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Abstract   
Cotter (ASEM-IAC 2012, 2015, 2016, 2017): (1) identified the gaps in knowledge that statistical engineering needed 
to address and set forth a working definition of and body of knowledge for statistical engineering; (2)  proposed a 
systemic causal Bayesian hierarchical model that addressed the knowledge gap needed to integrate deterministic 
mathematical engineering causal models within a stochastic framework;  (3) specified the modeling methodology 
through which statistical engineering models could be developed, diagnosed, and applied to predict systemic mission 
performance; and (4) proposed revisions to and integration of IDEF0 as the framework for developing hierarchical 
qualitative systems models.  In the last work, Cotter (2017) noted that a necessary dimension of the systems statistical 
engineering body of knowledge is hierarchical constraint propagation to assure that imposed environmental economic, 
legal, political, social, and technical constraints are consistently decomposed to subsystems , modules, and 
components and that modules, and subsystems socio-technical constraints are mapped to systemic mission 
performance..  This paper presents systems theory, constraint propagation theory, and Bayesian constrained regression 
theory relevant to the problem of systemic hierarchical constraint propagation and sets forth the theoretical basis for 
their integration into the systems statistical engineering body of knowledge. 
 
Keywords 
Causal Bayesian Hierarchical Models, Hierarchical Systems, Systems Statistical Engineering 
 
Introduction 
Cotter (2015, 2016, 2017) developed the quantitative causal Bayesian hierarchal model as, 
 

Min YTotal = f(w′(Ypred – T))          (1) 
s.t. 

Y = F(pai, uxi)β + F(paj, uzj)γ + ε 
LBX ≤ F(pai, uxi) ≤ UBX 

possibly                   LBZ ≤ F(paj, uzj) ≤ UBZ 
 
and demonstrated the applicability of this model to hierarchical propagation of mission outcomes versus requirements 
topologies to sub-system, module, and component functional requirements.  SSE is designed to model dynamic 
systems stochastic-causal functions-to-mission topologies through the integration of general and complex systems 
governance, the cybernetics of Stafford Beer’s Viable System Model, control theory, constraint propagation, and 
causal Bayesian hierarchical regression. 

The core of Systems Statistical Engineering (SSE) is to be a true systems product and process design and 
performance improvement methodology.  As such, SSE extends the current Six Sigma CT-drill-down improvement 
methodology to a broader systems framework in which the problem and its solution effects on systemic performance 
and mission outcomes are modeled holistically.  General systems theory (Ashby 1956, Bertalanffy 1968, Boulding , 
Rapoport 1986) provides the general systemic modeling principles.  Complex systems governance (Keating 2014, 
Keating and Katina 2015, 2016) specifies a reference model of the performance functions necessary to maintain 
complex system viability.  SSE is designed to operate within the Metasystems Two (M2) Information and 
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Communications, Three (M3) System Operations and Control, and Four (M4) System Development functions.  The 
Metasystem Two (M2) function assures consistent and accurate information flows.  The Metasystem Three (M3) 
function monitors, controls, and corrects performance.  Metasystem (M4)  generates and maintains system models of 
current and future performance, mission outcomes and system viability.  Within the Metasystem Four Star (M4*) 
Learning and Transformation subfunction, SSE facilitates learning through the correction of system design errors or 
omissions and transformation of the system to new performance levels.  Within the Metasystem Four Prime (M4’) 
Environmental Scanning subfunction, SSE identifies and maps environmental variation and variety to the variation 
and variety induced in the subsystem, process, or component under study with the objective of redesign toward 
improvement in robust systemic mission outcomes.  Stafford Beer’s Viable System Model (1972, 1979, 1985) 
provides the recursive cybernetic structure necessary and sufficient to guide the redesign of systemic constraints and 
connections of low variety components, processes, and subsystems into high variety absorbing systems.   

Whereas Beer’s VSM provides a systemic description of the System 3 control function, control theory 
(Bubnicki 2002, Özbay, 2000) provides the means to model dynamic uncertainty and bounded stability in multi-input-
multi-output (MIMO) infinite dimension feedback control systems such as the VSM.  As illustrated in Exhibit 1, 
MIMO closed-loop feedback control can be mapped to Beer’s simplified VSM (adapted from Beer, 1985, Figure 7) 
to provide an augmented theory of control not provided by either alone.  Product or process performance Y(t) is 
compared to the reference input R(t), and the error e(t) = Y(t) – R(t) is fed back to the control processes (C).  Here 
“control processes” are a generalization of a physical controller to indicate joint managerial and machine control.  This 
generalization is necessary to map systemic hierarchical constraint propagation.  The Z inputs are known covariate 
disturbances that are either uncontrollable or controllable but not considered sufficiently important to control.  The Z• 
covariates and U• unknown structural and random disturbances map to the ε error term in the Equation (1) 
transformation function but may also bias β and γ coefficient estimates.  This separate mapping allows joint causal 
Bayesian hierarchical and state-space control modeling.  The (Z•, U•) disturbance mappings are important error 
sources not considered by Beer in his VSM specification.  Beer’s First Principle of Organization (1985, p. 30) 
translated Ashby’s Law of Requisite Variety into a necessary condition of variety matching for control: “Managerial, 
operational, and environmental varieties, diffusing through an institution system, tend to equate; they should be 
designed to do so with minimal damage to people and to cost.”  As Exhibit 1 illustrates, variety matching is a 
theoretical construct that cannot be attained in application due to losses induced by the Z•, U• disturbances mapped 
into the output Zp, Up product or service process disturbances.  The practical control objective is to Min YTotal = 
f(w′(Ypred – T)) and re-engineer the product or process to reduce Zp, Up disturbance losses as in the Six Sigma 
methodology. 
 

