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Photon impact factor and k; factorization for DIS in the next-to-leading order
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The photon impact factor for the Balitsky-Fadin-Kuraev-Lipatov pomeron is calculated in the next-
to-leading order approximation using the operator expansion in Wilson lines. The result is represented as a
next-to-leading order kp-factorization formula for the structure functions of small-x deep inelastic

scattering.

DOI: 10.1103/PhysRevD.87.014013

L. INTRODUCTION

It is well known that the small-x behavior of structure
functions of deep inelastic scattering (DIS) is determined
by the hard pomeron contribution. In the leading order, the
pomeron intercept is determined by the Balitsky-Fadin-
Kuraev-Lipatov (BFKL) equation [1] and the pomeron
residue (the y*y*-pomeron vertex) is given by the so-
called impact factor. To find the small-x structure functions
in the next-to-leading order (NLO), one needs to know
both the pomeron intercept and the impact factor. The NLO
pomeron intercept was found many years ago [2] but the
analytic expression for the NLO impact factor is obtained
for the first time in the present paper.

We calculate the NLO impact factor using the high-
energy operator expansion of the 7 product of two vector
currents in Wilson lines (see, e.g., the reviews [3,4]). Let us
recall the general logic of an operator expansion. In order
to find a certain asymptotical behavior of an amplitude by
operator product expansion (OPE) one should

(1) identify the relevant operators and factorize an am-

plitude into a product of coefficient functions and
matrix elements of these operators,

(i1) find the evolution equations of the operators with

respect to the factorization scale,

(iii) solve these evolution equations,

(iv) convolute the solution with the initial conditions for

the evolution and get the amplitude.

Since we are interested in the small-x asymptotics of DIS it is
natural to factorize in rapidity: we introduce the rapidity divide
1 which separates the “fast” gluons from the “slow” ones.

As a first step, we integrate over gluons with rapidities
Y > 7 and leave the integration over Y << 5 for the later
time; see Fig. 1.

It is convenient to use the background field formalism:
we integrate over gluons with @ > o = ¢” and leave
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gluons with @ < ¢ as a background field, to be integrated
over later. Since the rapidities of the background gluons are
very different from the rapidities of gluons in our Feynman
diagrams, the background field can be taken in the form of
a shock wave due to the Lorentz contraction. To derive the
expression of a quark (or gluon) propagator in this shock-
wave background, we represent the propagator as a path
integral over various trajectories, each of them weighed
with the gauge factor Pexp(ig [ dx, A*) ordered along the
propagation path. Now, since the shock wave is very thin,
quarks (or gluons) do not have time to deviate in a trans-
verse direction so their trajectory inside the shock wave
can be approximated by a segment of the straight line.
Moreover, since there is no external field outside the shock

Y>M
———

—_— 7— Y<N
& + & +

...................

FIG. 1 (color online). Rapidity factorization. The impact factors
with Y > 7 are given by diagrams in the shock-wave background.

Wilson-line operators with ¥ < 7 are denoted by dotted lines.

© 2013 American Physical Society
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wave, the integral over the segment of the straight line can
be formally extended to *oo limits yielding the Wilson-
line gauge factor

Ul = Pexp[ig foo dupi’A%(up, + xl)],
‘ (1
Aﬂo=ffw@WﬂWMWMAm
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where the Sudakov variable « is defined as usual, k =
arp1 + Bipa t k. We define the lightlike vectors p; and
py such that g = p; — xpp, and p = p, + mTi’pl, where ¢
is the virtual photon momentum, p is the momentum of the
target particle, and xz; = Q?/s < 1 is the Bjorken variable
(at large energies s = 2p - g). The structure of the propagator
in a shock-wave background looks as follows (see Fig. 2):

[Free propagation from initial point x to the point of intersection with the shock wave z]

X [Interaction with the shock wave described by the Wilson-line operator U, ]

X [Free propagation from point of interaction z to the final point y].

The explicit form of a quark propagator in a shock-wave
background can be taken from Ref. [5]:

quimmhﬁm—ffﬁmbﬁggﬁh
(-9

XU, ——————.
2t (x — )t

(2)

As usual, we label operators by hats and ((b)A means the
vacuum average of the operator O in the presence of an
external field A. Hereafter, we use the notations x, =
By = a5 = pfy =% Tand ic i
Dy Xy TXT, Xe = P Xy o X [and our metric is
(1, —1, —1, —1)]. Note that the Regge limit in the coor-
dinate space can be achieved by rescaling
2 2
X— pX.—p; T xe—pr+ x4,
’ P 3)
2 2
Y2 pys_P1 T Ye P2 T YL,
s sp

with p — 0; see the discussion in Refs. [6,7].

The result of the integration over gluons with rapidities
Y > n gives the impact factor—the amplitude of the tran-
sition of virtual photon in two-Wilson-lines operators
(sometimes called ““color dipole’’). The LO impact factor
is a product of two propagators (2) (see Fig. 3)

(T Y™ § ) IOy F (3D
8 tr{Ule;rz} 92
 2970x2y2 f @180 (k- () (k- &) axtay”

X[2(k - &)k - &) = k(4 - )]+ Olay). “4)

/I\ =
{ y

FIG. 2 (color online).

Propagator in a shock-wave background.

Here we introduced the conformal vectors [8,9]:

K=K, K

S (P

y

D1
§ = (7 + 2z pyt Zii)’

PACTAE The above equation is

explicitly Mobius invariant. In addition, it is easy to check
that & (r.h.s) = 0.

Our goal is the NLO contribution to the right-hand side
of Eq. (4), but first let us briefly discuss the three remaining
steps of the high-energy OPE. The evolution equation for
color dipoles has the form [5,10]

and the notation R =

d PN o, 72
= ir U"UT" =—“jd2Z 12
dn { Yz } 2 3 Z%3Z%3

X [t{0? OT"{ 07 017
— N{02 U ;r;’}] + NLO contribution.
(©)

(To save space, hereafter z; stands for z;) so z}, =z,
etc.) The explicit form of the NLO contributions can be
found in Refs. [4,11,12] while the argument of the coupling
constant in the above equation (following from the NLO
calculations) is discussed in Refs. [13,14].

FIG. 3 (color online).
lines represent quarks.

