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Abstract   
In the ASEM-IAC 2015, Cotter (2015) proposed a systemic joint deterministic-stochastic dynamic causal Bayesian 
statistical engineering model that addressed the knowledge gap needed to integrate deterministic mathematical 
engineering models within a stochastic framework.  However, Cotter did not specify the modeling methodology 
through which statistical engineering models could be developed, diagnosed, and applied to predict systemic mission 
performance.  This paper updates research into the development a hierarchical statistical engineering modeling 
methodology and sets forth the initial theoretical foundation for the methodology. 
 
Keywords 
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Introduction 
The primary objective in developing a general statistical engineering methodology is to facilitate the construction of 
hierarchical models of partially observable causal-stochastic socio-technical systems in order to better understand and 
predict the effects of subsystem, module, and component design or improvement interventions on systemic mission 
performance.  Cotter (2015) addressed the problem integrating deterministic engineering models as system dynamic 
causal components within general linear models (GLM) by representing them as functional causal hierarchical 
Bayesian networks within a state-space framework to model joint deterministic-stochastic dynamic causal effects.  He 
proposed that the X controllable and Z noncontrollable covariate input variables become endogenous variables of the 
form 

 
xi = fi(pai, uxi) i = 1 to k predictors (1) 
zj = fj(paj, uzj) j = 1 to l covariates 

 
where fi(•) and fj(•) take on any linear or nonlinear and constant, temporal, instantaneous, or short-term inflection 
inducing physical or stochastic model that accurately represents the dynamics of the process, pai and paj are the 
endogenous parents of x and z respectively whose functional form and current values determine the a priori Bayesian 
state of each xi and zi respectively, and uxi and uzj are the unobserved structural and random errors associated with each 
xi predictor and zj covariate respectively (notation taken from Pearl, 2009).  The random component of each uxi and 
each uzi is not restricted to being N(0, σ2) distributed.  Deterministic physical models are incorporated in their 
functional form as x controllable and z noncontrollable input variables with respective uxi and uzj error terms to reflect 
structural and random lack of fit.  With this functional notation, the GLM becomes 

 
Min YTotal = f(w′(Ypred – T))          (2) 
s.t. 

Y = F(pai, uxi)β + F(paj, uzj)γ + ε 
LX ≤ F(pai, uxi) ≤ UX 

possibly                   LZ ≤ F(paj, uzj) ≤ UZ 
 
whereYTotal is the vector or matrix of systemic performance variables, f(w′(•)) is a vector or matrix of normalized 
weighting functions that admit tradeoffs among the (Ypred – T) differences, and T is the vector or matrix of identified 
systemic mission performance targets.  F(•) is a matrix of functional relationships of the X predictors and Z within 
and cross layer covariates respectively (generalization of Sain, Furrer, and Cressie (2011) alternate formulation of a 
multivariate Markov random field) to the Ypred variables performance levels.  Where the functional relationship has 
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an unknown form, fi(pai, uxi) = xi observed data and fj(paj, uzj) = zj observed covariate values, the residual error 
accumulates in the ε term.  The β response parameters of Ypred to X and the γ response parameters of Ypred to Z are 
constant coefficients to be determined.  Under this causal Bayesian network modeling approach, the GLM is 
represented in Exhibit 1. 
 

Exhibit 1.  Functional Causal Bayesian Network GLM DAG. 
 

 
 
 
Although, the above causal Bayesian network form of the GLM will admit integration of deterministic mathematical 
engineering models within a stochastic framework, it is not in itself sufficient to model systemic performance 
behavior.  The following issues remain to be addressed: 

• Decomposing systemic mission performance into functional requirements. 
• Systems constraint decomposition. 
• Systems boundary interface decomposition. 
• Systems performance to functional activation decomposition. 
• Systems with nonrecursive directed acyclic graph feedback loops. 
• Model synthesis and verification. 

This work reports research into only the first issue of decomposition of systemic mission performance into functional 
requirements. 
 
