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High-energy effective action from scattering of QCD shock waves

Ian Balitsky
Physics Department, Old Dominion University, Norfolk, Virginia 23529 USA,

and Theory Group, Jlab, 12000 Jefferson Ave, Newport News, Virginia 23606, USA
(Received 21 July 2005; published 31 October 2005)

At high energies, the relevant degrees of freedom are Wilson lines—infinite gauge links ordered along
straight lines collinear to the velocities of colliding particles. The effective action for these Wilson lines is
determined by the scattering of QCD shock waves. I develop the symmetric expansion of the effective
action in powers of strength of one of the shock waves and calculate the leading term of the series. The
corresponding first-order effective action, symmetric with respect to projectile and target, includes both up

and down fan diagrams and pomeron loops.

DOI: 10.1103/PhysRevD.72.074027

I. INTRODUCTION

It is widely believed that the relevant degrees of freedom
for the description of high-energy scattering in QCD are
Wilson lines—infinite straightline gauge factors. An argu-
ment in favor of this goes as follows. As a result of a high-
energy collision, we have a shower of produced particles in
the whole range of rapidity between the target and the
spectator. Let us demonstrate that the interaction of gluons
with a different rapidity is described in terms of Wilson
lines. Consider the fast particle interacting with some slow
gluons. This particle moves along its classical trajectory —
a straightline collinear to the velocity, and the only effect of
the slow gluons is the phase factor Pexp{ig [dx, A"}
ordered along the straightline classical path (here A, de-
scribes the slow gluons). This picture is reciprocal —in the
rest frame of fast particles the fast and slow gluons trade
places: former slow gluons move very fast so their propa-
gator reduces to a Wilson-line made from the (former) fast
gluons. We see that the particles with different rapidities
perceive each other as Wilson lines and therefore these
lines must be the relevant degrees of freedom for high-
energy scattering. The goal of this approach is to rewrite
the original functional integral over gluons (and quarks) as
a2 + 1 theory with the effective action written in terms of
the dynamical Wilson lines.

For a given interval of rapidity, the effective action is an
amplitude of scattering of two QCD shock waves, see
Fig. 1. Indeed, let us integrate over the gluons in this
interval of rapidity i, > n > m, leaving the gluons with
n > n; (the “right movers’) and with n < 7, (the “left
movers’) intact (to be integrated over later). Because of the
Lorentz contraction, the left-moving and the right-moving
gluons shrink to the two gluon ‘“‘pancakes’” or shock
waves. The result of the integration over the rapidities
n; > mn > 1n, is the effective action which depends on
the Wilson lines made from the left and right movers.
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Due the parton saturation at high energies [2—4], the
characteristic scale of the transverse momenta in hadron-
hadron collisions is Q; ~ 7 [5-8] and therefore the
collision of QCD shock waves can be treated using semi-
classical methods [9]. Within the semiclassical approach,
the problem of scatering of two shock waves can be
reduced to the solution of classical YM equations with
sources being the shock waves [10] (see also [11]). At
present, these equations have not been solved. There are
two approaches discussed in current literature: numerical
simulations [12] and expansion in the strength of one of the
shock waves. The collision of a weak and a strong shock
waves corresponds to the deep inelastic scattering from a
nucleus (and scattering of two strong shock waves de-
scribes a nucleus-nucleus collision). The first term of the
expansion of the strength of one of the waves was calcu-
lated in a number of papers [13—15]. Recently, the classical
field was calculated up to the second order in a weak source
[16]. T will use some formulas of Ref. [16], although the
main result for the effective action will be derived inde-
pendently. The obtained effective action coincides with the
expression obtained in Ref. [17] (see also [18,19] ) from
very different approach—evolution of the Color Glass
Condensate in the Hamiltonian picture. The advantage of
the derivation is that our method, symmetric with respect to
projectile and target, has a “built-in” projectile-target
duality (which is a highly nontrivial property of the light-
cone Hamiltonian in the framework of the Hamiltonian
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FIG. 1 (color online). High-energy effective action as an am-
plitude of the collision of two shock waves.
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approach [17-21]). In terms of Feynman diagrams the
effective action includes both “up” and “down” fan dia-
grams and therefore it describes pomeron loops which
became a topic of intensive discussion in the current lit-
erature [17-23].

The paper is organized as follows. Sec. Il is devoted to
the rapidity factorization which is the starting point of the
approach. In Sec. III T define the high-energy effective
action as a scattering amplitude of QCD shock waves
and develop the expansion in commutators of Wilson lines.
In Sec. IV I find the effective action for a given (infinitesi-
mal) range of rapidity in the leading order in this expan-
sion. The corresponding functional integral over the
dynamical Wilson-line variables is constructed in Sec. V.
The explicit form of the first-order classical fields created
by the collision of two shock waves is presented in the
Appendix.

I1. RAPIDITY FACTORIZATION

The main technical tool of the approach to the high-
energy scattering is the rapidity factorization developed in
[11,24]. Consider a functional integral for the typical scat-
tering amplitude

j DAI(p)J(pp)d(—p)I(=pl)es®, (1)

where the currents J(p,) and J(pp) describe the two
colliding particles (say, photons).
Throughout the paper, we use Sudakov variables

k=ap; + Bp, t ki, ()

and the notations

s _ 1
X =p{‘xu=\/;x , X =ﬁ(x0—x3),

s 1
X, = phx, = \/;x+, xt = \/—Z(xo + x3).

Here p; and p, are the lightlike vectors close to p, and pp:
pa=pi+ (P3/9)p2. ps = P2+ (P3/9)p1.

Let us take some “‘rapidity divide” 7; such that n4 >
7, > mp and integrate first over the gluons with the rapid-
ity m > 7, see Fig. 2. From the viewpont of such particles,
the fields with n << 7, shrink to a shock wave so the result
of the integration is presented by Feynman diagrams in the
background. With the leading logarithmic approximation
(LLA) accuracy, in the Feynman integrals over the gluons
with n > 7, one can set ; — —oo (replace the “‘rapidity
divide” vector e¢; = p; + e~ " p, by the lightlike vector
D>) so the shock wave is infinitely thin and lightlike. In the
covariant gauge, this shock wave has the only nonvanish-
ing component A, which is concentrated near x, = 0. In
order to write down factorization we need to rewrite the
shock wave in the temporal gauge A, = 0. In such gauge
the most general form of a background is (see Fig. 3)

3)
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FIG. 2 (color online). Rapidity factorization.

Al =Uib(x,) + Ub(—x,), A =A, =0, (4

where

ui=uvtiou, Uy =U ol (9
8 8

are the pure gauge fields (filling the half-spaces x, > 0 and

X, < 0). There is a redundant gauge symmetry

Ui(xp) = Up(x)Q(xy), Up(xy) — Usx(x)Q(x,),

(6)

related to the fact that gauge-invariant objects like the color
dipole

Tr{{copy, —oop;][x; —oop,y1 — op][—copy, 0op;];
X [yL + 0opy, xy + copy It = Te{U UL U, UL} (7)

depend only on the product U, ZU;LZ. In papers [1,11] this
symmetry was used to gauge away U, and simplify the
shock wave to A; = U;0(x,) while in Ref. [16] the oppo-
site case U; = 0 (A; = U,;0(—x..)) was considered. In the
present paper we keep this gauge freedom—as we shall
see below it simplifies the effective action for the Wilson-
line integral.