Exhibit 1.  MIMO closed-loop feedback control mapped to the VSM. 
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The VSM focus on managing variety, as opposed to variation, provides a useful way to map and measure 

hierarchical environmental, supply, customer, and systemic constraint propagation.  Ashby’s Law requires that control 
processes absorb all variety generated by the system.  This requires that control processes must attenuate 
environmental variety and amplify transformation process (P) variety.  Exhibit 1 illustrates both.  Variety attenuation 
is illustrated by the arrows leading from the environment and external suppliers through the transformation process to 
control processes and variety amplification from control processes through the transformation process to external 
suppliers and the environment.  However, it is insufficient to know only which sources of variety must be attenuated 
and amplified.  Control attenuation and amplification boundaries must be aligned with and at least as large as 
environmental and supplier variety boundaries.  Otherwise, excess Z•, U• disturbances will be amplified through the 
transformation process as Zp, Up finished product or service process variation or variety.  Finally, note that Beer’s 
original formulation of the VSM did not specify the dynamics of control.  Rather, variety amplification and attenuation 
were concepts.  Causal Bayesian hierarchical modeling admits identification of variation and variety dynamics.  
Positive or negative shifts or trends in Ypred – T indicate that particular sources of variation or variety have switched 
from stable random variation or variety to needing attenuation to amplification and vice versa.  Statistically significant 
changes in the β or γ model coefficients suggest investigation for boundary misalignment and possible systemic state 
changes. 
 
System Constraint Boundaries Identification and Variety/Variation 
Integration of process control theory and statistical process control (Box and Luceno, 2009) provides the means of 
partitioning variation and variety.  Control theory bounded-input bounded-output (BIBO) stability analysis can be 
applied to identify system viability constraint boundaries and provide a useful means of maximizing constraint 
boundary alignment.  Beer (1979, 1981) provided little guidance on the measurement of variety.    Following 
Shannon’s definition of self-information, in The Heart of Enterprise (p. 520) Beer specified selection entropy as H = 
-Σ pi log2 pi which reduces to H = -Σ log2 V for unbiased probabilities as the measure of system variety.  Other 
information measurements include the joint entropy of two discrete random variables, conditional entropy, Kullback-
Leibler divergence, mutual transformation, and differential entropy.  Espejo and Harden (1989, p. 82) considered 
variety as “… roughly equivalent …” to information but referred to variety as the number of possible systemic states 
(1989, p. 82).  Information measurements are based on proper probability mass functions or probability density 
functions, which measure variation in information content or entropy.  From statistical control theory, as long as the 
system remains in a state of control, dynamic homeostasis, it cannot be considered as having changed states.  Thus, 
information measurements of variation are not sufficient measures of variety as changes in systemic states.  These 
observations admit the following definition of systemic variety: 

 
Definition – Systemic BIBO Stability:  For any technical, social, and information system (or 
system-of-systems) configuration, systemic variety is the number of possible changes in dynamic 
homeostasis states within the system’s (or system-of-systems’) supremum bounded-input bound-
output (BIBO) stability constraints of viability. 

 
This definition is supported by theorical and empirical BIBO stability research.  Sup(BIBO) is necessary to account 
for fuzziness of any given system’s viability boundary.  Since system Y outputs must be bounded in order to provide 
outputs usable to the system for self-maintenance (the Homeostasis feedback loop in Exhibit 1) and usable by its 
customer systems as inputs, multivariate BI[(LBX, UBX), (LBZ, UBZ)]-BO(Y) are estimates of systemic viability 
bounds.  Any state change outside the multivariate BIBO() bounds must result in loss of systemic viability.  
Accordingly, systemic dynamic homeostasis bounds must be less than BIBO() bounds.    From Exhibit 1, variation 
and viability state changes can be measured only in the Y = F(pai, uxi)β + F(paj, uzj)γ ± ε output.   
 