Impact factor in the leading order. Solid
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It is worth noting that we performed the OPE program
outlined above for the scattering of scalar “particles” in
N = 4 super Yang-Mills and obtained the explicit expres-
sion for the four-point correlator of scalar operators at high
energies in the next-to-leading order [7]. In QCD, the
analytic solution of the evolution equation for color dipoles
with a running-coupling constant is not known at present.
This prevents us from getting the explicit NLO amplitude
as in the N* = 4 case. We can, however, perform the first
two steps in our OPE program discussed in the
Introduction: calculate the coefficient function (impact
factor) and find the evolution equation for color dipoles.
The next two steps, solution of the evolution equation (6)
with appropriate initial conditions and the eventual com-
parison with experimental DIS data are discussed in many
papers (see, e.g., [15]). It is worth noting that, contrary to
the evolution equation, the NLO correction to the impact
factor has nothing to do with the running of the coupling
constant—it starts at the next-to-next-to-leading order
level. Thus, the argument of the coupling constant at the
NLO level is determined solely by the evolution equation
for color dipoles. For numerical estimates involving the
impact factor, one can take a(|x — y|) as the first approxi-
mation since the characteristic transverse distances in the
impact factor are ~|x — yl.

The paper is organized as follows: in Secs. II and III we
calculate the NLO impact factor in the coordinate repre-
sentation (the results of these sections were published
previously in a Brief Report [16]). The Mellin representa-
tion of the impact factor is presented in Sec. IV and V
contains the impact factor in the momentum representation
for the forward case corresponding to deep inelastic scat-
tering. Finally, we present the NLO BFKL kernel and
discuss the k; factorization for DIS in Sec. VL.

II. CALCULATION OF THE
NLO IMPACT FACTOR

Now we would like to repeat the steps of operator
expansion discussed above to the NLO accuracy. A general
form of the expansion of the T product of the electromag-
netic currents in color dipoles looks as follows:

(x = YATLG ) y# F () d () y” F()}

d’z,d’z o a A
= /#{1;59(11, Zz)[l + ;S]tr{UZ ot
1

2
+ [dzzﬂﬁlﬂo(zlr 2,23 M)

X [{03, 01 l02 087}~ Nast02,02). - )
Unfortunately, in terms of the Wilson-line approach, there

is no direct way to get the NLO impact factor for the BFKL
pomeron. One needs first to find the coefficient in front of

PHYSICAL REVIEW D 87, 014013 (2013)

FIG. 4 (color online).
order.

Impact factor in the next-to-leading

the four-Wilson-line operator (which we will also call the
NLO impact factor) and then linearize it.

The structure of the NLO contribution is clear from the
topology of diagrams in the shock-wave background; see
Fig. 4 below. Also, the term ~1 + “; can be restored from
the requirement that at U = 1 (no shock wave) one should
get the perturbative series for the polarization operator
1+ %+ O(a?).

In our notations

R? a2
(k- {) (K &) xko

1
- §K2(§1 : 52)], (8)

I;LL(;?(ZL ) =

; [<K k- 8
y

which corresponds to the well-known expression for the
LO impact factor in the momentum space.

The NLO impact factor is given by the diagrams shown
in Fig. 4. The calculation of these diagrams is similar to the
calculation of the NLO impact factor for scalar currents in
the N = 4 SYM carried out in our previous paper [12].
The gluon propagator in the shock-wave background at
X, > 0>y, in the lightlike gauge pé‘AM = 0 is given by
[17,18]

(T{A5, ()AL (7))

x*>g>y* _i fd4 8( )X*gi_f - pZM(x - Z)é_
2 ) TR = 7 T e

1
w 1 38t = Py — 2§
Lo e R e

€))

1 1
d.+ie J.—l€

result. [This is obvious for the leading order and correct in
NLO after subtraction of the leading-order contribution,
see Eq. (16) below.]

The diagrams in Fig. 4 can be calculated using the
conformal integral

where ai can be either or which leads to the same

014013-3
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f—7 =% z,
[d4z(x—z)47“ z—y*2*

=] (%)

1 X—5
+ E(M% —Yu¥¥) Tt 2xﬂyym] —new,

—pev

(10)

which gives the three-point i i F wv Green function in the
leading order in g. Using Egs. (2), (9), and (10), perform-
ing integrals over z,’s, and taking the traces one gets after
some algebra, the NLO contribution of the diagrams in
Fig. 4 is in the form

Flg (Zl,Zz, Z3) i’iw(Zl,Zz, Z3) + igV(Zl,Zz, 23), (11)

where

(&1 &)
(51 ’ 53)(51 : 53)

o0 .
Xj(; Zaetaza'z3 (12)

i';“/(zl’ <2, 23) =

o
47:2 Ib?(Zl, 2)

and

(1) (21,22, 23)

_ R? {(K'fz) 9* [_(K' £)?
1678 (k- £) (k- &) Wk &) ax#ay”L (4i-&3)
n (k- {)(k-&) | (k&) k-5 L) K2 fz):l
(&2 &3) (&1 8 6) (&2 83)
+(K‘§2)2 0* I:(K'fl)(K'§3)_K2(§1‘f3)j|
(k-&3)* axtay’L (& &3) 2(8H083)
Ha-o) (13)

[recall that Z%]- 1

2(4 g/) and Z T(K gl)] We

obtained this expression at x,. > 0 > y,, but from the con-
formal structure of the result it is clear that this expression
holds true at x, <0 <y, as well.