Problems in Decomposing Mission Performance into Functional Requirements 
Buede (2000) specifies decomposition as the “… top-down structuring, begins with the top-level system function and 
partitions that function into several subfunctions.  This decomposition process must conserve all of the inputs to and 
outputs from the system’s top or zero-level function” (p. 182).  The key terms in Buede’s specification are “top-down 
structuring” and “conserve all of the inputs to and outputs from…” implying some type of mapping.  The top-level 
system function to which Buede refers is specified in mission requirements, which he defines as “… the interaction 
of several systems, … which include individuals or groups of people ….  Mission requirements represent stakeholder 
preferences ….”  In its definition of Measures of Effectiveness, the INCOSE Systems Engineering Handbook (2010)  
adds the concepts of  “…operational objective ... in the intended operational environment under a specified set of 
conditions.”  In his Mission Axiom, Cotter (2015) integrated these concepts into “…the minimal set of tasks mapped 
to associated outcomes that the product, service, or system is charged with accomplishing in order to produce specified 
useful mission outcomes under specified environmental conditions.”  Thus, decomposing mission performance into 
internal functional requirements is a mapping of systemic mission outcome objectives to the system level performance 
functions (action transformation tasks) to internal subsystems, modules, and components functions (input-output 
transformation tasks) needed to accomplish the top level systemic outcome objectives under specified environmental 
conditions. 

In his subsequent work toward defining requirements, Buede indirectly identifies the central problem in 
mapping mission objectives to internal functionality as the “… result of the design process creates two hierarchies of 
requirements …,” which Buede defines as originating requirements and derived requirements.  Specifically, as shown 
in Exhibit 2, there are two mapping discontinuities in all existing design methods; from the environmental context to 
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system outcome objectives and performance functions and from the system level performance functions to the internal 
functional requirements. 

 
Exhibit 2.  Functional Mapping Discontinuities of Existing Design Methods. 

 

 
 
 

In the figure, the functional mapping discontinuities are represented by the grayed dashed arrows, and the realized 
mappings are represented by the solid black arrows.  Additionally, dashed arrows represent unknown or undefined 
required inputs from and outputs to the environment, and solid arrows represent known internal functional 
decomposition mappings and known required inputs from and outputs to the environment.  The functional mapping 
discontinuities result from: (1) typical product environmental specifications being set as functional expectations within 
environmental expectations or constraints (i.e. minimum, minimum-maximum, or maximum conditions); (2) service 
specifications being set on some concept of delivering expected value within a qualitatively specified informational 
or organizational context; and (3) systems specifications being set on some combination of product and services 
specifications.  All three methods rely primarily on a general concept of transforming stakeholder and user views of 
desired product and service features into a product or service that can deliver those features.  The problem of relying 
on stakeholder and user views is that they do adequately specify causal-stochastic product, service, or system mission 
performance topologies constrained within causal-stochastic environmental topologies.  That is, current design 
methods result in incomplete environmental topological conditions and constraints specifications and in incomplete 
topological product, service, or system mission performance specifications at the systems level.  The subsequent gap 
in translating systemic performance topological information into subsystems functions further diffuses incomplete 
systemic performance information. 
 
Decomposing Systems Mission Causal-Bayesian Topologies 
This work proposes a refocus to specifying prior environmental topologies g(pagi, uxgi) as constraints on the conditional 
systemic performance topologies Ypred = F(pasi, uxsi | g)βs + F(pasj, uzsj | g)γs + εs necessary and sufficient for mission 
accomplishment.  In these formulations, pagi are the system and local endogenous parents of zgi noncontrollable 
environmental variables, uxgi are the temporally exchangeable unobserved system of systems environmental structural 
and random errors, pasi are the system-of-interest level endogenous parents of the xs predictors of Ypred variable 
performance levels, uxsi are the unobserved structural and random errors associated with each xsi, pasj are the system-
of-interest level endogenous parents of the zs covariates of Ypred variable performance levels, uxsj are the unobserved 
structural and random errors associated with each zsj, and the βs response parameters of Ypred to xs and the γ response 
parameters of Ypred to zs are constant coefficients to be determined from subsystem-modules-components 
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configurations.  For any given subsystem-module-components configuration, residual error accumulates in the εs term.  
In the limiting ideal configuration, εs is N(0, σ2I) distributed yielding an efficient, consistent, and sufficient MINVUE 
estimate of Ypred.  

