥 − 𝐴T∇𝑓2(𝐴𝑥) ∈ 𝜕Φ(Λ𝑢 + (𝐼 − Λ)𝑥),
𝑅(𝐸 − Λ)𝑣 + 𝑅(𝑀 − 𝐼 + Λ)𝑦 − 𝐴T∇𝑓2(𝐴𝑦) ∈ 𝜕Φ(Λ𝑣 + (𝐼 − Λ)𝑦).

Then by monotonicity of subdifferentials, 𝐸 +𝑀 = 𝐼 + 𝑅−1𝑆 and skew-symmetry of 𝑆, we have

0 ≤ ⟨Λ(𝑢 − 𝑣) + (𝐼 − Λ)(𝑥 − 𝑦),
𝑅(𝐸 − Λ)(𝑢 − 𝑣) + 𝑅(𝑀 − 𝐼 + Λ)(𝑥 − 𝑦) − 𝐴T(∇𝑓2(𝐴𝑥) − ∇𝑓2(𝐴𝑦))⟩

= ⟨(𝐼 − Λ)((𝑥 − 𝑦) − (𝑢 − 𝑣)), 𝑅(𝑀 − 𝐼 + Λ)((𝑥 − 𝑦) − (𝑢 − 𝑣))⟩
+ ⟨(𝐼 − Λ)((𝑥 − 𝑦) − (𝑢 − 𝑣)), 𝑆(𝑢 − 𝑣)⟩
+ ⟨𝑢 − 𝑣, 𝑅(𝑀 − 𝐼 + Λ)((𝑥 − 𝑦) − (𝑢 − 𝑣))⟩
− ⟨Λ(𝑢 − 𝑣) + (𝐼 − Λ)(𝑥 − 𝑦), 𝐴T(∇𝑓2(𝐴𝑥) − ∇𝑓2(𝐴𝑦))⟩.

Notice that by Lemma 3.14 we have

⟨Λ(𝑢 − 𝑣) + (𝐼 − Λ)(𝑥 − 𝑦), 𝐴T(∇𝑓2(𝐴𝑥) − ∇𝑓2(𝐴𝑦))⟩
= ⟨𝐴Λ(𝑢 − 𝑣) + (𝐴 − 𝐴Λ)(𝑥 − 𝑦), (∇𝑓2(𝐴𝑥) − ∇𝑓2(𝐴𝑦))⟩

≥ −
𝐿
4
‖𝐴Λ((𝑥 − 𝑦) − (𝑢 − 𝑣))‖2,
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which leads us to

0 ≤ 2⟨(𝑥 − 𝑦) − (𝑢 − 𝑣), 𝑊 ((𝑥 − 𝑦) − (𝑢 − 𝑣))⟩ + 2⟨𝑢 − 𝑣, 𝑉 ((𝑥 − 𝑦) − (𝑢 − 𝑣))⟩
= ‖𝑥 − 𝑦‖2𝑉 − ‖𝑢 − 𝑣‖2𝑉 − ⟨(𝑢 − 𝑣) − (𝑥 − 𝑦), (𝑉 − 2𝑊 )((𝑢 − 𝑣) − (𝑥 − 𝑦))⟩.

Furthermore, if set 𝑝 ∶= 𝜆𝑥 = (1−𝜆)𝑥+𝜆𝑢 and 𝑞 ∶= 𝜆𝑦 = (1−𝜆)𝑦+𝜆𝑣, then by Proposition 2.21

we have
‖𝑝 − 𝑞‖2𝑉 = (1 − 𝜆)‖𝑥 − 𝑦‖2𝑉 + 𝜆‖𝑢 − 𝑣‖2𝑉 − 𝜆(1 − 𝜆)‖(𝑥 − 𝑦) − (𝑢 − 𝑣)‖2𝑉 ,

which implies
‖𝑝 − 𝑞‖2𝑉 + ‖(𝑥 − 𝑦) − (𝑝 − 𝑞)‖2((2−𝜆)𝑉−2𝑊 )/𝜆 ≤ ‖𝑥 − 𝑦‖2𝑉 .

This proves that if 𝑈𝜆 ∈ 𝕊𝑛 then 𝜆 is nonexpansive with respect to 𝑉 . To prove the quasiaver-

agedness, set 𝑦 ∈ Fix𝜆 then we have 𝑞 = 𝜆𝑦 = 𝑦 and therefore

‖𝜆𝑥 − 𝑦‖2𝑉 + ‖𝜆𝑥 − 𝑥‖2𝑈𝜆 ≤ ‖𝑥 − 𝑦‖2𝑉 ,

which proves the quasiaveragedness of 𝜆 with respect to (𝑉 , 𝑈𝜆).

Finally, if 𝑊 = 0, then it is clear that for all 𝜆 ∈ (0, 2], 𝑈𝜆 = (2 − 𝜆)𝑉/𝜆 ∈ 𝕊𝑛+𝑛1 , which with

preceding arguments proves that 𝜆 is nonexpansive with respect to 𝑉 and quasiaveraged with

respect to (𝑉 , (2 − 𝜆)𝑉/𝜆).

With the nonexpansiveness and quasiaveragedness property of 𝜆, we are now capable to

prove the convergence theorem for IFP²A (64) via Theorem 2.30.

Theorem 3.16. Suppose 𝑃0 ∈ ℙ𝑛+𝑛1
+ and 𝑉 ∈ 𝕊𝑛+𝑛1 . If 𝜆 ∈ 𝐷 and

Ker 𝑉 ∪ Ker𝑈𝜆 ⊆ Ker (𝐼 − Λ) ∩ Ker𝑀 ∩ Ker𝐴,

then the sequence {𝑧𝑘}𝑘∈ℕ and {𝑤𝑘}𝑘∈ℕ generated by IFP²A (64) converge to a same fixed-point of 
as a primal-dual solution pair of model (44).

Proof. This proof mainly follows Theorems 2.30 and 3.15. First notice that for any 𝑥 ∈ ℝ𝑛+𝑛1 and

𝑦 ∈ Ker (𝐼 − Λ) ∩ Ker𝑀 ∩ Ker𝐴, we have

𝑧 = (𝑥 + 𝑦) ⟺ Λ𝑧 + (𝐼 − Λ)(𝑥 + 𝑦) = proxΦ,𝑅(𝐸𝑧 +𝑀(𝑥 + 𝑦) − 𝑅−1𝐴T∇𝑓2(𝐴(𝑥 + 𝑦)))
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⟺ Λ𝑧 + (𝐼 − Λ)𝑥 = proxΦ,𝑅(𝐸𝑧 +𝑀𝑥 − 𝑅−1𝐴T∇𝑓2(𝐴𝑥))
⟺ 𝑧 = 𝑥,

which proves that
Ker (𝐼 − Λ) ∩ Ker𝑀 ∩ Ker𝐴 ⊆ Ker

and therefore Ker 𝑉 ∪ Ker𝑈𝜆 ⊆ Ker . Then by Theorems 2.30 and 3.15, if 𝑈𝜆 ∈ 𝕊𝑛+𝑛1 then for all

𝑤0 ∈ ℝ𝑛, sequence {𝑤𝑘}𝑘∈ℕ generated by IFP²A (64) converges to a point in Fix𝜆 = Fix . By

continuity of  , we have that 𝑧𝑘+1 = 𝑤𝑘 converges to a same limit. Finally by Theorem 3.5,

{𝑧𝑘}𝑘∈ℕ and {𝑤𝑘}𝑘∈ℕ converges to a same primal/dual solution pair of problem (44).

Notice that 𝑉 , 𝑈𝜆 ∈ 𝕊𝑛+𝑛1+ is sufficient for convergence by Theorem 3.16. When 𝑊 = 0, The-

orem 3.16 could be extended to KM iteration via Theorems 2.32 and 3.15. Consider the following

KM IFP²A
For 𝑘 ∈ ℕ

⌊
Λ𝑧𝑘+1 + (𝐼 − Λ)𝑤𝑘 = proxΦ,𝑅(𝐸𝑧𝑘+1 +𝑀𝑤𝑘 − 𝑅−1𝐴T∇𝑓2(𝐴𝑤𝑘))
𝑤𝑘+1 ← (1 − 𝜆𝑘)𝑤𝑘 + 𝜆𝑘𝑧𝑘+1

(67)

where {𝜆𝑘}𝑘∈ℕ ⊂ ℝ.

Theorem 3.17. Suppose 𝑃0 ∈ ℙ𝑛+𝑛1
+ , 𝑉 ∈ 𝕊𝑛+𝑛1 , 𝑊 = 0 and {𝜆𝑘}𝑘∈ℕ ⊂ [0, 2]. If

∑
𝑘∈ℕ

𝜆𝑘(2 − 𝜆𝑘) = ∞ and Ker 𝑉 ⊆ Ker (𝐼 − Λ) ∩ Ker𝑀 ∩ Ker𝐴,

then the sequence {𝑧𝑘}𝑘∈ℕ generated by KM IFP²A (67) converges to a fixed-point 𝑧∗ ∈ ℝ2𝑛+𝑚 of  as

a primal/dual solution pair of model (44), and {
√
𝑉𝑤𝑘}𝑘∈ℕ converges to

√
𝑉 𝑧∗.

Proof. Theorems 2.32 and 3.15 proves that there exists 𝑧∗ ∈ Fix 𝑇 such that {
√
𝑉𝑤𝑘}𝑘∈ℕ converges

to
√
𝑉 𝑧∗. Then Ker

√
𝑉 ⊆ Ker and the continuity of  show that 𝑧𝑘+1 = 𝑤𝑘 = √𝑉 †√𝑉𝑤𝑘 →

√𝑉 †√𝑉 𝑧∗ = 𝑇 𝑧∗ = 𝑧∗ ∈ Fix 𝑇 as 𝑘 → ∞.

Theorems 3.16 and 3.17 provide general convergence theorems for IFP²A (64), which cover

various existing results under different settings of model (44). In the following section, we covers

several popular existing explicit algorithms as special cases of the proposed framework of IFP²A.
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3.6 EXPLICIT FIXED-POINT PROXIMITY ALGORITHMS

In this section we apply convergence analysisTheorem 3.16 to several popular explicit meth-

ods of the composite model (45) under various situations, illustrating the generality of the pro-

posed framework of IFP²A.

Recall that the composite problem once discussed in Section 3.1 is

argmin
𝑥∈ℝ𝑛

{𝑓 (𝑥) + 𝑔(𝐿𝑥) + ℎ(𝑥)}, (45)

where 𝑓 ∈ Γ0(ℝ𝑛), 𝑔 ∈ Γ0(ℝ𝑚), ℎ ∈ Γ0(ℝ𝑛) ∩ 𝐶1
𝐿(ℝ𝑛) and 𝐿 ∈ ℝ𝑚×𝑛. Denote 𝐿 in this section as the

Lipschitz constant of ∇ℎ. The corresponding IFP²A is

For 𝑘 ∈ ℕ

⌊
Λ𝑧𝑘+1 + (𝐼 − Λ)𝑤𝑘 = proxΦ,𝑅(𝐸𝑧𝑘+1 +𝑀𝑤𝑘 − 𝑅−1𝐴T∇𝑓2(𝐴𝑤𝑘))
𝑤𝑘+1 ← (1 − 𝜆)𝑤𝑘 + 𝜆𝑧𝑘+1

(68)

where 𝑤𝑘 = (𝑢𝑘, 𝑣1𝑘 , 𝑣2𝑘), 𝑧𝑘 = (𝑥𝑘, 𝑦1
𝑘 , 𝑦2

𝑘 ) ∈ ℝ𝑛 × ℝ𝑛 × ℝ𝑚, Φ = 0 ⊕ 𝑓 ∗ ⊕ 𝑔∗, 𝑅 ∈ 𝕊(2𝑛+𝑚)×(2𝑛+𝑚)+ ,

Λ, 𝐸, 𝑀 ∈ (ℝ2𝑛+𝑚) and 𝐴 = 𝐼𝑛 ⊕ 0𝑛×(𝑛+𝑚) ∈ ℝ𝑛×(2𝑛+𝑚). In some cases we further consider the KM

IFP²A as
For 𝑘 ∈ ℕ

⌊
Λ𝑧𝑘+1 + (𝐼 − Λ)𝑤𝑘 = proxΦ,𝑅(𝐸𝑧𝑘+1 +𝑀𝑤𝑘 − 𝑅−1𝐴T∇𝑓2(𝐴𝑤𝑘))
𝑤𝑘+1 ← (1 − 𝜆𝑘)𝑤𝑘 + 𝜆𝑘𝑧𝑘+1

(69)

where {𝜆𝑘}𝑘∈ℕ ⊂ ℝ.

3.6.1 GRADIENT DESCENT METHOD

This subsection identifies gradient descent method [17] as a special case of IFP²A, and then

propose the convergence theorem under Theorem 3.16.

Let 𝑓 = 𝑔 = 0 in composite problem (45), which then reduces to

argmin
𝑥∈ℝ𝑛

ℎ(𝑥). (70)

In IFP²A (68) we let Λ = 𝐼 , 𝑅 = 𝐻 ⊗ 𝐼𝑛+𝑚 with 𝐻 ∈ 𝕊𝑛+, 𝐸 = 0, 𝜆 = 1 and

𝑀 = [
𝐼𝑛 0
0 0𝑛+𝑚]

.
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Then IFP²A (68) reduces to iteration

For 𝑘 ∈ ℕ
⌊ 𝑥𝑘+1 ← 𝑥𝑘 − 𝐻−1∇ℎ(𝑥𝑘)

(71)

Gradient descent method (71) serves as a fundamental method for smooth convex optimiza-

tion. First notice that (71) is self-evidently well-defined, which is covered by Theorem 3.10. To

see this, only need to notice that in this case 𝑅(𝐼 − 𝐸Λ−1) = 𝑅. Then we turn to the convergence

of iteration (71). Notice that by definition,

𝑉 = [
𝐻 0
0 0𝑛+𝑚]

, 𝑊 =
𝐿
4[

𝐼𝑛 0
0 0𝑛+𝑚]

, 𝑈1 = 𝑉 − 2𝑊 = [
𝐻 − 𝐿/2 0

0 0𝑛+𝑚]
.

Therefore by Theorem 3.16, we have the convergence theorem of iteration (71).

Theorem 3.18. If 𝐻 − 𝐿/2 ∈ 𝕊𝑛+, then for any 𝑥0 ∈ ℝ𝑛, the sequence {𝑥𝑘}𝑘∈ℕ generated by gradient

descent method (71) converges to a solution of model (70).

Proof. By Theorem 3.16, it is sufficient to check

Ker 𝑉 ∪ Ker𝑈1 ⊆ Ker (𝐼 − Λ) ∩ Ker𝑀 ∩ Ker𝐴.

Notice that Ker 𝑉 = Ker𝑀 = Ker𝐴 = {0𝑛} × ℝ𝑛+𝑚 and Ker (𝐼 − Λ) = ℝ2𝑛+𝑚. If 𝐻 − 𝐿/2 ∈ 𝕊𝑛+ then

we have Ker𝑈1 = {0𝑛} × ℝ𝑛+𝑚, which proves the above inclusion.

3.6.2 PROXIMAL POINT METHOD

This subsection identifies proximal point method [71, 72] as a special case of IFP²A, and

provide a generalization of this method under Theorem 3.17.

Let 𝑔 = ℎ = 0 in composite problem (45), which then reduces to

argmin
𝑥∈ℝ𝑛

𝑓 (𝑥). (72)
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In IFP²A (68) we let 𝑅 = 𝐼𝑛 ⊗ 𝑃−1 ⊗ 𝐼𝑚 with 𝑃 ∈ 𝕊𝑛+, 𝐸 = 𝐼𝑛 ⊗ 𝐼𝑛 ⊗ 0𝑚 and

Λ =
⎡
⎢
⎢
⎢
⎣

𝐼𝑛 𝐼𝑛 0
−𝑃 𝐼𝑛 0
0 0 𝐼𝑚

⎤
⎥
⎥
⎥
⎦

, 𝑀 =
⎡
⎢
⎢
⎢
⎣

0 −𝐼𝑛 0
𝑃 0 0
0 0 𝐼𝑚

⎤
⎥
⎥
⎥
⎦

.

Then KM IFP²A version of iteration (68) reduces to iteration

For 𝑘 ∈ ℕ

⌊
𝑥𝑘+1 ← prox𝑓 ,𝑃(𝑢𝑘)
𝑢𝑘+1 ← (1 − 𝜆𝑘)𝑢𝑘 + 𝜆𝑘𝑥𝑘+1

(73)

Proximal point method (73) serves as a fundamental method for nonsmooth convex opti-

mization. First notice that (73) is self-evidently well-defined, which is covered by Theorem 3.10.

To see this, only need to notice that

𝑅(𝐼 − 𝐸Λ−1) =
⎡
⎢
⎢
⎢
⎣

𝑃(𝐼 + 𝑃)−1 (𝐼 + 𝑃)−1 0
−(𝐼 + 𝑃)−1 (𝐼 + 𝑃)−1 0

0 0 𝐼𝑚

⎤
⎥
⎥
⎥
⎦

,

therefore setting Γ = 𝐼 gives 𝑃0 ∈ ℙ2𝑛+𝑚
+ . Then we turn to the convergence of iteration (73). Notice

that by definition,
𝑉 = 𝑃 ⊗ 𝐼𝑛 ⊗ 𝐼𝑚, 𝑊 = 0.

