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ABSTRACT

MULTI-TECHNIQUE CHARACTERIZATION OF SUPERCONDUCTING MATERIALS
FOR PARTICLE ACCELERATOR APPLICATIONS

Junki Makita
Old Dominion University, 2022

Director: Dr. Alexander Gurevich

We investigated the performance limitations of superconducting radio-frequency (SRF)

cavities and materials using multiple experimental techniques. In particular, this study

focuses on understanding the surface properties of nitrogen-doped Nb cavities and super-

conducting thin films with higher Tc such as Nb3Sn. The main goal of this work is to use

different techniques to better understand each aspect of the complex loss mechanism in

superconductors to further improve the already highly efficient SRF cavities.

Nitrogen doping applied to a Nb SRF cavity significantly improves the quality factor

Q0 compared to a conventional Nb cavity, at an expense of reduced maximum accelerating

gradient. The early quench mechanism was analyzed by using temperature maps before

and during the quenching. The temperature maps revealed insignificant heating before the

quench, and we concluded that nitrogen doping reduces critical magnetic fields in local

regions, leading to premature quenching.

To understand the origin of the increasing Q0 with the rf field, the density of states

(DOS) of cold spots from nitrogen-doped and standard cavities were measured and analyzed

using scanning tunneling microscopy. The results suggested that nitrogen doping reduces

the spatial inhomogeneity of superconducting properties and shrinks the metallic suboxide

layers, which tunes the DOS in such a way as to produce the field-induced reduction in the

surface resistance.

To characterize SRF thin films, an experimental setup for measuring a coplanar waveguide

(CPW) resonator was developed and tested. A surface impedance measurement of the

Nb film showed good agreement with the BCS calculation. The preliminary results from

measurements of Nb3Sn and NbTiN films are also presented here.

The nonlinear Meissner effect was investigated in Nb3Sn film CPW resonators by mea-

suring the resonant frequency as a function of a parallel magnetic field. Contrary to a

conventional quadratic dependence of the penetration depth λ(B) on the applied magnetic

field B, as expected in s-wave superconductors, nearly a linear increase of λ(B) with B was



observed. It was concluded that this behavior of λ(B) is due to weakly linked grain bound-

aries on the polycrystalline Nb3Sn films, which can mimic the NLME expected in a clean

d-wave superconductor.
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CHAPTER 1

INTRODUCTION

Superconducting Radio Frequency (SRF) cavities are used to accelerate charged particles

and are the backbones of the large particle accelerators. Currently, the technology of the SRF

cavity is based on bulk Nb that is refrigerated to cryogenic temperatures between 2K to 4K

using cryogenic plants. The exponentially small surface resistance of the superconducting Nb

allows the SRF cavities to reach high quality factors above 1010. This makes it possible for

the superconducting cavities to deliver accelerating gradients on the order of tens of MV/m

much more efficiently compared to normal conducting copper cavities, even after taking into

account the refrigeration cost.

Developing efficient SRF cavities with high accelerating gradients is imperative in order

to minimize the operational cost and the size of the accelerators while keeping up with

the increasing demand of the accelerator-based science. Improving the quality factor of the

cavity will reduce the losses at a given accelerating gradient, which, in turn, can decrease the

size and the electric power consumption of the cryogenic plants. The cavity that can sustain

a higher accelerating gradient will reduce the number of the cavities needed to achieve the

required energy of a beam. Furthermore, a requirement to use the liquid Helium refrigeration

can be eliminated and replaced with a compact closed-cycle cryocooler that is less expensive

and simpler to operate if the cavities can sufficiently operate at temperatures above 4.2K.

Keeping the size and the running cost of the accelerators small is essential not only in

improving the sustainability of the particle accelerators for science, but also for industrial

and societal applications such as water decontamination, medical device sterilization, medical

isotope production, and food preservation.

Over the last four decades, a significant research effort has been devoted to improving the

quality factor and the accelerating gradient of the Nb cavities. Recently, it was discovered

that diffusing impurities such as nitrogen into the surface of the cavity substantially increases

the quality factor [1, 2]. This discovery was so successful, that it was rapidly adopted as a

part of the treatment for the SRF cavities to be used in the LCLS-II project [3]. However,

most of the nitrogen-doped cavities suffered from reduced maximum accelerating gradient.

Understanding the causes of the enhanced quality factor and the lower quench field due to
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the nitrogen-doping is not only important to gain fundamental knowledge of SRF physics,

but also for application purposes to build more efficient cavities.

To further improve the performance of the SRF cavities beyond the intrinsic limit of

the Nb, there has been a growing effort in search of alternatives to bulk Nb cavities. Some

of the innovations include using a thin film of Nb on a copper cavity to improve thermal

stability and depositing thin film materials with higher Tc and higher critical magnetic field

on the inner surface of Nb cavities. A thin film of Nb3Sn deposited on the inner surface of

Nb cavities is a promising candidate for future applications. With its Tc of 18K, the Nb3Sn

treated cavities have the potential to significantly simplify cryogenic operations. Recent

progress on the Nb3Sn treated cavities has resulted in the single-cell cavities reaching the

maximum gradient as high as 24MV/m; yet, this is still ∼ 50% of the accelerating gradient

achieved by the Nb cavities [4]. To realize the full potential, further investment in the

research and development of the Nb3Sn film is needed.

The first part of the dissertation focuses on understanding the surface properties of the

nitrogen-doped cavities using both the temperature mappings and the scanning tunneling

microscopy (STM). In particular, the surface oxide contributions to the superconducting

properties of the nitrogen-doped cavities were studied in comparison to that of the standard

treated Nb cavities. The results give insights into the effects the nitrogen doping has on the

surface of the Nb as well as new ways to improve the performance of the SRF cavities. The

second part of the work describes using the coplanar waveguide resonators to measure thin

film superconductors. Experimental procedures and results for extracting superconducting

properties from rf measurements on thin film resonators made with Nb, NbTiN, and Nb3Sn

are presented. Furthermore, magnetic field dependent measurements were carried out using

the probe station to investigate the nonlinear Meissner effect in the Nb3Sn films. The rf mea-

surement procedure described in this dissertation provides a robust benchmarking method

for characterizing thin film superconductors, and the results of the nonlinear Meissner effect

give insight into how the Nb3Sn films respond under parallel magnetic fields.

This dissertation begins with chapter 2 where the overview of the theory of superconduc-

tivity relevant to this work is given. Chapter 3 gives a brief outline of the electrodynamics of

the superconducting rf cavities. In chapter 4, the basics of transmission line physics as well as

analytical techniques for the superconducting coplanar waveguide resonators are described.

In chapter 5, studies of the nitrogen-doped cavities are presented. This includes the results

of the temperature mappings and detailed procedures and analysis results of the scanning

tunneling microscopy on the coupons from the nitrogen-doped and the standard treated Nb
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cavities. Chapter 6 moves on to the characterizations of the thin film superconductors using

the coplanar waveguide resonators. The design of the probe-coupled measurements is given

in detail, and the results from the rf measurements on Nb, NbTiN, and Nb3Sn thin films

are presented. Chapter 7 studies the nonlinear Meissner effect in Nb3Sn thin-film coplanar

waveguide resonator. This includes the description of the cryogenic probe station used in

the experiment and results from the measurement of the resonant frequency as a function

of a parallel magnetic field. Lastly, chapter 8 gives the summary of the dissertation and the

future outlook.
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CHAPTER 2

PHYSICS OF SUPERCONDUCTIVITY

2.1 LONDON THEORY

In 1934, Gorter and Casimir characterized the properties of superconductivity using a

two-fluid model [5]. This phenomenological model assumed the coexistence of normal and

superconducting electrons below Tc. The two types of electrons contributed separately to

the total current density as follows:

J = Jn + Js, (1)

= nnevn + nsevs, (2)

where nn and ns are densities of normal and superconducting electrons respectively. Based

on this model, Fritz and Heinz London proposed two equations that described the electrody-

namic features of the superconductor: perfect conductivity and screening of magnetic field

within the penetration depth λL, the latter being referred to as the Meissner effect. The

London equations are

∂J

∂t
=

1

µ0λ2L
E, (3)

B = −µ0λ
2
L∇× J , (4)

where

λL =

√
m

µ0nse2
, (5)

is the London penetration depth [6]. The first equation replaces the normal conducting

Ohm’s law and is derived from the response of an electron to an electric field in the Drude

Model: mdv
dt

= eE −mv
τ
, where τ is the phenomenological scattering time. Letting τ = ∞

models a perfect conductor, and substituting v = J
ne

derives Eq. (3). The second London

equation describes the Meissner effect in the superconductor. Substituting ∇ × B = µ0J

into Eq. (4) yields

∇2B =
1

λ2L
B, (6)
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which has the general solution of the form B(x) = B0e
−x/λL . The equation shows a magnetic

field decaying exponentially inside the superconductor with the London penetration depth

as the length scale. The London penetration diverges at T = Tc and approaches a minimum

at T = 0. The temperature dependence of λL near Tc is approximated as [7]

λL(T ) =
λL(0)√
1−

(
T
Tc

)4 . (7)

2.2 THE PIPPARD NON-LOCAL RELATION

In the early 1950s, Pippard conducted a series of experiments to measure the change in

the resonant frequency of a superconducting wire with increasing static magnetic field and

determined the penetration depth to vary with impurity concentration [8]. In his experiment,

the penetration depth of Sn doubled with an addition of 3% In impurity while the critical

temperature and field were only slightly affected. This result contradicted the London pen-

etration depth that depended only on the effective mass and density of the superconducting

electrons.

In analogy with the anomalous skin effect in a normal conductor, Pippard introduced

a ”coherence length” ξ and proposed a new non-local formula to supersede the London

equation:

J(r) = − 3

4πξ0Λ

∫
R [R ·A(r′)]

R4
e−R/ξdr′, (8)

where R = r − r′, Λ = µ0λ
2
L, and ξ is dependent on the mean free path l and a constant

characteristic length ξ0 as

1

ξ
=

1

ξ0
+

1

l
. (9)

Equation 8 describes J(r) in response to A(r′) at points r′ within the radius of ξ around

r. ξ0 was interpreted by Pippard as the characteristic length scale of the superconducting

electron wave function. In the limit λL ≫ ξ, A(r′) varies much more slowly compared to an

external field, so A can be taken out of the integral in Eq. (8), and the magnetic penetration

depth λ depends on the mean free path as follows:

λ = λL

(
1 +

ξ0
l

)1/2

. (10)
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2.3 GINZBURG-LANDAU THEORY

Ginzburg and Landau developed a macroscopic theory of superconductivity that intro-

duced a complex wave function ψ(r) such that |ψ(r)|2 is proportional to the density of

superconducting electors ns [9]. The theory introduced a spatial variation in ns and a non-

linear response to fields. The Ginzburg-Landau (GL) theory postulates that at temperatures

close to Tc where |ψ|2 is small, the free energy density can be expanded in series of |ψ|2 and
its small spatial gradients as shown below:

F (r, T ) = Fn(r, T ) + α|ψ|2 + β

2
|ψ|4 + 1

2m∗ |(−iℏ∇− 2e∗A)ψ|2 + B2

2µ0

, (11)

where Fn(r, T ) is the free energy density of the normal state. The kinetic energy associated

with the external field is taken into account with the momentum operator p = (−iℏ∇−2eA),

and the last term is the magnetic self-energy. Only the even powers ψψ∗ are included because

the order parameter is complex and the right hand side of the equation must be real.

The coefficient α(T ) = α′(T − Tc) changes sign at the critical temperature Tc. In an

absence of a field, if α > 0 the free energy is minimized when |ψ| = 0 which corresponds

to F (r, T ) = Fn(r, T ) or a normal state. For a negative α and a positive β, the lowest free

energy is achieved when

|ψ|2 = −α
β
= |ψ∞|2. (12)

The difference in free energy between the normal and superconducting state F (r, T ) −
Fn(r, T ) at this value gives the thermodynamic critical field:

µ0H
2
c

2
=
α2

2β
. (13)

The critical field Hc refers to the maximum field that can be applied to the superconductor

without destroying its superconductivity. The value of α is positive for T > Tc and becomes

negative at T < Tc at the phase transition. By expanding in series near Tc with respect to

t = T/Tc, the temperature dependence of α is derived to be

α(t) = α′(t− 1), (14)

which indicates that Hc varies by (1− t) with temperature.
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Expanding the fourth term in Eq. (11) using ψ = |ψ|eiϕ we obtain

1

2m∗

[
ℏ2(∇|ψ|)2 + (ℏ∇ϕ− 2e∗A)2 |ψ|2

]
. (15)

The second term is associated with the kinetic energy of the supercurrent, which is simply
e∗2A2

2m∗ |ψ|2 when using constant ϕ in the London gauge. Comparing this with the kinetic

energy density expression from the London theory, we can obtain the penetration depth

λ2 =

(
m∗

e∗2µ0|ψ|2
)1/2

, (16)

which is identical to λL when |ψ|2 = ns

2
, e∗ = 2e, and m∗ = 2m where e and m are the

electron charge and mass, respectively.

In the absence of fields, currents, or gradients, the free energy Eq. (11) is minimized with

|ψ|2 = |ψ∞|2; however, when the boundary conditions are imposed, minimization of the free

energy with respect to the order parameters |ψ| and |A| leads to the following GL equations:

αψ + β|ψ|2ψ +
1

2m
(−iℏ∇− 2eA)2 ψ = 0, (17)

and

J =
e

m
[ψ∗ (−iℏ∇− 2eA)ψ] + c.c. (18)

In a case with no magnetic field, Eq. (17) can be solved to obtain the characteristic length

of a spatial variation of |ψ| as

ξ2 =

(
ℏ2

2mα(T )

)
∝ 1

1− T/Tc
. (19)

This is called Ginzburg-Landau coherence length and is different from the ξ0 in Pippard’s

definition. The temperature-dependent coherence length ξ(T ) describes the healing length

of the wavefunction when the superconductor is perturbed, for example by magnetic field or

inclusion of normal metal.

A dimensionless Ginzburg-Landau parameter κ is the ratio between the penetration depth

and the coherence length:

κ =
λ(T )

ξ(T )
. (20)

The value of κ = 1/
√
2 separates superconductors into two types of superconductors:

Type I: κ < 1/
√
2,

Type II: κ > 1/
√
2.
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For a type II superconductor, it is energetically favorable to create a mixed state of normal

and superconducting regions above H = Hc1. When the field is increased beyond Hc1, the

magnetic flux penetrates the material in the form of quantized flux lines or vortices, until

H = Hc2 where the superconducting state transitions into the normal state [10]. The vortex

has a normal core with a circulating supercurrent, producing a total flux equal to

Φ0 =
h

2e
= 2.07× 10−15T ·m2. (21)

In a presence of a current, the vortex experiences the Lorentz force f = J ×Φ0 causing the

flux line to move perpendicular to the direction of the current. This motion of the vortex

results in the time variation of the field, giving rise to an electric field which will produce

resistive loss inside the normal core of the vortex. Therefore, the presence of the vortex

breaks the lossless superconductivity unless the flux is pinned by material defects.

2.4 COOPER PAIR

A microscopic theory of superconductivity was developed by Bardeen, Cooper, and Schri-

effer (BCS) and provided a comprehensive explanation for the origin of superconductivity

46 years after its first discovery [11]. The theory showed that a weak attractive electron-

electron interaction creates a bound state below the Fermi surface. This formation of the

pair of electrons or Cooper pairs below the Fermi level resulted in an energy gap ∆ ≃ kTc

in the electron energy spectrum.

Experiments conducted in 1950 had shown that a transition temperature of mercury

varied inversely with the square root of its isotopic mass [12, 13]. These results confirmed

the importance of electron-phonon interaction in superconductivity [14]. It was later shown

by Fröhlich, Bardeen, and Pines that an electron-electron interaction due to exchange of

phonons results in attraction between two electrons with opposite momenta and spins, which

can be stronger than the direct Coulomb repulsion [15, 16]. The phonon-mediated attraction

occurs when a first electron attracts positively charged ions and deforms the lattice. The

density of positive ions is increased on its trail, which can then attract a second electron pass-

ing through. The sequence of events effectively produces the attractive interaction between

the first and the second electrons.

Cooper showed that when such a pair of electrons is added to the sea of Fermi electrons,

they will form a bound state below the Fermi level [17]. The Schrodinger’s equation for the
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two-particle system can be written as [7]

(H0 + V )
∑
k

gk |k,−k⟩ = E
∑
k

gk |k,−k⟩ , (22)

where |k,−k⟩ is the two-particle state with H0 |k,−k⟩ = 2ϵk |k,−k⟩. In the equation,

two electrons are assigned equal and opposite momentum to yield the lowest energy state

possible. The interaction potential V was approximated to be constant within a narrow

energy shell of width ℏωc around the Fermi surface and zero everywhere else. The solution

to the energy eigenvalue of the system with respect to the Fermi energy EF is

E = −2ℏωce
−2/N(0)V , (23)

in the weak-coupling approximation N(0)V ≪ 1 where N(0) is the density of states for

electrons at the Fermi level [7]. The result shows that in the presence of the attractive

potential, the Cooper pairs condense into a ground state with energy below EF , suggesting

a gap in the energy spectrum.

2.5 BCS GROUND STATE

Cooper’s calculation showed that the Fermi sea of electrons would be unstable when

the attractive potential exists between them [17]. This means that the electrons will form

pairs until the system departs enough from the normal metal state and becomes energeti-

cally unfavorable to form another pair. Bardeen, Cooper, and Schrieffer extended Cooper’s

calculation to describe this complicated state of electron pairs in their famous BCS theory.

The wavefunction proposed in the BCS theory takes the form

ΨBCS =
∏
k

(
uk + vkĉ

†
k↑ĉ

†
−k↓

)
|ϕ0⟩ , (24)

where ĉ†k↑ is a fermion creator operator that creates an electron with momentum k and spin

↑ and |ϕ0⟩ is the vacuum state [7, 11]. A probability that a pair state (k ↑,−k ↓) is occupied
is |vk|2 and unoccupied is given by |uk|2 = 1− |vk|2. This wavefunction relaxes a restriction

of fixing a number of particles in a system and instead describes a superposition of pair

states containing 2 to ∞ electrons. The Hamiltonian of the pair system is

H =
∑
kσ

ξkĉ
†
kσ ĉkσ +

∑
kk′

Vkk′ ĉ†k↑ĉ
†
−k↓ĉ−k′↓ĉk′↑, (25)

where ξk = ϵk − µ is a single particle energy measured from the Fermi energy and Vkk′ is

the attractive interaction potential of the pair that follows the Cooper’s model [7, 11]. u2k

and v2k are calculated by minimizing ⟨ΨBCS|H |ΨBCS⟩ to be
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v2k =
1

2

[
1− ξk

(∆2 + ξ2k)
1/2

]
, (26)

u2k = 1− v2k =

[
1 +

ξk

(∆2 + ξ2k)
1/2

]
, (27)

where

∆ =
ℏωc

sinh[1/N(0)V ]
≈ 2ℏωce

−1/N(0)V , (28)

for N(0)V ≪ 1 [7, 11]. The Cooper pair occupation probability v2k as a function of single-

particle energy is shown in the Fig. 1. Unlike the Fermi function of a normal metal, the

distribution near the Fermi energy is smeared out at T = 0. In the superconducting state,

some of the states outside the Fermi sphere are occupied to create pair interaction that

results in an overall reduction of energy compared to the normal metal state.

-8 -6 -4 -2 0 2 4 6 8

0

0.2

0.4

0.6

0.8

1

FIG. 1: A probability amplitude that a pair state with momentum k is occupied is smeared

out around ∆ as opposed to a sharp step function at T = 0.