The generating functional for the Green functions in the
Eq. (4) has the form (cf. [1])

FIG. 3 (color online).

Shock wave in the temporal gauge.
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HIGH-ENERGY EFFECTIVE ACTION FROM . . .
fDAJ(pA)J(_pA)eiS(A)+i fdZZL(O,F*i,O)(;I(u?i_’ugi)z (8)
where (F,; = e*F,,; etc.)

(0, F,;,0), = foo dul0, uel.F,(ue + z,)[ue, 0],

J
= [0, ooe]z<iF + gA; (e + zl))[ooe, 0].
Z

Zi
X [—o0e, 0], €))

and (0, F,;, 0)* = 2tr (0, F,;, 0). (Throughout the paper,
the sum over the Latin indices i, j... runs over the two
transverse components while the sum over Greek indices
runs over the four components as usual).

It is easy to see that the functional integral (8) generates
Green functions in the Eq. (4) background. Indeed, let us
choose the gauge A, = 0 for simplicity. In this gauge,
(0, F.j, 0)* = Aj(0py +z3) —Aj(=%0py +z1) so the
functional integral (8) takes the form

-0, —OOe]Z(iai + gA;(—o0e + zJ_)>

PHYSICAL REVIEW D 72, 074027 (2005)

[ DAI(p,)T(~pl)

X eiS(A)+ifLIZZL(Ai(wﬂz‘*’ZL)_Ai(_OOPz+ZL))"('U‘,'"—'USII);' (10)

Let us now shift the fields A; — A; + A; and where A’ =
Ui6(x,) + UL6(—x,). The only nonzero components of
the classical field strength in our case are F,; = (U;; —
U,)8( x.) so we get

_ 2 L
SA+A) == f d*zDF,,A*

S
2, e

. fd LAz ATF [
S
1 ,_

S ARDPg,, —20F A" + L (1)

In the A, = 0 gauge the first term in the right-hand side
of Eq. (11) vanishes while the second term cancels with
the corresponding contribution ~ — (A;(c0p, + 7)) —
Ai(—oop, +7,))*UY coming from the source in
Eq. (8). We obtain

|

‘/DAJ(pA)J(_pi‘)eiS(A)-H fdZZJ_(A,'(Oopz+ZJ_)_A,'(_Oopz+ZL))M(UT[—Ugi)Z _ '/DAJ(pA)J(_pI/A)ez/Z deZAH(DZgMV_2iF/,LV)AV’ (12)

which gives the Green functions in the Eq. (4) background.
To complete the factorization formula one needs to integrate over the remaining B fields with rapidities n < 7n;:

f DAJ(pa)J(= pl)e Sl (p)J(~ ply) = f DAJ(p)J(—ply)
% fDBJ(pB)](_p%)eis(A)ﬂs(B)ﬂfdzzL(o,Fgli,o)g(o,Gcli,o)g (13)

where the Wilson-line operators (0, F, ;, 0)¢ and (0, G,,;, 0)¢ are the operators (9) made from A and B fields, respectively.
(At (0, G.;, 0) = U,;; — U,; we recover the generating functional (8)).

Since the Wilson lines in Eq. (13) are lightlike the integration over rapidity in the corresponding Feynman diagrams
extends all the way to o and therefore we need to impose the conditions 1 > n; for A fields and n; > 7 for B fields “by
hand”. As discussed in [1,11,24,25], the better way to cut off tlongitudinal integrations is to change the slope of both
Wilson lines to the “rapidity divide™ vector e, = p; + e "' p;..

[ PATPL I P SNSRI = [ DATP)Ipy)
% fDBJ(pB)](_p%)eiS(A)vLiS(B)HfdzzJ_(O,Fpl,»,O)fJ(O,Ge],~,0)f,?' (14)

Indeed, from the viewpoint of A fields the slope e¢; can be replaced by p, with the LLA accuracy. Conversely, from the
viewpoint of the B fields the slope e; can be replaced by p; and we get back the Eq. (13). The advantage of the
representation (14) is the “built-in”’ cutoff in rapidity for the integration over A and B fields.

III. SCATTERING OF OCD SHOCK WAVES

A. Effective action as a scattering amplitude

In this section we define the scattering of the shock waves using the rapidity factorization developed above. Applying the
factorization formula (14) 2 times, one gets (see Fig. 4):
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f DAJ(pa)J(pp)J(—p)J(—pl)e’SW) = f DAJ(p,)J(—ply)ets™ [ DBJ(pp)J(—pl)e™s®

% / DCexpliS(C) + i ] £z, {[0, A, 00, C, ; 0]¢

+ (0’ Cezir O)g(o! Bezi’ O)?}] (15)

where the slope is e; = p; + e~ ™ p, for the [...] Wilson lines and e, = p; + ¢~ " p, for the (...) ones.
The functional integral over the central range of rapidity n; > 1 > 1, is determined by the integral over C field with the

sources

(0,A,,:,0), =[0,00e,],(i9; + gA;(00e; + z))[0ey, 0], — [0, —c0e;],(id; + gA;(—o0e; + z))[—o0ey, 0],
(Ox Bezb 0)2 = [O, meZ]z(iai + gBi(OOeZ + ZJ_))[OOeZ: O]z - [0) _OOeZ:Iz(iai + gBi(_oo€2 + ZJ_))[_OOeZ) O]z;

(16)

made from “external”” A and B fields. Since A /(£00) is a pure gauge these sources can be represented as a difference of a
pure-gauge fields (0, A, ;, 0), = (V4 — V4. and (0, B,,,0), = (U{" — US'), where

Via(zy) = [0, £ooe ] [Fooe; + z), £ooe; + coe |

Ui ,(z1) = [0, £ooe,].[Fooe, + z), +ooe, +00e ] (17)

Since there is no field strength F,,, at infinite time the direction of ¢; does not matter.
The result of the integration over the C field is an effective action for the n; > n > 7, interval of rapidity

¢St (Vi V2. UrUnim—=m) = f DCexpliS(C) + i f Pz {(V§ = V§h [0, C, ., 00¢ + (U — U0, C,;, 0)4}].  (18)

The amplitude (1) is then the integral over A and B fields with this effective action:

f DAT(p ) (pg)d (=PI (= ply)eiS® = ] DAT(p)J(—pl)eS™ ] DBJ(pp)J(—ply)eiS®)

X exp{iSes ([0, A, 1, 01, [0, B,,;, 014, 11 — m2)}. (19)

Note that the effective action iS.(V,, V5, Uy, Uy; My — 1,) defined by Eq. (18) is invariant under the redundant gauge

transformations (6)
Ui)(x1) = Uy (x)Qx 1),

Vig(x1) = Vi (x)Q/ (x), (20)

since this transformation can be absorbed by a gauge rotation of the C fields

X X.
Cc,— Qfx,, n=2)C,Qx,, In==
o= 01 (e )0 r

) + iQ*<xL, lnx—*>aMQ<xl, lnx—*>, Q1)
g X

where Q (x|, In<®) is an arbitrary SU; matrix satisfying the conditions Q(x, 7;) = Q(x) and QT (x 1, 7,) = Q/(x).
With a power accuracy O(m?/s), we can replace e; by p, and e, by p,:

eSerVi Vo U Ui =m) — f DCexp{iS(C) + i f Pz [(V{ = V[0, €., OF + (Uf' = UH0. Cin 02T (22)

One can interpret Eq. (22) as an effective action for scat-
tering of two QCD shock waves defined by the sources
(17):

Aél) = U 0(x.) + ULO(—x.),
Aé2) = Vio(x.) + Vio(—x.),

A=A, =0
(23)
A, =A,=0.

