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Rapidity evolution of gluon TMDs

1. Introduction

A TMD factorization [1, 2, 3] generalizes the usual concept of parton density by allowing PDFs
to depend on intrinsic transverse momenta in addition to the usual longitudinal momentum fraction
variable. These transverse-momentum dependent parton distributions (also called unintegrated
parton distributions) are widely used in the analysis of semi-inclusive processes like semi-inclusive
deep inelastic scattering (SIDIS) or dijet production in hadron-hadron collisions (for a review,
see Ref. [3]). However, the analysis of TMD evolution in these cases is mostly restricted to the
evolution of quark TMDs, whereas at high collider energies the majority of produced particles will
be small-x gluons. In this case one has to understand the transition between non-linear dynamics at
small x and presumably linear evolution of gluon TMDs at intermediate x.

In the present paper we study the connection between rapidity evolution of gluon TMD at low
xB and at moderate xB ∼ 1. We will assume k2

⊥ ≥ few GeV2 so that we can use perturbative QCD
(but otherwise k⊥ is arbitrary and can be of order of s as in the DGLAP evolution). In this kinematic
region we will vary Bjorken xB and look how non-linear evolution at small x transforms into linear
evolution at moderate xB. It should be noted that at least at moderate xB gluon TMDs mix with the
quark ones. In this paper we disregard this mixing leaving the calculation of full matrix for future
publications.

It should be emphasized that here we consider gluon TMDs with Wilson links going to +∞ in
the longitudinal direction relevant for SIDIS [4]. Note that in the leading order SIDIS is determined
solely by quark TMDs but beyond that the gluon TMDs should be taken into account, especially
for the description of various processes at future EIC collider.

The presentation is organized as follows. In Sec. 2 I remind the general logic of rapidity
factorization and rapidity evolution. In Sec. 3 I describe the evolution equation of gluon TMD
in the light-cone limit. In Sec. 4 I present the Lipatov vertex of the gluon production by the F a

i
operator and the so-called virtual corrections. The final TMD evolution equation for all xB and
transverse momenta is discussed in Sec. 5 while Sec. 6 contains conclusions and outlook.

2. Rapidity factorization and evolution

It is convenient to define the field-strength operator with attached light-like Wilson line:

F aη

i (xB,z⊥) ≡
2
s

∫
dz∗ eixBz∗

(
[∞,z∗]am

z gFm
•i (z∗,z⊥))

η (2.1)

where the index η denotes the rapidity cutoff (2.2) for all gluon fields in this operator:

Aη
µ(x) =

∫ d4k
16π4 θ(eη −|α|)e−ik·xAµ(k) (2.2)

The Sudakov variable α is defined as usual, k = α p1 +β p2 + k⊥. We define the light-like vectors
p1 and p2 such that p1 = n and p2 = p− m2

s n, where p is the momentum of the target particle of
mass m. We use metric gµν = (1,−1,−1,−1) so p · q = (αpβq +αqβp)

s
2 − (p,q)⊥. For the

coordinates we use the notations x• ≡ xµ pµ

1 and x∗ ≡ xµ pµ

2 related to the light-cone coordinates by
x∗ =

√ s
2 x+ and x• =

√ s
2 x−.

2
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Rapidity evolution of gluon TMDs

Hereafter we use the notation [∞,z∗]z ≡ [∞∗p1 + z⊥, 2
s z∗p1 + z⊥] where [x,y] stands for the

straight-line gauge link connecting points x and y. Our convention is that the Latin Lorentz indices
always correspond to transverse coordinates while Greek Lorentz indices are four-dimensional.

