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A B S T R A C T

The hadal zone remains one of the least studied environments because of its inaccessibility, in part because of
hydrostatic pressures extending to 110MPa. Few instruments are capable of sampling from such great depths.
We have developed a full-ocean-depth-capable lander that can be fit with sampling packages for the collection of
still images, video, motile megafauna, and hadal seawater. One payload includes a pressure-retaining sampler
(PRS) able to maintain seawater samples under in situ pressure during recovery. We describe the technical
specifications of the lander and the PRS and preliminary results from three deployments at depths in excess of
10,700m in the Mariana Trench. Seawater from full-ocean depth was recovered at 81% of the in situ pressure.
This facilitated the collection of microbial genomes affiliated with the family Flavobacteriaceae within the
Bacteroidetes and the phylum Marinimicrobia. We show that these microbes are specifically enriched in hadal
zones, representing novel trench lineages, and describe their adaptations for living in hadal environments. These
findings highlight the utility of this lander system, which facilitates scientific inquiry at depths greater than
6000m.

1. Introduction

Hadal trenches, found at depths exceeding 6000m, represent only
~0.21% of the volume but 45% of the depth range of the ocean
(Jamieson, 2015). Hadal sites remain relatively unexplored due to
technological constraints, most notably brought about by high hydro-
static pressures that can reach 110MPa. While remotely operated ve-
hicles (Momma et al., 2004; Bowen et al., 2008; Nunoura et al., 2015)
and submersibles (Leon-Zayas et al., 2017) have been used to study
hadal zones, most samples have been collected via free-vehicle landers,
unmanned instruments that are not tethered to a ship and which des-
cend into the deep ocean, collect samples of interest, release ballast,
and return to the surface autonomously. These devices allow the de-
ployment of scientific payloads to locations where other instrumenta-
tion is unable to go (Jamieson, 2016). Landers have facilitated the
collection of hadal samples, including seawater (Eloe et al., 2011a,
2011b; Tarn et al., 2016; Peoples et al., 2018), sediments (Glud et al.,
2013), and bait-attending fauna such as fishes (e.g. Fujii et al., 2010;

Jamieson et al., 2011; Linley et al., 2016) and amphipods (e.g. Hessler
et al., 1978; Blankenship et al., 2006; Eustace et al., 2016). Hadal
megafaunal communities are distinct from those in the abyss, including
many taxa that appear endemic to hadal zones (Wolff, 1970; Beliaev,
1989). The high rate of endemism is in part the result of specific
adaptations to high hydrostatic pressures (Yancey et al., 2014) and
increased abundances of organic matter due to topographical funneling
(Ichino et al., 2015) that lead to niche differentiation (Gerringer et al.,
2017).
Hadopelagic microbial communities are also distinct from those

found at abyssal depths (Eloe et al., 2011b; Nunoura et al., 2015; Tarn
et al., 2016; Peoples et al., 2018). Culture-independent 16S rRNA gene
high throughput sequencing has identified taxa related to the genus
Aquibacter within the Bacteroidetes, the phylum Marinimicrobia, and
members of the Rhodobacteraceae and Rhodospirilliceae as enriched in
hadal pelagic communities when compared to abyssal sites (Peoples
et al., 2018). However, little is known about members of these hadal
lineages. More is known about isolated piezophiles, cultured microbes
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that show optimum growth under high hydrostatic pressure conditions.
These isolates belong to a narrow set of genera within the Gammapro-
teobacteria, including Colwellia, Shewanella, Moritella, and Psychromonas
(e.g. Nogi et al., 1998; Nogi et al., 2002; Nogi et al., 2004; Nogi et al.,
2007), which appear to make up only a small portion of hadalopelagic
communities (Eloe et al., 2011b; Tarn et al., 2016; Peoples et al., 2018).
The lack of diverse, in situ-abundant cultured isolates may be in part
due to the collection of samples under decompressed conditions. De-
compression can lead to morphological changes and inactivation of
known microbial piezophiles after only a few hours (Yayanos and Dietz,
1982, 1983; Chastain and Yayanos, 1991). Significant shifts in com-
munity composition (La Cono et al., 2015) and gene expression
(Edgcomb et al., 2014) at meso- and bathypelagic depths have been
noted as a result of decompression. Therefore pressure-retaining sam-
plers, or devices capable of collecting and maintaining samples under in
situ pressure conditions, have been developed to allow for the collection
of samples without decompression (e.g. Macdonald and Gilchrist, 1969;
Jannasch et al., 1973; Yayanos, 1977; Bianchi et al., 1999;
Yanagibayashi et al., 1999; Tamburini et al., 2013). However, these
devices have not been used in great detail for microbiology in hadal
zones.
Here we report the development of a new lander system capable of

