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POB 20-364, Cd.Mx. 01000, México

Abstract

Cosmic inflation offers the best known explanations for many of the observed features of

the Universe, such as its flatness. An imprint of the qualities of this mechanism is left in

the cosmic microwave background (CMB), which can be instrumental to confirm inflation.

Unfortunately, there is a plethora of inflationary models, which are a priori in the same

footing. It is conceivable that contrasting the predictions of the various models with the

measured values of the parameters of CMB data and other cosmological observables shall

allow one to single out the successful theory of inflation. In this work we provide a first

contribution to this endeavor, by computing the degree of agreement between Planck data

and the values of the scalar spectral tilt and the tensor-to-scalar ratio, predicted by different

inflationary models. We observe that inflationary models based on power-law potentials and

axion monodromy are disfavored.
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1 Introduction

The theory of inflation resolves previously open questions about our universe, mainly accounting

for its flatness, homogeneity and isotropy, as well as the solutions to the horizon and monopole

problems. Inflation consists of a period of rapid exponential expansion of the universe when

it was about 10−34 s of age [1, 2]. The cosmological principle, which postulates the universe

to be homogeneous and isotropic, is the basis for our current understanding of cosmology. Its

most important prediction is the Cosmic Microwave Background radiation (CMB), which at first

approximation has the homogeneous and isotropic spectrum of blackbody radiation. However,

plenty of small perturbations in the CMB lead to slight deviations from its homogeneity. The

inflationary paradigm offers one important primordial source of these perturbations. To study

them, we use the CMB primordial power spectrum

PR(k) = As

(
k

k⋆

)ns−1

, (1)

where we include the amplitude As and the scalar spectral index or tilt ns, which are both

observable, and k⋆ denotes the pivot value of the wavenumber k associated with the experiment

[1, 3].

Inflation is described at first order by a homogeneous scalar field ϕ(t) known as inflaton. This

field has the property that if its potential energy is large compared to its kinetic energy, then the

pressure it induces in the universe is negative. As a consequence of the space-time dynamics, this

means that the inflaton produces an exponential expansion of the universe if it is moving slowly

along its potential. This defines the meaning of slow-roll in this framework. If this slow-rolling

happens and the potential is almost flat, inflation can occur [2].

The Planck Collaboration data offers precise constraints for the parameters of inflation [4],

in particular for the index ns and for the tensor-to-scalar ratio r, which is the quotient of the

amplitude of the tensor power spectrum and As. In figure 2, we display the 1σ and 2σ CL

admissible values for these parameters.

This work is organized as follows. In section 2, we discuss the general features of cosmic

inflation. Section 3 is devoted to an inspection of some important features of various relevant

inflationary models, including the analytical and numerical predictions for the relevant parameters

of this work. Finally, in section 4 we discuss the theoretical predictions of the models and how

they are compared to the CMB data.

2 Cosmic Inflation

Cosmic inflation is a period of accelerated expansion of the universe preceding the Hot Big Bang,

during which the scale factor a(t) grew exponentially with time. This means that the horizon

grew by a factor of eN as compared to the pre-inflation horizon, where N is known as the number
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of e-folds of inflation. This allows the entire last scattering surface to be in causal contact pre-

inflation, thereby providing a resolution to the horizon problem of the standard model [2].

A homogeneous inflaton scalar field ϕ(t) is introduced in order to account for the dynamics

of cosmic inflation. The quantum fluctuations of the inflaton and gravitational fields make infla-

tionary models perturbative in nature. Such fluctuations are the seeds for cosmic structures such

as galaxies and clusters [2].

From the assumption that the universe is a perfect fluid with density ρ(t), we can write the

stress-energy tensor subject to an equation of state p = wρ, where p is the isotropic pressure and

w is constant [5]. Using the definition of the stress-energy tensor, one directly arrives at

ρ = 1
2 ϕ̇

2 + V (ϕ) and p = 1
2 ϕ̇

2 − V (ϕ) , (2)

where in both equations the left term is the kinetic energy density and the right term is the

potential energy density [5]. Hence, the equation of state is described in this case by

ω =
p

ρ
=

1
2 ϕ̇

2 − V (ϕ)
1
2 ϕ̇

2 + V (ϕ)
. (3)

Therefore, if the potential energy density dominates, i.e. 1
2 ϕ̇

2 ≪ V (ϕ), then we have ω ≈ −1,

which implies that the universe grows exponentially fast [5]. The dynamics of the universe

during the inflationary period are completely determined by the evolution of the inflaton, which

is governed by the Klein-Gordon-like equation

ϕ̈+ 3Hϕ̇+ V ′ = 0 , (4)

where H is the Hubble parameter that sets the rate of expansion of the Universe. To quantify the

speed of the inflaton dynamics, we define the inflationary parameter ϵ = −Ḣ/H2. The condition

for inflation to occur thus becomes ϵ < 1, and ϵ ≈ 1 pinpoints the ending of inflation. Imposing

in addition |ϕ̈| ≪ 3Hϕ̇ in eq. (4) during inflation to ensure that it lasts long enough, we have

