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Abstract   
In the ASEM-IAC 2012, Cotter (2012) summarized prior works that led to the proposal for statistical engineering, 

identified the gaps in knowledge that statistical engineering needs to address, explored additional gaps in knowledge 
not addressed in the prior works, set forth a working definition of and body of knowledge for statistical engineering, 

and set forth proposals of potential systems contributions the Engineering Management profession could make 

toward the development of statistical engineering.  In 2014, the ASQ Statistics Division, DOT&E, NASA, and IDA 

co-sponsored a Statistical Engineering Agreement to jointly research development of the discipline of statistical 

engineering.  The statistics community has continued to frame statistical engineering within the context of the 

general linear model (GLM).  However, incorporating deterministic engineering causal models within the GLM 

framework leaves missing links of conditional dependencies, yields models that are difficult to fit or that may not 

converge to a unique solution, and may not increase the understanding of physical causal processes in dynamic 

stochastic systems.  Integration of engineering specific deterministic causal models within stochastic models to 

provide additional knowledge of the risk of variance from expected response is a key gap in knowledge that must be 

addressed to realize Statistical Engineering as a discipline.  This paper updates research into integrating 
deterministic engineering models as system dynamic causal components of functional causal Bayesian networks 

within a state-space framework to model joint deterministic-stochastic dynamic causal effects. 
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Introduction 
On its website, the ASQ Statistics Division (2015) defines statistical engineering as “… the collaborative study 

and application of the tactical links between statistical thinking and statistical and discipline-specific tools with the 

objective of guiding better understanding of uncertainty in knowledge and decision-making to generate improved 

results to benefit the organization and/or society.”  Cotter (2012) expanded the definition from “discipline-specific” 

to a general systems definition of “… statistical engineering as the integration of statistical theory with technical, 

engineering, information systems, managerial, financial, and economic knowledge to solve applied complex 

organizational and societal problems that involve elements of risk or uncertainty in their outcomes.”  To model the 
multivariate nature of such complex problems, Cotter proposed that a general statistical model should reflect the 

structure and variation of the proposed practical problem being addressed.  In general terms, the statistical problem 

will be, 

 

Min YTotal = f(w(Ypred – T))  
s.t. 

Y = X + Z +  

LX  X  UX 

possibly             LZ  Z  UZ  
 

where f is a generalized transfer function, Ypred is the vector or matrix of predicted service, process, and product 

output characteristics, T is the vector or matrix of some functional target performance, and w is a vector of 

desirability weights that combine the output characteristics in some optimum combination.  For each Y vector, X is 

the controllable input variables,  the response of Y to X, Z is the non-controllable input variables,  is the  response 
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of Y to Z, and  is the residual error term.  A problem arises with the objective function when some or all of the 
terms in the vector T arises from deterministic mathematical models that represent theoretical economic, 

information, or physical behavior.  In such cases, a strictly linear or even nonlinear statistical model Y based on 

sampled data may not yield a fit that reflects the theoretical behavior.  The cause for the lack of fit may be due to 

any one or a combination of the following reasons. 

 Statistical models are based on the recognition that sample data seldom fit simple theoretical 

functions exactly, because theoretical functions are based partly on restrictive assumptions 

necessary to explain a particular behavior.  The assumptions “assign” unknown degrees of 
freedom to the structural and random components of theoretical models. 

 Some systems exhibit discontinuities and inflection points where the T theoretical behavior 

differs over ranges of X predictors.  Such change in behavior requires changes in the values of 

the  or  coefficients to reflect the change in the response of Y to the T theoretical behavior. 

 The researcher may theorize a relationship Y = f(X,Z), with its known restrictive assumptions, 

but be incorrect due to interactions between or among observed X variables or due to 

unobserved latent systemic variables that modify the relationship between Y and X or Z.  

Both errors arise due to model misspecification or inability to specify the model completely. 

 Measurement errors in predictors X and Z and the response(s) Y may not result in a model fit 

function f, even if it is the correct theoretical behavior. 

 Sampling error, even from correctly randomized selection processes, will result in samples 

that do not reflect the known theoretical behavior at the long term type 1 and type 2 error 
rates.  Further, uncontrolled sampling bias may cause variance(s) from the theoretical 

behavior. 

The problem of integrating deterministic theoretical and stochastic models has been addressed sporadically.  

Mortensen (1969) proposed the following model to account for random environmental forces when modeling 

deterministic functions. 

 

Y(t) = f(X(t), t) + G(X(t), t) v(t) (2) 

 

In the formulation, f is the deterministic gain of the system, X is the state of the system at time t, G accounts for the 

possibility that noise may influence the gain of the system at time t, and v a vector of random error at time t.  

Equation (2) is interpreted under Ito-Stratonovich divergence in which X(t) becomes a Markov process obtained by 

a stochastic differential equation.  Two problems exist with this approach: (1) The Markov process is a mathematical 
idealization that only approximates reality.  (2) The mathematical approximation cannot accommodate semi-

Markovian processes in which errors are correlated and non-Markovian processes which incorporate feedback loops.  

