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Completing Single-Cell DNA
Methylome Profiles via Transfer
Learning Together With
KL-Divergence
Sanjeeva Dodlapati 1, Zongliang Jiang2 and Jiangwen Sun1*

1Department of Computer Science, Old Dominion University, Norfolk, VA, United States, 2School of Animal Sciences, AgCenter,
Louisiana State University, Baton Rouge, LA, United States

The high level of sparsity in methylome profiles obtained using whole-genome bisulfite
sequencing in the case of low biological material amount limits its value in the study of
systems in which large samples are difficult to assemble, such as mammalian
preimplantation embryonic development. The recently developed computational
methods for addressing the sparsity by imputing missing have their limits when the
required minimum data coverage or profiles of the same tissue in other modalities are not
available. In this study, we explored the use of transfer learning together with Kullback-
Leibler (KL) divergence to train predictive models for completing methylome profiles with
very low coverage (below 2%). Transfer learning was used to leverage less sparse profiles
that are typically available for different tissues for the same species, while KL divergence
was employed tomaximize the usage of information carried in the input data. A deep neural
network was adopted to extract both DNA sequence and local methylation patterns for
imputation. Our study of training models for completing methylome profiles of bovine
oocytes and early embryos demonstrates the effectiveness of transfer learning and KL
divergence, with individual increase of 29.98 and 29.43%, respectively, in prediction
performance and 38.70% increase when the two were used together. The drastically
increased data coverage (43.80–73.6%) after imputation powers downstream analyses
involving methylomes that cannot be effectively done using the very low coverage profiles
(0.06–1.47%) before imputation.

Keywords: DNA methylation, single cell WGBS, embryo methylome, methylation imputation, transfer learning, KL
divergence

1 INTRODUCTION

DNA methylation, a process of adding a methyl group to the fifth carbon of cytosines, is ubiquitous
in genome of all kingdoms of life from bacteria to eukaryotes (Zemach et al., 2010). Although there
exist methylated cytosines in other contexts, methylation in the context of CpG dinucleotides (i.e., a
cytosine nucleotide being immediately followed by a guanine nucleotide along the 5’→ 3’ direction
of a sequence) is the most common form (Feng et al., 2010) and is the subject of this study. DNA
methylation plays critical roles in the regulation of both genome stability and gene expression
(Greenberg and Bourc’his, 2019), involved in many important biological processes such as
embryonic development (Zhu et al., 2018; Duan et al., 2019), X-chromosome inactivation
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(Grant et al., 1992), genomic imprinting (Proudhon et al., 2012),
and aging (Xiao et al., 2019). Alterations in the usual methylation
patterns may lead to disruption of normal cellular functions and
disease conditions. Disrupted DNA methylation has been linked
to several diseases such as cancer (Ko et al., 2010; Russler-
Germain et al., 2014), immunological disorders (Rajshekar
et al., 2018), and neurological disorders (Sun et al., 2014;
Kernohan et al., 2016).

Due to its importance, obtaining DNA methylome profiles for
varying biological systems has attracted considerable attentions
(Abascal et al., 2020). Several techniques have been developed for
profiling DNA methylation genome-wide, including methylated
DNA immunoprecipitation sequencing (MeDIP-Seq) (Taiwo
et al., 2012), whole-genome bisulfite sequencing (WGBS)
(Clark et al., 2017), reduced representation bisulfite sequencing
(RRBS) (Gu et al., 2011), and nanopore sequencing Clarke et al.
(2009) followed by methylation detection. Since MeDIP-Seq
relies on a methyl-cytosine antibody to pull down methylated
DNA fragments followed by sequencing, the obtained profiles,
even though genome-wide, are in low resolution (100–300 bp)
and biased, with substantial underrepresentation of CpG poor
regions (Rauluseviciute et al., 2019), limiting its application in
biological studies. Nanopore sequencing, one of the emerging
third-generation sequencing techniques, is capable of producing
reads of much longer length (in tens to hundreds of thousands
bases) compared to their short-read sequencing counterparts.
Several computational approaches have been developed to predict
DNA methylation from nanopore sequencing reads (Yuen et al.,
2021). However, due to limited accuracy in both sequencing and
subsequent methylation prediction (Liu et al., 2021), nanopore
sequencing has yet become a widely used approach for
methylome profiling.

Both RRBS and WGBS are based on bisulfite conversion and
capable of producing methylome profiles at single-base pair
resolution. Without the bias of RRBS for CpG dense regions,
WGBS is currently the most popularly used methylome
profiling technology and has been used to obtain profiles for
a wide range of tissues in varying organisms (Roadmap
Epigenomics Consortium et al., 2015; Abascal et al., 2020).
However, to obtain a profile with high data coverage rate
(defined as the proportion of CpG sites with profiled
methylation state out of the total in the entire genome) using
WGBS, large amount of genetic input coupled with high
sequencing depth is required. Single-cell WGBS is well
known for its very low coverage rate. When excluding CpG
sites with low amount (below 5) of overlapping reads, the data
coverage rate in single-cell methylomes can get down to just a
little over 1% (Zhu et al., 2018) or even well below 1%
(Smallwood et al., 2014). In applications, such as the study of
mammalian preimplantation of embryos where genetic material
is precious, the coverage rate can go extremely low after rigors
data cleaning (see Materials and Methods), only 0.06–1.47% (all
but one below 0.3%) in a recent study of bovine embryonic
development (Duan et al., 2019). Sparsity in methylome profiles
hinders the downstream analyses, limiting their value in efforts
to understand the dynamics and regulation of biological
processes.

To address the sparsity in DNA methylome profiles, many
computational approaches have been developed in the past to
impute missing data by training machine learning models to
predict methylation state. With the advancement of
technologies for assessing DNA methylation, the
computational approaches have shifted from predicting the
overall methylation level of a DNA fragment such as a CpG
island (Bock et al., 2006) to the methylation state of individual
CpG sites (Zhang et al., 2015). Varying types of data have been
explored to use as input to predict DNA methylation, including
a variety of DNA sequence patterns, methylation state of
neighboring CpGs, profiles of other functional genomic
events such as histone modifications in the same sample, and
epigenetic profiles of other related samples. By leveraging a
diverse of genomic profiles, several methods achieved very high
prediction accuracy. For example, BoostMe (Zou et al., 2018)
obtained an accuracy that is above 0.96 with using profiles of 7
histone markers, predicted binding sites of 608 transcriptional
factors, predictions for 13 chromatin states, and chromatin
accessibility profiles by assay for transposase-accessible
chromatin with sequencing (ATAC-Seq). However, these
methods have limited usage in the study of biological
systems for which a wealth of additional data are not available.