sampling from full-ocean depth. The modular design allows for the
rapid deployment of a number of scientific packages, including in-
strumentation for collecting bait-attending motile megafauna, water,
and still images and video. We also describe a new pressure-retaining
sampler (PRS) capable of maintaining high hydrostatic pressure during
ascent from full-ocean depth. In both cases the technical specifications
of these devices are presented, along with preliminary data collected
from their successful deployment to the deepest depths in the ocean,
including genomic properties of the hadal-enriched Flavobacteriaceae
and Marinimicrobia lineages. These technologies will facilitate future
scientific investigations of the deepest parts of the global ocean.

2. Lander technical specifications

2.1. The floatpack module and deployment instrumentation

The lander is composed of two payloads; an upper floatpack payload
that provides positive buoyancy and retrieval instrumentation and a
lower payload that delivers scientific sampling equipment (Fig. 1). The
upper payload frame is made of high-density polyethylene plastic and
contains interlocking cogs on all sides. These cogs provide a flush fitting
with the lower payloads and are held together with titanium pins in a
quick fit, modular manner. Enclosed within the payload frame is Iso-
float® syntactic foam (Ron Allum Deepsea Services, St. Peters, Aus-
tralia). This syntactic foam provides positive buoyancy and structural
support for the lander. Mounted on top is instrumentation for deploy-
ment and recovery. This includes a bale for retrieval and a carousel
containing a GPS beacon (XMI-11k, Xeos Technologies Inc., Dartmouth,
Nova Scotia), a pressure sensor (RBR Ltd, Ottawa, Canada), a strobe
light (Xeos Technologies Inc.), a radio directional finder (Xeos Tech-
nologies Inc.), and a flag. The instrument has a timer with six burn wire
channels that can be programmed to trigger at different time intervals.
For retrieval of the lander, one of the channels can be configured to
release the weight stack while on the seafloor. Inside the timer housing
is a thermistor for measuring external temperature to within 0.5 °C. The
instrument can also be released acoustically using a BART board
(EdgeTech, Wareham, MA) and hydrophone. All electronics are housed
within a titanium pressure case. The weight of the upper payload is
125 kg. Additional buoyancy can be added depending on the scientific
payload configuration.

2.2. Scientific payload

2.2.1. Water package and pressure-retaining sampler
The lander can be fit with a package for collecting water samples

and retaining in situ high hydrostatic pressures upon collection using a
pressure-retaining sampler (PRS; Fig. 1). This device collects 135mL of
seawater that can be compared against decompressed water collected in
an accompanying 2.5 L Niskin bottle. The PRS is made of Ti-6Al-4V
titanium alloy and when fully assembled is 69.8 cm in length and
9.2 cm wide (Fig. 2). It weighs 10.2 kg in air and 6.8 kg in water. At the
front of the sampler is a 316 stainless steel needle valve with an orifice

Fig. 1. The lander with the water sampling package. Upper left; The upper
syntactic floatpack containing instrumentation for deployment and recovery.
Lower left; The lander with the water sampling package, including a 2.5 L
Niskin bottle and a pressure-retaining sampler (PRS). Right; The complete in-
strument with the water sampling package.

Fig. 2. Design of the pressure-retaining sampler (PRS). Left; The PRS orienta-
tion during deployment. Right; The PRS orientation after recovery. The valve is
opened at depth, allowing the water sample to enter. The PEEK syringe piston
moves, displacing water and moving the titanium piston, which seals against
the endcap and retains the in situ pressure. The valve is then closed.