System Viability Theorem: Let PERF(F[(LBX, LBZ)]) be the lower bound and PERF(F[(UBX, 
UBZ)]) be the upper bound of system design limits controllable by a systems designer, where PERF() 
limits are product and service limits set by (M3) System Operations and Control to provide BO(Y) 
outputs usable by the system for self-maintenance or by (M4) System Development to provide 
BO(Y)` outputs usable by its customer systems as inputs for transformation into their respective 
output Y(product, service).  Then, either BO(F[(LBX, LBZ)]) < PERF(F[(LBX, LBZ)]) < BO(Y) < 
PERF(F[(UBX, UBZ)]) = BO(F[(UBX, UBZ)]) or BO(F[(LBX, LBZ)]) = PERF(F[(LBX, LBZ)]) < 
BO(Y) < PERF(F[(UBX, UBZ)]) < BO(F[(UBX, UBZ)])  is required for minimum system viability. 
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Proof: (Necessary) If PERF(F[(LBX, LBZ)]) < BO(F[(LBX, LBZ)]) < BO(F[(UBX, UBZ)]) < 
PERF(F[(UBX, UBZ)]), then induced entropy variety >everywhere system absorption variety rendering 
the system not viable in any state.  (Sufficient)  If BO(F[(LBX, LBZ)]) = PERF(F[(LBX, LBZ)]) < 
PERF(F[(UBX, UBZ)]) = BO(F[(UBX, UBZ)]), then induced entropy variety = system absorption 
variety rendering the system viable in exactly one state of dynamic homeostasis stability. 
 
Corollary (One-degree of design freedom): Exclusively, either BO(F[(LBX, LBZ)]) < 
PERF(F[(LBX, LBZ)]) or PERF(F[(UBX, UBZ)]) < BO(F[(UBX, UBZ)]) is required for exactly one 
and only one state change from dynamic homeostasis stability. 
 
State Change Theorem: A dynamic homeostasis state change occurs if and only if BO(F[(LBX, 
LBZ)]) < BO(Y) < PERF(F[(LBX, LBZ)]) or PERF(F[(UBX, UBZ)]) < BO(Y) < BO(F[(UBX, 
UBZ)]). 
 
Variation Theorem:  System variation occurs if PERF(F[(LBX, LBZ)]) ≤ LNTL(F(pai, uxi)β + 
F(paj, uzj)γ - ε) ≤ Y ≤ UNTL(F(pai, uxi)β + F(paj, uzj)γ + ε) ≤ PERF(F[(UBX, UBZ)]), where LNTL() 
and UNTL() are the lower and upper natural statistical control limits respectively. 
 
Proof: (Necessary) If PERF(F[(LBX, LBZ)]) ≤ BO(Y) ≤ PERF(F[(UBX, UBZ)]), the system remains 
in its dynamic homeostasis stable state, and a change in systemic state cannot have occurred.  Hence, 
only random variation is present.  (Sufficient)  If BO(F[(LBX, LBZ)]) < BO(Y) < PERF(F[(LBX, 
LBZ)]) or PERF(F[(UBX, UBZ)]) < BO(Y) < BO(F[(UBX, UBZ)]), the system has changed from its 
PERF(F[(LBX, LBZ)]) ≤ Y ≤ PERF(F[(UBX, UBZ)]) dynamic homeostasis stable state, and some 
Yi of BO(Y) are not useable by the system for self-maintenance or not useable by the system’s 
customer systems.  Hence, induced entropy variety > system absorption variety rendering the system 
in a state of reduced viability.  If BO(Y) < BO(F[(LBX, LBZ)]) or BO(F[(UBX, UBZ)]) > BO(Y), 
then BO(Y) is not usable by the system for self maintenance and not useable by the system’s 
customer systems.  Hence, entropy variety > system variety rendering the system not viable. 
 
Corollary (Design degrees of freedom): The combinations of ways that BO(Y) can change from 
dynamic homeostasis stability to BO(F[(LBX, LBZ)]) < BO(Y) < PERF(F[(LBX, LBZ)]) or 
PERF(F[(UBX, UBZ)]) < BO(Y) < BO(F[(UBX, UBZ)]) is the design degrees of freedom. 
 
Corollary (Design variation degrees of freedom): The combinations of ways that Y can change 
from its in-control state to either PERF(F[(LBX, LBZ)]) < Y < LNTL(F(pai, uxi)β + F(paj, uzj)γ - ε) 
or UNTL(F(pai, uxi)β + F(paj, uzj)γ + ε) < Y < PERF(F[(UBX, UBZ)]) is the design variation degrees 
of freedom. 
 