3Hϕ̇ ≈ −V ′(ϕ). (5)

This is the slow-roll equation of motion which describes the case of an inflaton field rolling slowly

down its potential in field space. With these approximations, including the second slow-roll

parameter η = −ϕ̈/Hϕ̇, we obtain8

ϵ ≈ 1

2

(
V ′

V

)2

and η ≈ V ′′

V
. (6)

With the help of the condition ϵ(ϕend) ≈ 1, the value of ϕend, i.e. the value of the inflaton field

at the end of inflation, can be obtained. Then, using the limit on the number of e-folds

N ≈
∫ ϕini

ϕend

V

V ′ dϕ , (7)

8In this paper, we assume natural units, such that the reduced Planck mass is the unity.
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we get ϕini, i.e. the value of the inflaton at the beginning of inflation. Now, at ϕ = ϕini we can

calculate the scalar spectral index ns and the tensor-to-scalar ratio r given as

ns ≈ 1 + 2η − 6ϵ and r ≈ 16 ϵ. (8)

Recent observations indicate that these parameters are constrained to be ns = 0.9649 ± 0.0042

and r < 0.123 (at 2σ C.L.) [4,6]. The precise bounds are depicted in figure 2, accessed indirectly

from [3] using WebPlotDigitizer tool [7].

3 Inflationary models

Many theoretical frameworks have been proposed to describe cosmic inflation. Such models are

characterized by the expressions for their scalar field potential. Their validity can be confirmed

experimentally by the observation of the parameters discussed in the previous section, such as

the tensor-to-scalar ratio r, the scalar spectral index ns and the amplitude of the scalar power

spectrum As from the observation of anisotropies in the CMB [8].

We focus here on the family of inflationary models whose potentials are plotted in figure 1.

In the following, we present a brief overview of these models, along with the resulting analytic

expressions of ns and r, whenever possible, and their respective predictions for the observable

parameters, see table 1. In figure 2, we compare the resulting predictions with the bounds

observed by the Planck Collaboration.

Natural inflation. In 1990, Katherine Freese and others [9] presented the case in which sponta-

neous symmetry breaking giving rise to pseudo Nambu-Goldstone bosons, otherwise called axions,

could have a potential of the form V (ϕ) = Λ4[1 + cos(ϕ/µ)]. They showed that such axion field

could give rise to successful inflation in the scale µ ≈ mP and Λ ≈ mGUT ≈ 1015GeV [9]. This

model is now known as natural inflation. In this case, the slow-roll parameters are given by

ϵ =
1

2µ2
tan2

ϕ

2µ
and η = ϵ− 1

2µ2
. (9)

Considering the ending of inflation when ϵ ≈ 1 and using eq. (7), we obtain

ϕini = 2µ arctan

√√√√ 2µ2 exp(−N
µ2 )

1 + 2µ2 − 2µ2 exp(−N
µ2 )

, ϕend = 2µ arcsin

√
2µ2

2µ2 + 1
. (10)

Further, from eq. (8), at ϕ = ϕini, the observable parameters are given by

ns(N) = 1− 1

µ2
− 4

(2µ2 + 1) exp ( N
µ2 )− 2µ2

, (11)

r(N) =
16

(2µ2 + 1) exp ( N
µ2 )− 2µ2

. (12)

The numerical value for these parameters are listed in table 1.
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Axion Monodromy
2/3

2 = chaotic
Starobinsky
Natural Inflation

Figure 1: Scalar potentials V (ϕ) of various inflationary models discussed here. Here, in order to simplify

the comparison between models, all the parameters are set to 1.

Chaotic inflation. In 1983, Andrei Linde attempted to formulate a theory of inflation that

could naturally arise from the chaotic initial conditions of the universe [10]. These conditions

generally entail the fields described by either a polynomial or an exponential potential. The

simplest of these without any loss of generality is given by the potential V (ϕ) = Λ4(ϕ/µ)p. A

common specific case of this is that of a free massive field with a quadratic potential V (ϕ) =

m2ϕ2/2, with m =
√
2Λ2/µ being the mass of the inflaton. For p = 1, this is a linear potential,

leading to V ′′(ϕ) = η = 0 and ϵ independent of ϕ. This means that upon starting, inflation does

not stop unless an additional mechanism is considered [11]. Following the same steps as in the

previous case, for different values of p and N , we find

ϕ2
end =

p2

2
, ϕ2

ini = 2p
[
N +

p

4

]
, ns(N) = 1− p+ 2

2N + p
2

, r(N) =
4p

N + p
4

. (13)

Starobinsky R2 Inflation. We can express the Starobinsky potential as V (ϕ) = Λ4[1−e−ϕ/µ]2.