The integral over « in the right-hand side of Eq. (12)
diverges. This divergence reflects the fact that the contri-
butions of the diagrams in Fig. 4 are not exactly the NLO
impact factor since we must subtract the matrix element
of the leading-order contribution. Indeed, the NLO impact
factor is a coefficient function defined according to Eq. (7).
To find the NLO impact factor, we consider the operator
equation (7) in the shock-wave background [in the leading
order (U, ), = U_,]:

PHYSICAL REVIEW D 87, 014013 (2013)
Ty G T3y F(3)Da

d’z,d*z
- f#lw(x y’Zl»Z2)<tr{Ule "Da
12

d*z,d%*z
_ [#d sINEO(x, y3 21, 22, 235 M)

212
X [te{U,, UL W{U UL} = N{U, UL (14)
The NLO matrix element (7{s (x)7* s (x) () y* ()P
is given by Eq. (11) while the subtracted term is
o

s d’z,d’z cda z2
P f 1 2ILO( 2,2 2)[ [ 12
. 213253

X [t{U,, Uz‘g}tr{UZS UZZ} — N.tr{U,, UZZ}], (15)

as follows from Eq. (6). The « integration is cut from above
by o = ¢7 in accordance with the definition of operators

U"; see Eq. (1). Subtracting (15) from Eq. (11) we get
I;%O(er 2,23:M) = Ifw(Zl, 2, 23:m) + Iéw(er 22, 23);

I (x, 321, 20, 233 M)

ag © da s cda
by oG 1,22) I:[ mzz_[ _]
13123 0o « 0o @
— % o T [1 nZz, -7 c] 16
27T 13Z2g 4 3 2 ’ ( )

where C is the Euler constant. Note that one should expect
the NLO impact factor to be conformally invariant since it is
determined by tree diagrams in Fig. 4. However, as dis-
cussed in Refs. [4,7,11], formally, the lightlike Wilson lines
are conformally (Mobius) invariant but the longitudinal
cutoff @ < o in Eq. (1) violates this property so the term
~ Ino Z5 in the right-hand side of Eq. (16) is not invariant.
As was demonstrated in these papers, one can define a
composite operator in the form

7y o A 2 Z%Z
[0, UF}, = w{0? o [ Pz,
T 213323
x [tr{ag Ot y( 07 01}
— Ne{07 U1} n le + 0(a?),
SZHZ23
(17)

where a is an arbitrary constant. It is convenient to choose
the rapidity dependent constant @ — ae 27 so that the
[tr{U U Jf”}]c"“f does not depend on i = Ino and all the
rapldlty dependence is encoded into a dependence. Indeed,
it is easy to see that ﬁ[tr{UleA]gz}]gonf =0 and L x
[t{U, U} is determined by the NLO Balitsky-
Kovchegov kernel which is a sum of the conformal part

and the running-coupling part with our O(a?) accuracy
[4,12].

014013-4
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Rewritten in terms of composite dipoles (17), the opera-
tor expansion (7) takes the form

T{H )y () § () y” ()}
_ d221d222 LO t
[ S {1 (zl,za[l " ][t {0, 01},
+ [d2Z3IEI,;0(Z1, 22, 235 a)[tr{ljzl 033}&{013 0;2}

— N.ur{U,, 0;}]4. (18)

We need to choose the “new rapidity cutoff” a in such a
way that all the energy dependence is included in the
matrix element(s) of Wilson-line operators so the impact
factor should not depend on energy. A suitable choice of a

isgivenby ag = —k 2 + ie = — S?X 7 + i€ so we obtain

(= T @y )y ()}
_ d221d2Z2 wy T
j e {1 (11,12)[1+ ][tr{U 0t 1.,
K2(§1 '§3)(f1 ‘53)

a, 3
+[d223[ S5 <1p
dar 213333

2k GG H)
+ Ié”][tr{f]zl OL)e{0, 0L} = Nete{O, UIZ}]“O}'

- 20)155

19)

Here the composite dipole [tr{U" UJ“"}]aO is given by

Eq. (17) with a, = s(;*yy“) + ie while 1/'5(zy, z,) and

157 (zy, 25, z3) are given by Egs. (8) and (13), respectively.

NLO(x Y521 ZZ) =

{51 fg + 48
(k- &)k - &)

[4L12(1 SRy -2y

PHYSICAL REVIEW D 87, 014013 (2013)

II1. NLO IMPACT FACTOR FOR THE BFKL
POMERON

For the studies of DIS with the linear NLO BFKL
equation (up to two-gluon accuracy) we need the linearized
version of Eq. (19). If we define

U (Zl’ ZZ) =1- _[tr{Ule }]al (20)
and consider the linearization

| 1 .
~7 il 01 yw{0,, 01} - ~ U, Ut Y.,
c [

= 'u(Zp Zz) - 'u(Zp 23) - 'u(Zz, Z3),

one of the integrals over z; in the right-hand side of Eq. (19)
can be performed. The result is

i(x—y)‘*T{ib(x)wzz<x>fp<y>w><y>}

_ OK® OKP dzldzz
CD gy () 1L0(1+ )+1NL0]
ot ay” Z]Q aO(Zl Zz)[

21

where

—5f

B b)) — 0 Lf
Iaﬁ Vi Z1, _ Rzg 162 152
oo y2n ) = Tk B)

(22)
[see Eq. (8)] and
272 2InR  InR 1

7 Pior TR MR g

Y (L )1i+zc)—4c—§]
(“R R (n’R R

{1"‘{1 InR
" ((sz +a-o) 'y

{f‘KB + gf;c“
+|: (k- &)K?

TR R R

T B

gaﬁ(ﬁ X0,

2C InR 1 ]

IR — o+ D20+

nR IR 3.5 2C:|
I-R R 2R R

2 K KP
_ = af _ 2 +
(e =255)

(k- L)k &)

2
[2% — 4Liy(1 — R)

—2(1ni+i+L—3)(1ni+2c)+61n:R—3+2+ ) ]} (23)

R R 2R?

R 2R?

where Li,(z) is the dilogarithm. Here one easily recognizes five conformal tensor structures discussed in Ref. [19].

While it is easy to see that
d 1

IK® KB

ap0yiz) =0, (24)

dx, (x— y)* ax* ay”
one should be careful when checking the electromagnetic gauge invariance in the next-to-leading order. The reason is that

the composite dipole U °(zy, zp) depends on x via the rapidity cutoff @y = — s(‘;j‘y")z, so from Eq. (21) we get

014013-5
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(x—y* pg‘) 1 0k akP
(x —y)? (x — y)4 Ix* y”

dz\d
x[ Zzl = L9 y,z)a U azp 2)la: 29)
12

] Ik OKkP dzldzz
Ix, (x —y)*axk ay” J oz,

uao(Zp Zz)]l;nfgo(x, yizi) = (2

Using the leading-order BFKL equation in the dipole form [linearization of Eq. (6)]

23 12 [U, (21, 23) + Uu(za 23) — Ualzy, 22)] (26)

13 23

d -
—Uu ,
ad[l u(Zl

we obtain the following consequence of gauge invariance:

AL NP yiz) = oo R*[(L—%mR)al“K
8 ay”

ax,u (_x — y)4 JoxH ay x*(x - y)6 2R
InR 5 1
+ (T ToR 2’R2)a —[In(k - ¢;) + In(x - 52)]] (27)

We have verified that the expression (23) satisfies the above equation.