In the above theory development, two-sided bounds were considered.  One-sided bounds can be considered  
with no change in theoretical support by setting BO(F[(LBX, LBZ)]) = PERF(F[(LBX, LBZ)]) = LNTL(F(pai, 
uxi)β + F(paj, uzj)γ - ε) = 0 for one-sided upper bounds or BO(F[(UBX, UBZ)]) = PERF(F[(UBX, UBZ)]) = 
UNTL(F(pai, uxi)β + F(paj, uzj)γ + ε) = ∞ for one-sided lower bounds. 

Thus, viable systems design can be viewed through the lens of feedback control filter design.  Any 
combination of socio-technical-information components, modules, and subsystems will yield a multivariate 
BI[(LBX, UBX), (LBZ, UBZ)]-BO[Y] output.  The problem is to identify the combination of socio-technical-
information components, modules, and subsystems will yield the multivariate BO[Y] outputs that maximize 
usability for system self-maintenance and usability inputs for the system’s customers’ transformation into 
their respective output Y(product, service).  Once max(BO[Y]) has been identified, the design problem then 
becomes one of aligning the constraint boundaries such that BO(F[(LBX, LBZ)]) < PERF(F[(LBX, LBZ)]) < 
LNTL(F(pai, uxi)β + F(paj, uzj)γ - ε) ≤ Y ≤ UNTL(F(pai, uxi)β + F(paj, uzj)γ + ε)  < PERF(F[(UBX, UBZ)]) = 
BO(F[(UBX, UBZ)]) to maximize system viability robustness.  Then, statistical system identification methods 
can be applied to specify the form of the causal Bayesian hierarchical model that Min YTotal = f(w′(Ypred – 
T)). 
 



Cotter, Quigley 

5 
Copyright, American Society for Engineering Management, 2018 

 
Bayesian Hierarchical/Supply-Chain Systems Constraint Propagation and Satisfaction 
As a body of knowledge, constraint satisfaction of combinatorial optimization problems emerged in operations 
research during the 1960s.  In this paradigm, constraint satisfaction problems were formulated as a set of variables 
whose state of optimality must satisfy a set of limitations defining a feasible solution region.  Foundational concepts 
such as arc and path consistency were developed in the 1970s.   In the 1980s, constraint satisfaction was extended to 
logic programming in artificial intelligence to address goal provability under constraints.  In the last four decades, 
constraint satisfaction problems (CSPs) in bioinformatics, decision preference, networking, planning, and scheduling 
have been studied extensively in both operations research and artificial intelligence (Barták, 2010).  Ryu (1998, 1999) 
extended CSPs to the construction of hierarchical constraint satisfaction of product taxonomies for individual 
electronic shopping over the Internet.  Ryu’s constraint satisfaction hierarchy construction assumes the each individual 
shopper has the capacity to resolve pairwise product attribute preference differences.  In the case of socio-technical 
systems with competing customer, user, and stakeholder preferences, Ryu’s assumption of pairwise preference 
resolution may not hold strictly.  Barták (1997, 1998) proposed a cell methodology that combines the advantages of 
refining and local propagation methods to solve over-constrained preference hierarchies such as those with competing 
customer, user, and stakeholder preferences.  Barták’s method assumes that conflicting preferences exist a priori and 
does not address setting product or service attribute or characteristic design specification and process control 
constraints.  Integration and extension of Ryu’s and Barták’s methods can address both the setting of design 
specifications and solving over-constrained preference hierarchies.  Finally, CSPs have not been extended to the 
current problem of maximizing BO[Y] under managerial design control constraints C(Xk, …, Xl, Zj, Uj) subject to 
environmental constraints E(Xm, …, Xn, Zk, Uk) shown in Figure 1.  This work addresses hierarchical CSPs that must 
integrate conflicting product and service design specifications and managerial design process control constraints 
subject to environmental constraints. 

Under sup(BIBO) stability-viability, constraint propagation and satisfaction is a problem of finding an 
integral solution of both hierarchical environmental-systemic variety absorption through amplification and attenuation 
as specified by Beer and system identification of throughput BO(F[(LBX, LBZ)]) < PERF(F[(LBX, LBZ)]) < 
LNTL(F(pai, uxi)β + F(paj, uzj)γ - ε) ≤ Y ≤ UNTL(F(pai, uxi)β + F(paj, uzj)γ + ε)  < PERF(F[(UBX, UBZ)]) < 
BO(F[(UBX, UBZ)]) constraint boundaries to maximize system viability robustness.  Dimensions of the constraint 
propagation and satisfaction problem involve integration of: 

• Horizontal hierarchical supply-chain versus hierarchical environmental and systemic constraints. 
• Static versus dynamic constraints. 
• Deterministic fixed versus probabilistic/fuzzy versus possibilistic constraints. 
• Technical-economic versus human preference constraints. 