The primary issues to be address in specifying prior environmental topologies and conditional systemic 
performance topologies are  non-informative versus informative, conjugate versus nonconjugate, and proper versus 
improper prior environmental distributions and diffusing or concentrating decomposition.  The following axioms are 
proposed as criteria for selecting the appropriate form of prior environment and hierarchical systemic conditional 
decomposition. 
 

Environmental Systems of Systems Axiom:  All local environments are proper subsets of parental system of 
systems environments and are determined by processes that exist at the system of systems, system, and local 
spatial scales 
 
Requisite Variety Axiom:  Per Ashby’s Law of Requisite Variety, the system of interest can achieve stated 
mission performance outcomes if and only if systemic variety is greater than or equal to the variety of the 
environment in which it must conduct the mission. 
 
Proof:  System(information) >= environmental(information) as a lower bound.  If  system(information) < 
environment(information), then system(information) < environment(information s) + 
environment(information u) where system(information) = environment(information s), and the system is 
incapable of responding to environment(information u).  Conversely, if system(information) > 
environmental(information ), then system(information g) + system(information u) > 
environmental(information) where system(information g) = environment(information), and the system  is 
capable of fully responding to environment(information) with excess system(information u). 
 
Requirements Axiom:  Only systemic mission performance information conditional on environmental 
information F(pasi, uxsi | g)βs given F(pasj, uzsj | g)γs covariate knowledge is necessary and sufficient to specify 
aggregate sub-systems, modules, and components functionality for systemic mission accomplishment 
 
Proof:  Recursive hierarchical application of the Requisite Variety Axiom to decompose system(information) 
to subsystem(information) to module(information) to component(information). 
 
Stakeholder State of Mission Knowledge Axiom:  All human knowledge, including stakeholders of potential 
environmental topologies and systemic mission performance, is incomplete and subjective to varying degrees 
of freedom.  Stakeholder knowledge must induce some variety in the form of bias and additional variance in 
specifications of expected environmental conditions and systemic mission performance. 
 
Proof:  In the Requisite Variety Axiom, set Stakeholder-System(information) ≠ System(information) ⇒ 
Stakeholder-System(information) = E[Stakeholder-System(information)] – E[System(information)] + 
τ2

stakeholder + σ2
system, where E[Stakeholder-System(information)] is stakeholders expected systemic 

performance outcomes, E[System(information)] is the realizable systemic performance centroid outcome, 
τ2

stakeholder is residual structural and random error due to incomplete and subjective stakeholder knowledge, 
and σ2

system is residual system error. 
 
Corollary – Stakeholder State of Mission Knowledge Axiom:  Stakeholder uncertainty or imprecision in 
statements of expected systemic performance outcomes only adds to variety to systemic mission 
specifications. 

 
Given the Environmental Systems of Systems Axiom, the local spatial environment and the system of interest 