An excited state of the superconductor involves breaking up a Cooper pair due to some
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external excitation. If an electron in a state k ↑ is scattered, it will leave an electron in a

state −k ↓ unpaired. Because of this correlation, the elementary excitation from the ground

state superconductor involves quasiparticle creation and destruction operators that mixes

the electron-like and hole-like operators as shown by Bogoliubov [18]

γ̂k↑ = ukĉk↑ + vkĉ
†
−k↓, (29)

γ̂†k↑ = ukĉ
†
k↑ − vkĉ−k↓. (30)

Diagonalizing the Hamiltonian of Eq. (25) using the new operators show the excitation energy

to be

Ek =
(
ξ2k + |∆k|2

)1/2
, (31)

where the gap

∆k =
∑
l

Vkl
∆l

2El

tanh
El

2kBT
, (32)

where the summation over l is restricted by a narrow energy shell of thickness ℏωD at the

Fermi surface, where ωD is the Debye frequency. Equation (31) shows that the minimum

energy required for the excitation is ∆ above the Fermi surface; thus the superconductor

exhibits an energy gap ∆ in the density of states. The quasiparticle density of states Ns(E)

normalized to the normal metal density of states is

Ns(E)

N(0)
=

dξ

dE
=


E

(E2 −∆2)1/2
, (E > ∆) ,

0, (E < ∆) .

(33)

NS(E)/N(0) at T = 0 is shown in Fig. 2. The density of states is zero for |E| < ∆ and

diverges at E = ∆.

For T > 0, the probability of quasiparticle excitation follows the normal metal Fermi

function f(Ek) =
(
eEk/kBT + 1

)−1
. As the temperature increases, more quasiparticles are

excited and ∆(T ) is reduced, until it becomes zero at the critical temperature Tc. From the

BCS theory, ∆(0) and Tc are related by

∆(0)

kTc
= 1.764. (34)

Furthermore, in the BCS approximation where the interaction potential Vkl = −V and

∆k = ∆, Eq. (32) can be solved numerically to yield temperature dependence of gap ∆(T )
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FIG. 2: A superconducting density of states normalized to that of a normal metal is shown

in a solid line and a dashed line indicates the normal metal density of states. The density

of states is zero within a gap ∆ and has a sharp divergence at an energy just above ∆ for a

superconductor at T = 0.

as shown in the Fig. 3. Two limiting cases can be approximated as below [7]:

∆(T )

∆(0)
≈


1− e−β∆(0),

T

Tc
<

1

3
,

1.74

(
1− T

Tc

)1/2

,
T

Tc
→ 1,

(35)

which indicates that the ∆ remains approximately constant for low T .

2.5.1 COMPLEX CONDUCTIVITY

A superconductor is lossless only when dc field is applied and becomes resistive when ac

field is applied. A complex conductivity of a superconductor is derived starting from the

Maxwell’s equation:

∇2E = µ0
∂J

∂t
. (36)

Substituting for J = Jn + Js = σ1E+ Js results in

∇2E = µ0σ1
∂E

∂t
+

E

λ2L
, (37)
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FIG. 3: Temperature dependence of ∆ for a weak-coupling superconductor. The gap is

nearly constant for low T and then drops sharply to zero at Tc.

where the second term is derived from Eq. (3). The conductivity σ1 arises from thermally

excited normal electrons that are generated from breaking of Copper pairs. For a field with

sinusoidal time dependence, Eq. (37) becomes

∇2E = iωµ0

(
σ1 − i

1

ωµ0λ2L

)
E. (38)

This form is analogous to the wave equation in a normal conductor when the complex

conductivity σ = σ1 − iσs is introduced [19]:

∇2E = iωµ0σE, (39)

where the imaginary part is

σs =
1

ωµ0λ2L
. (40)

An effect of the complex conductivity can be visualized using a simple equivalent circuit

model shown in Fig. 4. In this model, a resistance from σ1 is connected in parallel with a

lossless reactance from σs. When J is constant in time, all the currents are shorted toward

σs without any loss. This reactive part called kinetic inductance emerges from a finite inertia

of the Cooper pairs to oppose a change in the current when J is dependent on time. Because
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FIG. 4: An equivalent representation of complex conductivity in the circuit diagram.

it takes a finite amount of time for the Cooper pairs to respond to the alternating field, a

phase lag with respect to the external field occurs. Therefore, some of the oscillating current

can travel through the normal, lossy resistance.

2.6 SURFACE IMPEDANCE

The electromagnetic behavior of a metal is described by a surface impedance defined

by the ratio Zs = Ex(0)/Hy(0). An expression for the surface impedance in the two-fluid

approximation is given by [20]:

Zs =
Ex(0)

Hy(0)
=

√
iωµ

σ1 − iσs
. (41)

For σs ≫ σ1, the surface resistance Rs and surface reactance Xs are given as [20]

Zs = Rs + iXs =
ω2µ2σ1λ

3

2
+ iωµλ. (42)

The surface resistance in a superconductor has ω2 dependency in contrast to
√
ω of the

normal conductors, and this prediction has been observed in clean conventional supercon-

ductors [20].

The total internal inductance LI is defined as

LI = Lm + Lk. (43)

It is a sum of magnetic Lm and kinetic Lk inductance. Lm originates from magnetic energy

stored by the field penetrating into the conductor by the length scale λ, and Lk is derived

from the kinetic energy of the super electrons. In the approximation σs ≫ σ1, Lm is equal

to Lk [19].
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A detailed expression for σ1 that takes into the temperature-induced pair breaking effect

has been calculated in the BCS theory. For frequencies below the gap frequency ω < ωD =

2∆/ℏ, the ratio of σ1/σn in the normal state is given as [7]

σ1
σn

=
1

ℏω

∫ ∞

−∞

(E2 + ℏωE +∆2)[f(E)− f(E + ℏω)]
(E2 −∆2)1/2[(E + ℏω)2 −∆2]1/2

, (44)

where σn is the normal state conductivity. This integral must be calculated numerically for

a general case, but in the limits of frequencies much lower than the gap ℏω ≪ ∆ and low

temperatures kBT ≪ ∆, it is approximated in a much simpler form:

σ1
σn

≈ 4∆

ℏω
e−∆/kBT sinh

(
ℏω

2kBT

)
K0

(
ℏω

2kBT

)
, (45)

where K0 is the modified Bessel function of the second kind [21]. Since ℏω/2kBT ≈ 10−2,

Eq. (45) can be further simplified using sinh(x) ≈ x and K0(x) ≈ −γ+ln(2/x) where γ is the

Euler-Mascheroni constant [22, 23]. The approximate expression for the BCS conductivity

becomes

σ1
σn

≈ 2∆

kBT
e−∆/kbT ln

(
CkBT

ℏω

)
, (46)

where C = 4/eγ ≈ 2.25 [23]. An approximate form of the BCS surface resistance is then

derived by substituting Eq. (46) into the real part of Eq. (42):

Rs =
µ2
0ω

2λ3∆σn
kBT

ln

(
CkBT

ℏω

)
e−∆/kBT . (47)

The expression reveals that the surface resistance of a superconductor decreases exponentially

with T .

The surface impedance described by Eq. (47) and Eq. (42) is applicable in the local limit

where the characteristic length scale ξ or l is much smaller than the decay length λ and the

conventional Ohm’s law J = σE hold true. On the other hand, a non-local relation between

the current density J(r) and the vector potential A(r′) is described by the BCS theory in

analogous to Eq. (8):

J(r) =
3

4πvFℏλ2L

∫
RR ·A(r′)I(ω,R, T )e−R/l

R4
dr′, (48)

where R = r′ − r [24]. The Mattis-Bardeen kernel I(ω,R, T ) decays over the coherence

length proposed in the BCS model:

ξ0 =
ℏvF
π∆

, (49)
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where vF is the Fermi velocity at T = 0 [24]. This equation describes J(r) in response to

the values of A(r′) around the radius ξ−1 ≈ ξ−1
0 + l−1. Equation (48) can be used with

Maxwell’s equation to derive surface impedance of the superconductor for diffuse surface

scattering [25]:

Zs = iµ0ω
π∫∞

0
ln
(
1 + Q(k,ω)

k2

)
dk
, (50)

where Q(k, ω) is the Fourier transformed kernel. Equation (50) is calculated numerically to

extract the real and imaginary part of the surface impedance given the necessary material

parameters for the superconductor.

Taking the real part of Eq. (50) gives an expression for the penetration depth [7]:

λ(T ) =
π

Re
[∫∞

0
ln
(
1 + Q(k,ω)

k2

)
dk
] . (51)

In the limit, ξ, λ ≪ l, so-called ”clean limit”, the temperature dependnce of λ(T ) cal-

culated using Eq. (51) resembles the Gorter-Casimir temperature dependence λ(T ) ∝
1/
√

(1− (T/Tc)4. On the other hand, in the limit ξ ≫ l, so-called ”dirty limit,” λ(T )

diverges slightly from the Gorter-Casimir temperature dependence. The numerically calcu-

lated λ(T ) for both limits are compared with 1/
√

(1− (T/Tc)4 in Fig. 5.
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FIG. 5: Comparison of the temperature dependence of magnetic penetration depth. Clean

limit ξ ≪ l temperature dependence becomes closer to that of two-fluid approximation, while

in the dirty limit, λ(T ) increases faster with T .
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CHAPTER 3

BASICS OF SUPERCONDUCTING RADIO FREQUENCY CAVITIES

3.1 ELECTROMAGNETICS OF RF CAVITIES

An rf cavity is an conductive enclosed structure that can store an oscillating electromag-

netic field. The electromagnetic field in the cavity can be calculated for a simple model

of a cylinder with two end caps or a ”pillbox cavity” with perfectly conducting wall. The

electromagetic field satisfies the following boundary conditions:

n̂× E = 0, (52)

n̂ ·H = 0, (53)

where n̂ indicates vector normal to the surface inside the cavity. Combining Maxwell’s

equations, the field inside satisfies the wave equation:(
∇2 − 1

c2
∂2

∂t2

){
E

H

}
= 0. (54)

Different boundary conditions imposed on the electric and magnetic fields produce two sets

of solutions with different eigenvalues. They are denoted as a transverse magnetic (TM)

mode and a transverse electric (TE) mode. In the TE mode, Ez = 0 where z-axis is the

direction of the propagation, but other components of the E are nonzero, and in the TM

mode, Hz = 0, but other components of H are nonzero.

Different TM and TE mode solutions are denoted by integer indices as TMmnp and

TEmnp. The indices m, n, and p indicate a number of wavelengths along the circumference,

diameter, and longitudinal direction. In the simple pill-box cavity, TE mode does not have

a longitudinal electric field and cannot accelerate the beams, so they are not used for accel-

erating cavities. TM010 mode is often used for accelerating cavity because it has the lowest

eigenfrequency and the longitudinal component of E does not vanish.

An accelerating cavity used in a practical application has an elliptical shape. This shape

was optimized from the pillbox cavity to mitigate multipacting [26]. Multipacting is a process

in which a large number of electrons are emitted from the wall of the cavity, absorbing the

rf power and limiting the performance of the cavity. Those electrons can also be accelerated
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by the rf field and eventually impact the cavity wall. When the emitted electrons impact

the wall, more electrons may be produced, leading to local heating and thermal breakdown

of superconductivity. The field profile in the elliptical shape allows emitted electrons to drift

toward the equator where the radial electric field is zero so the emitted electrons do not gain

enough energy further produce secondary electrons [26].

3.2 ACCELERATING VOLTAGE

For an electron traveling down the center of the cavity close to the speed of light, the

maximum energy gain is achieved if the electron traverses the cavity at one-half of the rf

period. For a cavity length of d, this requirement is met when the flight time Td of the

electron through the cavity is given by:

Td =
d

c
=

π

ω0

, (55)

where ω0 is the oscillating frequency of the electromagnetic field. This condition ensures that

the electron always sees an accelerating field pointing in the same direction. The accelerating

voltage gained by the electron is calculated as

Vc =

∣∣∣∣∫ d

0

Ez(ρ = 0, z)eiω0z/cdz

∣∣∣∣ , (56)

where Ez(ρ = 0, z)eiω0z/c is the electric field at the center of the cavity ρ = 0 with sinusoidal

time dependence eiωt with t = z/c. The average accelerating electric field or the accelerating

gradient that the electron experiences is then

Eacc =
Vc
d
. (57)

3.2.1 PEAK SURFACE FIELD

A schematic of the electromagnetic field lines inside the cavity is illustrated in Fig. 6.

How much Eacc the cavity can deliver depends on the maximum field at the surface of the

cavity. The peak surface magnetic field Bpk which lies near the equator would quench the

cavity when the value exceeds the critical magnetic field or when the surface heats above Tc.

The maximum surface electric field Epk near the iris is also important because of the risk

of field emission. The ratio Epk/Eacc and Bpk/Eacc are optimized by modifying the cavity

geometry.
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FIG. 6: A schematic of the elliptical cavity with field lines [27]. The surface electric field is

strongest near the iris while the surface magnetic field is maximum near the equator region.

3.2.2 QUALITY FACTOR

A figure of merit that characterizes the efficiency of the accelerating cavity is the intrinsic

quality factor defined as

Q0 =
ωU

Pc

, (58)

where ω is the angular frequency of the electromagnetic field, U is the stored energy, and Pc

is the power dissipated in the wall of the cavity. The dissipated power is

Pc =
1

2
Rs

∫
S

|H|2ds, (59)

where Rs is the surface resistance of the superconductor and the integration is over the inner

surface of the cavity. The time averaged stored energy is

U =
1

2
µ0

∫
V

|H|2dv, (60)

where the integration is over the volume of the cavity. Written in terms of those integrals,

Q0 becomes

Q0 =
ωµ0

Rs

∫
V
|H|2dv∫

S
|H|2ds . (61)
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Since the ratio of the volume and the surface integral of H depends only on the shape of the

cavity, a constant geometric factor G is defined as

G =
ωµ0

∫
V
|H|2dv∫

S
|H|2ds . (62)

Q0 can now be rewritten as a ratio of G to Rs:

Q0 =
G

Rs

, (63)

which shows that reducing Rs directly improves the efficiency of the SRF cavity.
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CHAPTER 4

BASICS OF SUPERCONDUCTING COPLANAR WAVEGUIDE

RESONATOR

4.1 INTRODUCTION

A coplanar waveguide (CPW) is a three-conductor transmission line with a center signal

strip and two ground planes deposited on top of a dielectric material as shown in Fig. 7. The

Ground Plane Ground PlaneCenter Strip

Dielectric Substrate

FIG. 7: A simple diagram of the coplanar waveguide.

CPW with an open-ended strip as shown in Fig. 8 creates reflections at both ends, result-

ing in a standing wave similar to any other resonating cavity, with the fundamental mode

equal twice the strip length. The CPW resonators fabricated from Nb films have achieved

very high quality factors in the order of 106 at T = 10–20mK [28, 29]. In addition to the

high quality factor, the CPW resonator has advantages over other resonating structures in

that only one superconducting film layer is required on top of a dielectric substrate and

that the resonators can be fabricated in micron scales using modern lithography techniques.

These advantages lead to wide applications including kinetic inductance detectors at mil-

limeter and submillimeter wavelengths [21, 30], qubit devices for quamtum computers [31,
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FIG. 8: Top view of the coplanar waveguide resonator with the open-ended circuit on both

ends of the center strip. Ground plans are shown on the top and the bottom of the figure.

32], electron spin resonance spectroscopy [33, 34], and characterizations of superconducting

properties [35–37].

The properties of the superconducting films can be extracted from measurements of

quality factor Q0 and resonant frequency fr. The operating frequency of less than 3GHz

can be achieved in a small sample size of ∼ 10 mm, which makes the use of CPW a suitable

choice for bench-marking superconducting samples for SRF accelerator applications. The

superconducting CPW resonator provides a cost-effective rf measurement, much needed for

the development of alternative materials for the Nb SRF cavities [38].

4.2 TRANSMISSION LINE RESONATOR BASICS

A transmission line is designed to carry current at high frequency, where the wavelength

may be comparable or smaller than the conductor. Over its length, the voltages and currents

vary, and circuit parameters such as capacitance, resistance, and inductance are distributed

continuously throughout the line. A simple transmission line can be represented by a two-

wire line as illustrated in Fig. 9 along with an equivalent lumped-circuit model of a differential

section ∆z. The circuit model represents the transmission line in terms of resistance R and

an inductance L per unit length of a current-carrying conductor and a capacitance C and

shunt conductance G per unit length between conductors.

The transmission line parameters R, L, C, and G characterize a sinusoidal wave traveling

along the conductors. The wave traveling along the transmission line is described by eiγx−iωt
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(a)
dz

V(z,t) I(z,t)

(b)

Ldz Rdz

Cdz GdzV(z,t)

I(z,t) I + ∂I
∂zdz

V + ∂V
∂z dz

FIG. 9: (a) A parallel two-conductor transmission line; (b) equivalent circuit for differential

section dz.

where

γ = α + iβ, (64)

γ ≈ 1

2

√
LC

(
R

L
+
G

C

)
+ iω

√
LC, (65)

where α is the attenuation constant and β is the phase constant [39]. A ratio of amplitudes of

the voltage and the current of a wave traveling in one direction is defined as the characteristic

impedance of the line Zc:

Zc =

√
R + iωL

G+ iωC
, (66)

where ω is the angular frequency of the wave. For a low loss line with R,G≪ L,C relevant

to superconducting transmission lines, Zc is approximated to

Zc =

√
L

C
. (67)

Zc of the transmission line determines a reflection coefficient for waves traveling from a Z1

to Z2 as follows [39]:

Γ =
Z2 − Z1

Z2 + Z2

. (68)
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Therefore, when connecting two transmission lines, the transmitted power is maximized

when the characteristic impedance of the two lines matches.

For a transmission line of length l that is terminated with an arbitrary load impedance

ZL, the input impedance at the beginning of the line is [40]

Zin = Zc
ZL + iZ0 tanh(iβl + αl)

Zc + ZL tanh(iβl + αl)
. (69)

The open-ended half-wave resonator like the one shown in Fig. 8 is represented with an open

circuit at the load or ZL = ∞. The input impedance becomes [40]

Zin = Zc
1 + i tan(βl) tanh(αl)

tanh(αl) + i tan(βl)
. (70)

For the resonator, the line length is l = λ/2 where the wavelength λ = 2πvp/ω0, and the

phase velocity vp = ω/β. The propagation constant near the resonant frequency ω0 can be

approximated by setting ω = ω0 + δω:

β =
ω

vp
≈ ω0

vp
+
δω

vp
=

1

l

(
π +

δωπ

ω0

)
. (71)

Plugging Eq. (71) into Eq. (69) and assuming small loss αl ≪ 1, the input impedance of the

half-wave transmission line resonator is

Zin = Zc
1 + iαlδω/ω0

αl + iπδω/ω0

, (72)

≈ Zc

αl + iπδω/ω0

. (73)

This input impedance can be compared to that of a lumped parallel RLC circuit to obtain

an expression for the Q0. For the RLC circuit illustrated in Fig. 10, the input impedance

near the resonance is

Zin =

(
1

R′ +
1

iωL′ + iωC ′
)−1

, (74)

=
R′

1 + 2iδωR′C ′ , (75)

and Q0 is

Q0 = ω0R
′C ′, (76)

where ω0 is

ω0 =
π

l
√
LC

. (77)
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Comparing Eq. (69) and Eq. (75), R′ and C ′ expressed in terms of transmission line param-

eters are

R′ =
Zc

αl
, (78)

C ′ =
π

2ω0Zc

, (79)

and the Q0 is then

Q0 = ω0R
′C ′ =

π

2αl
. (80)

Now, substituting α ≈ 1
2

√
LC R

L
and l = π

β
≈ π

ω0

√
LC

, Q0 in terms of the distributed trans-

mission line parameters is

Q0 =
ω0L

R
. (81)

L’ C’ R’V

FIG. 10: A lumped circuit model of the parallel RLC circuit.

