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ABSTRACT 

Despite multimodal aggressive treatment with chemo-radiation-therapy, and surgical resection, Glioblastoma Multiforme 
(GBM) may recur which is known as recurrent brain tumor (rBT), There are several instances where benign and malignant 
pathologies might appear very similar on radiographic imaging. One such illustration is radiation necrosis (RN) (a 
moderately benign impact of radiation treatment) which are visually almost indistinguishable from rBT on structural 
magnetic resonance imaging (MRI). There is hence a need for identification of reliable non-invasive quantitative 
measurements on routinely acquired brain MRI scans: pre-contrast T1-weighted (T1), post-contrast T1-weighted (T1Gd), 
T2-weighted (T2), and T2 Fluid Attenuated Inversion Recovery (FLAIR) that can accurately distinguish rBT from RN.  In 
this work, sophisticated radiomic texture features are used to distinguish rBT from RN on multimodal MRI for disease 
characterization. First, stochastic multiresolution radiomic descriptor that captures voxel-level textural and structural 
heterogeneity as well as intensity and histogram features are extracted. Subsequently, these features are used in a machine 
learning setting to characterize the rBT from RN from four sequences of the MRI with 155 imaging slices for 30 GBM 
cases (12 RN, 18 rBT). To reduce the bias in accuracy estimation our model is implemented using Leave-one-out cross-
validation (LOOCV) and stratified 5-fold cross-validation with a Random Forest classifier. Our model offers mean 
accuracy of 0.967 ± 0.180 for LOOCV and 0.933 ± 0.082 for stratified 5-fold cross-validation using multiresolution 
texture features for discrimination of rBT from RN in this study. Our findings suggest that sophisticated texture feature 
may offer better discrimination between rBT and RN in MRI compared to other works in the literature. 
 
Keywords: Recurrent brain tumor, radiation necrosis, radiomics features, multimodal magnetic resonance imaging 
 

1. INTRODUCTION 
 

High-grade gliomas with grade III and IV according to the World Health Organization (WHO) [1,2] is the most aggressive 
and severe malignant brain tumors. Distinguishing disease phenotypes that have similar morphologic appearances is one 
of the most challenging problems on neuroimaging. The certain pathologies which appear very similar on imaging exhibit 
distinct morphological and architectural characteristics on histology. Disease confirmation obtaining from biopsy samples 
is not always ideal, and the patients end up undergoing complete resection. This often results in morbidity and, at times, 
mortality. Hence, it is important to develop non-invasive imaging biomarkers to differentiate these conditions reliably and 
robustly. Which is the basis for subsequent clinical steps and supportive for improving the treatment possibilities of the 
disease.  
Our previous works demonstrated the utility of multiresolution texture features and other hand-crafted imaging features in 
the context of problem involving brain tumors. In the first application, we proposed an automated model for LGG 
prediction progression. These different hand-crafted features including structural multiresolution texture are used with a 
gradient boosting-based regression technique known as gradient boosting (XGBoost) to assess the predictive performance 
of the LGG progression model. Our proposed method had shown the efficacy of using non-invasive structural MRI to 
predict the progression of LGG with an AUC of 0.81±0.03 [3]. The second application involves identifying glioma grading 
and prediction for IDH, ATRX and 1p/19q codeletion mutations using a novel radiogenomics-NB model. The proposed 
radiogenomics-NB model significantly outperforms compared to the competing models in the literature [4]. 
 
An automatic disease phenotypes prediction is a difficult task, as it needs to represent nonlinear relationships between the 
deep imaging features and histological formation. In addition, the robustness in performance remains an open and difficult  
challenge in machine learning based models. Recent work developed a new intensity radiomic feature that allows the 
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capture of spatial intra-tumoral heterogeneity on a per-voxel basis by capturing local variations in gradient orientations [5-
7]. They showed the benefit of this specific class of radiomic features in the context of treatment evaluation in brain tumors 
– distinguishing treatment confounders from true tumor progression.   
 