This work addresses only the first bullet. 
Arguably, the most important constraints are the Y = f(Y1, Y2, …, Yn) products and services performance 

outputs demanded by customers, users, and stakeholders and by the system itself for self-maintenance.  These 
constrained targeted performance outputs are what make the system “purposeful” (Beer, 1959).  Consider a product 
or service component Yi performance output measureable by an r tuple (y1, y2, …, yr) set of attribute and characteristic 
values such that the product or service is fully specified by its Y performance values.  Since characteristics are 
measured on either a continuous interval or ratio scale, any yt characteristic that falls within or outside of its 
PERF(f[(LBX, LBZ)]) ≤ yi ≤ PERF(f[(UBX, UBZ)]) specification limits can be treated as an attribute.  Thus, the balance 
of this discussion will refer to any composite of attribute or characteristic performance output simply as yi.  Extending 
the arguments of Ryu and Barták, let Yi be the component domain of attributes and characteristics f(y1 ∪ y2 ∪ … ∪ 
yr) that yield PERF(f[(LBX, LBZ)]) ≤ Yi ≤ PERF(f[(UBX, UBZ)]) values.  The domain yt is termed an ordered domain 
if a strict total ordering relation can be defined on it.  The domain yt is termed a clustered domain if a directed tree 
structure can be defined on it.  Express a branch of a clustered domain yt as B(y, y′).  The set of transformations f(y1, 
yr, r – 1) that yield PERF(f[(LBX, LBZ)]) ≤ yi ≤ PERF(f[(UBX, UBZ)]) is defined to hold if B(y1, y2), B(y2, y3), …, B(yk-

1, yk) hold for k ≥ 2.  The Cartesian product of component domains Yi = f(y1 ∪ y2 ∪ … ∪ yr) is the attribute or 
characteristic design structure space, and the Cartesian product of product or service domains Y = F(Y1 ∪ Y2 ∪ … 
Yn) is the  product or service design structure space. 

Define a constraint ci on a yi as an expression that establishes a preference relations 〉c or an indifference 
relation ~c on yi.  For a categorical product or service variable, the fundamental relation is a Boolean constraint that 
divides yi into two sets y1 and y2 such that for all ci ∈ y1, E(S | c, y) = 0, and for all ci ∈ y2, E(S | c, y) = 1, where the 
function E(S | c, y) measures the degree of constraint satisfaction by that component.  Similarly, define a constraint 
set Ci on a component Yi. or constraint set C on product Y.  The fundamental Boolean constraint that divides Yi or Y 
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into two sets Y1 and Y2 such that for all Ci = PERF(f[(LBX, LBZ)]) ≤ Yi ≤ PERF(f[(UBX, UBZ)]) or Ci = PERF(F[(LBX, 
LBZ)]) ≤ Y ≤ PERF(F [(UBX, UBZ)]) ∈ Y1, E(S | C, Y) = 0 and E(S | C, Y) = 0, and for all Ci ∈ Y2, E(S | C, Y) = 1 
and E(S | C, Y) = 1, where the function E(S | C, Y)  measures the degree of constraint satisfaction by that component 
and E(S | C, Y) measures the degree of constraint satisfaction by the product.  Let E(S | c, y) = 0, E(S | C, Y) = 0, and 
E(S | C, Y) = 0 mean that yi, Yi, or Y do not satisfy the constraint or constraint set and E(S | c, y) = 1, E(S | C, Y) = 1, 
and E(S | C, Y) = 1 mean that yi, Yi, or Y satisfies the constraint or constraint set. 

A continuous variable constraint  is expressed as r(c, y) where c is now an arithmetic constant and r is one of 
the relations =, ≤, <, or ≠.  Similarly, define a set of variable product or service constraints as R(C, Y), where R is a 
set of relations (=, ≤, <, or ≠).  For an arithmetic constraint c, the degree of characteristic constraint satisfaction is 
measured by: 
 

E(S | c, y) = (ppmAQL – ppmci) / ppmAQL 
 
   E(S | f(yi) = max{|µ(yi) + kσ = ci|}) for ci = desired target value 

  E(S | f(yi) = µ(yi) + kσ ≤ max ci) 
δ(c, y) =    E(S | min ci ≤ f(yi) = µ(yi) ± kσ ≤ max ci) 
   E(S | min ci ≤ f(yi) = µ(yi) - kσ) 
   E(S | f(yi) = min{|µ(yi) + kσ = ci|}) for ci ≠ undesired target value        (2) 

 
where ppmAQL = parts per million defects at the sampling plan acceptable quality level, ppmci = parts per million 
defects at the constraint ci given the current characteristic design,  µ(yi) is a measure of central location, σ is a measure 
of spread from a proper identically, independently distributed (IID) statistical distribution, and k is a constant.  By 
extension, the degree of component and product satisfaction is defined for vectors or matrices Yi = f(y1 ∪ y2 ∪ … ∪ 
yr), µ(Yi), Σ(Yi), and Ci as E(S | C, Y) and for Y = F(Y1 ∪ Y2 ∪ … Yn), µ(Y), Σ(Y), and C as E(S | C, Y).  