4.3 ANALYTICAL CALCULATIONS OF CPW PARAMETERS

To analytically calculate the distributed inductance L and capacitance C, the supercon-

ducting CPW is treated as a perfect conductor, and the geometric inductance Lg and the

geometric capacitance Cg are calculated first. The effect of superconductivity, in partic-

ular, the kinetic inductance Lk can be calculated separately and added to yield the total

inductance L = Lg +Lk. The geometric inductance and capacitance for the CPW are calcu-

lated assuming quasi-static approximation. In this regime, the parameters are obtained by
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solving electro- and magneto-static problems based on the cross-sectional geometry of the

CPW assuming the structure hosts a pure-TEM mode. In reality, a pure-TEM mode cannot

propagate in the CPW since the conductors are deposited on a substrate with dielectric

constant ϵr and the top half is exposed to vacuum or air. Part of the waves traveling in

the air will have the velocity c while the waves in the dielectric will travel with velocity

c
√
ϵr. The difference in the wave speed produces longitudinal field components Ez and Hz

along the length of the CPW [41]. Therefore, the CPW supports propagation of quasi-TEM

mode at low frequencies and more TE-like at higher frequencies [42]. At low frequencies,

treating the quasi-TEM mode as a pure-TEM provides a good approximation for calculating

transmission line parameters when the transverse components of the waves ET and HT are

much greater than Ez and Hz. A condition that makes this approximation valid is [43]

w ≪ 1

fr
√
µϵ
, (82)

where µ and ϵ are the permeability and the permittivity of the substrate, w is the width

of the center conductor, and fr is the operating frequency. For example, a CPW resonator

operating at fr = 1 − 3GHz deposited on sapphire has ϵ ∼ 10ϵ0 and µ = µ0. With these

parameters, the quasi-static approximation is valid for w ≪ 10−2 m.

In the quasi-static approximation, the transmission line parameters are calculated by

solving the 2D Laplace’s equation of the CPW geometry. The cross-sectional geometry of

the CPW is shown in Fig. 11 where w is the center strip width, s is the gap width between

the strip and the ground planes, t is the thickness of the strip, h is the dielectric substrate

thickness, and ϵr is the dielectric constant of the substrate. To simplify the calculation

of Laplace’s equation, a conformal mapping technique is used to map the boundaries of

the CPW into a simpler shape for which the solution can be found easily. A detail of the

transformation is given in Appendix A. For t≪ w, the geometric inductance and capacitance

are [40]

Lg = µ0
K(k′)

4K(k)
, (83)

Cg =
1 + ϵr
2

ϵ0
4K(k)

K(k′)
= ϵeϵ0

4K(k)

K(k′)
, (84)

where k = w/(w + 2s), k′ =
√
1− k2, and K(k) is the complete elliptic integral of the first

kind. The characteristic impedance is

Zc =
L

C
=

Z0K(k′)

4
√
ϵeK(k)

, (85)
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FIG. 11: Coplanar waveguide with important dimensions.

where Z0 =
√
µ0/ϵ0.

The kinetic inductance Lk can be approximated with an analytical formula in a limiting

case. For a wide center strip, w ≫ t, the magnetic fields on the top and bottom surface of

the center strip are equal to H0 at the upper side and −H0 at the bottom side. In such a

case, the field inside the strip can be calculated analytically to be

Hx = H0
sinh (y/λ)

sinh(t/2λ)
, (86)

where x is the direction across the width and y is the direction parallel to the thickness of

the strip. The superconducting strip is defined over −w/2 < x < w/2 and −t/2 < y < t/2.

In this configuration, the current density J inside the strip can be calculated analytically

using the Ampére’s Law, and the kinetic inductance is determined by equating the stored

magnetic energy 1
2
LkI

2 with the kinetic energy of the Cooper pairs:

1

2
LkI

2 =
1

2

∫
s

µ0λ
2|J|2dS, (87)

where the integral is over the cross-section area of the center strip. The resulting kinetic

inductance is then [44, 45]

Lk =
µ0λ

2w
coth

(
t

2λ

)
. (88)

In two cases where t≪ λ and t≫ λ, Lk can be well approximated as

Lk ≈


µ0λ

2

wt
, t≪ λ,

µ0λ

2w
, t≫ λ.

(89)
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4.4 NUMERICAL ANALYSIS OF R AND L

When characterizing only λ of the superconducting thin film, it is convenient to calculate

Lk using the analytical formula in Eq. (88). However, to extract both Rs and λ from

the measurements of the CPW, it is useful to rely on numerical analysis to calculate the

distributed parameters R and L as a function of superconducting properties. R and L

are calculated from the geometry of the CPW and the complex conductivity σ = σ1 −
i 1
ωµ0λ2 . This numerical method was first developed by Weeks [46] and was later adopted for

a superconducting CPW by Porch [47].

In this method, a cross-section of the CPW geometry is divided into N smaller patches,

with a higher concentration of patches near the edges of the conductors where the current

varies rapidly, as shown in Fig. 12. Each patch is assumed to behave as a separate trans-

mission line but is coupled to each other so that the energy from one patch to another is

coupled by proximity. The system then obeys the coupled transmission line equation:

−∂vn
∂z

=
N∑

m=1

(rmn + iωlmn) jm, (90)

where vn and jm are the voltage and current on nth and mth patch, and rmn and lmn are the

resistance and inductance matrices of the patches. The current is assumed to be uniform on

FIG. 12: A cross-section of a CPW is divided into N patches. Smaller patches are located

along the edges where the current varies over the penetration depth.
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the individual patches and runs along the z-axis. Each resistance term is given by

r = Re

(
1

σA

)
, (91)

where A is an area of an individual patch and σ is the complex conductivity. The inductance

term consists of a sum of the kinetic inductance and the geometric inductance that includes

both the mutual and external inductance between patches. The kinetic inductance part is

given by

l =
1

w
Im

(
1

σA

)
. (92)

The geometric inductance between patches is calculated using an analytical formula de-

rived from the stored energy concept by Weeks [46]. Given the complex conductivity, the

impedances rmn and lmn are calculated, and the current distributions inside the CPW are cal-

culated by inverting Eq. (90). Once the current on each patch is calculated, the distributed

R and L are calculated as

R =
1

I2tot

∑
j2nrn, (93)

L =
1

I2tot

∑
mn

jmjnlmn. (94)

This algorithm was implemented in Matlab® codes by Mateu [48].

4.5 DIELECTRIC AND RADIATION LOSS

In addition to the intrinsic Q0 that probes the conductor rf losses of the CPW, the

measured quality factor includes losses in the dielectric substrate and radiation losses. Addi-

tionally, any energy dissipated into external input and output ports is represented as external

quality factor Qext. The total quality factor or the loaded quality factor QL is then

1

QL

=
1

Q0

+
1

Qd

+
1

Qr

+
1

Qext

, (95)

where Qd and Qr are the dielectric and the radiation quality factor respectively. The losses

from dielectric and radiation should be minimized in designing the CPW resonator so that

the measured QL are not influenced by the parasitic losses. From Eq. (80) and Eq. (81),

the dielectric quality factor can be expressed in terms of the attenuation constant of the

dielectric substrate αd:

Qd =
β

2αd

=
ω
√
LC

2αd

. (96)
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The approximate formula for αd when t≪ w is calculated in Ref. [40] as:

αd =
π

2λ0

ϵr√
ϵe

tan δl, (97)

where ϵr is the dielectric constant, ϵe = (1+ ϵr)/2, λ0 is the free space wavelength, and tan δl

is the loss tangent of the dielectric substrate.

The radiation quality factor is estimated by calculating the total power radiated by the

electric field. When λ ≪ t, currents are concentrated at the edges of the strip and the

ground planes, and the current distribution can be estimated as simple current-carrying

wires located at the edges of the conductors. In such case, the radiation quality factor is

approximated as [19]

Qr ≈
2.49

n4

Z ′
c

Z0

l4

s2(s+ w)2
, (98)

where n is the mode number, Z ′
c is the characteristic impedance of the CPW in the absence

of the dielectric substrate, l is the length of the resonator, and Z0 = 377Ω is the impedance

of free space. In the other limit where λ≫ t, the current is approximated as nearly constant

on the strip and decays away exponentially on the ground planes with ∼ λ. The Qr is then

reduced by factor ν compared to Eq. (98) [19]:

ν ≈
[
1 +

(
12λ2 + 6λ(2s+ w) + w2

6s(s+ w)

)]2
. (99)
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CHAPTER 5

NITROGEN-DOPED CAVITY CHARACTERIZATION

5.1 INTRODUCTION

Over the last few years, much progress has been made on building superconducting rf

resonators with high quality factors. Achieving high values of Q0 could mean a substantial

reduction in the operational cost of an accelerator. A discovery to anneal Nb cavities in

the presence of nonmagnetic impurities such as titanium, nitrogen, and oxygen has shown

suppression of the surface resistance up to ∼ 50%–70% as the peak magnetic field increases

from 0 to ≲ 0.5Hc [1, 2, 49, 50]. Although the impurity-treated cavities have shown to reach

higher Q0, they are limited by quench fields almost 40% lower than the conventional typically

treated cavities [2, 49, 51, 52]. In an attempt to understand the quenching mechanism of

the doped cavities, an array of thermometers was used to map the temperatures of the outer

surface of the cavities while increasing the field. To get an insight into the mechanism by

which the field-induced reduction in Rs(H) occurs, coupons from the nitrogen-doped cavity

have been studied using a scanning tunneling microscope (STM) to measure the local density

of states (DOS) at the surface. This chapter presents methods and results of temperature

mappings of the nitrogen-doped cavity and the STM results and analysis of coupons using

a theoretical model of the superconducting DOS. This chapter is based on the research

publications Refs. [51, 53].

5.2 NITROGEN DOPING OF SRF CAVITIES

Nitrogen doping of the SRF cavity is the process of diffusing nitrogen into the surface

of Nb and later removing several microns from the inner surface. The first necessary step

is the high-temperature heat treatment at 800 ◦C for approximately three hours in a high

vacuum furnace. This process helps reduce the concentration of hydrogen in the niobium

that could otherwise form lossy hydrides at the surface [54]. High purity nitrogen gas is then

injected at a partial pressure of around 25mTorr for 30 minutes. After the nitrogen gas is

removed, the cavity is further annealed at 800 ◦C for 30 minutes before cooling down to room

temperature. The final crucial step involves electropolishing (EP) to remove a thin N-rich
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layer from the inner surface of the cavity. The EP involves forming an electrolytic cell with

an aluminum rod as a cathode and the niobium cavity as an anode. The electrolyte consists

of a mixture of HF (49%) and H2SO4 (96%) in a volume ratio of nine to one [52, 55]. The

electrolysis induces a formation of Nb2O5 on the surface which is then dissolved by HF. At

the end of the process, approximately 10–35µm of the inner surface is removed.

The nitrogen-doped cavities measured in this study were fabricated from ingot niobium

from Tokyo Denkai, Japan with a residual resistance ratio (RRR) of around 300 with a

large grain size of a few cm2. They are 1.3GHz single-cell cavities with a TESLA/XFEL

center cavity shape [56]. Two cavities of this type labeled TD3 and TD4 were tested with a

temperature mapping system. Those two cavities differed only in the final step of N-doping,

where ∼ 35µm was removed from the inner surface of TD3, and ∼ 10µm was removed from

TD4 using EP.

For a comparison, an additional cavity was prepared using a conventional procedure with-

out the nitrogen treatment and tested with the temperature mapping. This cavity labeled

A2 was made with ingot niobium from Companhia Brasileira de Matalurgia e Mineração

(CBMM), with the RRR of the niobium reaching around 260. The cavity had gone through

a typical treatment of buffered chemical polishing (BCP) and high-pressure rinsing. BCP is

a process of removing ∼ 200µm of damaged inner layer that resulted from the mechanical

fabrication of the cavity and ∼ 20–50µm of lossy Nb layer contaminated from impurities

during high-temperature heat treatment [57]. A mixture of HF, HNO3, and H3PO4 are used

in the BCP process which is one of the typical treatments for the niobium cavities before

testing [57].

5.3 CAVITY TEST RESULTS

Figure 13 shows a plot of Q0(Bp) for the BCP treated standard cavity A2 and two

nitrogen-doped cavities TD4 and TD3 at 1.6K. Each nitrogen-doped cavities were tested

twice where they were warmed to 80–100K and cooled down at different rates between tests.

During the experiments, the residual magnetic field inside the cryostat was around 2mG.

The temperature was monitored at the middle and at the bottom of the dewar, and the rates

at which the sensor crossed 9.2K were recorded. For both cavities, the slow cooldown rate

was approximately 25mK/sec and the fast cooldown rate was around 90mK/sec. A cavity is

cooled down by filling the dewar with liquid helium which starts at the bottom; consequently,

a faster cooldown creates a larger thermal gradient across the cavity compared to a slower

cool down. Both cavities exhibited better performance after faster cooldown rates. The Q0
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of the TD3 and TD4 increased by approximately 59% and 83% at Bp ∼ 60mT respectively,

compared to the ”slow” cooldown. The observed performance boost of the N-doped cavities

by the faster cooldown is consistent with a model proposed by [58], in which the number

of trapped vortices is calculated to be an inverse of the spatial temperature gradient across

the cavity. The faster cooldown produced a more favorable condition for the expulsion of

the residual ambient magnetic field, which resulted in lower residual resistance and thus

higher Q0. This result is also in agreement with other nitrogen-doped cavity measurements

comparing different cooldown rates [59, 60].

TD3 reached the breakdown field of ∼ 130mT while TD4 cavity quenched at ∼ 88mT.

On the other hand, Q0 of the TD4 cavity was almost three times as large as the Q0 of

the TD3 cavity for both cool down rates. At faster cooldown rates, TD3 and TD4 reached

Q0 ∼ 4.8 × 1010 and Q0 ∼ 1.3 × 1011, and at slower cool down rates Q0 at the breakdown

fields of TD3 and TD4 were 2.8 × 1010 and 8.1 × 1010 respectively. The results show that

material removal after nitrogen doping increases the accelerating gradient at an expense of

quality factors. The performance of the TD3 cavity during the fast cool down is similar to

that of the standard A2 cavity up to Bp ∼ 90mT, but the Q0 of the A2 degraded rapidly

beyond this point, a phenomenon exhibited commonly for the BCP-treated cavity known as

Q-drop [26].

The error bars in the plot of Q0(Bp) are the combined systematic errors from the cable

attenuation, fit of decay time constant, and the measurements from power meters. The

attenuation constants of the cables used in the cavity tests were measured using a portable

power meter with a relative error of around 4–5%. The decay time constant is the time

it takes for the stored energy inside the cavity to fall by 1/e. This is calculated by fitting

the transmitted power signal from the cavity to an exponential function after turning off

the rf power. The relative error in the decay constant after combining the fit error and

the instrumental error was approximately 4%. The relative errors for power meters were

approximately 5%. Finally, the propagated relative errors for Q0 and Bp were around 15%

and 6% respectively.

5.4 TEMPERATURE MAPPING

The temperature mapping is a useful tool to measure the change in temperature on the

outer surface of the cavity caused by rf heating. A total of 576 thermometers cover the

surface of the cavity to identify the locations of local heating and quench locations. The

temperature mapping was used to understand the origin of the quench in nitrogen-doped
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FIG. 13: Q0 vs Bp at 1.6K of the standard cavity A2 and two nitrogen-doped cavities TD3

and TD4 with different cooldown rates. The amount of inner surface removed following the

nitrogen diffusion was ∼ 30µm for TD3 and ∼ 10µm for TD4. Slow and fast refer to a

cool-down rate of ∼ 25mK/sec and ∼ 90mK/sec.
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cavities, and also to identify the ”cold spots” and ”hot spots” to conduct a surface study.

”Cold spots” are regions that exhibited minimal heating compared to ”hot spots” where

strong rf heatings were observed.

The temperature mapping system consists of 36 arrays of printed-circuit boards each

containing 16 thermometers fixed around the outer cavity surface. The device is based on a

design developed at Cornell [61]. The thermometers are 100Ω carbon Allen-Bradley resistors,

whose resistance increases nearly exponentially with decreasing temperature, below 4.3K.

The boards run azimuthally around the cavity with a 10 ◦ separation, and each resistor on

the board is labeled from 1 to 16, with the resistor 1 at the top iris of the cavity, 8 at the

equator, and 16 at the beampipe. The circuit boards are designed to match the contour of

the cavity, and each thermometer is mounted on a pogo stick to ensure the sensor remains

in contact with the outer surface of the cavity during testing at a cryogenic temperature.

Each sensor probes a surface area of ∼ 0.4 cm2, with a temperature resolution of ≲ 1mK.

Figure 14 shows a cavity dressed with the temperature mapping system.

FIG. 14: A single-cell cavity with a partially attached thermometry system.
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The temperature maps measured on the TD4 cavity at Bp ≈ 83mT for both slow and

fast cooldown tests are shown in Fig. 15. The color map shows the temperatures on the

outer surface of the cavity with respect to the helium bath temperature, where the x- and

the y-axis correspond to an azimuthal angle around the cavity and the thermometer numbers

respectively. A maximum heating of around 5–6mK was measured during the slow cooldown.

During the fast cooldown, the magnitude of the heating dropped significantly compared to

the slow cooldown. The spots that exhibited 5–6mK of heating in the slow cooldown only

showed 1–2mK of heating after the fast cooldown. Most of the heating is located in the

equator regions for both cooldowns, but it can be observed that some hot spots that were

there during the slow cooldown are gone in the fast cooldown, and there is a slight variation

in the spatial distribution of the heat maps. The fact that the nature of the hot spots

can change between different cooldown rates indicates that they are most likely caused by

trapped flux during the cooldown [62]. A comparison of the temperature maps during the

slow and fast cooldown suggests that fewer vortices were trapped during the fast cooldown,

resulting in reduced losses in the cavity, as was also evident from the results of Q0(Bp) in

Fig. 13.

The temperature maps recorded during the quench reveal the possible location that

ignited the quench. Figure 16 (a) shows the temperature maps of the TD3 cavity during the

actual quench and Fig. 16 (b) shows the heat map measured right below the quench field.

A spot that showed the highest temperature rise during quench is circled. Importantly,

the quench spots show no evidence of strong pre-heating before quench, only reaching max

∆T (Bp) ∼ 15mK in the nearby area.

Figure 17 shows ∆T (Bp) as a function of T at the quench locations for the TD3 and the

TD4 cavities and one of the hot spots of the A2 cavity for comparison. The lack of precursor

heating in the quench spot is further evident from the plot. While the hot spot on the

A2 cavity shows temperature rising quadratically with the field up to 500mK, the heating

on the hot spots on TD3 and TD4 cavities remains below ∼ 15mK prior to quenching.

This suggests that the quenches for the nitrogen-doped cavities are not caused by thermal

breakdown. In fact, a thermal breakdown is caused by a resistive defect or a region of

weaker superconductivity, particularly near the equatorial high field region, where the heat

from ohmic losses raises to above ∼ T0

∆
leading to thermal runaway instability and quench [63,

64]. Based on the temperature mapping studies, it is most likely that the nitrogen-doped

cavities quench early due to the magnetic flux entry. The quench occurs near the equator

where the surface magnetic field is the highest and is ignited without any significant precursor
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FIG. 15: The temperature maps recorded on TD4 cavities for the (a) slow cooldown and (b)

fast cool down at the field slightly below the quench field.
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heating. This observation suggests that the lower critical magnetic field Hc1 is reduced on

the surface by the impurity infusion. A comparison of the quench fields of the TD3 and the

TD4 cavity shows that removal of the inner surface exposes a cleaner Nb surface and the

Hc1 can be recovered at an expense of reduced Q0. Further investigation is necessary to fully

understand how the nitrogen doping degrades the critical magnetic field, and the results also

suggest for a systematic study on the amount of material removal for optimal performance.