The specificity of disease diagnosis has improved considerably with the emergence of newer and faster imaging techniques. 
Although existing mechanisms and methods provide important information on cancer phenotypes, in many cases the details 
are not definitive. There are several instances where benign and malignant pathologies might appear very similar on 
radiographic imaging. One such illustration is radiation necrosis (RN) (a moderately benign impact of radiation treatment) 
and recurrent brain tumors (rBT), which are visually almost indistinguishable on ordinary MRI [8]; even though both RN 
and rBT have distinct cellular and architectural arrangements when examined on a pathology slide under a microscope. 
However, conventional MRI images contain relevant information embedded that can provide insights into the underlying 
biology. There's, subsequently, a require for recognizing non-invasive markers that can dependably recognize such similar 
appearing pathologies on routine imaging for early determination as well as treatment assessment. Identification of these 
imaging biomarkers could possibly forestall the require for unnecessary surgical interventions, as well as exposure to 
unnecessary radiation, for disease confirmation.   
 
In this study, we propose a novel radiomics model based on selected radiomics/volumetric features which characterize 
tumor volume and sub-regions in differentiating in recurrent GBM from RN. The purpose of this study was to establish a 
high-performing radiomics strategy with machine learning from conventional MRI to differentiate recurrent glioblastoma 
(GBM) from radiation necrosis (RN) after concurrent chemoradiotherapy (CCRT) or radiotherapy (RT). 
 
 

2. METHODOLOGY 
 
This study proposes a model to discriminate rBT from RN based on multiresolution texture features and other imaging 
features. Each of the patient in the dataset consists of four modalities of MRI scans and each of the modality have 155 
imaging slices. The features are extracted from raw MRI of the tumor volume and different representations the MRI. A 
feature selection method LASSO is used to select the most significant feature sets. Then, the final model is implemented 
using LOOCV and Stratified 5- Fold with Random Forest classifier to distinguish rBT from RN on multimodal MRI. 
Figure 1 illustrates the complete flow diagram of the prediction model of rBT from RN. 
 

 

Figure 1. Overall pipeline for recurrent brain tumor classification using Radiomics features. LASSO denotes Least Absolute Shrinkage 
and Selection Operator. LOOCV denote Leave-one-out cross-validation. N is the number of samples in the dataset 
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2.1 Dataset 

Our proposed method is evaluated on routine multimodal MRI sequences from The Cancer Genome Atlas (TCGA) dataset 
in the Genomic Data Commons (GDC) Data Portal [9], The Cancer Imaging Archive (TCIA) [10-14] and in an Institutional 
Review Board-approved (Eastern Virginia Medical School (EVMS) IRB# 20-6-NH-0130), joint study from collaborating 
institutions: EVMS, Sentara Healthcare and Old Dominion University (Vision Lab). The Clinicopathologic Features of 
Brain Tumor studies (RN vs rBT) is summarized in Table 1. 
 

Table 1: Clinicopathologic Features of Brain Tumor studies (RN vs rBT) 
 

Number of Patients 
(samples)  

Gender Age (y, range) 

Primary Brain tumors 
(12RN,18rBT) 

13F, 17M (32-80) 

 
Among the 30 cases,  18 recurrent brain tumor cases are confirmed disease phenotypes (recurrent glioblastoma) and are 
obtained from TCGA dataset in the GDC Data Portal (https://portal.gdc.cancer.gov/) and TCIA [10-12]. For the radiation 
necrosis cases, we consider multiple factors including tumor resection followed by standard CCRT or RT with adequate 
clinical radiology follow-up. The radiation-induced necrosis describes a focal lesion in the brain that may occur secondary 
to any technique of radiation therapy. The radiation necrosis tends to occur later in the course, usually beyond 1 year after 
radiation [13-15]. We consider the criteria for RN if the contrast-enhancing lesions gradually decrease on more than two 
subsequent follow-up MRI studies performed at 2–3 month intervals (with a size criterion of a decrease of < 25% of the 
size of a measurable [< 1 cm] enhancing lesion according to the sum of the products of perpendicular dimensions) and 
clinical symptoms improved during the follow-up period [16,17]. The sources and the distribution for all 30 GBM cases 
(12 RN, 18 rBT) are listed in Table 2. 
 