The saddle point of the functional integral (22) is deter-
mined by the classical equations

{
0

5Ce,

{S(C) +i f &2, [(Vei — V). [0, C.;, 0)¢

+ (U~ UL),0, C. O)z]} —0. (24)

The solution of this equation determines the classical field
A created by the collision of two shock waves (23) and the
effective action is the expression (22) evaluated at this

074027-4
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FIG. 4 (color online).
shock waves.

Effective action as a scattering of two

classical field. Unfortunately, at present it is not known

how to solve the Eq. (24) (for the numerical approach see
|

PHYSICAL REVIEW D 72, 074027 (2005)

[12]). In the next section we will develop a “‘perturbation
theory” in powers of the parameter [U, V]~ g’ [U;, V il
Note that the conventional perturbation theory corresponds
to the case when ‘U;, V; ~ 1 while the semiclassical QCD
is relevant when the fields are large (U, and/or V; ~ 1/g).

It is worth noting that for the scattering of two heavy
nuclei with atomic numbers A and B this parameter is
[U, V] _~ g4A1/6Bl/6.

B. Expansion in commutators of Wilson lines

The effective action is defined by the functional integral
(22) (hereafter we switch back to the usual notation A, for
the integration variable and F,, for the field strength)

eitatvutsttinn) = [ Daexp(isa) + i [ 2y (Vi = VL0 Fup OF + (U = U)0.F 0 25)

Taken separately, the sources ~‘U; create a shock wave
U,0(x,) + Uy0(—x,) and those ~V, create
V,0(x.) + V,06(—x,) In QED, the two sources U,
and V; do not interact (in the leading order in @) so the
sum of the two shock waves

A" = U,6(x.) + Usb(—x,) + Vi:6(x.)
+ V,5i0(—x.), (26)
A=A =0

is a classical solution to the set of Egs. (24). In QCD, the
interaction between these two sources is described by the
commutator g[U;, V,] (the coupling constant g corre-
sponds to the three-gluon vertex). The straightforward
approach is to take the trial configuration in the form of a
sum of the two shock waves and expand the ‘“‘deviation” of
the full QCD solution from the QED-type ansatz (26) in
powers of commutators [U, V]. This is done rigorously in
[16] and the relevant formulas are presented in the
Appendix. Here we will use a slightly different zero-order
approximation (cf. [1]) which leads to same results in a
more streamlined way at a price of some uncertainties (like
0(0)) which, however, do not contribute to the effective
action in the leading order.

Let us consider the behavior of the solution of the YM
equations at, say, x, — o0, x3 fixed (in the forward quad-
rant of the space). Since there is no field strength at t — oo,
the field must be a pure gauge. As demonstrated in
Ref. [16], this pure-gauge field has the form of a sum of
the shock waves plus a correction proportional to their
commutator. Technically, for a pair of pure-gauge fields
U;(x;) and V(x,) we define W;(x,)= U;(x)) +
Vi(xy)+ gEi(x,; U, V) as a pure-gauge field satisfying
the equation (i9; + g[U; + V,,)E' = 0. In the first order
in [U, V] this field has the form

[
k k k |ab
Up_2U’r + Vp_2v’r _P

Efl(U V) = —<xl 5
Pl Pl Pl

X [U, VP —ie=k +O(U, V]2> 27

where [U;, V,]* = 2Trt*['U;, V,]. The second, [U, V],
term of the expansion (27) can be found in [16] but we do
not need it with our accuracy.

Throughout the paper, we use Schwinger notations for
the propagator in the external field (x|1/P?|y). For the bare
propagator it reduces to (x|1/p?|y) and for the two-
dimensional propagator in the transverse space we use
the notation (x, [1/p? ly)) where p3 = —p;p'. Also, |f)
denotes [d?z; f(z))|z)) and later we will use the notation
0, /) = [d?z1 f(z )0, z)).

The zero-order approximation for the solution of the
classical equations for the functional integral (25) can be
taken as a superposition of pure-gauge fields in the for-
ward, backward, left, and right quadrants of the space (see
Fig. 5):

A =40 =
AT = Wi(x)0(x,)0(x.) + Wi (x)6(—x.)0(x.)
+ Wi(x)0(x)0(—x.) + Wi(x1)0(—x.)0(—x.),
(28)
where
Wi =1Ui+ Vi+EL,
Wi =Ui + Vi + Ef,

Wi =U,+ Vi +E,
Wi = U + Vi + E,
(29)

and EL(Uy, Vy), Ej (U, V1), ERx(Uy, Va), and Eg(Uy, V)
are given by Eq. (27). For the trial configuration (28)

074027-5
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SO

DiF.; = (Zx*)qe( D@ — LA ) (Wi — W)

+0(—x,)(0" — ilAL)(Wg — W), a1
. 2 . .
DIF; = o )0 = iAW = W)
+ 0(—x.) (0" — i[AL)( Wy — W),
and
FIG. 5 (color online). Pure-gauge ansatz as a zero-order ap- D.F..=D.F
proximation to the classical field created by the collision of o e
shock waves. = <2x*)8<2x0>(WFz Wei— Wi+ W)
s
_ 2x, : 2 2
Fi = ( >{0(x,)(W’ Wi) + 6(—x,) = 5<;x*>8<;xo)(EFi — Eg; — Ep; + Ep)).
X (Wi = Wi, 32
_. 2X, . . 30
F= o2 Yoo oW = W+ ow) )
§ . : Next, one shifts A — A + AEO) in the functional integral
X (WL - WB)}, (25) and obtains
eSer(Vi Vo UnUnm=m) — f DA exp{iS(A) +i f d“z(%A/*DWA” + T“AM>}. (33)
Here
_ 1 . . . . .
§=3 fdzZL{(Vl = Voi(Wh = Wi+ Wi = Wi + (U — Up){(Wp + Wy = Wi — Wy
1 .
- E(WF =W+ Wi = We)“(Wp+ W, = Wg— WB)?}» G4

is a sum of the action and source contributions due to the trial configuration (28), D,

, = D*(A)g,,, — 2iF,, is the inverse

propagator in the background-Feynman gauge and T, is the linear term for our tr1al configuration:

T, = 26( x*)é(x @74

— Wi — Wi + Wi _25< x*>6(x.)(EF

— Ef + E})

T, = —%6<;x.>(0(x*)[vli — Vo, Bt + ER] + 0(—x)[ Vy; — Vo, Eb + EL)) (35)

i
T, =

2 . . . .
=50 )OIy = U, Ep + By + 0—e)[ U, = Uy, Ef + ESD)

The first line in this equation follows directly from Eq. (32) while the two last lines are obtained by adding Egs. (31) and the

corresponding first derivatives of the sources (24)

'Strictly speaking, the inverse propagator is the sum of D wr

and the second variational derivative of the source (8), see Ref. [26].

