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Rapidity evolution of Wilson lines at the next-to-leading order
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Giovanni A. Chirilli†
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(Received 7 October 2013; published 5 December 2013)

At high energies, particles move very fast, so the proper degrees of freedom for the fast gluons moving

along the straight lines are Wilson-line operators—infinite gauge factors ordered along the line. In the

framework of operator expansion in Wilson lines, the energy dependence of the amplitudes is determined

by the rapidity evolution of Wilson lines. We present the next-to-leading order hierarchy of the evolution

equations for Wilson-line operators.

DOI: 10.1103/PhysRevD.88.111501 PACS numbers: 12.38.Bx, 12.38.Cy

I. INTRODUCTION

One of the most successful approaches to high-energy
scattering is the operator expansion (OPE) in Wilson lines.
(For a review, see Refs. [1,2]). This approach is based on
factorization in rapidity [3], and the cornerstone of the
method is the evolution ofWilson-line operators with respect
to their rapidity. The most well-studied part is the evolution
of the ‘‘color dipole’’ (the trace of two Wilson lines), which
has a great number of phenomenological applications. The
evolution of color dipoles is known both in the leading order
[the Balitsky-Kovchegov (BK) equation [4,5]] and in the
next-to-leading order (NLO) [6,7] and the solutions of the
BKwith running�s [8,9] are widely used for pA and heavy-
ion experiments at LHC and RHIC. However, it was realized
recently that many interesting processes are described by
the evolution of more complicated operators such as ‘‘color
quadrupoles’’ (trace of four Wilson lines) [10]. To describe
such evolution, the NLO BK must be generalized to the full
hierarchy ofWilson-lines evolution, which is the topic of the
present paper. We follow the method of calculation devel-
oped in Ref. [6] and the results for many diagrams (with the
notable exception of ‘‘triple interaction’’ diagrams) can be
taken from that paper. In this paper we present only the final
results for the kernels and leave the details of calculation for
future paper(s).

II. HIGH-ENERGY OPE AND RAPIDITY
FACTORIZATION

Consider an arbitrary Feynman diagram for scattering

of two particles with momenta pA ¼ p1 þ p2
A

s p2 and pB ¼
p2 þ p2

B

s p1 (p
2
1 ¼ p2

2 ¼ 0). Following standard high-energy

OPE logic, we introduce the rapidity divide � which
separates the ‘‘fast’’ gluons from the ‘‘slow’’ ones. As a first

step, we integrate over gluons with rapidities Y > � and
leave the integration overY < � to be performed afterwards.
It is convenient to use the background field formalism: we
integrate over gluons with �>� ¼ e� and leave gluons
with�<� as a background field, to be integrated over later.
Since the rapidities of the background gluons are very differ-
ent from the rapidities of gluons in our Feynman diagrams,
the background field can be taken in the form of a shock
wave due to the Lorentz contraction. The integrals over
gluons with rapidities Y > � give the so-called impact
factors—coefficients in front of Wilson-line operators
with the upper rapidity cutoff � for emitted gluons. The
Wilson lines are defined as

U
�
x ¼ Pexp

�
ig
Z 1

�1
dup

�
1 A

�
�ðup1 þ x?Þ

�
;

A
�
�ðxÞ ¼

Z
d4k�ðe� � j�kjÞeik�xA�ðkÞ;

(1)

where � is the Sudakov variable (p ¼ �p1 þ �p2 þ p?).
The result for the amplitude can be written as

AðpA; pBÞ ¼
X

IiðpA; pB; z1; . . . zn;�Þ

� hpBjU�ðz1Þ . . . :Uy�ðznÞjpBi; (2)

where the color indices of Wilson lines are convoluted in a
colorless way (and connected by gauge links at infinity).
As in usual OPE, the coefficient functions (‘‘impact fac-
tors’’ Ii) and matrix elements depend on the ‘‘rapidity
divide’’ � but this dependence is canceled in the sum (2).
It is convenient to define the impact factors in an energy-
independent way (see, e.g., [11]), so all the energy depen-
dence is shifted to the evolution of Wilson lines in the rhs
of Eq. (2) with respect to �.
To find the evolution equations of theseWilson-line opera-

tors with respect to rapidity cutoff � we again factorize in
rapidity. We consider the matrix element of the set of Wilson
lines between (arbitrary) target states and integrate over the
gluons with rapidity �1 >�>�2 ¼ �1 ���, leaving the
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gluons with �< �2 as a background field (to be integrated
over later). In the frame of gluonswith�� �1, the fieldswith
�< �2 shrink to a pancake and we obtain four diagrams of
the type shown in Fig. 1. The result of the evolution ofWilson
lines can be presented as an infinite hierarchy of evolution
equations forn-Wilson-line operators. This hierarchy of equa-
tions can be constructed from a finite number of ‘‘blocks,’’
with this number equal to the order of perturbation theory.