Therefore by Theorem 3.17, we have the convergence theorem of iteration (73).

Theorem 3.19. Suppose 𝑃 ∈ 𝕊𝑛+ and {𝜆𝑘}𝑘∈ℕ ⊂ [0, 2]. If

∑
𝑘∈ℕ

𝜆𝑘(2 − 𝜆𝑘) = ∞,

then for all 𝑢0 ∈ ℝ𝑛, sequences {𝑢𝑘}𝑘∈ℕ and {𝑥𝑘}𝑘∈ℕ generated by proximal point method (73) converges

to a same solution of model (72).

Proof. Notice that in this case Ker 𝑉 = {0} and 𝑊 = 0, then a direct application of Theorem 3.17

finishes the proof.
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Here we consider an extension of iteration (73). Consider

For 𝑘 ∈ ℕ
⌊ 𝑥𝑘+1 ← (𝐼 − 𝑄)𝑥𝑘 + 𝑄 prox𝑓 (𝑥𝑘)

(74)

where 𝑄 ∈ 𝕊𝑛+. The parameters of iteration (74) are 𝑅 = 𝐼𝑛 ⊗ 𝐼𝑛 ⊗ 𝐼𝑚, 𝐸 = 𝑄−1 ⊗ 𝐼𝑛 ⊗ 0𝑚, 𝜆 = 1 and

Λ =
⎡
⎢
⎢
⎢
⎣

𝑄−1 𝐼𝑛 0
−𝑄−1 𝐼𝑛 0
0 0 𝐼𝑚

⎤
⎥
⎥
⎥
⎦

, 𝑀 =
⎡
⎢
⎢
⎢
⎣

𝐼 − 𝑄−1 −𝐼𝑛 0
𝐼𝑛 0 0
0 0 𝐼𝑚

⎤
⎥
⎥
⎥
⎦

.

Notice that in this case

𝑉 = 𝑄−1 ⊗ 𝐼𝑛 ⊗ 𝐼𝑚, 𝑊 = (𝑄−1(𝐼 − 𝑄−1)) ⊗ 0𝑛 ⊗ 0𝑚.

Theorem 3.20. Suppose 𝑃, 𝑄 ∈ 𝕊𝑛+. If 2𝐼 − 𝑄 ∈ 𝕊𝑛+ then for all 𝑥0 ∈ ℝ𝑛, sequence {𝑥𝑘}𝑘∈ℕ generated

by generalized proximal point method (74) converges to a solution of model (72).

Proof. Notice that in this case 𝑈1 = (𝑄−1(2𝑄−1 − 𝐼 )) ⊗ 𝐼𝑛 ⊗ 𝐼𝑚. If 2𝐼 − 𝑄 ∈ 𝕊𝑛+, then we have

2𝑄−1−𝐼 ∈ 𝕊𝑛+ and therefore𝑈1 ∈ 𝕊2𝑛+𝑚+ . Further notice thatKer 𝑉 = Ker𝑈1 = {0}, thenTheorem 3.16

closes the proof.

3.6.3 DOUGLAS-RACHFORD SPLITTING ALGORITHM

This subsection identifies the Douglas-Rachford splitting (DRS) algorithm [37, 62] to be a

spacial case of IFP²A (64). Then based on Theorem 3.17 we propose a generalized DRS with con-

vergence theorem.

Let 𝐿 = 𝐼𝑛 and ℎ = 0 in composite problem (45), which then reduces to

argmin
𝑥∈ℝ𝑛

{𝑓 (𝑥) + 𝑔(𝑥)}. (75)

DRS designates the following scheme for (75), as

For 𝑘 ∈ ℕ
⌊ 𝑡𝑘+1 ← prox𝑓 (2 prox𝑔(𝑡𝑘) − 𝑡𝑘) + 𝑡𝑘 − prox𝑔(𝑡𝑘)

(76)
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which has been proven to have {prox𝑔(𝑡𝑘)}𝑘∈ℕ converge to a solution of problem (75) with any

𝑡0 ∈ ℝ𝑛 in [7, 39].

DRS (76) is equivalent to a special case of IFP²A (67). To see this, set 𝑥𝑘 ∶= 𝑡𝑘 − prox𝑔∗(𝑡𝑘−1),

𝑦1
𝑘 ∶= −prox𝑔∗(𝑡𝑘−1) and 𝑦2

𝑘 ∶= prox𝑔∗(𝑡𝑘−1), then DRS (76) is identical to KM IFP²A (67) with

𝑅 = 𝐼𝑛 ⊗ 𝐼𝑛 ⊗ 𝐼𝑛, 𝐸 = 0𝑛 ⊗ 2𝐼𝑛 ⊗ 0𝑛, 𝜆 = 1 and

Λ =
⎡
⎢
⎢
⎢
⎣

0 𝐼𝑛 𝐼𝑛
−𝐼𝑛 2𝐼𝑛 0
0 0 𝐼𝑛

⎤
⎥
⎥
⎥
⎦

, 𝑀 =
⎡
⎢
⎢
⎢
⎣

𝐼𝑛 −𝐼𝑛 −𝐼𝑛
𝐼𝑛 −𝐼𝑛 0
𝐼𝑛 0 𝐼𝑛

⎤
⎥
⎥
⎥
⎦

.

Notice that in this case

𝑉 =
⎡
⎢
⎢
⎢
⎣

𝐼𝑛 −𝐼𝑛 0
−𝐼𝑛 𝐼𝑛 𝐼𝑛
0 𝐼𝑛 2𝐼𝑛

⎤
⎥
⎥
⎥
⎦

, 𝑊 = 0.

Although 𝑉 ∉ 𝕊3𝑛, notice that Ran ⊆  ∶= {(𝑥, 𝑦,−𝑦) ∈ ℝ3𝑛 ∶ 𝑥, 𝑦 ∈ ℝ𝑛} and 𝑉 ∈ 𝕊().

Here 𝕊() denotes all symmetric positive-definite matrices on . To prove this, for any 𝑧 =

(𝑥, 𝑦,−𝑦) ∈ , we have

⟨𝑧, 𝑉 𝑧⟩ = ‖𝑥‖2 − 2⟨𝑥, 𝑦⟩ + ‖𝑦‖2 = ‖𝑥 − 𝑦‖2 ≥ 0.

Therefore DRS (76) could be covered by KM IFP²A (67) with respect to space. Here we consider

the following generalization of DRS (76) as

For 𝑘 ∈ ℕ
⎢
⎢
⎢
⎢
⎢
⎣

𝑦𝑘+1 ← prox𝑔∗,𝑄(𝑄
−1𝑢𝑘 + 𝑣𝑘)

𝑥𝑘+1 ← prox𝑓 ,𝑃(𝑃
−1(𝑣𝑘 − 2𝑦𝑘+1) + 𝑢𝑘)

𝑢𝑘+1 ← (1 − 𝜆𝑘)𝑢𝑘 + 𝜆𝑘𝑥𝑘+1
𝑣𝑘+1 ← (1 − 𝜆𝑘)𝑣𝑘 + 𝜆𝑘𝑦𝑘+1

(77)

Clear that DRS (76) is a special case of iteration (77) with 𝑃 = 𝑄 = 𝐼 , 𝜆𝑘 = 1 for 𝑘 ∈ ℕ and

𝑢1 = 𝑡1 −prox𝑔∗(𝑡0), 𝑣1 = prox𝑔∗(𝑡0); actually the sequence {𝑡𝑘}𝑘∈ℕ by (76) is identical to {𝑥𝑘 + 𝑦𝑘}𝑘∈ℕ

by (77) under the given parameters. Convergence of iteration (77) is governed by Theorem 3.17.

Theorem 3.21. Suppose 𝑃, 𝑄 ∈ 𝕊𝑛 such that |||(
√
𝑄
√
𝑃)−1||| ≤ 1 and {𝜆𝑘}𝑘∈ℕ ⊂ [0, 2]. If

∑
𝑘∈ℕ

𝜆𝑘(2 − 𝜆𝑘) = ∞,
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then sequence {(𝑥𝑘, 𝑦𝑘)}𝑘∈ℕ generated by generalized DRS (77) converges to (𝑥∗, 𝑦∗) ∈ ℝ2𝑛, with 𝑥∗ is

a solution of model (75) and {(𝑃𝑢𝑘 + 𝑣𝑘, 𝑢𝑘 + 𝑄𝑣𝑘)}𝑘∈ℕ converges to (𝑃𝑥∗ + 𝑦∗, 𝑥∗ + 𝑄𝑦∗).

Proof. First notice that with substitutions 𝑤𝑘 ∶= (𝑢𝑘,−𝑣𝑘, 𝑣𝑘) and 𝑧𝑘 ∶= (𝑥𝑘,−𝑦𝑘, 𝑦𝑘) for 𝑘 ∈ ℕ, the

generalized DRS (77) corresponds to IFP²A (67) with parameters 𝑅 = 𝐼𝑛⊗𝑃−1⊗𝑄, 𝐸 = 0𝑛⊗2𝐼𝑛⊗0𝑛

and

Λ =
⎡
⎢
⎢
⎢
⎣

𝐼𝑛 0 0
−𝑃 2𝐼𝑛 0
0 0 𝐼𝑛

⎤
⎥
⎥
⎥
⎦

, 𝑀 =
⎡
⎢
⎢
⎢
⎣

0𝑛 0 0
𝑃 −𝐼𝑛 0
𝑄−1 0 𝐼𝑛

⎤
⎥
⎥
⎥
⎦

.

Notice that in this case

𝑉 =
⎡
⎢
⎢
⎢
⎣

𝑃 −𝐼𝑛 0
0 0𝑛 0
𝐼𝑛 0 𝑄

⎤
⎥
⎥
⎥
⎦

, 𝑊 = 0.

Although 𝑉 ∉ 𝕊𝑛, notice Ran ⊆  ∶= {(𝑥,−𝑦, 𝑦) ∈ ℝ3𝑛 ∶ 𝑥, 𝑦 ∈ ℝ𝑛} and for any 𝑧 = (𝑥,−𝑦, 𝑦) ∈

 there holds

𝑉 𝑧 = 𝑉 ′𝑧, where 𝑉 ′ ∶=
⎡
⎢
⎢
⎢
⎣

𝑃 0 𝐼𝑛
0 0𝑛 0
𝐼𝑛 0 𝑄

⎤
⎥
⎥
⎥
⎦

,

therefore we study 𝑉 ′ within  instead of 𝑉 . If |||(
√
𝑄
√
𝑃)−1||| ≤ 1 then for any 𝑧 = (𝑥,−𝑦, 𝑦) ∈ ,

⟨𝑧, 𝑉 ′𝑧⟩ = ‖𝑥‖2𝑃 + 2⟨𝑥, 𝑦⟩ + ‖𝑦‖2𝑄

= ‖‖‖
√
𝑃𝑥‖‖‖

2
+ 2⟨

√
𝑃𝑥, (

√
𝑄
√
𝑃)

−1√
𝑄𝑦⟩ + ‖‖‖

√
𝑄𝑦‖‖‖

2

≥ ‖‖‖
√
𝑃𝑥‖‖‖

2
− 2|||

|||
|||(
√
𝑄
√
𝑃)

−1|||
|||
|||
‖‖‖
√
𝑃𝑥‖‖‖

‖‖‖
√
𝑄𝑦‖‖‖ +

‖‖‖
√
𝑄𝑦‖‖‖

2

≥ ‖‖‖
√
𝑃𝑥‖‖‖

2
− 2‖‖‖

√
𝑃𝑥‖‖‖

‖‖‖
√
𝑄𝑦‖‖‖ +

‖‖‖
√
𝑄𝑦‖‖‖

2

= (
‖‖‖
√
𝑃𝑥‖‖‖ −

‖‖‖
√
𝑄𝑦‖‖‖)

2
≥ 0,

which proves that 𝑉 ′ ∈ 𝕊(). Also notice that in space ,

Ker 𝑉 ′ =
{
(𝑥,−𝑦, 𝑦) ∈ ℝ3𝑛 ∶ 𝑃𝑥 + 𝑦 = 𝑥 + 𝑄𝑦 = 0

}
,

Ker (𝐼 − Λ) =
{
(𝑥,−𝑦, 𝑦) ∈ ℝ3𝑛 ∶ 𝑃𝑥 + 𝑦 = 0

}
,

Ker𝑀 =
{
(𝑥,−𝑦, 𝑦) ∈ ℝ3𝑛 ∶ 𝑃𝑥 + 𝑦 = 𝑄−1𝑥 + 𝑦 = 0

}
,

which shows Ker 𝑉 ′ ⊆ Ker (𝐼 − Λ)∩Ker𝑀 within. Then an application ofTheorem 3.17 within
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space  proves that {𝑧𝑘}𝑘∈ℕ converges to 𝑧∗ = (𝑥∗,−𝑦∗, 𝑦∗) ∈  as a primal/dual solution pair of

problem (75) and {𝑉 ′𝑤𝑘}𝑘∈ℕ = {(𝑃𝑢𝑘 + 𝑣𝑘, 0, 𝑢𝑘 + 𝑄𝑣𝑘)}𝑘∈ℕ converges to 𝑉 𝑧∗ = (𝑃𝑥∗ + 𝑦∗, 0, 𝑥∗ +

𝑄𝑦∗).

The convergence of DRS (76) is clearly a special case of Theorem 3.21 with 𝑃 = 𝑄 = 𝐼 and

𝜆𝑘 = 1 for 𝑘 ∈ ℕ. In this case 𝑡𝑘 = 𝑥𝑘 + 𝑦𝑘 → 𝑥∗ + 𝑦∗ and therefore prox𝑔(𝑡𝑘) = 𝑡𝑘 − prox𝑔∗(𝑡𝑘) →

𝑥∗ + 𝑦∗ − prox𝑔∗(𝑥∗ + 𝑦∗) = 𝑥∗ as 𝑘 → ∞.

3.6.4 FIRST-ORDER PRIMAL-DUAL ALGORITHM

This subsection identifies the First-Order Primal-Dual algorithm (FOPD) [19, 41], also re-

ferred as Primal-Dual Hybrid Gradient method (PDHG) [46], to be a special case of explicit IFP²A

(68).

Let ℎ = 0 in composite problem (45), which then reduces to

argmin
𝑥∈ℝ𝑛

{𝑓 (𝑥) + 𝑔(𝐿𝑥)}. (78)

FOPD designates the following scheme for (78), as

For 𝑘 ∈ ℕ

⌊
𝑥𝑘+1 ← prox𝑓 ,𝛼𝐼(𝑥𝑘 − 𝛼−1𝐿T𝑦𝑘)
𝑦𝑘+1 ← prox𝑔∗,𝛽𝐼(𝛽

−1𝐿(2𝑥𝑘+1 − 𝑥𝑘) + 𝑦𝑘)
(79)

where 𝛼, 𝛽 > 0. FOPD (79) is equivalent to a special case of IFP²A (67). To see this, set 𝑧𝑘 ∶=

(𝑥𝑘,−𝐿T𝑦𝑘, 𝑦𝑘) for 𝑘 ∈ ℕ, then FOPD (79) is identical to KM IFP²A (69) with 𝑅 = 𝐼𝑛 ⊗ 𝛼−1𝐼𝑛 ⊗ 𝛽𝐼𝑛,

𝜆𝑘 = 1 for 𝑘 ∈ ℕ and

Λ =
⎡
⎢
⎢
⎢
⎣

𝐼𝑛 0 0
−𝛼𝐼𝑛 0𝑛 0
0 0 𝐼𝑚

⎤
⎥
⎥
⎥
⎦

, 𝐸 =
⎡
⎢
⎢
⎢
⎣

𝐼𝑛 0 0
0 0𝑛 0

2𝛽−1𝐿 0 0𝑚

⎤
⎥
⎥
⎥
⎦

, 𝑀 =
⎡
⎢
⎢
⎢
⎣

0𝑛 −𝐼𝑛 −𝐿T

𝛼𝐼𝑛 𝐼𝑛 0
−𝛽−1𝐿 0 𝐼𝑚

⎤
⎥
⎥
⎥
⎦

.

Notice that in this case

𝑉 =
⎡
⎢
⎢
⎢
⎣

𝛼𝐼𝑛 0 −𝐿T

0 0𝑛 0
−𝐿 0 𝛽𝐼𝑚

⎤
⎥
⎥
⎥
⎦

, 𝑊 = 0.
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Here we consider a generalization of FOPD as

For 𝑘 ∈ ℕ
⎢
⎢
⎢
⎢
⎢
⎣

𝑥𝑘+1 ← prox𝑓 ,𝑃(𝑢𝑘 − 𝑃−1𝐿T𝑣𝑘)
𝑦𝑘+1 ← prox𝑔∗,𝑄(𝑄

−1𝐿(2𝑥𝑘+1 − 𝑢𝑘) + 𝑣𝑘)
𝑢𝑘+1 ← (1 − 𝜆𝑘)𝑢𝑘 + 𝜆𝑘𝑥𝑘+1
𝑣𝑘+1 ← (1 − 𝜆𝑘)𝑣𝑘 + 𝜆𝑘𝑦𝑘+1

(80)

where 𝑃 ∈ 𝕊𝑛+ and 𝑄 ∈ 𝕊𝑚+ are called the preconditioned matrices. Clear that FOPD (79) is a special

case of generalized FOPD (80) with 𝑃 = 𝛼𝐼𝑛 and 𝑄 = 𝛽𝐼𝑚 and 𝜆𝑘 = 1 for 𝑘 ∈ ℕ.

