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Abstract: Although the six-ligament chiral structure has many unique properties, due to its special
structure, the stress concentration is prone to defects. In addition, additive manufacturing is also
prone to defects. This paper studies the effect of defects, which is helpful for the better application of
the six-ligament chiral structure. Several new six-ligament chiral structures with random and concen-
trated defects were designed to explore the effects of the defects on the in-plane dynamic properties.
The structures were studied with the finite element ANSYS/LSDYNA numerical simulation and
experimental methods. According to the defect-free six-ligament chiral structures exhibiting different
deformation modes at different impact velocities, the effects of the defect rate and type (concentrated
and random defects) on the six-ligament chiral structure, the in-plane impact deformation mode
and energy absorption characteristics are discussed. The research results show that the defect rate
and type reduce the energy absorption characteristics of the chiral structure to varying degrees,
and the impact deformation mode also changes under medium- and low-speed impact. With the
increase in speed, the influence of the defects on the deformation mode weakens. Moreover, the
effects of the concentrated and random defects on the platform stress are different. When the defect
rate is low, the effect of the random defects is more significant, and as the defect rate increases, the
effect of the concentrated defects is more obvious. The study can provide guidance for structural
design, predict the failure form of structures containing defects when they are impacted, and realize
material recycling.

Keywords: six-ligament chiral structure; plateau stress; energy absorption; defect

1. Introduction

A chiral structure is a kind of lightweight honeycomb structure. Compared with
ordinary honeycomb materials [1–7], it has a higher specific strength and specific energy
absorption capacity and can be used as a protective device for explosions and impacts.
At the same time, the six-ligament chiral honeycomb structure has a special negative
Poisson’s ratio. The negative Poisson’s ratio property is that when a structure is stretched
in the longitudinal direction, it expands in the transverse direction. As a result, during
compression, the density of the internal structure increases, improving the compression
and impact resistance. Materials with negative Poisson’s ratio properties are also called
auxetic materials. The formation mechanism of a negative Poisson’s ratio effect includes the
stretching mechanism and rotation mechanism. Auxetic materials have better indentation
resistance than non-negative Poisson’s ratio materials. Due to their unique deformation
forms and mechanical potential, chiral auxetic structures have potential applications in
stretchable electronics, biomedical devices, electronic skin, scaffolds, and reconfigurable
soft robotics [8–15].

Using analytical, experimental, and simulation methods, researchers have systemati-
cally studied the chiral structure. Studies have included the in-plane mechanical proper-
ties [8,9,16–23] and out-of-plane mechanical properties [18,24,25] of chiral structures under
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quasi-static and dynamic loading. Zhang et al. [16] studied the effects of the geometric
parameters on the elastic modulus and Poisson’s ratio of the six-ligament chiral struc-
ture. The study of Mauko et al. [19] confirmed the Poisson’s ratio strain-rate dependency.
Airoldi et al. [26] combined numerical and experimental methods to study a novel struc-
ture with the addition of foam padding in a six-ligament chiral structural metal frame. It
improved the energy absorption capacity and load uniformity. Qiu et al. [27] used the
good designability of chiral structures to design a flexible chiral honeycomb structure
for use in deformable aircraft. Gao et al. [28] studied the influence of the geometric pa-
rameters of the six-ligament chiral structure, as well as the external factors (impact mass
and impact velocity), on the structural crashworthiness parameters. With the increasing
application prospects of chiral auxetic structures, some scholars have studied the deforma-
tion mechanism of spatial 3D auxetic chiral structure compression [8–15]. Xin et al. [29]
modified the traditional six-ligament chirality to improve the tunability of the parameters.
In addition, experiments have shown that negative Poisson’s ratio chiral structures have
stronger mechanical properties than ordinary 3D chiral structures. At the same time, the
design of geometric parameters can achieve a large change in the elastic constant. Different
mechanical properties and Poisson’s ratios can be obtained.