Similarly, we define

F̃ aη

i (xB,z⊥) ≡
2
s

∫
dz∗ e−ixBz∗g

(
F̃m
•i (z∗,z⊥)[z∗,∞]ma

z
)η (2.3)

in the complex-conjugate part of the amplitude.
In this notations the unintegrated gluon TMD D(xB,z⊥,η) can be represented as

〈p|F̃ aη

i (xB,z⊥)F aiη(xB,0⊥)|p+ξ p2〉 ≡∑
X
〈p|F̃ aη

i (xB,z⊥)|X〉〈X |F aiη(xB,0⊥)|p+ξ p2〉

= −4π
2
δ (ξ )xBg2D(xB,z⊥,η) (2.4)

Hereafter we use a short-hand notation

〈p|Õ1...ÕmO1...On|p′〉 ≡ ∑
X
〈p|T̃{Õ1...Õm}|X〉〈X |T{O1...On}|p′〉 (2.5)

where tilde on the operators in the l.h.s. of this formula stands as a reminder that they should be
inverse time ordered as indicated by inverse-time ordering T̃ in the r.h.s. of the above equation.

As discussed e.g. in Ref. [5], such martix element can be represented by a double functional
integral

〈Õ1...ÕmO1...On〉

=
∫

DÃD ˜̄ψDψ̃ e−iSQCD(Ã,ψ̃)
∫

DADψ̄Dψ eiSQCD(A,ψ)Õ1...ÕmO1...On (2.6)

with the boundary condition Ã(~x, t = ∞) = A(~x, t = ∞) (and similarly for quark fields) reflecting
the sum over all intermediate states X . Due to this condition, the matrix element (2.4) can be made
gauge-invariant by connecting the endpoints of Wilson lines at infinity with the gauge link

〈p|F̃ a
i (xB,x⊥)F ai(x′B,y⊥)|p′〉

→ 〈p|F̃ a
i (xB,x⊥)[x⊥+∞p1,y⊥+∞p1]F

ai(β ′B,y⊥)|p′〉 (2.7)

This gauge link is important if we use the light-like gauge pµ

1 Aµ = 0 for calculations [6], but in all
other gauges it can be neglected. We will not write it down explicitly but will always assume it in
our formulas.

We will study the rapidity evolution of the operator

F̃ aη

i (xB,x⊥)F
aη

j (xB,y⊥) (2.8)

In the spirit of rapidity factorization, in order to find the evolution of the operator (2.8) with
respect to rapidity cutoff η (see Eq. (2.2)) one should integrate in the matrix element (2.4) over
gluons and quarks with rapidities η > Y > η ′ and temporarily “freeze” fields with Y < η ′ to be
integrated over later. (For a review, see Refs. [7, 8].) In this case, we obtain functional integral of
Eq. (2.6) type over fields with η >Y > η ′ in the “external” fields with Y < η ′. In terms of Sudakov

3
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Rapidity evolution of gluon TMDs

variables we integrate over gluons with α between σ = eη and σ ′ = eη ′ and, in the leading order,
only the diagrams with gluon emissions are relevant - the quark diagrams will enter as loops at the
next-to-leading (NLO) level.

To make connections with parton model we will have in mind the frame where target’s velocity
is large and call the small α fields by the name “fast fields” and large α fields by “slow” fields.
As discussed in Ref. [9], the interaction of “slow” gluons of large α with “fast” fields of small
α is described by eikonal gauge factors and the integration over slow fields results in Feynman
diagrams in the background of fast fields which form a thin shock wave due to Lorentz contraction.
However, in Ref. [9] (as well as in all small-x literature) it was assumed that the characteristic
transverse momenta of fast and slow fields are of the same order of magnitude. For our present
purposes we need to relax this condition and consider cases where the transverse momenta of fast
and slow fields do differ. In this case, we need to rethink the shock-wave approach.

Let us figure out how the relative longitudinal size of fast and slow fields depends on their
transverse momenta. The typical longitudinal size of fast fields is σ∗ ∼ σ ′s

l2
⊥

where l⊥ is the char-
acteristic scale of transverse momenta of fast fields. The typical distances traveled by slow gluons
are ∼ σs

k2
⊥

where k⊥ is the characteristic scale of transverse momenta of slow fields. Effectively, the

large-α gluons propagate in the external field of the small-α shock wave, except the case l2
⊥� k2

⊥
which should be treated separately since the “shock wave” is not necessarily thin in this case. For-
tunately, when l2

⊥� k2
⊥ one can use the light-cone expansion of slow fields and leave at the leading

order only the light-ray operators of the leading twist. We will use the combination of shock-wave
and light-cone expansions and write the interpolating formulas which describe the leading-order
contributions in both cases.