Table 2: Data Sources for Brain Tumor studies (RN vs rBT) 
 
 
 
 
 
 
 
 

 
 
 
2.2 Image Preprocessing: 
 
Four sequences of the MRI are provided with the dataset: (T1w, Gd-T1w, T2w, and FLAIR). We performed the image 
preprocessing steps for each of the scans: 
 

Data Source # Recurrent Brain Tumor 
(rBT) 

# Radiation Necrosis 
(RN) 

TCGA (GDC) 12 3 

TCIA 6 5 

SENTARA (EVMS) - 4 

Total 18 12 

(a) Raw Image                  (b) Co-registration           (c) Skull Stripped         (d) Segmented Lesion 

Figure 2. Image Preprocessing Steps 
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• co-registered to the T1 template,  
• re-sampled to 1 mm 3 resolution,  
• skull stripping, 
• used our 3D deep learning model to have the segmented sub-regions which are verified by the radiologist.  

 
2.3 Feature Extraction:  

Radiomics involves computerized extraction of quantitative features from radiographic imaging (i.e., MRI), and provides 
an opportunity to uniquely capture ‘sub-visual’ identification. While characterizing GBM tumors for predicting survival 
and treatment response [18-21], a few approaches have recently explored the role of routine texture radiomics (e.g., 
Haralick), none of these strategies have detailed adequate segregation for clinical appropriateness, nor are domain-inspired. 
Prateek Prasanna, et al., they developed a new class of radiomic descriptor that can uniquely characterize brain tumor 
behavior, such as capturing the extent of intra-tumoral heterogeneity, the effect of tumor infiltration to peritumoral regions, 
and consequences of mass-effect on surrounding healthy parenchyma; characteristics that are related to affected person 
prognosis and response to treatment. In the following section, we discuss about the implementation of our method. For 
comparison, we implement a state-of-the-art method in the literature known as the Co-occurrence of Local Anisotropic 
Gradient orientations (CoLlAGe) features [6,7]. CoLlAGe can capture microarchitecture textural differences in local 
intensity gradient variations. Particularly, CoLlAGe endeavors to capture neighborhood heterogeneity and disorder in a 
lesion; mathematically this is often comparable to the entropy feature determined from the co-occurrence of voxel-level 
gradient orientations. 
Texture features are extracted from the whole tumors (WT) and sub-regions (ET, ED, NCR) volume of the T1, Gd-T1w, 
T2, and FLAIR MRI sequences, which include the histogram-based statistics and matrix-based features (co-occurrence 
matrix, the neighborhood gray tone difference matrix, and the Size Zone Matrix). Furthermore, histogram-based statistics 
features are extracted from the different tumor sub-regions (edema, enhance tumor, and necrosis) of the T1, Gd-T1w, T2, 
and FLAIR MRI sequences. In addition, we extract different volumetric features that describe the volumes of the different 
sub-regions (ET, ED, NCR). Finally, nine area properties (area, centroid, perimeter, major axis length, minor axis length, 
eccentricity, orientation, solidity, and extent) are extracted from the whole tumor volume and from three viewpoints (x, y, 
and z-axes). Furthermore, we extract these texture features from a fractal and multi-resolution fractal representation of the 
tumor volume. The fractal and multi-resolution fractal representations are piecewise-triangular-prism-surface-area 
(PTPSA) [22], multifractional Brownian motion (mBm) [23], and Holder exponent (HE) [24,25] of the tumor volume of 
the four modalities. 
In our study, the majority of significant radiomics features from the radiomics model were various second-order features, 
suggesting that high‐throughput characteristics can provide more accurate assessment. The hypothesis for this observation 
is that second-order features capture the spatial variation in signal intensity, which tend to extract information that may be 
incomprehensible and invisible to the naked eye. Recent studies have demonstrated that second-order features also reflect 
the underlying histology. However, a future study with histopathologic correlation is mandatory to prove our hypothesis 
of the direct relationship between radiomic features in recurrent GBM and RN. 
 
