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ABSTRACT
The human gaze characteristics provide informative cues on human
behavior during various activities. Using traditional eye trackers,
assessing gaze characteristics in the wild requires a dedicated de-
vice per participant and therefore is not feasible for large-scale
experiments. In this study, we propose a commodity hardware-
based multi-user eye-tracking system. We leverage the recent ad-
vancements in Deep Neural Networks and large-scale datasets for
implementing our system. Our preliminary studies provide promis-
ing results for multi-user eye-tracking on commodity hardware,
providing a cost-effective solution for large-scale studies.

CCS CONCEPTS
•Human-centered computing→ Interaction techniques;Col-
laborative interaction; •Computingmethodologies→Neural
networks.
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1 INTRODUCTION
The human gaze has a wide range of applications, from human-
computer interactions [Mutlu et al. 2009; Palinko et al. 2016; Pa-
poutsaki et al. 2017] to research in psychology[De Silva et al. 2019;
Michalek et al. 2019] and behavioral studies [Asteriadis et al. 2009;
Mahanama et al. 2021]. Recently, gaze characteristics have been
the subject of experiments, and based on the requirements, eye-
trackers have evolved into two forms head-mounted and desktop-
based[Pathirana et al. 2022]. Even though these eye-trackers per-
form well for single-user studies, they lack the scalability for multi-
user studiesmainly because they cannot trackmore than one person.
Further, a multi-user tracking setup will require a dedicated device
per participant [Zhang et al. 2017a], making simple experiments
costly.

Eye-tracking using commodity hardware provides an alterna-
tive for overcoming the scalability issues and has been subjected
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to many studies. Due to the poor feature extraction techniques
[Pathirana et al. 2022], these approaches have exhibited relatively
lesser accuracy to be used for experimental setups. However, re-
cent developments such as deep neural network-based techniques
[Fischer et al. 2018; Kellnhofer et al. 2019; Krafka et al. 2016; Zhang
et al. 2020, 2015, 2017b,c] and large-scale datasets [Fischer et al.
2018; Kellnhofer et al. 2019; Krafka et al. 2016; Sugano et al. 2014;
Zhang et al. 2020, 2017c] have countered these issues. Regardless of
these advancements, the potential of using them in creating scalable
multi-user eye-tracking systems remains unexplored.

2 PROBLEM STATEMENT
In general, an eye-tracking system works in two steps; (1) Identify
and localize facial/ocular regions, and (2) Estimate gaze directions/
positions. In a multi-user eye-tracking system, we would require to
extend the idea to multiple users by estimating gaze information for
all the users detected in the frame. Despite the solution appearing
trivial, there are several problems associated with it.

Most importantly, the camera setup we use would restrict the
number of users the system can support. The number of users a
single camera can track depend on the camera’s resolution, the field
of view, and the experimental setup. In order to be cost-effective,
we will focus on extending the range by incorporating multiple
cameras. Moreover, the computations associated with the overall
system need to be optimized for different computational devices
such as GPU-accelerated, non-GPU accelerated, and mobile. In
the case of using a single computational setup based on minimum
hardware, the system would not enable us to exploit the computing
capabilities of the higher-end system, whereas targeting higher-
end systems would restrict the accessibility of the eye-tracking
system. As a result, the target system requires scalability based on
the hardware setup.

Further, compared with traditional eye-trackers, a multi-user
eye-tracking system will pose restrictions on calibration. Explicitly
considering using the system in the wild, the calibration per user is
not an ideal implementation. Instead, the system needs to be capa-
ble of estimating gaze with few to no calibration samples. Finally,
to be used by a practitioner, the overall system requires including
commonly used gaze metrics such as fixational and saccadic mea-
sures. Since the system is concurrently used by multiple users, in
addition to measures per user, the system also requires multi-user
gaze measures.

During the study, I will investigate the following research ques-
tions,

(1) Identify scalable commodity hardware-based setup(s) for
multi-user eye-tracking.