The presence of a free parameter µ adds complexity to this inflationary potential by making µ-

dependent the observables ns and r. We found that the value µ = 3/2 provides an optimal fit

with the experimental data and, hence, we use it as our standard. The observable parameters,

with the aid of analytical approximations, are found to be

ϕend = µ ln

[√
2

µ

]
, ϕini = µ ln

2N

µ2
, ns(N) ≈ 1− 2

N
− 3µ2

2N2
, r(N) ≈ 16µ2

2N2
. (14)

Axion monodromy. The general axion monodromy potential can be written as

V (ϕ) = Λ4

[(
ϕ

µ

)p

+ b cos

(
ϕ

f
+ γ

)]
, (15)
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Inflationary models

N p = 1
4 p = 1

3 p = 1
2 p = 2

3 p = 3
4 p = 1 p = 4

3 p = 2 Natural Starobinsky Axion monodromy

50
r 0.019 0.027 0.039 0.053 0.059 0.079 0.106 0.158 0.072 0.0072 0.126

ns 0.978 0.977 0.975 0.973 0.973 0.970 0.967 0.960 0.954 0.959 0.966

70
r 0.014 0.019 0.029 0.038 0.043 0.057 0.076 0.113 0.037 0.0037 0.081

ns 0.984 0.983 0.982 0.981 0.980 0.979 0.976 0.972 0.963 0.971 0.972

Table 1: Predicted values of the observables ns and r calculated analytically for N = 50 and N = 70. For

different models, different values of the parameters were so chosen, such that the observables are in the

best agreement with the Planck data [4].

0.95 0.96 0.97 0.98 0.99 1.00
ns

0.05

0.10

0.15

0.20

r

1/4

1/3

1/2

2/3

3/4

4/3

2 = chaotic
Starobinsky
Axion Monodromy
Natural Inflation
N = 50
N = 70
1
2

Figure 2: Planck constraints on ns and r for a family of inflationary models. The outer blue and inner gray

regions respectively denote the 2σ and 1σ bounds on the values of ns and r [4]. Each curve corresponds

to the values of the parameters for an inflationary model, with different number of e-folds, 50 ≤ N ≤ 70.

The models based on V (ϕ) ∝ ϕp are disfavored. For the values considered in this work, axion monodromy

appears to be mostly disfavored as it lies naturally in the 2σ region.

where there are six free parameters, {Λ, µ, f, p, b, γ}. Note that for b ≪ 1, the oscillatory modula-

tion acts as a perturbation of chaotic inflation. The large number of free parameters in inflationary

models based on axion monodromy makes it significantly more complex to study them analyti-

cally. Thus, we use the Newton-Raphson method to numerically evaluate the values of r and ns,

arbitrarily choosing b = 0.1, f = 0.8, µ = 1.2, γ = π
2 and p = 3/2. Table 1 displays the numerical

values of the relevant observables. Interestingly, the oscillatory modulation with non-trivial phase

γ contributes to improve the results of chaotic inflation, as can also be seen in figure 2.
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4 Discussion

Our computations facilitate an analysis of the feasibility of various inflationary models on the

basis of the degree of their agreement with Planck data. From figure 2 one can discern the range

of N values for which different inflationary models give reasonable (within 2σ CL) values of ns

and r. The 1σ region imposes tighter constraints on the values of observable parameters than the

2σ region. As more recent results indicate [12], the models which predict the values of ns and r

to fall inside the 1σ region might be the only admissible inflationary scenarios.

We observe that many power-law potentials V (ϕ) ∝ ϕp (with p = 2, 1/3, 1/4) are ruled out

since their predictions of ns or r, or both, for all the values of N lie outside the 2σ CL region.

Furthermore, the power-law potentials with p = 1/2, 2/3, 3/4 seem also unlikely as their validity is

limited to a very small range of e-fold values, which lies in the 2σ CL region. However, natural

inflation scenarios give more compelling results compared to other models, especially in the range

of higher N .

In the case of axion monodromy, although the value of b is very small, it grants a significant

contribution to the values of ns and r. A slight oscillatory behavior is introduced by b to the

potential. Furthermore, the presence of a large number of free parameters assuming different

possible values gives rise to the uncertainty in predicting the viability of the general axion mon-

odromy model. For the value parameters considered in this paper, axion monodromy seems to

be disfavored but an alternate choice of parameters might improve its feasibility and even make

the values of ns and r fall in 1σ region.

The best fit appears to come from the Starobinsky potential as it lies in the 1σ region

for all 50 ≤ N ≤ 70. But with recent attempts to identify a lower bound on the values of

these parameters, its validity might come into question because of its prediction of very small r

value [12].

The constraints on these observable parameters are being tightened with the combination of

newer and more precise data from various probes like BICEP/KECK 18 and baryonic acoustic

oscillation data (BAO). With the improved data we expect many of the currently acceptable

inflationary models to be conclusively ruled out. This must be investigated elsewhere, taking into

account the latest and future (forecast) results.
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