It should bementioned that an alternative approach to high-
energy scattering in the dense QCD regime is to write the

rapidity evolution of the wave function of the target which is
governed by the Jalilian Marian-Iancu-McLerran-Weigert-
Leonidov-Kovner (JIMWLK) equation [12]. The one-loop
evolution of the JIMWLK Hamiltonian summarizes the
hierarchy of equations presented in the next section. (After
completion of this paper, we learned about the paper [13]
where the NLO JIMWLK Hamiltonian is presented.)

III. LO HIERARCHY

In the leading order, the hierarchy can be built from self-
interaction (evolution of one Wilson line) and ‘‘pairwise
interaction.’’ The typical diagrams are shown in Fig. 1 and
the equations have the form [4]

d

d�
ðU1Þij ¼ �s

�2

Z d2z4
z214

ðUab
4 �Uab

1 ÞðtaU1t
bÞij

d

d�
ðUy

1 Þij ¼
�s

�2

Z d2z4
z214

ðUab
4 �Uab

1 ÞðtbUy
1 t

aÞij
(3)

for the self-interaction diagrams of Fig. 1(a) type and

d

d�
ðU1ÞijðU2Þkl ¼ �s

4�2

Z
d2z4½2U4 �U1 �U2�ab ðz14; z24Þ

z214z
2
24

½ðtaU1ÞijðU2t
bÞkl þ ðU1t

bÞijðtaU2Þkl�
d

d�
ðU1ÞijðUy

2 Þkl ¼ � �s

4�2

Z
d2z4½2U4 �U1 �U2�ab ðz14; z24Þ

z214z
2
24

½ðtaU1ÞijðtbUy
2 Þkl þ ðU1t

bÞijðUy
2 t

aÞkl�
d

d�
ðUy

1 ÞijðUy
2 Þkl ¼

�s

4�2

Z
d2z4½2U4 �U1 �U2�ab ðz14; z24Þ

z214z
2
24

½ðUy
1 t

aÞijðtbUy
2 Þkl þ ðtbUy

1 ÞijðUy
2 t

aÞkl�

(4)

for the ‘‘pairwise’’ diagram shown in Fig. 1(b). Hereafter we
use the notation Ui � Uzi , and the integration variable is
called z4 for uniformityof notations in all sections.All vectors
zi are two dimensional and ðzi; zjÞ is a scalar product.

The evolution equations in this form are correct both in
the fundamental representation of Wilson lines where ta ¼
�a=2 and in the adjoint representation where ðtaÞbc ¼
�ifabc. In the adjoint representation, U and Uy are effec-

tively the same matrices (Uy
ab ¼ Uba) so the three evolution

equations (4) are obtained from one another by correspond-
ing transpositions. [One should remember that ðtaÞbc ¼
�ðtaÞcb in the adjoint representation.] Since the color struc-
ture of the diagrams in the fundamental representation is
fixed, one can get the kernels by comparison with adjoint
representation. Effectively, since our results will always be
presented in the form universal for adjoint and fundamental

representations, the NLO results for the evolution ofU �Uy
and Uy �Uy can be obtained by transposition.

IV. NLO HIERARCHY

In the next-to-leading order (NLO), the hierarchy can be
constructed from self-interactions, pairwise interactions,
and triple interactions. The typical diagrams are shown in
Figs. 2(a) and 2(b), Figs. 2(c) and 2(d), and Figs. 2(e) and
2(f), respectively.

A. Self-interaction

The most simple part is the one-particle interaction
(‘‘gluon Reggeization’’ term). The typical diagrams are
shown in Figs. 2(a) and 2(b) and the result has the form

d

d�
ðU1Þij ¼ �2

s

8�4

Z d2z4d
2z5

z245
fUdd0

4 ðUee0
5 �Uee0

4 Þ
��

2I1 � 4

z245

�
fadefbd

0e0 ðtaU1t
bÞij þ ðz14; z15Þ

z214z
2
15

ln
z214
z215

½ifad0e0 ðftd; tegU1t
aÞij

� ifadeðtaU1ftd0 ; te0 gÞij�
�
þ 8nfðtaU1t

bÞijIf1 trftaU4t
bðUy

5 �Uy
4 Þg
�
þ �2

sNc

4�3

Z d2z4
z214

ðUab
4 �Uab

1 ÞðtaU1t
bÞij

�
��
11

3
ln z214�

2 þ 67

9
� �2

3

�
� nf

Nc

�
2

3
ln z214�

2 þ 10

9

��
; (5)