Earlier methods used hand-crafted features derived fromDNA
sequence, which is limited by the understanding of the biology at
the time and leads to suboptimal results. With seeing the
successful applications of deep neural networks (DNNs) in
many other domains, especially computer vision (Krizhevsky
et al., 2012) and natural language processing (Otter et al.,
2021), several recent studies have attempted to use DNNs to
learn unbiased DNA sequence and/or local methylation patterns
(Sharma et al., 2017; Zeng and Gifford, 2017; De Waele et al.,
2022). Even though with success to some extent, these methods
are limited by the availability of sufficient amount of data for
training the DNNs. Transfer learning performs well in various
low amount data scenarios by transferring knowledge learned on
a large dataset that is different but related to the target learning
problem (Zhuang et al., 2020). Several methods utilizing transfer
learning have been developed recently in genomic data contexts
where limited data are available, such as in the prediction of
cancer survival using gene expression data (López-García et al.,
2020), molecular cancer classification (Sevakula et al., 2018),
denoising single-cell transcriptomics data (Wang et al., 2019),
and imputing missing data in gene expression profiling with the
input from DNA methylation profiles (Zhou X. et al., 2020). To
the best of our knowledge, transfer learning has not been explored
to leverage profiles with higher coverage rate in training
predictive models for much sparser methylation profiles.

Due to allelic methylation, intercellular variability, or clusters
of interspersed methylated and unmethylated CpGs within each
cell, the intermediate DNAmethylation (represented by a value in
between 0 and 1) is widespread in the genome (Elliott et al., 2015).
It has been indicated that intermediate methylation states may be
functional and are dynamically regulated (Stadler et al., 2011).
Moreover, large amount of methylome profiles that are available
in public repositories were obtained by averaging across a group
of cells that may be heterogeneous. Therefore, the variation in
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(intermediate) methylation level among CpG sites is indicative of
difference in the context that regulates their methylation, such as
the surrounding DNA sequence. However, when training models
for predicting methylation by gradient descent to optimize a
concrete objective, previous works chose to convert methylation
level to the binary on or off state followed by employing a binary
classification loss function such as logistic loss (Painsky and
Wornell, 2018). Such an binary conversion results in loss of
information and may lead to suboptimally trained models.
Technically, to avoid binary conversion, the learning problem
can be modeled as a general regression problem, where mean
squared error (MSE) can be applied as the loss function with or
without a final sigmoid mapping to ensure the model prediction
within [0,1]. However, sigmoid mapping drives model outputs
towards either 0 or 1, likely leading to suboptimal models; and, if
without the sigmoid mapping, the model can output values
beyond [0,1], making the prediction difficult to interpret.
Kullback-Leibler (KL) divergence (Kullback and Leibler, 1951)
that measures the difference between two distributions can be a
better choice as a loss function for training classifiers without
binary conversion, but so far has not been exploited in DNA
methylation prediction.

Here in this article, we report the results from the exploration
of using transfer learning together with KL divergence to train
DNNs for completing DNA methylome profiles with extremely
low coverage rate by leveraging those with higher coverage. We
employed a hybrid network architecture adapted from DeepGpG
(Sharma et al., 2017), a mixture of convolutional neural network
(CNN) and recurrent neural network (RNN). The CNN learns
predictive DNA sequence patterns and the RNN exploits known
methylation state of neighboring CpGs in the target profile to
complete and across others. To obtain pretrained network
components (i.e., subnetworks), we used bovine methylome
profiles of varying somatic tissues downloaded from NCBI
GEO under accession numbers: GSE106538 and GSE147087.
The majority of these profiles have a data coverage rate
greater than 5% after cleaning (see Materials and Methods).
The pretrained subnetworks were then transferred for the
training of models to complete profiles of bovine oocytes and
early embryos, which was also obtained from NCBI GEO
(GSE121758). All of these profiles except one have a data
coverage rate below 0.3%. The results from our empirical
study indicate both model transferring and the use of KL
divergence help to improve the performance of trained DNNs.
Specifically, on average, there is about 22.45% increase in the
performance measured in F1 score with model transferring and
about 29.43% increase when using KL divergence. The use of both
leads to even higher increase (about 38.70%), which suggests that
the contributions of the two are in different nature and can be
combined. The subsequent imputation using the trained DNNs
increased the data coverage rate to 43.80–73.65% from the initial
0.06–1.47% for profiles of bovine oocytes and early embryos. The
expanded data enable the methylation quantification for
substantially more genomic features, such as genome bins,
promoters, and CpG islands (CGIs). This could in turn lead to
more insights into the dynamics in methylomes of bovine oocytes
and early embryos across different stages and the understanding

of roles of DNA methylation in regulating varying biological
functions.

2 BACKGROUND AND RELATED WORK

There has been a wealth of research work on building
computational models to predict DNA methylation since the
pioneer work in 2005 that trained a support vector machine
(SVM) for predicting methylation level of short DNA fragments
(Bhasin et al., 2005). Limited by the lack of technologies for
obtaining data in high resolution, the majority of earlier works
focused on the prediction of methylation level of CpG islands,
genomic regions that are rich of CpG sites (Bock et al., 2006; Das
et al., 2006; Fang et al., 2006; Fan et al., 2008; Zheng et al., 2013).
The input used in the prediction comprised varying sequence
features derived from DNA fragment in initial works (Bock et al.,
2006; Das et al., 2006; Fang et al., 2006) and later was expanded to
consider chromatin state of histone modifications including both
methylation (Fan et al., 2008) and acetylation (Zheng et al., 2013).
The used DNA sequence features typically included
characteristics of CpG islands such as G + C content and CpG
ratio, evolutionary conservation, count of k-mers, and occurrence
of (predicted) transcription factor binding sites and repetitive
elements such as AluY. Due to the small size of available data,
machine learning algorithms that work well on small datasets
were typically employed, including SVM, linear discriminant
analysis, and logistic regression. Among them, SVM was used
most often and frequently led to models that had the best
performance. Even though these earlier approaches predict
accurately the methylation level of CpG islands, they offer
limited view of the involvement of DNA methylation in
biological functions, because many functional elements such as
enhancers are frequently located outside of CpG islands (Li et al.,
2021).

Thanks to the rapid advancement of high-throughput
sequencing technologies, profiling genome-wide DNA
methylation at single base resolution has become possible and
with increasingly low cost. Large numbers of genome-wide DNA
methylation profiles of a wide range of tissues and cell lines for
varying organisms have been deposited in public accessible data
repositories such as ENCODE (Dunham et al., 2012), Roadmap
(Roadmap Epigenomics Consortium et al., 2015), and NCBI
GEO. The availability of these high-resolution genome-wide
profiles enables the training of machine learning models that
predict DNA methylation at individual CpG sites, which has
become the primary target of recently developed approaches for
methylation prediction.