3. Evolution kernel in the light-cone limit

As we discussed above, we will obtain the evolution kernel in two separate cases: the “shock
wave” case when the characteristic transverse momenta of the background gluon (or quark) fields
l⊥ are of the order of typical momentum of emitted gluon k⊥ and the “light cone” case when
l2
⊥� k2

⊥. It is convenient to start with the light-cone situation and consider the one-loop evolution
of the operator F̃ aη

i (xB,x⊥)F aiη(xB,y⊥) in the case when the background fields are soft so we can
use the expansion of propagators in external fields near the light cone [10].

In the leading order there is only one “quantum” gluon and we get the typical diagrams of Fig.
1 type. One sees that the evolution kernel consist of two parts: “real” part with the emission of a
real gluon and a “virtual” part without such emission. The “real” production part of the kernel can
be obtained as a square of a Lipatov vertex - the amplitude of the emission of a real gluon by the
Wilson-line operator F a

i :

〈F̃ a
i (xB,x⊥)F a

j (xB,y⊥)〉lnσ = −
∫

σ

σ ′

d−α

2α

∫
d−2k⊥〈L̃µi

ab(k,y⊥,xB)Lab
µi(k,y⊥,xB)〉lnσ ′ (3.1)

where the Lipatov vertices of gluon emission are defined as

Lab
µi(k,y⊥,xB) = i lim

k2→0
k2〈Aa

µ(k)F
b
i (xB,y⊥)〉

L̃ba
iµ (k,x⊥,xB) =−i lim

k2→0
k2〈F̃ b

i (xB,x⊥)Ãa
µ(k)〉 (3.2)

4
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Rapidity evolution of gluon TMDs

(a) (b)

Figure 1: Typical diagrams for production (a) and virtual (b) contributions to the evolution kernel. The
dashed lines denote gauge links.

(L̃ is a complex-conjugate vertex made of Ã fields). Hereafter we use the space-saving notation
d−n p≡ dn p

(2π)n . 1

The three corresponding diagrams are shown in Fig. 2. One obtains (in the light-like gauge
k k k

(a) (b) (c)

Figure 2: Lipatov vertex of gluon emission near the light cone.

pµ

2 Aµ = 0)

Lab
µi(k,y⊥,xB)

light−like = 2ge−i(k,y)⊥ (3.3)

×
[k⊥µ δ l

i

k2
⊥
−

δ l
µki +δ l

i k⊥µ −gµikl

αxBs+ k2
⊥

−
k2
⊥gµikl +2k⊥µ kikl

(αxBs+ k2
⊥)

2

]
F ab

l (xB +
k2
⊥

αs
,y⊥) + O(p2µ)

We do not write down the terms ∼ p2µ since they do not contribute to the production kernel (∼
square of the expression in the r.h.s. of Eq. (3.3)).

The product of Lipatov vertex (3.3) and the complex conjugate vertex Lab
µi(k,y⊥,xB) integrated

according to Eq. (3.1) gives the production part of the evolution kernel in the light-cone limit. To
get the full kernel, we need to add the virtual contribution coming from diagrams of Fig. 1b type
which has the form

〈F̃ a
i (xB,x⊥)F a

j (xB,y⊥)〉virt

= −2g2NcF̃
a
i (xB,x⊥)F a

j (xB,y⊥)
∫

∞

0

d−α

α

∫
d−2 p⊥

αxBs
p2
⊥(αxBs+ p2

⊥)
(3.4)

where we used Schwinger’s notations

(x⊥| f (p⊥)|y⊥) ≡
∫

d−2 p⊥ ei(p,x−y)⊥ f (p), (x⊥|p⊥) = ei(p,x)⊥ (3.5)

1To simplify our notations, we will often omit label η for the rapidity cutoff (2.2) but it will be always assumed
when not displayed.