5.5 DENSITY OF STATES STUDY WITH STM

To get an insight into the improved performance of the nitrogen-doped cavities, several

coupons were cut from TD4 and A2 cavities, and their surface was studied extensively with

Scanning Tunneling Microscopy (STM). The goal of the experiment is to identify which

superconducting properties are modified by the nitrogen-doping that leads to unconventional

field-induced reduction of the surface resistance. This phenomenon was observed up to

Bp ∼ 60mT for the nitrogen-doped TD4 cavity during the fast cool down as shown in

Fig. 13.

The behavior of the nonlinear surface resistance is manifested by the physics of nonlinear

superconductivity and pair-breaking rf currents on the first few nanometers at the surface.

Subtle material features and impurity distributions within this layer play an important role

in creating the field-induced reduction in Rs. It has been shown that smearing of the peaks

which appear at the edge of the gap in the superconducting density of states (DOS) can result

in a reduction of Rs by pair breaking currents [65], in agreement with experiments [49, 66]. It

shows that the current induced reduction in Rs can be enhanced by engineering an optimum

broadening of the peaks. Such broadening of the gap peaks can be current induced [23, 65,

67, 68], or due to paramagnetic impurities [69], or a proximity-coupled normal layer due

to nonstoichiometry and metallic suboxide layers [70, 71]. The latter is relevant to the Nb

surface which is covered in several nanometer thick oxide and suboxide layers. The oxide

layer of Nb consists mainly of insulating Nb2O5 with a few nm thick metallic NbO and

semiconducting NbO2 at the interface between the oxide and the metallic Nb [72, 73].

The tunneling experiments can directly probe the local density of states, and the STM

was used to probe how nitrogen doping changes the local DOS. Whatever the origin of the

pair-breaking mechanism is, a simple phenomenological Dynes formula [74, 75] can be used

to analyze the DOS with broadened peak:

Ns(E)

Nn(0)
= Re

E + iΓ√
(E + iΓ)2 −∆2

, (100)
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FIG. 16: (a) Temperature map during the quenching for the TD3 cavity. The x-axis is

the azimuthal angle around the cavity and the y-axis is the thermometer number indicating

the longitudinal positions where thermometer # 8 is located at the equator. The spot that

exhibited the highest heat signature is the quench location and is marked with a circle.

(b) The temperature map right before the quench shows that the location that ignited the

quench shows negligible heating before the event.
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FIG. 17: A change in temperature as a function of peak magnetic field measured at the

quench locations for the two nitrogen-doped cavities and one of the hot spots near the

equator for the standard treated cavity.
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where Γ is a parameter that describes a finite lifetime of the quasiparticles at the gap

edge. Irrespective of the microscopic origin of the pair-breaking mechanism, this results in a

smearing of the gap edge and finite quasiparticle states for E < ∆. The collected tunneling

spectra are fit with this Dynes formula and ∆ and Γ are calculated. These parameters give

insights into the mechanism of the nonlinear surface resistance. For instance, the number of

quasiparticles decreases exponentially with Rs ∝ e−∆/kBT , and with Γ > 0, there are finite

states below E < ∆ that are excited by the rf field. These subgap states exist even when

T = 0 and contribute to Rs(T ) in a form of residual resistance Ri that is weakly dependent

on temperature [23, 70]. On the other hand, the smearing of the gap peak by width ∼ Γ acts

to reduce Rs(T ) at a higher temperature where Ri becomes negligible. The contribution of

Γ in Rs(T ) appear in the logarithmic term in Eq. (47) where ℏω is now replaced by Γ when

Γ > ℏω [23, 66, 70]:

Rs ∝ ln

(
kBT

Γ

)
. (101)

The broadening of the peaks reduces Rs(T ), and the same can occur with a current-

induced broadening. The oscillating rf field also smears out the peak, and if the width of

the new peak exceeds ℏω and Γ, the logarithmic term gets replaced by

Rs(B) ∝ ln

(
TB

4/3
c

TcB4/3

)
, (102)

where B is the field on the surface and Bc is the critical field [66, 70]. Hence, Rs(B) can be

reduced by B.

In addition to the phenomenological Dynes formula, another model that incorporates

the effect of an imperfect surface is used to analyze the data. The model developed by

A. Gurevich and T. Kubo [58, 70] includes a realistic surface that contains a thin layer

of a normal metal with reduced superconductivity. The theory is based on the Usadel

equations [76] for the proximity-coupled normal and superconducting bilayers. In calculating

the DOS, additional dimensionless parameters are introduced:

α =
dNn

ξSNS

, (103)

β =
4e2

ℏ
RBNn∆d, (104)

where d is the thickness of the normal layer, ξs is the coherence length of the bulk supercon-

ductor, Nn and Ns are the normal state DOS at the Fermi level for the normal and super-

conducting layer, and RB is the contact resistance between the normal and superconducting
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(N-S) layer. In essence, α quantifies the thickness of the normal layer, and β quantifies the

transparency of the N-S interface. There is an optimal value for β given a specific α such

that Rs is minimized due to a complex interplay of two effects that influences the Rs [70].

An increase in contact resistance between the N-S bilayer leads to a weakened proximity

effect in the N layer; thus, increasing Rs. On the other hand, the proximity coupled normal

layer also broadens the gap peaks, which replaces ℏω in the logarithmic term and reduces

Rs. The purpose of the DOS measurement is to identify the mechanism by which nitrogen

doping increases the performance by probing the electronic states both at the surface and in

the bulk.

5.6 STM BASICS

Scanning Tunneling Microscope measures a tunneling current between a sample and an

atomically sharp tip. The tunneling current decays roughly exponentially between the tip

and the sample, and in STM measurements the potential barriers are often a few nanometer

thick vacuum. When the tip is near the sample, there is a finite probability for an electron

to tunnel from one conductor to an empty state of another conductor. When a bias voltage

is applied between the tip and the sample, the measured current as a function of the voltage

gives information about the density of states of a sample. Based on Bardeen’s tunneling

theory and Fermi’s golden rule the current as a function of the bias voltage V between the

normal tip and the superconducting sample is given as [77, 78]

Ins(V ) =
2πe

ℏ

∫ ∞

−∞
|M |2N1n(E + eV )N2s(E) [f(E)− f(E + eV )] dE, (105)

where E is energy measured from Fermi energy EF , f(E) is the Fermi function, N1n is the

DOS of the tip, N2s is the superconducting DOS of the sample, and |M | is Bardeen tunneling

matrix given by [77, 79]

M =
ℏ2

2m

∫ (
ψtip∇ψ∗

sample − ψ∗
sample∇ψtip

)
· dS, (106)

where ψtip and ψsample are the wave functions of the tip and the sample, and the integral is

over a separation surface between the tip and the sample. This tunneling matrix and the

normal conductor DOS are nearly constant in energy near the Fermi level and are moved

outside the integral [77]. Taking the derivative of the current with respect to the bias voltage

gives

dI

dV
∝
∫ ∞

−∞
N2s(E)

d

dV
[f(E)− f(E + eV )] dE. (107)
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The derivative df/dV = is a peak function if width ∼ kBT at the energy E = eV . If

kBT ≪ ∆, the slowly varying N2s(E) can be taken out of the integral and the STM gives a

direct measurement of the superconducting DOS:

dI

dV
∝ N2s(eV ). (108)

In a measurement dI/dV are taken into account by calculation of the integral (107) numer-

ically to extract N2s(E) from the STM data.

5.7 STM EXPERIMENTAL DETAILS

The cold spots from the nitrogen-doped and the standard cavities were measured with

low-temperature STM to identify differences responsible for performance increase. Figure 18

shows the temperature maps recorded right before the quenching and the locations where

the coupons were cut out. Coupons of size 8 mm × 8 mm were cut out from the cavity using

a CNC milling machine with no lubricants. A steady flow of compressed helium was applied

to the drilling region to prevent the sample from heating. The temperature was monitored

throughout the process using an infrared thermometer to make sure it did not rise above

32 ◦C. To verify that this cutting process does not introduce any impurities, a larger 16 mm

× 16 mm coupon was cut out first, and the surface was analyzed with the Time-of-Flight

Secondary Ion Mass Spectroscopy (TOF SIMS). The measurement was repeated near the

same location after cutting out a smaller coupon of size 8 mm× 8 mm. The analysis showed

some increase in carbon concentration but did not show any new impurities after the cutting.

The cold samples from TD4 had shown no detectable heating, and their locations were

0◦ and 50◦ from the equator. All the samples from the A2 cavity had shown higher heating

compared to the TD4 cavity, and they were cut from locations 20◦ and 40◦ from the equator.

They experienced a peak ∆T of around 30–50mK before quenching.

The STM measurements on cold spots were conducted using a Unisoku ultrahigh vac-

uum STM system at temperatures between 1.0–1.7K. A detail of the system is given else-

where [80]. For all the measurements, Pt-Ir tips were used. Two different methods were

employed for the measurement: crashing the tips into the sample surface, and Ar-ion sput-

tering the surface clean of oxides. A typical STM system is equipped with a feedback loop

that precisely controls the position of the tip a few nanometers above the sample surface

by measuring the tunneling current. For the Nb sample, however, the surface is already

dominated by several nanometers thick insulating Nb2O5 layer [81]. Since the tunneling

current decays exponentially with distance, the STM cannot measure the DOS of the bulk
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FIG. 18: Temperature maps at 1.6K for the (a) TD4 and (b) A2 cavities right before the

quench. The locations of the coupons labeled with A are measured with STM tips breaking

the oxide and B are measured with STM after Ar-ion sputtering.
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underneath the thick oxide. Therefore, it was necessary to either break through the oxide

with the tip or clean the oxide layer with Ar-ion sputtering.

The STM tip was crashed into the sample surface by manually lowering the tip into the

sample until a current was detected. This operation was repeated several times to break

the oxide layers followed by a precise adjustment of the tip position using a feedback loop

to stabilize the current to near 100 pA with a bias voltage of 10 mV. The tunneling spectra

are acquired at this stage, and this procedure is repeated on different spots to obtain data

statistics. The main advantage of this method is that it probes information about the native

oxide layer that acts as a tunneling barrier between the tip and the sample and gives insight

into what effect the nitrogen-doping has on the oxide layer. The downside is that this method

does not allow for spatial scan across the surface, and the measured tunneling spectra contain

complex contributions from a large area of the tip including the side surface. The barrier

thickness and composition vary every time a tip lands into a new spot; thus, the results

suffer from low statistics and a low amount of data.

In the second method, the surface of the Nb sample is cleaned first by Ar-ion sputtering

in-situ, after the sample is transferred to the STM system. The surface removal rate was

calibrated using Atomic Force Microscopy (AFM) to be approximately 0.27 nm/min, and

the sample was sputtered for 60 minutes. This ensures that thick oxide layers are reduced

and the tunneling currents are detected without crashing the tip into the sample. With this

method, the bulk DOS can be measured with more statistics as the flat surface allows the

tip to scan a wide area and collect a larger number of data.

5.8 STM RESULTS

The differential conductance dI/dV obtained in the measurements are analyzed using

Eq. (107). The collected tunneling spectra are fit with this Dynes formula and ∆ and Γ are

calculated to get a broad idea of what ∆ and Γ are expected from the untreated surfaces.

Next, the DOS based on the theory of proximity coupled N-S bilayer [58, 70] is fit to tunneling

spectra measured on the Ar-ion sputtered surface, and the effect of nitrogen doping on the

suboxide layer is investigated by calculating ∆, Γ, α, and β.

5.8.1 RESULTS FROM CRASHING THE TIP

The tunneling spectra obtained by crashing the tip into the native Nb surface were fit

with the simple Dynes formula to get an idea for ∆ and Γ in the N-doped and the typical

cavity samples. Several locations were investigated and the average values for ∆ and Γ are
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obtained from 20-50 spectra. Figure 19 shows a typical tunneling spectrum for the samples,

and the distribution of the ∆ and Γ are summarized in the histogram shown in Fig. 20.

The histograms show that ∆ on average is larger for the standard Nb compared to the N-

doped Nb; however, the distribution of ∆ is greater, and in particular, low value ∆’s and

large Γ/∆ were observed more often in the standard Nb samples. These results indicate the

standard Nb samples exhibited stronger inhomogeneities of the superconducting properties

on the surface. It is worth noting that only about 50% of acquired spectra for the standard

Nb samples and 70% of the N-doped Nb samples could be fitted with the Dynes formula.

The rest of the spectra exhibited subgap states, zero-bias conductance peaks, and gapless

spectra.

FIG. 19: Typical tunneling spectra measured (dot) from (a) the standard Nb sample and (b)

the N-doped Nb sample by crashing the tip into the surface at T = 1.5K. The data are fit

(red)with Dynes formula, with (a) ∆ = 1.60meV and Γ = 0.08meV and (b) ∆ = 1.39meV

and Γ = 0.0meV. Plots reproduced from Ref. [53].
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FIG. 20: Histograms showing the probability of occurrence for ∆ and Γ in the standard and

N-doped Nb samples, measured by crashing the tip into the surface. Plots are reproduced

from Ref. [53].

5.8.2 RESULTS FROM THE AR-ION SPUTTERED SURFACE

Removal of the thick insulating layer by Ar-ion sputtering reveals a metallic surface that

can be scanned without crashing the tip into the sample and thus obtain a larger number of

data. The Ar-ion sputtering removed approximately 15 nm from the surface in both samples.

Tunneling spectra were obtained in a grid pattern with a spacing of 32.6 nm over an area of

390 × 390 nm2 or 780 × 780 nm2, and this was repeated over several regions by moving the

tip to a new location, typically 500µm apart. The obtained spectra were fit using the DOS

modified by the proximity coupled N-S bilayer [70]. Figure 21 shows the typical tunneling

spectrum obtained in this method as well as a least-squares fit of the data. The probability

histograms of the extracted parameters are illustrated in Fig. 22. On average ∆ is reduced

for the N-doped samples, but the spread is narrower. The broadening parameter Γ/∆0 on

average is slightly larger than the standard Nb sample.

Interestingly there was an obvious difference in the distribution of α and β between

the standard and N-doped Nb samples. On average, more spectra were obtained from

the standard Nb samples that exhibited higher α value, and the extracted β values varied

significantly more compared to the N-doped sample. The fitted values of β for the N-doped



49

Nb sample were clustered around β ≃ 0.3–0.4. Lower α values indicate the thickness of

the normal layer in the N-doped Nb sample is reduced compared to the standard Nb. β

quantifies the interface resistance, so the surface with higher β values means N-S layers

are more decoupled with weakened proximity effect, which may lead to a higher surface

resistance.

FIG. 21: Typical tunneling spectra at T = 1.5K (dots) for (a) the standard and (b) the

N-doped Nb samples with fit (red) using the DOS model incorporating the N-S layer. The

fit parameters in these examples are ∆ = 1.65meV and Γ = 0.004meV for the standard

sample and ∆ = 1.63meV and Γ = 0.03meV for the N-doped samples.

5.9 DISCUSSION OF THE STM RESULTS

The probability histograms in Fig. 20 reveal a wide distribution of ∆ and ∆/Γ. For ∆,

the value ranged from as low as ∼ 0.3meV to to an ideal Nb ∆ ∼ 1.6meV. Such low values

indicate strong spatial inhomogeneities of the surface superconducting properties, which

may result from thick metallic suboxide islands throughout the surface. The results show

that such inhomogeneities are reduced and the surface properties become more uniform by
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FIG. 22: The probability histograms of the calculated parameters ∆, Γ/∆, α, and β at

T = 1.5K. Number of spectra taken for these measurements were 1440 for the standard and

576 for the N-doped samples.
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nitrogen doping. This finding is consistent with tunneling results on titanium-doped cavity

samples as well [49].

It should be noted that for the data obtained by crashing the tip into the surface, 30%

of the spectrum from N-doped and 50% of the spectrum from the standard Nb samples

could not be fit with either the Dynes formula or the modified DOS of the N-S bilayer [70].

This is not surprising given the complex interplay of the oxide and metallic suboxide surface

on the superconducting properties, and it only reinforces the need to better understand

the physics of the Nb surface. For instance, among the many spectra that could not be

explained by the Dynes formula were those tunneling currents that appeared gapless. This

could indicate the presence of metallic suboxide with a small gap [70]. Spectra with zero

bias conductance peak or deep subgap states were also observed, which could suggest a

presence of magnetic impurities [69] or two-level states at the surface [82]. Crashing the

tip into the sample to extract reliable information may still not be a very controlled and

consistent procedure especially because it requires a proper theoretical understanding of the

influence of the side current and tunneling through complex oxide layers of variable thickness.

Nevertheless, this method and the analysis with the simple Dynes model revealed differences

in the distribution of ∆ and Γ/∆ among two samples. Additionally, more parabolic-shaped

background conductance at energy eV > ∆ were observed for the standard Nb sample

compared to the N-doped Nb sample. The parabolic-shaped conductance is related to a

lower average work function, or in other words, the surface of the N-doped Nb sample may

have reduced metallic defects in the natural oxide layer. This observation is consistent with

the results of Ref. [83].

The results from Ar sputtered surface cannot exactly represent the surface of the Nb

cavities since Ar sputtering alters the oxide layer; however, the results give insight into new

ways of reducing Rs by materials treatments and surface nanostructuring [70, 71]. There are

clear differences in the results between the standard and N-doped Nb samples as shown in

Fig. 20 when they were treated to the same Ar sputtering; thus, it is reasonable to suggest

that the differences are the result of the nitrogen doping.

Overall, the standard Nb samples have a higher average ∆ and Γ than the N-doped Nb

samples, but they also have a broader distribution of these values. It shows that nitrogen

doping reduces the spatial inhomogeneity of the superconducting properties. This is also

true for α and β extracted from the samples. The peak values of α ≈ d/ξ were reduced

from ≃ 0.1 to ≃ 0.06 and are more homogeneous compared to the standard Nb samples.

Therefore, the results show that nitrogen-doping can reduce the thickness of the metallic
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suboxide layers. Similarly, β values are less spread apart in the nitrogen-doped samples. In

particular, most of the low and high β values are eliminated, and the β values are clustered

around β ≃ 0.3− 0.4. According to the proximity model [70], these values of β can lead to

Rs smaller than that of an ideal surface.

The current induced broadening of the gap peaks can reduceRs with increasing rf field [23,

65, 71]. However, if the broadening effect due to thick suboxide layer or by any other

material induced increase in Γ is strong enough, the effect of current-induced broadening

is not sufficient to produce the effect of the unconventional decrease in Rs with the field.

However, as observed in the STM results, if the nitrogen doping can bring the material-

induced broadening to an optimal level, the current induced broadening of the DOS will

prevail and reduce Rs with the field. As shown in Fig. 20, the results indicate that nitrogen

doping enables this field-induced reduction in Rs not by reducing Γ, but mainly by shrinking

the metallic suboxide layer.

5.10 CONCLUSIONS

The temperature mapping experiment demonstrated that the cooldown dynamics sig-

nificantly influence the rf losses in the hot spots. Between two cooldown rates, the faster

cooldown reduced the intensity of the hot spots and improved Q0 by 50–80%. The hot

spots were primarily caused by the trapped magnetic flux during the cooldown of the cavity.

These hot spots contribute to the residual resistance of the cavity at low temperatures and

reduce the performance of the nitrogen-doped cavity. Our results show that optimizing the

cooldown dynamics is an effective way to push out magnetic fluxes to maximize the efficiency

of the cavity.