The above specifications of constraint satisfaction assume that the constraints are independent and not 
conflicting.    For non-independent conflicting constraints, Barták’s (1997, 1998) method of defining constraint cells 
provides a useful means of resolving satisfaction conflicts in product and service design structure spaces. 

 
Definition – constraint cell: (1) Let C or C be a finite non-empty set of constraints with the same 
satisfaction level for attribute and characteristic sets Yi or Y.  Let (In, Out ⊆ Yi or Y) be a design 
set of attributes and characteristics such that In ∪ Out = Yi or Y and In ∩ Out = ∅.  Define a 
constraint cell as a triple (C, In, Out) or (C, In, Out), and enable a constraint cell in the form ({}, 
{}, C) or ({}, {}, C) containing only the output variable Yi or Y.  (2) Call the sets In and Out as 
input and output sets of attributes and characteristics.  (3) Constraint cell (C, In, Out) or (C, In, Out) 
determines each attribute and characteristic from the set Out. 

 
Defining constraint sets in a cell admits processing conflicts between constraint sets with the same satisfaction level 
within design hierarchies and cycles of constraints. 
 

Definition – constraint cells classification: Classify constraint cells into the following groups. 
• free attributes and characteristics cell ({}, {}, {Yi} or {Y}) 
• functional cell ({C @ 1} or {C @ 1}, In, Out) such that Out ≠ ∅ and for evaluation function 

θ of attributes and characteristics from In there exists a unique valuation V from Out such 
that CθV or CθV holds. 

• generative cell (C, In, Out) or (C, In, Out) such that C ≠ ∅ or C ≠ ∅ and (C, In, Out) or 
(C, In, Out) is not a functional cell. 

• test cell (C, In, ∅) or (C, In, ∅) 
• potentially unsatisfied cell is a generative or test cell. 

 
Definition – internal satisfaction strength: The internal satisfaction of a constraint cell (C, In, 
Out) or (C, In, Out) is the satisfaction strength in C or C.  The internal satisfaction strength of the 
constraint cell ({}, {}, {Yi} or {Y}) is free, which is the satisfaction strength that is weaker than any 
other of the constraints.  Define the internal satisfaction constraint of Cell as E(S | C, Y) or E(S | C, 



Cotter, Quigley 

7 
Copyright, American Society for Engineering Management, 2018 

Y).  We denote that Cell is stronger than Cell′ if and only if E(S | C, Y) > E(S | C′, Y) or E(S | C, Y) 
> E(S | C′, Y). 
Definition – conflict-free hierarchy decomposition: Let H be a constraint hierarchy and sets Yi or 
Y be a set of all attributes and characteristics from H.  Define the finite set CC of constraint cells a 
conflict-free decomposition of the hierarchy H if and only if the following conditions hold: (1) ∀ 
Cell ∈ CC Cell = (C, In, Out) or (C, In, Out) and C or C ⊆ H and In ⊆ Yi or Y and Out ⊆ Yi or Y.  
(2) ∀ c ∈ H ∃! Cell ∈ CC Cell = (C, In, Out) or (C, In, Out) and c ∈ C.  (3)  ∀ y ∈ Yi ∃! Cell ∈ CC 
Cell = (C, In, Out) or (C, In, Out) and y ∈ Out. 
 
Definition – constraint hierarchy network: Let CC be a conflict-free decomposition of H.  Define 
the directed acyclic graph (CC, E) with nodes CC and edges E a constraint hierarchy network of H 
if and only if the following conditions hold: (1) ∀ Cell, Cell′ ∈ CC, Cell = (C, In, Out) or (C, In, 
Out) and (C′, In′, Out′) or (C′, In′, Out′) and In ∩ Out ≠ ∅ ⇒ (Cell, Cell′) ∈ E.  (2) ∀ Cell, Cell′ ∈ 
CC, (Cell is G/T and Cell′ < Cell) ⇒ E(S | C′, Y′) or E(S | C′, Y′) < as E(S | C, Y) or E(S | C, Y).  
(3) ∀ Cell, Cell′, Cell′′ ∈ CC, Cell, Cell′, Cell′′ are G/T and Cell < Cell′, Cell < Cell′′ ⇒ (Cell′ = 
Cell′′ ∨ Cell′ < Cell′′ ∨ Cell′ > Cell′′). 

 
With the above definitions adapted from Barták’s (1997, 1998) method, SSE can now apply any hierarchy network 
construction algorithm to build and resolve product and service design satisfaction conflicts within representative 
hierarchical Y = f(Y1, Y2, …, Yn) products and services performance networks. 