5
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Rapidity evolution of gluon TMDs

Note that with our rapidity cutoff in α (Eq. (2.2)) the contribution (3.4) coming from the
diagram in Fig. 1b is UV finite.

Summing the product of Lipatov vertices (3.3) the virtual correction (3.4) we obtain the one-
loop evolution kernel in the light-cone approximation

d
d lnσ

〈p|F̃ a
i (xB,x⊥)F a

j (xB,y⊥)|p〉 (3.6)

=
g2Nc

π

∫
d−2k⊥

{
ei(k,x−y)⊥〈p|F̃ a

k
(
xB +

k2
⊥

σs
,x⊥
)
F a

l
(
xB +

k2
⊥

σs
,y⊥
)
|p〉

×
[δ k

i δ l
j

k2
⊥
−

2δ k
i δ l

j

σxBs+ k2
⊥
+

k2
⊥δ k

i δ l
j +δ k

j kikl +δ l
i k jkk−δ l

jkikk−δ k
i k jkl−gklkik j−gi jkkkl

(σxBs+ k2
⊥)

2

+ k2
⊥

2gi jkkkl +δ k
i k jkl +δ l

jkikk−δ k
j kikl−δ l

i k jkk

(σxBs+ k2
⊥)

3 −
k4
⊥gi jkkkl

(σxBs+ k2
⊥)

4

]
θ
(
1− xB−

k2
⊥

σs

)
− σxBs

k2
⊥(σxBs+ k2

⊥)
〈p|F̃ a

i (xB,x⊥)F a
j (xB,y⊥)|p〉

}
where θ

(
1− xB−

k2
⊥

σs

)
is a kinematical restriction that the sum of xB and the fraction carried by

emitted gluon k2
⊥

αs should be less than one (there is obviously no restriction on k⊥ in the virtual
diagram).

4. Evolution kernel in the general case

In this section we will find the leading-order rapidity evolution of gluon operator (2.8) with
the rapidity cutoff Y < η = lnσ for all emitted gluons. As we mentioned in Sect. 2, in order to
find the evolution kernel we need to integrate over slow gluons with σ > α > σ ′ and temporarily
freeze fast fields with α < σ ′ to be integrated over later. To this end we need the one-loop diagrams
in the fast background fields with arbitrary transverse momenta. In the previous section we have
found the evolution kernel in background fields with transverse momenta l⊥� p⊥ where p⊥ is a
characteristic momentum of our quantum slow fields. In this section at first we will find the Lipatov
vertex and virtual correction for the case l⊥ ∼ p⊥ and then write down general formulas which are
correct in the whole region of the transverse momentum.

The key observation is that for transverse momenta of quantum and background field of the
same order we can use the shock-wave approximation developed for small-x physics. To find the
evolution kernel we consider the operator (2.8) in the background of external field A•(x∗,x⊥) (the
absence of x• in the argument corresponds to α = 0). Moreover, we assume that the background
field A•(x∗,x⊥) has a narrow support and vanishes outside the [−σ∗,σ∗] interval. This is obviously
not the most general form of the external field, but it turns out that after obtaining the kernel of
the evolution equation it is easy to restore the result for any background field by insertion of gauge
links at ±∞p1, see the discussion after Eq. (5.1).

Since the typical β ’s of the external field are βfast ∼
l2
⊥

αfasts
the support of the shock wave σ∗ is

of order of 1
βfast
∼ σ ′s

l2
⊥

. This is to be compared to the typical scale of slow fields 1
βslow
∼ αs

p2
⊥
� σ∗ so

we see that the fast background field can be approximated by a narrow shock wave. In the “pure”
low-x case xB = 0 one can assume that the support of this shock wave is infinitely narrow. As

6
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Rapidity evolution of gluon TMDs

we shall see below, in our case of arbitrary xB we need to look inside the shock wave so we will
separate all integrals over longitudinal distances z∗ in parts “inside the shock wave” |z∗| < σ∗ and
“outside the shock wave" |z∗| > σ∗, calculate them separately and check that the sum of “inside”
and “outside” contributions does not depend on σ∗ with our accuracy.