The heating as a function of the field on the quench spot revealed that the heating in

the quench spot is insignificant prior to quenching, in the order of a few millikelvins. This

behavior indicates that quenching in the nitrogen-doped cavity is due to the flux entry when

the field is increased above Hc1. The reduction in the quench field compared to the standard

cavity is most likely attributed to the lowering of Hc1 by the nitrogen impurities on the

surface of the cavity. Importantly, the results from TD3 and TD4 cavities indicate that

the effect of the nitrogen impurities can be tuned by the amount of surface removal by EP.

This suggests that the level of surface impurities and the amount of surface removal can be

controlled to better engineer the nitrogen-doped cavities to meet the requirements of specific

application goals.

Using the STM, the first few nanometers from the surface of the cavities were investigated.
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Comparison between the nitrogen-doped and the standard cavities showed the nitrogen-

doping reduced surface inhomogeneity of the superconducting properties, reduced thickness

of the metallic suboxide layer, and optimized the contact resistance of the N-S interface.

These results give insight into the optimal DOS to minimize the surface resistance and suggest

new ways to further improve the performance of the cavity by impurity management. The

combination of the STMmeasurements and the theoretical analysis of the DOS demonstrated

in this work will benefit future research to explore new surface preparation techniques and

search for new materials.
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CHAPTER 6

CPW RESONATOR MEASUREMENTS USING

A PROBE-COUPLED METHOD

6.1 INTRODUCTION

The goal of the experiment is to use the CPW resonator to establish a characterization

routine for a thin film superconducting sample at a useful frequency range for the SRF

accelerator applications. To this date, there are numerous techniques for the material and

structural characterizations of the surface [84]. However, to fully develop the SRF thin

films for an alternative to the bulk Nb, a means to benchmark rf performances of the films is

much needed. Many of the surface impedance measurements on thin films require host or test

cavities such as the Surface Impedance Characterization (SIC) system [85], the Quadrupole

Resonator (QPR) [86, 87], the hemispherical cavities [88], the RF chokes [89, 90], and the

Cornell test sample host cavity [91]. As a cost-effective way to perform low field rf tests

without using any host cavities, a measurement with the CPW resonator is developed and

tested.

One of the major issues we encountered while designing this experiment was making a

reliable connection to and from an rf source to the sample. For example, soldering a thin

copper wire from the center pin of an SMA connector directly to the surface of Nb and

Nb compound superconducting films proved difficult without damaging the sample surface

with heat. Even when wires were soldered properly, high contact resistance at the interface

increased the return loss, making it difficult to identify the resonant spectrum.

As an alternative, we designed a probe-coupled CPW resonator box based on the design

of a probe coupled microstrip line resonator described in the Ref. [92]. In the probe-coupled

resonator box, a thin film CPW resonator is placed inside a box, and a pair of monopole

antennas are fixed above the sample surface to couple rf currents. Weak electromagnetic

waves emitted from one antenna excite the resonance of the sample and the response is

then detected by the second antenna probe. From the transmission signal, Q0 and fr are

calculated, from which the superconducting properties are extracted. The main advantage
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of using the probe-coupled method is that the quality factor Q0 and the resonant frequency

fr of the film can be measured without making physical contact with the thin film.

In this chapter, we discuss the design of the probe-coupled resonator box and the pattern

of the CPW resonator etched on thin films. Experimental setups for measuring Q and fr as

a function of temperatures are described here. Results of Nb, Nb3Sn, and NbTiN thin film

measurements and their extracted superconducting parameters are presented.

6.2 CPW RESONATOR DESIGN

The CPW resonators were designed to achieve resonant frequencies in the 2–3GHz range

on a film of size 10mm × 10mm. We designed four patterns of similar geometries, where

the center strip widths were w = 40, 50, 60, and 70µm, and the gap between the center strip

and the ground planes were s = 30, 25, 20, and 15µm respectively. All patterns share the

same meandered strip length of approximately 23.62mm. A picture of one of the patterned

samples taken with an optical microscope is shown in Fig. 23. Four patterns were printed

on a single chrome photomask on quartz by Photo Sciences, Inc, a commercial photomask

manufacturer [93], which made it possible to produce up to four resonator samples from a

thin film deposited on a 2-inch wafer.

6.3 RESONATOR BOX DESIGN

CST Studio Suite®, a 3D electromagnetic simulation solver, was used to design the

box for the CPW resonator sample. To accurately measure Q and fR of the sample, any

parasitic losses from the box needed to be minimized, so that only the rf losses of the sample

are probed. The model represented in the simulation software is shown in Fig. 24, which

consists of a mock sample, two antennas, and the housing box. The sample was represented

with a metal sheet of perfect conductivity deposited on a 0.5mm thick substrate. The

substrate was assumed lossless and was assigned a dielectric constant ϵr = 9.4 close to that

of a-plane Al2O3. The material of the box was modeled as pure copper, and the frequency

response was calculated by exciting TEM mode electromagnetic wave on the antennas.

The eigenfrequency solver was used to calculate resonant frequencies to confirm the box

frequency does not overlap with the sample frequency. Without a sample, the fundamental

frequency of the box was calculated to be 15.66GHz, and the sample resonant frequency

was calculated to be 2.81GHz, well below the box resonant frequency. On resonance, the

electromagnetic field maps were simulated to make sure the field is properly coupled to the

sample. The electric field map plotted on the center plane of the device in the vicinity of
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FIG. 23: (a) A resonator geometry with a center strip width w = 70µm is shown here as

an example. The line meanders in order to fit a total length of 23.26mm in a sample chip

sized 10mm × 10mm. (b) A zoomed view of the resonator showing the dimensions. The

samples were patterned with one of the dimensions of the center strip width w = 40, 50, 60,

and 70µm, and corresponding gap width s = 30, 25, 20, and 15µm.
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FIG. 24: A simulation model of the resonator box with a patterned sample. The rf currents

are excited at one of the ports marked with the red region that transmitted through probe

antennas floating above the film colored in gray. The resonator box in brown is modeled as

a lossy pure copper to calculate any losses in the box.

the probe is shown in Fig. 25. The electric field plot shows the TEM-like propagation mode

on the strip, and any other parasitic modes are suppressed.

The effect of the probe location on the coupling strength was also studied. Qext was

simulated by adjusting the distance h between the probe and the sample as illustrated in

Fig. 26. The result of the simulated external quality factor as a function of the distance

is plotted in Fig. 27. The plot show that Qext varies exponentially with the distance. For

example, when the probe is 0.5mm above the sample, the Qext is 6× 105 and is increased by

an order of magnitude when the height increases by a mere 1.5mm. These results show that

unless either the probe is nearly touching the sample or the resonator Q is in the 106–107

range, it would be impossible to achieve critical coupling. However, to ensure that the probe

does not make any contact with the sample during measurements at a cryogenic temperature,

the probe position was decided to be at least 1mm above a sample when the thickness is

1mm. Unfortunately, this design further reduces the coupling when thinner samples are

measured in this box.

Finally, any parasitic losses in the box were investigated. At the resonance, the elec-

tromagnetic field that reaches the surface of the box produces eddy current on the lossy
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FIG. 25: The simulated electric field map on the cross-section of the resonator, in the vicinity

of the probe antenna.

FIG. 26: A cross-sectional view of the resonator box and sample model. The coupling

strength between the antenna and the resonator is dependent on the distance h.
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FIG. 27: A simulated Qext as a function of the distance h between the probe and the surface

of the resonator.

surfaces. This loss contributes to the measured loaded quality factor as

1

QL

=
1

Q0

+
1

Qext

+
1

Qb

, (109)

where Qb is the quality factor associated with the losses in the box. The copper box quality

factor was simulated to be Qb = 4.4× 105, which can be in the same order of magnitude as

the resonator Q0 if untreated. The simulation of the surface power loss revealed that most of

the power loss is concentrated on the surface directly underneath the resonator pattern. The

contour plot of the surface power loss density is illustrated in Fig. 28. To mitigate the loss

produced in the box, a ditch was designed in the high loss region. With a 6mm wide and

4mm depth ditch, the loss in the box was reduced significantly, improving the box quality

factor to 107.

The final sketch of the box is shown in Fig. 29. The inner cavity has the dimensions of

10.41mm × 25.40mm ×5.23mm, with a 5.99mm wide ditch of depth 4.01mm. Two boxes

were fabricated with different materials, one with Nb and another with OHFC copper, to

confirm whether the losses in the boxes are insignificant. For an antenna, a flange mounted

straight terminal (PN 1052902-1, TE Connectivity, USA) is used. It consists of an SMA
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FIG. 28: (a) A contour plot showing power loss density in W/m2 on the surface of the copper

box. The sample is removed from the view for a clear view of the surface underneath the

resonator. It is visible that most of the loss is concentrated under the resonator and negligible

elsewhere. (b) The loss in this region is mitigated by creating a ditch in the region.
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jack receptacle on one end and extruded dielectric and a further exposed center pin on the

other end. The center pin is constructed from gold-plated beryllium copper with a diameter

of 0.010mm and length 0.049mm.

6.4 RESONATOR SAMPLES

Three different Nb compound films were patterned for our work: Nb, NbTiN, and Nb3Sn,

The Nb film was grown on a 0.5mm thick, 2 inch a-plane Al2O3 wafer using an electron

cyclotron resonance (ECR) plasma reactor by A. -M. Valente-Feliciano at Thomas Jefferson

National Accelerator Facility [94]. The thickness of the deposited Nb was approximate 1µm.

A 600µm thick NbTiN film had also been prepared by A.-M. Valente-Feliciano using DC

magnetron sputtering with a NbTi alloy target and grown on a 0.5mm thick MgO substrate.

The specifics of the growth chamber are described elsewhere [95]. Lastly, the Nb3Sn film

grown by C. Sundahl from University of Wisconsin-Madison was approximately 120 nm thick,

grown on a 0.3mm thick, 2 inch r-plane Al2O3 substrate. The film had been grown by co-

sputtering Nb and Sn targets, where the detail of the setup and technique is described in

Ref. [96].

All the films were patterned into a CPW resonator by STAR Cryoelectronics, a com-

mercial foundry that specializes in superconducting device fabrications [97]. The patterning

process involved standard photolithography, followed by either chemical wet etching or reac-

tive ion etching, and dicing into 10mm×10mm individual samples. The sample dimensions

were measured with a digital microscope (Keyence VHX-7000), and they are summarized in

Table 1. Nb and Nb3Sn were etched using reactive ion etching and wet etching respectively,

and they show slightly more over-cutting compared to NbTiN which was etched using Ar

ion milling.

6.5 EXPERIMENTAL SETUP AND PROCEDURE

6.5.1 ASSEMBLY

The sample to be measured was placed in the resonator box using Ag conductive paint

(Leitsilber 200, Ted Pella, Inc) and cured for one hour. Side edges of the sample were

covered with Ag paint to properly ground the ground plane of the CPW resonator with the

box. The Nb box and the OFHC copper box with an installed sample are shown in Fig. 30.

The vacuum chamber for the box was prepared with an 8 inch long, ConFlat® Flange Full
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FIG. 29: Top and side view of the resonator box with dimensions in mm. A flat lid is used

to fully enclose the box, except for a small slit of width 1.60mm to ensure the inside of the

box is also vacuumed.

Film Material w s t l fr

Nb on Al2O3 55.7µm 25.61µm 1.5µm 22.39mm 2.950GHz

Nb3Sn on Al2O3 56.74µm 23.62µm 120 nm 23.52mm 2.808GHz

NbTiN on MgO 59.19µm 22.77µm 600 nm 23.74mm 2.768GHz

TABLE 1: A summary of select sample dimensions as measured with a digital microscope.

The resonant frequency was estimated by calculating L and C from the measured geometry

and estimating ϵr ≈ 9.30 for Al2O3 and ϵr ≈ 9.64 for MgO.
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Nipple with a 6 inch fitting. The end flange was prepared by taking a bored 6 inch ConFlat®

stainless steel flange and brazing 0.125 inch thick OHFC Cu plate in the center to improve

thermal conductivity across the flange. The resonator box was screwed onto the flange with

Apiezon® N grease in between for good thermal contact, and two Cernox® temperature

censors were mounted on the flange close to the box, and their lead wires were thermally

anchored to a gold-plated copper bobbin heatsink (HSB-40, Lake Shore Cryotronics, USA).

Figure 31 shows the setup of the flange. On the other end of the tube, ConFlat® 4-way

standard cross was used to direct rf cables from the probes to one axis, the thermometer

leads to another, and the last port to the vacuum pipe of the vertical test stand. The final

assembly on the test stand is shown in the Fig. 32 before being lowered into a cryostat for

measurements. The cryostat is approximately 1.8m deep into the ground with a mu-metal

shield for reducing Earth’s magnetic field. Once in the cryostat, the rf cables were connected

to a vector network analyzer (VNA) and Cernox® temperature sensor leads were connected

to Model 218 Temperature Monitor (Lake Shore Cryotronics, USA). The chamber was then

evacuated to about 10−8mBar using a turbomolecular pump backed by a diaphragm vacuum

pump. The cryostat dewar was filled with LHe for the cooldown to 4.3K and then pumped

down to further lower temperature to 2K. The schematic of the setup is shown in Fig. 33.

FIG. 30: (a) A box made with Nb and (b) the setup of the copper resonator box with

installed probe antennas and the sample mounted with the Ag paint.
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FIG. 31: The setup of the flange with the resonator box with a lid, two Cernox® sensors,

and a heat sink installed.

6.5.2 COUPLING FACTOR MEASUREMENTS

The coupling factors of the resonators were measured at the beginning of the experiment.

The coupling factors β1,2 for the antenna port 1 and the port 2 are given as

β1 =
β′
1 (1 + β′

2)

1− β′
1β

′
2

, (110)

and

β2 =
β′
2 (1 + β′

1)

1− β′
1β

′
2

, (111)
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FIG. 32: The vacuum chamber connected to the vertical test stand for testing.
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Cryostat
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Pump

LakeShore 218
Temperature
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Resonator Cernox®

Pf

Pr

FIG. 33: The schematic diagram of the experimental setup. The vacuum chamber containing

the resonator and the temperature sensors are immersed inside a cryostat with liquid helium.

The coupling is calculated by measuring Pr and Pf right outside the cryostat using a power

meter.
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where

β′
1,2 =

1±
√

Pr

Pf

1∓
√

Pr

Pf

, (112)

where Pr and Pf are power reflected from and forwarded to the resonator measured at the

port 1 and the port 2, and the upper sign is used for overcoupled (β > 1) and lower sign

is for undercoupled (β < 1) [26]. Whether the resonator is over or undercoupled is checked

by observing the S11 and S22 around resonance in polar coordinates. If the loop encloses

the center, it is overcoupled; if not, it is undercoupled. Once the sample is in the dewar,

the forwarded and reflected power of the resonator can only be measured from outside the

cryostat as indicated in Fig. 33. The measured power includes attenuations by the cables that

are inside the cryostat, and they must be accounted for to calculate the coupling coefficients.

To calculate the attenuation in the cables, the forwarded and reflected powers are measured

at a frequency ∼ 500 kHz away from the resonance. Assuming that all the power is reflected

at the sample off-resonance, the attenuation of the cables are given as

α =

√
pr,off
pf,off

, (113)

where pr,off and pf,off are reflected and forwarded power respectively. Taking into the

attenuation of the cables, Pr/Pf on resonance is then

Pr

Pf

=
pr,on/α

pf,onα
=
pr,onpf,off
pf,onpr,off

, (114)

where pr,on and pf,on are the measured reflected and forwarded power on resonance. Coupling

coefficients are calculated by plugging in Eq. (114) into Eq. (112). The corresponding external

Qext1,2 are then calculated by

Qext1 =
QL(1 + β1 + β2)

β1
, (115)

Qext2 =
QL(1 + β1 + β2)

β2
. (116)
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6.5.3 Q0 AND FR MEASUREMENTS AND ANALYSIS

A transmission spectrum S21 of the resonator was measured as a function of temperature

up to Tc of the sample. The drive power of the VNA was selected to be −30 dBm to maximize

the signal-to-noise ratio while avoiding distortion of the Lorentzian shape in the transmission

signal. As illustrated in Fig. 34, when the input power is increased, the Lorentzian shape

becomes asymmetric and the peak frequency decreases. This asymmetry is caused by the

nonlinear effect on both the kinetic inductance and the surface resistance. The kinetic

inductance increases as the circulating current breaks the Cooper pairs, which in turn, lowers

the resonant frequency. The surface resistance is also affected by the current as it induces

local heating, vortex penetration, and field penetration through defects. When the input

power is further increased, a bifurcation into two peaks is observed at the −10 dBm mark as

a result of exceeding the critical current of the film.

A resistive heater at the bottom of the dewar was used to boil off liquid helium and slowly

warm up the sample. During the warm-up, a computer program written in LabViewTM was

used to automatically export an S-parameter S21 around resonance and the temperature

sensor readings. The program continuously monitored the resistances of the temperature

sensors from Model 218 Temperature Monitor and converted them to Kelvin units using

calibration curves. Every time the program detected a change in temperatures by dT =

0.05K, it triggered the network analyzer to export the transmission and reflection spectra

as Touchstone files. The exported Touchstone files are then fit using Matlab® to extract

Q0 and fR at each temperature point.

An ideal S21 response around resonance is described by

S21(f) =
S21(fr)

1 + 2iQL
f−fr
fr

, (117)

whose magnitude is a Lorentzian function

|S21(f)| =
|S21(fr)|(

1 +Q2
L

(
1− f

fr

)2)1/2
, (118)

with a phase given as [19]

tan(ϕ(f)) = 2QL
fr − f

fr
. (119)

The ideal S21 plotted on a real and an imaginary axis is a circle that passes through an origin

and whose center lies on the real axis as illustrated in Fig. 35. In real measurements, signals
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FIG. 34: A power-dependent measurement shows that as the circulating current in the res-

onator increases, the Lorentzian shape becomes asymmetric caused by nonlinear dependence

of current on surface impedance.

travel down long cables before reaching the resonator and back to the VNA, producing a

phase shift φ in the spectrum. Additionally, a fraction of the power from the input antenna

may directly couple to the output antenna to generate crosstalk that bypasses the resonator.

The crosstalk introduces additional background complex signal χ to the spectra. The phase

shift and the crosstalk rotate and translate the resonant circle by φ and χ, modifying S21 as

follows [98]:

S̃21 = (S21 + χ) eiφ. (120)

QL and the fr are extracted from the corrupted S̃21 by following the method described

in Ref. [99]. First, the plot of S̃21 is fit to a circle on the complex plane to estimate the

center. The circle is then translated to the origin. The phase ϕ(f) is calculated from the
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FIG. 35: An ideal S21 on a complex plane. Starting from the origin, the frequency increases

in a counterclockwise fashion, and the resonant frequency occurs at the intersection of the

real axis.

new resonant circle and is then fit to

tan

(
ϕ− ϕ0

2

)
=

[
2QL

(
1− f

fr

)]
, (121)

ϕ(f) = ϕ0 + 2 tan−1

[
2QL

(
1− f

fr

)]
, (122)

where the fitting parameters are ϕ0, QL and fr. The phase difference ϕ(f)−ϕ0 is divided by

two in Eq. (121) because the resonant circle is centered at the origin as opposed to on a real

axis as was the case in Eq. (119). Figure 36 illustrates a typical fitting procedure. Finally,

Q0 is calculated by

Q0 =

(
1

QL

− 1

Qext1

− 1

Qext2

)−1

. (123)

6.5.4 EXTRACTING λ(T ) AND RS

The penetration depth of the film is deduced from a normalized shift in the resonant
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FIG. 36: (a) Shown in black is a measured S21 forming a circle that is both displaced and

rotated. The spectrum is translated to the center (shown in blue) and fit to a circle, shown

in red. (b) The phase as a function of a frequency is extracted from the new circle and fitted

to extract ϕ0, QL, and fr.

frequency as a function of the temperature:

δfr(T )

fr(T0)
=
fr(T )− fr(T0)

fr(T0)
=

√
Lg + Lk(T0)

Lg + Lk(T )
− 1, (124)

where T0 is the lowest temperature at which fr was measured, and the geometric inductance

Lg and the capacitance C are assumed to be independent of temperature. For each films

tested, a functional form of L = Lg +Lk(λ) was approximated by numerically calculating L

as a function of λ using the program outlined in Section 4.4.