must be modeled within the context of its parental system of systems environment.  Currently, the most comprehensive 
environmental hierarchical Bayesian models are those seeking to model global climate change or weather patterns.  
Advances in computational speed and numerical methods over the last 20 years have permitted the development of 
hierarchical Bayesian space-time dynamic environmental models.  Hughes and Guttorp (1994) modeled space-time 
atmospheric precipitation using unobserved weather states in hidden Markov models.  Brown, Le, and Zidek (1994) 
developed a hierarchical Bayesian interpolator model for multivariate Gaussian random fields for a fixed set of 
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environmental monitoring sites.  Handcock and Wallis (1994) applied a Bayesian best linear unbiased prediction 
(BLUP) procedure to model the space-time mean temperature meteorological fields in the Northwest United States.  
Huang and Cressie (1996) introduced a spatio-temporal model that incorporated past snow-water equivalent data 
resulting in a Kalman-filter prediction algorithm.  Wilke (1998) developed a three-stage hierarchical Bayesian 
modeling process in which the first stage specified a measurement error process for the observational data, the second 
stage allowed for site-specific time series models, and the third stage estimated model parameters of these time series 
models as Markov random fields with spatial dependence.  Prior to 2000, climate models focused on predicting long 
term distributions and simulated decades of climate to estimate the long-term parameters.   

Since 2000, focus has shifted to climate models with higher regional and local spatial resolution.  Regional 
climate models apply dynamical or statistical downsizing to a limited spatial domain within grid boxes on the scale of 
20 to 100 km and time-dependent lateral boundary conditions from a general circulation model.  Tebaldi, Smith, 
Nychka, and Mearns (2005) proposed a hierarchical Bayesian model that combined information from a multimodel 
ensemble of atmosphere–ocean general circulation models and observations to determine probability distributions of 
future temperature change on a regional scale.  Furrer et al. (2007a and 2007b) developed a univariate hierarchical 
Bayesian model that separates atmosphere–ocean general circulation spatial response into a large scale climate change 
signal and an isotropic process representing small scale variability.  Berliner and Kim (2008) develop hierarchical 
Bayesian models from general multiple climate models in a formulation that enables treatment of model specific 
means, biases, and covariance matrices in a manner that estimates true states of nature.  Smith, Tebaldi,  Nychka, and 
Mearns (2009) proposed a Bayesian analysis that allowed the combination of different univariate climate models into 
a posterior distribution of future temperature increases over different regions around the globe.  Tebaldi and Sanso 
(2009) extend these approaches to estimating posterior distributions of bivariate models of joint temperature and 
precipitation by applying a hierarchical Bayesian model to data sets of simulated climate from general circulation 
models.  Cooley and Sain (2010) developed a hierarchical Bayesian extreme value model of extreme precipitation 
events.  Sain, Furrer, and Cressis (2011) developed a hierarchical Bayesian modeling approach that allows for flexible 
modeling of multivariate dependencies. 

Parallel to statistical engineering’s goal of constructing hierarchical models of causal-stochastic systems in 
order to better understand design or improvement intervention effects on mission performance, climate scientists’ goal 
in creating hierarchical climate models is to study the effects of anthropogenic forcings on global climate.  Combining 
the Requisite Variety and Requirements axioms with the Environmental Systems of Systems Axiom, this research’s 
current focus is on transforming existing hierarchical Bayesian climate modeling knowledge into the socio-technical 
domain.  Current knowledge in the climate domain that is applicable to the socio-technical domain includes: 

• Integrating information from a multimodel ensemble of atmosphere–ocean general circulation models 
into a joint hierarchical Bayesian model.  The primary stated goal of statistical engineering is to integrate 
deterministic engineering and stochastic models from multiple disciplines within GLM causal-stochastic 
Bayesian hierarchical, state-space networks. 

• Estimating posterior distributions derived from statistical assumptions incorporating bias among 
environmental models with convergence that allows estimates of correlation between present and future 
temperature responses, and testing alternative forms of probability distributions for the model error 
terms.  In the socio-technical domain, the equivalent problem is estimating posterior topologies adjusted 
for bias between deterministic causal and stochastic terms with convergence that allows estimates of 
correlation between current and future mission performance and tests for alternative mission 
performance topologies from lower order cumulative error terms. 

• In climate models, the posterior distributions of regional temperature change in many region–season 
combinations have been found to differ both in variance and shape, depending on the statistical model 
adopted.  This suggests that hierarchical causal Bayesian systems, including socio-technical, will be 
dominated by environmental and mission performance informative prior topologies and nonconjugate 
but proper decomposition topologies. 