In the leading order there is only one extra gluon and we get the typical diagrams of Fig.
3 type. The production part of the kernel can be obtained as a square of a Lipatov vertex - the

(a) (b)

Figure 3: Typical diagrams for production (a) and virtual (b) contributions to the evolution kernel. The
shaded area denotes shock wave of background fast fields.

amplitude of the emission of a real gluon by the operator F a
i (see Eq. (3.1))

〈F̃ a
i (xB,x⊥)F a

j (xB,y⊥)〉lnσ = −
∫

σ

σ ′

d−α

2α
d−2k⊥

(
L̃ba;µ

i (k,x⊥,xB)Lab
µ j(k,y⊥,xB)

)lnσ ′ (4.1)

where the Lipatov vertices of gluon emission are defined in Eq. (3.2) . Hereafter 〈O〉 means the
average of operator O in the shock-wave background.

As we discussed above, we calculate the diagrams in the background of a shock wave of width
∼ σ ′s

l2
⊥

where l⊥ is the characteristic transverse momentum of the external shock-wave field. Note

that the factor in the exponent in the definition of F (xB) is ∼ xB
σ ′s
l2
⊥

which is not necessarily small

at various xB and l2
⊥ and therefore we need to take into account the diagram in Fig. 4c with emission

point inside the shock wave. We do this in a following way: we assume that all of the shock wave
is contained within σ∗ > z∗ >−σ∗, calculate diagrams in Fig. 4a-d and check that the dependence
on σ∗ cancels in the final result for the sum of these diagrams. The result of the calculation is [11]

(a) (b) (c) (d)

Figure 4: Lipatov vertex of gluon emission in a shock-wave background.

Lab
µi(k,y⊥,xB)

light−like (4.2)

7



P
o
S
(
Q
C
D
E
V
2
0
1
5
)
0
3
6

Rapidity evolution of gluon TMDs

= g(k⊥|F j(xB +
k2
⊥

αs

){αxBsgµi−2k⊥µ ki

αxBs+ k2
⊥

(k jU +U p j)
1

αxBs+ p2
⊥

U†

− 2k⊥µ U
gi j

αxBs+ p2
⊥

U†− 2gµ jU
pi

αxBs+ p2
⊥

U† +
2k⊥µ
k2
⊥

gi j

}
|y⊥)ab + O(p2µ)

where the operator Fi(β ) is defined as usual

(k⊥|Fi(β )|y⊥) ≡
2
s

∫
dy∗ eiβy∗−i(k,y)⊥Fi(y∗,y⊥) (4.3)

It is worth noting that at xB = 0 this vertex agrees with the one obtained in Ref. [12].
The production part of the evolution kernel is proportional to the cross section of gluon emis-

sion given by the product of Eq. (4.2) and complex conjugate vertex integrated according to Eq.
(3.1). To find the full kernel we should add the virtual part.

As in the case of production kernel we calculate the diagrams in Fig. 5a, 5b, and 5c separately
and then check that the final result does not depend on the size of the shock wave σ∗ (it is easy to
see that the diagram in Fig. 5d vanishes in Feynman gauge). The result of the calculation is

(a) (b) (c) (d)

Figure 5: Virtual part of the evolution kernel.

〈F n
i (xB,y⊥)〉Fig. 5 = − ig2 f nkl

∫
σ

σ ′

d−α

α
(y⊥|−

p j

p2
⊥

Fk(xB)(i
←
∂ l +Ul) (4.4)

× (2δ
k
j δ

l
i −gi jgkl)U

1
αxBs+ p2

⊥
U† +Fi(xB)

αxBs
p2
⊥(αxBs+ p2

⊥)
|y⊥)kl

where Fk
←
∂ l ≡ ∂lFk =−i[pl,Fk]. For the complex conjugate amplitude one obtains

〈F̃ n
i (xB,x⊥)〉σ = − ig2 f nkl

∫
σ

σ ′

d−α

α
(x⊥|Ũ

1
αxBs+ p2

⊥
Ũ† (4.5)