Most of the previous researches improved the mechanical properties of the six-
ligament chiral structure through novel designs but ignored the effects of defects on
the mechanical properties. The six-ligament chiral structure is generally processed by
additive manufacturing [29–31]. The study by Gwanho et al. [32] showed that additive
manufacturing has limited controllability and uniformity during processing and is prone
to defects. Whether the performance requirements are met when the chiral structure is
defective needs to be evaluated. Existing studies on defects are mostly related to ordinary
honeycomb structures [7,33–36]. Hu et al. [33] studied the effect of random defects on the
deformation form of gradient honeycomb structures. He et al. [35] studied the influence of
inclusions in different regions on the stress of honeycomb structures. Sri et al. [36] studied
the effect of the cell-wall deletion rate and deletion location on energy absorption. The
in-plane dynamic properties of chiral materials with negative Poisson’s ratio properties are
slightly different so the effects of defects on chiral structural properties need to be studied
in depth. First, through theoretical research, we can understand the degree of influence of
different defects on the structural properties. This can provide a reference for the design
of chiral structures and strengthen the design of structural weaknesses. Second, additive
manufacturing has high time and economic costs. Whether the structure still meets the
performance requirements needs to be explored if defects are generated during processing.
Finally, the research of defects is also of great significance to realizing the recycling and
sustainable utilization of materials. If the structure fails due to defects during use, this
can be applied to the fields or components with lower performance requirements, which
requires the theoretical background of the degree of influence of defects on the structure.
Therefore, the study of the defective six-ligament chiral structure provides a reference for
the recycling of materials.

In this paper, several six-ligament chiral structures with random and concentrated
defects are designed, and the in-plane dynamic properties of the six-ligament chiral struc-
tures with defects are discussed. The deformation, platform stress, and energy absorption
capacity of the six-ligament chirality were studied by combining numerical simulation and
experimental methods. This can provide guidance for the application of the structures in
the automotive and aerospace fields, as well as provide a reference for defect prevention.

2. Design of Experimental and Simulation Methods
2.1. Experimental Method Design

The material used in the test was aluminum alloy 6061, and the mechanical properties
of the material were obtained through reference [37] and tensile tests. The test samples were
prepared by 3D printing. During the test, the sample was fixed by a fixture. It could limit
out-of-plane deformation to a certain extent. Quasi-static compression tests were performed



Sustainability 2022, 14, 11432 3 of 16

on a REGER universal testing machine with a compression rate of 5 mm/min. The test
setup is shown in Figure 1. Finally, the force and displacement curves were collected.

Figure 1. Test setup. (a) Test machine; (b) Experimental model.

2.2. Finite Element Simulation
2.2.1. FE Modelling

The simulation of in-plane impact dynamics was performed using the explicit dy-
namic finite element soft ANSYS/LSDYNA (a highly nonlinear dynamic analysis software).
The base material was metal aluminum and the ideal elastic–plastic model was adopted.
The elastic modulus was 69 GPa, the yield stress was 76 MPa, the material density was
2700 kg/m3, and the Poisson’s ratio was 0.3. The cells inside the structure were defined
as CONTACT_AUTOMATIC_SINGLE_SURFACE. The structure and the rigid plate were
defined as CONTACT_AUTOMATIC_SURFACE_TO_SURFACE. The rigid plate and struc-
ture were regarded as frictionless. The bottom rigid plate was fixed and the top rigid plate
impacted along the y direction at a speed of V. The two sides were free boundary conditions
and the displacement in the z direction was limited in order to keep the structure in a state
of plane strain. The established defect-free six-ligament chiral structure model and mesh
division are shown in Figure 2.

Figure 2. (a) Simulation model of the six-ligament chiral structure; (b) Meshing diagram.

The size of the specimen was L1 × L2 = 132.00 mm × 133.24 mm, with 10 cells in
the x direction and 7 cells in the y direction. The defect types were divided into random
and concentrated defects, as shown in Figure 3. The ligaments with random defects in
this paper were selected using MATLAB software (R2022a, Natick, MA, USA) to generate
random numbers. Because the structural material and thickness in the z direction were the
same, the defect rate can be expressed as

ϕ =
M
M

=
S
S

(1)

where M is the mass of the missing part, M is the total mass of the structure, S is the area of
the defect site on the XY plane, and S is the total area of the structure on the XY plane.
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Figure 3. (a) Six-ligament chiral structure model with 5% random defects; (b) Six-ligament chiral
structure model with 5% concentrated defects.