Shi and Olafsson (1997) presented a general simulation methodology for finite optimization of integrated 

deterministic and stochastic systems.  Miller, Caste, and Temples (2000) integrated deterministic and stochastic 

methods to characterize contaminated Ecoene aquifers at the Savannah River Site in South Carolina.  They modeled 

scaled gamma-ray values and percent clay deterministically, created multiple equiprobable realizations of lithofacies 

and grain size, conditioned the lithofacies and grain size to stochastic realizations, and compared models to 

geological interpretations.  The result is a simulation model of contaminated aquifers with limited mathematical 

interpretation.  Min and Zhou (2002) proposed a simulation approach to integrating the deterministic, stochastic, 

hybrid, and information models of supply chains.  As a result of the varying complexity of various supply chain 

representations, the simulations do not yield mathematical interpretation.  Judd, Maliar, and Maliar (2011) presented 
a generalized stochastic simulation algorithm approach in which precomputation of integrals approximate integrand 

expressions inside the conditional expectations with parametric basis functions that are separable in endogenous and 

exogenous state variables. 

This work proposes application of functional causal Bayesian networks embedded within a state-space 

framework for integrating deterministic and stochastic components of dynamic systemic models. 

   

Functional Bayesian Causal Design Topologies 
The general linear model (GLM) has been the fundamental working model of statistical regression and current Six 

Sigma continual improvement.  In matrix form, the GLM is constructed for a set of correlated observations, cor(y, 

X) as, 

 

y = X +  (3) 
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where yn  j is a matrix of response variables related to a  k  j vector of parameter coefficients through a X n  k 

design matrix of predictor variables, and  n  j is a matrix of random errors with E[] = 0 and cov() = .  The GLM 
has been used to model linear, nonlinear, and generalized spatial, hierarchical, and temporal relationships between 

the y response and the X predictor variables through the linear covariance between y and .  The directed acyclic 
graph (DAG) of the GLM is illustrated Exhibit 1. 

 

Exhibit 1.  General Linear Model DAG. 

 

 
 

 

The  coefficients are estimated using least squares or maximum likelihood under the assumptions that: 

 The X1, X2, …, Xk predictor variables are fixed, exogenous (independent) and measured with 

no error. 

 Each i is estimated as a constant. 

 The  parameter matrix is considered to be independent of the matrix of errors . 

 The covariance matrix  of the parameters is assumed to be constant with var(Xk) = 2 on the 
diagonal and cov(Xi, Xj) = 0 on the off diagonal. 

Two major problems exist in estimating the  parameter coefficients.  The first is non-normal variances of the X 

predictors.  When the observations y in the linear regression model y = X +  are normally distributed, the method 

of least squares yields errors that are independent,  ~ N(0, I 2), and the estimate of the  parameters is the 
maximum likelihood estimate.  However, when the y observations follow some non-normal distribution, particularly 

one that has longer or heavier tails or leverage data points, the method of least squares may not be appropriate for 

estimating the  coefficients.  Heavy-tailed distributions and leverage data points usually generate outliers, and these 

outliers may act as influence points on the  estimates.  Robust regression procedures have been developed to 

“dampen” the effect of outlier observations that would be highly influential on  estimates if least squares estimation 
is applied.  Two primary approaches have been taken to robust regression: Lp-norm estimators and M-Estimators.  

The second and more troublesome problem with no definitive solution is that of collinearity among the X predictor 

variables.  Two Xk predictors are collinear if they have a large covariance.  In this case, they are said to be 

confounded in their effect on y.  Confounding arises from either the X predictor variables errors being correlated or 

from a third, unidentified, exogenous lurking variable U not included in the model that affects or predicts the 

collinear xk and xk+l predictor variables specified in the model.  High collinearity causes instability or 

nonconvergence in the estimate of the  coefficients. 
In order to address the two major problems in fitting GLMs and integrate deterministic engineering models 

as system dynamic causal components, this research focuses on building functional  causal Bayesian networks 

within a state-space framework to model joint deterministic-stochastic dynamic causal effects.  The X controllable 

and Z noncontrollable input variables become endogenous variables of the form 

 

xi = fi(pai, uxi) i = 1 to k predictors (4)  

zj = fj(paj, uzj) j = 1 to l covariates 

 

where fi() and fj() take on any linear or nonlinear and constant, temporal, or instantaneous or short-term inflection 
inducing physical model that accurately represents the dynamics of the process, pai and paj are the exogenous and 

possibly endogenous parents of xi and zj respectively whose functional form and current values determine the a 

priori Bayesian state of each xi and zi respectively, and uxi and uzi are structural and random errors associated with 

each xi predictor and zj covariate respectively (notation taken from Pearl, 2009).  The random component of each uxi 

and each uzi is not restricted to being N(0, 2) distributed.  Deterministic physical models are incorporated in their 
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functional form as xi controllable and zj noncontrollable input variables with respective uxi and uzj error terms to 

reflect structural and random lack of fit.  With this functional notation, the GLM of equation (1) now becomes 

 

Min YTotal = f(w(Ypred – T))  
s.t. 