Depending on the type of input, the methods for methylation
prediction at individual base resolution can be generally classified
into three categories. The first category includes methods that
predict from coarse profiles obtained with MeDIP-Seq and
Methylation-sensitive Restriction Enzyme sequencing (MRE-
Seq) (Stevens et al., 2013), or methylation state of neighboring
CpGs and methylation profile of other (related) samples (Ma
et al., 2014; Kapourani and Sanguinetti, 2019; Yu et al., 2020;
Tang et al., 2021), or additionally with the help from profiles for
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other epigenetic markers, such as histone modifications (Ernst
and Kellis, 2015; Zou et al., 2018). Due to the availability of large
amount of data for training, the most popularly used machine
learning algorithm by these approaches is ensemble trees, either
random forest or gradient boosting machines. To make accurate
prediction using these approaches, either relative high data
coverage or the availability of profiles of many other
epigenetic markers is needed. The second category consists of
methods that employ only the sequence features derived from the
DNA fragment centered at the target CpG site to predict for.
These methods vary mainly in the length of input DNA fragment
and ways of deriving sequence features that include simply
treating the input sequence as structured data (in other words
each position is taken as an individual input variable) (Kim et al.,
2008), counting of k-mers (Lu et al., 2010; Zhou et al., 2012), and
using a CNN (Zeng and Gifford, 2017). The models obtained
using these methods generally make less accurate prediction than
those from the first category. The third category consists of
methods that leverage both sequence features and functional
chromatin states to varying extent, including methylation state
of neighboring CpGs. There are methods relying on hand-crafted
DNA sequence features similar to those approaches developed for
predicting methylation level of CpG islands (Zhang et al., 2015;
Jiang et al., 2019), but with the majority employing DNNs to
derive features that are unbiased (Wang et al., 2016; Sharma et al.,

2017; Fu et al., 2019; Levy-Jurgenson et al., 2019; De Waele et al.,
2022). Notably, methods using DNNs generally perform better
than those not when there is no additional input beyond the
methylation profile of the target sample (Sharma et al., 2017; De
Waele et al., 2022). However, it is well known that training DNNs
is difficult, requiring large amount of training data. Therefore, the
success in the application of existing DNN-based methods is
limited when methylation profiles are extremely sparse.

Transfer learning is able to mitigate data scarcity problems of
target domain by learning model priors on larger data in a source
domain related to the target domain but with different data
distribution. It has been shown with effectiveness in the
learning for various low data scenarios (Zhuang et al., 2020).
Different transferring strategies have been developed, among
which instance-based, mapping-based, network-based, and
adversarial-based are more prominent approaches (Tan et al.,
2018). It has been reported that logistic loss is not effective in
learning features for transferring (Islam et al., 2021), since it
results in hard class separation and hence leads to less adaptability
of the source model while transfer it to the target domain. This
problem is acute when very few examples for training are
available in target domain. Recently, transfer learning has been
applied to impute incomplete RNA-sequencing data by
transferring features learned during predicting DNA
methylation (Zhou X. et al., 2020). To the best of our

TABLE 1 | Summary of used bovine WGBS profiles.

Profile Tissue Accession number Source Breed Data coverage
rate (%)

Methylation rate
(%)

Sperm Sperm GSE106538 Gamete Holstein 21.34 74.11
MamGl Mammary gland GSE106538 Somatic Holstein 12.6 73.59
PreCor Prefrontal cortex GSE106538 Somatic Holstein 9.94 84.16
WBC1 White blood cell GSE106538 Somatic Holstein 15.38 81.22
WBC2 White blood cell GSE147087 Somatic Holstein 13.04 86.53
Adip1 Adipose GSE147087 Somatic Holstein 7.98 82.5
Adip2 Adipose GSE147087 Somatic Hereford 1.09 94.04
Muscle Muscle GSE147087 Somatic Holstein 7.99 79.1
Heart1 Heart GSE147087 Somatic Holstein 1.32 80.44
Heart2 Heart GSE147087 Somatic Hereford 0.85 92.47
Lung Lung GSE147087 Somatic Holstein 7.09 78.53
Spleen Spleen GSE147087 Somatic Holstein 11.5 83.85
Liver1 Liver GSE147087 Somatic Holstein 5.46 83.27
Liver2 Liver GSE147087 Somatic Hereford 0.88 88.6
Ileum Ileum GSE147087 Somatic Holstein 8.69 79.6
Rumen Rumen GSE147087 Somatic Holstein 5.18 59.92
Jejun Jejun GSE147087 Somatic Hereford 1.17 81.84
Kidn1 Kidney GSE147087 Somatic Hereford 1.28 88.31
Kidn2 Kidney GSE147087 Somatic Holstein 5.69 84.03
Uterus Uterus GSE147087 Somatic Holstein 6.09 84.91
Ovary Ovary GSE147087 Somatic Holstein 11.1 73.01
Placenta Placenta GSE147087 Somatic Hereford 0.98 40.81
GVO GV Oocyte GSE121758 Gamete Holstein 0.16 4.3
MIIO1 MII Oocyte GSE121758 Gamete Holstein 0.06 8.39
MIIO2 MII Oocytea GSE121758 Gamete Holstein 0.13 5.05
2-Cell Embryo GSE121758 Embryo Holstein 0.26 2.41
4-Cell Embryo GSE121758 Embryo Holstein 0.21 3.32
8-Cell Embryo GSE121758 Embryo Holstein 0.18 1.97
16-Cell Embryo GSE121758 Embryo Holstein 1.47 5.94

aIn vitro oocyte. All other oocytes and embryos are in vivo.
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knowledge, transfer learning has not been explored to train
DNN-based models for predicting DNA methylation to
impute sparse methylomes.

3 MATERIALS AND METHODS

To enhance downstream analyses, such as gene expression
regulation, we train DNNs to impute missing methylation data
in methylome profiles with the consideration of both DNA
sequence patterns and methylation state of neighboring CpG
sites. It is known that well-performing DNNs require large data in
their training. However, methylome profiles of oocytes and
mammalian preimplantation embryos are typically very sparse
due to low amount of genetic material available for sequencing,
limiting the amount of data for training DNNs. As a result, it is a
challenging problem to obtain trained DNNs that make accurate
predictions for missing CpGs in these profiles. To improve
prediction accuracy of DNNs, we 1) employ the Kullback-
Leibler (KL) divergence as the loss function in training to
maximize usage of information carried in the data and 2)
leverage transfer learning to make use of the much denser
methylation profiles that are available for other tissues.
Specifically, in this study, we trained DNNs for imputing
missing CpG sites in methylome profiles of oocytes and
preimplantation embryos of bovine.

3.1 Datasets
The methylome profiles of bovine oocytes and preimplantation
embyros were obtained by downloading from NCBI GEO
repository with accession number GSE121758. These profiles
were produced via WGBS in a recent study of mythylome
dynamics of oocytes and in vivo early embryos of bovine
(Duan et al., 2019). More specifically, there are profiles for
three types of oocytes, including two in vivo at different
developmental stages, that is, germinal vesicle (GV) oocyte
and metaphase II (MII) oocyte, and one in vitro MII oocyte.
The dataset includes profiles for in vivo embryos at four different
developmental stages: 2-cell, 4-cell, 8-cell, and 16-cell. The data
coverage rate, that is, the proportion of CpG sites in the whole
genome with known state in a methylation profile, is very low
among these profiles, ranging from 0.06% for in vio MII oocyte to
1.47% for 16-cell embryo with all but one below 0.3% (Table 1).