IV. PHOTON IMPACT FACTOR IN THE MELLIN REPRESENTATION

In preparation for the Fourier transformation, we calculated the Mellin transform of the photon impact factor (23). We
project the impact factor on the conformal eigenfunctions of the BFKL equation [20]

z L+ivHir 7 1+iv—4
EV/:(ZIO’ZZO)_I: = ] 2[_ 12 ]2 ’ (28)

Z10Z20 210220

(here Z = z, +izy, T = 2z, — iZy, 210 = 21 — %o €tc.). Since electromagnetic currents are vectors, the only nonvanishing
contribution comes from a projection on the eigenfunctions with spin 0 and spin 2. The spin-0 projection has the form
(throughout the paper we reserve the notation 7y for % + iv)

( )jl&ﬂ(x y; 20, ¥) jNLO(x, V520, V)

d*z,d%z, Ik OKP o
= /172 IV [(1 )]LO(X Viz1, 22) + ]NLO(xyy;ZI’ zz)]< . 122 )
le o 7 210%20

L B3 9y + L@ - 7)((2 20)2)’{— 225, + Sz),w[

]

4 A4

A

2S2MV[1 + —+ 5 c Fz('y)] + 2')/(S2 S3)MV[1 + —
T

a2
Yy 1 2 a; afSNC
mv

N.
(S, + 5,),,2 + w[l + 2oy B F5<y>]}, (29)

- a2N F3(7):|

WhereyE§+iv,)‘/E1—7=%—ivand

b% 1 1
Fily)=F(y)+=L,  Fy)=F@y) -1+-—+x,  Fy)=F@) + 5 Xy
Yy 2yy

6 3 2, 3yyx, +1-2yy

Fy(ly)=F(y) ——+—=——=, Fs(y) = F(y) + - - 30
! Yy VY vy : Y72 + ¥y) (30)
2 277 —2
F(y)—T”H— T _ocy, + =
sin® 7y Yy

and

014013-6
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wv _ 072 Ink? wv _ 9Ink? 9 Ink?
L ax, 9y, 2 ax, Ay,
s = aaan2 dlnk - £, N dlnk - £, aanZ’ a1
Xy dy, dx, dy,
s = dlnk - ¢y dlnk - {0‘
axM ay,

The contribution of spin 2 in the ¢ channel has the
form

O
(1-+ ) T50506 ¥3 20, ) + THS3(%, v5 20, )

d2Z1d222 K dKB LO
= '/T ok 0y [(1 + 77_)] (x, y:21, 22)

INLO()C 21, Zz)]< Z12 )7 ~Zl~2 ZIE)ZZO
21022() 210220 <12
1
- BQ-y2—yI(y+2
PP pa— 2-v Yy +2)
oN.
XT3 — y)[l % & CF6(y)]Sg‘”, (32)
T 21
where
2 2 2 I+ x, =55
Fo(y)=F(y)+————+—o—5+3—>"" X
Yy ¥y ¥y 2+yy Yy
(33)
and
wy ) J
S5 =gt —ight — 2(x — zo)* — Ink - ¢y
029
n 4py (k- Lo)ky - &) 0 x 50]
T2 — In
Vs (k- &o) %0 Ky do
d
X I:gyl —ig” = 2(y — z0)" —— Ink - §,
3%
4L5 (ky + o)(ky - Lp) 9~ nKx : fo:l. (34)
Vs (k- o) %o Ky do

Using the decomposition of the product of the transverse
6 functions in conformal three-point functions (28)

5(2)(21 - Z3)5(2)(Zz - Z4)

dl/V2+
-3

7 3,

fd 20E 1 (210, 220)E7, 1 (230, 240)s

(35)

we obtain

PHYSICAL REVIEW D 87, 014013 (2013)

Ung—[ ;[ (E;)PWM@WHﬂ+D

2122103 2
x[wru( (2o, ¥)

210220412
Z12Z10220 £
+ 0Ny ] (36)
Z10Z20Z12
where
A dZZ]dZZQ 7 Y »
_ 12
Uarzo) = [A52(22) U 22
T2 \L10%20
A ) _, 2
,H(Z)(y )= d°z,d°z; Z12 Y i A ( )
a \F20 24 2 2 55 W21, 22),
212 \Z10p%20 210220
) 2
2 (2) d°zid°z (2 77 Z12
u (V ZO) _f 77_2 4 2 2 %) U (Z], ZZ)
<12 \10<20 Z10220
(37

is a composite dipole (17) in the Mellin representation.
Substituting the decomposition (35) in Eq. (21) we get
the high-energy OPE in the form

ﬁﬁx—wﬁﬁwm?@»

=[5 et

+ T y; 2, V)]’flao(v, )

o[

+ Jhaa(x vizo, V)}ﬁao(u, 20) + c.c.]}. (38)

a
+ S)jll;%(xx y; ZO) V)
T

0Pt 2Nt 3:20,)

Equation (38) and its Fourier transform (46) are the main
results of this paper.

At this point it is instructive to check again the photon
gauge invariance % T{j*(x)j"(y)} = 0. Since a, =

— k% + ie we need to differentiate ’Uao(v, Zp) too:

d
’Uao(v 20) = a—’U (¥, 720 4= w“3 —— Inay.  (39)
axt axH

Let us start with a spin-2 contribution. It is easy to
see that
a S

, 9
Gy S g g =0

oxHt

and therefore the second term in the right-hand
side of Eq. (38) is gauge invariant (recall that
ag = —Kk %+ ie).

For the spin-0 part we need to use Eq. (39). Since
U*(v, zp) are the projections of color dipoles on the
eigenfunctions (28) of the BFKL equation, the evolution
equation (26) simplifies to
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d ~ .