Y = F(pai, uxi) + F(paj, uzj) +  

LX  F(pai, uxi)  UX 

possibly                   LZ  F(paj, uzj)  UZ 
 

where F() is a matrix of functional relationships of the X predictors and Z covariates respectively.  Where the 
functional relationship has an unknown form, fi(pai, uxi) = xi observed data and fj(paj, uzj) = zj observed covariate 

values with the residual error accumulating in the  term.  The  response parameters of Y to X and the  response 
parameters of Y to Z are still constant slope coefficients.  Improved fit may be attained by decomposing the 

deterministic functional forms into systems dynamics elements in the F() functional relationships.   
Under this functional causal Bayesian network modeling approach, the GLM of Exhibit 1 is now 

represented in Exhibit 2. 

 
Exhibit 2.  Functional Causal Bayesian Network GLM DAG. 

 

 
 

 

If, as shown in Exhibit 2, the model diagram is acyclic, the model is semi-Markovian, and the values of the X and Z 

variables will be uniquely determined by the pai, uxi, paj, and uzj.  Additionally, if the uxi and uzj are jointly 

independent and the fxi = xi and the fzi = zi, the model is Markovian and the GLM results.  If the diagram is not 

acyclic, as is the case for non-Markovian models, the values of X and Z cannot be uniquely determined but  can be 

only bounded.     Similarly, under this functional causal Bayesian network modeling approach, lurking variable 

confounding and correlated errors confounding are explicitly modeled as illustrated in Exhibit 3. 
 

Exhibit 3.  Functional Causal Bayesian Network Confounding DAG. 
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State Space Dynamics 
Transitioning from a strictly spatial GLM to a dynamic functional causal Bayesian network modeling approach 

necessitates implementation within a state space dynamic modeling framework in order to track the F(pai, uxi), 

F(paj, uzj), and Y state matrices.  This requires the state space equations to take the form 

 

d/dt [X|Z](t) = F([F(pai, uxi) | F(paj, uzj)](t),[Ui(t)|Uj(t)], t) (6) 

Y(t) = G([X(t) | Z(t)](t), [Ui(t)|Uj(t)], t) 

 

This requires only restating the traditional state space X(t) and U(t) matrices into partitioned forms [X | Z](t) and [Ui 

| Uj](t), which can be implemented in existing state space modeling software.  If a given model diagram is semi-

Markovian with only statistically non-significant confounding or the model diagram is strictly Markovian and the fxi 

= xi and the fzi = zi, existing state space modeling software’s matrix multiplication can be used without further 
modification.  Conversely, if the model diagram is not acyclic or statistically significant confounding exists or 

dynamic causal components of f(pai, ui) and f(paj, uj) must be modeled, the regression model must be updated 

sequentially from input exogenous to endogenous X and Z variables to predicted Y response, and simulation or 

systems dynamics software will be required. 

 

An Integrated Stochastic-Causal Modeling Framework 
Current research is directed toward developing an integrated stochastic-causal modeling framework.  In order for the 
framework to be effective and efficient in deriving functional causal Bayesian models of joint causal-stochastic 

dynamic effects, the following issues must be addressed: 

 Model design decision rules must be developed to guide the model building process.  These 

rules must provide guidance on developing the correct functional forms of f(pai, ui) and f(paj, 

uj) and their graphical relationships.  This is the most critical modeling step, and it is currently 

left to the modeler’s knowledge of the process and his or her intuition. 

 Simulation and systems dynamics software capabilities must be identified in terms of 

modeling worst-case non-Markovian models. 

 Interoperative coding must be developed to integrate the simulation or systems dynamics 

software within existing state space modeling software. 

 In cases where non-Markovian models must be used to represent dynamic processes, guidance 
must be developed on the correct coding sequence to update the simulation or systems 

dynamic model.  Coding sequence will be particularly critical in non-acyclic models that 

exhibit high confounding among the X and Z variables. 

 Systems dynamics and causal Bayesian modeling rules must be integrated into the design and 

modeling code to alert the modeler of rule violations. 

 Causal Bayesian bounding algorithms must be integrated into the modeling code to guide 

identification of X and Z bounds in non-Markovian models. 

 

Continuing Research into Stochastic-Causal Modeling 

Once a cogent functional causal Bayesian modeling framework is worked out, research can be initiated toward 

testing whether  complete differential forms of deterministic and stochastic casual effects or decomposition of the 

differential forms into systems dynamics elements provide improved modeling accuracy.  Again, if it is found that 

decomposition of differential forms into systems dynamics elements provided improve modeling accuracy, model 
design rules will have to be developed to guide the decomposition and modeling processes. 
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