L.M. Peoples et al. Deep-Sea Research Part I 143 (2019) 50–57

51

--IRIDIUM BEACON 

SYNTACTI C FLOATPACK 

INTERLOCKING COG 

2.5L NISKIN BOTTLE 

WATER SAMPLING PACKAGE 

NEEDLE VALVE 
SAMPLE ENTRY 

-+----PEEK SYRINGE 
WITH SAMPLE 

STERI LE WATER 
SEATED PISTON 

AIR AND WATER 

DEPLOYED RECOVERED 



size of 13/64″ (~0.52 cm; High Pressure Equipment Co., Erie, PA). The
PRS is composed of three modules: a syringe module, a piston module,
and an air module (Fig. 2). Within the syringe module sits a sterile
polyetheretherketone (PEEK) syringe for collecting the sample of in-
terest. A titanium piston resides in the piston module. Each module is
connected via an end-cap and is sealed internally with 70 durometer O-
rings and from external pressure with face-seal 90 durometer O-rings
(Supplementary Fig. S1). The end-cap between the hydraulic fluid
module and the air module contains a ruby blast nozzle with an orifice
size of 0.005″ (~0.127mm; H2O Jet, Tumwater, WA). The final air
module end-cap contains a threaded removable nut sealed with an O-
ring. All sections are held together using twelve ¼ inch (6.35mm) steel
Grade 8 bolts. The sampler is rated to ~138MPa (20,000 pounds per
square inch (PSI)). Prior to deployment it was tested at ~103MPa
(15,000 PSI) internal pressure in the lab and in mimicked, sinking
conditions to ~69MPa (10,000 PSI) in a pressure-tank at Scripps In-
stitution of Oceanography (San Diego, CA) where it a) withstood an
external pressure of 69MPa with an internal pressure of 0.1MPa (14
PSI), b) external and internal pressure of 69MPa after filling, and c)
external pressure of 0.1MPa and internal pressure of 69MPa after re-
covery.
The sampler, with the exception of the air module, is assembled

prior to deployment submerged in sterile ultrapure (MilliQ) water to
eliminate any compressible air space. Care is taken during assembly to
minimize the introduction of microorganisms into the internal com-
partments of the sampler. Full-arm gloves and sterile MilliQ water are
used at all times. The titanium sections are wiped down with iso-
propanol and the PEEK syringe is sterilized with 10% HCl prior to as-
sembly. To confirm the biological compatibility of the needle valve, we
tested the affect of shear on cells passing through the sampling orifice of
the PRS during one 90° turn of the valve handle. No significant differ-
ence in cell numbers was observed using seawater collected from
Scripps Pier (n=3; T-test, p > 0.26).
When deployed the sampler functions as follows (Fig. 2). The valve

is opened at depth using a flywheel. The flywheel is connected to three
aircraft cable wires and is held under tension in both the clockwise and
counterclockwise directions. The first wire is static and is connected to
a burn wire that holds the valve closed. The second wire is attached to a
burn wire via a ‘strong’ spring (overriding the tension of the third,
weaker spring), providing tension in the ‘open’ direction. The third wire
is connected to a ‘weak’ spring that also provides tension in the ‘closed’
direction of the valve. At depth the first burn wire is triggered, releasing
the static wire. The ‘strong’ spring then pulls the valve open 360°,
overcoming the ‘weak’ spring and filling the sampler. As seawater en-
ters the syringe, the syringe piston moves and displaces MilliQ water
within the syringe module. The displaced water then flows through the
end-cap and pushes a titanium piston, which in turn pushes water
within the piston module. This water is displaced through the ruby
nozzle, which acts to maintain a consistent and slow flow rate, and
enters the air module. Because of the pressure differential present on
either side of the titanium piston, the sampler continues to fill until the
piston reaches the end of the hydraulic fluid module and seats against
the end-cap, sealed by the O-ring. The water/air mixture in the air
module is therefore sealed from the remainder of the pressurized PRS,
holding a pressure of 0.2MPa, approximately twice atmospheric pres-
sure. Contained within the PEEK syringe is the water sample of interest.
The second burn wire is then triggered after at least five minutes, re-
leasing the ‘strong’ spring and allowing the ‘weak’ spring to pull the
valve shut.
Upon recovery the sampler is immediately placed on ice to maintain