Theorem 3.22. Suppose 𝑃 ∈ 𝕊𝑛+ and 𝑄 ∈ 𝕊𝑚+ such that |||
√
𝑄

−1
𝐿
√
𝑃−1||| ≤ 1, and {𝜆𝑘}𝑘∈ℕ ⊂ [0, 2]. If

∑
𝑘∈ℕ

𝜆𝑘(2 − 𝜆𝑘) = ∞,

then sequence {(𝑥𝑘, 𝑦𝑘)}𝑘∈ℕ generated by generalized FOPD (80) converges to (𝑥∗, 𝑦∗) ∈ ℝ𝑛 ×ℝ𝑚, with

𝑥∗ is a solution of model (78) and {𝑃𝑢𝑘 − 𝐿T𝑣𝑘}𝑘∈ℕ converges to 𝑃𝑥∗ − 𝐿T𝑦∗.

Proof. First notice that with substitutions𝑤𝑘 ∶= (𝑢𝑘,−𝐿T𝑣𝑘, 𝑣𝑘) and 𝑧𝑘 ∶= (𝑥𝑘,−𝐿T𝑦𝑘, 𝑦𝑘) for 𝑘 ∈ ℕ,

the generalized FOPD (80) corresponds to IFP²A (67) with parameters 𝑅 = 𝐼𝑛 ⊗ 𝑃−1 ⊗ 𝑄, and

Λ =
⎡
⎢
⎢
⎢
⎣

𝐼𝑛 0 0
−𝑃 0𝑛 0
0 0 𝐼𝑚

⎤
⎥
⎥
⎥
⎦

, 𝐸 =
⎡
⎢
⎢
⎢
⎣

𝐼𝑛 0 0
0 0𝑛 0

2𝑄−1𝐿 0 0𝑚

⎤
⎥
⎥
⎥
⎦

, 𝑀 =
⎡
⎢
⎢
⎢
⎣

0𝑛 −𝐼𝑛 −𝐿T

𝑃 𝐼𝑛 0
−𝑄−1𝐿 0 𝐼𝑚

⎤
⎥
⎥
⎥
⎦

.

Notice that although Λ ∉ GL2𝑛+𝑚, there still holds Ran ⊆  ∶= {(𝑥, 𝐿T𝑦,−𝑦) ∈ ℝ2𝑛+𝑚 ∶ 𝑥 ∈

ℝ𝑛, 𝑦 ∈ ℝ𝑚} and Λ is invertible in; to see this, for any 𝑧 = (𝑥, 𝐿T𝑦,−𝑦), 𝑤 = (𝑢, 𝐿T𝑣,−𝑣) ∈ , we

have

Λ(𝑧 − 𝑤) = 0 ⟺

{
𝑥 = 𝑢
𝑦 = 𝑣

⟺ 𝑧 = 𝑤,

which proves Λ has an inverse in . Therefore in this case

𝑉 =
⎡
⎢
⎢
⎢
⎣

𝑃 0 −𝐿T

0 0𝑛 0
−𝐿 0 𝑄

⎤
⎥
⎥
⎥
⎦

, 𝑊 = 0.



75

If |||
√
𝑄

−1
𝐿
√
𝑃−1||| ≤ 1, then for 𝑧 = (𝑥, 𝐿T𝑦,−𝑦) ∈  we have

⟨𝑧, 𝑉 𝑧⟩ = ‖𝑥‖2𝑃 + 2⟨𝐿𝑥, 𝑦⟩ + ‖𝑦‖2𝑄

= ‖‖‖
√
𝑃𝑥‖‖‖

2
+ 2⟨

√
𝑄

−1
𝐿
√
𝑃
−1√

𝑃𝑥,
√
𝑄𝑦⟩ + ‖‖‖

√
𝑄𝑦‖‖‖

2

≥ ‖‖‖
√
𝑃𝑥‖‖‖

2
− 2‖‖‖

√
𝑃𝑥‖‖‖

‖‖‖
√
𝑄𝑦‖‖‖ +

‖‖‖
√
𝑄𝑦‖‖‖

2

= (
‖‖‖
√
𝑃𝑥‖‖‖ −

‖‖‖
√
𝑄𝑦‖‖‖)

2
≥ 0,

which proves that 𝑉 ∈ 𝕊(). Also notice that

Ker 𝑉 ′ =
{
(𝑥, 𝐿T𝑦,−𝑦) ∈  ∶ 𝑃𝑥 + 𝐿T𝑦 = 𝐿𝑥 + 𝑄𝑦 = 0

}
,

Ker (𝐼 − Λ) =
{
(𝑥, 𝐿T𝑦,−𝑦) ∈  ∶ 𝑃𝑥 + 𝐿T𝑦 = 0

}
,

Ker𝑀 =
{
(𝑥, 𝐿T𝑦,−𝑦) ∈  ∶ 𝑃𝑥 + 𝐿T𝑦 = 𝐿𝑥 + 𝑄𝑦 = 0

}
.

Then an application of Theorem 3.17 within space  proves that {𝑧𝑘}𝑘∈ℕ converges to 𝑧∗ =

(𝑥∗,−𝐿T𝑦∗, 𝑦∗) ∈  as a primal/dual solution pair of problem (75) and lim𝑘→∞ 𝑉𝑤𝑘 = 𝑉 𝑧∗.

The special case for FOPD (80) with condition 𝜆𝑘 = 1 for 𝑘 ∈ ℕ and |||
√
𝑄

−1
𝐿
√
𝑃−1||| < 1 was

established in [56, 81].

3.6.5 ALTERNATING DIRECTION METHOD OF MULTIPLIERS

This subsection identifies the so-called Alternating Direction Method of Multipliers (ADMM)

[10, 40, 45], which is identical to the split Bregman iteration [47], to be exactly a special case

of KM IFP²A (67). ADMM is known to diverge under certain conditions, however it still has

some important properties, such as dual convergence. Both of the primal/dual convergence are

discussed in this subsection.

Consider the problem
argmin

𝑥1∈ℝ𝑛1 ,𝑥2∈ℝ𝑛2

𝐿1𝑥1+𝐿2𝑥2=𝑐

{
𝑓1(𝑥1) + 𝑓2(𝑥2)

}
, (81)

where 𝑓1 ∈ Γ0(ℝ𝑛1), 𝑓2 ∈ Γ0(ℝ𝑛2), 𝐿1 ∈ ℝ𝑚×𝑛1 , 𝐿2 ∈ ℝ𝑚×𝑛2 and 𝑐 ∈ ℝ𝑚. ADMM designates the
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following scheme to solve (81).

For 𝑘 ∈ ℕ
⎢
⎢
⎢
⎢
⎢
⎣

Find 𝑥2
𝑘+1 ∈ argmin𝑥2∈ℝ𝑛2

{
𝑓2(𝑥2) + 1

2
‖‖𝐿1𝑥

1
𝑘 + 𝐿2𝑥2 + 𝑦𝑘 − 𝑐‖‖

2
}

𝑦𝑘+1 ← 𝑦𝑘 + 𝐿1𝑥1
𝑘 + 𝐿2𝑥2

𝑘+1 − 𝑐
Find 𝑥1

𝑘+1 ∈ argmin𝑥1∈ℝ𝑛1

{
𝑓1(𝑥1) + 1

2
‖‖𝐿1𝑥

1 + 𝐿2𝑥2
𝑘+1 + 𝑦𝑘+1 − 𝑐‖‖

2
}

(82)

where the updates are denoted by ‘∈’ because the solutions might not be unique. Problem (81) is

a special case of composite problem (45), with 𝑓 = 𝑓1 ⊕ 𝑓2, 𝑔 = 𝜄{𝑐}, ℎ = 0 and 𝐿 = 𝐿1 ⊕ 𝐿2, and

ADMM is as well a special case of KM IFP²A (69). To see this, notice that (82) is equivalent to

For 𝑘 ∈ ℕ
⎢
⎢
⎢
⎢
⎣

𝑥1
𝑘+1 ∈ prox𝑓1(𝑥

1
𝑘+1 + 𝐿T

1𝐿1(𝑥
1
𝑘 − 𝑥1

𝑘+1) − 𝐿T
1 (2𝑦𝑘+1 − 𝑦𝑘))

𝑥2
𝑘+1 ∈ prox𝑓2(𝑥

2
𝑘+1 − 𝐿T

2𝑦𝑘+1)
𝑦𝑘+1 ← prox𝜄∗{𝑐}(𝐿1𝑥

1
𝑘 + 𝐿2𝑥2

𝑘+1 + 𝑦𝑘)

(83)

On the other hand, if set 𝑧𝑘 = (𝑥1
𝑘 , 𝑥2

𝑘 ,−𝐿T
1𝑦𝑘,−𝐿T

2𝑦𝑘, 𝑦𝑘) and 𝜆𝑘 = 1 for 𝑘 ∈ ℕ, 𝑅 = 𝐼𝑛1 ⊗ 𝐼𝑛2 ⊗ 𝐼𝑛1 ⊗

𝐼𝑛2 ⊗ 𝐼𝑚 and

Λ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝐼𝑛1 0 0 0 0
0 𝐼𝑛2 0 0 0

−𝐿T
1𝐿1 0 2𝐼𝑛1 0 0
0 0 0 𝐼𝑛2 0
0 0 0 0 𝐼𝑚

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, 𝑀 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0𝑛1 0 0 0 0
0 0𝑛2 0 0 0

𝐿T
1𝐿1 0 𝐼𝑛1 0 0
0 0 0 0𝑛2 0
𝐿1 0 0 0 𝐼𝑚

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

then KM IFP²A (69) reduces to (83). It is straightforward to check that (82) does not generally de-

termine an iteration sequence. Here we discuss the convergence of iteration (82) with assumption

𝐿T
1𝐿1, 𝐿T

2𝐿2 ∈ 𝕊+.

Theorem 3.23. If 𝐿T
1𝐿1 ∈ 𝕊𝑛1+ and 𝐿T

2𝐿2 ∈ 𝕊𝑛2+ , then for any (𝑥1
0 , 𝑥2

0 , 𝑦0) ∈ ℝ𝑛1 ×ℝ𝑛2 ×ℝ𝑚, the sequence

{(𝑥1
𝑘 , 𝑥2

𝑘 , 𝑦𝑘)}𝑘∈ℕ uniquely determined by ADMM (82) converges, with {(𝑥1
𝑘 , 𝑥2

𝑘 )}𝑘∈ℕ converges to a

solution of model (81).

Proof. It is straightforward to check the conditions of Theorem 3.10 holds under assumptions,
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which implies that {(𝑥1
𝑘 , 𝑥2

𝑘 , 𝑦𝑘)}𝑘∈ℕ is well-defined. Then notice that in this case

𝑉 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝐿T
1𝐿1 0 −𝐼𝑛1 0 0
0 0𝑛2 0 0 0
0 0 0𝑛1 0 0
0 0 0 0𝑛2 0
𝐿1 0 0 0 𝐼𝑚

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, 𝑊 = 0.

Then notice that Ran ⊆  ∶= {(𝑥1, 𝑥2,−𝐿T
1𝑦,−𝐿T

2𝑦, 𝑦) ∈ ℝ2𝑛1+2𝑛2+𝑚 ∶ 𝑥1 ∈ ℝ𝑛1 , 𝑥2 ∈ ℝ𝑛2 , 𝑦 ∈ ℝ𝑚}

and for any 𝑧 ∈ ,

𝑉 𝑧 = 𝑉 ′𝑧, where 𝑉 ′ ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝐿T
1𝐿1 0 0 0 𝐿T

1

0 0𝑛2 0 0 0
0 0 0𝑛1 0 0
0 0 0 0𝑛2 0
𝐿1 0 0 0 𝐼𝑚

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Then since for any 𝑧 = (𝑥1, 𝑥2,−𝐿T
1𝑦,−𝐿T

2𝑦, 𝑦) ∈ ,

⟨𝑧, 𝑉 ′𝑧⟩ = ‖‖𝐿1𝑥
1‖‖
2 + 2⟨𝐿1𝑥1, 𝑢⟩ + ‖𝑢‖2 = ‖‖𝐿1𝑥

1 + 𝑢‖‖
2 ≥ 0,

we have 𝑉 ′ ∈ 𝕊(). Also notice that

Ker 𝑉 ′ =
{
(𝑥1, 𝑥2,−𝐿T

1𝑦,−𝐿
T
2𝑦, 𝑦) ∈  ∶ 𝐿1𝑥1 + 𝑢 = 0

}
,

Ker (𝐼 − Λ) =
{
(𝑥1, 𝑥2,−𝐿T

1𝑦,−𝐿
T
2𝑦, 𝑦) ∈  ∶ 𝐿T

1𝐿1𝑥
1 + 𝐿T

1𝑢 = 0
}
,

Ker𝑀 =
{
(𝑥1, 𝑥2,−𝐿T

1𝑦,−𝐿
T
2𝑦, 𝑦) ∈  ∶ 𝐿1𝑥1 + 𝑢 = 0

}
,

which proves that Ker 𝑉 ′ = Ker (𝐼 − Λ) ∩ Ker𝑀 . Then an application of Theorem 3.17 within

space  proves that {𝑧𝑘}𝑘∈ℕ converges to 𝑧∗ = (𝑥1
∗ , 𝑥2

∗ ,−𝐿T
1𝑦∗,−𝐿T

2𝑦∗, 𝑦∗) ∈  as a primal/dual

solution pair of problem (81).

ADMM is also known to have the dual convergence, i.e., the convergence of {(𝐿1𝑥1, 𝐿2𝑥2)}𝑘∈ℕ

towards the dual problem of (81). Here we review it under the framework of IFP²A. Notice that

by substitutions 𝑢𝑘 ∶= 𝑦𝑘, 𝑣1𝑘 ∶= −𝐿1𝑥1
𝑘 , 𝑣2𝑘 ∶= −𝐿2𝑥2

𝑘 and 𝑣3𝑘 ∶= −𝑣1𝑘 − 𝑣2𝑘 for 𝑘 ∈ ℕ, ADMM (83)
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leads us to
For 𝑘 ∈ ℕ
⎢
⎢
⎢
⎢
⎣

𝑣1𝑘+1 = prox(𝑓 ∗
1 ◦(−𝐿T1 ))∗(𝑣

1
𝑘 + 2𝑢𝑘+1 − 𝑢𝑘)

𝑣2𝑘+1 = prox(𝑓 ∗
2 ◦(−𝐿T2 ))∗(𝑣

2
𝑘+1 + 𝑢𝑘+1)

𝑣3𝑘+1 + 𝑣1𝑘+1 − 𝑣1𝑘 + 𝑢𝑘 − 𝑢𝑘+1 = prox𝜄{𝑐}(𝑣
3
𝑘+1 + 𝑣1𝑘+1 − 𝑣1𝑘 + 𝑢𝑘)

(84)

which is identical to KM IFP²A (69) with 𝑅 = 𝐼4𝑚, 𝜆𝑘 = 1 for 𝑘 ∈ ℕ and

Λ =

⎡
⎢
⎢
⎢
⎢
⎣

𝐼𝑚 0 0 0
0 𝐼𝑚 0 0
0 0 𝐼𝑚 0

−𝐼𝑚 𝐼𝑚 0 𝐼𝑚

⎤
⎥
⎥
⎥
⎥
⎦

, 𝐸 =

⎡
⎢
⎢
⎢
⎢
⎣

𝐼𝑚 −𝐼𝑚 −𝐼𝑚 −𝐼𝑚
2𝐼𝑚 0𝑚 0 0
𝐼𝑚 0 𝐼𝑚 0
0 𝐼𝑚 0 𝐼𝑚

⎤
⎥
⎥
⎥
⎥
⎦

, 𝑀 =

⎡
⎢
⎢
⎢
⎢
⎣

0𝑚 0 0 0
−𝐼𝑚 𝐼𝑚 0 0
0 0 0𝑚 0
𝐼𝑚 −𝐼𝑚 0 0𝑚

⎤
⎥
⎥
⎥
⎥
⎦

.