074027-6
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o
OA.,

f &z, (U — U0, F.;, 0)°

PHYSICAL REVIEW D 72, 074027 (2005)

= 8(x)N{[0(x.)(8" — i[Al(copy + x1 ), )(Uy; — Uy)

+ 0(—x.) (0" — i[Al(—oop, + x1),)(Uy; — Uy}

2 [V = V$).[0, F.; 0]

= 8(x H{O(x,)(0" — i[Al(copy + x1), ) (Vi — V)

+0(—x)(9" — f{A(—oopy + x1),)(Vy; — Vol (36)

We get
F) A A
s {Soen + [auu —up. 0. FL02)| =
) 2 ai ai a
5. {SQCD + fd 2 [V ="V [0 F., OJz} o
Using 6(0)=1/2 so that Al(cop, +x)=

1/2(Wg; + W), Ai(—copy +x1) = 1/2( W, +
W), Al(copy + x1) = 1/2(Wp; + Wy,), Al(=cop; +
x1)=1/2(W,; + Wp;), and the condition (id; +
[ W,,)E" = 0 one easily obtains Eq. (35).2

Expansion in powers of T in the functional integral (33)
yields the set of Feynman diagrams in the external fields
(28) with the sources (35). The parameter of the expansion
is g2[U;, V,;1(~[U, V], see Eq. (5)).

IV. THE EFFECTIVE ACTION

A. The effective action in the lowest order
The effective action (25) in the first nontrivial order in
[U, V] is given by the integration of linear terms (35) with
the Green functions in the external field (28)
; 1 4, 44 17Ta a vb (! b (!
iSes(U, V) = —5 | diudz T4 (2){A* (2) A" (ZNT ().
(38)

It is easy to see that the term ~T,T, is ~[U, V]’ so the
leading contribution ~[U, V> comes from the product of
two T;’s which has the form

fdzzldz L( m(o 71

ab .
o
(39)

2A careful analysis shows that the “formula” 6(0) = 1/2 is
not valid here. It can be demonstrated that instead of 1 2(E I3
EL) o dz.A.(z.) one should use Ep [§ dz.A (z*) +
dz*A. (z.) where A and A7) are the posmve and
negatlve frequency parts of the field A. (With such T one
reproduces the correct set of fields A, and A, given by
Eq. (A8) from the Appendix). Fortunately, the corresg)onding
contribution to the effective action is ~7,. T ® ~[U, V] which
exceeds our accuracy.

—8(x ){O0(x ) (0" = i[Al(copy + x1), Ep; — EL;)
+ 0(—x.)(0 — i[Ai(—oopy + x1), )(Ei — EB,~>},

—8(x {O(x.) (0" — i[Ai(OOPI + x1), )(Ep; — Eg;)

+ 6(—x,)(9" — i[A'(—oop; + x1), )(Er; — Eg))}- 37)

[
where

L; = 2(EL — Ei — Ek + Eb)
=2(Wi, — Wi — Wi + Wi) (40)

is actually the transverse part of the Lipatov vertex of the
gluon emission by the scattering of two shock waves in the
first order in [U, V] (see Appendix). As we shall see below,
the main logarithmic contribution to the integral (39)
comes from the region z; — z/, where one can replace
the propagator in the background field by the bare propa-
gator. One obtains
1

25 fdadzﬁ (0’ Lo _
2 87 aPs — p +ie

The integral (41) is formally divergent. Within the LLA
accuracy, one can cut the integration off at the width of the

shock waves A ~ +/(s/m2)e™m/2, p~ (s/m%)e™/? and

0, Li“>. 41

obtain:
lng ]%ei(aﬁﬁp) 0,L¢ ;2 O,L"">
2 87 aBs — p] +ie
a A .
- [ Pz Lz )Lz ), “2)

where An = 1, — 71, is our rapidity interval.
In addition, within the LLLA approximation the zero-
order term (34) can be simplified to

S = fdzZL(Vl = Vy)i(U; — Uy (43)

Indeed, it is easy to see that in the right-hand side of
Eq. (34) the terms ~[U, V] cancel while the the terms
~[U, V]? are not multiplied by A7 so they can be omitted
in the LLA (the Eq. (42) is ~[U, V?An). It is worth noting
that Eq. (43) is the usual light-cone lattice action [27] in the
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limit when transverse size of the plaquette vanishes and the
longitudinal increases to infinity. Thus, the effective action
in the first order can be represented as

Sur(U, V) = [ dzzl{m — V)e(U, — Uy)e

LaAn
— 1

[ dzzlLﬂzl)Lfa(zl)}. (44)

We shall see below that L; is the Lipatov vertex of the
gluon emission by the scattering of two shock waves in the
first order in [U, V]. Note that S.; given by Eq. (44) is
invariant with respect to rotation of the sources

Uu,—u;,Q,  V,—VQ 45)

For the first term in the right-hand side of Eq. (44) it is
trivial while for the second it follows from the gauge-
invariant form discussed in the next section, see Eq. (59).

For future applications we will rewrite the effective
action (44) as a Gaussian integration over the auxiliary
field A coupled to Lipatov vertex (A9):

oISt UV) = i [d2r(Vi= Vo) (U —Wy)s

x [Daesol-ann [@zsoen - Lasn].

(46)

B. Nonlinear evolution equation from the effective
action

Let us prove now that the effective action (46) agrees
with the nonlinear evolution equation. To find the evolution
of the dipole UXU}L , we need to consider the effective
action for the weak source V. From Eq. (27) one sees
that at small g 'V, ~ 9,V

. pk .pk ab
Lo(xy) = —2<x vt 2y, — ut By,
Pl Pl

X (V, — Vz)i) (47)

PHYSICAL REVIEW D 72, 074027 (2005)

and Eq. (25) can be rewritten as
/ DA exp{iS(A) +i / Pz, [(Ve — V)]0, F., 0]
(U~ U0, F.y 0);%]}

— fDAedeZL{_a.\-Aﬂ)lf/\”i‘*'i(Vl_Vz)i'('u'i—ﬂé)“}_ (48)

Here
U, = e2asAn@/a)uvhy (49)
U, = eZa\.An(ai/ai)(Uz/\iU;)Uzy (50)
so that
. 0;0% \ab
U‘lll.=’l,l‘1‘l.+2asAn<U;r - U1> AL 5D
1
. 9;0k  \ab
Ug = Uy +200(V1 50 4, 62
1

where we need only the first term in expansion in A; in A.*

To find the evolution of the color dipole (7) we should
expand Eq. (48) in powers of V,; — V,; and use the
formula

[0, 00py],[x) + 0opy, vy + cop ][oopy, 0]
— Peig fidzi[O,F.[,O];’ (53)

which results in
—a. A ‘ZV a ai _~ ~ ~ ~
ULULULU, = [ Dae 27 [ #4501 0,010,
(54)

Performing the Gaussian integration over A one obtains
after some algebra

(x—y73

a,An
(U, UL U5, UL} = U UL U3, U + 52 f &z,

— Ne{U UL U, UL}

(x—23iGEz—-y3

- X (r{U,, UL, U, UL (U, UL U, UT )

(55)

which is the nonlinear evolution equation [26,28] for the Wilson-line operator U, = leng = [ooe, —00¢],.

