DESIGN OF SUPERCONDUCTING PARALLEL-BAR CAVITIES FOR DEFLECTING/CRABBING APPLICATIONS*

J. R. Delayen\#1,2 and S. U. De Silva ${ }^{1,2}$
${ }^{1}$ Center for Accelerator Science, Old Dominion University, Norfolk, VA 23529, U.S.A.
${ }^{2}$ Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, U.S.A.

ABSTRACT

The superconducting parallel-bar cavity is a deflecting/crabbing cavity with attractive properties, compared to other conventional designs, that is currently being considered for a number of applications. The new parallel-bar design with curved loading elements and circular or elliptical outer conductors have improved properties compared to the designs with rectangular outer conductors. We present the designs proposed as the deflecting cavities for the Jefferson Lab 12 GeV upgrade and for Project-X and crabbing cavities for the proposed LHC luminosity upgrade and electron-ion collider at Jefferson Lab.

INTRODUCTION

The superconducting parallel-bar cavity [1] geometry with a cylindrical outer onductor and trapezoidal shaped bars is proven to have better propertie compared a variety of geometries with rectangular, cylindrical and elliptical oute conductors and straight, curved bars [2, 3].

The geometry has
lower and balanced surface fields

- higher shunt impedance
- wider mode separation in the HOM spectrum

Field Profile

Applications of the Parallel-Bar Cavity

- 499 MHz deflecting cavity for the Jefferson Lab 12 GeV upgrade

400 MHz crabbing cavity for the proposed LHC luminosity upgrade
750 MHz crabbing cavity for medium energy electron ion collider (MEIC) at Jefferson Lab
365.625 MHz deflecting cavity for Project-X

ANALYSIS OF FIELD NON-LINEARITY

- Change in the transverse voltage across the beam aperture is determined in horizontal (along x axis) and vertical (along y axis) directions
- If needed, the non-linearity can be reduced by increasing the inner bar height and/or by giving it a curvature

DESIGN OPTIMIZATION AND PROPERTIES FOR EACH APPLICATION

Design Optimization
Cavity length and bar length is optimized to lower peak
$\left.B_{P}\right)$ fields

Shape of the bar is optimized for lower and balanced surface fields by changing the inner bar height and angle

Parameter	$\mathbf{4 9 9} \mathbf{~ M H z}$	$\mathbf{4 0 0} \mathbf{~ M H z}$	$\mathbf{7 5 0} \mathbf{~ M H z}$	$\mathbf{3 6 5 . 6} \mathbf{~ M H z}$	Units
Frequency of π mode	499.0	400.0	750.0	365.625	MHz
$\lambda / 2$ of π mode	300.4	375.0	199.9	410.0	mm
Frequency of 0 mode	1035.9	729.5	1314.4	659.7	MHz
Frequency of near neighbour mode	771.2	593.4	1143.1	571.9	MHz
Cavity length	440.0	520.0	300.0	530.0	mm
Cavity diameter	241.9	339.8	193.0	388.4	mm
Bars length	260.0	345.0	185.0	350.0	mm
Bars inner height	50.0	80.0	57.5	85.0	mm
Angle	50.0	50.0	36.2	55.0	deg
Aperture diameter	40.0	84.0	60.0	84.0	mm
Deflecting voltage $\left(V_{T}{ }^{*}\right)$	0.3	0.375	0.2	0.41	MV
Peak electric field $\left(E_{P}{ }^{*}\right)$	2.96	3.82	4.95	3.61	MV / m
Peak magnetic field $\left(B_{P}{ }^{*}\right)$	4.49	7.09	8.74	6.41	mT
$B_{P}{ }^{*} / E_{P}{ }^{*}$	1.52	1.86	1.77	1.77	$\mathrm{mT} /(\mathrm{MV} / \mathrm{m})$
Energy content $\left(U^{*}\right)$	0.029	0.19	0.056	0.19	J
Geometrical factor	105.6	119.7	136.9	115.9	Ω
$[R / Q]_{T}$	982.2	312.2	152.9	378.5	Ω
$R_{T} R_{S}$	1.04×10^{5}	3.7×10^{4}	2.1×10^{4}	4.4×10^{4}	Ω^{2}
At $E_{T}{ }^{*}=1$ MV/m					

CAVITY DESIGNS FOR EACH APPLICATION

499 MHz DELFECTING CAVITY

Shape of the bar is optimized to achieve a field balancing ratio of $B_{P} / E_{P}=1.5 \mathrm{mT} /(\mathrm{MV} / \mathrm{m})$

E_{P} / E_{T}	B_{P} / E_{T} $(\mathrm{mT} /(\mathrm{MV} / \mathrm{m}))$	E_{P} at $V_{T}=3 \mathrm{MV}$	B_{P} at $V_{T}=3 \mathrm{MV}$
2.96	4.49	$30 \mathrm{MV} / \mathrm{m}$	45 mT

400 MHz CRABBING CAVITY

750 MHz CRABBING CAVITY

- Is required for head on collision of the 60 GeV proton beam and the 12 GeV electron beam
- Design is very compact and has higher surface fields

365.625 MHz DEFLECTING CAVITY

Is required to separate the 3 GeV proton beam into 3 beams

- Required peak transverse voltage $=10 \mathrm{MV}$ ratio of $B_{P} / E_{P}=1.77 \mathrm{mT} /(\mathrm{MV} / \mathrm{m})$

E_{P} / E_{T}	B_{P} / E_{T} $(\mathrm{mT} /(\mathrm{MV} / \mathrm{m}))$	E_{P} at $V_{T}=3.4 \mathrm{MV}$	B_{P} at $V_{T}=3.4 \mathrm{MV}$
3.61	6.41	$30.0 \mathrm{MV} / \mathrm{m}$	53.2 mT

CONCLUSION

[^0]```
*Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE- ACO5-06OR23177. The U.S. Government retains a non-exclusive, paid-up, irrevocable purposes. Part of this work was done in collaboration with and supported by Niowave Inc. under the DOE STTR program.
*delayen@jiab.org
```


## REFERENCES

[1] J.R. Delayen and H. Wang, Phys. Rev. ST Accel. Beams 12, 062002 (2009).
2] J.R. Delayen and S.U. De Silva, Design of Superconducting Parallel-bar Deflecting/Crabbing Cavities with Improved Properties, Proceedings of PAC'11, New York, (2011).

3] S.U. De Silva and J.R. Delayen, Analysis of HOM Properties of Superconducting Parallel-Bar Deflecting/Crabbing Cavities, These Proceedings
[4] H. Park, J.R. Delayen and S.U. De Silva, Mechanical Study of Superconducting Parallel-Bar Deflecting/Crabbing Cavities, These Proceedings.


[^0]:    
    
     The parallel-bar geometry for the applications of the 499 MHz and 365.625 MHz deflecting cavities and 400 MHz crabbing cavities have shown very attractive properties in meeting the requirements.
    The 499 MHz deflecting and 400 MHz crabbing cavities are in the stage of prototype fabrication [4].