the sample near in situ temperature during sample processing. Pressure
in the air module is released by removing the back nut (Supplementary
Fig. S1). A high-pressure pump and pressure gauge are hooked up to the
sampling valve, pressurized to 50% of the predicted in situ pressure to
avoid contamination of the sample, and the valve opened. The change
in gauge pressure provides an estimate of the retained pressure. The air

module and the ruby nozzle are removed, revealing the back of the
seated titanium piston. The hydraulic pressure pump is then hooked up
to the hydraulic fluid module in place of the ruby nozzle and pressure is
applied against the titanium piston to the estimated pressure at col-
lection depth. The front valve is then opened, allowing water to flow
out at a controlled rate. As it does so, pressure is applied using the
hydraulic pump, thereby moving the titanium piston and maintaining
the pressure within the system. In this way pressurized seawater can be
subsampled into ‘subsamplers’ in 5mL volumes that allow for the ad-
dition of fixative or other chemicals while maintaining in situ pressure.
The stainless steel subsamplers function in the same manner as the PRS,
with a PEEK syringe holding the sample of interest and a titanium
piston displacing sterile hydraulic fluid (Supplementary Fig. S1). The
subsamplers are connected to the PRS using a three-way needle valve,
with one port for the PRS, one port for the subsampler, and one port for
the addition of chemicals or removal of sample of interest via syringe.

2.2.2. Camera and baited trap system
The lander can be configured with a modular package to take video,

still images, and collect motile megafauna (Fig. 3, Supplementary Fig.
S2). This scientific package has a netted trap that can be baited prior to
deployment. A screen is released via burn wire that falls on top of the
trap and captures any fauna feeding on the bait. The baited trap and
surrounding environment are imaged by a Canon 5D Mark II DSLR
camera (Canon USA, Inc, Melville, NY), as described elsewhere (Hardy
et al., 2013), placed within a polished Vitrovex 17-in outer diameter x
23mm wall thickness glass sphere (Nautilus Marine Service GmbH,
Buxtehude, Germany). The field of view is illuminated by three Sealite
Sphere white 5700 k lights (SLS-5100, DeepSea Power and Light, San
Diego, CA), two placed on a boom arm deployed to the side and one
directly above the trap. The timing of the camera and lights are con-
trolled by an Arduino microcontroller (Freetronics Pty Ltd, Victoria,
Australia). A gear attached to the zoom lens allows for dynamic fo-
cusing over varying distances. Power is supplied by a lead-acid oil-
compensated battery (SB-2440, DeepSea Power and Light). All in-
strumentation for the baited trap system and camera is housed within a
6061 aluminum alloy frame. 30 L Niskin bottles can be mounted on the
side of the frame and are triggered by burn wire. The weight stack is
positioned directly below the lander and its length can be adjusted,
allowing for either a pelagic mooring or a benthic deployment where
the lander sits directly on the seafloor. The complete weight with this
package is 478 kg. The lander travels at approximately 39m per minute
during both ascent and descent through the water column.

Fig. 3. The lander with the camera payload, including a baited trap and
camera.
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3. Deployments and methods

Three deployments were conducted in the Mariana Trench (Fig. 4),
two with the camera system and one with the PRS. The first deployment
conducted with the camera system and baited trap was within the
middle portion of the Challenger Deep at a depth of 10,778m (location
11.359575 142.456135). The lander was deployed in a ‘pelagic’ or-
ientation approximately 1m above the seafloor with jack mackerel as
bait. The second camera deployment was performed within the eastern
portion of the Challenger Deep at a depth of 10,929m (location
11.368537 142.587517). During this deployment the lander and baited
trap were positioned directly on the seafloor. On both deployments the
camera was cycled to focus and take still photos and video at 10′, 7′ and
3′ distances, with each video 30 s in length. The lights and camera were
then turned off for six minutes, followed by further camera cycling as
described. Collected amphipods were stored frozen and in RNALater.
Type specimens were deposited in the Scripps Institution of Oceano-
graphy Benthic Invertebrate Collection (catalog numbers C12056-
12063) and the identification of some specimens is described elsewhere
(Zhang et al., 2018).
One deployment was performed using the water package and PRS at