’To cancel the UV divergence in the gluon-Reggeization term ~2:°U.t*(x|(p;/p3)U (p;/p?)ly) we need the second-order
contribution ¢y (x|1/p% |x)U, + cp(x|1/p3 [x)U,. However, since the pure divergency is set to zero in the dimensional regularization,
at least within this regularization the first term is sufficient.
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C. Gauge-invariant representation of the first-order effective action L;L’

Our expression for the A7 term in the effective action, proportional to the square of the Lipatov vertex (Wi, — Wi —
Wi, + Wi)?, was obtained in the axial-type gauges. It can be rewritten it in the gauge-invariant “diamond” form of trace
of four Wilson lines at x, . = =00 (see Fig. 6) as suggested in a recent paper [17]. The diamond Wilson loop is defined as
follows

Sxy) = trf[—oopy, Fajy 0P Joop,[00P2, Fuiy =00p2 ]y, [00p1, =001 ] aop,[ =00 P2, 0p3] oy, + ti[—00py, 00pi ],
X [00ps, Fujy =%0p3]eop, [90P 1, Faiy =P 1] 0p,[ —00Pp2, 0pr] o), + ti[—00py, 00py oo, [00p2, =00 p5 ],
X [0opy, Fujy ©0p1] aop,[=0p2, Fujy ©ps] oo, + tt[—=00py, Fujy 0Py, [0, =003 ]y [0p1, —00p1] o),

X [_OOPZ’ F. o°p2:|—oop1};
(56)

where the transverse arguments in all Wilson lines are x ; . Next, define this diamond as a function of the sources

S(U,, Uy, Vy, Vy) = N1 f DA (A) exp(iS(A) + i f Pz {(V§ = V§) [0, F,; 014 + (U — U0, F,, 0)5}).

(57)
(In the Appendix we demonstrate that the trace of four Wilson lines
tr{{—ooey, °°€1]ooe2[°°€2, _°°€2]ooe,[°°€1, _0061]—0062[_0062, Oer]—ooel} =1 (58)
|
is trivial in the leading order.) fields A, — OfA RO éQTG «{) in the functional inte-
~ Note that <(U, V) is invariant with respect to the rota-  gra] Eq. (57).
tion of all sources by one gauge matrix )(x ) Now we can prove that the square of Lipatov vertex can
be expressed as the diamond Wilson loop:
O(UIQ, Uzﬂ, Vlﬂ, VzQ) = O(Ul, Uz, Vl’ Vz), (59) 1
ZL;’(U, V)LY(U, V) = &(U, V). (60)

since it can be absorbed by gauge transformation of the
Indeed, it is easy to see that for the trial configuration (28)
the Eq. (56) reduces to

(Wri = W) (Wi — W) + (We — Wp)*
X (Wi = W)+ (Wp — W) (Wi — W)
+(Wp — We) (Wi — W)

= (Wpgi = Wy = Wi+ W) (Wi = Wi = W
+ Wh)e,

which coincide with the left-hand side of the Eq. (60). In
the covariant-type gauges where A; — 0 as x — oo the
right-hand side of the Eq. (56) can be rewritten as

a:M o' MyMIMY + Mo My0 MM o
M My MYoMI + oM MyMT oM,

where M| = [—oop,, °°P1]oop2, M, = [oop,, _°°P2]oopl,
My = [oop;, —00p;] o), and My =[—00p;, 0p,] o), .
Equation (61) is the expression obtained recently in [17]
in the framework of the Hamiltonian approach (see also
FIG. 6 (color online). Gauge-invariant form of the effective [18,19]). The corresponding form of our effective action is
action. the following:
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1 . . .
ZL;‘(U, VLU, V) = 9;,(W, WH ol (W WhHWeWiwgwh + w,wloi(wewhao,(wewhwyw/
+ WLW;WFW;ai(WRW;)ai(WBWZ) + ai(WLW;)WFWIJg WRWgai(WBWZ)- (62)

The Eq. (60) links the representation in terms of the effective degrees of freedom (Wilson lines in our case) with the
representation in terms of gluons of the underlying Yang-Mills theory via Eq. (57). The remarkable feature of the gauge-
invariant form (60) is its universality—if one writes the effective action in terms of some other degrees of freedom (say,
Reggeized gluons [29]) one should recover Eq. (60) once these new effective degrees of freedom are expressed in terms of
gluons.

V. FUNCTIONAL INTEGRAL OVER THE DYNAMICAL WILSON LINES

A. Effective action as the integral over the Wilson lines

In this section we will rewrite the functional integral for the effective action (25) in terms of Wilson-line variables. To
this end, let us use the factorization formula (14) n times as shown in Fig. 7. The effective action factorizes then into a
product of n independent functional integrals over the gluon fields labeled by index &:

eiSenUVim) — fDAlDAZ...DA”“ expi{(Vi = V(UL — UL + S(A,4y) + (VT = Varbheunt — ugh
+8(A,) + .+ (VI = V(UL - Uy + S(A) + (V= V(U — Uk, (63)

i 7tk qigrk ki _
Uj 9'Uj ande =

where the integrals over x| and summation over the color indices are implied. As usually, Uk P = é

L Vﬂ‘a Vk where

_ Peig fjw duny Ay, (un*+x)

Ull{(2)(xl) - ’ V{c(z) (XJ_) = Peig _[(;m dunig_ Ay (un*”"! +XJ.)’ (64)

and the vectors n; are ordered in rapidity: ny > 1, > 1, ... 1, > 1, > 7. To disentangle integrations over different

A¥, we rewrite expli (VHI F— VAL (UM — UbY)] at each “rapldlty divide” 7, as an integral over the auxiliary group
variables V"Jrl and U* 12 using the formula

o [4ViU — der(a, — ig V) (o' — ig W) f DV(x )DO(x ) )e' Jdxe Villsi [dx, Vill=i [ax, ViU (65)

(where V,; = V1 é 9;V and ’il,- =0t éa ;U). The determinant gives the perturbative nonlogarithmic corrections of the
same order as the corrections to the factorization formula (14). In the LLA they can be ignored, consequently, we obtain

eSar(UnUnViVam=m) — / nggDAng:ODU’;DﬁgDV’;DV’g expi{(Vi — VYU — UL + S(A)
+ (Vnﬂ n+l)(rum nz (’v Zl)(rarlll _ ru;l) + ..