• Climate hierarchical Bayesian models include time-varying parameters that are modeled as random 
variables with distributions depending in part on atmospheric pollution levels.  Similarly, socio-technical 
models must include time-varying parameters that model systemic mission performance reliability and 
changes in performance and reliability due to future new technology insertions and upgrades. 

• Uncertainties in climate change projections are modeled as arising from: (1) natural climate variability, 
(2) uncertainties in the responses to climate forcing factors, and (3) uncertainties in future forcing factors 
and other factors that could influence climate.  Similarly, socio-technical systems topologies must 
account for uncertainties in: (1) natural environmental variability, (2) cumulative systemic performance 
variability, and (3) design or improvement interventions variability. 
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• Extreme value hierarchical Bayesian analysis has been applied to characterize the tails of regional and 
location marginal precipitation and wind  distributions.  Causal hierarchical Bayesian models of socio-
technical systemic mission performance must also incorporate extreme value Bayesian analyses to model 
environmental minimum and maximum extremes rather than setting deterministic minimum and 
maximum limits as is the current common practice. 

• The challenging aspect of decomposing and modeling the spatial processes of the global climate system, 
and any socio-technical system, is the number of parameters and the amount of data involved.  As the 
number of parameters increase, either model precision or bias must increase. Thus, statistical engineering 
must be built on a sound theoretical body of the most recent causal Bayesian hierarchical modeling 
knowledge. 

Decomposition knowledge in the climate domain that is not directly applicable to the socio-technical domain includes: 
• Hierarchical Bayesian climate models use lattice decomposition with defined uniform local boundary 

input-output points on spatial scales of 20 to 500 km2.  Open socio-technical systems, sub-systems, 
modules, and components boundaries are, by definition, permeable and not crisply defined, and they 
have feedforward and feedback inputs that exist at points determined by the physics and economics of 
the processes.   

• Not adequately addressed in climate models, from causal Bayesian theory a model’s boundary is 
determined by the modeler’s partition between the pai and paj parents of xi predictors and zi covariates 
and their respective uxi and uzj unobserved structural and random errors.  Thus, hierarchical causal 
Bayesian models’ boundaries will rarely equal the true boundaries of a socio-technical system; however, 
boundary conditions must be accurately considered in model development. 

• Decomposition of climate models proceed from reasonably bounded and identified global climate 
patterns to regional and local climate patterns.  Such may not be the case for socio-technical systems 
hierarchical models.  In design or improvement interventions of socio-technical systems, only relevant 
decomposition paths may be necessary to understand the effects of changes within subsystems, modules, 
or components on systemic mission performance.  In these modeling efforts, it will be necessary build 
accurate scaffolds of the unmodeled subsystems, modules, and components in order to assess the effects 
of design or improvement interventions on system mission performance. 

• To date climate models have not sought to integrate deterministic engineering models as system dynamic 
causal components, which are essential in modeling socio-technical systemic performance.  
Anthropogenic forcings on global climate are modeled as dynamic random variables.  Inclusion of 
deterministic functions will require integration of Pearl’s (2009) P(y | do(x)) operators as f(yt | do(xt)) 
functions to dynamically set deterministic and feedback functional states prior to updating hierarchical 
expectations and variances. 

 
Conclusion 
Climate hierarchical Bayesian models and modeling methodologies articles have been gathered into a corpus.  Current 
research is oriented toward extracting and integrating models and methods relevant to the problem of developing 
hierarchical causal Bayesian models of socio-technical systemic mission performance.  Once a hierarchical causal 
Bayesian socio-technical modeling body of knowledge has been developed, validated, and peer reviewed, research 
will move to systemic constraint decomposition to assure that imposed economic, environmental, legal, political, 
social, and technical constraints are consistently jointly decomposed to subsystems, modules, and components levels. 
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