(a) (b)

FIG. 1 (color online). LO diagrams.
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where nf is the number of active quark flavors and� is the
normalization point. (The quark diagrams are similar to
those in Figs. 2(a)–2(d) with the gluon loop replaced by the
quark one.) Hereafter we use the notations

I1 � Iðz1; z4; z5Þ

¼ ln z214=z
2
15

z214 � z215

�
z214 þ z215

z245
� ðz14; z15Þ

z214
� ðz14; z15Þ

z215
� 2

�
;

(6)

I2 � Iðz2; z4; z5Þ, and

If1 � Ifðz1; z4; z5Þ ¼ 2

z245
� 2ðz14; z15Þ

z214z
2
15z

2
45

ln
z214
z215

: (7)

(The integration variables are called z4 and z5 for uniform-
ity of notations in all sections.)

The result in this form is correct both in fundamental and
adjoint representations. (For quark contribution propor-
tional to nf one should replace t

a by adjoint representation

matrices only in taU1t
b and leave the fundamental ta and tb

in the quark loop.) As we discussed in the previous section,
this means that the results for the evolution of Uy can be
obtained by transposition. We have checked the ‘‘trans-
posing rule’’ by explicit calculation.

B. Pairwise interaction

The typical diagrams for pairwise interaction are shown
in Figs. 2(c) and 2(d) (and the full set is given by Fig. 6 in

Ref. [6]). In this paper we present the final result; the
details will be published elsewhere. The evolution equation
for U �U has the form

d

d�
ðU1ÞijðU2Þkl ¼ �2

s

8�4

Z
d2z4d

2z5ðA1 þA2 þA3Þ

þ �2
sNc

8�3

Z
d2z4ðB1 þB2Þ; (8)

where the kernelsAiðz1; z2; z4; z5Þ correspond to diagrams
of Figs. 2(a) and 2(c) type and Biðz1; z2; z4Þ to Figs. 2(b)
and 2(d) type. The explicit expressions are

A1¼½ðtaU1ÞijðU2t
bÞklþðU1t

bÞijðtaU2Þkl�

�
�
fadefbd

0e0Udd0
4 ðUee0

5 �Uee0
4 Þ �K� 4

z445
þ I1
z245

þ I2
z245

 !

þ4nfðIf1þIf2þKfÞtrftaU4t
bðUy

5 �Uy
4 Þg
�

(9)

A2¼4ðU4�U1Þdd0 ðU5�U2Þee0
8<
:i½fad0e0 ðtdU1t

aÞijðteU2Þkl

�fadeðtaU1t
d0 ÞijðU2t

e0 Þkl�J1245 lnz
2
14

z215

þi½fad0e0 ðtdU1ÞijðteU2t
aÞkl

�fadeðU1t
d0 ÞijðtaU2t

e0 Þkl�J2154 lnz
2
24

z225

9=
; (10)

A3 ¼ 2Udd0
4

�
i½fad0e0 ðU1t

aÞijðtdteU2Þkl � fadeðtaU1Þij

� ðU2t
e0td

0 Þkl�
�
J 1245 ln

z214
z215

þ ðJ2145 � J2154Þ ln z
2
24

z225

�

� ðU5 �U2Þee0 þ i½fad0e0 ðtdteU1ÞijðU2t
aÞkl

� fadeðU1t
e0td

0 ÞijðtaU2Þkl�
�
J 2145 ln

z224
z225

þ ðJ1245 � J1254Þ ln z
2
14

z215

�
ðU5 �U1Þee0

�
(11)

for Ai kernels and

B1 ¼ 2 ln
z214
z212

ln
z224
z212

�
ðU4 �U1Þabi½fbdeðtaU1t

dÞijðU2t
eÞkl

þ fadeðteU1t
bÞijðtdU2Þkl�

�ðz14; z24Þ
z214z

2
24

� 1

z214

�

þ ðU4 �U2Þabi½fbdeðU1t
eÞijðtaU2t

dÞkl
þ fadeðtdU1ÞijðteU2t

bÞkl�
�ðz14; z24Þ

z214z
2
24

� 1

z224

��
(12)

(a) (b)