+ (V4 = V(U = W) = (V' = VUi = U5 + (Vi = Vip(us - u3)

+8(A2) + (V2 = V(U — U — (Vi = ViUl — Uy + (Vi = Vaceudi — b
+8(A") + (V' = V), — Uy} (66)

Now we can integrate over the gluon fields A;. Using the results of the previous Section, we get
f DA expli( Vi, = V) (UL — U + iS(Ay) + i(VE, — VAU — Us™)} = oBSaVLVA0T L0 e (67)
where at sufficiently small An
Sur(V5, V& 0K, 05 ) = (Vi = V(Ui = ) — i & f””L VS ULV ©69)

Performing the integrations over A* we get
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eiSenUV.m=m) — f 1;_,DUDUSDVADVA expi{(vg - Viyuy, - us) -

~ (Vi -

Vo — ey + = (Vi = Vo, — 3 + (V7 -

PHYSICAL REVIEW D 72, 074027 (2005)

l

Zf L2(V, 0")Ax

Vo) (Ul — by

- %Lz(‘ﬁ’ UhAn — (ﬁ/}z - ﬁ/;z‘)(ﬂ}i - ’u;i) + (ﬁ/}z - WA/éi)(Uli —Uy) — %Lz(vl, U)AW}.

(69)

In the continuum limit » — oo we obtain the following functional integral for the effective action

£iSerr(U1(x), U2 (x), Vi (x), Vo (x)imy —m2) = ij=l,2DVj(x, n)DUj(x, ”7)|Uj(x,n2)=Uj(x) exp[fd2x<i[yclzi(x) — chzi(x)]

wwmm—w%mhf%ﬂwwmm—amm%

m

xWﬂmW4wmm+%wwmmU@wmwmmﬂmm®}<m

where we displayed the color indices explicitly and re-
moved the hat from the notation of the integration varia-
bles. This looks like the functional integral over the
canonical coordinates U and canonical momenta V with
the (nonlocal) Hamiltonian L?(V, U). The rapidity 7
serves as the time variable for this system. The above
representation of the effective action as an integral over
the dynamical Wilson-line variables is the main result of
this paper.

Note that the L,L’ term in the exponent in (70) is
invariant under the rotations (20)

nS>nen g,

n n>n M1

FIG. 7 (color online). Effective action factorized in n func-

tional integrals.

{
U;(x, n) = U;(x, n)Q(x, n),

(71)
Vilx, m) = Vi(x, n)Q(x, ),

(see. Equation (59)), but the term ~U % V preserves only
the n-independent symmetry

Ujx, m) = U;(x, m)Qx),  V(x,m) = V;(x, n)Q(x).

(72)

This probably means that the term ~U%V should be

adjusted by a ~[U, V]* correction (not important in the
LLA) so that the full symmetry (71) is restored.

The idea how to use the factorization formula to rewrite
the functional integral in terms of Wilson lines was for-
mulated in Ref. [1] where the first-order effective action
was obtained (the expression in terms of square of Lipatov
vertex is given in [16]). However, the additional redundant
gauge symmetry (20) was fixed by the requirement that
there is no field at t — — oo which correspond to the choice
U, = 0 and V, = 0 for the two colliding shock waves. In
this case, one obtains the functional integral in terms of
only two variables, U and V, at a price of a more compli-
cated form of the effective action [1].

It should be noted that L(U, V) is only the first term of
the expansion of the true high-energy effective action
K(U, V) in powers of [U, V]. An example of the next-order,
~[U, V], contribution to K(V, U) which is missing in the
effective action (70) is presented in Ref. [1], see Fig. 8.

B. Functional integral for the nonlinear evolution

It is instructive do demonstrate that the functional inte-
gral (70) reproduces the nonlinear evolution in the case of
one small source. Basically, we recast the arguments of the
Sec. IV B in the language of functional integrals.

First, note that at small V the functional integral over V
is Gaussian (see the Eq. (47)). It is convenient to introduce
the “Gaussian noise” associated with the Lipatov vertex
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and rewrite the functional integral (70) as:

PHYSICAL REVIEW D 72, 074027 (2005)

1St (U1 (0. U2 (x), Vi (0, Vo (x):my = 10) = fl‘[j:l,zDVj(x’ MDU;(x, My, =0, DAL (x, 1) exp[d2x<i[V§’i(x) - V§(x)]

X (U )~ U]+ [

dn{—as/\?(x, NA“(x, m)
Mo

— iV ) — Vi, n)]%[’u?i(x, ) — Ui (x, )]

+ pip*
1 p2

— 20, A% (x, n)(xIU
1

(When convenient, we use the notation (...)7 = (...)(n)
for brevity). The integral over V gives the 8-function of
the form

5<ai(£7[’(1§‘i(x, ) — Usi(x, n)]))

k k
—2ias<x|Ufp’f v, - ut 2P Uzl‘lb)\f">,
Pl 2t

which restricts U in a following way

d ) : . : k
%[Uf’(x, n) — Us'(x, n)] = 216¥.;()€|UIr ppf U

1

K
~ut 2P UzlabA,ﬁ">.
P

(74)

|

vinuruliug = / De

X

X UTUI™Te

where T denotes the inverse rapidity ordering. Taking the
derivative with respect to 1 we get

d —a, [Mdny [d?z, A47 247
%Uf;’Uﬁng"Uzy= / pae @ Lo dn [Eanint o,
k ab
><<U;r;7[t“<x Pun Ai")
Pi
VN ]U" UT”U” —UT"U" U‘rn
X VIV Yo Ugy 1y YixYox

X

ab
)\,i”’) —x <—>y:|

k
p
—U)

X |:t“<x
Pl

X U;’y>.

Using the contraction

! !
—2ia 1 fzz dn/ l(p*/p2)UT <022

U — (1 2))®(V] - V;’);;)D. (73)

{
It is convenient to rewrite Eq. (74) in the integral form (cf.

Eq. (50)):

2iat® [ dn'(I(pH/p)U ()™ 1A (')

Ui(x,n) = Te Ui(x1, 1),

(75)

where T means ordering in rapidity ( = our “‘time’’). The
remaining integral over A is Gaussian with the “propaga-
tor”

1

200

A (xp, WALy, ) = 869" 5—8(x L — y1)8(n — 7).

(76)

The evolution of the dipole can be represented as

i /! /! / !
_ 1 2 an yain _ _9jy sa [T Ik /2 Y™ ab \b7 o / k /2 Vg7 jab y b1
a, fﬂzdn fd 2 ATA U}L"ZTe 2iat fﬂzdn Gl P D)UY 1A )TeZtast fﬂzdn(XI(p /PDUT 1P A.)
y

. ! !
eZlaxt” sz d‘l'll(y|(17k/172l)Un |uh)\5:"7 )

T g, (77)

[

Ut(m) LE

ALz MU, 7)) = — %i<z :
1

ab
x> tU(x, n)

e MU ) = = S0 ) ZE L0t e,
Py

(78)

one gets the nonlinear evolution Eq. (55) after some
algebra.

The factor 1/2 in the Eq. (78) comes from 6(0) = 1/2.
To avoid this uncertainty, one should first calculate the
correlations in A and then differentiate with respect to
rapidity (cf. Ref. [30])
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FIG. 8 (color online).
term.