2.2.2. Reliability Analysis of Simulation Model

The quasi-static compression force–displacement curve of the six-ligament chiral
structure with the 5% random defects model is shown in Figure 4a. The simulation speed
V was 2 m/s. The finite element simulation and experimental results of the structure show
the reliability of the numerical simulation. According to reference [38], the kinetic energy
of the model is less than 5% of the overall energy, which can be regarded as the quasi-static
compression. Figure 4b shows the relationship between the kinetic energy and internal
energy of the model when the moving speed was 2 m/s. According to the curve, the kinetic
energy was much smaller than the internal energy. Therefore, the model conformed to the
quasi-static compression and can be compared with the experimental results.

Figure 4. (a) Force–displacement curve of six-ligament chiral structure (b) The kinetic energy and
internal energy change curves of the model.
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In order to further study the validity of the established model, the influence of the
mesh size on the impact platform stress and simulation calculation time was discussed,
and the mesh lengths were 0.1 mm, 0.3 mm, 0.5 mm, 0.7 mm, and 1 mm, respectively
(V = 100 m/s). It can be seen in Figure 5 that with the decrease in the mesh division length,
the platform stress tended to be stable but the calculation time increased significantly. In
order to balance the calculation time and the accuracy of the calculation results, the mesh
length of the simulation model in this paper was 0.5 mm.

Figure 5. Effect of mesh length on platform stress and calculation time.

3. Results of Tests and Simulations
3.1. Evaluation Index of Dynamic Characteristics

The nominal stress σ and nominal strain ε of the six-ligament honeycomb material are
expressed as

σ =
F
A

(2)

ε =
δ

h
(3)

where F is the compression reaction force of the rigid board, A is the initial cross-sectional
area of the test structure, δ is the compression displacement of the rigid board, and h is the
initial height of the structure.

The platform stress is an important indicator to describe the dynamic properties of
porous materials. The platform stress of the six-ligament honeycomb material [16] can be
written as

σp =
1
εd

∫ εd

ε0

σ(ε)dε (4)

where εd is the maximum strain value before the material is compressed and compacted
and ε0 is the nominal strain when the first peak value is reached in the stress–strain curve.

An important indicator for evaluating the energy absorption capacity of porous ma-
terials is the energy absorbed per unit volume WV [16], that is, the integral area of the
stress–strain curve.

WV =
∫ εd

ε0

σ(ε)dε (5)

3.2. Results of Test

Figure 6 compares the failure of the six-ligament chiral structure and the different
defect rates during the quasi-static compression. It can be seen in the figure that the main
form of failure is ligament break and that the break location is at the connection between
the node and the ligament. The main reason is that during the compression process, the
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ligaments tended to wrap clockwise and the broken ligaments were mostly horizontal.
When the compression began, the horizontal ligaments were mainly stressed at the two
ends and it was easy to generate a stress concentration at the connection between the node
and the ligament, which led to a break. As the defect rate increased, the breaks increased
and were more dispersed. Figure 7a is the force–displacement diagram obtained when
the three structures were compressed. It can be seen that the structure is an elastic–plastic
collapse. As the compression progressed, the reaction force increased with the increase in
the displacement but the increased range decreased, reaching the highest point. When the
ligament was broken, the force dropped rapidly to a new position and absorbed energy
until the next ligament broke. When the structure did not contain defects, the compressive
strength and energy absorption capacity were the highest. As the defect rate increased, the
compressive strength decreased and the energy absorption capacity weakened.

Figure 6. Failure mode of the structure (a) Structure with no defects; (b)Structure with 5% defects;
(c) Structure with 15% defects.

Figure 7. Cont.
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Figure 7. Quasi-static compressive force–displacement curve. (a) Six-ligament chiral structure;
(b) Cell structure.