To reduce the biased estimate of the accuracy computed on the dataset our model is implemented using Leave-one-out 
cross-validation (LOOCV) and Stratified 5-Fold cross-validation. We computed feature matrix from ROI on brain tumor 
cohorts. A feature selection (LASSO) method is utilized to reduce the high dimensionality of the feature matrix. Then, the 
features are ranked based on their importance, and the least important features are removed. The selected features are used 
in a machine learning setting (RF classifier) to characterize the recurrent brain tumor radiation necrosis 

 
3. EXPERIMENTAL RESULTS 

 
We evaluated our model at two levels to distinguish recurrent brain tumor: CoLlAGe feature-based and Texture, 
Volumetric and Histogram feature -based. For both methods, we use conventional machine learning based method to 
extract texture features, such as gray level co-occurrence matrix (GLCM). After feature extraction, feature selection is 
applied, then followed by classifier to distinguish rBT from RN. 

Additionally, in order to reduce the high dimensionality of the features in classification steps, we modify both models as 
follows: 1) calculate and rank the feature importance for each classification; 2) train the modified selected features utilizing 
RF classifier. As we have a very limited cases, we used Leave-one-out cross-validation which is a special case of cross 
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validation where the number of folds equals the number of instances in the dataset [26]. Moreover, to avoid overfitting in 
model performance, Stratified 5- Fold cross-validation is performed. Statistical results across CoLlAGe and other Texture 
features were compared by computing Precision, Specificity (Recall), f1 score and accuracy, which shown in Figure 3. 

(a) LOOCV 

(b) Stratified 5-Fold 

Figure 3. rBT Vs RN Classification report using Multiresolution Texture features and CoLIAGe features: (a) LOOCV, (b) Stratified 5- 
Fold 

We use the similar type of datasets as (Prateek Prasanna, et al.) [6].  The performance comparison shows promising 
performance by using Texture, Volumetric and Histogram feature method which provides a higher accuracy. The following 
Table 3 shows the performance comparison of LOOCV and Stratified 5-Fold cross -validation for both Mutireolution 
texture Features and CoLlAGe features.  
 

Table 3. Performance of Classifier with (a) Texture, Volumetric and Histogram feature and (b) CoLlAGe features 
 

Comparison of 
Features 

Evaluation 
Method 

precision_
mean 

Specificity_mean f1_score_mean Accuracy_mean
±Std 

Texture, Volumetric 
and Histogram feature 

 
LOOCV 

0.97 0.97 0.97 0.967 ± 0.180 

Stratified 5-Fold 0.94 0.93 0.93 0.933 ± 0.082 

 
 

CoLlAGe 

 
LOOCV 

0.77 0.77 0.76 0.770 ± 0.423 

Stratified 5-Fold 0.81 0.80 0.79 0.800± 0.125 

CoLlAGe (Prateek 
Prasanna, et al.) [6] 

3-fold randomized 
cross-validation 

- - - 0.837±0.0543 
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"' "' "' "' 0 0 0.10 
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4. DISCUSSION AND CONCLUSION 
 

In this paper, we use different radiomics and hand-crafted texture features to distinguish recurrent brain tumor from 
radiation necrosis on multimodal MRI. Moreover, we use feature selection to reduce the high dimensional feature matrix 
and rank the important features. The best cross-validation accuracy using LOOCV is  96.7% for texture, volumetric and 
histogram features, while that using 5-fold validation is 80.0% for CoLlAGe feature, respectively. The performance of the 
proposed method suggests that sophisticated texture feature may offer better discrimination between rBT and RN in MRI 
compared to other comparable methods in the literature. In future, we plan to distinguish tumor recurrence and pseudo 
progression by utilizing radiomics features. 
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