Feynman diagram for a typical [U, V]’

n
dn'dn (A (e, n)A2 (v, ) (n)e(n™)
72

1
s —y)1g&if(mg(n)

% T [ dasGe s, )L N )

72 72

y)igijf(n)f(n)-

. . . . inf bc
(01 — ig Vi)t (Uy; — Uy = 2ia, (o' — ig Vi )ab( Sl WL> EC
p

2
1
R . . . X [ bc
(&' — ig Vi) (U, — Uy = 2ia, (8" — ig Vi )ab(wR f Wy — W;QWB> EC
Pl P
tP

(0" — igU(Vy; —

(0" — ig’Ué)“b(Vli - VZi)b =

with the initial conditions

U(n) = Vin) =
At small Vi these equations reduce to (cf. Equation (74))

Uatn=mn,, Vatn=mn. 8l

. . ipi
(Uy; — Uy = 2ias<U}L%U1 UTp p
Pl PJ_

Vi — Vy = 0(U, VD), (82)
V,)¢ = —2ia, (V*—Vl viZ p ) E?
pl P¢

o(u, vP). (83)

ab
U2> E!

while in the opposite case of small ‘U; they are

(Vi -

'uli - 'uzi =

It is instructive to rewrite the Eqs. (82) and (83) in terms of
W’s.

V)b = ~2ia, (@ - ig’ua)“b<

a p'
—2ia (0’ —ig Vi) b( Z p

PHYSICAL REVIEW D 72, 074027 (2005)

The first line in the above equation should be used to make
contractions between different 7 and T in Eq. (77) while
the second line takes care of the contractions within same T
or T. It is easy to check that the result is consistent with
taking #(0) = 1/2 in the Eq. (78).

Similarly one can demonstrate that all the hierarchy
of the evolution equations for Wilson lines [26,31]
( = JIMWLK equation [32]) is reproduced.

C. Classical equations for the Wilson-line functional
integral

As we discussed above, the characteristic fields in the
functional integral are large but the coupling constant
a,(Q,) is small due to the saturation. In this case, we can
try to calculate the functional integral (70) semiclassically.
Using the approximate formula

SWH(U, V) = —(WT p"fjwyb(éfug T8V, (79)

pPi

we get the classical equations for the functional integral
(70) in the form

(80)

ini in bc
p +P'p :
Wr—W WR> ES,
"l kph J
p pipj bc .
EW, — Wi =5 WB> ES,
1 Pl
{
. . i ab
Fi %i=2ias<W;£%WR W*pp WL> ES
P p_]_ '

. . J
W — W, = 2ia, W*ppWF WTppWBaE‘I.
J
PL p_]_
(84)

From the viewpoint of the functional integral (70) the W’s
are the (nonlocal) functions of U and V variables given in
the first order by Eq. (27). It would be very interesting to
rewrite the Eq. (25) of the W variables themselves, that is,
to construct the functional integral over the W variables
with a saddle-point equations given by the Eq. (84).

VI. CONCLUSION

As mentioned in the Introduction, the popular idea of
how to solve QCD at high energies is to reformulate it in
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X_ X+

FIG. 9 (color online).
action .

Wilson-line structure of the effective

terms of the relevant high-energy degrees of freedom—
Wilson lines. The functional integral (70) gives an example
of such 2 + 1 theory where 2 stands for the transverse
coordinates and 1 for d the rapidity serving as a time
variable. The structure of the effective action is presented
in Fig. 9. Note that the two terms in the exponent in the
effective action, shown in Fig. 9, are both local in x; but
differ with respect to the longitudinal coordinates: the first
(kinetic) term is made from the Wilson lines located at
x4 = 0 or x_ = 0 while the second term is made from the
Wilson lines at x. = *oo. Unfortunately, the transition
between these Wilson lines is nonlocal in x; (see
Eq. (27)) and so the resulting effective action is a nonlocal
function of the dynamical variables U and V.

In should be emphasized that Eq. (70) is only a model -
the genuine effective action for the 2 + 1 high-energy
theory of Wilson lines must include all the contributions
~[U, V]* (as we mentioned above, an example of a [U, V]’
term which is missing in Eq. (25) is presented in Fig. 8).
However, this model is correct in the case of weak projec-
tile fields and strong target fields, and vice versa. In terms
of Feynman diagrams, the effective action (70) includes
both up and down fan ladders and the pomeron loops, see
Fig. 10. In the dipole language, it describes both multi-
plication and recombination of dipoles (see the discussion
in [20,21]). In conclusion I would like to emphasize that
the effective action (70) summarizes all present knowledge
about the high-energy evolution of Wilson lines in a way
symmetric with respect to projectile and target and hence it
may serve as a starting point for future analysis of high-
energy scattering in QCD.

FIG. 10 (color online).
the effective action.

Typical Feynman diagrams included in
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APPENDIX: CLASSICAL FIELDS IN THE FIRST
ORDER IN [U, V]

Following Ref. [16], we take the zero-order approxima-
tion in the form of the sum of the two shock waves (26)

Aﬁo) = U,;0(x.) + Uy6(—x.) + V,;60(x.)

+ Va0(—x.),
29— 79 o

(AD)

We will expand the deviation of the full QCD solution from
the QED-type ansatz (Al) in powers of commutators

[U, V]. To carry this out, we shift A— A + AEO) in the
functional integral (25) and obtain

(I
f DA exp{i [ d4z<§A/‘DM,,A” + gT“AM>}. (A2)

Here D,,, = D*(A)g,,, — 2iF,, is the inverse propagator
in the background-Feynman gauge and T, is the linear
term for the trial configuration (A1l). Since the only non-
zero component of the field strength for the ansatz (A1) is

ng) = _i[Uli’ Vlk]e(F) - i[Uli, VZk]H(R)
- i[UZi) Vlk]e(L) - i[Uzi, Vzk]e(B) —(i—k),
(A3)

the linear term T, = D?FY), is

T.=T,=0,
T' = (o, + g[Uyy + Vi, WU, Vi] — i = k)O(F)
+ (@0 + glUy + Vo)UY, V5] — i = KB(R)
+ (10 + glUs + Vau J([UL, V] — i = )B(L)
+ (i0y + g[Us + Voi, [U, V5] — i = k)O(B),
(A4)

where 6(F) = 0(z.)0(z.), O(R) = 0(z.)0(—z.), O(L) =
6(—2z.)6(z.), and (B) = 6(—2z.)6(—z.)

Expanding in powers of T in the functional integral (A2)
one gets the set of Feynman diagrams in the external fields
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(26) with the sources (A4). The parameter of the expansion
is g2[U,, V;] (~ [U, V], see Eq. (5)).

The general formula for the classical solution in the first
order in [U, V] has the form

ADa() = ig [ (A% (AP ()ATE ().

The Green functions in the background of the Eq. (26) field
can be approximated by cluster expansion

(A (A" (@2)z = (A, (A" (2)y + (AL (DA (2))y
— (A, (DA"(2)) + O(U, V],

(A5)

(A6)
where (A, (x)A”(z)), is the perturbative propagator and
x.>0,y,<0 2
ANy [aa(Za ) ul(x <)

4i
X (28,0108 + 5 (P2, WU,

p*+ie

4pr. P2y

by

is the propagator in the background of the shock wave U
(the propagator in the V background is obtained by the
replacement U < V, p, < p;.