To enhance the training for oocytes and early embryos, we
identified two bovine WGBS datasets in the NCBI GEO
repository with accession numbers: GSE106538 and
GSE147087, respectively. Both datasets provide methylome
profiles for somatic tissues for which large amount of genetic
materials are available for sequencing. Specifically, GSE106538
provides profiles for sperm in addition to three different somatic
tissues of Holstein cattle: mammary gland, prefrontal cortex, and
white blood cell (Zhou et al., 2018), while GSE147087 provides
methylome profiles with varying availability for cattle of two
different breeds: Holstein and Hereford for a total of 14 tissues,
including lung, heart, spleen, kidney, liver, rumen, jejun, ileum,
ovary, uterus, placenta, white blood cell, muscle, and adipose
(Zhou Y. et al., 2020). Profiles included in GSE106538 have high

data coverage rate, ranging from 9.94% for prefrontal cortex to
21.34% for sperm (Table 1). Compared to these profiles, the data
coverage rate of profiles from GSE147087 is much lower, ranging
from 0.95 to 13.04% with the majority above 5% (Table 1), which
is still significantly higher than that in profiles of oocytes and early
embryos.

To prepare data for network training and subsequent
imputation, downloaded datasets underwent a sequence of
preprocessing steps. First, the profiles that are replicates of the
same tissue were merged within the same data source. Following
the consolidation, we excluded CpGs from a profile that have
limited support for their profiled methylation state, that is, with a
number of overlapping sequencing reads no greater than 3. DNA
methylation is known to be stable during replication and remains
symmetric, meaning that the copy of the cytosine on one strand at
a CpG site is expected to have the same methylation state as the
copy on the other strand (Vandiver et al., 2015; Petryk et al.,
2020). In other words, hemi-methylated (unsymmetrical) CpG
sites are rare and the existence of such CpGs is high likely due to
errors in the methylation profiling. To ensure high data quality
and avoid causing confusion during the network training by
ambiguous labeling, we excluded from all profiles the hemi-
methylated CpG sites and those with data for only one strand.
The data coverage rate in each profile after going through all the
preprocessing steps, together with the methylation rate calculated
using the remaining CpG sites, is provided in Table 1.

3.2 Network Architecture
To leverage both DNA sequence patterns and correlation in
methylation state among neighboring CpGs, we employed
networks with the architecture adapted from one that has
been utilized for predicting DNA methylation in human and
mouse genome (Angermueller et al., 2017). As illustrated in
Figure 1, three feature learning subnetworks: Sequence,
Methylation, and Joint were used to extract features from the
input. Specifically, the Sequence subnetwork learns DNA
sequence patterns that are predictive to methylation; the
Methylation subnetwork learns correlation in the methylation
state among neighboring CpGs; and the Joint subnetwork fuses
the features extracted by the Sequence and Methylation
subnetworks.

To learn sequence features, the Sequence subnetwork takes in
one-hot coded DNA fragment of 1,001 base pair (bp) long,
centered at the CpG to predict for and propagates the data
through two consecutive convolution blocks and one fully
connected layer. As in Angermueller et al. (2017), each
convolution block consists of a convolutional layer followed by
a max pooling layer. The size of filters and their amounts are
indicated in Figure 1. Data normalization is known to facilitate
the training by both speeding up the training process and making
it less sensitive to different choices of hyperparameters, such as
learning rate. Thus, following the max pooling layer in each
convolution block, we added a batch normalization layer.

A bi-directional gated recurrent unit (GRU) network (Cho
et al., 2014) was used to exploit the methylation correlation
among neighboring CpGs and learn such correlation from
multiple methylome profiles. The input to a GRU is a vector
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of size of 100, composed of concatenating two vectors. One of
them contains methylation level of 50 CpG sites surrounding the
one to predict for, 25 on each side. The other vector includes the
base pair distance from the corresponding surrounding CpG sites
to the one to predict for. The features learned from passing
through the sequential input in two opposite directions were
combined by simple concatenation to produce the final
representation of learned methylation correlation among
neighboring CpG sites (Figure 1).

To fuse sequence features and methylation patterns, the Joint
subnetwork propagates the combined representation (by
concatenation) from Sequence and Methylation subnetworks
through two fully connected layers. Like in Sequence
subnetwork, batch normalization is used following each fully
connected layer to facilitate network training.

With features extracted by the three feature learning
subnetworks, the methylation state prediction for a targeted
CpG can be made with a Classification subnetwork head. The
input to this classification head is determined by the data to
consider in the prediction. Specifically, the output of the Sequence
subnetwork is used when only surrounding DNA sequence
patterns are utilized. Similarly, when only local methylation
patterns are considered, the output of the Methylation
subnetwork should be used. If to take into account both the
sequence and methylation patterns, the output of the Joint
subnetwork is used. The classification head includes a fully
connected layer followed by a Softmax layer (not shown in
Figure 1). Multi-task learning has been widely used to
improve model performance in many applications, including
prediction for functional genomics events (Zhou and

Troyanskaya, 2015; Avsec et al., 2021). In multi-task learning,
multiple models are jointly trained with sharing certain
components of the models, allowing mutual learning among
tasks to improve performance. In this work, we also leverage
multi-task learning to jointly train networks for multiple
methylome profiles, with predicting for each profile being a
separate learning task. All tasks share the same feature
extraction subnetworks, but with task-specific classification
head as illustrated in Figure 1.

3.3 Loss Function
To train DNNs for predicting varying functional genomic events
including DNA methylation, the logistic loss has been the
primary loss function utilized so far in the literature. Let y ∈
{0,1}N denote the vector containing true labels and ~y ∈ [0, 1]N
represent the corresponding predicted probabilities, and the
logistic loss (LL) is calculated as shown below:

LL y, ~y( ) � ∑N
i�1

−yi log ~yi( ) − 1 − yi( )log 1 − ~yi( ). (1)

In the obtained methylome profiles, the methylation state of a
CpG is characterized by the fraction number of reads that contain
methylated cytosine out of the total number of reads that overlap
with the CpG. In other words, the methylation state of any CpG is
a value in [0, 1] and a CpG (s1) with a value of 0.51 is expected to
be in very different methylation state compared to another CpG
(s2) with a value of 0.99. However, to compute the logistic loss as
in Eq. 1, the methylation state needs to be converted to a binary
value (as yi ∈ {0, 1}) by comparing to pre-defined threshold,

FIGURE 1 | Architecture of network components in our study. Each colored bar represents a layer of operation in the network as indicated by the enclosed
description. The numbers on the top or the side of bars specify the number of filters or hidden units in the corresponding layers. Activation functions following
convolutional or fully connected layers and that in GRU are not shown. The former uses rectified linear function, while in the latter, hyperbolic tangent function is
employed. [d1/d50]50 represents a numerical vector of size of 50 and c (v1, v2) denotes the concatenation of two vectors: v1 and v2. yi’s represent methylation
state of the single CpG to predict in multiple profiles. When transferring trained models from source to target, components of Sequence, Methylation, Joint, or their
combinations are transferred. Components that are not transferred are trained from scratch (i.e., random initialization). Conv, convolution; Max Pool, max pooling; Batch
Norm, batch normalization; FC, fully connected.
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typically 0.5. More specifically, CpGs with an assessed
methylation state in a profile above 0.5 would be considered
as methylated and labeled with 1 in the profile; while CpGs would
be considered as unmethylated and labeled with 0 if their assessed
state is below 0.5. Such a conversion results in no difference at all
in the methylation state between s1 and s2, as both would be
labeled with 1 (i.e., methylated). The information loss during this
process may lead to suboptimal models.