It is straightforward to check that

𝑉 =

⎡
⎢
⎢
⎢
⎢
⎣

𝐼𝑚 −𝐼𝑚 0 0
−𝐼𝑚 𝐼𝑚 0 0
0 0 0𝑚 0
0 0 0 0𝑚

⎤
⎥
⎥
⎥
⎥
⎦

, 𝑊 = 0,

and 𝑉 ∈ 𝕊4𝑚, Ker 𝑉 = Ker (𝐼 − Λ) = Ker𝑀 . Therefore by Theorem 3.16 we directly have the

following convergence theorem for the dual sequence of iteration (82). Notice that by (62), the

dual problem of primal problem (81) could be expressed as

argmin
𝑢∈ℝ𝑚

{
(𝑓 ∗

1 ◦ (−𝐿T
1))(𝑢) + (𝑓 ∗

2 ◦ (−𝐿T
2))(𝑢) + 𝜄∗{𝑐}(𝑢)

}
. (85)

Theorem3.24. For any (𝑥1
0 , 𝑥2

0 , 𝑦0) ∈ ℝ𝑛1×ℝ𝑛2×ℝ𝑚, the sequence {(𝑦𝑘,−𝐿1𝑥1
𝑘 ,−𝐿2𝑥2

𝑘 , 𝐿1𝑥1
𝑘+𝐿2𝑥2

𝑘 )}𝑘∈ℕ

uniquely generated by ADMM (82) converges to a primal/dual solution of the dual problem (85).

The special case of 𝐿2 = 𝐼 was once discussed in [56, 92].

3.6.6 INEXACT UZAWAMETHOD

This subsection identifies Inexact Uzawa (IU) method [11, 111] as a special case of IFP²A (68),

which includes ADMMand the linearized ADMMas special cases. Thenwe propose a generalized

convergence condition for inexact Uzawa method.
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Consider the problem (81). IU designates the following explicit scheme for this problem.

For 𝑘 ∈ ℕ
⎢
⎢
⎢
⎢
⎢
⎣

𝑥2
𝑘+1 ← argmin𝑥2∈ℝ𝑛2

{
𝑓2(𝑥2) + 1

2
‖‖𝐿1𝑥

1
𝑘 + 𝐿2𝑥2 + 𝑦𝑘 − 𝑐‖‖

2 + 1
2
‖‖𝑥

2 − 𝑥2
𝑘
‖‖
2
𝑃2

}

𝑦𝑘+1 ← 𝑦𝑘 + 𝑃−1
3 (𝐿1𝑥1

𝑘 + 𝐿2𝑥2
𝑘+1 − 𝑐)

𝑥1
𝑘+1 ← argmin𝑥1∈ℝ𝑛1

{
𝑓1(𝑥1) + 1

2
‖‖𝐿1𝑥

1 + 𝐿2𝑥2
𝑘+1 + 𝑦𝑘+1 − 𝑐‖‖

2 + 1
2
‖‖𝑥

1 − 𝑥1
𝑘
‖‖
2
𝑃1

}
(86)

where 𝑃1 ∈ 𝕊𝑛1 , 𝑃2 ∈ 𝕊𝑛2 and 𝑃3 ∈ 𝕊𝑚. Notice that with 𝑃1 = 𝑃2 = 0 and 𝑃3 = 𝐼 , IU (86) reduces to

ADMM (82); with 𝑃1 = 𝛼𝐼𝑛1 − 𝐿T
1𝐿1, 𝑃2 = 𝛽𝐼𝑛2 − 𝐿T

2𝐿2 and 𝑃3 = 𝐼𝑚, we have the so-called linearized

ADMM [61, 106]. Other special cases of iteration (86) were discussed in existing literature, e.g.,

the special case 𝐿2 = −𝐼 and 𝑐 = 0 is considered in [111], and the case of scalar 𝑃3 is proposed in

[24] with convergence analysis.

Not surprisingly, IU is another special case of IFP²A (68). Notice that IU (86) is equivalent to

For 𝑘 ∈ ℕ
⎢
⎢
⎢
⎢
⎣

𝑥1
𝑘+1 ← prox𝑓1,𝑄1(𝑥

1
𝑘 − 𝑄−1

1 𝐿T
1 (𝑦𝑘+1 + 𝑃3(𝑦𝑘+1 − 𝑦𝑘)))

𝑥2
𝑘+1 ← prox𝑓2,𝑄2(𝑄

−1
2 𝑃2𝑥2

𝑘 + 𝑄−1
2 𝐿T

2(𝐿2𝑥
2
𝑘+1 − 𝑦𝑘 − 𝑃3(𝑦𝑘+1 − 𝑦𝑘)))

𝑦𝑘+1 ← prox𝜄∗{𝑐},𝑃3(𝑦𝑘 + 𝑃−1
3 (𝐿1𝑥1

𝑘 + 𝐿2𝑥2
𝑘+1))

(87)

where 𝑄1 ∶= 𝑃1 + 𝐿T
1𝐿1 ∈ 𝕊𝑛1+ and 𝑄2 ∶= 𝑃2 + 𝐿T

2𝐿2 ∈ 𝕊𝑛2+ . Set 𝑧𝑘 ∶= (𝑥1
𝑘 , 𝑥2

𝑘 , , 𝑦𝑘) for 𝑘 ∈ ℕ, then the

IFP²A can be recast into

Λ𝑧𝑘+1 + (𝐼 − Λ)𝑧𝑘 = proxΦ,𝑅(𝐸𝑧𝑘+1 +𝑀𝑧𝑘),

where Φ = 𝑓1 ⊕ 𝑓 2 ⊕ 𝜄∗{𝑐}, 𝑅 = 𝑄1 ⊗ 𝑄2 ⊗ 𝑃3 and

Λ =
⎡
⎢
⎢
⎢
⎣

𝐼𝑛1 0 0
0 𝐼𝑛2 0
0 0 𝑃3

⎤
⎥
⎥
⎥
⎦

,

and

𝐸 =
⎡
⎢
⎢
⎢
⎣

0𝑛1 0 −𝑄−1
1 𝐿T

1 (𝐼 + 𝑃3)
0 𝑄−1

2 𝐿T
2𝐿2 −𝑄−1

2 𝐿T
2𝑃3

0 𝑃−1
3 𝐿2 𝑃3 − 𝐼𝑚

⎤
⎥
⎥
⎥
⎦

, 𝑀 =
⎡
⎢
⎢
⎢
⎣

𝐼𝑛1 0 𝑄−1
1 𝐿T

1𝑃3
0 𝑄−1

2 𝑃2 𝑄−1
2 𝐿T

2 (𝑃3 − 𝐼 )
𝑃−1
3 𝐿1 0 2𝐼𝑚 − 𝑃3

⎤
⎥
⎥
⎥
⎦

.
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Then notice that in this case

𝑉 =
⎡
⎢
⎢
⎢
⎣

𝑄1 0 𝐿T
1

0 𝑃2 0
𝐿1 0 𝑃3

⎤
⎥
⎥
⎥
⎦

, 𝑈1 =
⎡
⎢
⎢
⎢
⎣

𝑄1 0 𝐿T
1𝑃3

0 𝑃2 0
𝑃3𝐿1 0 2𝑃 2

3 − 𝑃3

⎤
⎥
⎥
⎥
⎦

.

Assume 𝑃1 ∈ 𝕊𝑛1 , 𝑃2 ∈ 𝕊𝑛2 , 𝑃3 − 𝐼 ∈ 𝕊𝑚. Then it is straightforward to check that

Ker 𝑉 =
{
(𝑥1, 𝑥2, 𝑦) ∈ ℝ𝑛1+𝑛2+𝑚 ∶ 𝑃1𝑥1 = 𝑃2𝑥2 = (𝑃3 − 𝐼 )𝑦 = 𝐿1𝑥1 + 𝑦 = 0

}
,

Ker𝑈1 =
{
(𝑥1, 𝑥2, 𝑦) ∈ ℝ𝑛1+𝑛2+𝑚 ∶ 𝑃1𝑥1 = 𝑃2𝑥2 = (𝑃 2

3 − 𝑃3)𝑦 = 𝐿1𝑥1 + 𝑃3𝑦 = 0
}
,

Ker (𝐼 − Λ) =
{
(𝑥1, 𝑥2, 𝑦) ∈ ℝ𝑛1+𝑛2+𝑚 ∶ (𝑃3 − 𝐼 )𝑦 = 0

}
,

Ker𝑀 =
{
(𝑥1, 𝑥2, 𝑦) ∈ ℝ𝑛1+𝑛2+𝑚 ∶ 𝑄1𝑥 + 𝐿T

1𝑃3𝑦 = 𝑃2𝑥 + 𝐿T
2 (𝑃3 − 𝐼 )𝑦

= 𝐿1𝑥1 + (2𝑃 2
3 − 𝑃3)𝑦 = 0

}
,

therefore we have

Ker 𝑉 = Ker𝑈1 =
{
(𝑥1, 𝑥2, 𝑦) ∈ ℝ𝑛1+𝑛2+𝑚 ∶ 𝑃1𝑥1 = 𝑃2𝑥2 = (𝑃3 − 𝐼 )𝑦 = 𝐿1𝑥1 + 𝑦 = 0

}

⊆ Ker (𝐼 − Λ) ∩ Ker𝑀.

Then a direct application of Theorem 3.16 proves the following general convergence theorem of

IU.

Theorem 3.25. Suppose 𝑃1 ∈ 𝕊𝑛1 , 𝑃2 ∈ 𝕊𝑛2 and 𝑃3 − 𝐼 ∈ 𝕊𝑚. If

𝑃1 + 𝐿T
1𝐿1 ∈ 𝕊𝑛1+ and 𝑃2 + 𝐿T

2𝐿2 ∈ 𝕊𝑛1+ ,

then for any (𝑥1
0 , 𝑥2

0 , 𝑦0) ∈ ℝ𝑛1 ×ℝ𝑛2 ×ℝ𝑚, the sequence {(𝑥1
𝑘 , 𝑥2

𝑘 , 𝑦𝑘)}𝑘∈ℕ generated by IU (86) converges

to a primal/dual solution pair of model (81).

Theorem 3.25 has a direct corollary for linearized ADMM. Linearized ADMM explicitly reads

For 𝑘 ∈ ℕ
⎢
⎢
⎢
⎢
⎣

𝑥2
𝑘+1 ← prox𝑓2,𝛽𝐼𝑛2(𝑥

2
𝑘 − 𝛽−1𝐿T

2(𝐿1𝑥
1
𝑘 + 𝐿2𝑥2

𝑘 + 𝑦𝑘 − 𝑐))
𝑦𝑘+1 ← 𝑦𝑘 + 𝐿1𝑥1

𝑘 + 𝐿2𝑥2
𝑘+1 − 𝑐

𝑥1
𝑘+1 ← prox𝑓1,𝛼𝐼𝑛1(𝑥

1
𝑘 − 𝛼−1𝐿T

1 (2𝑦𝑘+1 − 𝑦𝑘))

(88)
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Theorem 3.26. Suppose 𝛼, 𝛽 > 0. If

𝛼 ≥ |||𝐿1|||2 and 𝛽 ≥ |||𝐿2|||2,

then for any (𝑥1
0 , 𝑥2

0 , 𝑦0) ∈ ℝ𝑛1×ℝ𝑛2×ℝ𝑚, the sequence {(𝑥1
𝑘 , 𝑥2

𝑘 , 𝑦𝑘)}𝑘∈ℕ generated by linearized ADMM

(88) converges to a primal/dual solution pair of model (81).

Proof. Put 𝑃1 = 𝛼𝐼𝑛1 − 𝐿T
1𝐿1,𝑃2 = 𝛼𝐼𝑛2 − 𝐿T

2𝐿2 and 𝑃3 = 𝐼𝑚 in Theorem 3.25 and the result directly

follows.

Convergence theorem with conditions 𝛼 > |||𝐿1|||2 and 𝛽 > |||𝐿2|||2 for linearized ADMM was

proposed in [61].
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CHAPTER 4

INEXACT IMPLICIT FIXED-POINT PROXIMITY ALGORITHMS

FOR NONSMOOTH CONVEX OPTIMIZATION

In this chapter we propose the framework of Inexact Implicit Fixed-Point Proximity Algo-

rithms (IIFP²A) by a combination of frameworks of inexact fixed-point iterations proposed in

Chapter 2 and implicit fixed-point proximity algorithms proposed in Chapter 3. This framework

systematically generalizes explicit FP²As discussed in Section 3.6. To deal with the fully implicit

iterations of IFP²A, we again apply the matrix splitting technique to IFP²A, resulting in a class

of inexact fixed-point proximity algorithms with inner loop, i.e., IIFP²A. Then a careful choice

of parameters ensures that IIFP²A falls into the intersection of the frameworks of inexact fixed-

point iterations and implicit fixed-point proximity algorithms, which therefore establishes the

framework of IIFP²A. As concrete applications of IIFP²A, we propose the classes of inexact block-

separable fixed-point proximity algorithms and 𝜃-inexact block-separable fixed-point proximity

algorithms with convergence analysis.

In Chapter 3 we answer the first two questions of IFP²A, i.e.,

(Q1) The well-definedness of the IFP²A iteration.

(Q2) The convergence of the IFP²A.

by Theorems 3.10, 3.16 and 3.17, and cover plenty of existing explicit FP²As with generalizations.

However, this framework of IFP²A fails when the iterations in (64) are implicit and cannot be

exactly updated. In this chapter we answer the remaining two questions for IFP²A, i.e.,

(Q3) The feasible computation methods, which might be inexact, as IFP²A is implicit.

(Q4) The convergence of the inexact IFP²A.

Although the main model (44) has more applications in vast kinds of problems, it is far more

difficult to propose a comprehensive framework of inexact IFP²A due to its complexity. To have a

more concise and condensed analysis, we in this chapter mainly focus in the following simplified
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model
argmin

𝑥∈ℝ𝑛
{𝑓 (𝑥) + 𝑔(𝐿𝑥)}, (89)

where 𝑓 ∈ Γ0(ℝ𝑛), 𝑔 ∈ Γ0(ℝ𝑚) and 𝐿 ∈ ℝ𝑚×𝑛. Such framework could be easily extended to the full

model (44) and the corresponding IFP²A. By Theorem 3.5, all the primal/dual pairs of solutions

for (89) could be characterized as fixed points of

𝑧∗ = proxΦ,𝑅((𝐼 + 𝑅−1𝑆)𝑧∗), (90)

where Φ = 𝑓 ⊕𝑔∗, 𝑅 ∈ 𝕊𝑛+𝑚 and 𝑆 ∈ ℝ(𝑛+𝑚)×(𝑛+𝑚) such that 𝑆(𝑥, 𝑦) = (−𝐿T𝑦, 𝐿𝑥) for (𝑥, 𝑦) ∈ ℝ𝑛×ℝ𝑚.

Then by (67), KM IFP²A for (89) is read

For 𝑘 ∈ ℕ

⌊
Λ𝑧𝑘+1 + (𝐼 − Λ)𝑤𝑘 = proxΦ,𝑅(𝐸𝑧𝑘+1 +𝑀𝑤𝑘)
𝑤𝑘+1 ← (1 − 𝜆𝑘)𝑤𝑘 + 𝜆𝑘𝑧𝑘+1

(91)

Two common explicit FP²As, namely Douglas-Rachford splitting algorithm and first-order

primal-dual algorithm, and their generalizations are discussed in Sections 3.6.3 and 3.6.4. These

two explicit algorithms (77) and (80) are corresponding to (91) with parameters 𝑅 = 𝑃 ⊗ 𝑄 with

𝑃 ∈ 𝕊𝑛+ and 𝑄 ∈ 𝕊𝑚+ , Λ = 𝐼𝑛+𝑚 and

𝐸 = [
0𝑛 −2𝑃−1𝐿T

0 0𝑚 ] or [
0𝑛 0

−2𝑄−1𝐿 0𝑚]
.

Due to the strictly block-triangular structures of 𝐸, iterations (77) and (80) are indeed explicit

algorithms. In this chapter we deal with the general choice of 𝐸 ∈ ℝ(𝑛+𝑚)×(𝑛+𝑚) with 𝑅 = 𝑃 ⊗ 𝑄

with 𝑃 ∈ 𝕊𝑛+ and 𝑄 ∈ 𝕊𝑚+ , Λ = 𝐼𝑛+𝑚.

4.1 INEXACT BLOCK-SEPARABLE FIXED-POINT PROXIMITY ALGORITHM

This section proposes the Inexact IFP²A (IIFP²A) for (91) with general choice of 𝐸, in which

case IFP²A (91) is generally implicit and cannot be exactly updated. To deal with the implicitness

in iteration, we adopt the matrix splitting technique again to have an explicit but inexact scheme.

As applications of IIFP²A, we propose the Inexact Block-Separable FP²As (IBSFP²As) and 𝜃-IBSFP²A.