In order to better observe the energy absorption process of the six-ligament chiral struc-
ture, a unit structure with thickness = 1 mm was prepared by 3D-printing technology, as
shown in Figure 8, where b is a defect-free structure and e is a structure with three-ligament
defects. Figure 8a,d demonstrates the deformation during compression, and it can be seen
in the figure that when the thickness was thinner, obvious ligament-winding bending could
be seen in both structures. Defective structures had more ligament curvatures than non-
defective structures. It can be seen in Figure 8c,f that the failure forms of the two structures
were still ligament rupture at the nodes and ligament junctions, and when there were
defects, the plastic deformation of the structures was greater. From the force–displacement
curve in Figure 7b, it can be seen that the force of the structure with defects was significantly
smaller than that of the defect-free structure, and the energy absorption efficiency was also
greatly reduced. Due to the limitations of 3D-printing technology, it was not possible to
print aluminum alloy structures with smaller thicknesses for further experiments.

Figure 8. Quasi-static loading test images of the cell structure. (a) Loading diagram of the structure
without defects; (b) Undefective cell structure; (c) Failure diagram after loading; (d) Loading diagram
of the structure with missing ligaments; (e) Structure diagram with defects; (f) Destruction diagram
after loading.
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3.3. Dynamic Response of the Six-Ligament Chiral Structure

The six-ligament chiral structure showed different deformation modes under different
impact velocities [16], “><” (quasi-static mode), “I” (dynamic mode), and the transition
modes in between. When the deformation mode was the quasi-static mode, the impact
velocity was low-speed. When the deformation mode was the dynamic mode, the impact
velocity was high-speed. When the deformation mode was the transition mode, the speed
was medium.

Figures 9–11 are the in-plane impact deformation modes and stress cloud maps of
the defect-free six-ligament chiral structure, the six-ligament chiral structure with random
defects, and the six-ligament chiral structure with concentrated defects at different impact
speeds, respectively.

3.3.1. Low-Velocity Dynamic Response

Quasi-static mode. In this mode, the ligament at the impact end was first wrapped and
transmitted down to the fixed end as the compression progressed. When all the ligaments
were twisted and deformed, the nodal ring gradually collapsed and accumulated until
the structure was dense. As shown in Figure 9, when the impact speed was 20 m/s, the
defect-free six-ligament chiral structure exhibited a quasi-static mode, and the existence of
defects changed the deformation form of the structure, which had a great impact on the
dynamic response characteristics of the structure. During the compression deformation
process of the six-ligament chiral structure with random defects, the ligament winding first
occurred around the defect, and the deformation was relatively uneven. When most of
the ligaments were wound, the nodal ring began to collapse. During the compression and
deformation of the six-ligament chiral structure with concentrated defects, the ligament
entanglement first occurred on the left and right sides of the defect, and the structure
showed an “X” shape when it was crushed.

Figure 9. Macroscopic deformation modes of three different six-ligament chiral structures when the
impact velocity v = 20 m/s, no defects, random defect rate of 5%, and concentrated defect rate of 5%.

3.3.2. Medium-Velocity Dynamic Response.

Transition mode. In this mode, both the ligament wrapping at the impact end and
the nodal ring crushing were transmitted to the fixed end, but the nodal ring crushing
transfer lagged behind the ligament-wrapping transfer. As shown in Figure 10, when the
impact speed was 50 m/s during the compression deformation process of the six-ligament
chiral structure with defects, more ligament windings and node crushing occurred near the
impact end, which deformed and expanded with the direction of the defect until the entire
structure was deformed.
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Figure 10. Macroscopic deformation modes of three different six-ligament chiral structures when the
impact velocity v = 50 m/s, no defects, random defect rate of 5%, and concentrated defect rate of 5%.

3.3.3. High-Velocity Dynamic Response.

Dynamic mode. In this mode, as the compression progressed, the ligament winding
at the impact end and the crushing of the nodal ring occurred simultaneously and were
transmitted downward layer by layer until the structure was dense. As shown in Figure 11,
when the impact speed was 100 m/s, the existence of defects did not significantly change
the deformation form of the structure and it was still a dynamic mode. From the compar-
ison results, it can be seen that the influence of the existence of defects on the structural
deformation mode is closely related to the impact velocity.