With customer, user, stakeholder product and service constraint hierarchies and systemic maintenance 
constraints defined, the design problem is to specify transformation processes that yield LNTL(f(pai, uxi)β + F(paj, 
uzj)γ - ε) ≤ Yi ≤ UNTL(f(pai, uxi)β + F(paj, uzj)γ + ε) aligned with PERF(f[(LBX, LBZ)]) ≤ Yi ≤ PERF(f[(UBX, UBZ)]) 
that maximizes E(S | C, Y) → 1 and hierarchically LNTL(F(pai, uxi)β + F(paj, uzj)γ - ε) ≤ Y ≤ UNTL(F(pai, uxi)β + 
F(paj, uzj)γ + ε) aligned with PERF(F[(LBX, LBZ)]) ≤ Y ≤ PERF(F [(UBX, UBZ)]) that maximizes E(S | C, Y) → 1.  
In the hierarchical environmental/system network of Exhibit 1, constraints on product or service yi, Yi, and Y 
performance are propagated through the β and γ coefficient transfer functions for the functionality specified in the X 
input variables conditional on the Z, and U inputs in equation (1).  Returning to Ryu (1998, 1999), define a constraint 
set c = (ci, cj, ck) on xi supplied, xj systemic, and xk environmental inputs as an expression that establishes a preference 
relation 〉c or an indifference relation ~c on (xi, xj, xk).  Any constraint set ({}, cj, ck) on the Z• covariates and U• 
unknown structural and random disturbances map to the ε error term in the Equation (1) transformation function but 
may also place unknown constraints on β and γ coefficient estimates.  Categorical Boolean and relational and 
continuous variable constraints r(c, x) and R(C, X) constraints are specified as in the above discussion.  For supplied, 
environmental, and systemic input x’s, the constraint satisfaction problem is one of maintaining hierarchical constraint 
consistency rather than resolving customer, user, and stakeholder constraint satisfaction conflicts. 

Dechter and Pearl’s (1989) and Dechter’s (2006) Adaptive-Consistency algorithm of hierarchical tree 
decomposition can be extended to the construction of consistent hierarchical constraint satisfaction of product and 
service taxonomies as illustrated in Exhibit 2. 
 

Exhibit 2.  (xi, xj, xk) root-directed tree. 
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Only four input variable sets are possible from the generation of a root-directed tree: (1) set ((xi, ci), (xj, cj), (xk, ck)), 
(2) set ((xi, ci), (xj, cj)), (3) set ((xi, ci), (xk, ck)), or (4) set (xi, ci).  Excluding the root nodes, each (x, c) end node may 
have multiple parent nodes.  However, by the superposition principle, the environmental, system, and supply (x, c) 
root-directed trees may be generated separately and overlaid to form the composite root-directed tree.  Then, in each 
(x, c) root-directed tree, each node (excluding the root) will have one parent node directed toward it and possibly 
several child nodes directed away from it.    For the SSE problem of ((xi, ci), (xj, cj), (xk, ck)) decomposition, the 
following tree-solving algorithm may be applied for the input variables. 
 
Tree-solving 
Input: A hierarchical tree network N• = (D, X, C) 

1. Generate a width-1 ordering d = (x1, c1), (x2, c2) … (xn, cn). 
2. Let Xp(i) denote the parent of (xi, ci) in the rooted ordered tree. 
3. For i = n to 1 do 

Revise ((Xp(i), Xi); 
If the domain D of Xp(i) is empty, exit (no solution exists). 

4. End For. 
5. Repeat steps 1 – 4 for the (xj, cj) system tree substituting j for i and the (xk, ck) environmental tree substituting 

k for i. 
6. Form the ((xi, ci), (xj, cj), (xk, ck)) composite root-directed tree by overlaying the (xj, cj) system and (xk, ck) 

environmental trees on the (xi, ci) supply tree. 
 
By the superposition principle, the definitions and theorems for acyclic trees, tree-width and induced-width, algorithm 
adaptive consistency (AC) tree decomposition, and hypertree decomposition hold for each individual tree and the 
composite tree.  Therefore, constraint consistency is maintained within the ((xi, ci), (xj, cj), (xk, ck)) composite root-
directed tree spread across the process-of-interest/scaffolding interaction structure.   

 
Composite Tree Theorem:  The composite tree from the tree-solving algorithm specifies the 
process-of-interest/scaffolding constraint interaction structure of the system of interest. 
 
Proof:  Dechter (2006) proofs of theorems for Algorithm Adaptive-Tree Consistency. 

 
A generic process-of-interest/scaffolding decomposition is illustrated in Exhibit 3. 