20% U, (v, 29) = 0 (v) U (v, z9), (40)

where w(v) = is the BFKL pomeron intercept (as
usual y = § + iv). We obtain

— U, (r,29) = — “’(V) 22, (v, zo)— k2 (41)

In the leading order, the derivative (41) does not contribute
so the formula for gauge invariance is simply

— Te3(x y120,v) = 0.

It is easy to demonstrate that 71,3 in the right-hand side of

Eq. (29) satisfies this requirement.
In the NLO, we need both J} NLO and 0J5 LO parts so

the requirement for electromagnetlc gauge 1nvar1ance
takes the form

d Ink?
Te3(x ¥; 20, v) .

(42)

We have checked that the right-hand side of Eq. (29)
satisfies this equation.

d w(V)

a— NLO('X Y5 20, V)

V. PHOTON IMPACT FACTOR IN THE
MOMENTUM SPACE

In general, the rapidity evolution of color dipoles is
nonlinear but in this paper we assume that we can lin-
earize it to the dipole form of the BFKL equation, like in
the case of scattering of two virtual photons. Moreover,
we will consider only the forward case which corresponds
to deep inelastic scattering. In this case, one may write
down the high-energy OPE in the form of a
kp-factorization formula

PHYSICAL REVIEW D 87, 014013 (2013)

where
(Ulky)) = [ dxy e~ 9 WU(x ., 0)),

q=p + ‘f—:pz and p=p, + "szpl is the target’s mo-
mentum. The reduced matrix element (p|UK)|p)) is
defined as

(I UBNp + B2y = 2m8(B)X I LB p)).
(I TR ) = [ Pze 0P UCOpY,  (44)

where the factor 2776(8) reflects the fact that the forward
matrix element of the operator U)CU}L contains an unre-
stricted integration along the p;. Our goal in this section
is to find the impact factor 7,,(g, k;) in the next-to-
leading order.

Since our ‘“‘energy scale” a;, = — k2 for color dipoles
depends on x and y, to perform the Fourier transformation
of the OPE (38) one should express ’U% in terms of ’ilam
with a,, independent of coordinates x and y. A suitable
choice is a,, = 1/xz. With this choice, the impact factor
does not scale with s and all the energy dependence is
included in matrix elements of color dipoles. This is
similar to the choice u?> = Q? for the DGLAP evolution:
the coefficient functions in front of the light-ray operators
will not depend on Q? [except for a,(Q?) of course] and
all the Q? dependence is shifted to parton densities. The
leading-order evolution of a color dipole ’ua is given by
Eq. (40)

o(v)

UaO(V 20) = U (V z0)(apxp) =

. r s . (45)
[ dxe oG, 0p) U0, ) = U, ZO)(WB)M )
=3 [ @k, 1 { 4
2 [d kilunla kL )CPIULIPD. ) so the Fourier transform of Eq. (38) yields
|
L [ tadtsotraee 17,007
N xd*yd(y,)e Ty by, ()}
=[@j‘ { (7 +2Or2Q -y +4) 2y -1
7 ) = 2y + 0@ + y + 2 2y + 1
X T2 — y)[(w 4 2)P’“’(1 + I S Ne @1(V)) + Byy + 2)1»*”(1 4 %y ole a (V))]fuam@o, v)
5 — v + @22 w(2 Yy .
A G NC Y 5 4 0, 2P + U 0, 200P47]
2I'(4 =2y + w(2, V))T2 + y + &55)
a; | aN, I2(y) (0 'TQ2 + )
X (l + P + o F(,(V))} r(27) YEaR (46)
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where
quqv

Pl“’ — g'lLV _1p ,

1 7
por _ V(PN PR

2 2 q q >

q q-° P2 ) 47)

PRy = (gt —igh?)(g"! —ig"),

PRy = (gh! +igh?)(g"! + ig"™),

and
|

I(=y)rd —29)1*(y)

Uto ) = 5103

(U (z0, v)) =

- I2(y)IrEy)
2 (2) L(y)L'G =221 + y)

PHYSICAL REVIEW D 87, 014013 (2013)

3y, 25 N 11
2+yy 182-v) 2y 2y
3 7 N 10
18(1+7y) 3(1+7y)*
1 7 Xy
- +
29y 22+3yy) 1+vy

@, (v)=F(y)+

+Xy(1 +3y)
24 3yy
(48)

The last step is to rewrite Eq. (46) in the ky-factorized
form (43). Using

®y(v)=F(y)+

L encu),
d*k k )
el wy,

we get

4 . 2 . (2
/d4xdz*€qu<P|T{J#(x + fz*pl)Jy(f z*pl)}lm

K dv

4T3 - Y22 — I+ 2y)

7 DY(H) () (pl U p) [ T(F + 4HT2 —

41 k

y+ 24T — 292 + )

s [ [2(5)
“2 ) 327 ) 472\Q*) TQ2y)I'2y) 3+ 4yy
X [(w + 2)P{‘”<1 + %y

T(y + 22122 —

T2 - yrd -2y + 0o@)2 + vy + 2
"‘25—1\’0@,(;/)) + (3y7 + 2)P5V(1 4%y "‘57]\:“ @2(,,))]

cu(2 v)
y+HEOTE - 292+ y) ¥y, W(l 4% “ZN Fé(,,)>} (50)

L(y)I22 - y)'4 -2y + w(2 L2 + y + 222 2

where

v 1 72D 2 D k‘j‘:ki v
PEY = Z[RRPH 4 R2Par] = p=L L gk
3 kﬁ_

-
St

There is a subtle point in the Fourier transform of Eq. (46):

the contribution of infinite z; doubles the result from finite

Zo as shown in the Appendix.

Note that w(v) = %%y, and (2, v) = 20 (y, — %)
are of order a; so one should expand the expressions like
I'4 — 2y + w(v)) in Eq. (46) up to the first order in w(v).
Using definitions (43) and (44) one obtains the impact
factor in the form

(g k) = Ne f sinh7ry (kz)
TR 7998 ) e (1+ VZ)COSh27TV 0?

><{G+ zﬂ)[l +—*+ v ]P{”
O e
sl <v>]P“}

1

where (as usual, y =1+ iv)
Fiow) =05 (») + x, ¥(v),
1
o) = Fo(0) + 1ty = W),

Y() =g (y)+2¢2—y) - 294 —2y)— y2+y).