The numerically calculated inductance L is then fit to a second-degree polynomial func-

tion in λ to obtain L(λ(T )) = g1λ(T )
2+g2λ(T )+g3. An example plot of the calculated L(λ)

and the polynomial fit is shown in Fig. 37. This expression for L(λ(T )) can be substituted

into Eq. (124) in place of Lg + Lk(T ) to calculate λ(T ) once the temperature dependence

of λ(T ) is known. To get an estimate for λ(0), δfr(T )/fr(T0) is fit usiong a simplified λ(T )

based on the two-fluid model:

λ(T ) =
λ(0)√

1−
(

T
Tc

)4 , (125)
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FIG. 37: An example of the numerically calculated inductance L along with the fitted

second-degree polynomial function in λ for a resonator with w = 59.19µm, s = 22.77µm,

and t = 600µm.

where λ(0) and Tc are the fitting parameters. Notice that λ(0) calculated in this fit is not

the London penetration depth λL(0) but rather the penetration depth that takes impurity

scattering into account such that λ(0) > λL(0).

For a more robust calculation, δfr(T )/fr(T0) is fit with λ(T ) calculated using the BCS

theory. A computer program to fit δfr(T )/fr(T0) and Rs with the BCS calculation was writ-

ten in Matlab®. The code is based on the version originally written by J. Hallbritter [25]

and also follows an interpretation by J. Gao [100] for calculating BCS kernels. The program

performs a non-linear least squares fit using the Levenberg-Marquardt algorithm to extract

the following parameters: Tc, energy gap ∆0, λL(0), BCS coherence length ξ0, mean free

path l, and residual resistance R0.

The surface resistance of the film is obtained from Q0 of the film. They are related by

Rs =
G

Q0

, (126)
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FIG. 38: An example geometric factor calculated as a function of λ for a resonator with

thickness t = 1µm. The geometric factor is nearly constant for λ/t ≲ 0.1 but decreases as λ

increases.

where G is the geometric factor. For a film with thickness t comparable to λ(T ), G must be

calculated as a function λ(T ). The geometric factor for each λ(T ) can be calculated using

the same numerical algorithm and the procedure used to calculated L(λ). An example of

calculated geometric factor as a function of λ for resonator with thickness t = 1.0µm is

shown in Fig. 38. Once G(λ) is obtained, Rs is calculated using the λ(T ) obtained from

δfr(T )/fr(T0) fit. Finally, to get an estimate for ∆(T ), Rs(T ) can be fit using an analytical

approximation of the BCS surface resistance valid for T < Tc/2 [23]:

Rs(T ) =
A

T
e−∆/kBT +R0, (127)

where A is a constant and R0 is a residual resistance.

Rs(T ) can also be fit by using the full BCS calculation, and when fit along with the

δfr(T )/fr(T0) data, the superconducting parameters can be extracted with higher accuracy

compared to when only one set of the data is used. This is because δfr(T )/fr(T0) data is

sensitive to λ(0), l, and Tc, while Rs(T ) data is more sensitive to ∆0/kBTc and R0. To make
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use of both sets of data, the following process is used for extraction of the superconducting

parameters:

1. Fit δfr(T )/fr(T0) using λ(0), Tc and l as fitting parameters and ∆0/kbTc and R0 as

constants.

2. Fit Rs(T ) using ∆0/kbTc and R0 as fitting parameters while using λ(0), Tc, and l

obtained in the previous step

3. Repeat the steps using the extracted parameters until they converge to within ≲ 10%

6.6 Nb MEASUREMENTS RESULTS

A conventional low Tc superconducting sample was used to confirm both the measurement

technique of the probe-coupled resonator and the analysis method for extracting λ(T ) and

Rs(T ). Nb films have been studied extensively in the past, and their properties are well

understood. The λ(T ) and the Rs(T ) obtained from the resonator were compared with the

BCS predictions to verify the reliability of the method. Additionally, the same Nb samples

were tested in both the Nb and the OFHC Cu boxes to confirm the parasitic losses from the

boxes are negligible.

The film was measured at temperatures between 2.1K to 8.9K. A center strip and a gap

width were measured to be W = 44.90µm and S = 30.67µm respectively, and the thickness

of the film was approximately 1µm. The dielectric substrate was a 0.5mm thick a-plane

Al2O3. The total length of the resonator was approximately l ≈ 23.38mm, where the length

of curves was estimated by taking an average of inner and outer edge lengths. Using the

conformal mapping formulae outlined in the Section 4.3, the geometric transmission line

parameters were calculated to be Lg = 423.8 nH and C = 131.2 pF when ϵr = 9.3 was

used for the dielectric constant of the substrate [101]. Based on those calculated values, the

resonant frequency was estimated to be fr = 2.869GHz.

At T = 2.1K, the resonator achieved fr = 2.875GHz, agreeing well with the calculated

value, and the QL was 2.75 × 105. The couplings at this temperature were β1 = 0.185 and

β2 = 0.119, which resulted in external quality factors of Qext1 = 1.94 × 106 and Qext2 =

3.02 × 106. To get a crude estimate for the dielectric loss, a value of a-plane Al2O3 loss

tangent tan δ ≈ 4× 10−8 was used [101]. Using Eqs. (96) and (97), the dielectric loss quality

factor was estimated to be Qd ≈ 3 × 107, roughly factor of two larger than the QL. The

radiation loss was estimated by using Eq. (98) to be Qr ≈ 5 × 1010. Both Qd and Qr were
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estimated to be negligible in calculating Q0 since they were several orders of magnitude

larger than the measured QL. Q0(T ) was then calculated simply as

Q0(T ) =

(
1

QL(T )
− 1

Qext1

− 1

Qext2

)
. (128)

Plots of Q0(T ) and normalized frequency shift δf(T )/f0 = (fr(T )−fr(T0))/fr(T0) are shown
in Fig. 39 and in Fig. 40. The difference in the Q0(T ) from the Nb housing and the OFHC

Cu housings was insignificant, which confirms that parasitic losses from the housing are

negligible, as predicted by the CST simulation.

Errors for Q0 are calculated from 95% confident bounds from the fit. Errors in δf(T )/f0

are given by

∆
δf(T )

f0
=

√(
fr(T )∆fr(T0)

fr(T0)2

)2

+

(
∆f(T )

fr(T0)

)2

, (129)

where ∆fr(T0) and ∆fr(T ) were obtained from the 95% confidence interval from the fit. At

T near 2K, ∆Q0/Q0 ∼ 0.2% and ∆f was typically around 5Hz; however, at T close to Tc,

∆Q0/Q0 ∼ 2% while δf became in the order of kHz.

Results of δf(T )/f0 and Rs(T ) fitted with the BCS calculations are illustrated in Fig. 41

and Fig. 42, and the measured data show a very good agreement with the BCS calculation.

The extracted parameters are listed in Table 2, and the calculated values are well within

the expected Nb parameters [102]. The estimated errors for ξ0(T ) and l are large due to the

effective penetration depth depending roughly on a ratio ξ0/l; thus a separate measurement

would be needed to accurately determine ξ0 and l individually. Nevertheless, the results

show the effectiveness of the measurement and analysis technique. Since the experiments

conducted in Cu and Nb boxes both showed consistent results, this measurements technique

would be applicable for other superconducting samples with higher Tc.

6.7 NbTiN MEASUREMENTS

A NbTiN film measured in this experiment was fabricated an electron cyclotron reso-

nance (ECR) deposition technique at Thomas Jefferson National Laboratory. A detail of

the deposition chamber is described in Ref. [95]. It was deposited on a 0.5mm thick MgO

substrate, and the film thickness was approximately 600µm. The geometry of the resonator

was measured to be w = 59.19µm, s = 22.77µm, and l = 23.74mm, and the resonant

frequency was calculated to be fr = 2.768GHz. The sample was measured inside the Cu

box between 2K to 16.5K. For this measurement, FieldFox Handheld RF Vector Network
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FIG. 39: Q0 plotted as a function of T for the Nb film tested in both the Nb and the Cu

housing. Error bars are omitted because they are comparable to the size of the symbols.

Parameters Fitted Values

Tc 9.34 ± 0.06K

∆ 1.48 ± 0.07meV

λL(0) 40.0 ± 4.7 nm

ξ0 39.0 ± 23.3 nm

l 50.2 ± 36.4 nm

R0 0.327 ± 0.030µΩ

TABLE 2: A summary of the extracted parameters for the Nb thin film using the full BCS

calculation.
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FIG. 40: Normalized frequency shift plotted as a function of T for the Nb film tested in both

the Nb housing and the Cu housing. Error bars are omitted because they are comparable

to the size of the symbols.
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FIG. 41: An Arrhenius plot of the surface resistance versus temperature with fitted Rs from

the BCS theory.
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FIG. 42: The normalized frequency shift data fitted with a full BCS calculation.

Analyzer N9918A was used to measure both the fundamental and second harmonics. Simi-

lar to the data acquisition using VNA E5080A, the FieldFox was controlled via a LabVIEW

program that recorded the transmission spectrum near the first and the second resonances

as the dewar was warmed. At T = 2K, QL was 2.404 × 105 at fr1 = 2.788GHz, and QL

was 3.248× 105 at the second harmonics which occurred at fr2 = 5.570GHz. The coupling

coefficients were β1 = 0.0802 and β2 = 0.0358, which resulted in Qext1 = 3.345 × 106 and

Qext2 = 7.49×106. Figures 43 and 44 illustrate Q0 and δf(T )/f0 as functions of temperatures

for both the fundamental and the second harmonics. Since the penetration depth does not

depend on the frequency, the normalized frequency shifts for the fundamental and second

harmonics are identical.

The δf(T )/f0 data were fit with a simplified analytical formula for λ(T ) given by

Eq. (125). The fit agrees well with the data with λ(T ) = 270.92 ± 0.32 nm and Tc =

16.72± 0.002K. The surface resistance up to Tc/2 was fit also with an analytical BCS for-

mula given by Eq. (127) and is shown in Fig. 45 and Fig. 46. The extracted parameters

were ∆0 = 2.69± 0.03meV for both modes, and R0 = 0.61± 0.004µΩ for the fundamental

mode and R0 = 0.82± 0.007µΩ for the second harmonics. Although the analysis may give a
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FIG. 43: Q0 vs T for both the fundamental and the second harmonics for the NbTiN

resonator.
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FIG. 44: δf(T )/f0 vs. T for both the fundamental and the second harmonics for the NbTiN

resonator, along with the simplified λeff (T ) fit. The normalized frequency shifts are identical

for both resonant frequencies as expected.
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rough estimate of the ∆0, the fit is not a perfect representation of the data, particular in the

temperature range 2.0K–2.5K where the data shows Rs(T ) to be still slightly decreasing.
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FIG. 45: Rs vs. T for the fundamental mode of the NbTiN resonator sample along with a

fit of analytical BCS surface resistance formula.

6.8 Nb3Sn MEASUREMENTS

An Nb3Sn film measured in this study was prepared by a collaborator C. Sundahl from

the University of Wisconsin-Madison. A detail of the deposition is described elsewhere [96,

103]. The film was approximately 120 nm thick and was deposited on a 0.3mm thick, two-

inch r-plane Al2O3 substrate. The film was also patterned by STAR Cryoelectronics [97],

and the testing was done in the Cu box. The resonator had a center conductor width of

w = 56.74µm, gap width s = 23.56µm, and an approximate total length of l = 23.52mm

as measured by the optical microscope. This resulted in a calculated fr = 2.795GHz. The
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FIG. 46: Rs vs. T for the second harmonic mode of NbTiN resonator sample along with a

fit of analytical BCS surface resistance formula.

coupling coefficients and the external quality factors measured at 2K were the followings:

β1 = 0.0054, (130)

β2 = 0.010, (131)

Qext1 = 4.8× 107, (132)

Qext2 = 2.6× 107. (133)

Compared to the Nb film, the Al2O3 substrate on this sample was 0.2mm thinner, which

resulted in much lower coupling strengths. Nevertheless, a resonant peak was still observable

at T ∼ 17K above the noise floor. At 2K, QL = 2.618 × 105 and the resonant frequency

was fr = 2.730GHz, agreeing well with the analytically calculated fr based on its geometry.

The results of Q0(T ), and δf(T )/f0 are plotted in Fig. 47 and Fig. 48

The normalized frequency shift as a function of T was fitted with an approximate form

of λ(T ) shown in Eq. (125) to get an estimate of the λ(0). The extracted parameters are

Tc = 16.99±0.0006K, and λ(0) = 202.4±0.08 nm, well above the London penetration depth
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FIG. 47: Q0 plotted as a function of T for the Nb3Sn film.
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FIG. 48: A normalized frequency shift as a function of temperature for the Nb3Sn sample,

along with a fit using an analytical, simplified formula for λ(T ).
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λ(0) ≈ 90 nm for a clean stoichiometric Nb3Sn [104]. This may results from nonstoichiometric

inclusions or grain boundary structure of the Nb3Sn film [96, 103].

We attempted to fit Rs(T ) data with an analytical form of the BCS surface resistance,

but the Eq. (127) did not describe the data well. The result of a poor fit is shown in Fig. 49.

The curve is calculated with ∆0 = 1.9meV and R0 = 0.21µΩ. The fact that the measured

Rs does not obey the BCS theory completely may also be explained by the nonstoichiometry

of the sample.
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FIG. 49: Rs vs. T of the Nb3Sn film for T < Tc/2 along with an attempted fit using an

analytical BCS Rs(T ) approximation.

Finally, it is interesting to compare Rs for all three materials tested. The results are

shown in Fig. 50. Compared to the Rs of Nb3Sn, the Rs of NbTiN and possibly Nb are

limited by higher residual resistance. Both Nb3Sn and NbTiN exhibited lower Rs than Nb

in this low power testing, which is expected for superconductors with higher Tc and ∆ as
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the Rs decays exponentially with ∆/kBT .

6.9 CONCLUSION

In conclusion, we have demonstrated the technique of measuring superconducting CPW

resonators with the probe-coupling method. Using this technique, superconducting param-

eters for Nb were successfully extracted, and the resulting Rs(T ) and λ(T ) agreed well with

the BCS predictions. We then measured Nb3Sn and NbTiN thin films and the results were

compared with Nb films. It was shown that the probe-coupled resonator measurement can

provide a cost-effective routine for benchmarking superconducting films at a frequency rele-

vant for SRF accelerating cavity application while keeping the sample size small. This will

benefit the research and development of the SRF thin films by providing means to interpret

how the growth parameters influence the performance of the film. As a future work, the

results from probe-coupling method should be compared with those from other surface char-

acterization methods such as the measurements using a host cavity. A 2-inch sample wafer

can be measured on a host cavity first prior to being patterned into the CPW resonator, and

the results can be compared to further validate this probe-coupling method.
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CHAPTER 7

CPW RESONATOR MEASUREMENTS USING

A CRYOGENIC PROBE STATION

7.1 INTRODUCTION

We used the cryogenic probe station to investigate the nonlinear Meissner effect (NLME)

in a thin film Nb3Sn CPW resonator as a function of dc field applied parallel to the film

surface. The Meissner screening current density J = −ensvs induced by a weak magnetic

field is proportional to the velocity vs of the superconducting electrons. At higher fields, the

density of superconducting electron ns becomes dependent on vs due to pair-breaking effects

and results in NLME [9, 105–111]. For a single-band isotropic s-wave superconductor, the

NLME is described by

J = − ϕ0Q

2πµ0λ2
(
1− aξ2Q2

)
, (134)

where Q = mvs/ℏ = ∇χ+2πA/ϕ0, m is the quasiparticle mass, χ is the phase of the order

parameter ϕ = ∆eiχ, A is the vector potential, ϕ0 is the magnetic flux quantum, and factor

a depends on the temperature T , mean free path l and details of pairing mechanism [37,

112]. The NLME has attracted much attention as a means to probe unconventional pairing

symmetries of moving condensates. For example Eq. (134) describes a clean d-wave super-

conductor at high temperature or a d-wave superconductor with impurities [105–111]. For

the s-wave superconductors, NLME is absent in the clean limit, but it is present in the dirty

limit ξ ≲ l [113, 114]. So far the observations of the NLME in high-Tc cuprates have been

inconclusive, mostly because of a small field region of the Meissner state in high-κ type-II

superconductors and contributions of extrinsic materials factors, such as grain boundaries or

local nonstoichiometry [115–121]. Penetration of vortices above the lower critical magnetic

field limits the max field for which NLME can be observed. To extend the field region of

the NLME, we performed our measurements on a thin film of thickness d < λ for which

Bc1 = (2π0/πd
2) ln(d/ξ) is much higher than the bulk Bc1 [122].
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FIG. 51: Temperature dependence of the resistance of the film R(T ) with a midpoint critical

temperature Tc = 17.2K.

In this chapter, the Nb3Sn CPW resonator and the cryogenic probe station used in the

measurements of NLME are described in detail, followed by the main experimental results

and the discussion of the results. This chapter is based on Ref. [112].

7.2 DESIGN OF THE SAMPLE

The coplanar resonator measured in the probe station was fabricated from a 50 nm thick

Nb3Sn film on a 10mm × 10mm × 1mm thick r-plane Al2O3 substrate. The film was

prepared with magnetron co-sputtering using both Nb and Sn targets in a growth chamber

at the University of Wisconsin-Madision [96, 103]. Figure 51 shows the resistive transition in

a film grown under a similar condition. The film had a midpoint Tc ≈ 17.2K, normal state

sheet resistance of 5.1Ω, and a residual resistance ratio (RRR) of R(300K)/R(18K) ≈ 3.2.

The film has a polycrystalline structure with rigid grains along the [-1011] direction of the

Al2O3 substrate as revealed by the atomic force microscopy (AFM) shown in Fig. 52. Those

grains contributed to an RMS roughness of approximately 10 nm [96, 103]. The sample was

patterned into a half-wave coplanar waveguide resonator using contact lithography followed
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FIG. 52: AFM image showing a polycrystalline structure of the film.

by Ar ion milling. The optical image of the resonator is shown in Fig. 53. The meandered

resonator has a total length l ≈ 24.6mm corresponding to the fundamental resonant fre-

quency f0 = 2.236GHz. The center conductor width was w = 14.90µm, a gap width was

s = 8.86µm, and the film thickness was t ≈ 50 nm. This geometry resulted in the external

inductance Lg = 422.5 nH and C = 136.9 pF. The resonator is coupled to input and output

rf probes by interdigital capacitors of width wf = 3.59µm, gap width 2.96µm and length

lf = 96.12µm. At the ends of the transmission line, landings pads for the Ground-Signal-

Ground (GSG) probes were fabricated, shown as the lightly shaded region in Fig. 53(a).