The final remaining question to address is identification of the max(ci, cj, ck) least restrictive constraint on 
each Yi = f[(xi, ci) ∪ (xj, cj) ∪ (xk, ck)) and hierarchically Y = F(Y1 ∪ Y2 ∪ … Yn), and the effect of max(ci, cj, ck) on 
alignment of LNTL(f(pai, uxi)β + F(paj, uzj)γ - ε) ≤ Yi ≤ UNTL(f(pai, uxi)β + F(paj, uzj)γ + ε) with PERF(f[(LBX, LBZ)]) 
≤ Yi ≤ PERF(f[(UBX, UBZ)]) and reduction of component E(S | C, Y) → 1 and hierarchically on alignment of 
LNTL(F(pai, uxi)β + F(paj, uzj)γ - ε) ≤ Y ≤ UNTL(F(pai, uxi)β + F(paj, uzj)γ + ε) with PERF(F[(LBX, LBZ)]) ≤ Y ≤ 
PERF(F [(UBX, UBZ)]) and reduction of product E(S | C, Y) → 1. 

 
Most Restrictive Input Constraint Theorem:  The LNTL[(f(pai, uxi)β + F(paj, uzj)γ - ε) | max(ci, 
cj, ck)] ≤ Yi ≤ UNTL[(f(pai, uxi)β + F(paj, uzj)γ + ε) | max(ci, cj, ck)] that minimizes E(S | C, Y) and 
E(S | C, Y) is the most restrictive (ci, cj, ck) constraint set. 
 
Proof:  Part 1.  Let (ci, cj, ck) > (ci, cj, ck)′ > … > (ci, cj, ck)′′ ∈ CC be all possible environmental, 
system, and input constraint sets.  Then, max((ci, cj, ck) > (ci, cj, ck)′ > … > (ci, cj, ck)′′) = (ci, cj, ck).  
Counter argument: Let (ci, cj, ck) < (ci, cj, ck)′ > … > (ci, cj, ck)′′ ∈ CC be all possible environmental, 
system, and input constraint sets.  Then, max((ci, cj, ck) > (ci, cj, ck)′ > … > (ci, cj, ck)′′) = (ci, cj, ck)′.  
Thus, max((ci, cj, ck) ∪ (ci, cj, ck)′ ∪ … ∪ (ci, cj, ck)′′) ∈ CC induces the maximum variation into an 
attribute or characteristic, module, and the system. 
 
Part 2.  The operation max(ci, cj, ck) induces variance into The LNTL[(F(pai, uxi)β + F(paj, uzj)γ - ε) 
| max(ci, cj, ck)] ≤ Yi ≤ UNTL[(F(pai, uxi)β + F(paj, uzj)γ + ε) | max(ci, cj, ck)] either as µ(yi) - 
Target(yi) bias, and likewise into µ(Yi) - Target(Yi) and µ(Y) - Target(Y) bias; as an increase in 
variance in LNTL[]≤ Yi ≤ UNTL[] width relative to PERF(f[(LBX, LBZ)]) ≤ Yi ≤ PERF(f[(UBX, 
UBZ)]), and likewise LNTL[]≤ Y ≤ UNTL[] width relative to PERF(F[(LBX, LBZ)]) ≤ Y ≤ 
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PERF(f[(UBX, UBZ)]); or as both.  Either bias misalignment or variance increase must increase 
ppmci and decrease E(S | c, y), E(S | C, Y) , and E(S | C, Y) for all proper IID statistical error 
distributions. 
 

 
Exhibit 3.  Generic process-of-interest/scaffolding decomposition. 

 

 
 
Conclusions 
This research has advanced development of the Systems Statistical Engineering body of knowledge by the: 

1. Integration of  control theory into general systems theory and complex systems governance theory. 
2. Partitioning of systemic variation from viability and providing a measure for system viability. 
3. Integration of hierarchical constraint propagation into the SSE hierarchical causal Bayesian modeling 

framework.  
This integration was the first step toward systemic modeling of throughput BO(F[(LBX, LBZ)]) < PERF(F[(LBX, 
LBZ)]) < LNTL(F(pai, uxi)β + F(paj, uzj)γ - ε) ≤ Y ≤ UNTL(F(pai, uxi)β + F(paj, uzj)γ + ε)  < PERF(F[(UBX, UBZ)]) < 
BO(F[(UBX, UBZ)]) constraint boundaries to maximize E(S | C, Y)  component and E(S | C, Y) product constraint 
satisfaction and ultimately system viability robustness. 
 
Continuing Research 
Continuing research into the development of a Systems Statistical Engineering body of knowledge is directed toward: 

• Static versus dynamic constraints. 
• Deterministic fixed versus probabilistic/fuzzy versus possibilistic constraints. 
• Technical-economic versus human preference constraints. 
• Systems boundary interface decomposition and synthesis. 
• Systems performance functional activation decomposition and synthesis. 
• Systems with nonrecursive directed acyclic graph feedback loops. 
• Model synthesis and verification. 
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