To make use of the most information carried in the profiles for
training, we propose to utilize KL divergence score (DKL) which
needs no binary conversion of the methylation state. KL
divergence measures the difference between two distributions.
In our problem of predicting for the methylation state of a CpG
(i), the empirically assessed (true) state (yi ∈ [0, 1]) and the
predicted state (~yi ∈ [0, 1]) can be seen as two distributions. KL
divergence, as calculated in Eq. 2, can be used to measure the
difference between true and predicted states. The optimization
goal here is to find a network producing a prediction that
minimizes the DKL(yi, ~yi).

DKL yi, ~yi( ) � yi log
yi

~yi

( ) + 1 − yi( )log 1 − yi

1 − ~yi

( ). (2)

Let w be a vector that contains all learnable parameters in the
network and X denote the network input. Considering all CpGs
for training in a profile with simultaneously learning for multiple
(m) profiles, the following is the overall loss function to minimize
by finding the optimal ŵ during the network training.

ℓ w;X, yj: j�1...m( ) � ∑m
j�1

αj ∑
Ni

i�1
βji DKL yj

i , ~y
j
i( ), (3)

Where yj represents the true methylation state of CpGs in j-th
profile and Nj is the number of CpGs in j-th profile for training.
There are two sets of hyperparameters involved in this loss
function: αj’s and βji ’s. The former balances the contribution
of each individual task to the overall loss; while the latter specifies
that of each individual CpG in every profile.

3.4 Transfer Learning
To obtain models for completing methylome profiles of oocytes
and early embryos (target profiles), we started from training
feature extraction subnetworks: Sequence, Methylation, and
Joint, leveraging profiles of somatic tissues and sperm
(Table 1) using multi-task learning as illustrated in Figure 1.
The trained subnetworks, referred as source models, were
subsequently used as pretrained ones to train networks (target
models) for target profiles.

3.4.1 Source Model
To study the contributions of DNA sequence and local
methylation patterns to the prediction of methylation, we
trained models that uses DNA sequence only, methylation
state of neighboring CpGs only, or the combination of the two
(full model). In addition, we studied three different ways of
training to obtain the best performing full model for
transferring. The trained models are summarized in below:

Seq: Model that predicts from DNA sequence only, consisting
of the Sequence subnetwork followed by the Classification
head. The two subnetworks were trained from scratch with
randomly initialized network weights.
Met: Model that predicts from methylation state of
neighboring CpGs only, consisting of the Methylation
subnetwork followed by the Classification head. Same as in
Seq model, the two subnetworks were trained from scratch
with random initialization.
The following three are all full models that predict from both
DNA sequence and methylation state of neighboring CpGs,
consisting of all three feature extraction subnetworks followed
by the Classification head. They differ in how the full model
was built.
Full1: All four subnetworks were trained from scratch with
random initialization.
Full2: The Sequence subnetwork in the Seq model and
Methylation subnetwork in the Met model were utilized as
pretrained subnetworks. The full model was built by training
the Joint subnetwork and the classification head from scratch
with the two pretrained subnetworks remaining fixed.
Full3: The full model was built in the same way as for Full2
except that the two pretrained subnetworks were fine-tuned
during the training.

The three feature extraction subnetworks from the best
performing full model were transferred for subsequent model
training to predict DNA methylation in target profiles.

3.4.2 Target Model
Given their distinct nature, there is likely variation among the
three feature extraction subnetworks in their contribution to the
improvement of target models through transferring. To study
such differential impact, we trained models with/without
transferring for predicting from DNA sequence only, and
methylation state of neighboring CpGs only, and both. The
detailed description of the explored settings is provided in below.

3.4.2.1 Predicting From DNA Sequence Only
SeqN: The Sequence subnetwork was trained from scratch
(i.e., without transferring) together with the
Classification head.
SeqT1: The Sequence subnetwork was initialized using the
transferred source model and remained fixed during the
training for the Classification head.
SeqT2: The Sequence subnetwork was initialized with the
transferred source model and fine-tuned while training for
the Classification head.

3.4.2.2 Predicting From Methylation State of Neighboring
CpGs Only

MetN: The Methylation subnetwork was trained from scratch
together with the Classification head.
MetT1: The Methylation subnetwork was initialized with the
transferred source model and remained fixed during the
training for the Classification head.
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MetT2: The Methylation subnetwork was initialized with the
transferred source model and fine-tuned while training for the
Classification head.

3.4.2.3 Predicting From Both DNA Sequence andMethylation
State of Neighboring CpGs

FullN: All three feature extraction subnetworks were trained
without transferring together with the Classification head.
FullTS1: Sequence subnetwork was transferred but remained
fixed during the target model training. The other two feature
extraction subnetworks were trained without transferring
together with the Classification head.
FullTS2: Identical to FullTS1 except that the transferred
Sequence subnetwork was fine tuned.
FullTM1: Similar to FullTS1 but with Methylation subnetwork
being the only transferred subnetwork.
FullTM2: Identical to FullTM1 except that the transferred
Methylation subnetwork was fine tuned.
FullTB1: Both Sequence and Methylation subnetworks were
transferred but remained fixed during the target model
training. The Joint subnetwork was trained without
transferring together with the Classification head.
FullTB2: Identical to FullTB1 except that the two transferred
subnetworks were fine tuned.
FullTA1: All three feature extraction subnetworks were
transferred but remained fixed during the training for the
Classification head.
FullTA2: Identical to FullTA1 except that all transferred
subnetworks were fine tuned.

3.5 Network Training and Evaluation
The networks were implemented and the experiments were
carried out using TensorFlow framework in Python, a popular
open-source software library in deep learning research. To train
and evaluate all the networks, we partitioned the methylome
profile into three parts by chromosomes that were used for
training, validation, and testing, respectively. More specifically,
data from chromosomes 1, 4, 7, 10, 13, 16, 19, 22, 25, and 28 were
used for training to optimize network weights. Data from
chromosomes 3, 6, 9, 12, 15, 18, 21, 24, and 27 were used for
validation to identify optimal setting for hyperparameters, such as
learning rate. Data from chromosomes 2, 5, 8, 11, 14, 17, 20, 23,
26, and 29 were used for testing to evaluate the performance of all
trained networks. Adam optimizer (Kingma and Ba, 2015) was
used to optimize network weights with weight decay and early
stopping. All networks were trained with applying both ℓ1 and ℓ2

regularizers and with a mini-batch size of 128. The
hyperparameter βji ’s (individual sample weights) in Eq. 3 were
specified according to the class label distribution in individual
profiles. To simplify, all αj’s (task weights) were set to 1 in this
study. For all settings, we fine-tuned the learning rate with grid
search from {0.1, 0.01, 0.001, 0.0001, 0.00001, 0.000001}. If not
specified otherwise, the performance of the best model among the
different choices of learning rate was reported for each setting.