a depth of 10,970m within the middle portion of the Challenger Deep
(location 11.366393 142.432555). Water samples were collected ap-
proximately 3m above the seafloor. The valve was triggered to open
and was closed after 15min. Upon return to the surface samples were

placed on ice and immediately subsampled into glycerol/TE buffer
(Rinke et al., 2014) without decompression and stored at −80 °C prior
to single-cell sorting at the J. Craig Venter Institute (JCVI, La Jolla, CA).
The temperature of the sampler upon collection was estimated based on
an accompanying 2.5 L Niskin bottle.
Single-cell genomics was conducted by staining cells with SYBR

Green I (Invitrogen, Carlsbad, CA) and sorting them using a FACS-Aria
II flow cytometer (BD Biosciences, San Jose, CA) into 384 well micro-
titer plates containing 2 μL of TE Buffer. Multiple displacement ampli-
fication was performed using the Repli-G kit (Qiagen, Hilden,
Germany). Amplified products were cleaned with Exonuclease I and
Shrimp Alkaline Phosphatase (Thermo Fisher Scientific Inc., Waltham,
MA). Wells were screened for positive amplification using the 16S rRNA
gene primers 515f-926r (Parada et al., 2015). Amplified genomes of
interest were further purified using Agencourt AMPure XP beads
(Beckman Coulter, Brea, CA) and sent for sequencing on an Illumina
HISeq. 4000 (Institute for Genomic Medicine Genomics Center, Uni-
versity of California San Diego, La Jolla, CA). Raw reads were quality
trimmed with Trimmomatic (Bolger et al., 2014) and paired end reads
were assembled using SPAdes v3.9 (Bankevich et al., 2012). Only
contigs longer than 5 kb were retained for further analysis. Contigs
were screened against the NCBI nr/nt database (NCBI Resource
Coordinators, 2016) using DIAMOND (Buchfink et al., 2015) and
MEGAN (Huson et al., 2007) to remove sequences typical of con-
tamination during multiple displacement amplification, including those

Fig. 4. A; Three deployment locations within the Challenger Deep in the Mariana Trench. B; Depth over time based on the pressure sensor during the deployment to
10,929m. C; Image obtained from the camera at a depth of 10,929. The inset image (upper right) shows the circled, stalked organism, potentially a feather duster
worm, in more detail.
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related to Actinetobacter, Pseudomonas, and Propionibacterium. Genome
completeness and phylogenetic placement was estimated using single-
copy marker genes identified with CheckM (Parks et al., 2015). For
phylogenetic analysis, 16S rRNA gene sequences were aligned using the
SINA aligner (Pruesse et al., 2012) and trees built using FastTree (Price
et al., 2010), which were then visualized using the Interactive Tree of
Life (iTOL; Letunic and Bork, 2007). To evaluate the distribution of the
genomes obtained, samples within the NCBI SRA database were queried
for sequences at 99% similarity to the 16S rRNA genes of the genomes
presented here using the Integrated Microbial NGS Platform
(Lagkouvardos et al., 2016). Genomes were annotated with Prokka
(Seemann, 2014) and compared against other related genomes using
Roary (Page et al., 2015) at a protein similarity cutoff of 40%. Carbo-
hydrate-active enzymes were identified using dbCAN (Yin et al., 2012).
Genomes were also annotated with IMG/ER (Markowitz et al., 2012).
Genomes can be accessed at the NCBI BioProject PRJNA497607 and
IMG Genome IDs 2770939648 and 2778260900.