These were made by first removing a few nanometers of oxide layers on the surface of Nb3Sn

using Ar ion milling and depositing a 20 nm thick layer of Pd in-situ using a lift-off tech-

nique. The landing pads made of Pd serve to prevent oxidation and damage to the film

from repeated touchdown of the probes and ensure ohmic contact between the probe and

the sample.
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FIG. 53: (a) The image of the Nb3Sn coplanar half-wave resonator. The meandered resonator

in the center is terminated on both ends with interdigital capacitors shown in (b) which tapers

out to the input and output landing pads. (c) Zoomed in section of the coplanar resonator

where the width of the strip is w = 14.90µm and the gap between the signal strip and the

ground is s = 8.86µm.
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7.3 CRYOGENIC PROBE STATION

The Nb3Sn film was measured in a Cryogenic Probe Station (CPS), built by MicroXact,

Inc [123]. The overall setup of the CPS is shown in Fig. 54, and Fig. 55 illustrates the

schematic diagram of the setup. The probe station consists of a vacuum chamber sized

approximately 50 cm× 50 cm× 40 cm rated at 10−5Torr at room temperature. The vacuum

system consists of HiCube 80 Eco Turbo Pump by Pfeiffer Vacuum GmbH backed by a D4B

Trivac Rotary Vane Vacuum pump by Leybold GmbH. The sample is cooled to cryogenic

temperature using a two-stage cryocooler Sumitomo RDK-4152 with an F-70 water-cooled

helium compressor. The temperature of the first stage is 39.60K with 45.0W of heat load,

and the second stage temperature is as low as 3.99K with 1.50W of the applied heat load.

The first stage is used for cooling thermal shields surrounding the sample, and the second

stage anchors to the superconducting magnet which is then connected to the sample stage

using tinned copper braids. The sample stage is positioned at the center of the magnet, and

it is thermally isolated from the surrounding using G-10 support structures.

There are two 50W resistive heaters installed inside the CPS; the first one is located on a

thermal radiation shield for the cold head, and the second is fixed on a chuck that is holding

the sample stage. They are used to warm the probe station to room temperature and to

conduct temperature-dependent measurements. There are five sensors to monitor tempera-

tures throughout the CPS: a silicone diode model Si410 (Scientific Instruments, USA) fixed

on the thermal radiation shield of the cold head, a Si410 sensor on one of the probe arms, a

silicone diode Dt-470 (Lake Shore Cryotronics, USA) on the chuck, a Cernox® temperature

sensor model CX-1050-CU-HT (Lake Shore Cryotronics, USA) on the sample stage, and a

ruthenium oxide RO-600 (Scientific Instruments, USA) on the surface of the superconducting

magnet. The RO-600 sensor is monitored by Model 612 Temperature Monitor (Cryomagnet-

ics, USA), and the two heaters and four temperature sensors are controlled and monitored

by a cryogenic temperature controller CTC100 (Stanford Research System, USA) which is

shown in the Fig. 56. The output power to the resistive heaters are regulated by the PID

feedback control in the CTC100, which allows for precise temperature control with less than

50mK stability.

The superconducting magnet equipped inside the CPS is a split-coil NbTi solenoid (Cry-

omagnetics, USA). It is capable of producing a dc field up to 1Tesla using a Model 4G

Superconducting Magnet Power Supply (Cryomagnetics, USA) shown in the Fig. 57. The

magnet system is built on a gold plated support structure with openings for probe arms

to reach the sample stage. It is enclosed inside a polished thermal shield cooled by the
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FIG. 54: An overview of the probe station with the vacuum chamber lid open.

FIG. 55: A schematic diagram illustrating important components of the cryogenic probe

station.
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FIG. 56: Model CTC100 cryogenic temperature controller (bottom) is used to monitor four

temperature sensors and controls two resistive heaters. Model 612 Temperature Monitor is

used for monitoring a sensor on the superconducting magnet.

1st stage of the cryocooler. Figure 58 shows the setup with the partially removed thermal

shield to reveal the superconducting magnet and the sample stage. Along the edges of the

shield, there are three pairs of copper Helmholtz coils that produce a weak magnetic field

to reduce any ambient field at the sample stage to minimize the number of vortices trapped

in the sample during its cooldown through Tc. They are driven by three Keysight N6700

DC power modules. At room temperature, a Hall probe (Milligaus Meter MR3, AlphaLab

Inc.) was fixed on the sample stage and the magnitude of the ambient field was measured

while adjusting the current on the Helmholtz coils to reduce the ambient field to less than

4mG in an optimum configuration. The superconducting magnet setup is mounted on a

six-motor hexapod system (MHP-14 by Picard-Industries) shown in Fig. 59. It consists of

six linear actuators that allow for rotation and translation of a platform in three axes with

∼ 1µm repeatability. The motion is controlled by computer software shown in Fig. 60, and

the magnet angle can be adjusted even while the sample stage is at a cryogenic temperature.

There are four manipulator arms equipped with the CPS. Two manipulators have tilt
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FIG. 57: A magnet power supply for the superconducting magnet which is used to operate

the ramp up and down of the magnet.

FIG. 58: A partially removed thermal radiation shield showing a gold-plated superconducting

magnet structure with NbTi wires hidden behind mylar tapes. It is supported to the radiation

shield by G-10 rods to thermally isolate from the 1st stage of the cryocooler. A sample stage

can be seen at the center of the magnet system. Surrounding the radiation shield are three

pairs of Helmholtz coils.
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FIG. 59: Mini Hexapod MHP-14, a six-actuator kinematics platform, that is used to fine

adjust the angles and the positions of the superconducting magnet during sample measure-

ments.

FIG. 60: A Windows software for Hexapod MHP-14 to control the rotation and translation

of the hexapod. The position and the rotation can be either manually entered in the top left

field, or adjusted in steps by clicking on the arrows.



95

adjustment which was used to planarize probe tips. The probe arms on the manipulators are

thermally anchored to the 1st stage of the cryocooler to reduce the heat load to the sample.

The probe tip used in this measurement was Picoprobe® Model 40A (GGB Industries, Inc).

shown in Fig. 61. They are fixed at the end of the probe arms and make electrical contact to

the sample to send and receive rf power from the network analyzer. The probe is configured

with the GSG probe tip, where two outer tips are grounded and the center tip is for carrying

the signal, with the tip separation of 100µm. Each tip is constructed with an individually

spring-loaded BeCu which allows for reliable contacts to the sample surface even under a

small vibration. To further minimize the heat load to the sample when the probes make the

contact, non-magnetic, low thermal conductivity semi-rigid rf cables by Keycom Corp. are

used.

FIG. 61: (a) GSG probe tips used in the measurements to make electrical contacts to the

sample. (b) A zoomed-in picture of the probe tips consisting of two ground tips on the

outside and one signal tip at the center separated by 100µm.

An optical microscope shown in the Fig. 62 is used for viewing and for precise landing of

the probes to the contact pads on the resonator. The chamber lid is built with a sapphire

window with IR blocking coating for viewing with a microscope while minimizing radiative
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heating of the sample. The equipped microscope system is Optem® Zoom 160 which consists

of a 2X TV tube and an objective lens yielding a combined optical magnification range of

1.0 to 16.0X. An 18 megapixel USB3.0 CMOS camera is mounted on the microscope and is

connected to a computer to display a live feed of the microscope image to a monitor. The

setup is capable of 2µm resolution. Both an LED ring light and 150W fiber optic light

source are used for illuminating the sample.

FIG. 62: A microscope system that is fixed to the chamber wall via a boom arm. The LED

ring light and the fiber optic light source are attached to the microscope. The USB camera

is attached at the top of the microscope for viewing the sample through the viewport on the

chamber lid.
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The cryocooler produces mechanical vibrations due to periodic compression and expan-

sion of the helium gas inside the cold head. They can couple to the sample stage and the

probes which introduce uncertainty in the measurements. There are several features on the

CPS that passively isolate vibration. The chamber is placed on top of a pneumatic table

with four pressurized legs shown in Fig. 63, which isolates the majority of the vibration from

the cryocooler. The cryocooler is indirectly attached to the chamber via a stage shown in

FIG. 63: One of the pneumatic legs supporting the CPS chamber. The pressurized legs

provide passive vibration isolation from the cryocooler.

Fig. 64 which connects to the chamber via a flexible bellow. The stage is then fixed to the

pneumatic table via four rubber vibration isolators. Finally, flexible tinned copper braids



98

FIG. 64: A setup of the cryocooler underneath the probe station chamber. The cryocooler

is bolted upside down with the cold head inside the main chamber where it is connected

via a flexible bellow to dampen vibration. It is also supported by four rubber bolts to the

pneumatic table.

were used to thermal anchor the superconducting magnet to the second stage to isolate vi-

brations as shown in Fig. 65. Nevertheless, the probe arms and the sample stage still suffered

from residual vibration. The vibration was measured on the sample stage and the tip of one

of the probe arms using piezoelectric accelerometers. Figure 66 illustrate the magnitudes of

acceleration as a function of time and their Fourier Transforms at the sample stage and the

probe arm. The largest spikes in the accelerations occur at a frequency of roughly 1.2Hz,

which corresponds to the expansion and compression cycle of the cryocooler.

7.4 MEASUREMENT SETUP

The patterned sample was mounted on a sample stage using the Ag paint, and a cali-

bration substrate was mounted on a side as shown in the Fig. 67. The chamber was then

pumped down to 1× 10−5Torr and cooled down until the sample stage temperature reached

T ∼ 7K. The calibration substrate is a model CS-5 (GGB Industries, Inc.), which contains

several calibration standards specifically designed for the GSG probes. For the measurement,
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FIG. 65: A picture showing inside of the radiation shield of the 2nd stage. Tinned copper

braids are used to isolate vibration from the second stage to the superconducting magnet.

a Short-Open-Load-Thru calibration was used to correct the errors in the measurement sys-

tem from the probe, cable, and to the network analyzer at a cryogenic temperature. This

allows for the error corrections in the same environment that the sample was measured in.

At the same time, the probe tips were planarized to ensure the tips were at the same height

by adjusting the probe arm rotation until the GSG tips made equal probe marks on the gold

substrate. The output port of the VNA provided rf power, and the drive power was selected

to be −30 dBm while avoiding distortion of the Lorentzian shape in the transmission signal

observed at higher power due to nonlinear heating effects [124, 125].

All four S-parameters, S11,22 and S12,21, were measured for this experiment as a function of

temperature and parallel dc field. Any cross talk and phase delays in the transmission spectra

were fixed by fitting and correcting the resonant circles, and fr and QL were extracted from

the phase vs frequency fit [98]. At each measurement, coupling strengths were calculated by

fitting the phase of S11 and S22 to the formula [19]:

ϕ(f) = tan−1

[
2QL

S(fr)

(
f − fr
fr

)]
− tan−1

[
2QL

(
f − fr
fr

)]
+ φ0, (135)

where S(fr) is the S11 or S22 on resonance and φ0 is any phase delay in the cable. The
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FIG. 66: Measured accelerations using the Piezo accelerometers on (a) the tip of the probe

arm and (b) its Fourier Transform. (c) Accelerations on top of the sample stage and (d)

its Fourier Transform. There are large spikes of acceleration corresponding to the cycle of

the cryocooler gas compression and expansion at a frequency of ∼ 1.2Hz despite several

implementations to passively isolate such vibrations.
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FIG. 67: A photo of the sample, the calibration substrate, and two GSG probes taken

from the viewport of the chamber lid. The thermometer and the OFHC Copper bobbin for

thermal anchoring of the lead wires are screwed onto the sample stage.
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coupling coefficients are then

β1,2 =
1± S11,22(fr)

1∓ S11,22(fr)
, (136)

where the upper sign is used for the overcoupled and the lower sign for the overcoupled

resonator. A typical transmission and reflection coefficients of the sample at T = 7.2K

are shown in the Fig. 68 along with the nonlinear least-squares fits to extract QL, fr, and

coupling coefficients.
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FIG. 68: (a) The phase versus frequency fit of the S21(f) for the Nb3Sn sample measured

using the probe station at T = 7.2K and (b) the phase versus frequency fit for the S22(f).

The cryocooler caused some vibrations on the probes while they are in contact with the

sample. This caused some spread in measured frequency responses. Multiple frequencies

sweeps taken consecutively at the same temperature show fluctuations in Lorentzian shapes

as illustrated by the Fig. 69. In analyzing the sample, the transmission and reflection spectra

were recorded multiple times at one data point and the average of the extracted fr and QL

are reported, with the error bars representing the standard deviation from the repeated

measurements.
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FIG. 69: The measured transmission spectra near resonance taken consecutively without

moving probes or changing temperatures. Vibration from the cryocooler couples to the

sample stage and probes causing fluctuations in the resonant frequencies.

Data acquisitions were conducted using LabView programs. The first program shown in

Fig. 70 was used to connect to CTC100 Temperature Controller and Models 612 Cryogenic

Temperature Monitor to record temperatures from all five sensors and also set a desired

temperature on the sample stage by accessing the PID controller. A second program shown

in Fig. 71 was used to access the VNA to configure measurements and record the transmission

and reflection spectra as S2P Touchstone files. Finally, a third program was used to control

the ramp-up and down of the superconducting magnet by connecting to the Model 4G power

supply.

The lowest stable temperature obtained at the sample stage while landing the probes

on the sample was T = 7K. For the temperature-dependent measurements, fr and QL

were measured from 7K to 17K with 0.2K increments, where the precise temperatures were

obtained using the PID controller and the resistive heater on the sample chuck. At each

data point, fifty spectra were taken to extract the average fr and QL. The temperature

dependencies of λ(T ) were then inferred from the measured frequency shift δf(T )/f0 =

[fr(T )− fr(7K)]/fr(7K).
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FIG. 70: A LabView program used to monitor all temperature sensors and PID controls.

FIG. 71: A LabView program used to configure VNA and record S-parameters.
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FIG. 72: The coordinate system for the magnet orientation with respect to the direction of

the rf current on the coplanar resonator.

To investigate NLME, fr was measured as a function of parallel dc field up to 200mT

at temperatures between 7K and 13K. The field was applied in both parallel φ = 0◦ and

perpendicular φ = 90◦ field orientations with respect to the strip as indicated by Fig. 72. To

conduct field-dependent measurements, the sample was fixed to one temperature, and fr(H)

was measured while increasing the field from 0 to 200mT at 10mT increments. Once the

data was taken at 200mT, the field was zeroed first, and the sample was warmed up above

Tc to expel any trapped vortices in the strip. The sample was then set to a new temperature

and the measurements were repeated.

For the NLME measurements, the alignment of the dc field B to the plane of the strip

is crucial to keep the superconductor in the Meissner state and avoid perpendicular vortices

penetrating from the film edges. These vortices caused by the misaligned field reduce the

quality factor and give rise to an additional field dependence of δf(B, T ) unrelated to the

NLME. To find the orientation of the magnet which produces B parallel to the film plane

and the minimum amount of flux, the loaded quality factor QL(B) and δf(B) were measured

as a function of the out-of-plane field angle ζ, and we picked an angle that produced the

least hysteresis before and after the field ramp. The following steps were taken to find such
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an angle:

1. Measure the initial values of f0i and QLi at zero field.

2. Ramp the field up to 60mT and wait for a resonator response to stabilize.

3. Ramp the field down to zero and measure f0a and QLa affected by the number of

vortices trapped in the previous field ramp.

4. Thermal cycle the sample above Tc = 17.2K at zero field to flush out trapped vortices.

5. Repeat the measurements after adjusting the magnet to a new angle using the hexapod.

Shown in Fig. 73 are the normalized shifts δf0/f0 = (f0a − f0i)/f0i and δQL/QL = (QLa −
QLi)/QLi as functions of the magnet angle ζ. Both δf0(ζ)/f0 and δQL(ζ)/QL(0) peaked at

ζ = 3.8◦ which was adopted as a magnet orientation producing the dc field parallel to the

plane of the film. This procedure is similar to that which was used in Ref. [37].
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FIG. 73: Normalized shifts in (a) resonant frequencies and (b) loaded quality factors after

cycling B from 0 to 60mT and back to 0 as a function of the offset angle ζ. Both δf(ζ) and

δQL(ζ) are peaked at ζ = 3.8◦.
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7.5 NB3SN MEASUREMENT RESULTS

7.5.1 TEMPERATURE DEPENDENCE

Shown in Fig. 74 is the temperature dependent part of fr(T ) along with the fit of the

normalized frequency shift:

f0(T )− f0(7K)

f0(7K)
=

√
Lg + Lk(7K)

Lg + Lk(T )
− 1. (137)

Since the film has a thickness t≪ λ(T ), the kinetic inductance is approximated as

Lk ≈
µ0λ(T )

w
coth

[
t

λ(T )

]
≈ µ0λ(T )

2

wt
, (138)

and the two-fluid approximation of the temperature dependence of λ(T ) =

λ(0) [1− (T/Tc)
4]

−1/2
is assumed. The fit gives λ(0) = 353 nm, well above the London

penetration depth λ(0) ≈ 90 nm for a clean stoichiometric Nb3Sn [104]. This may result

from nonstoichiometric inclusions which cause a slight reduction of Tc in the films [96, 103].

For λeff (0) = 353 nm, w = 15µm and t = 50 nm, the kinetic inductance can be approx-

imated to be Lk = µ0λ
2λ(T )/wd ≃ 200 nH/m which accounts for about 1/3 of the total

inductance L = Lg + Lk with Lg = 420.5 nH/m.

Another factor contributing to the large value of λ(0) is the grain boundary structure

of the Nb3Sn films shown in Fig. 52. Sn depletion at grain boundaries results in weak

Josephson coupling of crystalline grains [126–128]. These weakly-coupled grain boundaries

facilitate preferential penetration of the magnetic field along the network of grain boundaries,

causing an increase of the effective λ, as is characteristic of many superconductors with short

coherence length, including Nb3Sn, cuprates, and pnictides [129, 130].

7.5.2 FIELD DEPENDENCE

Shown in Fig. 75 are the observed field dependencies of the frequency shifts for in-plane

B parallel and perpendicular to the strip. In both cases, δf(B) decreases nearly linearly

with B above 30-40mT but flattens at lower fields. Here the slope of δf(B) for in-plane B

parallel to the strip is about twice of the slope of δf(B) for in-plane B perpendicular to the

strip. In the field range 0 < B < 200mT of the measurements, the Nb3Sn film of thickness

50 nm is in the Meissner state as the parallel field B remains below the nominal lower critical

field of a vortex in a thin film. In the London approximation [10], the lower critical field is
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FIG. 74: The normalized temperature-dependent part of the resonant frequency. The fit of

the data to Eq. (137) and (138) gives λ(0) = 353 nm.
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given as

Bc1 =

(
2ϕ0

πt2

)
ln

(
t

ξ

)
, (139)

which yieldsBc1 ≃ 1.17T with t = 50 nm and ξ = 5nm, exceedingBc = 0.54T of Nb3Sn [131,

132]. The slope of δf(B) in Fig. 75 increases with increasing temperature, consistent with the

temperature dependence of λ(T ). The δf(B) data exhibit significant scatter, which has also

been observed in NLME experiments on cuprates [117]. The error bars in Fig. 75 represent a

standard deviation from repeated measurements at each data point. The main contribution

to the error bars comes from vibrations of the sample stage and the GSG probes which are

coupled from the cryocooler cycles. For the NLME measurements with B perpendicular to

the strip, longer probe arms had to be used, which increased the amplitude of vibrations.