Recall that to handle the expanding property of 𝐼 +𝑅−1𝑆 in the derivation of IFP²A, we adopt
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the matrix splitting technique, which then provides us IFP²A with novel analytic properties. Here

the same idea is applied again to handle the implicitness of IFP²A with general 𝐸. Specifically, we

split 𝐸 = 𝐴 + 𝐵 with 𝐴, 𝐵 ∈ ℝ(𝑛+𝑚)×(𝑛+𝑚) and introduce the inner loop

For 𝑙 ∈ ℕ
⌊ 𝑧𝑙+1𝑘 = proxΦ,𝑅(𝐴𝑧

𝑙+1
𝑘 + 𝐵𝑧𝑙𝑘 +𝑀𝑤𝑘)

(92)

to proximate the unknown evaluation of 𝑤𝑘, which leads us to the Inexact IFP²A (IIFP²A)

For 𝑘 ∈ ℕ
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Do 𝑙 ∈ ℕ
||| 𝑧

𝑙+1
𝑘 = proxΦ,𝑅(𝐴𝑧

𝑙+1
𝑘 + 𝐵𝑧𝑙𝑘 +𝑀𝑤𝑘)

While ‖‖𝑧
𝑙+1
𝑘 − 𝑧𝑙𝑘‖‖ > 𝛿𝑘

�̃�𝑘+1 ← 𝑧𝑙+1𝑘
�̃�𝑘+1 ← (1 − 𝜆𝑘)�̃�𝑘 + 𝜆𝑘�̃�𝑙+1𝑘

(93)

where {𝑧0𝑘}𝑘∈ℕ ⊂ ℝ𝑛+𝑚 are initial inputs for inner loops, {𝜆𝑘}𝑘∈ℕ ⊂ ℝ and {𝛿𝑘}𝑘∈ℕ ⊂ (0,+∞) controls

the successive errors in inner loops. To obtain an explicit iterative method, here 𝐴 is chosen to

be strictly block-triangular, i.e.,

𝐴 = [
0𝑛 0
𝐴21 0𝑚]

or [
0𝑛 𝐴12

0 0𝑚 ]
,

where 𝐴21 ∈ ℝ𝑚×𝑛 and 𝐴12 ∈ ℝ𝑛×𝑚. This results in the following two Inexact Block-Separable

Fixed-Point Proximity Algorithms (IBSFP²As), as

For 𝑘 ∈ ℕ
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Do 𝑙 ∈ ℕ
|||||||||

𝑥 𝑙+1
𝑘 ← prox𝑓 ,𝑃((𝐼 −𝑀11)𝑥 𝑙

𝑘 − (𝑃−1𝐿∗ +𝑀12)𝑦 𝑙
𝑘

+𝑀11�̃�𝑘 +𝑀12�̃�𝑘)
𝑦 𝑙+1
𝑘 ← prox𝑔∗,𝑄(𝐴21(𝑥 𝑙+1

𝑘 − 𝑥 𝑙
𝑘) + (𝑄−1𝐿 −𝑀21)𝑥 𝑙

𝑘
+(𝐼 −𝑀22)𝑦 𝑙

𝑘 +𝑀21�̃�𝑘 +𝑀22�̃�𝑘)
While ‖𝑥 𝑙+1

𝑘 − 𝑥 𝑙
𝑘‖

2 + ‖𝑦 𝑙+1
𝑘 − 𝑦 𝑙

𝑘‖
2 > 𝛿2𝑘

�̃�𝑘+1 ← 𝑥 𝑙+1
𝑘 , �̃�𝑘+1 ← 𝑦 𝑙+1

𝑘
�̃�𝑘+1 ← 𝜆�̃�𝑘 + (1 − 𝜆)�̃�𝑘+1, �̃�𝑘+1 ← 𝜆𝑘 �̃�𝑘 + (1 − 𝜆𝑘)�̃�𝑘+1

(94)



87

and
For 𝑘 ∈ ℕ
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Do 𝑙 ∈ ℕ
|||||||||

𝑦 𝑙+1
𝑘 ← prox𝑔∗,𝑄((𝑄

−1𝐿 −𝑀21)𝑥 𝑙
𝑘 + (𝐼 −𝑀22)𝑦 𝑙

𝑘
+𝑀21�̃�𝑘 +𝑀22�̃�𝑘)

𝑥 𝑙+1
𝑘 ← prox𝑓 ,𝑃((𝐼 −𝑀11)𝑥 𝑙

𝑘 + 𝐴12(𝑦 𝑙+1
𝑘 − 𝑦 𝑙

𝑘)
−(𝑃−1𝐿∗ +𝑀12)�̃� 𝑙

𝑘 +𝑀11𝑢𝑘 +𝑀12�̃�𝑘)
While ‖𝑥 𝑙+1

𝑘 − 𝑥 𝑙
𝑘‖

2 + ‖𝑦 𝑙+1
𝑘 − 𝑦 𝑙

𝑘‖
2 > 𝛿2𝑘

�̃�𝑘+1 ← 𝑥 𝑙+1
𝑘 , �̃�𝑘+1 ← 𝑦 𝑙+1

𝑘
�̃�𝑘+1 ← 𝜆�̃�𝑘 + (1 − 𝜆)�̃�𝑘+1, �̃�𝑘+1 ← 𝜆𝑘 �̃�𝑘 + (1 − 𝜆𝑘)�̃�𝑘+1

(95)

where {(𝑥0
𝑘 , 𝑦0

𝑘 )}𝑘∈ℕ ⊂ ℝ𝑛+𝑚 are initial inputs for each inner loop, and {𝛿𝑘}𝑘∈ℕ ⊂ (0,+∞) are the

controller of the successive error in inner loop.

IBSFP²As (94) and (95) serve as feasible computation methods for IFP²A and therefore answer

the question (Q3). For concrete applications, we propose the following 𝜃-IBSFP²A as a special

cases of IBSFP²A. Let

𝐴 = [
0𝑛 −(1 + 𝜃)𝑃−1𝐿T

0 0𝑚 ], 𝐵 = [
0𝑛 0

(1 − 𝜃)𝑄−1𝐿 0𝑚]
, 𝑀 = [

𝐼𝑛 𝜃𝑃−1𝐿T

𝜃𝑄−1𝐿 𝐼𝑚 ], (96)

then IBSFP²A (95) reduces to

For 𝑘 ∈ ℕ
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Do 𝑙 ∈ ℕ
|||||

𝑦 𝑙+1
𝑘 ← prox𝑔∗,𝑄(𝑄

−1𝐿((1 − 𝜃)𝑥 𝑙
𝑘 + 𝜃�̃�𝑘) + �̃�𝑘)

𝑥 𝑙+1
𝑘 ← prox𝑓 ,𝑃(𝑃

−1𝐿T(𝜃�̃�𝑘 − (1 + 𝜃)𝑦 𝑙+1
𝑘 ) + �̃�𝑘)

While ‖𝑥 𝑙+1
𝑘 − 𝑥 𝑙

𝑘‖
2 + ‖𝑦 𝑙+1

𝑘 − 𝑦 𝑙
𝑘‖

2 > 𝛿2𝑘
�̃�𝑘+1 ← 𝑥 𝑙+1

𝑘 , �̃�𝑘+1 ← 𝑦 𝑙+1
𝑘

�̃�𝑘+1 ← 𝜆𝑘�̃�𝑘 + (1 − 𝜆𝑘)�̃�𝑘+1, �̃�𝑘+1 ← 𝜆𝑘 �̃�𝑘 + (1 − 𝜆𝑘)�̃�𝑘+1

(97)

Also notice that 𝜃-IBSFP²A (97) is identical to

For 𝑘 ∈ ℕ
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Do 𝑙 ∈ ℕ
|||||

𝑥 𝑙+1
𝑘 ← prox𝑓 ,𝑃(𝑃

−1𝐿T(𝜃�̃�𝑘 − (1 + 𝜃)𝑦 𝑙
𝑘) + �̃�𝑘)

𝑦 𝑙+1
𝑘 ← prox𝑔∗,𝑄(𝑄

−1𝐿((1 − 𝜃)𝑥 𝑙+1
𝑘 + 𝜃�̃�𝑘) + �̃�𝑘)

While ‖𝑥 𝑙+1
𝑘 − 𝑥 𝑙

𝑘‖
2 + ‖𝑦 𝑙+1

𝑘 − 𝑦 𝑙
𝑘‖

2 > 𝛿2𝑘
�̃�𝑘+1 ← 𝑥 𝑙+1

𝑘 , �̃�𝑘+1 ← 𝑦 𝑙+1
𝑘

�̃�𝑘+1 ← 𝜆�̃�𝑘 + (1 − 𝜆)�̃�𝑘+1, �̃�𝑘+1 ← 𝜆�̃�𝑘 + (1 − 𝜆)�̃�𝑘+1

(98)
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which corresponds to the parameter set

𝐴′ = [
0𝑛 0

(1 − 𝜃)𝑄−1𝐿 0𝑚]
, 𝐵′ = [

0𝑛 −(1 + 𝜃)𝑃−1𝐿T

0 0𝑚 ], 𝑀 ′ = [
𝐼𝑛 𝜃𝑃−1𝐿T

𝜃𝑄−1𝐿 𝐼𝑚 ]. (99)

The correspondence between (97) and (98) will contribute to the final convergence theorem of

𝜃-IBSFP²A.

In this section we apply matrix splitting technique to IFP²A when the updates are implicit,

which results in the IIFP²A (91). To have explicit schemes, IBSFP²As (94) and (95), as special cases

of IIFP²A, are proposed as answers to (Q3). As a concrete application of IIFP²A, we propose the

𝜃-IBSFP²A (97). In the following sections, we consider the framework of convergence analysis of

IIFP²A.

4.2 INNER CONVERGENCE ANALYSIS

In this section we consider the convergence of the inner loop (92) embedded in IIFP²A. Cor-

responding corollary for the inner loop of 𝜃-IBSFP²A (97) is proposed.

IIFP²A (93) provides a class of algorithms serve as answers to (Q3). However at the same

time IIFP²A raises two other questions, i.e.,

(Q3.1) The convergence of the inner loop.

(Q3.2) Algorithm is executable, i.e., algorithm quits inner loop in finite steps.

In the following theorem we answer (Q3.1) and (Q3.2) via the convergence theorem and the

a posteriori error estimation for inner loop of IIFP²A (92). Recall that in this case 𝑃0 = Γ𝑅(𝐼 −𝐸) =

Γ(𝑅𝑀 −𝑆), and define 𝑈 ∶= Γ𝑅(𝐼 −𝐴) = Γ𝑅𝐵+𝑃0. For 𝐴 ∈ 𝕊𝑛+, denote 𝐴−1/2 ∶=
√
𝐴−1 for clearness.

Theorem 4.1. Suppose that 𝑅 ∈ 𝕊𝑛+𝑚+ , 𝑃0, 𝑈 ∈ ℙ𝑛+𝑚
+ and {𝛿𝑘}𝑘∈ℕ ⊂ (0,+∞). If

||||||𝑈
−1/2Γ𝑅𝐵𝑈−1/2|||||| < 1, (100)

then for any (�̃�0, �̃�0) ∈ ℝ𝑛+𝑚 and {(𝑥0
𝑘 , 𝑦0

𝑘 )}𝑘∈ℕ ⊂ ℝ𝑛+𝑚, the IIFP²A (93) is executable. Moreover, there

exists 𝑐 > 0 such that
‖�̃�𝑘+1 −  �̃�𝑘‖ ≤ 𝑐 ⋅ 𝛿𝑘, for all 𝑘 ∈ ℕ.

Proof. Denote �̃�𝑘 ∶= (�̃�𝑘, �̃�𝑘), 𝑧𝑙𝑘 ∶= (𝑥 𝑙
𝑘, 𝑦 𝑙

𝑘) and �̃�𝑘 ∶= (�̃�𝑘, �̃�𝑘) for 𝑘, 𝑙 ∈ ℕ. By Theorem 3.10,  �̃�𝑘
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uniquely exists for any �̃�𝑘 ∈ ℝ𝑛+𝑚, which satisfies

−𝑃0 �̃�𝑘 + Γ𝑅𝑀�̃�𝑘 ∈ 𝜕ΦΓ( �̃�𝑘).

On the other hand, by Theorem 3.10 and (92) we have that 𝑧𝑙+1𝑘 exists and uniquely satisfies

Γ𝑅(𝐴 − 𝐼 )𝑧𝑙+1𝑘 + Γ𝑅𝐵𝑧𝑙𝑘 + Γ𝑅𝑀�̃�𝑘 ∈ 𝜕ΦΓ(𝑧
𝑙+1
𝑘 ).

Then, by monotonicity of subdifferential, we have

0 ≤ ⟨𝑧𝑙+1𝑘 −  �̃�𝑘, Γ𝑅(𝐴 − 𝐼 )(𝑧𝑙+1𝑘 −  �̃�𝑘) + Γ𝑅𝐵(𝑧𝑙𝑘 −  �̃�𝑘)⟩
= −‖‖𝑧

𝑙+1
𝑘 −  �̃�𝑘‖‖

2
𝑈 + ⟨𝑧𝑙+1𝑘 −  �̃�𝑘, Γ𝑅𝐵(𝑧𝑙𝑘 −  �̃�𝑘)⟩

≤ −‖‖𝑧
𝑙+1
𝑘 −  �̃�𝑘‖‖

2
𝑈 + ||||||𝑈

−1/2Γ𝑅𝐵𝑈−1/2||||||‖‖𝑧
𝑙+1
𝑘 −  �̃�𝑘‖‖𝑈 ‖‖𝑧

𝑙
𝑘 −  �̃�𝑘‖‖𝑈 .

Thus, if 𝜌 ∶= |||𝑈−1/2Γ𝑅𝐵𝑈−1/2||| < 1, then we would have ‖𝑧𝑙+1𝑘 −  �̃�𝑘‖𝑈 ≤ 𝜌‖𝑧𝑙𝑘 −  �̃�𝑘‖𝑈 , which

proves the linear convergence of the sequence {𝑧𝑙𝑘}𝑙∈ℕ towards  �̃�𝑘. Then by ‖𝑧𝑙+1𝑘 − 𝑧𝑙𝑘‖𝑈 ≤ (1 +

𝜌)‖𝑧𝑙𝑘 −  �̃�𝑘‖𝑈 , IBSFP²As quit inner loop in finite steps. Finally, again by the monotonicity of

subdifferential, we have

0 ≤ ⟨𝑧𝑙+1𝑘 −  �̃�𝑘,−𝑃0(𝑧𝑙+1𝑘 −  �̃�𝑘) + Γ𝑅𝐵(𝑧𝑙+1𝑘 − 𝑧𝑙𝑘)⟩
≤ −‖‖𝑧

𝑙+1
𝑘 −  �̃�𝑘‖‖

2
𝑃0
+ ||||||𝑃0

−1/2Γ𝑅𝐵𝑃0−
1/2||||||‖‖𝑧

𝑙+1
𝑘 −  �̃�𝑘‖‖𝑃0

‖‖𝑧
𝑙+1
𝑘 − 𝑧𝑙𝑘‖‖𝑃0 ,

which along with the quit condition of inner loop, proves the declared a posteriori error estima-

tion.

Theorem 4.1 ensures the IBSFP²As are executable and have their inner loop converge. Here

we apply Theorem 4.1 to 𝜃-IBSFP²A. To this end we need the following lemmas.

Lemma 4.2. Suppose 𝑅 ∈ 𝕊𝑛+𝑚+ and 𝑃0 ∈ ℙ𝑛+𝑚
+ . If

2|||Γ𝑅𝐵|||||||||𝑃0
−1|||||| < 1,

then 𝑈 ∈ ℙ𝑛+𝑚
+ and |||𝑈−1/2Γ𝑅𝐵𝑈−1/2||| < 1.

Proof. Set 𝑉 ∶= 𝑃0 and Δ ∶= Γ𝑅𝐵, then we have 𝑈 = 𝑉 + Δ and by condition, |||Δ||||||𝑉 −1||| < 1/2.

Notice that |||Δ||| = |||Δ + ΔT|||/2 ≤ |||Δ|||, we have |||𝑉 −1/2Δ𝑉 −1/2||| ≤ |||Δ||||||𝑉 −1||| < 1/2, which means
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𝑈 ∈ ℙ𝑛+𝑚
+ . Furthermore, since |||𝑉 −1Δ||| < |||𝑉 −1||||||Δ||| < 1, we have

||||||𝑈
−1|||||| − ||||||𝑉

−1|||||| ≤ ||||||(𝑉 + Δ)−1 − 𝑉 −1|||||| ≤ ||||||𝑉
−1||||||

|||
|||
|||𝐼 − (𝐼 + 𝑉 −1Δ)

−1|||
|||
|||.

By Neumann series (𝐼 + 𝑉 −1Δ)−1 = ∑∞
𝑛=0(−𝑉 −1Δ)𝑛, we have

|||
|||
|||𝐼 − (𝐼 + 𝑉 −1Δ)

−1|||
|||
||| =

|||||

|||||

|||||
𝐼 −

∞

∑
𝑛=0

(−𝑉 −1Δ)
𝑛
|||||

|||||

|||||

≤
∞

∑
𝑛=1

||||||𝑉
−1Δ||||||

𝑛 =
|||𝑉 −1Δ|||

1 − |||𝑉 −1Δ|||

≤
|||𝑉 −1||||||Δ|||

1 − |||𝑉 −1||||||Δ|||
,

which implies

||||||𝑈
−1/2Γ𝑅𝐵𝑈−1/2|||||| ≤ ||||||𝑈

−1|||||||||Δ||| ≤ ||||||𝑉
−1|||||||||Δ||| +

|||𝑉 −1|||2|||Δ|||2

1 − |||𝑉 −1||||||Δ|||
=

|||𝑉 −1||||||Δ|||
1 − |||𝑉 −1||||||Δ|||

.