4. Results and discussion

4.1. Camera package

Three deployments were successfully conducted in the Challenger
Deep in the Mariana Trench in excess of 10,700m (Fig. 4). For all de-
ployments acoustics were lost at ~10,000m and the instruments relied
on timers and burn wires for operation. One deployment was conducted
with the camera system and baited trap within the middle portion of the
Challenger Deep at a depth of 10,778m. Although the camera was out
of focus, very few amphipods were seen throughout the eight hours the
instrument was moored above the seafloor (Supplementary Fig. S3). No
amphipods were collected. In contrast, a large number of amphipods

were seen during the second camera deployment located directly on the
seafloor (Fig. 4; Supplementary Fig. S4). Genetic identification in-
dicated they were affiliated with Hirondellea gigas and the genus Halice
(Scripps Institution of Oceanography Benthic Invertebrate Collection
catalog numbers C12056-12063; Zhang et al., 2018). H. gigas is com-
monly found in baited traps in large quantities at depths greater than
10,000m and has been found in trenches of the northwestern Pacific,
including the Mariana Trench (Hessler et al., 1978; France, 1993; Glud
et al., 2013; Ritchie et al., 2015). Halice spp. have also been identified
in at least four trenches in the western Pacific, including the Tonga and
Kuril-Kamchatka trenches (Jamieson, 2015). The identification and
collection of these taxa in the benthic but not the pelagic orientation of
the lander is consistent with Hirondellea spp. being demersal amphipods
(Blankenship and Levin, 2007; Fujii et al., 2013), which colonize bait to
a lesser extent with increasing distance from the sea floor. Current flow
was evident as the amphipods were in higher abundance to the left of
the bait and were visibly carried in that direction. Bioturbation was also
seen in the background and has been previously noted within the
Challenger Deep (Glud et al., 2013). A vertically-positioned organism,
potentially a feather duster worm, was visible to the left of the trap
(Fig. 4, inset). This organism is similar to one seen in the Kermadec
Trench at a depth of ~ 9000m (HADES program, unpublished data).

4.2. Pressure-retaining sampler single-cell genomics

A third deployment was conducted using the pressure-retaining
sampler within the middle portion of the Challenger Deep at a depth of
10,970m. The PRS held ~90MPa (13,000 PSI), ~81% of the in situ
pressure at sample collection depth. Pressure retention of 70–80% is
consistent with previous results of deep-ocean samplers that have
shown pressure losses due to seal movement and metal elasticity

Fig. 5. Identification of sequences related to Flavobacteriaceae sp. PRS1. A; Ribosomal 16S RNA gene phylogenetic tree of Flavobacteriaceae sp. PRS1 with closely
related taxa. B; The relative sequence abundances of 16S rRNA gene sequences at 99% similarity to Flavobacteriaceae sp. PRS1 within samples queried within the
IMNGS SRA database (211,968 samples queried), with samples ordered by decreasing relative sequence abundance. Labeled Mariana Trench samples are from
Nunoura et al. (2015). C; The total number of sequences at 99% similarity to Flavobacteriaceae sp. PRS1 that were identified within each sample queried within the
IMNGS SRA database (211,968 samples queried), with samples plotted in the same order as B. D; Relative sequence abundances per sample of a hadal V4-V5 16S
rRNA Itag sequence related to Flavobacteriaceae sp. PRS1 within the Mariana and Kermadec trench sediment and water communities from Peoples et al. (2018) and
Peoples et al., unpublished. Sequences can be found in Supplementary Table 1.
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(Macdonald and Gilchrist, 1972; Yayanos, 1977; Bianchi et al., 1999).
The water recovered from an associated 2.5 L Niskin bottle was 15.4 °C,
significantly warmed from the in situ temperatures of 2.6 °C, because
surface water temperatures were ~30 °C. Regardless, we identified
members affiliated with the Marinimicrobia and the family Flavo-
bacteriaceae within the Bacteroidetes using single-cell genomics. The 16S
rRNA gene sequences from these cells showed greatest similarity to
other sequences recovered from deep-sea locations, and in particular
trenches, including the Puerto Rico, Kermadec, Mariana, and Ogasa-
wara trenches (Fig. 5; Supplementary Fig. S5). Mining 16S rRNA gene
datasets revealed that these genomes show a limited distribution and
are specifically enriched in hadal zones (Fig. 5; Supplementary Fig. S6).
Therefore these genomes are representative of abundant hadal microbes
and likely have specific adaptations to the conditions found within
trenches.
Whole genome sequencing performed on the Flavobacteriaceae