Substituting Eq. (A7) and (A4) into the above equation,
one obtains (the details of the calculations can be found in
Ref. [16] and here we present only the final set of gauge
fields):

(A7)

p>+ie

ar = 0<F){W¢l(xl) - gta(W} o %)“bwm)l’,

i€

+(F <L)+ (F<R)+(F<B), (A8)

where L. = L} = Lk = Li; = 2E' and
J

PHYSICAL REVIEW D 72, 074027 (2005)

_ 1 ' 1 =
Lp.=2|V,;—Vy,——E, ———E}
F i li 21B+l~6 R B_if B
B 1 . 1 .
Lp, =2|U;; — Uy, ——E, ——E]
F L ti atie b a—ie B}
- | 1 -
L;.=2lV s — !
L | 1i ZIB_,’_IG R B—lé B
r 1 1
L, =2 , E. — E!
L _U]l U21 + e F o — i€ R:|
Loy 1 . 1 ] (A9)
R | 1i 21’ﬂ+i6 F :8 ie L
B 1 1
Lp, =2|U Us,;, E, — E!
R i li 2o+ ie a — i€ B}
L —Z_V ! L= ! Ei
Bx* i 1i 21’B+i6 F B ie Li|
1 . 1
Lae = U~ U By~ o B

where (2/s)/(a * i€)O(x) =i [§* duO(x + up,) and
BZQE Ox) =i [(*°duO(x + up;). It is easy to check
the background-Feynman gauge condition (id, +
g[Wﬁ, )L ru = 0 (and similarly for three other quadrants
of the space).

The transverse part E; agrees with the results of
Sec. I1I B while the longitudinal part (A9) does not literally
agree with (35) (see the footnote after that equation). It
should be emphasized that, unlike the calculations with
trial configuration (28), the Feynman diagrams in the
background of the ansatz (A1) are free from uncertainties
like 6(0).

Let us rederive now the effective action (42) starting
from the ansatz (A1) and the fields (A8). Since the only
nonzero component of the field strength for the ansatz (A1)
is transverse (see Eq. (A3)), we have

1 _ _ . ] ) )
Ser = = ] POt 4 2 [ & 2d 2 THT (A% (AP ()

1 _ _ . _ _ . 1 _ _ )
= _Z fd4Z(F22)aF(0)a”k + ifd4Z/F§2)a(Z)<(DlAak(Z) — e k)Abj(ZI»TJI?(ZI)) _ _Z fd4ZF§2)aF(1)a‘lk, (A10)

where F(V% is a field strength in the first order in [U, V]. Using the fields (A8) we obtain

a 9;

(where |0, E;) = [d*Z/,|0,z/))E;(z/,)) and therefore

ubO,Ei>+(F<—>L)+(F<—>R)+(F<—>B)—(i<—>k),

(A11)

. ; . ai ab i . a 8i ab
S = —zngd4z{0(F)([U’, Vi —ie k)“(WIJ,E?WF> Eb + O(R)([UL, VAl — i = k) (W}EWQ Eb

0

, ; ab . . i ab
+O(L)([UL, VK] — i — k)"(WZ e WL> Eb + O(L)[UL, VAl — i & k)a<W; o WB> E’,;}

A typical integral in the above equation has the form

9 (A12)
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Pi i ©da Di

0, / /) — d2 d2 /
p2 T e ‘ Zj_>g(zl) o ﬂ) o f <1 ZJ_f(ZJ_) L Pi

/d“zdzzj_ H(Z*)Q(Z.)f(ZJ_)<Z

z'l>g(z1), (A13)

In the LLA, the integral [¢° da/a is replaced by 1/2A 7. More accurately, one should remember that the slopes of Wilson
lines are e; = p; + e " p, and e, = p, + e™p, as shown in Eq. (15). In this case, 0(z.)0(z,) in the integrand of
Eq. (A13) will be replaced by 6(z.. + e"z,)8(z, + e~ "'z,) so one obtains

/ d4zd2110(z*)0(z.)f(zl)<z ﬁ |0, z'l>g(z1) - ] Pz, d2 f(z)g(2)
2
x [ dadBd'py ipe-y, _ Pi
167 afs — pi +ie

1
% (a+emB—ie)(B+e Ma—ie)

o o
=i [ @z ) [T

2
% dﬂei(p,zﬂ)L( Pi Pi )

8 e Ma’s + p3 e ™mals + Pi
i Pi

=——A d?z,d*7, f(z L ), Al4
pym nf z,d°7) (ZJ_)<ZJ_ 2 zl>g(zl) (Al4)

where An = 1| — n,. Performing the integrations over z., z, in Eq. (A12) we get

. . 9; ab ; . p 0; ab
Sur = —a,An f dzzl{qvl, V=i o k)“(W}aTWF) — (UL VK= i = &) (W,EGTWR)
1 1

. 0; ab . 9 ab X
— (UL V=i k)a(wga—;wL> + (UL VA — i k)“<wg6—2’vv3> }Eg = —iasAnja’zzLE?E‘”.
1 1
(A15)

which coincides with Eq. (42).

Finally, let us demonstrate that the diamond trace of four (nondifferentiated) Wilson lines is trivial (this is related to the
fact that the field strength F', _ vanishes in the leading order, see Eqs. (A8) and (A9)). To regularize the corresponding
expressions, we consider the “original’ tilted Wilson loop shown in Fig. 11 for the finite size L. We need to prove that

l}imtr{[—Lel +Le,+x,,Le;+Le, +x,|[Ley + Ley +x,,—Ley +Ley +x |[Le; —Ley +x,—Le; —Le, + x|

X[—Ley—Ley, +x1,Le; —Le; +x [} =1 (A16)

in the leading nontrivial order in [U, V] .

Consider the case U; < 1, V; ~ 1 (the opposite case
V,; < 1, U; ~ 1is similar). It is easy to see from Eq. (A9)
that [Le, * Le; +x,, —Ley, * Le; + x, | ~[U, VP so
we are left with

Llimtr{[—Lel +Le, +x),Le; + Le, + x|

X [Ley —Le, + x,,—Le; — Ley + x| |} (A17)

At this point, we can take the limit L — oo in the e
direction. We obtain: FIG. 11 (color online). Trace of four Wilson lines.
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[x, + Ley, x| + Ley +0e;|[x; — Le, + e, x; — Ley] — 1

sinaL
i€e)(B+e Ma — ie)

i
=?/dad'8(a+e"2ﬁ—

sinaL

(%

vt — -~
laﬁs—pi-ﬁ-ie

1

PHYSICAL REVIEW D 72, 074027 (2005)

1
U,

ab . .
LUy — Us Ef — Elz]”)

a

2 ()
——f da
T Jo

1
.l.
x |U -
(ll 1<e_’7'cv2s+pzl e ma’s+p

. )Ullahl[Un — U, E} — Ea]”). (AI8)
1

We see now that in the limit L — oo the right-hand side of Eq. (A19) vanishes so the left-hand side is at best ~[U, V]* .
Similarly,

Llim[xl + Ley, x| + Le, — e |[x; — Ley, —c0e;,x; —Le,| =1,
—00

(A19)

and therefore the trace (A17), which is product of left-hand side of Eq. (A18) and (A19), is equal to 1 in the leading order.
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