(2) Develop a deep learning-based gaze estimation architecture
suitable for gaze estimation in the wild.
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(3) Determine approaches for integrating the identified archi-
tectures in a multi-user eye-tracking setup.

(4) Incorporate data from gaze estimation to form commonly
used eye-tracking metrics.

3 APPROACH AND METHODS
I plan to implement a multi-user eye-tracking system with multi-
cameras capable of scaling based on the hardware setup. The overall
system will comprise a multi-step pipeline, from capturing the
users/ gaze subjects to estimating gaze positions/ metrics for each
user (see Figure 1).

The first step of the pipeline is capturing participants through a
multi-camera setup. As highlighted earlier, here, we use an array
of commodity cameras. Then we use the frames from the cameras
to detect users in the environment. An issue here is that there can
be overlapping regions, and the system might perform redundant
computations due to the overlapping regions. In order to overcome
the issue, we assume the camera array to be stationary relative to
each camera causing overlapping regions not to vary across steps.
Therefore at the initialization step, the system can identify over-
lapping regions and perform computations once per overlapping
region in subsequent steps. Moreover, we plan to include multiple
models for user detection, each optimized for each different type of
platform used.

The next step of the pipeline is to estimate the gaze of each
detected face expressed as pitch and yaw angles concerning the
detected face. Since the face patches can be of different sizes de-
pending on the distance from the camera, we will use bilinear
interpolation to resize images to the size used by the model. We
ensure scalability like the face detection model by including a series
of optimized models.

The final step of the pipeline is to estimate the gaze positions or
metrics depending on the requirement. In the case of gaze positions,
we can incorporate a world view as seen by the participants and
estimate the gaze positions. Further, using gaze positions, we can
compute fixational and saccadic metrics.

4 RESULTS
We created a prototype application capable of eye-tracking two
users using a web camera to conduct a preliminary study. The
prototype application used the FaceMesh [Kartynnik et al. 2019]
model to detect faces and an EfficientNet [Tan and Le 2019] based
gaze estimation model trained using the XGaze [Zhang et al. 2020]
dataset for estimating gaze. We assessed the prototype on gaze
estimation and an experimental task.

During the experiments, our Gaze estimation model achieved
a gaze error of 5.22 for XGaze testing examples. Even though our
model exhibited a low accuracy compared to the baseline of 4.5,
our model used a significantly lesser number of parameters, 4.3M,
compared to 26 M in the baseline model. We consider the results
to provide potential room for improvement through architectural
modifications of the neural network.

Moreover, to test the utility of the proposed approach, we at-
tempted to replicate a joint attention experiment [Guo et al. 2018].
We experimented with five volunteers on joint attention with a
proctor instructing users to look at an on-screen target(out of three).

During each session, we gathered information on the gaze posi-
tions of each user with the corresponding timestamp and derived
fixational eye movement measures. Based on computations, we
identified the average time to the first fixation as 1.25 seconds and
the average fixation duration as 5.45 seconds.

5 FUTUREWORK
We explore deep neural models for a potential model candidate for
the gaze estimation network. Here we plan to thoroughly investi-
gate the gaze estimation capabilities across datasets, the scalability,
and throughput on different platforms. Further, we plan to extend
the current prototype to a multi-camera environment with more
than two users and overlapping regions. Through the prototype’s ex-
tension, we plan to investigate potential approaches we can follow
in multi-camera environments. Then we will integrate eye-tracking
metrics for our setup, including the most commonly used fixational
and saccadic measures. Finally, we plan to conduct a comprehensive
user study to determine the approach’s utility. In this study, we will
evaluate the performance of our system against commonly used
eye trackers.

6 BROADER IMPACT
The multi-user eye-tracking using commodity hardware will con-
tribute to behavioral studies in the wild, often confined to controlled
environments and requires costly hardware. Moreover, we expect
these studies to help better understand human behavior. Further,
the study will improve the accessibility to eye-tracking research
in the community by eliminating potential barriers by providing
cost-effective and scalable eye-tracking systems.
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