Figure 11. Macroscopic deformation modes of three different six-ligament chiral structures when the
impact velocity v = 200 m/s, no defects, random defect rate of 5%, and concentrated defect rate of 5%.

It can be seen from the stress cloud diagram that at the beginning of compression, the
vertical ligaments were stressed and the horizontal ligaments were stressed at both ends.
Therefore, the stress was concentrated at the connection between the ligament and the
node, and the ligament was prone to breakage. The failure mode was consistent with the
test results. Regardless of whether the structure contained random defects or concentrated
defects, the stress around the defect was higher than in other positions so it affected the
deformation form.
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3.4. Dynamic Platform Stress
3.4.1. Influence of Impact Velocity on Platform Stress

Figure 12 shows the effect of impact velocity on the platform stress of the defect-free
six-ligament chiral structure. It can be seen in the figure that when the impact velocity was
in the range of 20–200 m/s, the impact velocity increased. The corresponding platform
stress also increased, and the magnitude of the increase in the platform stress also increased.

Figure 12. The relationship between the platform stress and impact velocity of the six-ligament chiral
structure with no defects.

3.4.2. Influence of Defect Rate on Platform Stress

Figure 13a shows the influence of the defect rate on the platform stress when the chiral
structure of the six ligaments had random defects. Under the impact speed, the existence
of random defects had a significant impact on the plateau stress, and with the increase in
the defect rate, the plateau stress showed a decreasing trend. With a defect rate of 5–10%,
the trend of the curve was relatively flat, indicating that the increase in the defect rate had
less influence on the platform stress. When the defect rates were in the range of 0–5% and
10–15%, the trend of the curve was steeper, indicating that the increase in the defect rate
had a significant impact on the platform stress. The calculation results also showed that
different impact velocities had different effects on the platform stress. The impact speed
was in the range of 50–200 m/s, that is, in the medium-high speed stage. With the increase
in the impact speed, the influence of random defects on the platform stress was reduced,
mainly because the influence of the inertia effect was enhanced. When the impact speed
was 20 m/s at the low-speed stage, when the structural defect rate was in the range of
0–12%, the influence of the defect rate on the stress of the platform was between the two
curves of 50 m/s and 100 m/s, indicating that the ligament was wound at this time. The
geometrical toughening effect of the structure was strong. When the defect rate of the
structure increased to 15%, the platform stress decreased rapidly to 0.45, which greatly
reduced the energy absorption capacity of the structure.

Figure 13b shows the effect of the defect rate on the stress of the platform when
the six-ligament chiral structure had concentrated defects. Under the impact speed, the
existence of concentrated defects also had a significant impact on the plateau stress. With
the increase in the defect rate, the plateau stress also showed a decreasing trend. When the
impact speed was 50–200 m/s at the medium-high speed stage, the curves all showed a
downward trend and the declines were roughly the same. When the impact speed was
200 m/s under the same defect rate, the impact on the platform stress was the smallest.
When the impact speed was 50 m/s, the influence on the platform stress was the greatest.
However, when the impact speed was 20 m/s, at the low-speed stage, the influence of the
defect rate on the platform stress fluctuated greatly, and the range was between the two
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curves of 50 m/s and 200 m/s. The rate of change was very sensitive, and the geometric
tempering effect of the ligament wrapping was strong at this time.

Figure 13. (a) The relationship between the platform stress and the random defect rate under different
impact speeds; (b) The relationship between the platform stress and the concentrated defect rate
under different impact speeds.