(52)

The structures P and P, correspond to unpolarized struc-
ture functions F(xz) and F,(xz). The third term vanishes
for nucleon structure function but contributes to the polar-
ized structure functions of a vector meson (or photon).

It is instructive to compare Eq. (51) with the well-known
double-integral representation of the leading-order
impact factor (see, e.g., Refs. [3,21]):

2

I*(q, k) = — [ dudv {(1 — 2iu — 20v

Q%iiu + kJ_vv
+ diauvv)P!” + (1 — 2iu — 20v

2uuvv

+ 12auvv)Py" + (P* k2 + P””kz)}

i
(53)
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(Note that the definition of I#”(q, k) differs in sign and N,
from that of Ref. [3].) It is easy to see that Eq. (53) is equal
to LO terms in the right-hand side of Eq. (51).

VI. NLO BFKL FOR COLOR DIPOLES

For completeness, in this section we present the (line-
arized) evolution equation for composite color dipoles and
discuss how it is related to the usual NLO BFKL approach
[2]. The evolution equation for forward matrix elements of

color dipoles U(zy,) = (U(zy, z0)) reads [11,12]

d
2a—U
ar «(2)
a,N 7 a 2u?
=< | ’7{1+—S[b<1 +2C)
2772 < 2z — 7)? A n 4
22 " (9 3) ¢
IOnf

]}[u (&) + Uylz — 2) — Uy(2)]

2N2 1 z
fdz ! I:_—)ZIHZZW_}_F(Z’ZI)

2N2

+ '>]u @ +355OUE, 6h

where

B n\3(z, ) —22% (2 2 2-Z"
Flz2) = (1 - F) 16727 2 - Iz * %"

2 24y
z 1 (z* + 2%)
X In ,2) [3 + (1 " N3)(1 -

N 3Z + 3Z/4 _ 222 /2( Z/)Z
16Z4Z/4 <

Xj‘oo dt | 141
1 s
0o 22+ 177 11—+

(55)
and

d(z, 7)) =

(2 =77 [1 i , 272 (z — 2)*
(Z — Z/)Z(Z + Z/)Z (Z2 + Z/2)4

+ 2Li2(— ZZ—S) - 2L12( ZZ)]
- (1 Gz —(i’);(j?zz’)z)[f .[ ]

du 2/2
X S
(z —7'u) z

(56)

Note that the kernel is a sum of the “running-coupling”
part proportional to b = ” N, n ¢ and the conformal
part; see the discussion in Ref [4] Here a, = ay(u)and w
is the normalization point in the MS scheme.

With the k; factorization in view, let us rewrite the
evolution equation (54) in terms of

PHYSICAL REVIEW D 87, 014013 (2013)

V., (z1) = -3 (U, (21,00, (57)

proportional to the dipole unintegrated gluon distribution
D(XB’ ZJ.’ ILL)v

2
47°xp

VXB(ZL’ Iu‘) =

a (1) D(xp, 21, 1), (58)

c

where

D(xp, 2y, 1)

2\2 [ dz. 2
s TXp s

2 2
X F-g( Pyt ZL)[;X*PI +zy, —oop; + ZJ_:I

B

X [~eopy, 017, £, oop THp )" (59)
Hereafter we use the notation

[x,y] = Pexp{ig f()l du(x — y)*A, (ux + ﬁy)}

for the gauge link connecting points x and y. The color
dipole is renorm-invariant so D depends on u to compen-
sate g%(u) dependence.

The Fourier transform

D (xp k) = [ dz1e®ILD(xy, 7,)

is called the dipole gluon TMD (transverse momentum
dependent distribution). Note, however, that the dipole
gluon TMD defined above differs from the definition

b(xB’ ZJ_r M, 77)

dz* —zx 2 2
== s p|Tr{[ copy + 21, —z.py + 21
s TXp s

~ 2 2
X F-g(;z*pl + ZL)I:EX*Pl +z,,—p; + ZL:I
A U]
X [—oopy, 0F,£(0)[0, °°p1]}|p> , (60)

which reduces to the usual parton density at z; = 0. It
should be emphasized that Eq. (60) is a more complex
operator than (59). The difference is especially clear in the
case of N = 4 theory: the dipole gluon TMD (59) is UV
finite while Eq. (60) is UV divergent so it needs additional
UV counterterms; see the discussion in [22]. [These UV
divergent terms are directly proportional to xz so they
vanish for the definition (59).] Also, the role of parameter
xp is different in the two definitions: in Eq. (59) it is
defined as a rapidity cutoff a,, while in Eq. (60) the rapidity
cutoff 7 should be imposed separately from xp.

Differentiating Eq. (54) two times with respect to z we
obtain the NLO BFKL evolution for dipole gluon TMD
(59) in the form
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d _aN, [ 5, 2 u?
2adava(z) " [dz{( [n 4

ab
4

67N,

PHYSICAL REVIEW D 87, 014013 (2013)

7N,

9  3b 9%

B IOnf])[ V() (Zz’)Vu(Z)]

(Z _ ZI)Z ZIZ(Z _ Z1)2

n_ — )2 20,2 /12
L ab V() — V,(2) 1@ /2Z) _I_aSNCI: In?(z%/z )+F(Z, )+ Bz 2 )]Va(z')}
27T (z—17')? Z (z — 2)?
2N2
L3V, (2). (61)
Next we need to perform the Fourier transformation of Eq. (61). It can be demonstrated that
2,2 T (g2 g n2(2/ 72
T oo CID) s g )+ i) |- -0 0 v reyroes) @)
4 q9—4") (z—2)?

so the conformal part of the kernel looks the same in coordinate and momentum representations.
Performing also the Fourier transformation of the running-coupling part, one obtains the momentum-representation

kernel in the form

d _a, N V,(K)  (kK)V, (k) ab (67 m*  10n;
2aq Ve {[(k K2 K2k — k)2 ](1 4 [1 2 7(? 3 9Nc)]>

_ba,[ V() | (k=K KV, (k) . (k — k')?
4 [(k e Ny A ]
a,N. [ In*(k?/k?) , , , 2N2

o [ =07 + F(k, k') + ®(k, k)]Va(k )} g(3)V (k), (63)

[
where V(k) = [dze " k917V(z).