The last inequality shows that |||𝑉 −1||||||Δ||| < 1/2 is sufficient for |||𝑈−1/2Γ𝑅𝐵𝑈−1/2||| < 1.

Lemma 4.3. Suppose 𝑃 ∈ 𝕊𝑛+, 𝑄 ∈ 𝕊𝑚+ , 𝐿 ∈ ℝ𝑛×𝑚, and set

𝐴 ∶= [
𝑃 𝐿
𝐿T 𝑄].

Then the following statements hold.

(i) 𝐴 ∈ 𝕊𝑛+𝑚 if and only if |||𝑃−1/2𝐿𝑄−1/2||| ≤ 1.

(ii) 𝐴 ∈ 𝕊𝑛+𝑚+ if and only if |||𝑃−1/2𝐿𝑄−1/2||| < 1.

(iii) If 𝐴 ∈ 𝕊𝑛+𝑚+ , then |||𝐴−1|||−1 ≥ (1 − |||𝑃−1/2𝐿𝑄−1/2|||)/max {|||𝑃−1|||, |||𝑄−1|||}.

Proof. Suppose |||𝑃−1/2𝐿𝑄−1/2||| ≤ 1. Then for any (𝑥, 𝑦) ∈ ℝ𝑛+𝑚, if define �̃� ∶= 𝑃 1/2𝑥 and �̃� ∶= 𝑄1/2𝑦,

then we have

[𝑥∗ 𝑦∗][
𝑃 𝐿
𝐿∗ 𝑄][

𝑥
𝑦] =

‖�̃�‖2 + ‖�̃�‖2 + 2⟨�̃�, 𝑃−1/2𝐿𝑄−1/2�̃�⟩

≥ ‖�̃�‖2 + ‖�̃�‖2 − 2||||||𝑃
−1/2𝐿𝑄−1/2||||||‖�̃�‖‖�̃�‖

≥ (‖�̃�‖ − ‖�̃�‖)2 ≥ 0,
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which proves 𝐴 ∈ 𝕊𝑛+𝑚. Conversely, if |||𝑃−1/2𝐿𝑄−1/2||| > 1, then there exists 𝑦 ∈ ℝ𝑚 such that

‖𝑃−1/2𝐿𝑦‖ > ‖𝑄1/2𝑦‖. Set 𝑥 = −𝑃−1𝐿𝑦 then we have

[𝑥∗ 𝑦∗][
𝑃 𝐿
𝐿∗ 𝑄][

𝑥
𝑦] =

‖‖𝑄
1/2𝑦‖‖

2 − ‖‖𝑃
−1/2𝐿𝑦‖‖

2 < 0,

which means 𝐴 ∉ 𝕊𝑛+𝑚. The rest could be proved by analogous argument, or see [56].

Combine Lemmas 4.2 and 4.3 and Theorem 4.1, then we have the following convergence

theorem for the inner loop of 𝜃-IBSFP²A.

Theorem 4.4. Suppose 𝑃 ∈ 𝕊𝑛+, 𝑄 ∈ 𝕊𝑚+ and 𝜃 ∈ ℝ. If 𝜃 ≠ 0 and

2min {|1 − 𝜃|, |1 + 𝜃|} ⋅max
{||||||𝑃

−1||||||, ||||||𝑄
−1||||||

}
|||𝐿||| ≤ 1 − |𝜃|||||||𝑄

−1/2𝐿𝑃−1/2||||||, (101)

or, 𝜃 = 0 and
2max

{||||||𝑃
−1||||||, ||||||𝑄

−1||||||
}
|||𝐿||| < 1,

then for any 𝑘 ∈ ℕ and (�̃�𝑘, �̃�𝑘), (𝑥0
𝑘 , 𝑦0

𝑘 ) ∈ ℝ𝑛+𝑚, sequence {(𝑥 𝑙
𝑘, 𝑦 𝑙

𝑘)}𝑙∈ℕ generated by the inner loop

of 𝜃-IBSFP²A (97) converges to (�̃�𝑘, �̃�𝑘). Moreover, there exists 𝑐 > 0 such that

‖(�̃�𝑘+1, �̃�𝑘+1) − (�̃�𝑘, �̃�𝑘)‖ ≤ 𝑐 ⋅ 𝛿𝑘, for all 𝑘 ∈ ℕ.

Proof. If |𝜃||||𝑄−1/2𝐿𝑃−1/2||| = 1, then (101) implies |𝜃| = 1. This reduces the inner loop of 𝜃-IBSFP²A

to an explicit update, which converges and quits immediately after the first inner iteration. Same

argument proves the case of 𝐿 = 0. Then we assume 𝐿 ≠ 0 and |𝜃||||𝑄−1/2𝐿𝑃−1/2||| < 1.

If |𝜃||||𝑄−1/2𝐿𝑃−1/2||| < 1, then Lemma 4.3 implies 𝑅𝑀 ∈ 𝕊𝑛+𝑚+ and therefore, for Γ = 𝛼𝐼𝑛 ⊗ 𝛽𝐼𝑚

with 𝛼, 𝛽 > 0 closed enough to each other, we have 𝑃0 ∈ ℙ𝑛+𝑚
+ and, again by Lemma 4.3, |||𝑃0−1|||−1 ≥

(1 − |𝛼(1 + 𝜃) + 𝛽(𝜃 − 1)|/(2
√
𝛼𝛽)|||𝑄−1/2𝐿𝑃−1/2|||)/max {|||𝑃−1|||/𝛼, |||𝑄−1|||/𝛽} and |||Γ𝑅𝐵||| ≤ 𝛽|1 − 𝜃||||𝐿|||.

Therefore we have

|||Γ𝑅𝐵|||||||||𝑃0
−1|||||| ≤

2|1 − 𝜃||||𝐿|||max
{
𝜅2|||𝑃−1|||, |||𝑄−1|||

}

2 − |𝜅−1(1 + 𝜃) + 𝜅(𝜃 − 1)||||𝑄−1/2𝐿𝑃−1/2|||
,

where 𝜅 ∶=
√
𝛽/𝛼. Define the right-hand side of the above as ℎ(𝜅), and by Theorem 4.1, it is

sufficient to show that for any 𝜌 > 0, there always exists 𝜅 ∈ (1 − 𝜌, 1 + 𝜌) such that ℎ(𝜅) < 1/2.
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If 𝜃 = 0, then by conditions, ℎ(1) < 1/2, which finishes the proof. Assume 𝜃 ≠ 0. First by (101),

we assume that
2|1 − 𝜃|max

{||||||𝑃
−1||||||, ||||||𝑄

−1||||||
}
|||𝐿||| ≤ 1 − |𝜃|||||||𝑄

−1/2𝐿𝑃−1/2||||||

holds. Then we have ℎ(1) ≤ 1/2. If ℎ(1) < 1/2 then the proof is finished with setting 𝛼 = 𝛽.

Suppose ℎ(1) = 1/2 and 𝜅 = 1 + 𝜀. Then observe that we have

||𝜅
−1(1 + 𝜃) + 𝜅(𝜃 − 1)|| = ||(1 + 𝜀)−1(1 + 𝜃) + (1 + 𝜀)(𝜃 − 1)||

= |||(1 − 𝜀 + 𝑂(𝜀2))(1 + 𝜃) + (1 + 𝜀)(𝜃 − 1)|||
= 2|𝜃 − 𝜀| + 𝑂(𝜀2),

which means, along with the assumption |𝜃| ≠ 0, for sufficiently small |𝜀| there holds

||𝜅
−1(1 + 𝜃) + 𝜅(𝜃 − 1)|| = 𝑂(𝜀2) +

{
2|𝜃| + 2𝜀, 𝜃 < 0,
2|𝜃| − 2𝜀, 𝜃 > 0.

Then we discuss in cases |||𝑃−1||| > |||𝑄−1|||, |||𝑃−1||| < |||𝑄−1||| and |||𝑃−1||| = |||𝑄−1||| and 𝜃 > 0, 𝜃 < 0.

Denote 𝐶 ∶= |||𝑄−1/2𝐿𝑃−1/2||| > 0 for abbreviation.

Suppose |||𝑃−1||| > |||𝑄−1||| and 𝜃 < 0. Then for sufficiently small |𝜀|,

ℎ(𝜅) =
2𝜅2|1 − 𝜃||||𝐿||||||𝑃−1|||

2 − |𝜅−1(1 + 𝜃) + 𝜅(𝜃 − 1)|𝐶

= ℎ(1) +
2 − 2|𝜃|𝐶 + 𝐶
(1 − |𝜃|𝐶)2

|1 − 𝜃||||𝐿|||||||||𝑃
−1||||||𝜀 + 𝑂(𝜀2),

which, along with |𝜃|𝐶 < 1 and |𝜃| ≠ 1, proves that ℎ has a positive slope at 𝜅 = 1. This proves

the existence of 𝜌 > 0 such that ℎ(𝜅) < 1/2 for all 𝜅 ∈ (1 − 𝜌, 1) when |||𝑃−1||| > |||𝑄−1||| and 𝜃 < 0.

Suppose |||𝑃−1||| < |||𝑄−1|||. Then for sufficiently small |𝜀|,

ℎ(𝜅) =
2|1 − 𝜃||||𝐿||||||𝑄−1|||

2 − |𝜅−1(1 + 𝜃) + 𝜅(𝜃 − 1)|𝐶

= ℎ(1) + 𝑂(𝜀2) +
𝐶

(1 − |𝜃|𝐶)2
|1 − 𝜃||||𝐿|||||||||𝑄

−1||||||𝜀 ×

{
1, 𝜃 < 0,
−1, 𝜃 > 0,

which shows that ℎ has a nonzero slope at 𝜅 = 1. This proves when |||𝑃−1||| < |||𝑄−1|||, for any 𝜌 > 0,

if 𝜃 < 0 then there is always 𝜅 ∈ (1 − 𝜌, 1) such that ℎ(𝜅) < 1/2; if 𝜃 > 0 then there is always
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𝜅 ∈ (1, 1 + 𝜌) such that ℎ(𝜅) < 1/2.

So far we have proven that if |||𝑃−1||| > |||𝑄−1||| then there exists 𝜌 > 0 such that ℎ(𝜅) < 1/2 for

all 𝜅 ∈ (1 − 𝜌, 1), and if |||𝑃−1||| < |||𝑄−1|||, then for any 𝜌 > 0 there is always 𝜅 ∈ (1 − 𝜌, 1 + 𝜌) such

that ℎ(𝜅) < 1/2. For the missing piece of the proof, consider the alternative parameter set (99).

Under this set of parameters, we have 𝑃 ′
0 = 𝑃0 and |||Γ𝑅𝐵′||| ≤ 𝛼|1 + 𝜃||||𝐿|||. Therefore we have

||||||Γ𝑅𝐵
′||||||||||||𝑃0

−1|||||| ≤
2|1 + 𝜃||||𝐿|||max

{
|||𝑃−1|||, 𝜅−2|||𝑄−1|||

}

2 − |𝜅−1(1 + 𝜃) + 𝜅(𝜃 − 1)||||𝑄−1/2𝐿𝑃−1/2|||
.

Define the right-hand side function as ℎ′(𝜅). Then, if |||𝑃−1||| > |||𝑄−1||| we would have, for suffi-

ciently small |𝜀|,

ℎ′(𝜅) =
2|1 − 𝜃||||𝐿||||||𝑄−1|||

2 − |𝜅−1(1 + 𝜃) + 𝜅(𝜃 − 1)|𝐶

= ℎ(1) + 𝑂(𝜀2) +
𝐶

(1 − |𝜃|𝐶)2
|1 + 𝜃||||𝐿|||||||||𝑃

−1||||||𝜀 ×

{
1, 𝜃 < 0,
−1, 𝜃 > 0,

which proves that if |||𝑃−1||| > |||𝑄−1||| then for any 𝜌 > 0, if 𝜃 < 0 then there is always 𝜅 ∈ (1 − 𝜌, 1)

such that ℎ′(𝜅) < 1/2; if 𝜃 > 0 then there is always 𝜅 ∈ (1, 1 + 𝜌) such that ℎ′(𝜅) < 1/2.

Finally, consider the case |||𝑃−1||| = |||𝑄−1|||. If 𝜃 > 0, then we consider 𝜅 > 1 and therefore for

any 𝜌 > 0 there are always 𝜅 ∈ (1, 1 + 𝜌) such that ℎ′(𝜅) < 1/2. If 𝜃 < 0, then we consider 𝜅 < 1

and therefore there is always 𝜅 ∈ (1 − 𝜌, 1) such that ℎ(𝜅) < 1/2. This means there is always

𝛼, 𝛽 > 0 such that
min

{
|||Γ𝑅𝐵||||||𝑃0|||, ||||||Γ𝑅𝐵

′||||||||||||𝑃
′
0
||||||
}
<

1
2
,

where a direct application of Theorem 4.1 and Lemma 4.2 then draws the proof to a close.

In this section we study the condition for the inner loop of IIFP²A (91) to converge, and pro-

pose an a posteriori error estimation of the inner loop inTheorem 4.1. Then we applyTheorem 4.1

to the 𝜃-IBSFP²A (97) to have an explicit condition for 𝜃-IBSFP²A to have its inner loop converges

and its inner error bounded. In the following section we are about to combine the inner conver-

gence of IIFP²A, the framework of inexact fixed-point iterations in Chapter 2, and framework of

IFP²A in Chapter 3, to propose the convergence analysis of IIFP²A.
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4.3 CONVERGENCE ANALYSIS OF IIFP²A

In this section we combine the framework of inexact fixed-point iterations in Chapter 2, the

framework of IFP²A in Chapter 3, and the convergence analysis of the inner loop of IIFP²A (93)

in the preceding section, to propose the general convergence analysis framework of IIFP²A. As a

direct application, we apply the proposed framework of IIFP²A to the 𝜃-IBSFPPA (97).

After all the complicated and sophisticated frameworks established in previous chapters and

sections, the following convergence theorem for IIFP²A is quite straightforward. Recall that in

this case, 𝑉 = 𝑅𝑀 , 𝑃0 = Γ𝑅(𝐼 − 𝐸) = Γ(𝑅𝑀 − 𝑆) and 𝑈 = Γ𝑅(𝐼 − 𝐴) = Γ𝑅𝐵 + 𝑃0.

Theorem 4.5. Suppose 𝑅, 𝑉 ∈ 𝕊𝑛+𝑚+ , 𝑃0, 𝑈 ∈ ℙ𝑛+𝑚
+ , {𝜆𝑘}𝑘∈ℕ ⊂ [0, 2] and {𝛿𝑘}𝑘∈ℕ ⊂ (0,+∞). If

∑
𝑘∈ℕ

𝜆𝑘(2 − 𝜆𝑘) = ∞, {𝜆𝑘𝛿𝑘}𝑘∈ℕ ∈ 𝓁1, and ||||||𝑈
−1/2Γ𝑅𝐵𝑈−1/2|||||| < 1,

then for any �̃�0 ∈ ℝ𝑛+𝑚 IIFP²A (93) is executable, and the sequence {
√
𝑉 �̃�𝑘}𝑘∈ℕ generated by IIFP²A

(93) converges to a point of
√
𝑉 Fix . If further lim𝑘→∞ 𝛿𝑘 = 0, then the sequence {�̃�𝑘}𝑘∈ℕ generated

by IIFP²A (93) converges to a primal/dual solution pair of model (89).

Proof. Notice that IIFP²A (93) can be recast into inexact KM iteration (8) as

�̃�𝑘+1 = (1 − 𝜆𝑘)�̃�𝑘 + 𝜆𝑘( �̃�𝑘 + 𝜀𝑘),

where by Theorem 3.15,  is nonexpansive with respect to 𝑉 , quasiaveraged with respect to

(𝑉 , 𝑉 ), and for all 𝜆 ∈ (0, 2] we have 𝜆𝑘 is nonexpansive with respect to 𝑉 . Also by Theorem 4.1,

there exists 𝑐 > 0 such that

‖𝜀𝑘‖ = ‖�̃�𝑘+1 −  �̃�𝑘‖ ≤ 𝑐 ⋅ 𝛿𝑘, for all 𝑘 ∈ ℕ.

This ensures that {𝜆𝑘𝜀𝑘}𝑘∈ℕ ∈ 𝓁1. So far conditions ofTheorem 2.36 hold, therefore the convergence

of {
√
𝑉 �̃�𝑘}𝑘∈ℕ towards

√
𝑉 Fix is guaranteed. Since Ran

√
𝑉 is closed, set 𝑤∗ ∈ Fix such that

lim𝑘→∞
√
𝑉 �̃�𝑘 =

√
𝑉 �̃�∗. Finally, if further lim𝑘→∞ 𝛿𝑘 = 0 then we have lim𝑘→∞ 𝜀𝑘 = 0. Furthermore,

by Proposition 2.20 and continuity of  on Ran 𝑉 , we have

�̃�𝑘+1 =  �̃�𝑘 + 𝜀𝑘 = √𝑉
†√

𝑉 �̃�𝑘 + 𝜀𝑘 → √𝑉
†√

𝑉 �̃�∗ = 𝑤∗ = 𝑤∗, as 𝑘 → ∞,
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which proves the convergence of {�̃�𝑘}𝑘∈ℕ.