There are different metrics that can be used to evaluate the
performance of classification models, such as accuracy, area
under curve of receiver operating characteristic (AUC-ROC),

area under precision recall curve (AUPRC), and F1 score. Most of
existing works on functional genomics events prediction used
varying combinations of AUC-ROC, AUPRC, and accuracy
Zhang et al. (2015); Angermueller et al. (2017); Liu et al.
(2018); Zhang and Hamada (2018). The AUC-ROC and
AUPRC take into account the uncertainty in prediction and
are not metrics to evaluate the performance of models in
making specific binary classification. In addition, these two
metrics and accuracy tend to overestimate model performance
when there is large imbalance in the class label distribution, which
is the case in our study (Table 1). To avoid this problem, we used
F1 Score based on the minor class as the primary metric for
evaluating models in making specific binary classification.

4 RESULTS AND DISCUSSION

4.1 Comparison of Evaluation Metrics
As indicated in Table 1, the methylation rate, the proportion of
methylated CpGs (with a methylation level above 0.5) out of the
total in the genome, in target profiles is very low, ranging from
1.97 to 8.39%. This leads to datasets with large imbalance in the
class label distribution when labeling methylated CpGs as positive
examples and unmethylated as negative ones. In contrast, profiles
from GSE106538 and GSE147087 (source profiles) have a
methylation rate in a range of 40.81–94.04% with the majority
around 80%, which results in a dataset that has much less
imbalance in class label distribution. To show the difference
among different metrics including AUC (i.e., AUC-ROC),
accuracy, and F1 score in cases of large class label imbalance,
besides the five models described in the above section (Materials
and Methods) trained on source profiles, models using the exact
same settings were also trained on target profiles.

Performance of all models evaluated by three metrics (AUC,
accuracy, and F1 score) is provided in Figure 2. According to
accuracy and AUC, all five models for target profiles perform
better than the corresponding models for source profiles.
However, by F1 score the comparison indicates a completely
different story, the performance of target models being
substantially worse. The reason that accuracy and AUC
associated with target profiles are high is the high level of class
label imbalance that resulted from extensive lowmethylation rate.
In an extreme case, a classifier that does not learn any intrinsic
patterns in the data that are predictive of methylation and simply
predicts every example to be negative after just learning the class
label distribution can achieve an accuracy above 91%. Therefore,
in the presence of large class imbalance, F1 score, specifically the
F1-score calculated with labeling the minor class as positive, is a
better metric to use for evaluating how well a classifier learning
intrinsic patterns from the data.

4.2 Models for Source Profiles
To demonstrate the advantage of using KL divergence as the
training objective over logistic loss and MSE with/without
sigmoid mapping, we trained models in all five settings (see
Materials and Methods) using all losses on the source profiles.
The performance of obtained models using KL divergence and
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logistic loss measured by F1 score is provided in Table 2
(Supplementary Table S1 for corresponding results when
MSE was used). KL divergence outperforms logistic loss in all
settings. Specifically, the average F1 scores of models trained to
predict from DNA sequence only, neighboring CpG methylation
states only, and both are 0.7124, 0.6035, and 0.7700, respectively
with KL divergence compared to 0.6991, 0.5830, and 0.7585 with
logistic loss. Models trained with KL divergence also have better
performance than those trained using MSE with or without the
sigmoid mapping (Supplementary Table S1).

Among the five models, there are three that were trained to
predict methylation from both sequence and neighboring CpGs in
different settings (see Materials and Methods). The results in

Table 2 indicate fine-tuning the separately trained methylation
and sequence subnetworks while training the joint subnetwork
(Full3) leads to the full model that has the best average
performance. This is consistent between the use of different
objective functions, even though with logistic loss Full3 is only
minimally better than training all subnetworks from scratch
(Full1). The result from comparing Full3 to Full2 suggests fine-
tuning the pretrained methylation and sequence subnetworks is
necessary to obtain models with better performance. The three
subnetworks obtained in Full3 were subsequently used as
pretrained networks to obtain models for target profiles.

Compared models trained to predict methylation from
sequence only (Seq), from neighboring CpG methylation states

FIGURE 2 | Comparison of accuracy, AUC, and F1 score using models obtained on source and target profiles.

TABLE 2 | F1 score of models obtained on source profiles. Models trained using both logistic loss and KL divergence as the objective function are included for comparison.

Profile Logistic loss KL divergence

Met Seq Full1 Full2 Full3 Met Seq Full1 Full2 Full3

Sperm 0.9560 0.8919 0.9585 0.9557 0.9588 0.9584 0.8964 0.9593 0.9595 0.9593
MamGl 0.8768 0.7965 0.8940 0.8917 0.8952 0.8830 0.8070 0.8986 0.8964 0.8984
PreCor 0.7910 0.6898 0.8130 0.8080 0.8119 0.8010 0.6922 0.8198 0.8156 0.8207
WBC1 0.8603 0.7760 0.8913 0.8851 0.8915 0.8753 0.7786 0.8947 0.8917 0.8934
WBC2 0.7188 0.6006 0.7767 0.7499 0.7740 0.7434 0.5916 0.7867 0.7788 0.7870
Adip1 0.7556 0.6321 0.7864 0.7824 0.7866 0.7683 0.6323 0.7944 0.7896 0.7928
Adip2 0.5783 0.5023 0.7137 0.5595 0.6908 0.6540 0.4588 0.7227 0.7190 0.7341
Muscle 0.7459 0.6206 0.7893 0.7803 0.7873 0.7569 0.6379 0.7982 0.7905 0.7959
Heart1 0.5475 0.2910 0.6145 0.5984 0.6155 0.5426 0.3607 0.6024 0.6114 0.6058
Heart2 0.5650 0.4650 0.6976 0.6147 0.6841 0.6140 0.4636 0.6954 0.6945 0.7099
Lung 0.7641 0.6509 0.8000 0.7927 0.7982 0.7729 0.6653 0.8053 0.8005 0.8039
Spleen 0.7463 0.6623 0.7907 0.7785 0.7891 0.7598 0.6555 0.7928 0.7892 0.7957
Liver1 0.5832 0.4178 0.6490 0.6298 0.6492 0.5674 0.4426 0.6473 0.6393 0.6532
Liver2 0.4855 0.3829 0.6116 0.5319 0.5900 0.5024 0.3968 0.6219 0.6008 0.6252
Ileum 0.6702 0.6022 0.7721 0.7512 0.7654 0.6678 0.6461 0.7813 0.7710 0.7830
Rumen 0.7493 0.6120 0.7963 0.7909 0.7999 0.7586 0.6918 0.8052 0.8005 0.8059
Jejun 0.6173 0.5453 0.7780 0.7221 0.7756 0.6238 0.6180 0.7913 0.7756 0.7841
Kidn1 0.6690 0.5564 0.7584 0.7044 0.7395 0.6999 0.5688 0.7602 0.7581 0.7719
Kidn2 0.5741 0.4029 0.6239 0.6065 0.6223 0.5579 0.4169 0.6246 0.6109 0.6168
Uterus 0.6181 0.4919 0.6775 0.6579 0.6754 0.6291 0.4840 0.6840 0.6806 0.6821
Ovary 0.8088 0.7026 0.8549 0.8463 0.8544 0.8166 0.7459 0.8609 0.8565 0.8610
Placenta 0.7000 0.5323 0.7405 0.7361 0.7329 0.7194 0.6265 0.7523 0.7488 0.7592