single-amplified genome yielded an estimated completeness of 91%
(Table 1). The genome is composed of 61 contigs with 2359 genes and a
total length of 2.4 Mbp. When classified using the SILVA 16S rRNA gene
database (Quast et al., 2013), Flavobacteriaceae sp. PRS1 is identified as
a member of the genus Aquibacter. However, strain PRS1 and Aquibacter
zeaxanthinifaciens (Hameed et al., 2014) only share 94% 16S rRNA se-
quence identity and both a 16S rRNA gene tree (Supplementary Fig. S7)
and a concatenated single-copy marker gene tree (Supplementary Fig.
S8) show that strain PRS1 is distinct from other members of the Fla-
vobacteriaceae. Therefore, strain PRS1 likely represents a novel genus in
the family Flavobacteriaceae. Interestingly, most of the 16S rRNA gene
sequences closely related to strain PRS1 were found associated with
sediments. However, members related to strain PRS1 and the genus
Aquibacter have been found in high abundances in both trench water
(Nunoura et al., 2015; Peoples et al., 2018) and sediments (Fig. 5),
indicating this microbe may colonize both environments. A pangenomic
comparison between 37 members of the Bacteroidetes showed that 410
genes were unique to Flavobacteriaceae sp. PRS1, with the majority
being hypothetical proteins. Flavobacteriaceae sp. PRS1 was only one of
three compared genomes that lacked a DNA photolyase. The con-
spicuous absence of a DNA photolyase within known piezophiles has
been noted (Lauro and Bartlett, 2008; Lauro et al., 2013, 2014) and
may be a conserved attribute of deep-ocean microbes. Strain PRS1
appears to be heterotrophic and capable of breaking down particulate
organic matter. The genome has 59 carbohydrate-active enzyme (CA-
Zymes) genes for the attachment to and the degradation of particulate
organic matter. These include glycosyl transferases to generate poly-
saccharides for particle attachment and four susC/susD pairs involved
in binding and transporting polysaccharides into the cell. PRS1 appears
capable of gliding motility (gldB-E, gldH-N, sprA, sprE genes) which may
facilitate movement on particles. PRS1 also has an alkane mono-
oxygenase (alkB) involved in hydrocarbon degradation. Overall, these
findings are consistent with other members of the phylum Bacteroidetes
that show an affinity to utilize particulate organic matter (Fernandez-
Gomez et al., 2013). The enrichment of this genome within the hadal
zones of trenches is consistent with hadal Flavobacteriaceae breaking
down particulate organic material that is funneled (Glud et al., 2013;
Ichino et al., 2015) or resuspended (Oguri et al., 2013) in hadal tren-
ches.
A genome affiliated with the Marinimicrobia, Marinimicrobia sp.

PRS2, was also obtained. This genome is 1.4 Mbp in size and estimated
to be 58% complete (Table 1). While the final assembled genome