In terms of Mellin projections (y = % + iv as usual)

Vi =3 [ Vi @i

Vin, v) = f LR RIRY V()

LTy

“smrl oy Jeer () ve. e

the kernel (63) takes the form

2a 4 V,(n,v)
da

aN, a,N. T b
= —{X(n, y) + [—X(n, 7/)(lnu2 +——
T 47 LN,

SAED L XET s f ) Ve 69
Here
fn ) =[5 =2 = G et = ')
+ F(n,y) = 2®@(n, y) = 2®(n, 1 — y) + 6{(3),
(66)
where

Fony = {=[3+(1+ f)(s —22;(31? ; 27)]5

(1 * Nf*)z@ = 23;(1 T2y o]

T cosmy

(1 —2y)sin’my

and

U dr
o= [l o
() _/;)1+tt 12 2¢

~Lig(—1) — [W 4 1) — (1) + In(1 + 1)

(=" v
+ Zk+n]lm_,§1(k+ n)2[1 - (—1)k]}.

k=1

n+1

) — Liy(7)

(67)

To compare to NLO BFKL from Ref. [2], one should
rewrite the above equation in terms of

L (k)= V(k) (68)

2(k)

since two gluons in the dipole U (k) come with an extra g?
factor. Equation (65) turns into
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PHYSICAL REVIEW D 87, 014013 (2013)

d o @ ONe [T LK) (GK)LAOT, . aN, (67 10n
2a g tal) == fﬁkﬂ@—yy K2(k — k)2 +4w(3'_? 9N)]
B bas LK) RLM T (k—KY  aN.[ (/K , R
[(k — KPRk - e k—pp k) + ok 0 |zw)
2 2
N 13).L,0), (69)
with the eigenvalues
(k e [ [ WA T ) N, (67w 10n\T  ba, [(K2/K) Teins
dek {[ k—KP Kk~ k’)z:“:l " an (? 3 9Nc)] 477[ k — k)2
R (k—KP _aN.[ (/K , T I
e k,)2]ln e [ e k) d)(k,k):l(kz/kz) Yo }+ 390 3)
2
= L)+ 20— 2Lt )+ ) + 00|} a0)

which coincide with the eigenvalues of the kernel [2] of the
partial wave of the forward Reggeized gluon scattering
amplitude

0G, (¢, q) = 8O(q — ¢') + [ & pK(g. P)Go(p. 4.

an
2@, [x( 9+ 20 1, )
o o) @

This is somewhat surprising since the evolution of the
composite (in N = 4 SYM—conformal) dipole with re-
spect to a gives the evolution of a forward Reggeized gluon
scattering amplitude with respect to rapidity 1 (of which w
is the Mellin transform). To illustrate the transition be-
tween the two evolutions let us consider the calculation of
the dipole evolution directly from the NLO BFKL for
Reggeized gluons.

The impact factor ®,(q) for the color dipole U(x, y) is
proportional to a,(gq)(e'?* — e'?¥)(e”19* — ¢714Y) so one
obtains the cross section of the scattering of color dipole
in the form
d*q d*q' ay(q) .
o Dle™ = Dy(g)

atioo d (se\e
x [T (—) Gula ) (73)
a—ioo Tl qq

U (x) =

(eiqx —

®p(g') is the target impact factor. To get the evolution
equation with respect to rapidity one should change the
energy scale to g’

d2 d*q' « .
q’z 47(Tq) D(e™* = 1)®3(q")

a+io dw (se”
X [ : ( ) W@ ) (74)
a—ioo 27\ g

where G, (g, ¢') is the modified kernel with eigenvalues
272

shifted by 2x(n, v)x'(n, v) ‘f;ﬁC; see Ref. [2]. The corre-

sponding equation for V" (n, v) takes the form [11]

Un(x) =

(up:_

% V1 (n, v)
N.. N.Tb
= 28l + [ xtn )
d x(ny , X(vy)
X (lIl,lL2 + dy > + 2, ’)/)) + fln,y)
2, v)x(n, v)]}V"(n, D). (75)

Let us demonstrate that it agrees with Eq. (65). The Mellin
projection of composite dipole can be obtained from
Eq. (17):

014013-12



PHOTON IMPACT FACTOR AND k; FACTORIZATION ...

Va(n, v) = (1 pym

+ (a4717\-7 ) {2)(2(11 y)(lna —2n — dily) + 2(Ina — 217)[N x(n, y)(ln,u + — d

PHYSICAL REVIEW D 87, 014013 (2013)

n ﬂ[)(z(n, y) +3x'(n, y) + 2x(n, 7)(111“ T2 20— di)])
Y

~ x(n,y)
dvy 2

X' (n, 7))
2x(n, )

T fny) + 3x(n VX (n y) + £, y)] T X(n, v>}wn, ). (76)

The first-order term can be derived from Eq. (17) while the
term ~a? can be restored from the condition
% V%n, v) = 0 up to an unknown function X(n, ») which
requires a next-to-next-to-leading order calculation (and
does not contribute to the NLO evolution). Now one can
see that the derivative with respect to a gives Eq. (65).
Thus, the transition between the evolution of the composite
dipole V“(n, v) with respect to a and the rapidity evolu-
tion of the dipole V"(n, ») correspond to the shift in
eigenvalues on the function 2y(n, v)x'(n, v) Lthe
same transition that describes the shift of elgenvalues
when going from energy scale ¢g’ to ¢’> in formula (74).

VII. CONCLUSIONS

Let us present again the kp-factorization formula for DIS
in the next-to-leading order:

fd4xeiq"<pIT{fM(x)jV(O)}|P>

d*k
Y = I/Lv(q’ kJ_)Va

GE — (K1), (77)

m

where 1,,(q, k) is given by Eq. (51) and the evolution
equation for 'V, (k) by Eq. (63) [or Eq. (65) in the Mellin
representation].

The analytic NLO photon impact factor in momentum
space for the pomeron contribution (51) and the NLO
kr-factorization formula (77) for the deep inelastic scat-
tering are the main results of this paper.