Average 0.6991 0.5830 0.7631 0.7352 0.7585 0.7124 0.6035 0.7681 0.7627 0.7700
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only (Met), and from both (Full), the Full model always has the
best prediction performance regardless the objective function
being used (Table 2). Models predicting from neighboring CpGs
perform much better (average F1 score: 0.7124) than that
predicting from sequence (average F1 score: 0.6035). The
performance of all three model variants for individual profiles
closely correlates with the data coverage rate in corresponding
profiles with a Pearson correlation ranging from 0.72 to 0.76
(Figure 3). In other words, the higher the coverage rate is in a
profile, the better performance the corresponding models are
likely to have. Among the three scenarios, the performance of
models predicting from methylation state of neighboring CpGs is
the one that mostly correlates the data coverage (cor = 0.76). This
makes sense because the higher the data coverage rate is, the local
CpG methylation pattern is more informative to the prediction
for the target CpG.

4.3 Models for Target Profiles
To find out how transfer learning helps with obtaining models for
target profiles, we trained networks in varying settings (see Materials
and Methods) using KL divergence as the objective function. The
subnetworks that were transferred are those in Full3 trained for
source profiles also with KL divergence as the objective function. The
performance of all models assessed using F1 score is provided in
Table 3 (Supplementary Table S2 for other performance metrics,
including accuracy, AUC-ROC, precision, and recall). Similar to the
case with source profiles, models predicting from both sequence and
neighboring CpGs perform better than those predicting from
anyone of them only with one exception: 4-cell, for which
predicting from CpG only (F1 score: 0.8367) is slightly better
than predicting from both (F1 score: 0.8357). Models trained
with transferring all three subnetworks together with subsequent
fine-tuning (FullTA2) achieved the overall best performance across
profiles (average F1 score: 0.6828). Aligning with the observations in
training for source profiles, the performance ofmodels for individual
profiles also well positively correlates with the data coverage rate, but
with reduced correlation, especially in the case of predicting from
sequence only (Figure 3). Such much-reduced correlation is likely
due to the extremely high sparsity in several profiles that leads to
overfitting. This is evidenced by the much-improved correlation
(from 0.44 to 0.57) when more data were considered via model
transferring. For profiles that have extremely low coverage rate,
including GVO, MIIO1, and MIIO2, predicting from neighboring
CpGs only does not perform well with F1 score ranging from only
0.1754 to 0.2868, much worse than predicting from sequence only.

Model transferring helped to obtain models with significantly
improved performance to predict from neighboring CpGs only or
from both sequence and neighboring CpGs. However, there is no
gain to be seen in training models predicting from sequence only,
except for profiles from 2-cell and 16-cell stages that have the
highest data coverage rate among all target profiles. Such lack of
improvement is likely due to the extremely low data coverage,
causing the learning to arrive in a local minimal that is difficult to
reach when training starting from a pretrained sequence
subnetwork. The results in Table 3 also indicate that fine-
tuning the transferred models always helped, with just very
few exceptions. In the case of predicting from sequence only,

FIGURE 3 | Pearson correlation between model performance and the
data coverage rate in corresponding profiles. Source indicates the models
trained for source profiles; Target1 (Target2) labels models trained on target
profiles without (with) transferring.

TABLE 3 | F1 score of models trained for target profiles in varying transfer settings.

Setting GVO MIIO1 MIIO2 2-Cell 4-Cell 8-Cell 16-Cell Average

SeqN 0.4997 0.4817 0.5214 0.4918 0.5407 0.3546 0.5564 0.4923
SeqT1 0.0815 0.0074 0.0410 0.0071 0.5500 0 0.3749 0.0810
SeqT2 0.4756 0.4553 0.5045 0.4968 0.5003 0.3347 0.5643 0.4759
MetN 0.1338 0.1070 0.1807 0.7432 0.8126 0.4369 0.8004 0.4592
MetT1 0.2625 0.1332 0.1989 0.7634 0.8204 0.4924 0.7995 0.4958
MetT2 0.2868 0.1754 0.2211 0.7435 0.8367 0.5036 0.8062 0.5104
FullN 0.5101 0.5107 0.5668 0.7649 0.7955 0.5165 0.7950 0.6372
FullTS1 0.2922 0.1108 0.2905 0.7334 0.8180 0.5086 0.7809 0.5049
FullTS2 0.5791 0.5483 0.5987 0.7177 0.7791 0.5540 0.7690 0.6494
FullTB1 0.3641 0.2954 0.2244 0.7463 0.8037 0.4944 0.8118 0.5343
FullTB2 0.5733 0.5316 0.5858 0.7806 0.8085 0.5933 0.8143 0.6696
FullTA1 0.4094 0.3345 0.4017 0.7364 0.8004 0.4945 0.8027 0.5685
FullTA2 0.6275 0.5279 0.6380 0.7770 0.8357 0.5630 0.8102 0.6828
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without fine-tuning, the obtained models almost completely
failed to perform for all profiles except those at 4-cell and 16-
cell stages, which have relatively higher data coverage rate (0.21
and 1.47%, respectively). Fine-tuning has the least impact on
training models to predict from neighboring CpGs only, which
suggests that the methylation subnetwork trained using one
dataset is ready for using in models for another dataset.

To differentiate the impact of model transferring and KL
divergence on models for target profiles, we trained models
predicting from both sequence and neighboring CpGs in two
additional settings that are using logistic loss as the training
objective with and without model transferring. The performance
(in F1 score) of these models, together with those trained using
KL divergence with/without transferring, is presented in Table 4
(Supplementary Table S3 for performance by other metrics).
The results indicate that both transferring and the use of KL
divergence helped to improve the performance, importantly in

distinct ways that are complementary to each other, since the
combination of the two leads to the best-performing models. The
improvement from using KL divergence by 29.43% in average F1
score (from 0.4923 to 0.6372) is similar to that from model
transferring and much more significant than the similar
improvement seen in the model training for source profiles.
This again indicates that KL divergence is a more effective
objective function to use when training models for DNA
methylation prediction. It is also worth noting that both the
use of KL divergence and model transferring lead to reduced
variance in the performance across profiles (Table 4), with higher
reduction seen with transferring. This suggests that the initial
worse performing models gained more improvement when
leveraging either KL divergence or model transferring.

4.4 Imputation for Methylome Profiles of
Oocytes and Early-Stage Embryos
The best-performing full models on target profiles, that is,
those obtained with setting FullTA2 (Table 2) were used to
complete the target profiles by imputing the methylation state
for CpG sites that do not have experimental data. The models
output probabilities of a CpG being methylated in individual
profiles. To have the highest possible quality, we used a
threshold τ and only kept imputed results for CpGs with a
predicted probability either above τ or below 1 − τ. The test
data used before for evaluating model performance were
leveraged to find the best τ to use. For a given τ, there was
no prediction being made for CpGs in the test set with a
predicted probability in between 1 − τ and τ. These CpGs
were not considered in the subsequent F1 score calculation,
leading to variation in the F1 score among different choices of
τ. Intuitively, higher the τ is, more certain the prediction is
and higher the calculated F1 score is. Figure 4 shows how F1
score varies along with different choices of τ, indicating that
the improvement in the F1 score becomes minimal for all

TABLE 4 | F1 score of models trained for target profiles using different objective
functions and with/without transfer.