Theorem 4.5 has an immediate corollary for 𝜃-IBSFP²A.

Theorem 4.6. Suppose 𝑃 ∈ 𝕊𝑛+, 𝑄 ∈ 𝕊𝑚+ , 𝜃 ∈ ℝ, {𝛿𝑘}𝑘∈ℕ ⊂ (0,+∞) and the followings hold.

(i) Either, 𝜃 ≠ 0 and

2min {|1 − 𝜃|, |1 + 𝜃|}max
{||||||𝑃

−1||||||, ||||||𝑄
−1||||||

}
|||𝐿||| ≤ 1 − |𝜃|||||||𝑄

−1/2𝐿𝑃−1/2||||||,

or, 𝜃 = 0 and
2max

{||||||𝑃
−1||||||, ||||||𝑄

−1||||||
}
|||𝐿||| < 1,

(ii) {𝜆𝑘}𝑘∈ℕ ⊂ [0, 2] such that
∑
𝑘∈ℕ

𝜆𝑘(2 − 𝜆𝑘) = ∞,

(iii) {𝜆𝑘𝛿𝑘}𝑘∈ℕ ∈ 𝓁1,

then for any �̃�0 ∈ ℝ𝑛+𝑚, the 𝜃-IBSFP²A (97) is executable, and the sequence {
√
𝑉 �̃�𝑘}𝑘∈ℕ generated by

𝜃-IBSFP²A (97) converges to a point of
√
𝑉 Fix . If further lim𝑘→∞ 𝛿𝑘 = 0, then the sequence {�̃�𝑘}𝑘∈ℕ

generated by 𝜃-IBSFP²A (97) converges to a primal/dual solution pair of model (89).

Proof. By Theorems 4.4 and 4.5, it is sufficient to check 𝑅𝑀 ∈ 𝕊𝑛+𝑚. Notice that in this case,

𝑅𝑀 = [
𝑃 𝜃𝐿T

𝜃𝐿 𝑄 ].

If 𝜃 = 0 then 𝑅𝑀 ∈ 𝕊𝑛+𝑚+ . If 𝜃 ≠ 0, then by assumption (i), we have |𝜃||||𝑄−1/2𝐿𝑃−1/2||| ≤ 1. By

Lemma 4.3, we have 𝑅𝑀 ∈ 𝕊𝑛+𝑚.

Theorem 4.6 extends existing convergence theorems in several aspects. With |𝜃| = 1 (97)

reduces to explicit FP²As Douglas-Rachford splitting algorithm and first-order primal-dual algo-

rithm. With |𝜃| ≠ 1, Theorem 4.6 generalizes explicit FP²As, and refines the analysis of inexact

IFP²A cases discussed in [63].
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CHAPTER 5

APPLICATIONS OF INEXACT IMPLICIT

FIXED-POINT PROXIMITY ALGORITHMS

This chapter applies 𝜃-IBSFP²A and several common explicit FP²As to the problem of recov-

ering images degraded by Gaussian blurring and different kinds of noise. Specially, we propose

L2-TV deblurring model and L1-TV deblurring model for Gaussian and uniform impulse noises,

then apply ADMM (82), explicit FP²A (77) and the 𝜃-IBSFP²A (97) to each of the deblurring models.

Numerical experiments of each method on each model are conducted, and the comparisons be-

tween methods are presented thereafter, illustrating the convergence speed advantage of IIFP²A

over explicit FP²As.

5.1 IMAGE DEBLURRING PROBLEMS

Assume an 8-bit gray-scale image of size 𝑛 × 𝑛, restored as a vector 𝑢 ∈ ℝ𝑛2 , is corrupted by

Gaussian blurring kernel and Gaussian/impulse noises. For Gaussian noise, the observed image

is modeled by
𝑧 = 𝐾𝑢 + 𝜔, (102)

where 𝐾 ∈ (ℝ𝑛2) is a Gaussian blurring kernel, and 𝜔 ∈ ℝ𝑛2 represents a Gaussian-distributed

noise with 0 mean. For deblurring problem with Gaussian noise, the well-known Rudin-Osher-

Fatemi (ROF) image denoising model [89] (or L2-TV model) is applied, namely

min
𝑥∈ℝ𝑛2

{𝜇
2
‖𝐾𝑥 − 𝑧‖22 + ‖𝑥‖TV

}
, (103)
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where 𝜇 > 0, 𝐾 ∈ (ℝ𝑛2) representing a Gaussian convolution kernel, and the TV semi-norm

‖𝑥‖TV = ‖𝐿𝑥‖1 is defined as

𝐿 ∶= [
𝐼𝑛 ⊗ 𝐷𝑛

𝐷𝑛 ⊗ 𝐼𝑛]
, 𝐷𝑛 ∶=

⎡
⎢
⎢
⎢
⎢
⎣

1 −1
−1 1

⋱ ⋱
−1 1

⎤
⎥
⎥
⎥
⎥
⎦𝑛×𝑛

, (104)

in which ‘⊗’, with an abuse of notation, represents the Kronecker product of two matrices.

Then we consider the image deblurring problem with uniform impulse noise. Uniform im-

pulse noise presents itself as sparsely occurring pixels taking random numbers. The observed

image 𝑧 ∈ ℝ𝑛×𝑛 therefore can be modeled by

𝑧𝑖𝑗 ∶=

{
𝑈 [0, 255], with probability 𝑝,
[𝐾𝑢]𝑖𝑗 , with probability 1 − 𝑝,

for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛. (105)

where 𝑝 ∈ [0, 1] and 𝑈 [𝑎, 𝑏] denotes the uniform distribution on [𝑎, 𝑏]. For the uniform impulse

noise the L1-TV model [2, 74, 77] is particularly suggested, which reads

min
𝑥∈ℝ𝑛2

{𝜇‖𝐾𝑥 − 𝑧‖1 + ‖𝑥‖TV}, (106)

where 𝜇 > 0. The procedures of models (102) and (105) for Gaussian and impulsive noises are

illustrated in Figure 3.

5.2 L2-TV DEBLURRING MODEL

In this section we propose linearized ADMM, explicit FP²A and 𝜃-IBSFP²A for image deblur-

ring problem with Gaussian noise (103).

To propose linearized ADMM, explicit FP²A and inexact implicit FP²A schemes for L2-TV

model (103), firstly we need to fit model (103) into the standard form (45) and (81). This could be

done by setting 𝑓 = 𝜇‖𝐾 ⋅ −𝑧‖22/2 and 𝑔 = ‖ ⋅ ‖1, which gives us

min
𝑥∈ℝ𝑛2

{𝑓 (𝑥) + 𝑔(𝐿𝑥)}, (107)
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Figure 3. Procedures of Gaussian blurring and Gaussian/impulse noising of an image

Gaussian
Blurred

Impulse
Noised

Gaussian
Noised

and
min

𝑥∈ℝ𝑛2 ,𝑧∈ℝ2𝑛2
{𝑓 (𝑥) + 𝑔(𝑧)},

subject to 𝐿𝑥 − 𝑧 = 0.
(108)

Observe that prox𝑓 ,𝛼𝐼𝑛2 (𝑥) = (𝛼𝐼𝑛2 + 𝜇𝐾T𝐾)−1(𝛼𝑥 + 𝜇𝐾T𝑧) for 𝛼 > 0, and since 𝐾 is a convolution

kernel, prox𝑓 ,𝛼𝐼𝑛2 could be efficiently computed by fast Fourier transformation. Then we directly

have the linearized ADMM (88) for model (108) as (109).

For 𝑘 ∈ ℕ
⎢
⎢
⎢
⎢
⎣

𝑧𝑘+1 ← prox‖⋅‖1,𝛽𝐼2𝑛2(𝑧𝑘 + 𝛽−1(𝐿𝑥𝑘 − 𝑧𝑘 + 𝑦𝑘))
𝑦𝑘+1 ← 𝑦𝑘 + 𝐿𝑥𝑘 − 𝑧𝑘+1
𝑥𝑘+1 ← (𝛼𝐼𝑛2 + 𝜇𝐾T𝐾)

−1
(𝛼𝑥𝑘 + 𝐿T(𝑦𝑘 − 2𝑦𝑘+1) + 𝜇𝐾T𝑧)

(109)

Set 𝑃 = 𝛼𝐼2𝑛2 and 𝑄 = 𝛽𝐼𝑛2 in explicit FP²A (77) on model (107) to get (110).

For 𝑘 ∈ ℕ

⌊
𝑦𝑘+1 ← prox‖⋅‖∗1 ,𝛽𝐼2𝑛2(𝛽

−1𝐿𝑥𝑘 + 𝑦𝑘)
𝑥𝑘+1 ← (𝛼𝐼𝑛2 + 𝜇𝐾T𝐾)

−1
(𝛼𝑥𝑘 + 𝐿T(𝑦𝑘 − 2𝑦𝑘+1) + 𝜇𝐾T𝑧)

(110)
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Furthermore, set 𝑃 = 𝛼𝐼𝑛2 , 𝑄 = 𝛽𝐼2𝑛2 , 𝜆𝑘 = 1 for 𝑘 ∈ ℕ and

𝐴 = [
0𝑛2 −(1 + 𝜃)𝛼−1𝐿T

0 02𝑛2 ], 𝐵 = [
0𝑛2 0

(1 − 𝜃)𝛽−1𝐿 02𝑛2]
,

in 𝜃-IBSFP²A (97) to get (111).

For 𝑘 ∈ ℕ
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Do 𝑙 ∈ ℕ
|||||

𝑦 𝑙+1
𝑘 ← prox‖⋅‖∗1 ,𝛽𝐼2𝑛2(𝛽

−1𝐿((1 − 𝜃)𝑥 𝑙
𝑘 + 𝜃𝑥𝑘) + 𝑦𝑘)

𝑥 𝑙+1
𝑘 ← (𝛼𝐼𝑛2 + 𝜇𝐾T𝐾)

−1
(𝛼𝑥𝑘 + 𝐿T(𝜃𝑦𝑘 − (1 + 𝜃)𝑦 𝑙+1

𝑘 ) + 𝜇𝐾T𝑧)
While ‖𝑥 𝑙+1

𝑘 − 𝑥 𝑙
𝑘‖

2 + ‖𝑦 𝑙+1
𝑘 − 𝑦 𝑙

𝑘‖
2 > 𝛿2𝑘

𝑥𝑘+1 ← 𝑥 𝑙+1
𝑘 , 𝑦𝑘+1 ← 𝑦 𝑙+1

𝑘

(111)

Notice that with 𝜃 = 1, (111) reduces to (110), and (110) is identical to (109) when 𝛽 = 1. By

Theorems 3.21, 3.26 and 4.6, we have the following convergence theorems for (109) to (111).

Corollary 5.1. If 𝛼 ≥ ‖𝐿‖2 and 𝛽 ≥ 1, then for any (𝑥0, 𝑦0, 𝑧0) ∈ ℝ𝑛2+2𝑛2+2𝑛2 , the iteration sequence

{(𝑥𝑘, 𝑦𝑘, 𝑧𝑘)}𝑘∈ℕ generated by linearized ADMM for L2-TV model (109) converges to a primal/dual

solution pair of L2-TV model (108).

Corollary 5.2. Suppose 𝛼, 𝛽 > 0. If 𝛼𝛽 ≥ |||𝐿|||2, then for any (𝑥0, 𝑦0) ∈ ℝ𝑛2+2𝑛2 , the iteration

sequence {(𝑥𝑘, 𝑦𝑘)}𝑘∈ℕ generated by explicit FP²A for L2-TV model (110) converges to a primal/dual

solution pair of L2-TV model (107).

Corollary 5.3. Suppose 𝛼, 𝛽 > 0, 𝜃 ∈ ℝ and positive real sequence {𝛿𝑘}𝑘∈ℕ ∈ 𝓁1. If, either, 𝜃 ≠ 0 and

2min {|1 − 𝜃|, |1 + 𝜃|}max
{√

𝛼/𝛽,
√
𝛽/𝛼

}
|||𝐿||| ≤

√
𝛼𝛽 − |𝜃||||𝐿|||,

or, 𝜃 = 0 and
2(𝛼 + 𝛽)|||𝐿||| < 𝛼𝛽,

then for any (𝑥0, 𝑦0) ∈ ℝ𝑛2+2𝑛2 , the iteration sequence {(𝑥𝑘, 𝑦𝑘)}𝑘∈ℕ generated by 𝜃-IBSFP²A for L2-TV

model (111) converges to a primal/dual solution pair of L2-TV model (107).

Notice that Corollary 5.3 covers Corollary 5.2 as a special case of 𝜃 = 1.
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5.3 L1-TV DEBLURRING MODEL

In this section we propose linearized ADMM, explicit FP²A and 𝜃-IBSFP²A for image deblur-

ring problem with impulse noise (106).

Similar to Section 5.2, to propose linearized ADMM, explicit FP²A and inexact implicit FP²A

schemes for L1-TV model (106), firstly we need to fit model (106) into the standard form (45)

and (81). This could be done by setting 𝑓 = 0, 𝑔 = ‖ ⋅ −𝑏‖1 and

 ∶= [
𝜇𝐾
𝐿 ], 𝑏 ∶= [

𝜇𝑧
0 ],

which gives us
min
𝑥∈ℝ𝑛2

𝑔(𝑥). (112)

Notice that in this case prox𝑓 ,𝛼𝐼𝑛2 = 𝐼𝑛2 and prox𝑔,𝛽𝐼2𝑛2 = prox‖⋅‖1,𝛽𝐼2𝑛2 (⋅− 𝑏) + 𝑏 for 𝛼, 𝛽 > 0. Then we

directly have the linearized ADMM (88) for model (112) as (109).

For 𝑘 ∈ ℕ
⎢
⎢
⎢
⎢
⎣

𝑧𝑘+1 ← prox‖⋅−𝑏‖1,𝛽𝐼2𝑛2(𝑧𝑘 + 𝛽−1(𝑥𝑘 − 𝑧𝑘 + 𝑦𝑘))
𝑦𝑘+1 ← 𝑦𝑘 + 𝑥𝑘 − 𝑧𝑘+1
𝑥𝑘+1 ← 𝑥𝑘 + 𝛼−1T(𝑦𝑘 − 2𝑦𝑘+1)

(113)

Set 𝑃 = 𝛼𝐼2𝑛2 and 𝑄 = 𝛽𝐼𝑛2 in explicit FP²A (77) on model (112) to get (110).

For 𝑘 ∈ ℕ

⌊
𝑦𝑘+1 ← prox‖⋅−𝑏‖∗1 ,𝛽𝐼2𝑛2(𝛽

−1𝐿𝑥𝑘 + 𝑦𝑘)
𝑥𝑘+1 ← 𝑥𝑘 + 𝛼−1T(𝑦𝑘 − 2𝑦𝑘+1)

(114)

Furthermore, set 𝑃 = 𝛼𝐼𝑛2 , 𝑄 = 𝛽𝐼2𝑛2 , 𝜆𝑘 = 1 for 𝑘 ∈ ℕ and

𝐴 = [
0𝑛2 −(1 + 𝜃)𝛼−1𝐿T

0 02𝑛2 ], 𝐵 = [
0𝑛2 0

(1 − 𝜃)𝛽−1𝐿 02𝑛2]
,
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in 𝜃-IBSFP²A (97) to get (111).

For 𝑘 ∈ ℕ
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Do 𝑙 ∈ ℕ
|||||

𝑦 𝑙+1
𝑘 ← prox‖⋅−𝑏‖∗1 ,𝛽𝐼2𝑛2(𝛽

−1((1 − 𝜃)𝑥 𝑙
𝑘 + 𝜃𝑥𝑘) + 𝑦𝑘)

𝑥 𝑙+1
𝑘 ← 𝑥𝑘 + 𝛼−1T(𝜃𝑦𝑘 − (1 + 𝜃)𝑦 𝑙+1

𝑘 )
While ‖𝑥 𝑙+1

𝑘 − 𝑥 𝑙
𝑘‖

2 + ‖𝑦 𝑙+1
𝑘 − 𝑦 𝑙

𝑘‖
2 > 𝛿2𝑘

𝑥𝑘+1 ← 𝑥 𝑙+1
𝑘 , 𝑦𝑘+1 ← 𝑦 𝑙+1

𝑘

(115)

Notice that with 𝜃 = 1, (115) reduces to (114), and (114) is identical to (113) when 𝛽 = 1. By

Theorems 3.21, 3.26 and 4.6, we have the following convergence theorems for (113) to (115).

Corollary 5.4. If 𝛼 ≥ ‖𝐿‖2 and 𝛽 ≥ 1, then for any (𝑥0, 𝑦0, 𝑧0) ∈ ℝ𝑛2+2𝑛2+2𝑛2 , the iteration sequence

{(𝑥𝑘, 𝑦𝑘, 𝑧𝑘)}𝑘∈ℕ generated by linearized ADMM for L1-TV model (113) converges to a primal/dual

solution pair of L1-TV model (112).