Since the composite dipole (68) obeys the same equation
as the forward scattering amplitude of two Reggeized
gluons (71) the impact factor (51) may be obtained as a
NLO amplitude of emission of two Reggeized gluons by
the virtual photon. There were several attempts in the
literature to obtain this amplitude [23], but at present
such an impact factor is known only as a combination of
analytical and numerical results [24]. Indeed, in Ref. [25]
the y* — y* cross section has been calculated using only
the LO impact factor and the LO and NLO BFKL ampli-
tude for two Reggeized gluons. The authors explain in the
paper that the NLO impact factor known at present in
Ref. [24] is difficult to handle for a numerical calculation
since it is not in a full analytic form. On the other hand, the
result of this paper, provided that one knows the solution of

the NLO BFKL with the running-coupling constant, allows
us to compute the full NLO total cross section for the
v* — " scattering process.

An attempt to calculate the NLO impact factor in an
analytic form using an approach based on the analytic
properties of the amplitude can be found in Ref. [26].

In the past few years, there has been some activity on the
calculation of the NLO impact factor of other processes as
well: in Ref. [27] the calculation of the NLO impact factor
for Mueller-Navelet jets has been performed, while the
impact factor for the virtual photon to light vector meson
transition has been performed in Ref. [28].

It would be also instructive to compare our result (19)
for the coefficient in front of the four-Wilson-line operator
(relevant for the structure functions of DIS off a large
nucleus) to similar results for the NLO impact factor
obtained recently in Ref. [29] using the dipole model.
However, as we already mentioned, our final NLO result
(51) is defined as a coefficient function in front of a
composite operator (17) defined with a counterterm which
restores the conformal invariance in N = 4 amplitudes
and in our case leads to the conformal impact factor (since
the impact factor is given by tree diagrams it should be
conformally invariant even in QCD). As a consequence,
the impact factor depends on a new parameter a (an analog
of the factorization scale w in the usual OPE) which we
chose in such a way that all the energy dependence is
shifted in to the matrix element, leaving the impact factor
energy scale invariant. To compare with the result of
Ref. [29] representing the coefficient function of a usual
dipole (without the counterterm subtraction), we should
trace one step back and look at the impact factor
INL9(zy, 23, 233 ) given by (16). One should then perform
Fourier transformation to momentum space with respect
to the positions x and y of the two electromagnetic currents
in formula (7) and compare it to the result (58) from
Ref. [29] integrated over z; (and cz, when appropriate).
Hopefully, after these integrations the two results will
coincide.
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APPENDIX

There is a subtle point in the Fourier transformation of
Eq. (38) in the forward case (cf. Ref. [20]). To illustrate it,
consider the simplest term in the right-hand side of Eq. (23)

_ OK” KB 2 “'3—2 kP R2
axt ay K> § K2
2 _ _
2R i (&w _ L,y : y)y).
(x =) (x =)

The corresponding contribution to the 7 product of cur-
rents (21) is proportional to

2
[dZ1de ,u( - Zz)( Ry) [g,w _

Z12

(AL)

(x=yulx—y),
g (x — y)? ]
(A2)

Consider now the Fourier transform of this equation for the
case of forward scattering

[ d*xd*y8(y,)ea =) f

ledZ2 RZ
Zi‘z (x —y)°

)2_ y)V]U(le),

(x = y)ux
X [g,w =2 =y

where U(z;,) = (U(zy, 25)). We have calculated such
integrals by using the representation of the type

R?2 =/ v r(v)/d2Zo<ZIZOIZ220)y|:(2Kli«0)z:|7

based on the decomposition (35) of transverse o functions.
[For this example r(v) = B(y, y)I'(1 + y)['(2 — v).] The
integral over z; and z, in Eq. (A3) is of the form

2 \lgg
dZ]dzz 212 2+Wf( ) )
4 2 2 5p)
212 \Zio<20

dz,d 2 yiv 1
[ ,[ Z]4 Z2( ;122 ) ) (z5) 7 f(w), (A4

212 \Zjp<n0

(A3)

where f(u) = [dz%,(z3,) 7" *f(z3,). To calculate the
integral in the right-hand side this equation, we take the
orthogonality condition for conformal eigenfunctions [20]

[dzzldzzz( 73, )%Jri'/( 73, )%—iﬂ
Zh Z10%30 2%
= [80r = wo%(zg) + 8(y + ()7

2ipB(R + l,LL)] t
WB(% — i)

(AS5)
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and perform the inversion z; —

d221d222 le ytiv 2 V—iu
] 22 (z1,)2
Z12 210220

[&v—m&%lhm@QJ

% . We obtain

2 N2

2iuBG+ i
+au+ﬂyﬂL¥—ﬂQ] (A6)
7TB(§ —ip)
so Eq. (A4) turns into
d21d22< Z%z );
f(z1y)
[ Zzltz 2025 2
3 opl
_ T N—1-2ip 5(2)<i> _imBG—iv)
42 (z5) f) 20 2VB(% +iv) f=v)
(A7)
Substituting this equation with f(z3,) = U(zp,) =

23, V(z},) into Eq. (A3) we get
el (x=y)
[d“xd“yé‘(y )( )6[

x r(v){[%w] V)

(x = Vulx =),
-2 ]

(x—y

V.)?
B[ = yPxy. P~
+Bwi(h—ym]'y(”} A8)

where V(v) =1 [ d?72(z2)"2t" V(7). Here the first term
comes from z, = oo while the second comes from finite z;.
It is easy to see that the two terms coincide after a change
of the integration variable v <> — v so effectively the con-
tribution of the integral over finite z; is doubled:

. dz;dz, R?
d*xd*y8(y, ur(x—y)j 1542
f xd*yd(y.)e & =y
(x=y)x—y),
X I:g,uv -2 (.X i y)2 ]U(ZIZ)

(x = y)ulx — y)y]
(x —y)?

B(y) €75 (x =yl xy. T,

B(y) (x — y)"[ (xe — y.)? ] Vi)

Since we have not used the explicit form of the Lorentz
structure in w and v indices, it is clear that the doubling
effect is general for any contribution to the forward Fourier
transform of Eq. (46) (see also the discussion of zero
transfer momentum limit in Ref. [20]).

o
=7 [saya] g -2

X r(v) (A9)
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