7.5.3 DISCUSSION

The nonlinear Meissner effect correction to the Lk caused by the pair breaking Meissner

screening current has a quadratic dependence in B given by [112]

δLk =
µ0λ

2

3tw

(
πξtB

ϕ0

)2 [
1 +

2 sin2 φ

1 + (ωτ/2)2)

]
, (140)

where ϕ0 is the flux quantum, φ is the field orientation with respect to the rf current, and

τ is an effective relaxation time of the superconducting order parameters [76, 133]. The

frequency shift is then

δf

f
= − µ0λ

2

6wtLg

(
πξtB

ϕ0

)2(
1

4
+

2 sin2 φ

4 + ω2τ 2

)
. (141)

For ωτ ≪ 1, t = 50 nm, ξ = 5nm, φ = π/2 and B = 100mT, the predicted frequency shift

is δf(B)/f0 ≈ 4 × 10−4. well below the observed δf/f0. Moreover, according to Eq. (141),

the field induced shift in frequency at φ = π/2 for which the dc field is parallel to the rf

currents in the strip is three times larger than δf at φ = 0. This is inconsistent with the

experimental results where the slope of the δf(B)/f0 at φ = 0 from Fig. 75(a) is about two

times larger than for δf(B)/f0 at φ = π/2 shown in Fig. 75(b). Not only is the Meissner

pairbreaking too weak to account for the observed δf/f0, but it also yields the field and

orientational dependencies of δf(B)/f0 inconsistent with the experimental data on Nb3Sn.

A significant contribution to Lk can come from local non-stoichiometry, strains, and grain

boundaries in polycrystalline Nb3Sn. Particularly, Sn depletion at the grain boundaries

results in weak Josephson coupling of grains in Nb3Sn [126–128, 134]. If weakly coupled
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magnetic field (a) parallel and (b) perpendicular to the strip.
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grain boundaries are regarded as planar Josephson junctions, each grain boundary has a

kinetic inductance of

Lj =
ϕ0

2πIc cos θ
, (142)

where Ic(T ) is a critical current of the Josephson junctions, and θ is the sum of the phase

difference between the superconducting order parameters around the grains and the phase

difference induced by the dc magnetic field [135]. The field induced phase factor is given as

θA =
2π

ϕ0

∫
A · dl, (143)

where A is the magnetic vector potential, the integration is from one superconductor of the

grain to the other, and l is the unit normal to the plane of the grain boundary [7, 135]. If the

grain boundaries form interfaces across the cross-section of the strip, they can significantly

increase Lk because Nb3Sn can have broad distributions of sizes and Ic values. A model of

the grain boundary in the strip can be represented as a rectangular plane as shown in the

Fig. 76, where L1 is in the order of the film thickness ≃ 50 nm and L2 ∼ 0.1–1µm as shown

in Fig. 52. The phase differences from an array of weakly coupled grain boundaries are

x

z

yn<latexit sha1_base64="I+8pSpDf2lGbQ7m2as2/RxhZFN8=">AAAB7XicbZDLSgMxFIYz9VbHW9Wlm2ARXJUZEXUjFt24rGAv0A7lTJppYzOZkGSEMvQd3LhQxI0LH8W9G/FtTC8Lbf0h8PH/55BzTig508bzvp3cwuLS8kp+1V1b39jcKmzv1HSSKkKrJOGJaoSgKWeCVg0znDakohCHnNbD/tUor99TpVkibs1A0iCGrmARI2CsVWsBlz1oF4peyRsLz4M/heLFh3su377cSrvw2eokJI2pMISD1k3fkybIQBlGOB26rVRTCaQPXdq0KCCmOsjG0w7xgXU6OEqUfcLgsfu7I4NY60Ec2soYTE/PZiPzv6yZmugsyJiQqaGCTD6KUo5Ngker4w5TlBg+sABEMTsrJj1QQIw9kGuP4M+uPA+1o5J/Ujq+8YrlSzRRHu2hfXSIfHSKyugaVVAVEXSHHtATenYS59F5cV4npTln2rOL/sh5/wHt9pJe</latexit>↵

<latexit sha1_base64="M5itHDYOSPegjKKFv19CdKt76Xk=">AAAB7HicbVBNS8NAEN34WetX1aMiwSJ4KomIeix68diCaQttKJvtpF262YTdiVBCj569eFDEq7+hv8Obv8E/4fbjoK0PBh7vzTAzL0gE1+g4X9bS8srq2npuI7+5tb2zW9jbr+k4VQw8FotYNQKqQXAJHnIU0EgU0CgQUA/6t2O//gBK81je4yABP6JdyUPOKBrJawWAtF0oOiVnAnuRuDNSLB+Nqt+Px6NKu/DZ6sQsjUAiE1Trpusk6GdUIWcChvlWqiGhrE+70DRU0gi0n02OHdqnRunYYaxMSbQn6u+JjEZaD6LAdEYUe3reG4v/ec0Uw2s/4zJJESSbLgpTYWNsjz+3O1wBQzEwhDLFza0261FFGZp88iYEd/7lRVI7L7mXpYuqSeOGTJEjh+SEnBGXXJEyuSMV4hFGOHkiL+TVktaz9Wa9T1uXrNnMAfkD6+MHs8OSVA==</latexit>

�

L1

L2

FIG. 76: Geometry of a rectangular tilted grain boundary (yellow). The red arrow shows

the normal to the grain boundary plane.

modeled by ⟨cos θ⟩ averaged over randomly oriented planar grain boundaries parameterized
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by the Euler angles α and β from Fig. 76. The results of ⟨cos θ⟩ calculated in Ref. [112] are

⟨cos θ⟩ = 1

π2b

∫ π

0

dα

∫ π

0

dβ sin(b cosα sin β)
cosα cos β

tan β
, (144)

for the dc field B parallel to the rf current, and

⟨cos θ⟩ = 1

π2b

∫ π

0

dα

∫ π

0

dβ sin(b sinα sin β)
cosα cos β

tanα tan β
, (145)

for the field perpendicular to the rf current, where b = B/B0 and B0 ≃ ϕ0/3πdl2. Numerical

calculation of Eq. (144) and Eq. (145) yields the field dependencies of the average kinetic

inductance per unit length LJ
k ∼ ⟨Lj⟩/l2 by the weakly coupled grain boundaries with

Ic ∼ twJc:

LJ
k ∼ ϕ0

2πJcwtl2⟨cos θ⟩
. (146)

The fit of the observed normalized frequency shift δf(T,B)/f0(T, 0) to the grain boundary

model depends on many uncertain parameters such as distribution of orientations and local

Ic values of the grain boundaries, their geometrical sizes and mechanisms of current transport

through grain boundaries. Shown in Fig. 77 is an example of δf(T,B)/f0(T, 0) calculated

for uniform distributions of the Euler angles of the grain boundaries given as

∂f(T,B)

f0(T, 0)
=

√
L+ Lj(0)

L+ Lj(B)
− 1, (147)

=

√
1 + aϵ(T )/⟨cos θ(0)⟩
1 + aϵ(T )/⟨cos θ(B)⟩ − 1, (148)

where L is the geometric inductance, a = Lj(0, 0)/L, the factor ϵ(T ) = [1− (T/Tc)
4]

−2
ap-

proximates the temperature dependence of Ic in Eq. (142), and ⟨cos θ⟩ are given in Eq. (144)

and Eq. (145). The plots in Fig. 77 are calculated with a = 3.5×10−4 and B0 = 10mT. The

model captures the observed features of ∂f(T,B)/f0(T, 0) for both orientations of B shown

in Fig. 75, although a perfect fit from such a crude model can hardly be expected.

The plot shows that the grain boundary contribution to the kinetic inductance can rad-

ically change the behavior of field dependence compared to the pair breaking NLME. First,

the grain boundary contribution Lj is quadratic in B only at very low fields B ≲ B0 ≪ Bc

and exhibits a nearly linear field dependence at B ≳ B0 ≪ Bc, in contrast to the Meissner

pairbreaking δLk that is proportional to B2 all the way to B = Bc. Second, the field B

applied along the rf current causes stronger increase of Lj(B) than the perpendicular field,
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k (0, 0)/L = 3.5 × 10−4 and different tem-

peratures corresponding to those in Fig. 75 for: (a) B∥z and (b) B∥y.
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which is opposite of the orientational field dependence of δLk(B) described by the Eq. (141)

and observed on Nb coplanar resonator [37]. Both of these features of Lj are in agreement

with the observed δf(B)/f0 data of the polycrystalline Nb3Sn film as shown in Fig. 141.

The grain boundaries can also contribute to the field-dependent resistance. The

impedance of the grain boundaries are given as

Z =

(
1

R□
+

1

iω⟨LJ
k ⟩

)−1

, (149)

where R□ is the grain boundary quasiparticle resistance per unit area averaged over the grain

boundary orientations. Taking the real part of the impedance yields the field-dependent grain

boundary resistance:

Rj(B) ∼ ω2

wtl2R□
⟨LJ

k ⟩2. (150)

For ⟨LJ
k (B)⟩ calculated for Fig. 77, Rj(B) ∝ B2 and increases quadratically with B at

B ≳ B0. Thus, grain boundaries can give rise to a strong nonlinearity of the electromagnetic

response of polycrystalline films. This is a particularly important issue for Nb3Sn applications

of the SRF cavity, where the thin-film coatings of Nb3Sn are applied on top of the Nb SRF

cavities [23, 96, 128, 134].

7.6 CONCLUSION

This measurement has shown that the grain boundaries in the polycrystalline film con-

tribute significantly to the NLME in the film. In contrast to elemental superconductors

such as Nb [37] and Al [136] that exhibit Lk ∝ B2 dependencies described by pair break-

ing Meissner current, the polycrystalline Nb3Sn film has shown nearly linear dependence

of B, as expected from the clean d-wave superconductors. This finding raises an alterna-

tive interpretation of nonlinear Meissner effect data used to detect the structure of order

parameters in d-wave superconductors. Specifically, our results emphasize the importance

of having single crystals for measuring the nonlinear Meissner effect to obtain information

about the gap shape, particularly in cuprates and pnictides prone to weak-link behavior of

grain boundaries.

Our results also revealed the potentially strong field dependence of the resistances across

the grain boundaries. The calculation shows that the resistance across the grain boundaries

can increase quadratically with B for a field greater than B0, determined by the characteris-

tics of the grains on the film. The actual impact of the grain boundaries on the performance
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of the Nb3Sn cavity will depend on numerous factors including density of the grain bound-

aries and specific resistance across the grain boundaries, and it remains to be a future task

to investigate the field dependent losses rising from grain boundaries on thin films.
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CHAPTER 8

CONCLUSION

Two nitrogen-doped Nb cavities and a standard Nb cavity were tested with the temper-

ature map to study the quenching mechanism. While the standard cavity exhibited heating

of ∆T ∼ 500mK on hot spots prior to quenching, nitrogen-doped cavities only showed

∆T ∼ 10mK at most. Thus, it was concluded that the nature of the quench in the nitrogen-

doped cavity is mot likely magnetic, where the phase transition occurs by exceeding the

critical magnetic field in a local region. It was also observed that the faster cool-down can

create a spatial temperature gradient during the cool down across Tc and improve Q0 by

almost a factor of two.

To get an insight into the mechanism by which the nitrogen doping improves the Q0, the

cold spots samples from the nitrogen-doped and the standard Nb cavities were investigated

using the STM. The tunneling spectra were obtained by either crashing the STM tip into

the native surface to break the thick oxide layer, or by first cleaning the oxide layer with

Ar-ion sputtering. The collected data were then analyzed using a simple, phenomenological

Dynes formula and also with a more robust modified DOS that modeled a superconductor

with a thin layer of proximity coupled normal layer. This model represented the presence

of metallic suboxide layers within the natural oxide layer of the Nb surface and described

the DOS with two additional dimensionless parameters, α and β, quantifying the thickness

of the normal layer and the contact resistance between the normal and the superconducting

layer [70].

The results of both tunneling methods showed a striking difference between the surface

of the nitrogen-doped and standard Nb samples. The measurements revealed that nitrogen

doping has the following effect on the surface:

1. It lowers the average ∆

2. It reduces spatial inhomogeneity in ∆ values

3. It reduces the thickness of the metallic oxides by partially converting them into semi-

conducting or dielectric oxides.
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4. It reduces spatial inhomogeneity of the contact resistance by eliminating its low- and

high-values

The results provided an insight into a possible scenario by which nitrogen doping can improve

the quality of the SRF cavity. The nitrogen doping may be improving the surface condition

by bringing material properties toward optimal values that minimize Rs, mostly by shrinking

the metallic suboxide layer. These changes caused by nitrogen doping could be reducing the

material broadening of gaps peaks in DOS, such that the broadening induced by the rf

field becomes more significant; hence, the reduction of Rs(Bp) with the field as seen in

nitrogen-doped cavities can take place. The results of this work showed that altering surface

structure leads to performance boost in SRF cavity, and they can give new insights into

material treatment and surface nanostructuring for the future of SRF cavities.

As a part of an R&D effort to develop SRF cavities with alternative materials to reach

efficiency beyond Nb, an experimental setup for SRF thin film evaluations was designed and

developed. A CPW resonator that can be patterned onto a 10mm×10mm sized thin film to

achieve a resonant frequency of ∼ 3GHz was designed. This special pattern and the housing

of the sample allow for testing of the film without making physical contact with the input

and to output rf ports. The input and output antennas couple the rf power to the resonator

capacitively, which completely removes the process of fabricating reliable, ohmic contacts to

the resonators. The housing was designed using the finite-element electromagnetic simulator

to analyze any parasitic losses and resonant modes before fabrication, and the setup was also

tested using both Nb and OFHC Cu housing to guarantee any losses from the housing were

negligible.

The new probe-coupled CPW resonator was tested first on a Nb film, and its super-

conducting properties were calculated by numerically analyzing the geometric factor and

kinetic inductance. The results showed good agreement with the BCS theory and known

properties of the Nb films, which indicate that the experiment can successfully perform rf

characterization of the film at low power. Additionally, Nb3Sn and NbTiN films were tested

on this device. Although the results could not be fit fully with the BCS predicted Rs(T ),

the measured Rs(T ) of those films were comparable to that of Nb film. One of the reasons

Nb3Sn film did not agree well with the BCS calculation may be due to nonstoichiometric

compounds with weakened superconductivity.

In addition to the probe-coupled resonator technique, a cryogenic probe station was set

up to perform rf characterization with dc magnetic field parallel to the surface. The probe

station uses manipulators to land probe tips to the sample to send and received rf signals;
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therefore, proper landings pads free of oxide must be deposited on the film. Although the

temperature of the film is limited to > 7K, the probe station is a liquid helium free system

that uses a cryocooler, which simplifies and reduces the cost of sample testing. Furthermore,

the probe station is equipped with a superconducting magnet capable of producing a dc

magnetic field of up to 1 Tesla.

Using the cryogenic probe station, the nonlinear Meissner effect on a thin Nb3Sn film

was studied. The resonant frequency was measured as a function of the in-plane field both

in parallel with and perpendicular to the direction of the rf current in the resonator. The

field dependency was measured up to 200mT, which is well below the first critical field that

was enhanced to ≃ 1 T due to the film thickness being much less than λ. Interestingly, the

results showed a linear dependence of frequency with the field, as opposed to a quadratic

dependence, as expected from a conventional s-wave superconductor. It was found that

the weakly coupled grain boundaries can have a more significant contribution to the kinetic

inductance compared to the pair breaking Meissner current in a polycrystalline Nb3Sn film.

The results of the experiment bring to the table an alternative interpretation of the nonlinear

Meissner effect, particularly when analyzing for the structure of order parameters in d-wave

superconductors. It also emphasizes the requirement for single crystals in measuring the

nonlinear Meissner effect to understand the gap shape in high-temperature superconductors.

For future work on the rf characterization of the thin films, it would be beneficial to

cross-check the superconducting properties extracted from the probe-coupled resonator and

probe station with rf characterization performed using other methods involving host cavi-

ties. It would further validate the experimental procedure and help demonstrate the CPW

resonator technique as a robust technique for benchmarking SRF thin film samples. As for

the cryogenic probe station, lowering the useful temperature range will broaden the range

of the samples that can be tested and mitigating vibration is still a challenge that should be

addressed to improve the measurement accuracy. As a new generation of the SRF films such

as Nb3Sn and SIS multilayer is emerging as a promising alternative to Nb for achieving more

efficient operation of accelerators, it is important to establish rf characterization method

that can potentially bridge a gap between RF performance of thin film samples to the bulk

cavity.
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APPENDIX A

CALCULATING L AND C BY CONFORMAL MAPPING

A detail of calculating L and C using a conformal mapping technique is described here.

For t ≪ w, the cross-sectional geometry of the CPW is assumed to have zero-thickness

with the ground planes extending to infinity as shown in Fig. 78(a). This zero-thickness

(a)
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FIG. 78: (a) Coplanar waveguide with zero thickness, and (b) mapping on w-plane

CPW is then conformal mapped into a simpler geometry where L and C can be calculated
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analytically. Using a type of transformation called Schwarz-Christoffel mapping, the shaded,

upper-half z-plane is mapped into a closed rectangle in the w-plane as shown in Fig. 78(b).

The transformation that maps z-plane to w-plane is [40]

w(z) = A

∫ z

0

dz√
(z − x1)(z − x2)(z − x3)(z − x4)

, (151)

where x1, x2, x3, and x4 correspond to points B, C, D, and E on Fig. 78. After plugging in

x1 = −b, x2 = −a, x3 = a, and x4 = b, Eq. (151) becomes

w(z) = A

∫ z

0

dz′√
(z′2 − a2)(z′2 − b2)

. (152)

Changing variables ξ = z/a and k = a/b yield

w(z) =
A

b

∫ ξ

0

dξ′√
(1− ξ′2)(1− k2ξ′2)

. (153)

The complex factor in front of the integral is a normalization factor which can be set to 1.

This expression is equivalent to an inverse elliptic function:

w(z) = sn−1(ξ, k). (154)

The transformation from w−plane to z−plane is then simply the elliptic function:

z(w) = sn(w, k). (155)

The values of w that result in the appropriate coordinate values ξ defined in Fig. 78(a) is

then

sn(0, k) = 0, (156)

sn(±K(k), k) = ±1, (157)

sn(±K(k) + iK(k′), k) = ±1

k
, (158)

sn(iK(k′), k) = ±∞, (159)

where K(k) and iK(k) are the complete elliptic integral of the first and seoncd kind respec-

tively [137]:

K(k) =

∫ 1

0

dξ√
(1− ξ2)(1− k2ξ2)

, (160a)

iK ′(k) =

∫ 1/k

1

dξ√
(ξ2 − 1)(1− k2ξ2)

=

∫ 1

0

dξ√
(1− ξ2)(1− ξ2 − k2ξ2)

= K(k′), (160b)
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with k′ =
√
1− k2. The mapping transforms points listed (A–F) in Fig. 78(a) to the corre-

sponding points in Fig. 78(b), and the upper half of the z-plane is mapped into the interior

of the rectangle.

Now the capacitance per unit length between the center strip and the ground plane

through just the upper plane in z can be computed easily by calculating the capacitance of

the parallel plate capacitor in w-plane:

Cair = 2ϵ0
K(k)

K(k′)
. (161)

The capacitance through the lower plane in z in which represent the portion filled with a

dielectric material is same as that of upper plane except with the extra factor of er. The

total capacitance per length is the sum:

C = (1 + ϵr)Cair =
1 + ϵr
2

ϵ0
4K(k)

K(k′)
, (162)

= ϵeϵ0
4K(k)

K(k′)
. (163)

Where ϵe is called effective dielectric constant because the presence of dielectric substrate

increases the capacitance by a factor of ϵe.

The inductance per unit length can be computed by considering the current I running

into the page on the bottom plate and −I on the upper plate of the parallel plate capacitor.

The magnetic field produced by such current is

B = µ0
I

2K(k)
. (164)

The flux is then

Φ = µ0I
K(k′)

2K(k)
. (165)

Hence, the inductance per unit length on the upper part is

Lair = µ0
K(k′)

2K(k)
. (166)

The inductance on the bottom part is equivalent to the upper part since the relative perme-

ability is assumed to be 1 in the dielectric medium. The total inductance is then

L = µ0
K(k′)

4K(k)
. (167)
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