Corollary 5.5. Suppose 𝛼, 𝛽 > 0. If 𝛼𝛽 ≥ |||𝐿|||2, then for any (𝑥0, 𝑦0) ∈ ℝ𝑛2+2𝑛2 , the iteration

sequence {(𝑥𝑘, 𝑦𝑘)}𝑘∈ℕ generated by explicit FP²A for L1-TV model (114) converges to a primal/dual

solution pair of L1-TV model (112).

Corollary 5.6. Suppose 𝛼, 𝛽 > 0, 𝜃 ∈ ℝ and positive real sequence {𝛿𝑘}𝑘∈ℕ ∈ 𝓁1. If, either, 𝜃 ≠ 0 and

2min {|1 − 𝜃|, |1 + 𝜃|}max
{√

𝛼/𝛽,
√
𝛽/𝛼

}
|||𝐿||| ≤

√
𝛼𝛽 − |𝜃||||𝐿|||,

or, 𝜃 = 0 and
2(𝛼 + 𝛽)|||𝐿||| < 𝛼𝛽,

then for any (𝑥0, 𝑦0) ∈ ℝ𝑛2+2𝑛2 , the iteration sequence {(𝑥𝑘, 𝑦𝑘)}𝑘∈ℕ generated by 𝜃-IBSFP²A for L1-TV

model (115) converges to a primal/dual solution pair of L1-TV model (112).

Notice that Corollary 5.6 covers Corollary 5.5 as a special case of 𝜃 = 1.

5.4 NUMERICAL EXPERIMENTS

In this section we compare the behavior of linearized ADMM (109) and (113), explicit FP²A

(110) and (114) and the proposed 𝜃-IBSFP²A (111) and (115) on image debluring problems L2-TV

and L1-TV introduced in previous sections. All numerical experiments are conducted in Matlab
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Figure 4. Test images of 8-bit gray-scale with size 256×256

(a) Cameraman (b) Peppers (c) Fishingboats

R2020b, with Windows 10 on an Intel Core i7 CPU @ 3.60GHz and 16GB RAMmemory. Three 8-

bit gray-scale images, namely Cameraman, Peppers and Fishingboats, are tested in this section,

as shown in Figure 4.

As detailed in Section 5.1, images are first blurred using Gaussian kernels with standard

deviations 𝜎 = 1, 3, 5, then they are corrupted by two types of noise

(G) Add Gaussian noise with deviation 5; see Figure 5.

(R) Randomly pick 10% pixels on the image and cover them according to the uniform distri-

bution on [0, 255]; see Figure 6.

We store 𝑛×𝑛 images with vectors in ℝ𝑛2 , by stacking each columns of the image. To compare

the performance of each algorithms in a level playing field, we unify the regularization parameter

of three methods in each scenario. Firstly we execute explicit FP²A (110) and (114) for 104 steps,

solution of which is treated as the ground truth 𝑥gt ∈ ℝ𝑛2 of the corresponding model. Then for

each method, we exit the scheme once the iteration satisfies the stop criteria

𝐹(𝑥𝑘) − 𝐹(𝑥gt)
|||𝐹(𝑥gt)

|||
< 𝜀, (116)

where 𝐹 denotes the objective function of the model. Each method is repeated 10 times at the

optimal algorithm parameters and the mean CPU time are recorded. We also examine the Peak
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Figure 5. Gaussian-blurred images with different standard deviations and additive Gaussian noise
of deviation 5

(a) Gaussian blurred with 𝜎 = 1
and noised by (G).

(b) Gaussian blurred with 𝜎 = 1
and noised by (G).

(c) Gaussian blurred with 𝜎 = 1
and noised by (G).

(d) Gaussian blurred with 𝜎 = 3
and noised by (G).

(e) Gaussian blurred with 𝜎 = 3
and noised by (G).

(f) Gaussian blurred with 𝜎 = 3
and noised by (G).

(g) Gaussian blurred with 𝜎 = 5
and noised by (G).

(h) Gaussian blurred with 𝜎 = 5
and noised by (G).

(i) Gaussian blurred with 𝜎 = 5
and noised by (G).
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Figure 6. Gaussian-blurred images with different standard deviations and 10% random impulse
noise

(a) Gaussian blurred with 𝜎 = 1
and noised by (R).

(b) Gaussian blurred with 𝜎 = 1
and noised by (R).

(c) Gaussian blurred with 𝜎 = 1
and noised by (R).

(d) Gaussian blurred with 𝜎 = 3
and noised by (R).

(e) Gaussian blurred with 𝜎 = 3
and noised by (R).

(f) Gaussian blurred with 𝜎 = 3
and noised by (R).

(g) Gaussian blurred with 𝜎 = 5
and noised by (R).

(h) Gaussian blurred with 𝜎 = 5
and noised by (R).

(i) Gaussian blurred with 𝜎 = 5
and noised by (R).
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Signal-to-Noise Ratio (PSNR) measurements to quantify reconstruction qualities for those cor-

rupted images. The PSNR (in dB) for 8-bit gray-scale 256×256 image is defined by

PSNR = 20 × log10
255 × 256
‖𝑥rec − 𝑥ori‖2

,

where 𝑥ori ∈ ℝ𝑛2 is the uncorrupted original image, and 𝑥rec ∈ ℝ𝑛2 is the recovered one.

For L2-TV model, Table 3 lists the PSNR and execution time of algorithms on each experi-

ment of L2-TV model and Figures 7 to 9 show the deblurred images of each methods. For L1-TV

model, Table 4 lists the PSNR and execution time of algorithms on each experiment of L1-TV

model and Figures 10 to 12 show the deblurred images of each methods. Experiments shows that

all the methods converges to the solution of the problem with similar PSNR, while 𝜃-IBSFP²A

always costs the least of the CPU time, demonstrating the advantages of the proposed inexact

implicit fixed-point proximity algorithm over explicit ones.
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Table 3. Summary of Linearized ADMM, Explicit FP²A and 𝜃-IBSFP²A on L2-TV

Blurring
Level Method

Cameraman Peppers Fishingboats

PSNR Time(s) PSNR Time(s) PSNR Time(s)

𝜎 = 1
LADMM 28.02 1.46 30.52 3.92 28.17 3.78
Ex-FP²A 28.02 2.21 30.54 3.48 28.18 2.80
IBSFP²A 28.02 1.14 30.53 1.62 28.18 1.31

𝜎 = 3
LADMM 22.97 6.34 24.43 6.07 23.29 6.27
Ex-FP²A 22.94 5.87 24.46 8.02 23.30 7.81
IBSFP²A 22.95 3.69 24.45 4.49 23.30 4.64

𝜎 = 5
LADMM 21.27 6.11 22.47 5.37 22.08 5.60
Ex-FP²A 21.28 6.63 22.50 7.08 22.09 6.92
IBSFP²A 21.29 4.88 22.49 4.39 22.08 4.53

Table 4. Summary of Linearized ADMM, Explicit FP²A and 𝜃-IBSFP²A on L1-TV

Blurring
Level Method

Cameraman Peppers Fishingboats

PSNR Time(s) PSNR Time(s) PSNR Time(s)

𝜎 = 1
LADMM 31.35 109.33 32.40 106.67 33.69 103.13
Ex-FP²A 31.35 96.85 32.40 101.06 33.69 93.14
IBSFP²A 32.18 50.59 33.29 51.61 34.80 41.91

𝜎 = 3
LADMM 25.20 168.42 29.33 158.13 25.95 167.46
Ex-FP²A 25.20 149.81 29.33 141.80 25.95 165.94
IBSFP²A 25.14 56.07 29.49 59.29 25.98 58.64

𝜎 = 5
LADMM 22.81 175.49 26.02 169.66 23.98 164.81
Ex-FP²A 22.81 166.32 26.02 155.92 23.98 154.70
IBSFP²A 22.82 89.85 26.01 70.80 23.97 64.23
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Figure 7. Recovered images of L2-TV model on Cameraman

(a) LADMM for 𝜎 = 1 with PSNR
28.02, CPU time 1.46s.

(b) Ex-FP²A for 𝜎 = 1 with PSNR
28.02, CPU time 2.21s.

(c) IBSFP²A for 𝜎 = 1 with PSNR
28.02, CPU time 1.14s.

(d) LADMM for 𝜎 = 3 with PSNR
22.97, CPU time 6.34s.

(e) Ex-FP²A for 𝜎 = 3 with PSNR
22.94, CPU time 5.87s.

(f) IBSFP²A for 𝜎 = 3 with PSNR
22.95, CPU time 3.69s.

(g) LADMM for 𝜎 = 5 with PSNR
21.27, CPU time 6.11s.

(h) Ex-FP²A for 𝜎 = 5 with PSNR
21.28, CPU time 6.63s.

(i) IBSFP²A for 𝜎 = 5 with PSNR
21.29, CPU time 4.88s.
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Figure 8. Recovered images of L2-TV model on Peppers

(a) LADMM for 𝜎 = 1 with PSNR
30.52, CPU time 3.92s.

(b) Ex-FP²A for 𝜎 = 1 with PSNR
30.54, CPU time 3.48s.

(c) IBSFP²A for 𝜎 = 1 with PSNR
30.53, CPU time 1.62s.

(d) LADMM for 𝜎 = 3 with PSNR
24.43, CPU time 6.07s.

(e) Ex-FP²A for 𝜎 = 3 with PSNR
24.46, CPU time 8.02s.

(f) IBSFP²A for 𝜎 = 3 with PSNR
24.45, CPU time 4.49s.

(g) LADMM for 𝜎 = 5 with PSNR
22.47, CPU time 5.37s.

(h) Ex-FP²A for 𝜎 = 5 with PSNR
22.50, CPU time 7.08s.

(i) IBSFP²A for 𝜎 = 5 with PSNR
22.49, CPU time 4.39s.
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Figure 9. Recovered images of L2-TV model on Fishingboats

(a) LADMM for 𝜎 = 1 with PSNR
28.17, CPU time 3.78s.

(b) Ex-FP²A for 𝜎 = 1 with PSNR
28.18, CPU time 2.80s.

(c) IBSFP²A for 𝜎 = 1 with PSNR
28.18, CPU time 1.31s.

(d) LADMM for 𝜎 = 3 with PSNR
23.29, CPU time 6.27s.

(e) Ex-FP²A for 𝜎 = 3 with PSNR
23.30, CPU time 7.81s.

(f) IBSFP²A for 𝜎 = 3 with PSNR
23.30, CPU time 4.64s.

(g) LADMM for 𝜎 = 5 with PSNR
22.08, CPU time 5.60s.

(h) Ex-FP²A for 𝜎 = 5 with PSNR
22.09, CPU time 6.92s.

(i) IBSFP²A for 𝜎 = 5 with PSNR
22.08, CPU time 4.53s.
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Figure 10. Recovered images of L1-TV model on Cameraman

(a) LADMM for 𝜎 = 1 with PSNR
31.35, CPU time 109.33s.

(b) Ex-FP²A for 𝜎 = 1 with PSNR
31.35, CPU time 96.85s.

(c) IBSFP²A for 𝜎 = 1 with PSNR
32.18, CPU time 50.59s.

(d) LADMM for 𝜎 = 3 with PSNR
25.20, CPU time 168.42s.

(e) Ex-FP²A for 𝜎 = 3 with PSNR
25.20, CPU time 149.81s.

(f) IBSFP²A for 𝜎 = 3 with PSNR
25.14, CPU time 56.07s.

(g) LADMM for 𝜎 = 5 with PSNR
22.81, CPU time 175.49s.

(h) Ex-FP²A for 𝜎 = 5 with PSNR
22.81, CPU time 166.32s.

(i) IBSFP²A for 𝜎 = 5 with PSNR
22.82, CPU time 89.85s.
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Figure 11. Recovered images of L1-TV model on Peppers

(a) LADMM for 𝜎 = 1 with PSNR
32.40, CPU time 106.67s.

(b) Ex-FP²A for 𝜎 = 1 with PSNR
32.40, CPU time 101.06s.

(c) IBSFP²A for 𝜎 = 1 with PSNR
33.29, CPU time 51.61s.

(d) LADMM for 𝜎 = 3 with PSNR
29.33, CPU time 158.13s.

(e) Ex-FP²A for 𝜎 = 3 with PSNR
29.33, CPU time 141.80s.

(f) IBSFP²A for 𝜎 = 3 with PSNR
29.49, CPU time 59.29s.

(g) LADMM for 𝜎 = 5 with PSNR
26.02, CPU time 169.66s.

(h) Ex-FP²A for 𝜎 = 5 with PSNR
26.02, CPU time 155.92s.

(i) IBSFP²A for 𝜎 = 5 with PSNR
26.01, CPU time 70.80s.



112

Figure 12. Recovered images of L1-TV model on Fishingboats

(a) LADMM for 𝜎 = 1 with PSNR
33.69, CPU time 103.13s.

(b) Ex-FP²A for 𝜎 = 1 with PSNR
33.69, CPU time 93.14s.

(c) IBSFP²A for 𝜎 = 1 with PSNR
34.80, CPU time 41.91s.

(d) LADMM for 𝜎 = 3 with PSNR
25.95, CPU time 167.46s.

(e) Ex-FP²A for 𝜎 = 3 with PSNR
25.95, CPU time 165.94s.

(f) IBSFP²A for 𝜎 = 3 with PSNR
25.98, CPU time 58.64s.

(g) LADMM for 𝜎 = 5 with PSNR
23.98, CPU time 164.81s.

(h) Ex-FP²A for 𝜎 = 5 with PSNR
23.98, CPU time 154.70s.

(i) IBSFP²A for 𝜎 = 5 with PSNR
23.97, CPU time 64.23s.
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CHAPTER 6

CONCLUSIONS

This dissertation systematically studies the framework of inexact fixed-point iterations, the

framework of implicit fixed-point proximity algorithms for nonsmooth convex optimization, and

the framework of inexact implicit fixed-point proximity algorithms as a combination of the above

two frameworks. Then numerical experiments on image deblurring problems show the advan-

tages of the proposed framework of inexact implicit fixed-point proximity algorithms when com-

pared with explicit algorithms.

Chapter 2 proposes a framework of inexact fixed-point iterations for Picard iterations and

KM iterations, which then is applied to conduct convergence analysis for inexact Picard/KM it-

erations for quasinonexpansive/quasiaveraged operators. These two classes of operators gener-

alize the classical nonexpansive/nonexpansive averaged operators, and therefore the proposed

framework of inexact iterations extends many popular analysis of existing inexact fixed-point

iterations.

Chapter 3 proposes a framework of implicit fixed-point proximity algorithms. This frame-

work first characterizes solutions of the nonsmooth convex optimization problems to be fixed-

points of a proximity equation composing with an expanding linear transformation. To deal with

the expanding matrix, we adopt the matrix splitting technique to have a general formulation

of implicit fixed-point proximity algorithm. Then we utilize quasinonexpansive/quasiaveraged

operators proposed in Chapter 2 to propose convergence analysis, which then again extends ex-

isting convergence analysis of proximity algorithms. This framework covers gradient descent

method, proximal point method, Douglas-Rachford splitting algorithm, first-order primal-dual

algorithm, alternating direction method of multipliers, linearized alternating direction method

of multipliers and inexact Uzawa method as special cases. The proposed framework provides

several generalizations to some of the mentioned methods.

Chapter 4 then combines frameworks in Chapters 2 and 3 to propose the inexact implicit



114

fixed-point proximity algorithms when the iteration is essentially implicit and cannot be exactly

updated. Here we again apply the matrix splitting technique to introduce an inner loop for the

implicit update, and to have a posteriori error estimation for the inexactness brought by the inner

loop. Then by a direct application of frameworks in Chapters 2 and 3 we have the framework

of inexact implicit fixed-point proximity algorithms. As a concrete application, we propose the

class of 𝜃-inexact block-separable fixed-point proximity algorithms with convergence analysis.

Finally Chapter 5 applies the 𝜃-inexact block-separable fixed-point proximity algorithms

from Chapter 4 to image deblurring problems with different kinds of noise, and compare it with

several classical explicit proximity algorithms. Specifically, we test Gaussian and uniform im-

pulse noises with three different level of blurring, and examine linearized alternating direction

method of multipliers, explicit fixed-point proximity algorithm and 𝜃-inexact block-separable

fixed-point proximity algorithms. Numerical experiments demonstrate the advantage of inexact

implicit fixed-point proximity algorithms in convergence speed.

As an end to this dissertation, we discuss possible developments of the framework of inexact

fixed-point proximity algorithms in the future. One may notice that IFP²A (64) has a matrix not

yet split, i.e., the 𝑅−1𝐴T before ∇𝑓2(𝐴𝑤𝑘). A decomposition of this matrix will certainly result in a

more comprehensive framework. On the other hand, considering full model (44) instead of (89)

in IIFP²A will be another possible direction for further study. Moreover, the framework of fixed-

point iterations established in Chapter 2 no longer requires nonexpansive operators, which may

provide a potential approach for development of algorithms in nonconvex optimization.
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