(c) (d)

(e) (f)

FIG. 2 (color online). Typical NLO diagrams.
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B2 ¼ ½2Uab
4 �Uab

1 �Uab
2 �
8<
:ðz14; z24Þz214z

2
24

��
11

3
� 2nf

3Nc

�
ln z212�

2 þ 67

9
� �2

3
� 10nf

9Nc

�

þ
�
11

3
� 2nf

3Nc

��
1

2z214
ln
z224
z212

þ 1

2z224
ln
z214
z212

�9=
;½ðtaU1ÞijðU2t

bÞkl þ ðU1t
bÞijðtaU2Þkl� (13)

for Bi kernels. Here we used the following notations:

J1245 � Jðz1; z2; z4; z5Þ ¼ ðz14; z25Þ
z214z

2
25z

2
45

� 2
ðz15; z45Þðz15; z25Þ

z214z
2
15z

2
25z

2
45

þ 2
ðz25; z45Þ
z214z

2
25z

2
45

; (14)

J 1245�J ðz1;z2;z4;z5Þ¼ ðz24;z25Þ
z224z

2
25z

2
45

�2ðz24;z45Þðz15;z25Þ
z224z

2
25z

2
15z

2
45

þ2ðz25;z45Þðz14;z24Þ
z214z

2
24z

2
25z

2
45

�2
ðz14;z24Þðz15;z25Þ

z214z
2
15z

2
24z

2
25

(15)

K ¼ 1

z445

2
4z214z252 þ z15

2z224 � 4z212z
2
45

z214z
2
25 � z215z

2
24

ln
z214z

2
25

z215z
2
24

� 2

3
5þ 1

2

0
@ z412
z214z

2
25 � z215z

2
24

2
4 1

z214z
2
25

þ 1

z224z
2
15

3
5

þ z212
z245

2
4 1

z214z
2
25

� 1

z215z
2
24

3
5
1
A ln

z214z
2
25

z215z
2
24

(16)

and

Kf ¼ 1

z445

�
�2þ z214z

2
25 þ z215z

2
24 � z212z

2
45

z214z
2
25 � z215z

2
24

ln
z214z

2
25

z215z
2
24

�
: (17)

The conformally invariant kernelsK andKf are parts of the
NLO BK equation for dipole evolution.

Again, the result in this form is correct both in funda-
mental and adjoint representations, so the evolution of
U �Uy and Uy �Uy can be obtained by transposition of
Eqs. (9)–(13). If one transposes a Wilson line proportional
toU2 in the lhs and rhs of Eq. (8), takes the trace of Wilson
lines, and adds self-interaction terms for U and Uy, one
reproduces after some algebra the NLO BK equation
from Ref. [6]. [In doing so, one can use the integral (20)
below with replacements z3 ! z1, z1 ! z2 so that

J 22145 ¼ J 1245 and z2 ! z1, z3 ! z2, which gives
J 12145 ¼ J1245.] It should be noted that, although we cal-
culated all diagrams anew, the results for two Wilson lines
with open indices can be restored from the contributions of
the individual diagrams in Ref. [6], since the color struc-
ture of these diagrams is obvious even with open indices.

C. Triple interaction

The diagrams for triple interaction are shown in Figs. 2(e)
and 2(f) (plus permutations). The result is

d

d�
ðU1ÞijðU2ÞklðU3Þmn¼ i

�2
s

2�4

Z
d2z4d

2z5

�
J 12345 ln

z234
z235

fcde½ðtaU1ÞijðtbU2ÞklðU3t
cÞmnðU4�U1ÞadðU5�U2Þbe

�ðU1t
aÞijðU2t

bÞklðtcU3ÞmnðU4�U1ÞdaðU5�U2Þeb�þJ 32145 ln
z214
z215

fade½ðU1t
aÞijðtbU2ÞklðtcU3Þmn

�ðU4�U3ÞcdðU5�U2Þbe�ðtaU1Þij�ðU2t
bÞklðU3t

cÞmnðUdc
4 �Udc

3 ÞðUeb
5 �Ueb

2 Þ�

þJ 13245 ln
z224
z225

fbde½ðtaU1ÞijðU2t
bÞklðtcU3ÞmnðU4�U1ÞadðU5�U3Þce

�ðU1t
aÞijðtbU2ÞklðU3t

cÞmnðU4�U1ÞdaðU5�U3Þec�; (18)

where

J 12345 � J ðz1; z2; z3; z4; z5Þ ¼ � 2ðz14; z34Þðz25; z35Þ
z214z

2
25z

2
34z

2
35

� 2ðz14; z45Þðz25; z35Þ
z214z

2
25z

2
35z

2
45

þ 2ðz25; z45Þðz14; z34Þ
z214z

2
25z

2
34z

2
45

þ ðz14; z25Þ
z214z

2
25z

2
45

: (19)
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As usual, the results for the evolution ofU �U �Uy, etc., can be obtained by transposition of color structures in Eq. (18).
The terms with two and one intersections with the shock wave coincide with Ref. [14]. When comparing the results for

the diagrams with one intersection [of Fig. 2(e) type] to that in Ref. [14], the following integral is useful:

Z d2z5
�

J 12345 ln
z234
z235

¼
8<
:ðz14; z24Þ2z214z

2
24

ln
z223
z224

ln
z223
z234

� z2 $ z3

9=
;þ

8<
:
2
4ðz14; z24Þðz24; z34Þ

z214z
2
24

� ðz14; z34Þ
z214

3
5

� 1

i	23

2
4Li2

�ðz24; z34Þ þ i	23

z224

�
�Li2

�ðz24; z34Þ � i	23

z224

�
þ 1

2
ln
z224
z234

ln
ðz23; z24Þ þ i	23

ðz23; z24Þ � i	23

3
5þ z2 $ z3

9=
;;

(20)

where 	23 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z224z

2
34 � ðz24; z34Þ2

q
and Li2 is the dilogar-

ithm [which cancels in the final result (18)].
Note that we calculated the evolution of Wilson lines in

the lightlike gaugep�
2 A� ¼ 0. To assemble the evolution of

colorless operators, one needs to combine these equations
and connect Wilson lines by segments at infinity. These
gauge links at infinity do not contribute to the kernel either
in p�

2 A� ¼ 0 or Feynman gauge (note, however, that their

contribution is the only nonvanishing one in the p
�
1 A� ¼ 0

gauge). Indeed, in the leading order it is easy to see, because
gluons coming from gauge links have a restriction �< e�

so the gluon connecting points x, y with xþ ¼ L ! 1 and
zþ ¼ 0 (inside the shock wave) will contain the factor

exp ði p2
?

�s LÞ, which vanishes for L ! 1 and � restricted

from above. Similarly, one can prove that gauge links at
infinity do not contribute to the NLO kernel and therefore,
the description of the evolution in terms of separate Wilson
lines in the p

�
2 A� ¼ 0 gauge does make sense.

V. CONCLUSION

We have calculated the full hierarchy of evolution
equations for Wilson-line operators in the next-to-leading
approximation. Two remarks, however, are in order.

First, our ‘‘building blocks’’ for evolution of Wilson lines
are calculated at d ¼ 4 (d? ¼ 2), so they contain infrared
divergences at large z4 and/or z5, even at the leadingorder. For
the gauge-invariant operators like color dipole or color quad-
rupole, one can use our d? ¼ 2 formulas, since all these IR
divergences should cancel. If, however, one is interested in the
evolution of color combinations ofWilson lines (like for octet
NLO BFKL [15]), some of the above kernels should be
recalculated in d ¼ 4þ 
 dimensions.

Second, the NLO evolution equations presented here are
‘‘raw’’ evolution equations for Wilson lines with rigid
cutoff (1). For example, in N ¼ 4 they lead to evolution
equations for the color dipole, which is nonconformal. The
reason (discussed in Ref. [7]) is that the cutoff (1) violates
conformal invariance, so we need an Oð�sÞ counterterm to
restore our lost symmetry. For the color dipole such a
counterterm was found in Ref. [7], and the obtained evo-
lution for the ‘‘composite conformal dipole’’ is Möbius
invariant and agrees with the NLO BFKL kernel for the
two-Reggeon Green function found in Ref. [16]. Thus, if
one wants to use our NLO hierarchy for colorless objects
such as quadrupole in N ¼ 4 SYM, one should correct
our rigid-cutoff quadrupole with counterterms, which
should make the evolution equation for the ‘‘composite
conformal quadrupole’’ Möbius invariant. We hope to
return to the quadrupole evolution in future publications.
Another example is the evolution of the three quark Wilson

lines 
mnl
m0n0l0U
mm0
1 Umm0

2 Umm0
3 (there are both Pomeron

and odderon contributions to this operator). After subtract-
ing the Ref. [7] counterterms, the NLO evolution equation
for this operator becomes semi-invariant just as NLO BK
in QCD [17]. The study is in progress.
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