3.4.3. Influence of Defect Type on Platform Stress

The platform stress of random and concentrated defects are compared in Figure 14a,b
under the same defect rate. By analyzing the two curves of platform stress and impact
velocity under 5% random defects and 5% concentrated defects, it can be seen that the
platform stress first decreased and then increased with the increase in impact velocity. The
platform stress was the lowest at 50 m/s, indicating that the existence of defects had a
greater impact on the energy absorption characteristics of the structure during medium-
speed impact. By comparing the two curves of platform stress and impact velocity under
5% random defects and 5% concentrated defects, it can be seen that the platform stress of
the random defects was significantly lower than that of the concentrated defects when the
impact speed was 20–150 m/s. This shows that when the defect rate was low, the number
of missing ligaments had a greater impact on the platform stress. When the impact speed
was 180 m/s, the two curves met at one point. When the impact velocity reached 200 m/s,
the platform stress of the random defects exceeded that of the concentrated defects. This
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shows that random defects could disperse the stress, which is beneficial to the overall
deformation and energy absorption of the structure, whereas concentrated defects could
easily cause the structure to collapse and fail, reducing the energy absorption capacity.

By comparing several sets of curves with defect rates of 7%, 10%, and 12%, the results
were the same as when the defect rate was 5%, and the speed at which the platform stress
of random defects exceeded that of concentrated defects decreased. This also shows that,
with the increase in the defect rate, the effect of concentrated defects on structural stability
became increasingly important. Above and below the defective part, the microstructure
could not absorb energy through deformation. It greatly reduced energy absorption
efficiency. When the defect rate was large, ϕ = 15%, the existence of random defects led to a
significant reduction in the number of ligaments and only a few ligaments wrapped around
to absorb energy during low-speed impact, which significantly reduced the platform stress.

Figure 14. Comparison of platform stress with random defects and concentrated defects at the same
defect rate. (a) Defect rate 5–7%; (b) Defect rate 10–15%.
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3.5. Energy Absorption Efficiency

Figure 15 shows the effects of random and concentrated defects on the energy absorp-
tion properties of the six-ligament chiral structure at different impact velocities. The results
show that due to the existence of defects, the energy absorption capacity of the six-ligament
chiral structure was reduced. For the energy absorbing capacity of the structure with 15%
concentrated defects, with the increase in the impact speed, the influences of random and
concentrated defects on the energy absorbing capacity of the structure gradually tended to
be consistent.

Figure 15. Cont.
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Figure 15. Energy absorption characteristics of structures with defects at different impact velocities.
(a) v = 20 m/s random defects; (b) v = 200 m/s random defects; (c) v = 20 m/s concentrated defects;
(d) v = 200 m/s concentrated defects.

4. Conclusions

Based on the finite element and experimental methods, the effects of defects on the
in-plane impact dynamics of the six-ligament chiral structure were studied and the results
showed that:

1. Defects have different effects on the macroscopic deformation mode of the six-ligament
chiral structure at different impact speeds. During low-velocity impact speeds, liga-
ment wrapping occurs first at the site of the defect throughout the structure. During
moderate impact speeds, ligament wrapping occurs both near the impact end and at
the defect site. During high-speed impact, the existence of defects does not signifi-
cantly change the deformation mode of the six-ligament chiral structure, and node
crushing and ligament winding are gradually transmitted from the impact end to the
fixed end.

2. The defect will significantly reduce the platform stress and energy absorption capacity
of the six-ligament chiral structure. The plateau stress decreases as the defect rate
increases. However, random and concentrated defects have different downward
trends. During medium- and high-speed impact speeds, with the increase in the
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impact speed, the weakening effect of defects on platform stress gradually weakens.
However, in a low-speed impact, the weakening effect of the defect on the platform
stress is higher than that in a medium-speed impact of 50 m/s. As the defect rate
increases, the energy absorption capacity of the structure decreases. During a low-
speed impact, a higher random defects rate has a greater impact on the energy
absorption capacity of the structure than concentrated defects. With the increase
in the impact speed, the effects of random and concentrated defects on the energy
absorption capacity of the structure gradually increase.

The study of defects is of great significance for realizing the recycling and sustainable
utilization of materials. Through research, it is possible to understand the extent to which
defects affect structures. If the defective structure meets performance requirements, there is
no need to replace it. If the structure fails due to defects during use, it can be applied to
fields or components with lower performance requirements, thereby realizing recycling.
However, the types of defects studied are limited in this paper and ligament ruptures
may occur during use. The effect of the defect location also needs to be further studied.
In addition, the large-scale fabrication of metamaterials is a major challenge, limiting the
further use of auxetic materials.
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