× (2δ
k
i δ

l
j −gi jgkl)(i∂k−Ũk)F̃l(xB)

p j

p2
⊥
+ F̃i(xB)

αxBs
p2
⊥(αxBs+ p2

⊥)
|x⊥)kl

5. Evolution equation for gluon TMD

Now we are in a position to assemble all leading-order contributions to the rapidity evolution
of gluon TMD. Adding the production part (3.1) with Lipatov vertices (4.2) and the virtual parts

8
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Rapidity evolution of gluon TMDs

from previous Section (4.4) and (4.5) we obtain [11]

d
dη
〈p|F̃ a

i (xB,x⊥)F a
j (xB,y⊥)|p〉η=lnσ (5.1)

= −αs〈p|
∫

d−2k⊥ Tr{L̃ µ

i (k,x⊥,xB)
light−likeLµ j(k,y⊥,xB)

light−like}

+ 2Tr
{
F̃i(xB,x⊥)(y⊥|−

pm

p2
⊥

Fk(xB)(i
←
∂ l +Ul)(2δ

k
mδ

l
j −g jmgkl)U

1
αxBs+ p2

⊥
U†

+ F j(xB)
αxBs

p2
⊥(αxBs+ p2

⊥)
|y⊥)

+ (x⊥|Ũ
1

αxBs+ p2
⊥

Ũ†(2δ
k
i δ

l
m−gimgkl)(i∂k−Ũk)F̃l(xB)

pm

p2
⊥

+ F̃i(xB)
αxBs

p2
⊥(αxBs+ p2

⊥)
|x⊥)F j

(
xB,y⊥

)}
|p〉 + O(α2

s )

where Tr is a trace in the adjoint representation. 2 This equation describes the rapidity evolution of
the operator (2.8) at any Bjorken xB and any transverse momenta.

Let us discuss the gauge invariance of this equation. The l.h.s. is gauge invariant after taking
into account gauge link at +∞ as shown in Eq. (2.7). As to the right side, it was obtained by
calculation in the background field and promoting the background fields to operators in a usual
way. However, we performed our calculations in a specific background field A•(x∗,x⊥) with a
finite support in x⊥ and we need to address the question how can we restore the r.h.s. of Eq. (5.1)
in a generic field Aµ . It is easy to see how one can restore the gauge-invariant form: just add
gauge link at +∞p1 or −∞p1 appropriately. For example, the terms Uz(z| 1

σβ s+p2
⊥
|z′)U†

z′ in r.h.s. of

should be replaced by Uz[z⊥−∞p1,z′⊥−∞p1](z| 1
σβ s+p2

⊥
|z′)U†

z′ . After performing these insertions
we will have the result which is (i) gauge invariant and (ii) coincides with Eq. (5.1) for our choice
of background field. At this step, the background fields in the r.h.s. of Eq. (5.1) can be promoted
to operators.

6. Conclusions

We have described the rapidity evolution of gluon TMD with Wilson lines going to +∞ in
the whole range of Bjorken xB and the whole range of transverse momentum k⊥. It should be
emphasized that with our definition of rapidity cutoff (2.2) the leading-order matrix elements of
TMD operators are UV-finite so the rapidity evolution is the only evolution and it describes all the
dynamics of gluon TMDs in the leading-log approximation.

As an outlook, it would be very interesting to obtain the NLO correction to the evolution equa-
tion (5.1). The NLO corrections to the BFKL [13] and BK [14, 15, 16] equation are available but
they suffer from the well-known problem that they lead to negative cross sections. This difficulty
can be overcome by the “collinear resummation” of double-logarithmic contributions for the BFKL
[17] and BK [18] equations and we hope that our Eq. (5.1) and especially its future NLO version
will help to solve the problem of negative cross sections of NLO amplitudes at high energies.

2Here one can erase tilde from Wilson lines since we have a sum over full set of states and gluon operators at
space-like (or light-like) intervals commute with each other.
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