obtained here lacked a 16S rRNA gene, the gene obtained during
multiple displacement amplification screening (Supplementary Table
S1) indicated that strain PRS2 is affiliated with an OTU enriched in the
hadal zone of the Mariana and Kermadec trenches (Supplementary Fig.
S5) that can reach abundances of up to 10% within hadal samples
(Supplementary Fig. S6; Peoples et al., 2018). It has been noted that a
large diversity exists within the Marinimicrobia, with specific lineages
capable of using different electron acceptors (Hawley et al., 2017).
Ribosomal 16S RNA gene sequences previously collected from the
Mariana and Kermadec trenches showed a large diversity of Mar-
inimicrobia, with some clades showing a deep or hadal-specific dis-
tribution (Peoples et al., 2018). Based on the partial 16S rRNA gene,
strain PRS2 is related to clade HF770D10 (Supplementary Fig. S5).
Consistent with the putatively –oxic distribution of this clade (Hawley
et al., 2017), the genome encodes a NADH dehydrogenase but no genes
for alternative electron acceptors. No genes suggesting autotrophic
carbon fixation were identified, indicating a potentially heterotrophic
lifestyle, although we acknowledge the incompleteness of this genome.
However, in contrast to Flavobacteriaceae sp. PRS1 only four CAZyme
genes were identified in Marinimicrobia sp. PRS2. This may be con-
sistent with the distribution of Marinimicrobia, which are enriched in
the free-living, rather than the particle attached fraction in deep-ocean
communities (Eloe et al., 2011b; Salazar et al., 2015; Tarn et al., 2016;
Peoples et al., 2018). Relative to other members of the Marinimicrobia,
strain PRS2 appears enriched in leucine-rich repeats, MORN repeats,
and Por secretion system proteins, including a gene related to gingi-
pain. Por secretion system proteins, which are typically found in the
Bacteroidetes, may function in gliding motility or pathogenesis (Sato
et al., 2010; McBride and Zhu, 2013). The Marinimicrobia sp. PRS2
genome includes the paa gene cluster that functions in the degradation
of aromatic phenylacetate, which can be derived from the amino acid
phenylalanine and other related substrates (Teufel et al., 2010). Both
strain PRS1 and PRS2 have cyanophycin synthetase and cyanophyci-
nase. Cyanophycin synthetase is involved in the synthesis of the
polymer cyanophycin (CGP), which consists of aspartic acid and argi-
nine (Simon and Weathers, 1976) and can function as a temporary ni-
trogen, energy and carbon reserve in Cyanobacteria (Sukenik et al.,
2015). Cyanophycin is in turn degraded by bacterial cyanophycinases.
CGP has also been implicated in spore formation in Clostridium (Liu
et al., 2016) and the use of cyanophycin as a means of dealing with
temperature stress was suggested in psychrophilic Colwellia (Methe
et al., 2005). Therefore cyanophycin may function as an energy store
and source in Marinimicrobia and Flavobacteriaceae under deep-ocean
conditions.

5. Future directions

We have developed new full-ocean depth instrumentation and re-
port their successful deployment at depths exceeding 10,700m in the
Mariana Trench. One deployment used a pressure-retaining sampler
that held 81% of the in situ pressure. Pressure retention of 70–80% is
consistent with previous results of deep ocean samplers, which have
shown similar pressure losses due to seal movement and metal elasticity
(Macdonald and Gilchrist, 1972; Yayanos, 1977; Bianchi et al., 1999). If
full-ocean depth pressure is to be retained, future deployments will
need pressure accumulators to compensate during recovery (Bianchi
et al., 1999). Some piezophiles are able to grow at pressures within
~60% of their optimum pressure range of growth (Cao et al., 2014;

Table 1
Characteristics of the two single-cell genomes described in this study.

Genome Completeness Contamination Genome size (Mbp) Number of contigs Number of genes Longest contig IMG Genome ID

Flavobacteriaceae sp. PRS1 90.85% 0.94% 2.42 61 2359 158472 2770939648
Marinimicrobia sp. PRS2 57.78% 0.00% 1.4 89 1254 109386 2778260900
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Kusube et al., 2017), suggesting the amount of pressure-retention
achieved here is able to yield novel piezophiles. A more important
concern may be the recovery of water samples under in situ temperature
conditions using these devices, as cultured piezophiles are sensitive to
changes in temperature (Yayanos and Dietz, 1982). Future deployments
will need additional insulation to maintain low temperatures and avoid
inactivating obligate deep-sea psychrophiles. Other important im-
provements to this lander will be the addition of an oil-compensated
actuator to open and close the PRS valve, the addition of a pressure and
temperature sensor to monitor the conditions inside the PRS throughout
deployment and retrieval, and a hadal-rated pump for the filtration of
large volumes of water in situ.
Landers and associated payloads such as the PRS described here

provide versatile and low cost options when it comes to addressing
unresolved issues in deep-ocean microbiology. The effects of decom-
pression on the integrity, viability and activity of hadal microbes are
largely unknown. Even at the greatest ocean depths only modest
technological investments are required to be able to pursue a variety of
scientific objectives. This includes testing the effects of decompression
on the integrity, viability and activity of hadal and other deep-sea mi-
crobes, which are as yet largely unknown.
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