Profile Baseline KLD TLR KLD + TLR

GVO 0.3073 0.5101 0.5840 0.6275
MIIO1 0.5169 0.5107 0.5299 0.5279
MIIO2 0.3750 0.5668 0.5635 0.6380
2-Cell 0.7473 0.7650 0.7311 0.7770
4-Cell 0.8154 0.7955 0.8148 0.8357
8-Cell 0.5169 0.5165 0.4437 0.5630
16-Cell 0.7095 0.7950 0.8124 0.8102

Average 0.4923 0.6372 0.6399 0.6828
SD 0.1931 0.1401 0.1461 0.1237

Baseline: models trained using logistic loss without transfer, corresponding to DeepCpG
(Angermueller et al., 2017) with the exception of the addition of batch normalization layers
to facilitate training; KLD: KL divergence, models trained using KL divergence without
transfer; Trn: transfer, models trained using logistic loss with transfer; KLD + Trn: models
trained using KL divergence with transfer; SD: standard deviation.

FIGURE 4 | F1 score from the use of varying threshold τ.

FIGURE 5 | Before and after imputation, the data coverage rate for all
CpGs in the genome and three categories of genomic features: promoter,
CGI, and 300bp genome bin in methylome profiles of bovine oocytes and
early-stage embryos.
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profiles starting τ = 0.8. As a result, 0.8 was used as the
threshold in subsequent imputation for CpG sites with
missing data.

Large number of missing CpGs had imputed data in each
individual profile, leading to a drastic increase in the data
coverage rate from the initial range of 0.06–1.47% to that of
43.80–73.65% (Figure 5). To demonstrate the impact of imputed
data on subsequent analyses of functional genomics, we
compared the number of genomic features that are considered
to have data before and after the imputation. Three categories of
genomic features were considered: genome bin, promoter of gene,
and CGI. Genome bins were obtained by tiling the reference
genome to produce equal-sized and nonoverlapping bins of
300 bp long each. Promoters were defined by 1001bp regions
centered at annotated transcription starting site of genes, which
were obtained from Ensembl Genome Browser. The CGI
annotations were downloaded from UCSC Genome Browser.
A genome bin was considered to have data when there were at
least three CpG sites with knownmethylation state within the bin;
while given its longer length, a promoter (or a CGI) was
considered to have data when there were at least 10 CpG sites

with known state within the promoter (or CGI) region. The
percentages of genome bins, promoters, and CGIs that were
considered to have data out of total 8,869,705, 22,118, and
37,226, respectively, before and after imputation in individual
profiles are shown in Figure 5. As for individual CpG sites,
substantial increase in the data coverage can be seen for all three
categories of genomic features. Specifically, the coverage rate was
increased to 29.74–55.80% from 0.02 to 0.48% for genome bins, to
67.44–89.90% from 1.85 to 27.86% for promoters, and to
74.92–96.42% from 1.87 to 29.70% for CGIs. The expanded
data will greatly enhance the analyses to understand the
mechanisms underlying DNA methylation and its role in
regulating various biological functions.

To demonstrate the impact of imputation on downstream
analyses, we calculated the Pearson correlation between each pair
of profiles before and after imputation, followed by hierarchical
clustering to group profiles. In addition, we performed principal
component analysis (PCA) on profiles before and after
imputation. The methylation level of 300 bp genome bins
(assessed by the average methylation level of CpGs within
each bin) was used as input data for these analyses with

FIGURE 6 | Comparison of DNA methylation profiles of bovine oocytes and early-stage embryos before and after imputation. (A): Pearson correlations among
profiles; (B): profiles embedded in the space spanned by the first two principal components.
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excluding bins that have missing data in any of the profiles. The
results are provided in Figure 6, indicating that imputation
helped to obtain profile groupings that better align with
existing biological understandings. Specifically, the grouping of
the three oocytes profiles and that of 2-cell and 4-cell profiles
followed by grouping with 8-cell and 16-cell profiles after
imputation (top right, Figure 6) align well with the natural
reproductive phases. In contrast, the groupings obtained
before imputation (top left, Figure 6) lack clear biological
interpretation. The PCA plots with profiles embedded in the
two-dimensional space spanned by the first two principal
components (bottom panel, Figure 6) also indicate the
same story.

5 CONCLUSION

Here, we reported our exploration of utilizing transfer learning and
KL divergence in training DNNs to impute for DNA methylome
profiles with very low data coverage. The target profiles to complete
in our study are those of bovine oocytes and early embryos by
WGBS with a data coverage rate ranging from 0.06 to 1.47% after
cleaning. To obtain pre-trained models for transferring, WGBS
profiles of sperm and a wide range of somatic tissues (coverage rate:
0.85–21.34%) were utilized. The results of our analyses indicate
that both model transferring and KL divergence improve the
prediction performance of the target models.

Our study demonstrated that KL divergence is a more effective
objective function to use than the commonly used logistic loss for
training models to prediction DNA methylation. Compared to
logistic loss, the use of KL divergence led to models with
improved performance in the training for both source and
target profiles. Note that KL divergence helps to boost the
average F1 score to 0.6372 from 0.4923 across target profiles,
which is a much larger increase compared to that seen in source
model training (from 0.7585 to 0.7700). This suggests that the use
of KL divergence is especially beneficial when the data coverage
rate is low, which makes sense as the ability of utilizing as much
information carried in the data as possible is of greater
importance in the case of limited training set size. Our results
also demonstrated that the transferring of models built for
profiles with relatively high coverage greatly improves training
for those that are in low coverage, with increased average F1 score
0.6399 (from 0.4923). Importantly, model transferring and KL
divergence enhance the training of target models in two
distinctive ways that are additive, evidenced by the further
improved performance (average F1 score: 0.6828) when both
were exploited simultaneously. Moreover, our exploration further
into the different components of the adopted DNN indicates that
local methylation patterns are more transferable across datasets
than learned DNA sequence patterns. Finally, to obtain the best
models for target profiles, fine-tuning is necessary regardless of
which components of the source model are transferred.

The results from the subsequent application of trained models
for imputation demonstrated the high effectiveness of our

approach in completing DNA methylome profiles that have
very low data coverage. Drastic increase in data coverage rate
after imputation were seen at both individual CpG sites and
varying genomic features, including genome bins, gene
promoters, and CGIs. The imputed data would greatly
strengthen analyses toward the understanding of biological
mechanisms and functional roles of DNA methylation. One of
our future works will be to link the methylation level of genomic
features to transcriptomic profiles to understand how DNA
methylation regulates gene expression as a cis regulator. The
results from such an analysis will allow more accurate
reconstruction of gene regulatory networks underlying a
biological system, which is also our future work.
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